Java Platform, Standard Edition
Core Libraries

Release 24
G17078-01
March 2025

ORACLE"

Java Platform, Standard Edition Core Libraries, Release 24
G17078-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience ¢
Documentation Accessibility (¢
Diversity and Inclusion iX
Related Documents ¢
Conventions iX
1 Java Core Libraries
2 Serialization Filtering
Addressing Deserialization Vulnerabilities 2-1
Java Serialization Filters 2-2
Filter Factories 2-3
Allow-Lists and Reject-Lists 2-3
Creating Pattern-Based Filters 2-4
Creating Custom Filters 2-6
Reading a Stream of Serialized Objects 2-6
Setting a Custom Filter for an Individual Stream 2-7
Setting a JVM-Wide Custom Filter 2-7
Setting a Custom Filter Using a Pattern 2-7
Setting a Custom Filter as a Class 2-8
Setting a Custom Filter as a Method 2-9
Creating a Filter with ObjectinputFilter Methods 2-9
Setting a Filter Factory 2-10
Setting a Filter Factory with setSerialFilterFactory 2-11
Specifying a Filter Factory in a System or Security Property 2-13
Built-in Filters 2-13
Logging Filter Actions 2-15
3 Enhanced Deprecation
Deprecation in the JDK 3-1

ORACLE" il

How to Deprecate APIs 3-1
Notifications and Warnings 3-3
Running jdeprscan 3-5

4 XML Catalog API

Purpose of XML Catalog API 4-1
XML Catalog API Interfaces 4-2
Using the XML Catalog API 4-3
System Reference 4-3
Public Reference 4-5
URI Reference 4-5
Java XML Processors Support 4-7
Enable Catalog Support 4-7
Use Catalog with XML Processors 4-8
Calling Order for Resolvers 4-12
Detecting Errors 4-12

5 Java Collections Framework

Creating Unmaodifiable Lists, Sets, and Maps 5-2
Use Cases 5-2
Syntax 5-3

Unmodifiable List Static Factory Methods 5-3
Unmodifiable Set Static Factory Methods 5-3
Unmodifiable Map Static Factory Methods 5-4
Creating Unmaodifiable Copies of Collections 5-5
Creating Unmaodifiable Collections from Streams 5-5
Randomized Iteration Order 5-6
About Unmodifiable Collections 5-7
Space Efficiency 5-8
Thread Safety 5-9

Creating Sequenced Collections, Sets, and Maps 5-10
SequencedCollection 5-12
SequencedSet 5-13
SequencedMap 5-14
Demonstrating ArrayList and LinkedHashMap Reversed Views 5-15

Demonstrating a Reverse-Ordered View of a Collection 5-15

Demonstrating Composition of LinkedHashMap Views 5-16

Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map 5-17
ORACLE

3) Process API

Process API Classes and Interfaces 6-1
ProcessBuilder Class 6-2
Process Class 6-2
ProcessHandle Interface 6-3
ProcessHandle.Info Interface 6-4
Creating a Process 6-4
Getting Information About a Process 6-5
Redirecting Output from a Process 6-6
Filtering Processes with Streams 6-6
Handling Processes When They Terminate with the onExit Method 6-7
Controlling Access to Sensitive Process Information 6-10
7 Preferences API
Comparing the Preferences API to Other Mechanisms 7-1
Usage Notes 7-2
Obtain Preferences Objects for an Enclosing Class 7-2
Obtain Preferences Objects for a Static Method 7-3
Atomic Updates 7-3
Determine Backing Store Status 7-4
Design FAQ 7-4
8 Java Logging Overview
Java Logging Examples 8-7
Appendix A: DTD for XMLFormatter Output 8-9
0 Java NIO
Grep NIO Example 9-4
Checksum NIO Example 9-5
Time Query NIO Example 9-6
Time Server NIO Example 9-8
Non-Blocking Time Server NIO Example 9-9
Internet Protocol and UNIX Domain Sockets NIO Example 9-10
Chmod File NIO Example 9-17
Copy File NIO Example 9-22
Disk Usage File NIO Example 9-26
User-Defined File Attributes File NIO Example 9-26
ORACLE

10 Java Networking

Networking System Properties 10-1
HTTP Client Properties 10-1
HTTP Server Properties 10-5
IPv4 and IPv6 Protocol Properties 10-7
HTTP Proxy Properties 10-8
HTTPS Proxy Properties 10-9
FTP Proxy Properties 10-9
SOCKS Proxy Properties 10-10

Acquiring the SOCKS User Name and Password 10-11
Other Proxy-Related Properties 10-11
UNIX Domain Sockets Properties 10-12
Other HTTP URL Stream Protocol Handler Properties 10-13

System Properties That Modify the Behavior of HTTP Digest Authentication

Mechanism 10-18
Specify Mappings from Host Names to IP Addresses 10-18
Address Cache Properties 10-19
Enhanced Exception Messages 10-20

11 Pseudorandom Number Generators

Characteristics of PRNGs 11-1
Generating Pseudorandom Numbers with RandomGenerator Interface 11-2
Generating Pseudorandom Numbers in Multithreaded Applications 11-3
Dynamically Creating New Generators 11-3
Creating Stream of Generators 11-3
Choosing a PRNG Algorithm 11-4

12 Foreign Function and Memory API

On-Heap and Off-Heap Memory 12-1
Memory Segments and Arenas 12-1
Allocating a Memory Segment with an Arena and Storing a String in It 12-3
Printing the Contents of Off-Heap Memory 12-3
Closing an Arena 12-4
Calling a C Library Function with the Foreign Function and Memory API 12-4
Obtaining an Instance of the Native Linker 12-5
Locating the Address of the C Function 12-5
Describing the C Function Signature 12-6
Creating the Downcall Handle for the C Function 12-7
Calling the C Function Directly from Java 12-7
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function 12-7
ORACLE

Vi

Defining the Java Method That Compares Two Elements 12-10

Creating a Downcall Method Handle for the gsort Function 12-10
Creating a Method Handle to Represent the Comparison Method gsortCompare 12-10
Creating a Function Pointer from the Method Handle compareHandle 12-11
Allocating Off-Heap Memory to Store the int Array 12-11
Calling the gsort Function 12-11
Copying the Sorted Array Values from Off-Heap to On-Heap Memory 12-12
Foreign Functions That Return Pointers 12-12
Memory Layouts and Structured Access 12-14
Checking for Native Errors Using errno 12-17
Slicing Allocators and Slicing Memory Segments 12-21
Slicing Allocators 12-21
Slicing Memory Segments 12-23
Restricted Methods 12-24
Calling Native Functions with jextract 12-26
Run a Python Script in a Java Application 12-26
Call the gsort Function from a Java Application 12-28

13 Scoped Values

14 Concurrency

Virtual Threads 14-3
What is a Platform Thread? 14-4
What is a Virtual Thread? 14-4
Why Use Virtual Threads? 14-4
Creating and Running a Virtual Thread 14-4

Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface 14-5
Creating and Running a Virtual Thread with the
Executors.newVirtualThreadPerTaskExecutor() Method 14-6
Multithreaded Client Server Example 14-6
Scheduling Virtual Threads and Pinned Virtual Threads 14-8
Debugging Virtual Threads 14-8
JDK Flight Recorder Events for Virtual Threads 14-8
Viewing Virtual Threads in jcmd Thread Dumps 14-9
Virtual Threads: An Adoption Guide 14-9
Write Simple, Synchronous Code Employing Blocking 1/0O APls in the Thread-Per-
Request Style 14-9
Represent Every Concurrent Task as a Virtual Thread; Never Pool Virtual Threads 14-10
Use Semaphores to Limit Concurrency 14-12
Don't Cache Expensive Reusable Objects in Thread-Local Variables 14-13
ORACLE

Vii

Structured Concurrency 14-14
Basic Usage of the StructuredTaskScope Class 14-15
Common Shutdown Policies: ShutdownOnSuccess and ShutdownOnFailure 14-17
Implement Your Own StructuredTaskScope Policies 14-19
Debugging StructuredTaskScope and Its Forked Subtasks with the jcmd Command 14-21

Thread-Local Variables 14-24
Inheriting Thread-Local Variables 14-26
Issues with Thread-Local Variables 14-28

15 Stream Gatherers

What Is a Gatherer? 15-1

Creating a Gatherer 15-2

Creating Gatherers with Factory Methods 15-6

Built-In Gatherers 15-7

Composing Gatherers 15-9

ORACLE"

viii

Preface

This guide provides information about the Java core libraries.

Audience

This document is for Java developers who develop applications that require functionality such
as threading, process control, I/0O, monitoring and management of the Java Virtual Machine
(JVM), serialization, concurrency, and other functionality close to the JVM.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

See JDK 24 Documentation.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

ORACLE iX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/pls/topic/lookup?ctx=javase24&id=homepage

Preface

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE »

Java Core Libraries

The core libraries consist of classes which are used by many portions of the JDK. They include

functionality which is close to the VM and is not explicitly included in other areas, such as

security. Here you will find current information that will help you use some of the core libraries.

Topics in this Guide

Serialization Filtering

Enhanced Deprecation

XML Catalog API

Java Collections Framework
Process API

Preferences API

Java Logging Overview

Java NIO

Java Networking

Pseudorandom Number Generators
Foreign Function and Memory API
Scoped Values

Concurrency

Stream Gatherers

Other Core Libraries Guides

Internationalization Overview in Java Platform, Standard Edition Internationalization Guide

Security Related Topics

ORACLE

Serialization Filtering
RMI:

— RMI Security Recommendations in Java Platform, Standard Edition Java Remote
Method Invocation User's Guide

— Using Custom Socket Factories with Java RMI in the Java Tutorials

JAXP:

— JAXP Processing Limits in the Java Tutorials

— External Access Restriction Properties in the Java Tutorials

1-1

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/index.html
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/backgnd.html

Serialization Filtering

You can use the Java serialization filtering mechanism to help prevent deserialization
vulnerabilities. You can define pattern-based filters or you can create custom filters.
Topics:

e Addressing Deserialization Vulnerabilities

e Java Serialization Filters

e Filter Factories

e Allow-Lists and Reject-Lists

e Creating Pattern-Based Filters

e Creating Custom Filters

e Setting a Filter Factory

e Built-in Filters

e Logging Filter Actions

Addressing Deserialization Vulnerabilities

ORACLE

An application that accepts untrusted data and deserializes it is vulnerable to attacks. You can
create filters to screen incoming streams of serialized objects before they are deserialized.

Inherent Dangers of Deserialization

Deserializing untrusted data, especially from an unknown, untrusted, or unauthenticated client,
is an inherently dangerous activity because the content of the incoming data stream
determines the objects that are created, the values of their fields, and the references between
them. By careful construction of the stream, an adversary can run code in arbitrary classes
with malicious intent.

For example, if object construction has side effects that change state or invoke other actions,
then those actions can compromise the integrity of application objects, library objects, and
even the Java runtime. "Gadget classes,” which can perform arbitrary reflective actions such
as create classes and invoke methods on them, can be deserialized maliciously to cause a
denial of service or remote code execution.

The key to disabling deserialization attacks is to prevent instances of arbitrary classes from
being deserialized, thereby preventing the direct or indirect execution of their methods. You
can do this through serialization filters.

Java Serialization and Deserialization Overview

An object is serialized when its state is converted to a byte stream. That stream can be sent to
a file, to a database, or over a network. A Java object is serializable if its class or any of its
superclasses implements either the java.io.Serializable interface or the
java.io.Externalizable subinterface. In the JDK, serialization is used in many areas,

2-1

Chapter 2
Java Serialization Filters

including Remote Method Invocation (RMI), custom RMI for interprocess communication (IPC)
protocols (such as the Spring HTTP invoker), and Java Management Extensions (JMX).

An object is deserialized when its serialized form is converted to a copy of the object. It is
important to ensure the security of this conversion. Deserialization is code execution because
the readObject method of the class that is being deserialized can contain custom code.

Serialization Filters

A serialization filter enables you to specify which classes are acceptable to an application and
which should be rejected. Filters also enable you to control the object graph size and
complexity during deserialization so that the object graph doesn’t exceed reasonable limits.
You can configure filters as properties or implement them programmatically.

¢ Note:

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the ObjectInputFilter class.

Besides creating filters, you can take the following actions to help prevent deserialization
vulnerabilities:

Do not deserialize untrusted data.
e Use SSL to encrypt and authenticate the connections between applications.

e Validate field values before assignment, for example, checking object invariants by using
the readObject method.

Note:

Built-in filters are provided for RMI. However, you should use these built-in filters as
starting points only. Configure reject-lists and/or extend the allow-list to add additional
protection for your application that uses RMI. See Built-in Filters.

For more information about these and other strategies, see "Serialization and Deserialization"
in Secure Coding Guidelines for Java SE.

Java Serialization Filters

ORACLE

The Java serialization filtering mechanism screens incoming streams of serialized objects to
help improve security and robustness. Filters can validate incoming instances of classes
before they are deserialized.

As stated in JEP 290 and JEP 415, the goals of the Java serialization filtering mechanism are
to:

* Provide a way to narrow the classes that can be deserialized down to a context-
appropriate set of classes.

* Provide metrics to the filter for graph size and complexity during deserialization to validate
normal graph behaviors.

* Allow RMI-exported objects to validate the classes expected in invocations.

2-2

https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://openjdk.java.net/jeps/290
https://openjdk.java.net/jeps/415

Chapter 2
Filter Factories

There are two kinds of filters:

« JVM-wide filter: Is applied to every deserialization in the JVM. However, whether and how
a JVM-wide filter validates classes in a particular deserialization depends on how it's
combined with other filters.

- Stream-specific filter: Validates classes from one specific ObjectInputStream.

You can implement a serialization filter in the following ways:

* Specify a JVM-wide, pattern-based filter with the jdk.serialFilter property: A
pattern-based filter consists of a sequence of patterns that can accept or reject the name
of specific classes, packages, or modules. It can place limits on array sizes, graph depth,
total references, and stream size. A typical use case is to add classes that have been
identified as potentially compromising the Java runtime to a reject-list. If you specify a
pattern-based filter with the jdk.serialFilter property, then you don't have to modify
your application.

* Implement a custom or pattern-based stream-specific filter with the
ObjectInputFilter API: You can implement a filter with the ObjectInputFilter API,
which you then set on an ObjectInputStream. You can create a pattern-based filter with
the ObjectInputFilter API by calling the Config.createFilter (String) method.

