
Java Platform, Standard Edition
Java Language Updates

Release 19
F55182-01
September 2022

Java Platform, Standard Edition Java Language Updates, Release 19

F55182-01

Copyright © 2017, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documents v

Conventions v

1 Java Language Changes

Java Language Changes for Java SE 19 1-1

Java Language Changes for Java SE 18 1-1

Java Language Changes for Java SE 17 1-2

Java Language Changes for Java SE 16 1-3

Java Language Changes for Java SE 15 1-4

Java Language Changes for Java SE 14 1-4

Java Language Changes for Java SE 13 1-5

Java Language Changes for Java SE 12 1-5

Java Language Changes for Java SE 11 1-6

Java Language Changes for Java SE 10 1-6

Java Language Changes for Java SE 9 1-6

More Concise try-with-resources Statements 1-7

@SafeVarargs Annotation Allowed on Private Instance Methods 1-8

Diamond Syntax and Anonymous Inner Classes 1-8

Underscore Character Not Legal Name 1-8

Support for Private Interface Methods 1-8

2 Preview Features

3 Sealed Classes

iii

4 Pattern Matching

Pattern Matching for instanceof 4-1

Pattern Matching for switch 4-2

When Clauses 4-2

Parenthesized Patterns 4-3

Record Patterns 4-4

5 Pattern Matching for instanceof Operator

Scope of Pattern Variables 5-2

6 Pattern Matching for switch Expressions and Statements

Selector Expression Type 6-2

Pattern Label Dominance 6-3

Type Coverage in switch Expressions and Statements 6-4

Scope of Pattern Variable Declarations 6-6

Null case Labels 6-8

7 Record Classes

8 Switch Expressions

9 Text Blocks

10

Local Variable Type Inference

iv

Preface

This guide describes the updated language features in Java SE 9 and subsequent releases.

Audience
This document is for Java developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents
See JDK 19 Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase19&id=homepage

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Java Language Changes

This section summarizes the updated language features in Java SE 9 and subsequent
releases.

Java Language Changes for Java SE 19

Feature Description JEP

Pattern Matching for switch
Expressions and Statements

Preview feature from Java SE 17
re-previewed for this release.

In this release:

• The syntax of a guarded
pattern label consists of a
pattern and a when clause.

• If a selector expression
evaluates to null and the
switch block does not have
null case label, then a
NullPointerException is
thrown, even if a pattern
label can match the type of
the null value.

• If a switch expression or
statement is exhaustive at
compile time but not at run
time, then a
MatchException is thrown.

JEP 427: Pattern Matching for
switch (Third Preview)

Record Patterns Introduced as a preview feature
for this release.

A record pattern consists of a
type, a record component pattern
list used to match against the
corresponding record
components, and an optional
identifier. You can nest record
patterns and type patterns to
enable a powerful, declarative,
and composable form of data
navigation and processing.

JEP 405: Record Patterns
(Preview)

Java Language Changes for Java SE 18

1-1

https://www.oracle.com/pls/topic/lookup?ctx=javase19&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase19&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://openjdk.java.net/jeps/427
https://openjdk.java.net/jeps/427
https://www.oracle.com/pls/topic/lookup?ctx=javase19&id=GUID-7623D3AD-4141-4914-A384-60C65BD0C010
https://openjdk.java.net/jeps/405
https://openjdk.java.net/jeps/405

Feature Description JEP

Pattern Matching for switch
Expressions and Statements

Preview feature from Java SE
17 re-previewed for this
release.

In this release:

• Dominance checking
forces a constant label to
appear before a guarded
pattern labels, which must
appear before a non-
guarded type pattern
label; see the section
"Pattern Label
Dominance" in Pattern
Matching for switch
Expressions and
Statements.

• Exhaustiveness checking
has been expanded to
take into account generic
sealed classes and to
check switch
expressions; see the
section "Type Coverage in
switch Expressions and
Statements" in Pattern
Matching for switch
Expressions and
Statements and the
section "Exhaustiveness
of switch Statements" in
Switch Expressions.

JEP 420: Pattern Matching for
switch (Second Preview)

Java Language Changes for Java SE 17

Feature Description JEP

Sealed Classes First previewed in Java SE 15,
this feature is permanent in
this release. This means that it
can be used in any program
compiled for Java SE 17
without enabling preview
features.

A sealed class or interface
restricts which classes or
interfaces can extend or
implement it.

JEP 409: Sealed Classes

Chapter 1
Java Language Changes for Java SE 17

1-2

https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/420
https://openjdk.java.net/jeps/420
http://www.oracle.com/pls/topic/lookup?ctx=javase17&id=GUID-0C709461-CC33-419A-82BF-61461336E65F
https://openjdk.java.net/jeps/409

Feature Description JEP

Pattern Matching for switch
Expressions and Statements

Introduced as a preview
feature for this release.

Pattern matching for switch
expressions and statements
allows an expression to be
tested against a number of
patterns, each with a specific
action, so that complex data-
oriented queries can be
expressed concisely and
safely.

JEP 406: Pattern Matching for
switch (Preview)

Java Language Changes for Java SE 16

Feature Description JEP

Sealed Classes Preview feature from Java SE 15
re-previewed for this release. It
has been enhanced with several
refinements, including more strict
checking of narrowing reference
conversions with respect to
sealed type hierarchies.

A sealed class or interface
restricts which classes or
interfaces can extend or
implement it.

JEP 397: Sealed Classes
(Second Preview)

Record Classes First previewed in Java SE 14,
this feature is permanent in this
release. This means that it can
be used in any program compiled
for Java SE 16 without enabling
preview features.

In this release, inner classes may
declare members that are either
explicitly or implicitly static. This
includes record class members,
which are implicitly static.

A record is a class that acts as
transparent carrier for immutable
data.

JEP 395: Records

Chapter 1
Java Language Changes for Java SE 16

1-3

http://www.oracle.com/pls/topic/lookup?ctx=javase17&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
http://www.oracle.com/pls/topic/lookup?ctx=javase17&id=GUID-E69EEA63-E204-41B4-AA7F-D58B26A3B232
https://openjdk.java.net/jeps/406
https://openjdk.java.net/jeps/406
http://www.oracle.com/pls/topic/lookup?ctx=javase16&id=GUID-0C709461-CC33-419A-82BF-61461336E65F
https://openjdk.java.net/jeps/397
https://openjdk.java.net/jeps/397
http://www.oracle.com/pls/topic/lookup?ctx=javase16&id=GUID-6699E26F-4A9B-4393-A08B-1E47D4B2D263
https://openjdk.java.net/jeps/395

Feature Description JEP

Pattern Matching for instanceof First previewed in Java SE 14,
this feature is permanent in this
release. This means that it can
be used in any program compiled
for Java SE 16 without enabling
preview features.

In this release, pattern variables
are no longer implicitly final, and
it's a compile-time error if a
pattern instanceof expression
compares an expression of type
S with a pattern of type T, where
S is a subtype of T.

Pattern matching allows common
logic in a program, namely the
conditional extraction of
components from objects, to be
expressed more concisely and
safely.

JEP 394: Pattern Matching for
instanceof

Java Language Changes for Java SE 15

Feature Description JEP

Sealed Classes Introduced as a preview feature for this release.

A sealed class or interface restricts which classes or
interfaces can extend or implement it.

JEP 360: Sealed Classes
(Preview)

Record Classes Preview feature from Java SE 14 re-previewed for this
release. It has been enhanced with support for local
records.

A record is a class that acts as transparent carrier for
immutable data.

JEP 384: Records (Second
Preview)

Pattern Matching for
instanceof

Preview feature from Java SE 14 re-previewed for this
release. It is unchanged between Java SE 14 and this
release.

Pattern matching allows common logic in a program,
namely the conditional extraction of components from
objects, to be expressed more concisely and safely.

JEP 375: Pattern Matching
for instanceof (Second
Preview)

Text Blocks

See also Programmer's
Guide to Text Blocks

First previewed in Java SE 13, this feature is permanent
in this release. This means that it can be used in any
program compiled for Java SE 15 without enabling
preview features.

A text block is a multiline string literal that avoids the
need for most escape sequences, automatically formats
the string in a predictable way, and gives the developer
control over the format when desired.

JEP 378: Text Blocks

Java Language Changes for Java SE 14

Chapter 1
Java Language Changes for Java SE 15

1-4

http://www.oracle.com/pls/topic/lookup?ctx=javase16&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
https://openjdk.java.net/jeps/394
https://openjdk.java.net/jeps/394
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-0C709461-CC33-419A-82BF-61461336E65F
https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/360
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-6699E26F-4A9B-4393-A08B-1E47D4B2D263
https://openjdk.java.net/jeps/384
https://openjdk.java.net/jeps/384
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-221D06A2-FF54-4DB3-A6DA-179B8F76DB05
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=text_blocks
https://openjdk.java.net/jeps/378

Feature Description JEP

Pattern Matching for the
instanceof Operator

Introduced as a preview feature for this release.

Pattern matching allows common logic in a program,
namely the conditional extraction of components from
objects, to be expressed more concisely and safely.

JEP 305: Pattern Matching
for instanceof
(Preview)JEP 305: Pattern
Matching for instanceof
(Preview)

Records Introduced as a preview feature for this release.

Records provide a compact syntax for declaring classes
which are transparent holders for shallowly immutable
data.

JEP 359: Records
(Preview)

Text Blocks

See also Programmer's
Guide to Text Blocks

Preview feature from Java SE 13 re-previewed for this
release. It has been enhanced with support for more
escape sequences.