< Note:

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the ObjectInputFilter class.

For every new object in the stream, the filter mechanism applies only one filter to it. However,
this filter might be a combination of filters.

In most cases, a stream-specific filter should check if a JVM-wide filter is set, especially if you
haven't specified a filter factory. If a JVM-wide filter does exist, then the stream-specific filter
should invoke it and use the JVM-wide filter’s result unless the status is UNDECIDED.

Filter Factories

A filter factory selects, chooses, or combines filters into a single filter to be used for a stream.
When you specify one, a deserialization operation uses it when it encounters a class for the
first time to determine whether to allow it. (Subsequent instances of the same class aren't
filtered.) It's implemented as a BinaryOperator<ObjectInputFilter> and specified with
the ObjectInputFilter.Config.setSerialFilterFactory method orin a system or
Security property; see Setting a Filter Factory. Whenever an ObjectInputStreamn is created,
the filter factory selects an ObjectInputFilter. However, you can have a different filter
created based on the characteristics of the stream and the filter that the filter factory previously
created.

Allow-Lists and Reject-Lists

Allow-lists and reject-lists can be implemented using pattern-based filters or custom filters.
These lists allow you to take proactive and defensive approaches to protect your applications.

ORACLE)3

Chapter 2
Creating Pattern-Based Filters

The proactive approach uses allow-lists to allow only class names that are recognized and
trusted and to reject all others. You can implement allow-lists in your code when you develop
your application, or later by defining pattern-based filters. If your application only deals with a
small set of classes then this approach can work very well. You can implement allow-lists by
specifying the names of classes, packages, or modules that are allowed.

The defensive approach uses reject-lists to reject instances of classes that are not trusted.
Usually, reject-lists are implemented after an attack that reveals that a class is a problem. A
class name can be added to a reject-list, without a code change, by adding it to a pattern-
based filter that's specified in the jdk.serialFilter property.

Creating Pattern-Based Filters

ORACLE

Pattern-based filters are filters that you define without changing your application code. You add
JVM-wide filters in properties files or application-specific filters on the java command line.

A pattern-based filter is a sequence of patterns. Each pattern is matched against the name of a
class in the stream or a resource limit. Class-based and resource limit patterns can be
combined in one filter string, with each pattern separated by a semicolon (;).

Pattern-based Filter Syntax

When you create a filter that is composed of patterns, use the following guidelines:

e Separate patterns by semicolons. For example:
patternl.*;pattern2.*

« White space is significant and is considered part of the pattern.

e Put the limits first in the string. They are evaluated first regardless of where they are in the
string, so putting them first reinforces the ordering. Otherwise, patterns are evaluated from
left to right.

« A class name that matches a pattern that is preceded by ! is rejected. A class name that
matches a pattern without ! is allowed. The following filter rejects patternl.MyClass but
allows pattern2.MyClass:

!patternl.*;pattern2.*

» Use the wildcard symbol (*) to represent unspecified class hames in a pattern as shown in
the following examples:
— To match every class name, use *
— To match every class name in mypackage, USe mypackage. *
— To match every class name in mypackage and its subpackages, use mypackage. **

— To match every class name that starts with text, use text*

If a class name doesn’t match any filter, then it is allowed. If you want to allow only certain
class names, then your filter must reject everything that doesn’'t match. To reject all class
names other than those specified, include ! * as the last pattern in a class filter.

For a complete description of the syntax for the patterns, see JEP 290.

Pattern-Based Filter Limitations

The following are some of the limitations of pattern-based filters:

2-4

http://openjdk.java.net/jeps/290

ORACLE

Chapter 2
Creating Pattern-Based Filters

e Patterns can't allow different sizes of arrays based on the class name.
« Patterns can’t match classes based on the supertype or interfaces of the class name.

« Patterns have no state and can’t make choices depending on the class instances
deserialized earlier in the stream.

Note:

A pattern-based filter doesn't check interfaces that are implemented by classes being
deserialized. The filter is invoked for interfaces explicitly referenced in the stream; it
isn't invoked for interfaces implemented by classes for objects being deserialized.

Define a Pattern-Based Filter for One Application

You can define a pattern-based filter as a system property for one application. A system
property supersedes a Security Property value.

To create a filter that only applies to one application, and only to a single invocation of Java,
define the jdk.serialFilter system property in the command line.

The following example shows how to limit resource usage for an individual application:
java -

Djdk.serialFilter=maxarray=100000;maxdepth=20;maxrefs=500 com.example.test.App
lication

Define a Pattern-Based Filter for All Applications

You can define a pattern-based, JVM-wide filter that affects every application run with a Java
runtime from $JAVA HOME by specifying it as a Security Property. (Note that a system property
supersedes a Security Property value.) Edit the file $JAVA HOME/conf/security/
java.security and add the pattern-based filter to the jdk.serialFilter Security Property.

Define a Class Filter

You can create a pattern-based class filter that is applied globally. For example, the pattern
might be a class name or a package with wildcard.

In the following example, the filter rejects one class name from a package (!
example.somepackage.SomeClass), and allows all other class names in the package:

jdk.serialFilter=!example.somepackage.SomeClass;example.somepackage.*;

The previous example filter allows all other class hames, not just those in
example.somepackage. *. To reject all other class names, add ! *:

jdk.serialFilter=!example.somepackage.SomeClass;example.somepackage.*; 1*

Define a Resource Limit Filter

A resource filter limits graph complexity and size. You can create filters for the following
parameters to control the resource usage for each application:

* Maximum allowed array size. For example: maxarray=100000;

2-5

Chapter 2
Creating Custom Filters

* Maximum depth of a graph. For example: maxdepth=20;
* Maximum references in a graph between objects. For example: maxrefs=500;

e Maximum number of bytes in a stream. For example: maxbytes=500000;

Creating Custom Filters

Custom filters are filters you specify in your application’s code. They are set on an individual
stream or on all streams in a process. You can implement a custom filter as a pattern, a
method, a lambda expression, or a class.

Topics

* Reading a Stream of Serialized Objects

e Setting a Custom Filter for an Individual Stream

e Setting a JVM-Wide Custom Filter

e Setting a Custom Filter Using a Pattern

e Setting a Custom Filter as a Class

e Setting a Custom Filter as a Method

« Creating a Filter with ObjectinputFilter Methods

Reading a Stream of Serialized Objects

ORACLE

You can set a custom filter on one ObjectInputStrean, or, to apply the same filter to every
stream, set a JVM-wide filter. If an ObjectInputStream doesn’t have a filter defined for it, the
JVM-wide filter is called, if there is one.

While the stream is being decoded, the following actions occur:

* For each new object in the stream and before the object is instantiated and deserialized,
the filter is called when it encounters a class for the first time. (Subsequent instances of the
same class aren't filtered.)

¢ For each class in the stream, the filter is called with the resolved class. It is called
separately for each supertype and interface in the stream.

« The filter can examine each class referenced in the stream, including the class of objects
to be created, supertypes of those classes, and their interfaces.

* For each array in the stream, whether it is an array of primitives, array of strings, or array
of objects, the filter is called with the array class and the array length.

* For each reference to an object already read from the stream, the filter is called so it can
check the depth, number of references, and stream length. The depth starts at 1 and
increases for each nested object and decreases when each nested call returns.

* The filter is not called for primitives or for java.lang.String instances that are encoded
concretely in the stream.

e The filter returns a status of accept, reject, or undecided.
» Filter actions are logged if logging is enabled.

Unless a filter rejects the object, the object is accepted.

2-6

Chapter 2
Creating Custom Filters

Setting a Custom Filter for an Individual Stream

You can set a filter on an individual ObjectInputStream when the input to the stream is
untrusted and the filter has a limited set of classes or constraints to enforce. For example, you
could ensure that a stream only contains numbers, strings, and other application-specified

types.

A custom filter is set using the setObjectInputFilter method. The custom filter must be
set before objects are read from the stream.

In the following example, the setObjectInputFilter method is invoked with the
dateTimeFilter method. This filter only accepts classes from the java.time package. The
dateTimeFilter method is defined in a code sample in Setting a Custom Filter as a Method.

LocalDateTime readDateTime (InputStream is) throws IOException {

try (ObjectInputStream ois = new ObjectInputStream(is)) {
ois.setObjectInputFilter (FilterClass::dateTimeFilter);
return (LocalDateTime) ois.readObject();

} catch (ClassNotFoundException ex) {
IOException ioe = new StreamCorruptedException("class missing");
ioe.initCause (ex);
throw ioe;

Setting a JVM-Wide Custom Filter

You can set a JVM-wide filter that applies to every use of ObjectInputStream unless itis
overridden on a specific stream. If you can identify every type and condition that is needed by
the entire application, the filter can allow those and reject the rest. Typically, JVM-wide filters
are used to reject specific classes or packages, or to limit array sizes, graph depth, or total
graph size.

A JVM-wide filter is set once using the methods of the ObjectInputFilter.Config class.
The filter can be an instance of a class, a lambda expression, a method reference, or a pattern.

ObjectInputFilter filter = ...
ObjectInputFilter.Config.setSerialFilter(filter);

In the following example, the JVM-wide filter is set by using a lambda expression.

ObjectInputFilter.Config.setSerialFilter (
info -> info.depth() > 10 ? Status.REJECTED : Status.UNDECIDED) ;

In the following example, the JVM-wide filter is set by using a method reference:

ObjectInputFilter.Config.setSerialFilter (FilterClass::dateTimeFilter);

Setting a Custom Filter Using a Pattern

A pattern-based custom filter, which is convenient for simple cases, can be created by using
the ObjectInputFilter.Config.createFilter method. You can create a pattern-based

ORACLE .

Chapter 2
Creating Custom Filters

filter as a system property or Security Property. Implementing a pattern-based filter as a
method or a lambda expression gives you more flexibility.

The filter patterns can accept or reject specific names of classes, packages, and modules and
can place limits on array sizes, graph depth, total references, and stream size. Patterns cannot
match the names of the supertype or interfaces of the class.

In the following example, the filter allows example.File and rejects example.Directory.

ObjectInputFilter filesOnlyFilter =
ObjectInputFilter.Config.createFilter ("example.File; !example.Directory");

This example allows only example.File. All other class names are rejected.

ObjectInputFilter filesOnlyFilter =
ObjectInputFilter.Config.createFilter ("example.File; !*");

Setting a Custom Filter as a Class

ORACLE

A custom filter can be implemented as a class implementing the
java.io.ObjectInputFilter interface, as a lambda expression, or as a method.

A filter is typically stateless and performs checks solely on the input parameters. However, you
may implement a filter that, for example, maintains state between calls to the checkInput
method to count artifacts in the stream.

In the following example, the FilterNumber class allows any object that is an instance of the
Number class and rejects all others.

class FilterNumber implements ObjectInputFilter {
public Status checkInput (FilterInfo filterInfo) ({
Class<?> clazz = filterInfo.serialClass();
if (clazz != null) {
return (Number.class.isAssignableFrom(clazz))

? ObjectInputFilter.Status.ALLOWED
: ObjectInputFilter.Status.REJECTED;

}

return ObjectInputFilter.Status.UNDECIDED;

In the example:

* The checkInput method accepts an ObjectInputFilter.FilterInfo object. The object’s
methods provide access to the class to be checked, array size, current depth, number of
references to existing objects, and stream size read so far.

e If serialClass is not null, then the value is checked to see if the class of the object is
Number. If S0, it is accepted and returns ObjectInputFilter.Status.ALLOWED. Otherwise, it
is rejected and returns ObjectInputFilter.Status.REJECTED.

e Any other combination of arguments returns ObjectInputFilter.Status.UNDECIDED.

Deserialization continues, and any remaining filters are run until the object is accepted or
rejected. If there are no other filters, the object is accepted.

2-8

Chapter 2
Creating Custom Filters

Setting a Custom Filter as a Method

A custom filter can also be implemented as a method. The method reference is used instead of
an inline lambda expression.

The dateTimeFilter method that is defined in the following example is used by the code
sample in Setting a Custom Filter for an Individual Stream.

public class FilterClass {
static ObjectInputFilter.Status
dateTimeFilter (ObjectInputFilter.FilterInfo info) {
Class<?> serialClass = info.serialClass();
if (serialClass != null) {
return serialClass.getPackageName ().equals("java.time")

? ObjectInputFilter.Status.ALLOWED
: ObjectInputFilter.Status.REJECTED;

}

return ObjectInputFilter.Status.UNDECIDED;

This custom filter allows only the classes found in the base module of the JDK:

static ObjectInputFilter.Status
baseFilter (ObjectInputFilter.FilterInfo info) {
Class<?> serialClass = info.serialClass();
if (serialClass != null) {
return serialClass.getModule () .getName () .equals("java.base")
? ObjectInputFilter.Status.ALLOWED
: ObjectInputFilter.Status.REJECTED;

}
return ObjectInputFilter.Status.UNDECIDED;

Creating a Filter with ObjectinputFilter Methods

The ObjectInputFilter interface includes the following static methods that enable you to
quickly create filters:

* allowFilter (Predicate<Class<?>>, ObjectInputFilter.Status)
* rejectFilter (Predicate<Class<?>>, ObjectInputFilter.Status)
* rejectUndecidedClass (ObjectInputFilter)

* merge (ObjectInputFilter, ObjectInputFilter)

The allowFilter method creates a filter based on a Predicate that takes a Class as its
argument. The created filter returns ObjectInputFilter.Status.ALLOWED if the predicate is
true. Otherwise, it returns the value of the allowFilter method’s second argument. The

ORACLE 9

Chapter 2
Setting a Filter Factory

following creates a filter that accepts the Integer class. All other classes are considered
undecided:

ObjectInputFilter intFilter = ObjectInputFilter.allowFilter (
cl -> cl.equals(Integer.class), ObjectInputFilter.Status.UNDECIDED) ;

The rejectFilter method is the inverse of allowFilter: It creates a filter based on a
Predicate that takes a Class as its argument. The created filter returns
ObjectInputFilter.Status.REJECTED if the predicate is true. Otherwise, it returns the
value of the rejectFilter method’s second argument. The following creates a filter that
rejects any class loaded from the application class loader:

ObjectInputFilter f = ObjectInputFilter.rejectFilter(cl ->
cl.getClassLoader () == ClassLoader.getSystemClassLoader(),
Status.UNDECIDED) ;

The rejectUndecidedClass method creates a new filter based on an existing filter by rejecting
any class that the existing filter considers as undecided. The following creates a filter based on
intFilter. It accepts the Integer class but rejects all other (undecided) classes:

ObjectInputFilter rejectUndecidedFilter =
ObjectInputFilter.rejectUndecidedClass (intFilter);

The merge method creates a new filter by merging two filters. The following merges the filters
intFilter and f. It accepts the Integer class but rejects any class loaded from the application
class loader:

ObjectInputFilter mergedFilter = ObjectInputFilter.merge (intFilter, f);

A merged filter follows these steps when it filters a class:

1. Return Status.REJECTED if either of its filters return Status .REJECTED.
2. Return status.ACCEPTED if either of its filters return Status.ACCEPTED.
3. Return status.UNDECIDED (both of its filters return Status.UNDECIDED).