A text block is a multiline string literal that avoids the
need for most escape sequences, automatically formats
the string in a predictable way, and gives the developer
control over the format when desired.

JEP 375: Pattern Matching
for instanceof (Second
Preview)

Switch Expressions First previewed in Java SE 12, this feature is permanent
in this release. This means that it can be used in any
program compiled for Java SE 14 without needing to
enable preview features.

This feature extends switch so it can be used as either
a statement or an expression, and so that both forms
can use either traditional case ... : labels (with fall
through) or new case ... -> labels (with no fall
through), with a further new statement for yielding a
value from a switch expression.

JEP 361: Switch
Expressions (Standard)

Java Language Changes for Java SE 13

Feature Description JEP

Text Blocks, see
Programmer's Guide to
Text Blocks

Introduced as a preview feature for this release.

A text block is a multi-line string literal that avoids the
need for most escape sequences, automatically formats
the string in a predictable way, and gives the developer
control over format when desired.

JEP 355: Text Blocks
(Preview)

Switch Expressions Preview feature from Java SE 12 re-previewed for this
release. It has been enhanced with one change: To
specify the value of a switch expression, use the new
yield statement instead of the break statement.

This feature extends switch so it can be used as either
a statement or an expression, and so that both forms
can use either traditional case ... : labels (with fall
through) or new case ... -> labels (with no fall
through), with a further new statement for yielding a
value from a switch expression. .

JEP 354: Switch
Expressions (Second
Preview)

Java Language Changes for Java SE 12

Chapter 1
Java Language Changes for Java SE 13

1-5

http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
https://openjdk.java.net/jeps/305
https://openjdk.java.net/jeps/305
https://openjdk.java.net/jeps/305
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-6699E26F-4A9B-4393-A08B-1E47D4B2D263
https://openjdk.java.net/jeps/359
https://openjdk.java.net/jeps/359
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-221D06A2-FF54-4DB3-A6DA-179B8F76DB05
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/361
https://openjdk.java.net/jeps/361
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=text_blocks
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC#GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/354
https://openjdk.java.net/jeps/354
https://openjdk.java.net/jeps/354

Feature Description JEP

Switch Expressions Introduced as a preview feature for this release.

This feature extends the switch statement so that it can
be used as either a statement or an expression, and that
both forms can use either a "traditional" or "simplified"
scoping and control flow behavior.

JEP 325: Switch
Expressions (Preview)

Java Language Changes for Java SE 11

Feature Description JEP

Local Variable Type
Inference

See also Local Variable
Type Inference: Style
Guidelines

Introduced in Java SE 10. In this release, it has been
enhanced with support for allowing var to be used when
declaring the formal parameters of implicitly typed
lambda expressions.

Local-Variable Type Inference extends type inference to
declarations of local variables with initializers.

• JEP 286: Local-
Variable Type
Inference

• JEP 323: Local-
Variable Syntax for
Lambda Parameters

Java Language Changes for Java SE 10

Feature Description JEP

Local Variable Type
Inference

See also Local Variable
Type Inference: Style
Guidelines

Introduced in this release.

Local-Variable Type Inference extends type inference to
declarations of local variables with initializers.

JEP 286: Local-Variable
Type Inference

Java Language Changes for Java SE 9

Feature Description JEP

Java Platform module
system, see Project
Jigsaw on OpenJDK.

Introduced in this release.

The Java Platform module system introduces a
new kind of Java programing component, the
module, which is a named, self-describing
collection of code and data. Its code is
organized as a set of packages containing
types, that is, Java classes and interfaces; its
data includes resources and other kinds of
static information. Modules can either export
or encapsulate packages, and they express
dependencies on other modules explicitly.

Java Platform Module
System (JSR 376)

• JEP 261: Module
System

• JEP 200: The
Modular JDK

• JEP 220: Modular
Run-Time Images

• JEP 260:
Encapsulate Most
Internal APIs

Chapter 1
Java Language Changes for Java SE 11

1-6

http://www.oracle.com/pls/topic/lookup?ctx=javase12&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/325
https://openjdk.java.net/jeps/325
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/spec/
http://openjdk.java.net/projects/jigsaw/spec/
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260

Feature Description JEP

Small language
enhancements
(Project Coin):

• More Concise try-
with-resources
Statements

• @SafeVarargs
Annotation
Allowed on
Private Instance
Methods

• Diamond Syntax
and Anonymous
Inner Classes

• Underscore
Character Not
Legal Name

• Support for
Private Interface
Methods

Introduced in Java SE 7 as Project Coin. It has
been enhanced with a few amendments.

JEP 213: Milling
Project Coin

JSR 334: Small
Enhancements to the
Java Programming
Language

More Concise try-with-resources Statements
If you already have a resource as a final or effectively final variable, you can use that
variable in a try-with-resources statement without declaring a new variable. An "effectively
final" variable is one whose value is never changed after it is initialized.

For example, you declared these two resources:

 // A final resource
 final Resource resource1 = new Resource("resource1");
 // An effectively final resource
 Resource resource2 = new Resource("resource2");

In Java SE 7 or 8, you would declare new variables, like this:

 try (Resource r1 = resource1;
 Resource r2 = resource2) {
 ...
 }

In Java SE 9, you don’t need to declare r1 and r2:

// New and improved try-with-resources statement in Java SE 9
 try (resource1;
 resource2) {
 ...
 }

There is a more complete description of the try-with-resources statement in The Java
Tutorials (Java SE 8 and earlier).

Chapter 1
Java Language Changes for Java SE 9

1-7

http://openjdk.java.net/projects/coin/
https://openjdk.java.net/jeps/213
https://openjdk.java.net/jeps/213
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

@SafeVarargs Annotation Allowed on Private Instance Methods
The @SafeVarargs annotation is allowed on private instance methods. It can be
applied only to methods that cannot be overridden. These include static methods, final
instance methods, and, new in Java SE 9, private instance methods.

Diamond Syntax and Anonymous Inner Classes
You can use diamond syntax in conjunction with anonymous inner classes. Types that
can be written in a Java program, such as int or String, are called denotable types.
The compiler-internal types that cannot be written in a Java program are called non-
denotable types.

Non-denotable types can occur as the result of the inference used by the diamond
operator. Because the inferred type using diamond with an anonymous class
constructor could be outside of the set of types supported by the signature attribute in
class files, using the diamond with anonymous classes was not allowed in Java SE 7.

Underscore Character Not Legal Name
If you use the underscore character ("_") as an identifier, your source code can no
longer be compiled.

Support for Private Interface Methods
Private interface methods are supported. This support allows nonabstract methods of
an interface to share code between them.

Chapter 1
Java Language Changes for Java SE 9

1-8

2
Preview Features

A preview feature is a new feature whose design, specification, and implementation are
complete, but which is not permanent, which means that the feature may exist in a different
form or not at all in future JDK releases.

Introducing a feature as a preview feature in a mainline JDK release enables the largest
developer audience possible to try the feature out in the real world and provide feedback. In
addition, tool vendors are encouraged to build support for the feature before Java developers
use it in production. Developer feedback helps determine whether the feature has any design
mistakes, which includes hard technical errors (such as a flaw in the type system), soft
usability problems (such as a surprising interaction with an older feature), or poor
architectural choices (such as one that forecloses on directions for future features). Through
this feedback, the feature's strengths and weaknesses are evaluated to determine if the
feature has a long-term role in the Java SE Platform, and if so, whether it needs refinement.
Consequently, the feature may be granted final and permanent status (with or without
refinements), or undergo a further preview period (with or without refinements), or else be
removed.

Every preview feature is described by a JDK Enhancement Proposal (JEP) that defines its
scope and sketches its design. For example, JEP 325 describes the JDK 12 preview feature
for switch expressions. For background information about the role and lifecycle of preview
features, see JEP 12.

Using Preview Features

To use preview language features in your programs, you must explicitly enable them in the
compiler and the runtime system. If not, you'll receive an error message that states that your
code is using a preview feature and preview features are disabled by default.

To compile source code with javac that uses preview features from JDK release n, use javac
from JDK release n with the --enable-preview command-line option in conjunction with
either the --release n or -source n command-line option.

For example, suppose you have an application named MyApp.java that uses the JDK 12
preview language feature switch expressions. Compile this with JDK 12 as follows:

javac --enable-preview --release 12 MyApp.java

2-1

https://openjdk.java.net/jeps/325
https://openjdk.java.net/jeps/12

Note:

When you compile an application that uses preview features, you'll receive a
warning message similar to the following:

Note: MyApp.java uses preview language features.
Note: Recompile with -Xlint:preview for details

Remember that preview features are subject to change and are intended to
provoke feedback.

To run an application that uses preview features from JDK release n, use java from
JDK release n with the --enable-preview option. To continue the previous example, to
run MyApp, run java from JDK 12 as follows:

java --enable-preview MyApp

Note:

Code that uses preview features from an older release of the Java SE
Platform will not necessarily compile or run on a newer release.

The tools jshell and javadoc also support the --enable-preview command-line
option.

Sending Feedback

You can provide feedback on preview features, or anything else about the Java SE
Platform, as follows:

• If you find any bugs, then submit them at Java Bug Database.

• If you want to provide substantive feedback on the usability of a preview feature,
then post it on the OpenJDK mailing list where the feature is being discussed. To
find the mailing list of a particular feature, see the feature's JEP page and look for
the label Discussion. For example, on the page JEP 325: Switch Expressions
(Preview), you'll find "Discussion amber dash dev at openjdk dot java dot net" near
the top of the page.

• If you are working on an open source project, then see Quality Outreach on the
OpenJDK Wiki.

Chapter 2

2-2

https://bugs.java.com/bugdatabase/
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

3
Sealed Classes

Sealed classes and interfaces restrict which other classes or interfaces may extend or
implement them.

For background information about sealed classes and interfaces, see JEP 409.

One of the primary purposes of inheritance is code reuse: When you want to create a new
class and there is already a class that includes some of the code that you want, you can
derive your new class from the existing class. In doing this, you can reuse the fields and
methods of the existing class without having to write (and debug) them yourself.

However, what if you want to model the various possibilities that exist in a domain by defining
its entities and determining how these entities should relate to each other? For example,
you're working on a graphics library. You want to determine how your library should handle
common geometric primitives like circles and squares. You've created a Shape class that
these geometric primitives can extend. However, you're not interested in allowing any
arbitrary class to extend Shape; you don't want clients of your library declaring any further
primitives. By sealing a class, you can specify which classes are permitted to extend it and
prevent any other arbitrary class from doing so.

Declaring Sealed Classes

To seal a class, add the sealed modifier to its declaration. Then, after any extends and
implements clauses, add the permits clause. This clause specifies the classes that may
extend the sealed class.

For example, the following declaration of Shape specifies three permitted subclasses, Circle,
Square, and Rectangle:

Figure 3-1 Shape.java

public sealed class Shape
 permits Circle, Square, Rectangle {
}

Define the following three permitted subclasses, Circle, Square, and Rectangle, in the same
module or in the same package as the sealed class:

Figure 3-2 Circle.java

public final class Circle extends Shape {
 public float radius;
}

3-1

https://openjdk.java.net/jeps/409

Figure 3-3 Square.java

Square is a non-sealed class. This type of class is explained in Constraints on
Permitted Subclasses.

public non-sealed class Square extends Shape {
 public double side;
}

Figure 3-4 Rectangle.java

public sealed class Rectangle extends Shape permits FilledRectangle {
 public double length, width;
}

Rectangle has a further subclass, FilledRectangle:

Figure 3-5 FilledRectangle.java

public final class FilledRectangle extends Rectangle {
 public int red, green, blue;
}

Alternatively, you can define permitted subclasses in the same file as the sealed class.
If you do so, then you can omit the permits clause:

package com.example.geometry;

public sealed class Figure
 // The permits clause has been omitted
 // as its permitted classes have been
 // defined in the same file.
{ }

final class Circle extends Figure {
 float radius;
}
non-sealed class Square extends Figure {
 float side;
}
sealed class Rectangle extends Figure {
 float length, width;
}
final class FilledRectangle extends Rectangle {
 int red, green, blue;
}

Chapter 3

3-2

Constraints on Permitted Subclasses

Permitted subclasses have the following constraints:

• They must be accessible by the sealed class at compile time.

For example, to compile Shape.java, the compiler must be able to access all of the
permitted classes of Shape: Circle.java, Square.java, and Rectangle.java. In
addition, because Rectangle is a sealed class, the compiler also needs access to
FilledRectangle.java.

• They must directly extend the sealed class.

• They must have exactly one of the following modifiers to describe how it continues the
sealing initiated by its superclass:

– final: Cannot be extended further

– sealed: Can only be extended by its permitted subclasses

– non-sealed: Can be extended by unknown subclasses; a sealed class cannot
prevent its permitted subclasses from doing this

For example, the permitted subclasses of Shape demonstrate each of these three
modifiers: Circle is final while Rectangle is sealed and Square is non-sealed.

• They must be in the same module as the sealed class (if the sealed class is in a named
module) or in the same package (if the sealed class is in the unnamed module, as in the
Shape.java example).

For example, in the following declaration of com.example.graphics.Shape, its permitted
subclasses are all in different packages. This example will compile only if Shape and all of
its permitted subclasses are in the same named module.

package com.example.graphics;

public sealed class Shape
 permits com.example.polar.Circle,
 com.example.quad.Rectangle,
 com.example.quad.simple.Square { }

Declaring Sealed Interfaces

Like sealed classes, to seal an interface, add the sealed modifier to its declaration. Then,
after any extends clause, add the permits clause, which specifies the classes that can
implement the sealed interface and the interfaces that can extend the sealed interface.

The following example declares a sealed interface named Expr. Only the classes
ConstantExpr, PlusExpr, TimesExpr, and NegExpr may implement it:

package com.example.expressions;

public class TestExpressions {
 public static void main(String[] args) {
 // (6 + 7) * -8
 System.out.println(
 new TimesExpr(
 new PlusExpr(new ConstantExpr(6), new ConstantExpr(7)),

Chapter 3

3-3

 new NegExpr(new ConstantExpr(8))
).eval());
 }
}

sealed interface Expr
 permits ConstantExpr, PlusExpr, TimesExpr, NegExpr {
 public int eval();
}

final class ConstantExpr implements Expr {
 int i;
 ConstantExpr(int i) { this.i = i; }
 public int eval() { return i; }
}

final class PlusExpr implements Expr {
 Expr a, b;
 PlusExpr(Expr a, Expr b) { this.a = a; this.b = b; }
 public int eval() { return a.eval() + b.eval(); }
}

final class TimesExpr implements Expr {
 Expr a, b;
 TimesExpr(Expr a, Expr b) { this.a = a; this.b = b; }
 public int eval() { return a.eval() * b.eval(); }
}

final class NegExpr implements Expr {
 Expr e;
 NegExpr(Expr e) { this.e = e; }
 public int eval() { return -e.eval(); }
}

Record Classes as Permitted Subclasses

You can name a record class in the permits clause of a sealed class or interface. See
Record Classes for more information.

Record classes are implicitly final, so you can implement the previous example with
record classes instead of ordinary classes:

package com.example.records.expressions;

public class TestExpressions {
 public static void main(String[] args) {
 // (6 + 7) * -8
 System.out.println(
 new TimesExpr(
 new PlusExpr(new ConstantExpr(6), new ConstantExpr(7)),
 new NegExpr(new ConstantExpr(8))
).eval());
 }
}

Chapter 3

3-4

sealed interface Expr
 permits ConstantExpr, PlusExpr, TimesExpr, NegExpr {
 public int eval();
}

record ConstantExpr(int i) implements Expr {
 public int eval() { return i(); }
}

record PlusExpr(Expr a, Expr b) implements Expr {
 public int eval() { return a.eval() + b.eval(); }
}

record TimesExpr(Expr a, Expr b) implements Expr {
 public int eval() { return a.eval() * b.eval(); }
}

record NegExpr(Expr e) implements Expr {
 public int eval() { return -e.eval(); }
}

Narrowing Reference Conversion and Disjoint Types

Narrowing reference conversion is one of the conversions used in type checking cast
expressions. It enables an expression of a reference type S to be treated as an expression of
a different reference type T, where S is not a subtype of T. A narrowing reference conversion
may require a test at run time to validate that a value of type S is a legitimate value of type T.
However, there are restrictions that prohibit conversion between certain pairs of types when it
can be statically proven that no value can be of both types.

Consider the following example:

public interface Polygon { }
public class Rectangle implements Polygon { }

public void work(Rectangle r) {
 Polygon p = (Polygon) r;
}

The cast expression Polygon p = (Polygon) r is allowed because it's possible that the
Rectangle value r could be of type Polygon; Rectangle is a subtype of Polygon. However,
consider this example:

public interface Polygon { }
public class Triangle { }

public void work(Triangle t) {
 Polygon p = (Polygon) t;
}

Chapter 3

3-5

Even though the class Triangle and the interface Polygon are unrelated, the cast
expression Polygon p = (Polygon) t is also allowed because at run time these types
could be related. A developer could declare the following class:

class MeshElement extends Triangle implements Polygon { }

However, there are cases where the compiler can deduce that there are no values
(other than the null reference) shared between two types; these types are considered
disjoint. For example:

public interface Polygon { }
public final class UtahTeapot { }

public void work(UtahTeapot u) {
 Polygon p = (Polygon) u; // Error: The cast can never succeed as
 // UtahTeapot and Polygon are disjoint
}

Because the class UtahTeapot is final, it's impossible for a class to be a descendant
of both Polygon and UtahTeapot. Therefore, Polygon and UtahTeapot are disjoint, and
the cast statement Polygon p = (Polygon) u isn't allowed.

The compiler has been enhanced to navigate any sealed hierarchy to check if your
cast statements are allowed. For example:

public sealed interface Shape permits Polygon { }
public non-sealed interface Polygon extends Shape { }
public final class UtahTeapot { }
public class Ring { }

public void work(Shape s) {
 UtahTeapot u = (UtahTeapot) s; // Error
 Ring r = (Ring) s; // Permitted
}

The first cast statement UtahTeapot u = (UtahTeapot) s isn't allowed; a Shape can
only be a Polygon because Shape is sealed. However, as Polygon is non-sealed, it
can be extended. However, no potential subtype of Polygon can extend UtahTeapot as
UtahTeapot is final. Therefore, it's impossible for a Shape to be a UtahTeapot.

In contrast, the second cast statement Ring r = (Ring) s is allowed; it's possible for
a Shape to be a Ring because Ring is not a final class.