The merge method is useful in filter factories. Every time a filter is set on a stream, you can
append that filter to the one that the filter factory creates with the merge method. See the
ObjectInputFilter APl documentation for an example.

Note:

It's a good idea to merge the JVM-wide filter with the requested, stream-specific filter
in your filter factory. If you just return the requested filter, then you effectively disable
the JVM-wide filter, which will lead to security gaps.

Setting a Filter Factory

A filter factory is a BinaryOperator, which is a function of two operands that chooses the
filter for a stream. You can set a filter factory by calling the method

ORACLE 510

Chapter 2
Setting a Filter Factory

ObjectInputFilter.Config.setSerialFilterFactory or specifying itin a system or
Security property.

Note:

You can set a filter factory exactly once, either with the method
setSerialFilterFactory, in the system property jdk.serialFilterFactory, Or
in the Security Property jdk.serialFilterFactory.

Topics:
e Setting a Filter Factory with setSerialFilterFactory

e Specifying a Filter Factory in a System or Security Property

Setting a Filter Factory with setSerialFilterFactory

ORACLE

When you set a filter factory by calling the method
ObjectInputFilter.Config.setSerialFilterFactory, the filter factory's method
BinaryOperator<ObjectInputFilter>.apply(ObjectInputFilter t, ObjectInputFilter u)
will be invoked when an ObjectInputStream is constructed and when a stream-specific filter is
set on an ObjectInputStream. The parameter t is the current filter and u is the requested filter.
When apply is first invoked, t will be null. If a JVM-wide filter has been set, then when apply
is first invoked, u will be the JVM-wide filter. Otherwise, u will be null. The apply method
(which you must implement yourself) returns the filter to be used for the stream. If apply is
invoked again, then the parameter t will be this returned filter. When you set a filter with the
method ObjectInputStream.setObjectInputFilter (ObjectInputFilter), then
parameter u will be this filter.

The following example implements a simple filter factory that prints its ObjectInputFilter
parameters every time its apply method is invoked, merges these parameters into one
combined filter, then returns this merged filter.

public class SimpleFilterFactory {

static class MySimpleFilterFactory implements
BinaryOperator<ObjectInputFilter> {
public ObjectInputFilter apply(
ObjectInputFilter curr, ObjectInputFilter next) {
System.out.println("Current filter: " + curr);
System.out.println("Requested filter: " + next);
return ObjectInputFilter.merge (next, curr);

private static byte[] createSimpleStream(Object obj) {

ByteArrayOutputStream boas = new ByteArrayOutputStream();

try (ObjectOutputStream ois = new ObjectOutputStream(boas)) {
ois.writeObject (obj);
return boas.toByteArray();

} catch (IOException ioce) {
ioe.printStackTrace();

}

throw new RuntimeException();

2-11

Chapter 2
Setting a Filter Factory

public static void main(String[] args) throws IOException {
// Set a filter factory

MySimpleFilterFactory contextFilterFactory = new
MySimpleFilterFactory();

ObjectInputFilter.Config.setSerialFilterFactory(contextFilterFactory);

// Set a stream-specific filter

ObjectInputFilter filterl =
ObjectInputFilter.Config.createFilter ("example.*;java.base/*;!*");
ObjectInputFilter.Config.setSerialFilter(filterl);

// Create another filter

ObjectInputFilter intFilter = ObjectInputFilter.allowFilter (
cl -> cl.equals(Integer.class),
ObjectInputFilter.Status.UNDECIDED) ;

// Create input stream

byte[] intByteStream = createSimpleStream(42);
InputStream is = new ByteArrayInputStream(intByteStream);
ObjectInputStream ois = new ObjectInputStream(is);
ols.setObjectInputFilter (intFilter);

try {
Object obj = ois.readObject();
System.out.println("Read obj: " + obj);
} catch (ClassNotFoundException e) {
e.printStackTrace();

This example prints output similar to the following (line breaks have been added for clarity):

Current filter: null
Requested filter: example.*;java.base/*;!*
Current filter: example.*;java.base/*;!*
Requested filter:
merge (
predicate (
SimpleFilterFactory$$Lambdas8/0x0000000800c00c60@76ed5528,
ifTrue: ALLOWED, ifFalse: UNDECIDED),
predicate (
SimpleFilterFactory$$Lambdas9/0x0000000800c01800@2c7b84de,
ifTrue: REJECTED, ifFalse: UNDECIDED))
Read obj: 42

ORACLE 1o

Chapter 2
Built-in Filters

The apply method is invoked twice: when the ObjectInputStream ois is created and when
the method setObjectInputFilter is called.

Note:
* You can set a filter on an ObjectInputStream only once. An
IllegalStateException will be thrown otherwise.

» To protect against unexpected deserializations, ensure that security experts
thoroughly review how your filter factories select and combine filters.

Specifying a Filter Factory in a System or Security Property

You can set a filter factory that applies to only one application and to only a single invocation of
Java by specifying it in the jdk.serialFilterFactory System property in the command line:

java -Djdk.serialFilterFactory=FilterFactoryClassName YourApplication

The value of jdk.serialFilterFactory is the class name of the filter factory to be set before
the first deserialization. The class must be public and accessible to the application class loader
(which the method java.lang.ClassLoader.getSystemClassLoader () returns).

You can set a JVM-wide filter factory that affects every application run with a Java runtime
from $JAVA HOME by specifying it in a Security Property. Note that a system property
supersedes a Security Property value. Edit the file $JAVA HOME/conf/security/
java.security and specify the filter factory's class name in the jdk.serialFilterFactory
Security Property.

Built-in Filters

The Java Remote Method Invocation (RMI) Registry, the RMI Distributed Garbage Collector,
and Java Management Extensions (JMX) all have filters that are included in the JDK. You
should specify your own filters for the RMI Registry and the RMI Distributed Garbage Collector
to add additional protection.

Filters for RMI Registry

< Note:

Use these built-in filters as starting points only. Edit the
sun.rmi.registry.registryFilter system property to configure reject-lists and/or
extend the allow-list to add additional protection for the RMI Registry. To protect the
whole application, add the patterns to the jdk.serialFilter global system property
to increase protection for other serialization users that do not have their own custom
filters.

The RMI Registry has a built-in allow-list filter that allows objects to be bound in the registry. It
includes instances of the java.rmi.Remote, java.lang.Number, java.lang.reflect.Proxy,
java.rmi.server.UnicastRef, java.rmi.server.UID,

ORACLE 513

ORACLE

Chapter 2
Built-in Filters

java.rmi.server.RMIClientSocketFactory, and java.rmi.server.RMIServerSocketFactory
classes.

The built-in filter includes size limits:

maxarray=1000000;maxdepth=20

Supersede the built-in filter by defining a filter using the sun.rmi.registry.registryFilter
system property with a pattern. If the filter that you define either accepts classes passed to the
filter, or rejects classes or sizes, the built-in filter is not invoked. If your filter does not accept or
reject anything, the built-filter is invoked.

Filters for RMI Distributed Garbage Collector

< Note:

Use these built-in filters as starting points only. Edit the
sun.rmi.transport.dgcFilter system property to configure reject-lists and/or
extend the allow-list to add additional protection for Distributed Garbage Collector. To
protect the whole application, add the patterns to the jdk.serialFilter global
system property to increase protection for other serialization users that do not have
their own custom filters.

The RMI Distributed Garbage Collector has a built-in allow-list filter that accepts a limited set of
classes. It includes instances of the java.rmi.server.0bjID, java.rmi.server.UID,
java.rmi.dgc.VMID, and java.rmi.dgc.Lease classes

The built-in filter includes size limits:

maxarray=1000000;maxdepth=20

Supersede the built-in filter by defining a filter using the sun.rmi.transport.dgcFilter system
property with a pattern. If the filter accepts classes passed to the filter, or rejects classes or
sizes, the built-in filter is not invoked. If the superseding filter does not accept or reject
anything, the built-filter is invoked.

Filters for IMX

Note:

Use these built-in filters as starting points only. Edit the
com.sun.management.jmxremote.serial.filter.pattern management property to
configure reject-lists and/or extend the allow-list to add additional protection for JMX.
To protect the whole application, add the patterns to the jdk.serialFilter global
system property to increase protection for other serialization users that do not have
their own custom filters.

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. The filter's pattern must include the types that are allowed
to be sent as parameters over RMI to the server and all types that they depend on, plus
javax.management.ObjectName and java.rmi.MarshalledObject types. The default filter

2-14

Chapter 2
Logging Filter Actions

covers any type that Open MBeans and MXBeans might use. Applications that register their
own MBeans in the platform MBean server may need to extend the filter to support any
additional types that their MBeans accept as parameters. Specify the filter's pattern with the
com.sun.management . jmxremote.serial.filter.pattern management property in

the SUAVA HOME/conf/management/management.properties file. You can override the
value of this property with the java command-line option -
Dcom.sun.management.jmxremote.serial.filter.pattern=<pattern>

Logging Filter Actions

ORACLE

You can turn on logging to record the initialization, rejections, and acceptances of calls to
serialization filters. Use the log output as a diagnostic tool to see what's being deserialized,
and to confirm your settings when you configure allow-lists and reject-lists.

When logging is enabled, filter actions are logged to the java.io.serialization logger.
To enable serialization filter logging, edit the $JDK HOME/conf/logging.properties file.

To log calls that are rejected, add

java.io.serialization.level = FINE

To log all filter results, add

java.io.serialization.level FINEST

2-15

Enhanced Deprecation

The semantics of what deprecation means includes whether an APl may be removed in the
near future.

If you are a library maintainer, you can take advantage of the updated deprecation syntax to
inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the jdeprscan tool to find uses of
deprecated JDK API elements in your applications or libraries.

Topics

e Deprecation in the JDK

* How to Deprecate APIs

* Natifications and Warnings

* Running jdeprscan

Deprecation in the JDK

Deprecation is a naotification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:
e The APl is dangerous (for example, the Thread. stop method).

e There is a simple rename (for example, AWT Component .show/hide replaced by
setVisible).

* A newer, better API can be used instead.
* The API is going to be removed.

In prior releases, APIs were deprecated but rarely ever removed. Starting with JDK 9, APIs
may be marked as deprecated for removal. This indicates that the API is eligible to be removed
in the next release of the JDK platform. If your application or library consumes any of these
APIs, then you should plan to migrate from them soon.

For a list of deprecated APIs in the current release of the JDK, see the Deprecated API page in
the API specification.

How to Deprecate APIs

ORACLE

Deprecating an API requires using two different mechanisms: the @Deprecated annotation
and the @deprecated JavaDoc tag.

The @Deprecated annotation marks an APl in a way that is recorded in the class file and is
available at runtime. This allows various tools, such as javac and jdeprscan, to detect and flag
usage of deprecated APIs. The @deprecated JavaDoc tag is used in documentation of

3-1

https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html

ORACLE

Chapter 3
How to Deprecate APIs

deprecated APIs, for example, to describe the reason for deprecation, and to suggest
alternative APlIs.

Note the capitalization: the annotation starts with an uppercase D and the JavaDoc tag starts
with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration with
@Deprecated. The annotation contains these elements:

* (@Deprecated(since="<version>")

— <version> identifies the version in which the API was deprecated. This is for
informational purposes. The default is the empty string ("").

o @Deprecated (forRemoval=<boolean>)
— forRemoval=true indicates that the API is subject to removal in a future release.

— forRemoval=false recommends that code should no longer use this API; however,
there is no current intent to remove the API. This is the default value.

For example: @Deprecated (since="9", forRemoval=true)

The @Deprecated annotation causes the JavaDoc-generated documentation to be marked
with one of the following, wherever that program element appears:

e Deprecated.

- Deprecated, for removal: This API element is subject to removal in a future version.

The javadoc tool generates a page named deprecated-1ist.html containing the list of
deprecated APIs, and adds a link in the navigation bar to that page.

The following is a simple example of using the @Deprecated annotation from the

java.lang.Thread class:

public class Thread implements Runnable {

@Deprecated(since="1.2")
public final void stop() {

}

Semantics of Deprecation

The two elements of the @Deprecated annotation give developers the opportunity to clarify
what deprecation means for their exported APIs (which are APIs that are provided by a library
that are accessible to code outside of that library, such as applications or other libraries).

For the JDK platform:

°* (@Deprecated (forRemoval=true) indicates that the API is eligible to be removed in a
future release of the JDK platform.

* Q@Deprecated(since="<version>") contains the JDK version string that indicates when
the API element was deprecated, for those deprecated in JDK 9 and beyond.

If you maintain libraries and produce your own APIs, then you probably use the @Deprecated
annotation. You should determine and communicate your policy around API removals. For

3-2

Chapter 3
Notifications and Warnings

example, if you release a new library every six weeks, then you may choose to deprecate an
API for removal, but not remove it for several months to give your customers time to migrate.

Using the @deprecated JavaDoc Tag

Use the @deprecated tag in the JavaDoc comment of any deprecated program element to
indicate that it should no longer be used (even though it may continue to work). This tag is
valid in all class, method, or field documentation comments. The @deprecated tag must be
followed by a space or a newline. In the paragraph following the @deprecated tag, explain
why the item was deprecated, and suggest what to use instead. Mark the text that refers to
new versions of the same functionality with an @1ink tag.

When it encounters an @deprecated tag, the javadoc tool moves the text following the
@deprecated tag to the front of the description and precedes it with a warning. For example,
this source:

* @deprecated This method does not properly convert bytes into

* characters. As of JDK 1.1, the preferred way to do this is via the
* {@Qcode String} constructors that take a {@link

* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.