APIs Related to Sealed Classes and Interfaces

The class java.lang.Class has two new methods related to sealed classes and
interfaces:

• java.lang.constant.ClassDesc[] permittedSubclasses(): Returns
an array containing java.lang.constant.ClassDesc objects representing all
the permitted subclasses of the class if it is sealed; returns an empty array if the
class is not sealed

Chapter 3

3-6

• boolean isSealed(): Returns true if the given class or interface is sealed; returns
false otherwise

Chapter 3

3-7

4
Pattern Matching

Pattern matching involves testing whether an object has a particular structure, then extracting
data from that object if there's a match. You can already do this with Java. However, pattern
matching introduces new language enhancements that enable you to conditionally extract
data from objects with code that's more concise and robust.

Topics

• Pattern Matching for instanceof

• Pattern Matching for switch

• When Clauses

• Parenthesized Patterns

• Record Patterns

Pattern Matching for instanceof
The following example calculates the perimeter of the parameter shape only if it's an instance
of Rectangle or Circle:

interface Shape { }
record Rectangle(double length, double width) implements Shape { }
record Circle(double radius) implements Shape { }
...
 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle r) {
 return 2 * r.length() + 2 * r.width();
 } else if (shape instanceof Circle c) {
 return 2 * c.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

A pattern is a combination of a test, which is called a predicate; a target; and a set of local
variables, which are called pattern variables:

• The predicate is a Boolean-valued function with one argument; in this case, it’s the
instanceof operator, testing whether the Shape argument is a Rectangle or a Circle.

• The target is the argument of the predicate, which is the Shape value.

• The pattern variables are those that store data from the target only if the predicate
returns true, which are the variables r and s.

See Pattern Matching for instanceof Operator for more information.

4-1

Pattern Matching for switch

Note:

This is a preview feature. A preview feature is a feature whose design,
specification, and implementation are complete, but is not permanent. A
preview feature may exist in a different form or not at all in future Java SE
releases. To compile and run code that contains preview features, you must
specify additional command-line options. See Preview Language and VM
Features.

For background information about pattern matching for switch expressions
and statements, see JEP 427.

The following example also calculates the perimeter only for instances of Rectangle or
Circle. However, it uses a switch expression instead of an if-then-else statement:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 return switch (shape) {
 case Rectangle r -> 2 * r.length() + 2 * r.width();
 case Circle c -> 2 * c.radius() * Math.PI;
 default -> throw new
IllegalArgumentException("Unrecognized shape");
 }
 }

See Pattern Matching for switch Expressions and Statements.

When Clauses

Note:

This feature is part of JEP 427, which is a preview feature.

A when clause enables a pattern to be refined with a Boolean expression. A pattern
label that contains a when clause is called a guarded pattern label, and the Boolean
expression in the when clause is called a guard. A value matches a guarded pattern
label if it matches the pattern and the guard evaluates to true. Consider the following
example:

 static void test(Object obj) {
 switch (obj) {
 case String s:

Chapter 4
Pattern Matching for switch

4-2

https://openjdk.java.net/jeps/427
https://openjdk.java.net/jeps/427

 if (s.length() == 1) {
 System.out.println("Short: " + s);
 } else {
 System.out.println(s);
 }
 break;
 default:
 System.out.println("Not a string");
 }
 }

You can move the Boolean expression s.length == 1 into the case label with a when clause:

 static void test(Object obj) {
 switch (obj) {
 case String s when s.length() == 1 -> System.out.println("Short:
" + s);
 case String s -> System.out.println(s);
 default -> System.out.println("Not a
string");
 }
 }

The first pattern label (which is a guarded pattern label) matches if obj is both a String and
of length 1. The second patten label matches if obj is a String of a different length.

A guarded patten label has the form p when e where p is a pattern and e is a Boolean
expression. The scope of any pattern variable declared in p includes e.

Parenthesized Patterns

Note:

This feature is part of JEP 427, which is a preview feature.

A parenthesized pattern is a pattern surrounded by a pair of parentheses. Because guarded
patterns combine patterns and expressions, you might introduce parsing ambiguities. You
can surround patterns with parentheses to avoid these ambiguities, force the compiler to
parse an expression containing a pattern differently, or increase the readability of your code.
Consider the following example:

 static Function<Integer, String> testParen(Object obj) {
 boolean b = true;
 return switch (obj) {
 case String s && b -> t -> s;
 default -> t -> "Default string";
 };
 }

Chapter 4
Parenthesized Patterns

4-3

https://openjdk.java.net/jeps/427

This example compiles. However, if you want to make it clear that the first arrow token
(->) is part of the case label and not part of a lambda expression, you can surround the
guarded pattern with parentheses:

 static Function<Integer, String> testParen(Object obj) {
 boolean b = true;
 return switch (obj) {
 case (String s && b) -> t -> s;
 default -> t -> "Default string";
 };
 }

Record Patterns

Note:

This feature is part of JEP 405, which is a preview feature.

You can use a record pattern to test whether a value is an instance of a record class
type (see Record Classes) and, if it is, to recursively perform pattern matching on its
component values. In the following example, the pattern tests if obj is an instance of
the Point record:

 record Point(double x, double y) {}

 static void printAngleFromXAxis(Object obj) {
 if (obj instanceof Point(double x, double y)) {
 System.out.println(Math.toDegrees(Math.atan2(y, x)));
 }
 }

In addition, this example extracts the x and y values from obj directly, automatically
calling the Point record's accessor methods. The following example is the same as
the previous one except it uses a type pattern instead of a record pattern:

 static void printAngleFromXAxisTypePattern(Object obj) {
 if (obj instanceof Point p) {
 System.out.println(Math.toDegrees(Math.atan2(p.y, p.x)));
 }
 }

You can use var in the record pattern's component list. In the following example, the
compiler infers that the pattern variables x and y are of type double:

 static void printAngleFromXAxis(Object obj) {
 if (obj instanceof Point(var x, var y)) {
 System.out.println(Math.toDegrees(Math.atan2(y, x)));

Chapter 4
Record Patterns

4-4

https://openjdk.java.net/jeps/405

 }
 }

A record pattern consists of a type, a (possibly empty) record component pattern list, and an
optional identifier. A record pattern with an identifier is called a named record pattern, and the
variable is the record pattern variable. The following is an example of a named record pattern
where r is its record pattern variable:

 record Rectangle(Point upperLeft, Point lowerRight) {
 void printDimensions() {
 System.out.println(
 "Length = " + Math.abs(lowerRight.x - upperLeft.x) +
 ", height = " + Math.abs(lowerRight.y - upperLeft.y));
 }
 }

 static void printRectangleDimensions(Object obj) {
 if (obj instanceof Rectangle(var ul, var lr) r) {
 System.out.printf("Upper-left corner: (%.2f, %.2f)%n", ul.x,
ul.y);
 System.out.printf("Lower-right corner: (%.2f, %.2f)%n", lr.x,
lr.y);
 r.printDimensions();
 }
 }

Record patterns are currently restricted such that if they name a generic record class, then
they must use a generic type in the pattern and not a raw type. The following example
compiles:

 record Box<T>(T t) { }

 static void printBoxContents(Box<Object> bo) {
 if (bo instanceof Box<Object>(String s)) {
 System.out.println("Box contains: " + s);
 }
 }

 static void printBoxContentsAgain(Box<String> bo) {
 if (bo instanceof Box<String>(var s)) {
 System.out.println("Box contains: " + s);
 }
 }

However, the following example doesn't compile:

 record Box<T>(T t) { }

 static void erroneousPrintBoxContents(Box<Object> bo) {
 // Error: Raw deconstruction patterns are not allowed
 if (bo instanceof Box(var s)) {
 System.out.println("Box contains: " + s);

Chapter 4
Record Patterns

4-5

 }
 }

You can nest a record pattern inside another record pattern:

 enum Color { RED, GREEN, BLUE }
 record ColoredPoint(Point p, Color c) {}
 record ColoredRectangle(ColoredPoint upperLeft, ColoredPoint
lowerRight) {}

 static void
printXCoordOfUpperLeftPointWithPatterns(ColoredRectangle r) {
 if (r instanceof ColoredRectangle(
 ColoredPoint(Point(var x, var y), var upperLeftColor),
 var lowerRightCorner)) {
 System.out.println("Upper-left corner: " + x);
 }
 }

Note:

The null value does not match any record pattern.

Chapter 4
Record Patterns

4-6

5
Pattern Matching for instanceof Operator

Pattern matching involves testing whether an object has a particular structure, then extracting
data from that object if there's a match. You can already do this with Java; however, pattern
matching introduces new language enhancements that enable you to conditionally extract
data from objects with code that's more concise and robust.

For background information about pattern matching for the instanceof operator, see JEP
394.

Consider the following code that calculates the perimeter of certain shapes:

public interface Shape {
 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle) {
 Rectangle r = (Rectangle) shape;
 return 2 * r.length() + 2 * r.width();
 } else if (shape instanceof Circle) {
 Circle c = (Circle) shape;
 return 2 * c.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }
}

public class Rectangle implements Shape {
 final double length;
 final double width;
 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }
 double length() { return length; }
 double width() { return width; }
}

public class Circle implements Shape {
 final double radius;
 public Circle(double radius) {
 this.radius = radius;
 }
 double radius() { return radius; }
}

The method getPerimeter performs the following:

1. A test to determine the type of the Shape object

5-1

https://openjdk.java.net/jeps/394
https://openjdk.java.net/jeps/394

2. A conversion, casting the Shape object to Rectangle or Circle, depending on the
result of the instanceof operator

3. A destructuring, extracting either the length and width or the radius from the Shape
object

Pattern matching enables you to remove the conversion step by changing the second
operand of the instanceof operator with a type pattern, making your code shorter and
easier to read:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle r) {
 return 2 * r.length() + 2 * r.width();
 } else if (shape instanceof Circle c) {
 return 2 * c.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

Note:

Removing this conversion step also makes your code safer. Testing an
object's type with the instanceof, then assigning that object to a new
variable with a cast can introduce coding errors in your application. You
might change the type of one of the objects (either the tested object or the
new variable) and accidentally forget to change the type of the other object.

A pattern is a combination of a predicate, or test, that can be applied to a target and a
set of local variables, called pattern variables, that are assigned values extracted from
the target only if the test is successful. The predicate is a Boolean-valued function of
one argument; in this case, it’s the instanceof operator testing whether the Shape
argument is a Rectangle or a Circle. The target is the argument of the predicate,
which is the Shape value. The pattern variables are those that store data from the
target only if the predicate returns true, which are the variables r and s.

A type pattern consists of a predicate that specifies a type, along with a single pattern
variable. In this example, the type patterns are Rectangle r and Circle c.

Scope of Pattern Variables
The scope of a pattern variable are the places where the program can reach only if the
instanceof operator is true:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle s) {
 // You can use the pattern variable s (of type Rectangle)
here.
 } else if (shape instanceof Circle s) {
 // You can use the pattern variable s of type Circle here

Chapter 5
Scope of Pattern Variables

5-2

 // but not the pattern variable s of type Rectangle.
 } else {
 // You cannot use either pattern variable here.
 }
 }

The scope of a pattern variable can extend beyond the statement that introduced it:

 public static boolean bigEnoughRect(Shape s) {
 if (!(s instanceof Rectangle r)) {
 // You cannot use the pattern variable r here because
 // the predicate s instanceof Rectangle is false.
 return false;
 }
 // You can use r here.
 return r.length() > 5;
 }

You can use a pattern variable in the expression of an if statement:

 if (shape instanceof Rectangle r && r.length() > 5) {
 // ...
 }

Because the conditional-AND operator (&&) is short-circuiting, the program can reach the
r.length() > 5 expression only if the instanceof operator is true.

Conversely, you can't pattern match with the instanceof operator in this situation:

 if (shape instanceof Rectangle r || r.length() > 0) { // error
 // ...
 }

The program can reach the r.length() || 5 if the instanceof is false; thus, you cannot use
the pattern variable r here.

Chapter 5
Scope of Pattern Variables

5-3

6
Pattern Matching for switch Expressions and
Statements

A switch statement transfers control to one of several statements or expressions, depending
on the value of its selector expression. In earlier releases, the selector expression must
evaluate to a number, string or enum constant, and case labels must be constants. However,
in this release, the selector expression can be of any type, and case labels can have
patterns. Consequently, a switch statement or expression can test whether its selector
expression matches a pattern, which offers more flexibility and expressiveness compared to
testing whether its selector expression is exactly equal to a constant.

Note:

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may
exist in a different form or not at all in future Java SE releases. To compile and run
code that contains preview features, you must specify additional command-line
options. See Preview Language and VM Features.

For background information about pattern matching for switch expressions and
statements, see JEP 427.

Consider the following code that calculates the perimeter of certain shapes from the section
Pattern Matching for instanceof Operator:

interface Shape { }
record Rectangle(double length, double width) implements Shape { }
record Circle(double radius) implements Shape { }
...
 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle r) {
 return 2 * r.length() + 2 * r.width();
 } else if (shape instanceof Circle c) {
 return 2 * c.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

You can rewrite this code to use a pattern switch expression as follows:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 return switch (shape) {

6-1

https://openjdk.java.net/jeps/427

 case Rectangle r -> 2 * r.length() + 2 * r.width();
 case Circle c -> 2 * c.radius() * Math.PI;
 default -> throw new
IllegalArgumentException("Unrecognized shape");
 };
 }

The following example uses a switch statement instead of a switch expression:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 switch (shape) {
 case Rectangle r: return 2 * r.length() + 2 * r.width();
 case Circle c: return 2 * c.radius() * Math.PI;
 default: throw new
IllegalArgumentException("Unrecognized shape");
 }
 }

Topics

• Selector Expression Type

• Pattern Label Dominance

• Type Coverage in switch Expressions and Statements

• Scope of Pattern Variable Declarations

• Null case Labels

Selector Expression Type
The type of a selector expression can either be an integral primitive type or any
reference type, such as in the previous examples. The following switch expression
matches the selector expression obj with type patterns that involve a class type, an
enum type, a record type, and an array type:

record Point(int x, int y) { }
enum Color { RED, GREEN, BLUE; }
...
 static void typeTester(Object obj) {
 switch (obj) {
 case null -> System.out.println("null");
 case String s -> System.out.println("String");
 case Color c -> System.out.println("Color with " +
c.values().length + " values");
 case Point p -> System.out.println("Record class: " +
p.toString());
 case int[] ia -> System.out.println("Array of int values
of length" + ia.length);
 default -> System.out.println("Something else");
 }
 }

Chapter 6
Selector Expression Type

6-2

Pattern Label Dominance
It's possible that many pattern labels could match the value of the selector expression. To
help predictability, the labels are tested in the order that they appear in the switch block. In
addition, the compiler raises an error if a pattern label can never match because a preceding
one will always match first. The following example results in a compile-time error:

 static void error(Object obj) {
 switch(obj) {
 case CharSequence cs ->
 System.out.println("A sequence of length " + cs.length());
 case String s -> // error: this case label is dominated by a
preceding case label
 System.out.println("A string: " + s);
 default ->
 throw new IllegalStateException("Invalid argument");
 }
 }

The first pattern label case CharSequence cs dominates the second pattern label case
String s because every value that matches the pattern String s also matches the pattern
CharSequence cs but not the other way around. It's because String is a subtype of
CharSequence.

A pattern label can dominate a constant label. These examples cause compile-time errors:

 static void error2(Integer value) {
 switch(value) {
 case Integer i ->
 System.out.println("Integer: " + i);
 case -1, 1 -> // Compile-time errors for both cases -1 and 1:
 // this case label is dominated by a preceding
case label
 System.out.println("The number 42");
 default ->
 throw new IllegalStateException("Invalid argument");
 }
 }

 enum Color { RED, GREEN, BLUE; }

 static void error3(Color value) {
 switch(value) {
 case Color c ->
 System.out.println("Color: " + c);
 case RED -> // error: this case label is dominated by a
preceding case label
 System.out.println("The color red");
 }
 }

Chapter 6
Pattern Label Dominance

6-3

A guarded pattern label (see When Clauses) can also dominate a constant label:

 static void error4(Integer value) {
 switch(value) {
 case Integer i when i > 0 ->
 System.out.println("Positive integer");
 case -1, 1 -> // Compile-time errors for both cases -1 and
1:
 // this case label is dominated by a
preceding case label
 System.out.println("Value is 1 or -1");
 default ->
 throw new IllegalStateException("Invalid argument");
 }
 }

Even though the guarded pattern label case Integer i when i > 0 doesn't match the
value -1, the compiler still generates an error.

To resolve these compiler errors related to dominance, ensure that constant labels
appear before guarded pattern labels, which must appear before non-guarded type
pattern labels:

 static void checkIntegers(Integer value) {
 switch(value) {
 case -1, 1 -> // Constant labels
 System.out.println("Value is 1 or -1");
 case Integer i when i > 0 -> // Guarded pattern label
 System.out.println("Positive integer");
 case Integer i -> // Non-guarded type pattern label
 System.out.println("Neither positive, 1, nor -1");
 }
 }

Type Coverage in switch Expressions and Statements
As described in Switch Expressions, the switch blocks of switch expressions and
switch statements, which use pattern or null labels, must be exhaustive. This means
that for all possible values, there must be a matching switch label. The following
switch expression is not exhaustive and generates a compile-time error. Its type
coverage consists of the subtypes of String or Integer, which doesn't include the
type of the selector expression, Object:

 static int coverage(Object obj) {
 return switch (obj) { // Error - not exhaustive
 case String s -> s.length();
 case Integer i -> i;
 };
 }

Chapter 6
Type Coverage in switch Expressions and Statements

6-4

However, the type coverage of the case label default is all types, so the following example
compiles:

 static int coverage(Object obj) {
 return switch (obj) {
 case String s -> s.length();
 case Integer i -> i;
 default -> 0;
 };
 }

The compiler takes into account whether the type of a selector expression is a sealed class.
The following switch expression compiles. It doesn't need a default case label because its
type coverage is the classes A, B, and C, which are the only permitted subclasses of S, the
type of the selector expression:

sealed interface S permits A, B, C { }
final class A implements S { }
final class B implements S { }
record C(int i) implements S { } // Implicitly final
...
 static int testSealedCoverage(S s) {
 return switch (s) {
 case A a -> 1;
 case B b -> 2;
 case C c -> 3;
 };
 }

The compiler can also determine the type coverage of a switch expression or statement if
the type of its selector expression is a generic sealed class. The following example compiles.
The only permitted subclasses of interface I are classes A and B. However, because the
selector expression is of type I<Integer>, the switch block requires only class B in its type
coverage to be exhaustive:

 sealed interface I<T> permits A, B {}
 final class A<X> implements I<String> {}
 final class B<Y> implements I<Y> {}

 static int testGenericSealedExhaustive(I<Integer> i) {
 return switch (i) {
 // Exhaustive as no A case possible!
 case B<Integer> bi -> 42;
 };
 }

If a switch expression or statement is exhaustive at compile time but not at run time, then a
MatchException is thrown. This can happen when a class that contains an exhaustive switch
expression or statement has been compiled, but a sealed hierarchy that is used in the
analysis of the switch expression or statement has been subsequently changed and
recompiled. Such changes are migration incompatible and may lead to a MatchException

Chapter 6
Type Coverage in switch Expressions and Statements

6-5

being thrown when running the switch statement or expression. Consequently, you
need to recompile the class containing the switch expression or statement.