*/
@Deprecated(since="1.1")
public String(byte ascii[], int hibyte) {

generates the following output:

@Deprecated(since="1.1")
public String(byte[] ascii,
int hibyte)
Deprecated. This method does not properly convert bytes into characters. As
of
JDK 1.1, the preferred way to do this is via the String constructors that
take a
Charset, charset name, or that use the platform's default charset.

If you use the @deprecated JavaDoc tag without the corresponding @Deprecated
annotation, a warning is generated.

Notifications and Warnings

ORACLE

When an APl is deprecated, developers must be notified. The deprecated APl may cause
problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APls. There are options to generate
more information about warnings, and you can also suppress deprecation warnings.

Compiler Deprecation Warnings

If the deprecation is forRemoval=false, the Java compiler generates an "ordinary deprecation
warning". If the deprecation is forRemoval=true, the compiler generates a "removal warning".

3-3

ORACLE

Chapter 3
Notifications and Warnings

The two kinds of warnings are controlled by separate -x1int flags: -x1int:deprecation and -
Xlint:removal. The javac -Xlint:removal option is enabled by default, so removal warnings
are shown.

The warnings can also be turned off independently (note the "—"): -X1int:-deprecation and -
Xlint:-removal.

This is an example of an ordinary deprecation warning.

$ javac src/example/DeprecationExample.java

Note: src/example/DeprecationExample.java uses or overrides a deprecated
APT.

Note: Recompile with -Xlint:deprecation for details.

Use the javac -Xlint:deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/example/DeprecationExample.java
src/example/DeprecationExample.java:12: warning: [deprecation]
getSelectedValues () in JList has been deprecated

Object[] values = jlist.getSelectedValues();

1 warning

Here is an example of a removal warning.

public class RemovalExample {
public static void main(String[] args) {
System.runFinalizersOnExit (true);

}

$ javac RemovalExample.java

RemovalExample.java:3: warning: [removal] runFinalizersOnExit (boolean) in

System

has been deprecated and marked for removal
System.runFinalizersOnExit (true);

A

1 warning

Suppressing Deprecation Warnings

The javac -Xlint options control warnings for all files compiled in a particular run of javac.
You may have identified specific locations in source code that generate warnings that you no
longer want to see. You can use the @SuppressWarnings annotation to suppress warnings
whenever that code is compiled. Place the @suppressWarnings annotation at the declaration of
the class, method, field, or local variable that uses a deprecated API.

The @SuppressWarnings options are:

°* Q@SuppressWarnings ("deprecation") — Suppresses only the ordinary deprecation
warnings.
° (@SuppressWarnings ("removal") — Suppresses only the removal warnings.

3-4

Chapter 3
Running jdeprscan

°* Q@SuppressWarnings ({"deprecation", "removal"}) — Suppresses both types of
warnings.

Here’s an example of suppressing a warning.

@SuppressWarnings ("deprecation")
Object[] values = jlist.getSelectedValues();

With the @SuppressWarnings annotation, no warnings are issued for this line, even if warnings
are enabled on the command line.

Running jdeprscan

ORACLE

jdeprscan is a static analysis tool that reports on an application’s use of deprecated JDK API
elements. Run jdeprscan to help identify possible issues in compiled class files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However, if you
don’t recompile with every JDK release, or if the warnings were suppressed, or if you depend
on third-party libraries that are distributed as binary artifacts, then you should run jdeprscan.

It's important to discover dependencies on deprecated APIs before the APIs are removed from
the JDK. If the binary uses an API that is deprecated for removal in the current JDK release,
and you don’t recompile, then you won't get any notifications. When the API is removed in a
future JDK release, then the binary will simply fail at runtime. jdeprscan lets you detect such
usage now, well before the APl is removed.

For the complete syntax of how to run the tool and how to interpret the output, see The
jdeprscan Command in the Java Development Kit Tool Specifications.

3-5

XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduced a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS Standard
V1.1, 7 October 2005. This chapter of the Core Libraries Guide describes the API, its support
by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and the
support by the JDK XML processors makes it easier to configure your processors or the entire
environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see XML Catalogs, OASIS Standard V1.1, 7 October 2005.
The XML catalogs under the directory /etc/xml/catalog on some Linux distributions can also
be a good reference for creating a local catalog.

Purpose of XML Catalog API

The XML Catalog API and the Java XML processors provide an option for developers and
system administrators to manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a standard
designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that Java XML
processors need to retrieve to process the documents. External resources can cause a
problem for the applications or the system. The Catalog API and the Java XML processors
provide an option for developers and system administrators to manage these external
resources.

External resources can cause a problem for the application or the system in these areas:

* Availability: If a resource is remote, then XML processors must be able to connect to the
remote server hosting the resource. Even though connectivity is rarely an issue, it's still a
factor in the stability of an application. Too many connections can be a hazard to servers
that hold the resources, and this in turn could affect your applications. See Use Catalog
with XML Processors for an example that solves this issue using the XML Catalog API.

« Performance. Although in most cases connectivity isn't an issue, a remote fetch can
still cause a performance issue for an application. Furthermore, there may be multiple
applications on the same system attempting to resolve the same resource, and this would
be a waste of system resources.

* Security: Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

* Manageability: If a system processes a large number of XML documents, then externally
referenced documents, whether local or remote, can become a maintenance hassle.

ORACLE i1

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Chapter 4
XML Catalog API Interfaces

How XML Catalog API Addresses Problems Caused by External Resources

Application developers can create a local catalog of all external references for the application,
and let the Catalog API resolve them for the application. This not only avoids remote
connections but also makes it easier to manage these resources.

System administrators can establish a local catalog for the system and configure the Java VM
to use the catalog. Then, all of the applications on the system may share the same catalog
without any code changes to the applications, assuming that they’re compatible with Java SE
9. To establish a catalog, you may take advantage of existing catalogs such as those included
with some Linux distributions.

XML Catalog API Interfaces

ORACLE

Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces
The XML Catalog API defines the following interfaces:

* The catalog interface represents an entity catalog as defined by XML Catalogs, OASIS
Standard V1.1, 7 October 2005. A Catalog object is immutable. After it's created, the
Catalog object can be used to find matches in a system, public, or uri entry. A custom
resolver implementation may find it useful to locate local resources through a catalog.

 The catalogFeatures class provides the features and properties the Catalog API supports,
including javax.xml.catalog.files, javax.xml.catalog.defer,
javax.xml.catalog.prefer, and javax.xml.catalog.resolve.

* The catalogManager class manages the creation of XML catalogs and catalog resolvers.

* The catalogResolver interface is a catalog resolver that implements
SAX EntityResolver, StAX xMLResolver, DOM LS LSResourceResolver used by schema
validation, and transform URIResolver. This interface resolves external references using
catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the CatalogFeatures class. The features are
defined at the API and system levels, which means that they can be set through the API,
system properties, and JAXP properties. To set a feature through the API, use the
CatalogFeatures class.

The following code sets javax.xml.catalog.resolve to continue S0 that the process
continues even if no match is found by the CatalogResolver:

CatalogFeatures f = CatalogFeatures.builder().with (Feature.RESOLVE,
"continue") .build();

To set this continue functionality system-wide, use the Java command line or
System.setProperty method:

System.setProperty (Feature.RESOLVE.getPropertyName (), "continue");

4-2

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Using the

Chapter 4
Using the XML Catalog API

To set this continue functionality for the whole JVM instance, enter a line in the
jaxp.properties file:

javax.xml.catalog.resolve = "continue"

The jaxp.properties file is typically in the $JAVA HOME/conf directory.

The resolve property, as well as the prefer and defer properties, can be set as an attribute of
the catalog or group entry in a catalog file. For example, in the following catalog, the resolve
attribute is set with the value continue. The attribute can also be set on the group entry as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<catalog
xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
resolve="continue"
xml:base="http://local/base/dtd/">
<group resolve="continue">
<system
systemId="http://remote/dtd/alice/docAlice.dtd"
uri="http://local/dtd/docAliceSys.dtd"/>
</group>
</catalog>

Properties set in a narrower scope override those that are set in a wider one. Therefore, a
property set through the API always takes preference.

XML Catalog API

Resolve DTD, entity, and alternate URI references in XML source documents using the various
entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system entries,
including system, rewriteSystem, and systemSuffix entries, are used for resolving DTD and
entity references in XML source documents, whereas uri entries are for alternate URI
references.

System Reference

ORACLE

Use a CatalogResolver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a CatalogResolver object to locate a local
resource.

Consider the following XML file:
<?xml version="1.0"?>

<!DOCTYPE catalogtest PUBLIC "-//OPENJDK//XML CATALOG DTD//1.0"
"http://openjdk.java.net/xml/catalog/dtd/example.dtd">

<catalogtest>

4-3

ORACLE

Chapter 4
Using the XML Catalog API

Test &example; entry
</catalogtest>

The example.dtd file defines an entity example:

<!ENTITY example "system">

However, the URI to the example.dtd file in the XML file doesn't need to exist. The purpose is
to provide a unique identifier for the CatalogResolver object to locate a local resource. To do
this, create a catalog entry file called catalog.xml with a system entry to refer to the local
resource:

<?xml version="1.0" encoding="UTF-8"?2>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<system
systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>
</catalog>

With this catalog entry file and the system entry, all you need to do is get a default
CatalogFeatures object and set the URI to the catalog entry file to create a CatalogResolver
object:

CatalogResolver cr =
CatalogManager.catalogResolver (CatalogFeatures.defaults (), catalogUri);

catalogUri must be a valid URI. For example:

URI.create("file:///users/auser/catalog/catalog.xml")

The CatalogResolver object can now be used as a JDK XML resolver. In the following
example, it's used as a SAX EntityResolver:

SAXParserFactory factory = SAXParserFactory.newlnstance();
factory.setNamespaceAware (true) ;

XMLReader reader = factory.newSAXParser ().getXMLReader();
reader.setEntityResolver (cr);

Notice that in the example the system identifier is given an absolute URI. That makes it easy
for the resolver to find the match with exactly the same systemId in the catalog's system entry.

If the system identifier in the XML is relative, then it may complicate the matching process
because the XML processor may have made it absolute with a specified base URI or the
source file's URI. In that situation, the systemId of the system entry would need to match the
anticipated absolute URI. An easier solution is to use the systemSuffix entry, for example:

<systemSuffix systemIdSuffix="example.dtd" uri="example.dtd"/>

The systemSuffix entry matches any reference that ends with example.dtd in an XML source
and resolves it to a local example.dtd file as specified in the uri attribute. You may add more
to the systemId to ensure that it's unique or the correct reference. For example, you may set

4-4

Chapter 4
Using the XML Catalog API

the systemIdSuffix to xml/catalog/dtd/example.dtd, or rename the id in both the XML
source file and the systemSuffix entry to make it a uniqgue match, for example
my example.dtd.

The URI of the system entry can be absolute or relative. If the external resources have a fixed
location, then an absolute URI is more likely to guarantee uniqueness. If the external resources
are placed relative to your application or the catalog entry file, then a relative URI may be more
effective, allowing the deployment of your application without knowing where it's installed. Such
a relative URI then is resolved using the base URI or the catalog file’'s URI if the base URI isn'’t
specified. In the previous example, example.dtd is assumed to have been placed in the same
directory as the catalog file.

Public Reference

Use a public entry instead of a system entry to find a desired resource.

If no system entry matches the desired resource, and the PREFER property is specified to match
public, then a public entry can do the same as a system entry. Note that public is the default
setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as "-//
OPENJDK//XML CATALOG DTD//1.0", a public entry can be written as follows in the catalog
entry file:

<public publicId="-//0OPENJDK//XML CATALOG DTD//1.0" uri="example.dtd"/>

When you create and use a CatalogResolver object with this entry file, the example.dtd
resolves through the publicId property. See System Reference for an example of creating a
CatalogResolver object.

URI Reference

ORACLE

Use a uri entry to find a desired resource.

The URI type entries, including uri, rewriteURI, and uriSuffix, can be used in a similar way
as the system type entries.

Using URI Entries

While the XML Catalog Standard gives a preference to the system type entries for resolving
DTD references, and uri type entries for everything else, the Java XML Catalog API doesn't
make that distinction. This is because the specifications for the existing Java XML Resolvers,
such as XMLResolver and LSResourceResolver, doesn't give a preference. The uri type
entries, including uri, rewriteURI, and uriSuffix, can be used in a similar way as the system
type entries. The uri elements are defined to associate an alternate URI reference with a URI
reference. In the case of system reference, this is the systemId property.

4-5

ORACLE

Chapter 4
Using the XML Catalog API

You may therefore replace the system entry with a uri entry in the following example, although
system entries are more generally used for DTD references.

<system
systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>

A uri entry would look like the following:

<uri name="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>

While system entries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri entry to
resolve a XSL import.

As described in XML Catalog API Interfaces, the XML Catalog API defines the
CatalogResolver interface that extends Java XML Resolvers including EntityResolver,
XMLResolver, URIResolver, and LSResolver. Therefore, a CatalogResolver object can be
used by SAX, DOM, StAX, Schema Validation, as well as XSLT Transform. The following code
creates a CatalogResolver object with default feature settings:

CatalogResolver cr =
CatalogManager.catalogResolver (CatalogFeatures.defaults (), catalogUri);

The code then registers this CatalogResolver object on a TransformerFactory class where a
URIResolver object is expected:

TransformerFactory factory = TransformerFactory.newlnstance();
factory.setURIResolver(cr);

Alternatively the code can register the CatalogResolver object on the Transformer object:

Transformer transformer = factory.newTransformer (xslSource);
transformer.setURIResolver (cur);

Assuming the XSL source file contains an import element to import the xs1Import.xsl file into
the XSL source:

<xsl:import href="pathto/xslImport.xsl"/>

To resolve the import reference to where the import file is actually located, a CatalogResolver
object should be set on the TransformerFactory class before creating the Transformer object,
and a uri entry such as the following must be added to the catalog entry file:

<uri name="pathto/xslImport.xsl" uri="xslImport.xsl"/>

The discussion about absolute or relative URIs and the use of systemSuffix Or uriSuffix
entries with the system reference applies to the uri entries as well.

4-6

Chapter 4
Java XML Processors Support

Java XML Processors Support

Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML processors, including SAX
and DOM (javax.xml.parsers), and StAX parsers (javax.xml.stream), Schema validation
(Favax.xml.validation), and XML transformation (javax.xml.transform).

This means that you don’t need to create a CatalogResolver object outside an XML
processor. Catalog files can be registered directly to the Java XML processor, or specified
through system properties, or in the jaxp.properties file. The XML processors perform the
mappings through the catalogs automatically.