Consider the following two classes ME and Seal:

class ME {
 public static void main(String[] args) {
 System.out.println(switch (Seal.getAValue()) {
 case A a -> 1;
 case B b -> 2;
 });
 }
}

sealed interface Seal permits A, B {
 static Seal getAValue() {
 return new A();
 }
}
final class A implements Seal {}
final class B implements Seal {}

The switch expression in the class ME is exhaustive and this example compiles. When
you run ME, it prints the value 1. However, suppose you edit Seal as follows and
compile this class and not ME:

sealed interface Seal permits A, B, C {
 static Seal getAValue() {
 return new A();
 }
}
final class A implements Seal {}
final class B implements Seal {}
final class C implements Seal {}

When you run ME, it throws a MatchException:

Exception in thread "main" java.lang.MatchException
 at ME.main(ME.java:3)

Scope of Pattern Variable Declarations

As described in the section Pattern Matching for instanceof Operator, the scope of a
pattern variable is the places where the program can reach only if the instanceof
operator is true:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle s) {
 // You can use the pattern variable s of type Rectangle

Chapter 6
Scope of Pattern Variable Declarations

6-6

here.
 } else if (shape instanceof Circle s) {
 // You can use the pattern variable s of type Circle here
 // but not the pattern variable s of type Rectangle.
 } else {
 // You cannot use either pattern variable here.
 }
 }

In a switch expression, you can use a pattern variable inside the expression, block, or throw
statement that appears right of the arrow. For example:

 static void test(Object obj) {
 switch (obj) {
 case Character c -> {
 if (c.charValue() == 7) {
 System.out.println("Ding!");
 }
 System.out.println("Character, value " + c.charValue());
 }
 case Integer i ->
 System.out.println("Integer: " + i);
 default ->
 throw new IllegalStateException("Invalid argument");
 }
 }

The scope of pattern variable c is the block to the right of case Character c ->. The scope
of pattern variable i is the println statement to the right of case Integer I ->.

In a switch statement, you can use a case label's pattern variable in its switch-labeled
statement group. However, you can't use it in any other switch-labeled statement group,
even if the program flow can fall through a default statement group. For example:

 static void test(Object obj) {
 switch (obj) {
 case Character c:
 if (c.charValue() == 7) {
 System.out.print("Ding ");
 }
 if (c.charValue() == 9) {
 System.out.print("Tab ");
 }
 System.out.println("character, value " + c.charValue());
 default:
 // You cannot use the pattern variable c here:
 throw new IllegalStateException("Invalid argument");
 }
 }

The scope of pattern variable c consists of the case Character c statement group: the two
if statements and the println statement that follows them. The scope doesn't include the
default statement group even though the switch statement can execute the case

Chapter 6
Scope of Pattern Variable Declarations

6-7

Character c statement group, fall through the default case label, and then execute
the default statement group.

You will get a compile-time error if it's possible to fall through a case label that declares
a pattern variable. The following example doesn't compile:

 static void test(Object obj) {
 switch (obj) {
 case Character c:
 if (c.charValue() == 7) {
 System.out.print("Ding ");
 }
 if (c.charValue() == 9) {
 System.out.print("Tab ");
 }
 System.out.println("character");
 case Integer i: // Compile-time error
 System.out.println("An integer " + i);
 default:
 System.out.println("Neither character nor integer");
 }
 }

If this code were allowed, and the value of the selector expression, obj, was a
Character, then the switch statement can execute the case Character c statement
group, then fall through the case Integer i case label, where the pattern variable i
would have not been initialized.

Similarly, you can't declare multiple pattern variables in a case label. The following
aren't permitted; either c or i would have been initialized depending on the value of
obj:

 case Character c, Integer i: ...
 case Character c, Integer i -> ...

Null case Labels
Prior to this preview feature, switch expressions and switch statements threw a
NullPointerException if the value of the selector expression is null. However, to add
more flexibility, a null case label is available:

 static void test(Object obj) {
 switch (obj) {
 case null -> System.out.println("null!");
 case String s -> System.out.println("String");
 default -> System.out.println("Something else");
 }
 }

This example prints null! when obj is null instead of throwing a
NullPointerException.

Chapter 6
Null case Labels

6-8

You can combine a null case label with another pattern label:

 static void testStringOrNull(Object obj) {
 switch (obj) {
 case null, String s -> System.out.println("String: " + s);
 default -> System.out.println("Something else");
 }
 }

If a selector expression evaluates to null and the switch block does not have null case
label, then a NullPointerException is thrown as normal. Consider the following switch
statement:

 String s = null;
 switch (s) {
 case Object obj -> System.out.println("This doesn't match null");
 // No null label; NullPointerException is thrown
 // if s is null
 }

Although the pattern label case Object obj matches objects of type String, this example
throws a NullPointerException. The selector expression evaluates to null, and the switch
expression doesn't contain a null case label.

Chapter 6
Null case Labels

6-9

7
Record Classes

Record classes, which are a special kind of class, help to model plain data aggregates with
less ceremony than normal classes.

For background information about record classes, see JEP 395.

A record declaration specifies in a header a description of its contents; the appropriate
accessors, constructor, equals, hashCode, and toString methods are created automatically.
A record's fields are final because the class is intended to serve as a simple "data carrier".

For example, here is a record class with two fields:

record Rectangle(double length, double width) { }

This concise declaration of a rectangle is equivalent to the following normal class:

public final class Rectangle {
 private final double length;
 private final double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return this.length; }
 double width() { return this.width; }

 // Implementation of equals() and hashCode(), which specify
 // that two record objects are equal if they
 // are of the same type and contain equal field values.
 public boolean equals...
 public int hashCode...

 // An implementation of toString() that returns a string
 // representation of all the record class's fields,
 // including their names.
 public String toString() {...}
}

A record class declaration consists of a name; optional type parameters (generic record
declarations are supported); a header, which lists the "components" of the record; and a
body.

A record class declares the following members automatically:

• For each component in the header, the following two members:

7-1

https://openjdk.java.net/jeps/395

– A private final field with the same name and declared type as the record
component. This field is sometimes referred to as a component field.

– A public accessor method with the same name and type of the component; in
the Rectangle record class example, these methods are
Rectangle::length() and Rectangle::width().

• A canonical constructor whose signature is the same as the header. This
constructor assigns each argument from the new expression that instantiates the
record class to the corresponding component field.

• Implementations of the equals and hashCode methods, which specify that two
record classes are equal if they are of the same type and contain equal
component values.

• An implementation of the toString method that includes the string representation
of all the record class's components, with their names.

As record classes are just special kinds of classes, you create a record object (an
instance of a record class) with the new keyword, for example:

Rectangle r = new Rectangle(4,5);

The Canonical Constructor of a Record Class

The following example explicitly declares the canonical constructor for the Rectangle
record class. It verifies that length and width are greater than zero. If not, it throws an
IllegalArgumentException:

record Rectangle(double length, double width) {
 public Rectangle(double length, double width) {
 if (length <= 0 || width <= 0) {
 throw new java.lang.IllegalArgumentException(
 String.format("Invalid dimensions: %f, %f", length,
width));
 }
 this.length = length;
 this.width = width;
 }
}

Repeating the record class's components in the signature of the canonical constructor
can be tiresome and error-prone. To avoid this, you can declare a compact constructor
whose signature is implicit (derived from the components automatically).

For example, the following compact constructor declaration validates length and
width in the same way as in the previous example:

record Rectangle(double length, double width) {
 public Rectangle {
 if (length <= 0 || width <= 0) {
 throw new java.lang.IllegalArgumentException(
 String.format("Invalid dimensions: %f, %f", length,
width));
 }

Chapter 7

7-2

 }
}

This succinct form of constructor declaration is only available in a record class. Note that the
statements this.length = length; and this.width = width; which appear in the
canonical constructor do not appear in the compact constructor. At the end of a compact
constructor, its implicit formal parameters are assigned to the record class's private fields
corresponding to its components.

Explicit Declaration of Record Class Members

You can explicitly declare any of the members derived from the header, such as the public
accessor methods that correspond to the record class's components, for example:

record Rectangle(double length, double width) {

 // Public accessor method
 public double length() {
 System.out.println("Length is " + length);
 return length;
 }
}

If you implement your own accessor methods, then ensure that they have the same
characteristics as implicitly derived accessors (for example, they're declared public and have
the same return type as the corresponding record class component). Similarly, if you
implement your own versions of the equals, hashCode, and toString methods, then ensure
that they have the same characteristics and behavior as those in the java.lang.Record
class, which is the common superclass of all record classes.

You can declare static fields, static initializers, and static methods in a record class, and they
behave as they would in a normal class, for example:

record Rectangle(double length, double width) {

 // Static field
 static double goldenRatio;

 // Static initializer
 static {
 goldenRatio = (1 + Math.sqrt(5)) / 2;
 }

 // Static method
 public static Rectangle createGoldenRectangle(double width) {
 return new Rectangle(width, width * goldenRatio);
 }
}

You cannot declare instance variables (non-static fields) or instance initializers in a record
class.