Enable Catalog Support

ORACLE

To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG feature
must be set to true, and at least one catalog entry file specified.

USE_CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported based on
the value of the USE_CATALOG feature. By default, USE_CATALOG is set to true for all JDK XML
Processors. The Java XML processor further checks for the availability of a catalog file, and
attempts to use the XML Catalog API only when the USE_CATALOG feature is true and a catalog
is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property, and the
jaxp.properties file. For example, if USE_CATALOG is set to true and it's desirable to disable
the catalog support for a particular processor, then this can be done by setting the
USE_CATALOG feature to false through the processor's setFeature method. The following code
sets the USE_CATALOG feature to the specified value useCatalog for an XMLReader object:

SAXParserFactory spf = SAXParserFactory.newlnstance();
spf.setNamespaceAware (true);
XMLReader reader = spf.newSAXParser () .getXMLReader () ;
if (setUseCatalog) {
reader.setFeature (XMLConstants.USE CATALOG, useCatalog);

On the other hand, if the entire environment must have the catalog turned off, then this can be
done by configuring the jaxp.properties file with a line:

javax.xml.useCatalog = false;

javax.xml.catalog.files

The javax.xml.catalog.files property is defined by the XML Catalog APl and supported by
the JDK XML processors, along with other catalog features. To employ the catalog feature on a
parsing, validating, or transforming process, all that's needed is to set the FILES property on
the processor, through its system property or using the jaxp.properties file.

4-7

Chapter 4
Java XML Processors Support

Catalog URI

The catalog file reference must be a valid URI, such as file:///users/auser/catalog/
catalog.xml.

The URI reference in a system or a URI entry in the catalog file can be absolute or relative. If
they're relative, then they are resolved using the catalog file's URI or a base URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see XML Catalog API Interfaces for an example),
system and uri entries both work when using the JDK XML Processors' native support of the
CatalogFeatures class. In general, system entries are searched first, then public entries, and
if no match is found then the processor continues searching uri entries. Because both system
and uri entries are supported, it's recommended that you follow the custom of XML
specifications when selecting between using a system or uri entry. For example, DTDs are
defined with a systemId and therefore system entries are preferable.

Use Catalog with XML Processors

ORACLE

Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following sections
describe how it can be enabled for a particular type of processor.

Use Catalog with DOM

To use a catalog with DOM, set the FILES property on a DocumentBuilderFactory instance as
demonstrated in the following code:

static final String CATALOG FILE =
CatalogFeatures.Feature.FILES.getPropertyName () ;
DocumentBuilderFactory dbf = DocumentBuilderFactory.newlInstance();
dbf.setNamespaceAware (true) ;
if (catalog != null) {

dbf.setAttribute (CATALOG FILE, catalog);

Note that catalog is a URI to a catalog file. For example, it could be something like "file:///
users/auser/catalog/catalog.xml".

It's best to deploy resolving target files along with the catalog entry file, so that the files can be
resolved relative to the catalog file. For example, if the following is a uri entry in the catalog
file, then the XSLImport html.xsl file will be located at /users/auser/catalog/

XSLImport html.xsl.

<uri name="pathto/XSLImport html.xsl" uri="XSLImport html.xsl"/>
Use Catalog with SAX
To use the Catalog feature on a SAX parser, set the catalog file to the SaXxParser instance:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware (true) ;
spf.setXIncludeAware (true);

4-8

ORACLE

Chapter 4
Java XML Processors Support

SAXParser parser = spf.newSAXParser();
parser.setProperty (CATALOG FILE, catalog);

In the prior sample code, note the statement spf.setXIncludeAware (true). When this is
enabled, any XInclude is resolved using the catalog as well.

Given an XML file XI simple.xml:

<simple>
<test xmlns:xinclude="http://www.w3.0rg/2001/XInclude">
<latinl>
<firstElement/>
<xinclude:include href="pathto/XI text.xml" parse="text"/>
<insideChildren/>
<another>
<deeper>text</deeper>
</another>
</latinl>
<test2>
<xinclude:include href="pathto/XI test2.xml"/>
</test2>
</test>
</simple>

Additionally, given another XML file XI test2.xml:

<?xml version="1.0"?2>
<!-- comment before root -->
<!DOCTYPE red SYSTEM "pathto/XI_red.dtd">
<red xmlns:xinclude="http://www.w3.0rg/2001/XInclude">
<blue>
<xinclude:include href="pathto/XI text.xml" parse="text"/>
</blue>
</red>

Assume another text file, XI_text.xml, contains a simple string, and the file XI red.dtd is as
follows:

<!ENTITY red "it is read">

In these XML files, there is an XInclude element inside an XInclude element, and a reference
to a DTD. Assuming they are located in the same folder along with the catalog file
CatalogSupport.xml, add the following catalog entries to map them:

<uri name="pathto/XI text.xml" uri="XI text.xml"/>
<uri name="pathto/XI test2.xml" uri="XI test2.xml"/>
<system systemId="pathto/XI red.dtd" uri="XI red.dtd"/>

When the parser.parse method is called to parse the XI simple.xml file, it's able to locate the
XI test2.xml file in the XI simple.xml file, and the XI_text.xml file and the XI_red.dtd file
in the XI_test2.xml file through the specified catalog.

4-9

Chapter 4
Java XML Processors Support

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the xMLInputFactory
instance before creating the xMLStreamReader object:

XMLInputFactory factory = XMLInputFactory.newInstance();
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName (), catalog);
XMLStreamReader streamReader =

factory.createXMLStreamReader (xml, new FileInputStream(xml));

When the XMLStreamReader streamReader object is used to parse the XML source, external
references in the source are then resolved in accordance with the specified entries in the
catalog.

Note that unlike the DocumentBuilderFactory class that has both setFeature and
setAttribute methods, the XMLInputFactory class defines only a setProperty method. The
XML Catalog API features including XMLConstants.USE_CATALOG are all set through this
setProperty method. For example, to disable USE CATALOG on a XMLStreamReader object, you
can do the following:

factory.setProperty (XMLConstants.USE CATALOG, false);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD import and
include, set the catalog on the SchemaFactory object:

SchemaFactory factory =

SchemaFactory.newlInstance (XMLConstants.W3C XML SCHEMA NS URI);
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName (), catalog);
Schema schema = factory.newSchema (schemaFile);

The XMLSchema schema document contains references to external DTD:

<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "pathto/
XMLSchema.dtd" [

1>

And to xsd import:

<xs:import
namespace="http://www.w3.0rg/XML/1998/namespace"
schemaLocation="http://www.w3.0rg/2001/pathto/xml.xsd">
<xs:annotation>
<xs:documentation>
Get access to the xml: attribute groups for xml:lang
as declared on 'schema' and 'documentation' below
</xs:documentation>
</x%s:annotation>
</xs:import>

ORACLE 410

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

Chapter 4
Java XML Processors Support

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

e Include these entries in the catalog set on the SchemaFactory object:

<public publicId="-//W3C//DTD XMLSCHEMA 200102//EN" uri="XMLSchema.dtd"/>
<!-- XMLSchema.dtd refers to datatypes.dtd -->

<systemSuffix systemIdSuffix="datatypes.dtd" uri="datatypes.dtd"/>

<uri name="http://www.w3.0rg/2001/pathto/xml.xsd" uri="xml.xsd"/>

e Download the source files XMLSchema.dtd, datatypes.dtd, and xml.xsd and save them
along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that you prefer.
In the prior case, instead of the uri entry, you could also use either one of the following:

* Apublic entry, because the namespace attribute in the import element is treated as the
publicId element:

<public publicId="http://www.w3.0rg/XML/1998/namespace” uri="xml.xsd"/>

* A systementry:

<system systemId="http://www.w3.0rg/2001/pathto/xml.xsd" uri="xml.xsd"/>

< Note:

When experimenting with the XML Catalog API, it might be useful to ensure that
none of the URIs or system IDs used in your sample files points to any actual
resources on the internet, and especially not to the W3C server. This lets you catch
mistakes early should the catalog resolution fail, and avoids putting a burden on W3C
servers, thus freeing them from any unnecessary connections. All the examples in
this topic and other related topics about the XML Catalog API, have an arbitrary
string "pathto" added to any URI for that purpose, so that no URI could possibly
resolve to an external W3C resource.

To use the catalog to resolve any external resources in an XML source to be validated, set the
catalog on the validator object:

SchemaFactory schemaFactory =

SchemaFactory.newlInstance (XMLConstants.W3C XML SCHEMA NS URI);
Schema schema = schemaFactory.newSchema () ;
Validator validator = schema.newValidator();
validator.setProperty(CatalogFeatures.Feature.FILES.getPropertyName (),
catalog);
StreamSource source = new StreamSource (new File(xml));
validator.validate (source);

ORACLE 411

Chapter 4
Calling Order for Resolvers

Use Catalog with Transform

To use the XML Catalog APl in a XSLT transform process, set the catalog file on the
TransformerFactory object.

TransformerFactory factory = TransformerFactory.newlnstance();
factory.setAttribute (CatalogFeatures.Feature.FILES.getPropertyName (),
catalog);

Transformer transformer = factory.newTransformer (xslSource);

If the XSL source that the factory is using to create the Transformer object contains DTD,
import, and include statements similar to these:

<!DOCTYPE HTMLlatl SYSTEM "http://openjdk.java.net/xml/catalog/dtd/
XSLDTD.dtd">

<xsl:import href="pathto/XSLImport html.xsl"/>

<xsl:include href="pathto/XSLInclude header.xsl"/>

Then the following catalog entries can be used to resolve these references:

<system
systemId="http://openjdk.java.net/xml/catalog/dtd/XSLDTD.dtd"
uri="XSLDTD.dtd"/>

<uri name="pathto/XSLImport html.xsl" uri="XSLImport html.xsl"/>

<uri name="pathto/XSLInclude header.xsl" uri="XSLInclude header.xsl"/>

Calling Order for Resolvers

Detecting

ORACLE

The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the CatalogResolver interface) can be used to resolve
external references by the JDK XML processors to which a catalog file has been set. However,
if a custom resolver is also provided, then it's always be placed ahead of the catalog resolver.
This means that a JDK XML processor first calls a custom resolver to attempt to resolve
external resources. If the resolution is successful, then the processor skips the catalog resolver
and continues. Only when there’s no custom resolver or if the resolution by a custom resolver
returns null, does the processor then call the catalog resolver.

For applications that use custom resolvers, it's therefore safe to set an additional catalog to
resolve any resources that the custom resolvers don’t handle. For existing applications, if
changing the code isn't feasible, then you may set a catalog through the system property or
jaxp.properties file to redirect external references to local resources knowing that such a
setting won't interfere with existing processes that are handled by custom resolvers.

Errors

Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry files
without issuing an error, which makes it harder to detect configuration issues.

4-12

ORACLE

Dectecting Configuration Issues

Chapter 4
Detecting Errors

To detect configuration issues, isolate the issues by setting one catalog at a time, setting the
RESOLVE value to strict, and checking for a CatalogException exception when no match is

found.

Table 4-1 RESOLVE Settings

RESOLVE Value

CatalogResolver Behavior

Description

strict (default)

Throws a CatalogException if
no match is found with a specified

reference

An unmatched reference may
indicate a possible error in the
catalog or in setting the catalog.

continue

Returns quietly

This is useful in a production
environment where you want the
XML processors to continue
resolving any external references
not covered by the catalog.

ignore

Returns quietly

For processors such as SAX, that
allow skipping the external
references, the ignore value
instructs the

CatalogResolver objectto
return an empty InputSource
object, thus skipping the external
reference.

4-13

Java Collections Framework

ORACLE

The Java platform includes a collections framework that provides developers with a unified
architecture for representing and manipulating collections, enabling them to be manipulated
independently of the details of their representation. A collection is an object that represents a
group of objects (such as the classic ArrayList class).

The Java Collections Framework enables interoperability among unrelated APIs, reduces effort
in designing and learning new APIs, and fosters software reuse. The framework is based on
more than a dozen collection interfaces, and includes implementations of these interfaces with
the algorithms to manipulate them.

Overview
The Java Collections Framework consists of:

« Collection interfaces: Represent different types of collections, such as sets, lists, and
maps. These interfaces form the basis of the framework.

* General-purpose implementations: Primary implementations of the collection interfaces.

* Legacy implementations: The collection classes from earlier releases, Vector and
Hashtable, were retrofitted to implement the collection interfaces.

* Special-purpose implementations: Implementations designed for use in special
situations. These implementations display nonstandard performance characteristics, usage
restrictions, or behavior.

* Concurrent implementations: Implementations designed for highly concurrent use.

* Wrapper implementations: Add functionality, such as synchronization, to other
implementations.

* Convenience implementations: High-performance "mini-implementations” of the
collection interfaces.

* Abstract implementations: Partial implementations of the collection interfaces to facilitate
custom implementations.

« Algorithms: Static methods that perform useful functions on collections, such as sorting a
list.

« Infrastructure: Interfaces that provide essential support for the collection interfaces.

« Array Utilities: Utility functions for arrays of primitive types and reference objects. Not,
strictly speaking, a part of the collections framework, this feature was added to the Java
platform at the same time as the collections framework and relies on some of the same
infrastructure.

See Java Collections Framework for detailed information about the interfaces and
implementations contained in the Java Collections Framework.

See The Java™ Tutorials for basic information about using the Java Collections Framework.

Topics

e Creating Unmodifiable Lists, Sets, and Maps

5-1

https://docs.oracle.com/javase/tutorial/collections/

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

» Creating Sequenced Collections, Sets, and Maps

Creating Unmodifiable Lists, Sets, and Maps

Convenience static factory methods on the List, Set, and Map interfaces let you easily create
unmodifiable lists, sets, and maps.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
After you create an unmodifiable instance of a collection, it holds the same data as long as a
reference to it exists.

A collection that is modifiable must maintain bookkeeping data to support future modifications.
This adds overhead to the data that is stored in the modifiable collection. A collection that is
unmodifiable does not need this extra bookkeeping data. Because the collection never needs
to be modified, the data contained in the collection can be packed much more densely.
Unmodifiable collection instances generally consume much less memory than modifiable
collection instances that contain the same data.

Topics

* Use Cases

* Syntax

* Creating Unmodifiable Copies of Collections

e Creating Unmodifiable Collections from Streams

* Randomized Iteration Order

* About Unmodifiable Collections

e Space Efficiency

e Thread Safety

Use Cases

Whether to use an unmodifiable collection or a modifiable collection depends on the data in the
collection.

An unmodifiable collection provides space efficiency benefits and prevents the collection from
accidentally being modified, which might cause the program to work incorrectly. An
unmodifiable collection is recommended for the following cases:

e Collections that are initialized from constants that are known when the program is written

e Collections that are initialized at the beginning of a program from data that is computed or
is read from something such as a configuration file

For a collection that holds data that is modified throughout the course of the program, a
modifiable collection is the best choice. Modifications are performed in-place, so that
incremental additions or deletions of data elements are quite inexpensive. If this were done
with an unmodifiable collection, a complete copy would have to be made to add or remove a
single element, which usually has unacceptable overhead.

ORACLE -

Syntax

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

The API for these collections is simple, especially for small numbers of elements.
Topics
e Unmodifiable List Static Factory Methods

« Unmodifiable Set Static Factory Methods
« Unmodifiable Map Static Factory Methods

Unmodifiable List Static Factory Methods

The List.of static factory methods provide a convenient way to create unmodifiable lists.

A list is an ordered collection in which duplicate elements are allowed. Null values are not
allowed.

The syntax of these methods is:

List.of ()

List.of (el)

List.of (el, e2) // fixed-argument form overloads up to 10 elements
List.of (elements...) // varargs form supports an arbitrary number of

elements or an array

Example 5-1 Examples

In JDK 8:

List<String> stringlist = Arrays.asList("a", "b", "c");
stringlist = Collections.unmodifiablelist (stringList);

In JDK 9 and later:

List<String> stringList = List.of("a", "b", "c");

See Unmodifiable Lists.

Unmodifiable Set Static Factory Methods

ORACLE

The Set.of static factory methods provide a convenient way to create unmodifiable sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is detected,
then an I1legalArgumentException is thrown. Null values are not allowed.

The syntax of these methods is:

Set.of ()

Set.of (el)

Set.of (el, e2) // fixed-argument form overloads up to 10 elements
Set.of (elements...) // varargs form supports an arbitrary number of

elements or an array

5-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html#unmodifiable

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

Example 5-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Collections.unmodifiableSet (stringSet);

In JDK 9 and later:

Set<String> stringSet = Set.of("a", "b", "c");

See Unmodifiable Sets.

Unmodifiable Map Static Factory Methods

ORACLE

The Map.of and Map.ofEntries static factory methods provide a convenient way to create
unmodifiable maps.

A Map cannot contain duplicate keys. If a duplicate key is detected, then an
IllegalArgumentException is thrown. Each key is associated with one value. Null cannot be
used for either Map keys or values.

The syntax of these methods is:

Map.of ()
Map.of (k1, vl)
Map.of (k1, vl, k2, v2) // fixed-argument form overloads up to 10 key-value
pairs
Map.ofEntries (entry(kl, vl1), entry(k2, v2),...)
// varargs form supports an arbitrary number of Entry objects or an array

Example 5-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, Integer>();
stringMap.put ("a", 1);

stringMap.put ("b", 2);

stringMap.put ("c", 3);
stringMap = Collections.unmodifiableMap (stringMap) ;

In JDK 9 and later:

Map<String, Integer> stringMap = Map.of("a", 1, "b", 2, "c", 3);

Example 5-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the Map.entry
method, and pass those objects to the Map.ofEntries method. For example:

import static java.util.Map.entry;

Map <Integer, String> friendMap = Map.ofEntries(
entry(l, "Tom"),
entry (2, "Dick"),

5-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html#unmodifiable

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

entry (3, "Harry"),

entry (99, "Mathilde"));

See Unmodifiable Maps.

Creating Unmodifiable Copies of Collections

Let's consider the case where you create a collection by adding elements and modifying it, and
then at some point, you want an unmodifiable snapshot of that collection. Create the copy
using the copyOf family of methods.

For example, suppose you have some code that gathers elements from several places:

List<Item> list = new ArrayList<>();
list.addAll (getItemsFromSomewhere ()) ;
list.addAll (getItemsFromElsewhere());
list.addAll (getItemsFromYetAnotherPlace());

It's inconvenient to create an unmodifiable collection using the List .of method. Doing this
would require creating an array of the right size, copying elements from the list into the array,
and then calling List.of (array) to create the unmodifiable snapshot. Instead, do it in one
step using the copyOf static factory method:

List<Item> snapshot = List.copyOf(list);

There are corresponding static factory methods for Set and Map called Set.copyOf and
Map.copyOf. Because the parameter of List.copyOf and Set.copyOf iS Collection,
you can create an unmodifiable List that contains the elements of a Set and an unmodifiable
Set that contains the elements of a List. If you use Set.copyOf to create a Set from a
List, and the List contains duplicate elements, an exception is not thrown. Instead, an
arbitrary one of the duplicate elements is included in the resulting set.

If the collection you want to copy is modifiable, then the copy0Of method creates an
unmodifiable collection that is a copy of the original. That is, the result contains all the same
elements as the original. If elements are added to or removed from the original collection, that
won't affect the copy.

If the original collection is already unmodifiable, then the copy0f method simply returns a
reference to the original collection. The point of making a copy is to isolate the returned
collection from changes to the original one. But if the original collection cannot be changed,
there is no need to make a copy of it.

In both of these cases, if the elements are mutable, and an element is modified, that change
causes both the original collection and the copy to appear to have changed.

Creating Unmodifiable Collections from Streams

ORACLE

The Streams library includes a set of terminal operations known as Collectors. A Collector
is most often used to create a new collection that contains the elements of the stream. The
java.util.stream.Collectors class has Collectors that create new unmodifiable
collections from the elements of the streams.

5-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#unmodifiable

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

If you want to guarantee that the returned collection is unmodifiable, you should use one of the
toUnmodifiable- collectors. These collectors are:

Collectors.toUnmodifiableList ()

Collectors.toUnmodifiableSet ()

Collectors.toUnmodifiableMap (keyMapper, valueMapper)
Collectors.toUnmodifiableMap (keyMapper, valueMapper, mergeFunction)

For example, to transform the elements of a source collection and place the results into an
unmodifiable set, you can do the following:

Set<Item> unmodifiableSet =
sourceCollection.stream()
.map(...)

.collect (Collectors.toUnmodifiableSet());

If the stream contains duplicate elements, the toUnmodifiableSet collector chooses an
arbitrary one of the duplicates to include in the resulting set. For the

toUnmodifiableMap (keyMapper, valueMapper) collector, if the keyMapper function
produces duplicate keys, an I1legalStateException is thrown. If duplicate keys are a
possibility, use the toUnmodifiableMap (keyMapper, valueMapper, mergeFunction)
collector instead. If duplicate keys occur, the mergeFunction is called to merge the values of
each duplicate key into a single value.

The toUnmodifiable- collectors are conceptually similar to their counterparts toList,
toSet, and the corresponding two toMap methods, but they have different characteristics.
Specifically, the toList, toSet, and toMap methods make no guarantee about the
modifiablilty of the returned collection, however, the toUnmodifiable- collectors guarantee
that the result is unmodifiable.

Randomized Iteration Order

ORACLE

Iteration order for Set elements and Map keys is randomized and likely to be different from one
JVM run to the next. This is intentional and makes it easier to identify code that depends on
iteration order. Inadvertent dependencies on iteration order can cause problems that are
difficult to debug.

The following example shows how the iteration order is different after jshell is restarted.

jshell> var stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=l}

jshell> /exit
| Goodbye

C:\Program Files\Java\jdk\bin>jshell

jshell> var stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

Randomized iteration order applies to the collection instances created by the set.of,
Map.of, and Map.ofEntries methods and the toUnmodifiableSet and toUnmodifiableMap

5-6

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

collectors. The iteration ordering of collection implementations such as HashMap and HashSet
is unchanged.

About Unmodifiable Collections

ORACLE

The collections returned by the convenience factory methods added in JDK 9 are unmodifiable.
Any attempt to add, set, or remove elements from these collections causes an
UnsupportedOperationException to be thrown.

However, if the contained elements are mutable, then this may cause the collection to behave
inconsistently or make its contents to appear to change.

Let’s look at an example where an unmodifiable collection contains mutable elements. Using
jshell, create two lists of String objects using the ArrayList class, where the second list
is a copy of the first. Trivial jshell output was removed.

jshell> List<String> listl
jshell> listl.add("a")
jshell> listl.add("b")
jshell> listl

listl ==> [a, Db]

new ArrayList<>();

jshell> List<String> list2
list2 ==> [a, Db]

new ArrayList<>(listl);

Next, using the List.of method, create unmodlistl and unmodlist2 that point to the first
lists. If you try to modify unmodlistl, then you see an exception error because unmodlistl is
unmodifiable. Any modification attempt throws an exception.

jshell> List<List<String>> unmodlistl = List.of(listl, listl);
unmodlistl ==> [[a, b], [a, b]]

jshell> List<List<String>> unmodlist2 = List.of (list2, list2);
unmodlist2 ==> [[a, b], [a, b]]

jshell> unmodlistl.add (new ArrayList<String>())

| java.lang.UnsupportedOperationException thrown:

| at ImmutableCollections.uoce (ImmutableCollections.java:71)
| at ImmutableCollections$AbstractImmutablelList.add
(ImmutableCollections

.java:75)

| at (#8:1)

But if you modify the original 1ist1, the contents of unmodlistl changes, even though
unmodlistl is unmodifiable.

jshell> listl.add("c")

jshell> 1listl

listl ==> [a, b, c]

jshell> unmodlistl

ilistl ==> [[a, b, c], [a, b, c]]

jshell> unmodlist2
ilist2 ==> [[a, b], [a, b]]

5-7

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

jshell> unmodlistl.equals (unmodlist2)
$14 ==> false

Unmodifiable Collections vs. Unmodifiable Views

The unmodifiable collections behave in the same way as the unmodifiable views returned by
the Collections.unmodifiable. .. methods. (See Unmodifiable View Collections in the
Collection interface JavaDoc APl documentation). However, the unmodifiable collections are
not views — these are data structures implemented by classes where any attempt to modify
the data causes an exception to be thrown.

If you create a List and passitto the Collections.unmodifiableList method, then you
get an unmodifiable view. The underlying list is still modifiable, and modifications to it are
visible through the List that is returned, so it is not actually immutable.

To demonstrate this behavior, create a List and pass it to
Collections.unmodifiableList. If you try to add to that List directly, then an exception
is thrown.

jshell> List<String> listl = new ArrayList<>();
jshell> listl.add("a")

jshell> listl.add("b")

jshell> listl

listl ==> [a, Db]

jshell> List<String> unmodlistl = Collections.unmodifiableList(listl);
unmodlistl ==> [a, Db]

jshell> unmodlistl.add("c")

| Exception java.lang.UnsupportedOperationException

| at Collections$UnmodifiableCollection.add (Collections.java:1058)
| at (#8:1)

Note that unmodlistl is a view of 1ist1. You cannot change the view directly, but you can
change the original list, which changes the view. If you change the original 1ist1, no erroris
generated, and the unmodlistl list has been modified.

jshell> listl.add("c")
$19 ==> true

jshell> 1listl

listl ==> [a, b, c]

jshell> unmodlistl
unmodlistl ==> [a, b, c]

The reason for an unmodifiable view is that the collection cannot be modified by calling
methods on the view. However, anyone with a reference to the underlying collection, and the
ability to modify it, can cause the unmodifiable view to change.

Space Efficiency

The collections returned by the convenience factory methods are more space efficient than
their modifiable equivalents.

ORACLE -

Chapter 5
Creating Unmodifiable Lists, Sets, and Maps

All of the implementations of these collections are private classes hidden behind a static
factory method. When it is called, the static factory method chooses the implementation class
based on the size of the collection. The data may be stored in a compact field-based or array-
based layout.

Let's look at the heap space consumed by two alternative implementations. First, here’s an
unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); // 3 buckets
set.add("silly");

set.add("string");

set = Collections.unmodifiableSet (set);

The set includes six objects: the unmodifiable wrapper; the HashSet, which contains a
HashMap; the table of buckets (an array); and two Node instances (one for each element). On
a typical VM, with a 12—byte header per object, the total overhead comes to 96 bytes + 28 * 2
=152 bytes for the set. This is a large amount of overhead compared to the amount of data
stored. Plus, access to the data unavoidably requires multiple method calls and pointer
dereferences.

Instead, we can implement the set using Set.of:

Set<String> set = Set.of("silly", "string");

Because this is a field-based implementation, the set contains one object and two fields. The
overhead is 20 bytes. The new collections consume less heap space, both in terms of fixed
overhead and on a per-element basis.

Not needing to support mutation also contributes to space savings. In addition, the locality of
reference is improved, because there are fewer objects required to hold the data.

Thread Safety

ORACLE

If multiple threads share a modifiable data structure, steps must be taken to ensure that
modifications made by one thread do not cause unexpected side effects for other threads.
However, because an immutable object cannot be changed, it is considered thread safe
without requiring any additional effort.

When several parts of a program share data structures, a modification to a structure made by
one part of the program is visible to the other parts. If the other parts of the program aren't
prepared for changes to the data, then bugs, crashes, or other unexpected behavior could
occur. However, if different parts of a program share an immutable data structure, such
unexpected behavior can never happen, because the shared structure cannot be changed.

Similarly, when multiple threads share a data structure, each thread must take precautions
when modifying that data structure. Typically, threads must hold a lock while reading from or
writing to any shared data structure. Failing to lock properly can lead to race conditions or
inconsistencies in the data structure, which can result in bugs, crashes, or other unexpected
behavior. However, if multiple threads share an immutable data structure, these problems
cannot occur, even in the absence of locking. Therefore, an immutable data structure is said to
be thread safe without requiring any additional effort such as adding locking code.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
However, an unmodifiable collection is only immutable if the elements contained in the
collection are immutable. To be considered thread safe, collections created using the static
factory methods and toUnmodifiable- collectors must contain only immutable elements.

5-9

Chapter 5
Creating Sequenced Collections, Sets, and Maps

Creating Sequenced Collections, Sets, and Maps

Three interfaces introduced in JDK 21 represent collections with a defined encounter order.
Each collection has a well-defined first element, second element, and so forth, up to the last
element. They provide uniform APIs for accessing their first and last elements, and processing
their elements in forward and reverse order.