Chapter 7

7-3

For example, the following record class declaration doesn't compile:

record Rectangle(double length, double width) {

 // Field declarations must be static:
 BiFunction<Double, Double, Double> diagonal;

 // Instance initializers are not allowed in records:
 {
 diagonal = (x, y) -> Math.sqrt(x*x + y*y);
 }
}

You can declare instance methods in a record class, independent of whether you
implement your own accessor methods. You can also declare nested classes and
interfaces in a record class, including nested record classes (which are implicitly
static). For example:

record Rectangle(double length, double width) {

 // Nested record class
 record RotationAngle(double angle) {
 public RotationAngle {
 angle = Math.toRadians(angle);
 }
 }

 // Public instance method
 public Rectangle getRotatedRectangleBoundingBox(double angle) {
 RotationAngle ra = new RotationAngle(angle);
 double x = Math.abs(length * Math.cos(ra.angle())) +
 Math.abs(width * Math.sin(ra.angle()));
 double y = Math.abs(length * Math.sin(ra.angle())) +
 Math.abs(width * Math.cos(ra.angle()));
 return new Rectangle(x, y);
 }
}

You cannot declare native methods in a record class.

Features of Record Classes

A record class is implicitly final, so you cannot explicitly extend a record class.
However, beyond these restrictions, record classes behave like normal classes:

• You can create a generic record class, for example:

record Triangle<C extends Coordinate> (C top, C left, C right) { }

• You can declare a record class that implements one or more interfaces, for
example:

record Customer(...) implements Billable { }

Chapter 7

7-4

• You can annotate a record class and its individual components, for example:

import java.lang.annotation.*;
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
public @interface GreaterThanZero { }

record Rectangle(
 @GreaterThanZero double length,
 @GreaterThanZero double width) { }

If you annotate a record component, then the annotation may be propagated to members
and constructors of the record class. This propagation is determined by the contexts in
which the annotation interface is applicable. In the previous example, the
@Target(ElementType.FIELD) meta-annotation means that the @GreaterThanZero
annotation is propagated to the field corresponding to the record component.
Consequently, this record class declaration would be equivalent to the following normal
class declaration:

public final class Rectangle {
 private final @GreaterThanZero double length;
 private final @GreaterThanZero double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return this.length; }
 double width() { return this.width; }
}

Record Classes and Sealed Classes and Interfaces

Record classes work well with sealed classes and interfaces. See Record Classes as
Permitted Subclasses for an example.

Local Record Classes

A local record class is similar to a local class; it's a record class defined in the body of a
method.

In the following example, a merchant is modeled with a record class, Merchant. A sale made
by a merchant is also modeled with a record class, Sale. Both Merchant and Sale are top-
level record classes. The aggregation of a merchant and their total monthly sales is modeled
with a local record class, MonthlySales, which is declared inside the findTopMerchants
method. This local record class improves the readability of the stream operations that follow:

import java.time.*;
import java.util.*;
import java.util.stream.*;

record Merchant(String name) { }

Chapter 7

7-5

record Sale(Merchant merchant, LocalDate date, double value) { }

public class MerchantExample {

 List<Merchant> findTopMerchants(
 List<Sale> sales, List<Merchant> merchants, int year, Month
month) {

 // Local record class
 record MerchantSales(Merchant merchant, double sales) {}

 return merchants.stream()
 .map(merchant -> new MerchantSales(
 merchant, this.computeSales(sales, merchant, year,
month)))
 .sorted((m1, m2) -> Double.compare(m2.sales(), m1.sales()))
 .map(MerchantSales::merchant)
 .collect(Collectors.toList());
 }

 double computeSales(List<Sale> sales, Merchant mt, int yr, Month
mo) {
 return sales.stream()
 .filter(s -> s.merchant().name().equals(mt.name()) &&
 s.date().getYear() == yr &&
 s.date().getMonth() == mo)
 .mapToDouble(s -> s.value())
 .sum();
 }

 public static void main(String[] args) {

 Merchant sneha = new Merchant("Sneha");
 Merchant raj = new Merchant("Raj");
 Merchant florence = new Merchant("Florence");
 Merchant leo = new Merchant("Leo");

 List<Merchant> merchantList = List.of(sneha, raj, florence,
leo);

 List<Sale> salesList = List.of(
 new Sale(sneha, LocalDate.of(2020, Month.NOVEMBER, 13),
11034.20),
 new Sale(raj, LocalDate.of(2020, Month.NOVEMBER,
20), 8234.23),
 new Sale(florence, LocalDate.of(2020, Month.NOVEMBER, 19),
10003.67),
 // ...
 new Sale(leo, LocalDate.of(2020, Month.NOVEMBER,
4), 9645.34));

 MerchantExample app = new MerchantExample();

 List<Merchant> topMerchants =

Chapter 7

7-6

 app.findTopMerchants(salesList, merchantList, 2020,
Month.NOVEMBER);
 System.out.println("Top merchants: ");
 topMerchants.stream().forEach(m -> System.out.println(m.name()));
 }
}

Like nested record classes, local record classes are implicitly static, which means that their
own methods can't access any variables of the enclosing method, unlike local classes, which
are never static.

Static Members of Inner Classes

Prior to Java SE 16, you could not declare an explicitly or implicitly static member in an inner
class unless that member is a constant variable. This means that an inner class cannot
declare a record class member because nested record classes are implicitly static.

In Java SE 16 and later, an inner class may declare members that are either explicitly or
implicitly static, which includes record class members. The following example demonstrates
this:

public class ContactList {

 record Contact(String name, String number) { }

 public static void main(String[] args) {

 class Task implements Runnable {

 // Record class member, implicitly static,
 // declared in an inner class
 Contact c;

 public Task(Contact contact) {
 c = contact;
 }
 public void run() {
 System.out.println(c.name + ", " + c.number);
 }
 }

 List<Contact> contacts = List.of(
 new Contact("Sneha", "555-1234"),
 new Contact("Raj", "555-2345"));
 contacts.stream()
 .forEach(cont -> new Thread(new Task(cont)).start());
 }
}

Record Serialization

You can serialize and deserialize instances of record classes, but you can't customize the
process by providing writeObject, readObject, readObjectNoData, writeExternal,
or readExternal methods. The components of a record class govern serialization, while
the canonical constructor of a record class governs deserialization. See Serializable Records

Chapter 7

7-7

for more information and an extended example. See also the section Serialization of
Records in the Java Object Serialization Specification.

APIs Related to Record Classes

The abstract class java.lang.Record is the common superclass of all record
classes.

You might get a compiler error if your source file imports a class named Record from
a package other than java.lang. A Java source file automatically imports all the types
in the java.lang package though an implicit import java.lang.*; statement. This
includes the java.lang.Record class, regardless of whether preview features are
enabled or disabled.

Consider the following class declaration of com.myapp.Record:

package com.myapp;

public class Record {
 public String greeting;
 public Record(String greeting) {
 this.greeting = greeting;
 }
}

The following example, org.example.MyappPackageExample, imports
com.myapp.Record with a wildcard but doesn't compile:

package org.example;
import com.myapp.*;

public class MyappPackageExample {
 public static void main(String[] args) {
 Record r = new Record("Hello world!");
 }
}

The compiler generates an error message similar to the following:

./org/example/MyappPackageExample.java:6: error: reference to Record
is ambiguous
 Record r = new Record("Hello world!");
 ^
 both class com.myapp.Record in com.myapp and class java.lang.Record
in java.lang match

./org/example/MyappPackageExample.java:6: error: reference to Record
is ambiguous
 Record r = new Record("Hello world!");
 ^
 both class com.myapp.Record in com.myapp and class java.lang.Record
in java.lang match

Chapter 7

7-8

Both Record in the com.myapp package and Record in the java.lang package are imported
with a wildcard. Consequently, neither class takes precedence, and the compiler generates
an error when it encounters the use of the simple name Record.

To enable this example to compile, change the import statement so that it imports the fully
qualified name of Record:

import com.myapp.Record;

Note:

The introduction of classes in the java.lang package is rare but necessary from
time to time, such as Enum in Java SE 5, Module in Java SE 9, and Record in
Java SE 14.

The class java.lang.Class has two methods related to record classes:

• RecordComponent[] getRecordComponents(): Returns an array of
java.lang.reflect.RecordComponent objects, which correspond to the record
class's components.

• boolean isRecord(): Similar to isEnum() except that it returns true if the class was
declared as a record class.

Chapter 7

7-9

8
Switch Expressions

Like all expressions, switch expressions evaluate to a single value and can be used in
statements. They may contain "case L ->" labels that eliminate the need for break
statements to prevent fall through. You can use a yield statement to specify the value of a
switch expression.

For background information about the design of switch expressions, see JEP 361.

"case L ->" Labels

Consider the following switch statement that prints the number of letters of a day of the
week:

public enum Day { SUNDAY, MONDAY, TUESDAY,
 WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; }

// ...