Prior to JDK 21, the Java Collections Framework lacked a collection type that represented a
sequence of elements with a defined encounter order. For example, List and Deque defined
an encounter order but their common supertype, Collection, did not. Similarly, Set and
subtypes such as HashSet do not define an encounter order, while subtypes such as
SortedSet and LinkedHashSet do. Given the lack of a collection type with a defined
encounter order, there is no uniform set of operations that respect encounter order. While there
are operations that respect encounter order, they're not uniform.

An example of where a common order-significant operation is missing in the Collections
Framework is to get the first element of a Deque and of a List. To get the first element of a
Deque, you use the getFirst () method. However, to get the first element of a List, you use
get (0).

Support for encounter order was spread across the type hierarchy, making it difficult to express
certain useful concepts in APIs. Neither Collection nor List could describe a parameter or
return value that had an encounter order. Collection was too general, relegating such
constraints to the specification, and possibly leading to hard-to-debug errors. If an APl wanted
to receive a collection with a defined encounter order, then using List was too specific,
because it excluded SortedSet and LinkedHashSet. A related problem was that view
collections were often forced to downgrade to weaker semantics. For example, wrapping a
LinkedHashSet with Collections::unmodifiableSet yields a Set that discards the
information about encounter order.

Without interfaces to define them, operations related to encounter order were either
inconsistent or missing. Many implementations support getting the first or last element, but
each collection defines its own approach, and some are not obvious or are missing entirely.

Retrofitting the Collections Framework with Sequenced Interfaces

Beginning with JDK 21, JEP 431 introduces three Java Collections Framework interfaces for
creating sequenced collections, sequenced sets, and sequenced maps:

* SequencedCollection
* SequencedSet

* SequencedMap

These three interfaces provide the Java Collections Framework with a collection type that
represents a sequence of elements with a defined encounter order and with a uniform set of
operations applied across the collections. The interfaces fit into the collections type hierarchy
as shown in the following diagram.

ORACLE =10

https://openjdk.org/jeps/431

ORACLE

Chapter 5
Creating Sequenced Collections, Sets, and Maps

Figure 5-1 Collections Framework with Sequenced Interfaces

Collection Map
|
Set ‘ SequencedCollection Queue ‘ SequencedMap
| |
Sorte(IiSet SortedMap
NavigableSet «Imﬁll(igﬁggﬂtsi(;?» List Deque NavigableMap <<|I_?:1')k]:c'jT4ea'1stt?|E/ilgg>>

The diagram shows the following adjustments that integrated the SequencedCollection,
SequencedSet, and SequencedMap interfaces into the Java Collections Framework
hierarchy of classes and interfaces:

e List has SequencedCollection as its immediate superinterface.
* Deque has SsequencedCollection as its immediate superinterface.
°* LinkedHashSet implements SequencedSet.

° SortedSet has SequencedsSet as its immediate superinterface.

e LinkedHashMap implements SequencedMap.

e SortedMap has SequencedMap as its immediate superinterface.

e Covariant overrides for the reversed () method are defined in the appropriate places. For
example, List::reversed is overridden to return a value of type List rather than a value
of type SequencedCollection

* Methods added to the Collections utility class create unmodifiable wrappers for three
new types:

— Collections.unmodifiableSequencedCollection (sequencedCollection)
— Collections.unmodifiableSequencedSet (sequencedSet)

— Collections.unmodifiableSequencedMap (sequencedMap)

See JEP 431 for background information about the interfaces for sequenced collections,
sequenced sets, and sequenced maps.

Topics
e SequencedCollection

e SequencedSet

e SequencedMap

5-11

https://openjdk.org/jeps/431

Chapter 5
Creating Sequenced Collections, Sets, and Maps

SequencedCollection

A SequencedCollection is a collection type added in JDK 21 that represents a sequence of
elements with a defined encounter order.

ORACLE

A SequencedCollection has first and last elements with the elements between them
having successors and predecessors. A SequencedCollection supports common
operations at either end, and it supports processing the elements from first to last and from last
to first (such as, forward and reverse).

interface SequencedCollection<E> extends Collection<E> ({

SequencedCollection<E> reversed();
// methods promoted from Deque
void addFirst(E);

void addLast (E);

E getFirst();

E getlLast();

E removeFirst();

E removelast();

The reversed () method provides a reverse-ordered view of the original collection. Any
modifications to the original collection are visible in the view.

The encounter order of elements in the returned view is the inverse of the encounter order of
elements in this collection. The reverse ordering affects all order-sensitive operations, including
those on the view collections of the returned view.

Changes to the underlying collection might or might not be visible in the reversed view,
depending upon the implementation. If permitted, modifications to the view "write through" to
the original collection. The reverse-ordered view enables all the different sequenced types to
process elements in both directions, using all the usual iteration mechanisms:

Enhanced for loops
Explicit iterator () loops
forEach ()

stream()
parallelStream()

toArray ()

For example, obtaining a reverse-ordered stream from a LinkedHashSet was previously quite
difficult; now it is simply:

linkedHashSet.reversed () .stream()

< Note:

The reversed () method is essentially a renamed NavigableSet: :descendingSet,
promoted to SequencedCollection.

5-12

Chapter 5
Creating Sequenced Collections, Sets, and Maps

The following methods of SequencedCollection are promoted from Deque. They support
adding, getting, and removing elements at both ends:

e void addFirst (E)
e void addLast (E)
e E getFirst()

e E getlast()

e E removeFirst()
e E removelast()

The add* (E) and remove* () methods are optional, primarily to support the case of
unmodifiable collections. The get* () and remove* () methods throw a
NoSuchElementException if the collection is empty. There are no definitions of equals ()
and hashCode () in SequencedCollection because its subinterfaces have conflicting
definitions.

SequencedSet

ORACLE

A SequencedSet is both a SequencedCollection and a Set.

A SequencedSet can be thought of either as a Set that also has a well-defined encounter
order, or as a SequencedCollection that also has unique elements.

interface SequencedSet<E> extends Set<E>, SequencedCollection<E> {
SequencedSet<E> reversed() ; // covariant override

}

This interface has the same requirements on the equals and hashCode methods as defined by
Set.equals and Set.hashCode. A Set and a SequencedSet compare equals if and only if
they have equal elements, irrespective of ordering.

SequencedSet defines the reversed () method, which provides a reverse-ordered view of this
set. The only difference from the SequencedCollection.reversed method is that the return
type of SequencedSet.reversed iS SequencedSet.

In SequencedSet, the add* (E) methods of the SequencedCollection perform the
following:

e addFirst (E) - Adds an element as the first element of the collection.

e addLast (E) - Adds an element as the last element of the collection.

The add* (E) methods of the SequencedCollection also have the following special-case
behaviors for LinkedHashSet and SortedSet.

Special-case behaviors for LinkedHashSet:

e The addFirst (E) and addLast (E) methods have special-case semantics for collections
such as LinkedHashSet. LinkedHashSet repositions the entry if it is already present in
the set. If the element is already present in the set then it is moved to the appropriate
position. This remedies a long-standing deficiency in LinkedHashSet, namely the
inability to reposition elements.

Special-case behaviors for SortedsSet:

5-13

Chapter 5
Creating Sequenced Collections, Sets, and Maps

e Collections such as sortedsSet, which position elements by relative comparison, cannot
support explicit-positioning operations such as the addrirst (E) and addLast (E) methods
declared in the SequencedCollection superinterface. These methods throw an
UnsupportedOperationException.

SequencedMap

ORACLE

A SequencedMap provides methods to add mappings, to retrieve mappings, and to remove
mappings at either end of the map's encounter order. This interface also defines the
reversed () method, which provides a reverse-ordered view of this map.

A SequencedMap has a well-defined encounter order that supports operations at both ends
and is reversible. A map's reverse-ordered view is generally not serializable, even if the original
map is serializable. The encounter order of a SequencedMap is similar to that of the elements
of a SequencedCollection, but the ordering applies to mappings instead of individual
elements:

interface SequencedMap<K,V> extends Map<K,V> {
SequencedMap<K,V> reversed();
SequencedSet<K> sequencedKeySet () ;
SequencedCollection<V> sequencedValues () ;
SequencedSet<Entry<X¥,V>> sequencedEntrySet () ;
V putFirst (K, V);
V putlast (K, V);
// methods promoted from NavigableMap
Entry<K, V> firstEntry();
Entry<K, V> lastEntry();
Entry<K, V> pollFirstEntry();
Entry<K, V> pollLastEntry();

The sequencedKeySet (), sequencedValues (), and sequencedEntrySet () methods
are exactly analogous to the keySet (), values (), and entrySet () methods of Map
interface. All of these methods return views of the underlying collection; where modifications to
the view are visible in the underlying collection and vice versa. The encounter order of these
views exactly corresponds to the encounter order of the underlying map.

The difference between the SequencedMap interface methods and the methods of Map is that
the sequenced* () methods have a sequenced return type:

* In SequencedSet<K> sequencedKeySet (), the implemention returns a SequencedSet view
of the map's keySet and behaves as follows:

add and addA11 methods throw UnsupportedOperationException.

— reversed method returns the sequencedkeySet view of the reversed view of the map.

Its other methods call the corresponding methods of the keySet view of the map.

* In SequencedCollection<V> sequencedValues (), the implemention returns a
SequencedCollection view of the map's values collection and behaves as follows:

— add and adda11 methods throw UnsupportedOperationException.

— reversed method returns the sequencedvalues view of the reversed view of the map.

5-14

Chapter 5
Creating Sequenced Collections, Sets, and Maps

— equals and hashCode methods are inherited from Ob-ject.
— Its other methods call the corresponding methods of the values view of the map.

e In SequencedSet<Entry<K,V>> sequencedEntrySet (), the implemention returns a
SequencedSet view of the map's entrySetand behaves as follows:

— add and addal1 methods throw UnsupportedOperationException.

— reversed method returns the sequencedEntrySet view of the reversed view of the
map.

— Its other methods call the corresponding methods of the entrySet view of the map.

The put* (K, V) methods have special-case semantics, similar to the corresponding add* (E)
methods of SequencedsSet:

* For maps such as LinkedHashMap, they have the additional effect of repositioning the
entry if it is already present in the map.

e For maps such as sortedMap, these methods throw UnsupportedOperationException.

The following methods of SequencedMap are promoted from NavigableMap. They support
getting and removing entries at both ends:

e Entry<K, V> firstEntry()
. Entry<K, V> lastEntry()
. Entry<K, V> pollFirstEntry()

° Entry<K, V> pollLastEntry()

The methods firstEntry(), lastEntry(), pollFirstEntry(), and pollLastEntry() return
Map.Entry instances that represent snapshots of mappings as of the time of the call. They do
not support mutation of the underlying map via the optional setvalue method.

Demonstrating ArrayList and LinkedHashMap Reversed Views

Several scenarios are provided of using the sequenced interfaces in the Collections
Framework.

Topics
e Demonstrating a Reverse-Ordered View of a Collection
e Demonstrating Composition of LinkedHashMap Views

e Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map

Demonstrating a Reverse-Ordered View of a Collection

ORACLE

The following example demonstrates how the reversed () method of the sequenced interfaces
produces a reverse-ordered view of a collection, how modifications to a reversed view affect
the original collection, and how modifications to the original collection are visible in the
reversed view.

The reversed view is "live" and not a snapshot of a collection. This characteristic is illustrated
in the following examples by using an ArrayList and its reversed view.

5-15

Chapter 5
Creating Sequenced Collections, Sets, and Maps

Note:
Unessential jshell output is not included in the following example code.
Start a jshell session and use the ArrayList class to create a list of String objects.

jshell> var list = new ArrayList<>(Arrays.asList("a",
list ==> [a, b, ¢, d, e]

"b", "C", "d", "e"))

Next, use the reversed () method to produce a reverse-ordered view of the collection.

jshell> var rev = list.reversed()
rev ==> [e, d, c, b, al

When you modify the reversed view, it affects the original collection. Add f as an entry to the
reverse-ordered view and then verify that it is added to the original collection.

jshell> rev.add(l,
jshell> rev
rev ==> [e, f, d, ¢, b, al
jshell> list
list ==> [a, b, c,

llf")

d, £, e]

When you modify the original collection, your modifications are visible in the reversed view. Set
the element at index 2 to X, verify it is added to the collection, and then produce a reverse-
ordered view of the modified collection.

jshell> list.set (2,
jshell> list

"X")

list ==> [a, b, X, d, f, e]
jshell> rev
rev ==> [e, f, d, X, b, a]

Demonstrating Composition of LinkedHashMap Views

ORACLE

In addition to using ArrayList, a reversed () view can also be composed of other views such
as List.subList () .reversed() Or SequencedMap.sequencedKeySet () .reversed() and
SequencedMap.reversed () .sequencedKeySet ().

The SequencedMap.sequencedKeySet () .reversed () and
SequencedMap.reversed () . sequencedKeySet () views are functionally equivalent and are
illustrated by using the LinkedHashMap class in the following example code.

Start a jshell session and use the LinkedHashMap class to create a map of String objects.

jshell> var map = new LinkedHashMap<String, Integer>()

jshell> map.put("a", 1)
jshell> map.put ("b", 2)
jshell> map.put("c", 3)
jshell> map.put("d", 4)

5-16

Chapter 5
Creating Sequenced Collections, Sets, and Maps

jshell> map.put("e", 5)
map ==> {a=1, b=2, c=3, d=4, e=b}

Next, use the reversed () method to produce a reverse-ordered view of the keySet view of the
original collection.

jshell> map.sequencedKeySet () .reversed()
$17 ==> [e, d, ¢, b, a]

Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map

ORACLE

This demonstration illustrates the final statement in the SequencedMap section that
firstEntry(), lastEntry(), pollFirstEntry(), and pollLastEntry () methods do not
support mutation of the underlying map through use of the optional setvalue method.

Attempting to change an entry in the underlying map by using setvalue () with these methods
will throw an UnsupportedOperationException. This is in contrast to changing a map entry
obtained by iterating the entrySet. If you call seqmap.entrySet () .iterator () .next () to
return a map entry and then call setvalue () on the entry, it will modify the original map.

Open a jshell session and use the map produced in Demonstrating Composition of
LinkedHashMap Views.

Call map.entrySet () .iterator () .next () to return the first map entry.

jshell> var entry = map.entrySet().iterator().next()
entry ==> a=1

Use setValue () to change the value of the map entry to 77. The entry was obtained by
iterating the entrySet so it can be modified in the original map. Verify that the value in map
changed to 77.

jshell> entry.setValue(77)

$19 ==> 1

jshell> map

map ==> {a=77, b=2, c=3, d=4, e=5}

Note:

The ability to call setvalue () on the entry returned by the iterator is not a new
behavior introduced in JDK 21.