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 numLetters = 6;
 break;
 case TUESDAY:
 numLetters = 7;
 break;
 case THURSDAY:
 case SATURDAY:
 numLetters = 8;
 break;
 case WEDNESDAY:
 numLetters = 9;
 break;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 }
 System.out.println(numLetters);

It would be better if you could "return" the length of the day's name instead of storing it in the
variable numLetters; you can do this with a switch expression. Furthermore, it would be
better if you didn't need break statements to prevent fall through; they are laborious to write
and easy to forget. You can do this with a new kind of case label. The following is a switch

8-1

https://openjdk.java.net/jeps/361

expression that uses the new kind of case label to print the number of letters of a day
of the week:

 Day day = Day.WEDNESDAY;
 System.out.println(
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> 6;
 case TUESDAY -> 7;
 case THURSDAY, SATURDAY -> 8;
 case WEDNESDAY -> 9;
 default -> throw new IllegalStateException("Invalid day: "
+ day);
 }
);

The new kind of case label has the following form:

case label_1, label_2, ..., label_n -> expression;|throw-statement;|
block

When the Java runtime matches any of the labels to the left of the arrow, it runs the
code to the right of the arrow and does not fall through; it does not run any other code
in the switch expression (or statement). If the code to the right of the arrow is an
expression, then the value of that expression is the value of the switch expression.

You can use the new kind of case label in switch statements. The following is like the
first example, except it uses "case L ->" labels instead of "case L:" labels:

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> numLetters = 6;
 case TUESDAY -> numLetters = 7;
 case THURSDAY, SATURDAY -> numLetters = 8;
 case WEDNESDAY -> numLetters = 9;
 default -> throw new IllegalStateException("Invalid day: " +
day);
 };
 System.out.println(numLetters);

A "case L ->" label along with its code to its right is called a switch labeled rule.

"case L:" Statements and the yield Statement

You can use "case L:" labels in switch expressions; a "case L:" label along with its
code to the right is called a switch labeled statement group:

 Day day = Day.WEDNESDAY;
 int numLetters = switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 System.out.println(6);

Chapter 8

8-2

 yield 6;
 case TUESDAY:
 System.out.println(7);
 yield 7;
 case THURSDAY:
 case SATURDAY:
 System.out.println(8);
 yield 8;
 case WEDNESDAY:
 System.out.println(9);
 yield 9;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 };
 System.out.println(numLetters);

The previous example uses yield statements. They take one argument, which is the value
that the case label produces in a switch expression.

The yield statement makes it easier for you to differentiate between switch statements and
switch expressions. A switch statement, but not a switch expression, can be the target of a
break statement. Conversely, a switch expression, but not a switch statement, can be the
target of a yield statement.

Chapter 8

8-3

Note:

It's recommended that you use "case L ->" labels. It's easy to forget to insert
break or yield statements when using "case L:" labels; if you do, you might
introduce unintentional fall through in your code.

For "case L ->" labels, to specify multiple statements or code that are not
expressions or throw statements, enclose them in a block. Specify the value
that the case label produces with the yield statement:

 int numLetters = switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> {
 System.out.println(6);
 yield 6;
 }
 case TUESDAY -> {
 System.out.println(7);
 yield 7;
 }
 case THURSDAY, SATURDAY -> {
 System.out.println(8);
 yield 8;
 }
 case WEDNESDAY -> {
 System.out.println(9);
 yield 9;
 }
 default -> {
 throw new IllegalStateException("Invalid day: " +
day);
 }
 };

Exhaustiveness of switch Expressions

The cases of a switch expression must be exhaustive, which means that for all
possible values, there must be a matching switch label. Thus, a switch expression
normally requires a default clause. However, for an enum switch expression that
covers all known constants, the compiler inserts an implicit default clause.

In addition, a switch expression must either complete normally with a value or
complete abruptly by throwing an exception. For example, the following code doesn't
compile because the switch labeled rule doesn't contain a yield statement:

int i = switch (day) {
 case MONDAY -> {
 System.out.println("Monday");
 // ERROR! Block doesn't contain a yield statement
 }
 default -> 1;
};

Chapter 8

8-4

The following example doesn't compile because the switch labeled statement group doesn't
contain a yield statement:

i = switch (day) {
 case MONDAY, TUESDAY, WEDNESDAY:
 yield 0;
 default:
 System.out.println("Second half of the week");
 // ERROR! Group doesn't contain a yield statement
};

Because a switch expression must evaluate to a single value (or throw an exception), you
can't jump through a switch expression with a break, yield, return, or continue statement,
like in the following example:

z:
 for (int i = 0; i < MAX_VALUE; ++i) {
 int k = switch (e) {
 case 0:
 yield 1;
 case 1:
 yield 2;
 default:
 continue z;
 // ERROR! Illegal jump through a switch expression
 };
 // ...
 }

Exhaustiveness of switch Statements

Note:

This feature is part of JEP 420, which is a preview feature.

The cases of a switch statement must be exhaustive if it uses pattern or null labels, or if its
selector expression isn't one of the legacy types (char, byte, short, int, Character, Byte,
Short, Integer, String, or an enum type).

The following example doesn't compile because the switch statement (which uses pattern
labels) is not exhaustive:

 static void testSwitchStatementExhaustive(Object obj) {
 switch (obj) { // error: the switch statement does not cover
 // all possible input values
 case String s:
 System.out.println(s);
 break;
 case Integer i:
 System.out.println("Integer");
 break;

Chapter 8

8-5

https://openjdk.java.net/jeps/420

 }
 }

You can make it exhaustive by adding a default clause:

 static void testSwitchStatementExhaustive(Object obj) {
 switch (obj) {
 case String s:
 System.out.println(s);
 break;
 case Integer i:
 System.out.println("Integer");
 break;
 default:
 break;
 }
 }

Chapter 8

8-6

9
Text Blocks

See Programmer's Guide to Text Blocks for more information about this language feature. For
background information about text blocks, see JEP 378.

9-1

https://openjdk.java.net/jeps/378

10
Local Variable Type Inference

In JDK 10 and later, you can declare local variables with non-null initializers with the var
identifier, which can help you write code that’s easier to read.

Consider the following example, which seems redundant and is hard to read:

URL url = new URL("http://www.oracle.com/");
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

You can rewrite this example by declaring the local variables with the var identifier. The type
of the variables are inferred from the context:

var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

var is a reserved type name, not a keyword, which means that existing code that uses var as
a variable, method, or package name is not affected. However, code that uses var as a class
or interface name is affected and the class or interface needs to be renamed.

var can be used for the following types of variables:

• Local variable declarations with initializers:

var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
var path = Paths.get(fileName); // infers Path
var bytes = Files.readAllBytes(path); // infers bytes[]

• Enhanced for-loop indexes:

List<String> myList = Arrays.asList("a", "b", "c");
for (var element : myList) {...} // infers String

• Index variables declared in traditional for loops:

for (var counter = 0; counter < 10; counter++) {...} // infers int

• try-with-resources variable:

try (var input =
 new FileInputStream("validation.txt")) {...} // infers
FileInputStream

10-1

• Formal parameter declarations of implicitly typed lambda expressions: A lambda
expression whose formal parameters have inferred types is implicitly typed:

BiFunction<Integer, Integer, Integer> = (a, b) -> a + b;

In JDK 11 and later, you can declare each formal parameter of an implicitly typed
lambda expression with the var identifier:

(var a, var b) -> a + b;

As a result, the syntax of a formal parameter declaration in an implicitly typed
lambda expression is consistent with the syntax of a local variable declaration;
applying the var identifier to each formal parameter in an implicitly typed lambda
expression has the same effect as not using var at all.

You cannot mix inferred formal parameters and var-declared formal parameters in
implicitly typed lambda expressions nor can you mix var-declared formal
parameters and manifest types in explicitly typed lambda expressions. The
following examples are not permitted:

(var x, y) -> x.process(y) // Cannot mix var and inferred
formal parameters
 // in implicitly typed lambda
expressions
(var x, int y) -> x.process(y) // Cannot mix var and manifest types
// in explicitly typed lambda expressions

Local Variable Type Inference Style Guidelines

Local variable declarations can make code more readable by eliminating redundant
information. However, it can also make code less readable by omitting useful
information. Consequently, use this feature with judgment; no strict rule exists about
when it should and shouldn't be used.

Local variable declarations don't exist in isolation; the surrounding code can affect or
even overwhelm the effects of var declarations. Local Variable Type Inference: Style
Guidelines examines the impact that surrounding code has on var declarations,
explains tradeoffs between explicit and implicit type declarations, and provides
guidelines for the effective use of var declarations.

Chapter 10

10-2

https://openjdk.org/projects/amber/guides/lvti-style-guide
https://openjdk.org/projects/amber/guides/lvti-style-guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Java Language Changes
	Java Language Changes for Java SE 19
	Java Language Changes for Java SE 18
	Java Language Changes for Java SE 17
	Java Language Changes for Java SE 16
	Java Language Changes for Java SE 15
	Java Language Changes for Java SE 14
	Java Language Changes for Java SE 13
	Java Language Changes for Java SE 12
	Java Language Changes for Java SE 11
	Java Language Changes for Java SE 10
	Java Language Changes for Java SE 9
	More Concise try-with-resources Statements
	@SafeVarargs Annotation Allowed on Private Instance Methods
	Diamond Syntax and Anonymous Inner Classes
	Underscore Character Not Legal Name
	Support for Private Interface Methods

	2 Preview Features
	3 Sealed Classes
	4 Pattern Matching
	Pattern Matching for instanceof
	Pattern Matching for switch
	When Clauses
	Parenthesized Patterns
	Record Patterns

	5 Pattern Matching for instanceof Operator
	Scope of Pattern Variables

	6 Pattern Matching for switch Expressions and Statements
	Selector Expression Type
	Pattern Label Dominance
	Type Coverage in switch Expressions and Statements
	Scope of Pattern Variable Declarations
	Null case Labels

	7 Record Classes
	8 Switch Expressions
	9 Text Blocks
	10 Local Variable Type Inference