Use setValue () to try and change the map entry to 999. Because the map entry was not
obtained by iterating with entrySet, it throws an UnsupportedOperationException.

jshell> entry = map.firstEntry()

entry ==> a=77

jshell> entry.setValue(999)
| Exception java.lang.UnsupportedOperationException: not supported
| at NullableKeyValueHolder.setValue (NullableKeyValueHolder.java:126)
| at (#22:1)

5-17

Process API

The Process API lets you start, retrieve information about, and manage native operating
system processes.

With this API, you can work with operating system processes as follows:

* Run arbitrary commands:
— Filter running processes
— Redirect output

— Connect heterogeneous commands and shells by scheduling tasks to start when
another ends

— Clean up leftover processes
e Test the running of commands:
— Run a series of tests
— Log output
* Monitor commands:
— Monitor long-running processes and restart them if they terminate

— Collect usage statistics

Topics

* Process API Classes and Interfaces

e Creating a Process

e Getting Information About a Process

* Redirecting Output from a Process

» Filtering Processes with Streams

* Handling Processes When They Terminate with the onExit Method

e Controlling Access to Sensitive Process Information

Process API Classes and Interfaces

ORACLE

The Process API consists of the classes and interfaces ProcessBuilder, Process,
ProcessHandle, and ProcessHandle.Info.

Topics

e ProcessBuilder Class

e Process Class

e ProcessHandle Interface

e ProcessHandle.Info Interface

6-1

ProcessBuilder Class

The ProcessBuilder class lets you create and start operating system processes.

Chapter 6
Process API Classes and Interfaces

See Creating a Process for examples on how to create and start a process. The
ProcessBuilder class manages various process attributes, which the following table

summarizes:

Table 6-1 ProcessBuilder Class Attributes and Related Methods
]

Process Attribute

Description

Related Methods

Command

Environment

Working directory

Standard input source

Standard output and standard
error destinations

redirectErrorStream
property

Strings that specify the external
program file to call and its
arguments, if any.

The environment variables (and
their values). This is initially a
copy of the system environment
of the current process (see the
System.getEnv () method).

By default, the current working
directory of the current process.

By default, a process reads
standard input from a pipe;
access this through the output
stream returned by the
Process.getOutputStrea
m method.

By default, a process writes
standard output and standard
error to pipes; access these
through the input streams
returned by the
Process.getInputStream
and
Process.getErrorStream
methods. See Redirecting Output
from a Process for an example.

Specifies whether to send
standard output and error output
as two separate streams (with a
value of false) or merge any error
output with standard output (with
a value of true).

. ProcessBuilder
constructor

. command (String...
command)

J environment ()

e directory()
° directory(File
directory)

* redirectInput
(ProcessBuilder.Red
irect source)

e redirectOutput (Proc
essBuilder.Redirect
destination)

. redirectError (Proce
ssBuilder.Redirect
destination)

e redirectErrorStream
()

. redirectErrorStream
(boolean
redirectErrorStream

)

Process Class

The methods in the Process class let you to control processes started by the methods
ProcessBuilder.start and Runtime.exec. The following table summarizes these

ORACLE

methods:

The following table summarizes the methods of the Process class.

6-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#%3Cinit%3E(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#environment()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html

Chapter 6
Process API Classes and Interfaces

Table 6-2 Process Class Methods

Method Type Related Methods
Wait for the process to complete. . waitfor ()
. waitFor (long timeout, TimeUnit
unit)
Retrieve information about the process. e isAlive()
¢ pid()
e info()

. exitValue ()

Retrieve input, output, and error streams. See . getInputStream()
Handling Processes When They Terminate with the

. getOutputStream()
onExit Method for an example.

. getErrorStream()
Retrieve direct and indirect child processes. . children ()
. descendants ()
Destroy or terminate the process. e destroy ()
. destroyForcibly ()
. supportsNormalTermination ()
Return a CompletableFuture instance that e onExit ()
will be completed when the process exits. See

Handling Processes When They Terminate with the
onExit Method for an example.

ProcessHandle Interface

ORACLE

The ProcessHandle interface lets you identify and control native processes. The Process
class is different from ProcessHandle because it lets you control processes started only by
the methods ProcessBuilder.start and Runtime.exec; however, the Process class
lets you access process input, output, and error streams.

See Filtering Processes with Streams for an example of the ProcessHandle interface. The
following table summarizes the methods of this interface:

Table 6-3 ProcessHandle Interface Methods

Method Type Related Methods
Retrieve all operating system processes. e allProcesses|()
Retrieve process handle. . current ()

. of (long pid)
. parent ()

Retrieve information about the process. . isAlive ()

© pid()

. info ()
Retrieve stream of direct and indirect child . children ()
processes. + descendants ()
Destroy process. * destroy()

e destroyForcibly ()

6-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#exitValue()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#supportsNormalTermination()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#allProcesses()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#current()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#of(long)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#parent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroyForcibly()

Chapter 6
Creating a Process

Table 6-3 (Cont.) ProcessHandle Interface Methods

___|
Method Type Related Methods

Return a CompletableFuture instance that e onExit()
will be completed when the process exits. See

Handling Processes When They Terminate with the

onExit Method for an example.

ProcessHandle.Info Interface

The ProcessHandle. Info interface lets you retrieve information about a process, including
processes created by the ProcessBuilder.start method and native processes.

See Getting Information About a Process for an example of the ProcessHandle.Info
interface. The following table summarizes the methods in this interface:

Table 6-4 ProcessHandle.Info Interface Methods

Method Description

arguments () Returns the arguments of the process as a
String array.

command () Returns the executable path name of the process.

commandLine () Returns the command line of the process.

startInstant () Returns the start time of the process.

totalCpuDuration () Returns the process's total accumulated CPU time.

user () Returns the user of the process.

Creating a Process

To create a process, first specify the attributes of the process, such as the command's name
and its arguments, with the ProcessBuilder class. Then, start the process with the
ProcessBuilder.start method, which returns a Process instance.

The following lines create and start a process:

ProcessBuilder pb = new ProcessBuilder ("echo", "Hello World!");
Process p = pb.start();

In the following excerpt, the setEnvTest method sets two environment variables, horse and
doc, then prints the value of these environment variables (as well as the system environment
variable HOME) with the echo command:

public static void setEnvTest() throws IOException, InterruptedException {

ProcessBuilder pb =
new ProcessBuilder ("/bin/sh", "-c",
"echo Shorse $dog SHOME") .inheritIO();

pb.environment () .put ("horse", "oats");
pb.environment () .put ("dog", "treats");
pb.start () .waitFor();

}

ORACLE 6.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#arguments()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#command()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#commandLine()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#startInstant()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#totalCpuDuration()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#user()

Chapter 6
Getting Information About a Process

This method prints the following (assuming that your home directory is /home/admin):

oats treats /home/admin

Getting Information About a Process

The method Process.pid returns the native process ID of the process. The method
Process.info returns a ProcessHandle. Info instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method getInfoTest starts a process and then prints information
about it:

public static void getInfoTest () throws IOException {
ProcessBuilder pb = new ProcessBuilder ("echo", "Hello World!");
String na = "<not available>";
Process p = pb.start();
ProcessHandle.Info info = p.info(
System.out.printf ("Process ID: %s%n", p.pid());
System.out.printf ("Command name: %s%n", info.command().orElse(na));
System.out.printf ("Command line: %
info.commandLine () .orElse(na));

System.out.printf ("Start time: %s%n",
info.startInstant () .map((Instant i) -> 1
.atZone (Zoneld.systemDefault ()) .toLocalDateTime () .toString())
.orElse(na));

System.out.printf ("Arguments: %s%n",
info.arguments () .map (
(String[] a) -> Stream.of(a).collect(Collectors.joining("™ ")))
.orElse(na));

System.out.printf ("User: %s%n", info.user().orElse(na));

This method prints output similar to the following:

Process ID: 18761

Command name: /usr/bin/echo
Command line: echo Hello World!
Start time: 2017-05-30T18:52:15.577
Arguments: <not available>

User: administrator

ORACLE g

Chapter 6
Redirecting Output from a Process

Note:

e The attributes of a process vary by operating system and are not available in all
implementations. In addition, information about processes is limited by the
operating system privileges of the process making the request.

e All the methods in the interface ProcessHandle. Info return instances of
Optional<T>; always check if the returned value is empty.

Redirecting Output from a Process

By default, a process writes standard output and standard error to pipes. In your application,
you can access these pipes through the input streams returned by the methods
Process.getOutputStream and Process.getErrorStream. However, before starting
the process, you can redirect standard output and standard error to other destinations, such as
a file, with the methods redirectOutput and redirectError.

In the following excerpt, the method redirectToFileTest redirects standard input to a file,
out. tmp, then prints this file:

public static void redirectToFileTest () throws IOException,
InterruptedException {

File outFile = new File("out.tmp");

Process p = new ProcessBuilder("1ls", "-1la")
.redirectOutput (outFile)
.redirectError (Redirect.INHERIT)
.start();

int status = p.waitFor();

if (status == 0) {

p = new ProcessBuilder("cat" , outFile.toString())
.inheritIO()
.start();

p.waitFor();

}

The excerpt redirects standard output to the file out . tmp. It redirects standard error to the
standard error of the invoking process; the value Redirect . INHERIT specifies that the
subprocess /O source or destination is the same as that of the current process. The call to the
inheritIO () method is equivalent to

redirectInput (Redirect.INHERIT) .redirectOuput (Redirect.INHERIT) .redire
ctError (Redirect.INHERIT).

Filtering Processes with Streams

ORACLE

The method ProcessHandle.allProcesses returns a stream of all processes visible to the
current process. You can filter the ProcessHandle instances of this stream the same way
that you filter elements from a collection.

6-6

Chapter 6
Handling Processes When They Terminate with the onExit Method

In the following excerpt, the method filterProcessesTest prints information about all the
processes owned by the current user, sorted by the process ID of their parent's process:

public class ProcessTest {
/] ...

public static void main(String[] args) {
ProcessTest.filterProcessesTest () ;

static void filterProcessesTest () {
Optional<String> currUser = ProcessHandle.current().info().user();
ProcessHandle.allProcesses ()
.filter(pl -> pl.info() .user () .equals(currUser))
.sorted (ProcessTest: :parentComparator)
.forEach (ProcessTest: :showProcess) ;

static int parentComparator (ProcessHandle pl, ProcessHandle p2) {
long pidl = pl.parent().map(ph -> ph.pid()).orElse(-1L);
long pid2 = p2.parent().map(ph -> ph.pid()).orElse(-1L);
return Long.compare (pidl, pid2);

}

static void showProcess (ProcessHandle ph) {
ProcessHandle.Info info = ph.info();
System.out.printf ("pid: %d, user: %s, cmd: %s%n",
ph.pid(), info.user().orElse("none"), info.command().orElse("none"));

/7

Note that the al1Processes method is limited by native operating system access controls.
Also, because all processes are created and terminated asynchronously, there is no guarantee
that a process in the stream is alive or that no other processes may have been created since
the call to the allProcesses method.

Handling Processes When They Terminate with the onExit

Method

ORACLE

The Process.onExit and ProcessHandle.onExit methods return a
CompletableFuture instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate, then
you can call onExit () .get ().

In the following excerpt, the method startProcessesTest creates three processes and then
starts them. Afterward, it calls onExit () . thenAccept (onExitMethod) on each of the
processes; onExitMethod prints the process ID (PID), exit status, and output of the process.

public class ProcessTest {

6-7

Chapter 6
Handling Processes When They Terminate with the onExit Method

//

static public void startProcessesTest () throws IOException,
InterruptedException {
List<ProcessBuilder> greps = new ArrayList<>();
greps.add(new ProcessBuilder ("/bin/sh", "-c", "grep -c \"java\" *"));
greps.add (new ProcessBuilder ("/bin/sh", "-c", "grep -c \"Process\" *"));
greps.add (new ProcessBuilder ("/bin/sh", "-c", "grep -c \"onExit\" *"));
ProcessTest.startSeveralProcesses (greps,
ProcessTest: :printGrepResults);
System.out.println("\nPress enter to continue ...\n");
System.in.read();

}

static void startSeveralProcesses (
List<ProcessBuilder> pBList,
Consumer<Process> onkExitMethod)
throws InterruptedException {

System.out.println ("Number of processes: " + pBList.size());
pBList.stream() .forEach(
pb —> {
try {

Process p = pb.start();
System.out.printf ("Start %d, %s%n",
p.pid(), p.info().commandLine () .orElse("<na>"));
p.onExit () .thenAccept (onExitMethod) ;
} catch (IOException e) {
System.err.println("Exception caught");
e.printStackTrace();

static void printGrepResults (Process p) {
System.out.printf ("Exit %d, status %d%n%s%n%n",
p.pid(), p.exitValue(), output(p.getInputStream()));

private static String output (InputStream inputStream) {

String s = "";
try (BufferedReader br = new BufferedReader (new
InputStreamReader (inputStream))) {
S:

br.lines().collect (Collectors.joining(System.getProperty("line.separator")));
} catch (IOException e) {
System.err.println("Caught IOException");
e.printStackTrace();
}

return s;

//

ORACLE 68

ORACLE

The output of the method startProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Number of processes: 3

Start 12401,
Start 12403,
Start 12404,

Press enter

Exit 12401,

ProcessTest.
.java:16

ProcessTest

Exit 12404,

ProcessTest.
.java:8

ProcessTest

Exit 12403,

ProcessTest.
ProcessTest.

/bin/sh -c
/bin/sh -c
/bin/sh -c

Chapter 6

Handling Processes When They Terminate with the onExit Method

grep -c "java" *

grep
grep

to continue ...

status 0
class:0

status 0
class:0

status 0
class:0
java:38

-C
-C

"Process" *
"onExit" *

This method calls the System.in.read () method to prevent the program from terminating
before all the processes have exited (and have run the method specified by the thenAccept

method).

If you want to wait for a process to terminate before proceeding with the rest of the program,
then call onExit () .get():

static void startSeveralProcesses (

List<ProcessBuilder> pBList, Consumer<Process> onExitMethod)

throws InterruptedException {

System.out.println ("Number of processes: " + pBList.size());

pBList.stream() .forEach (

pb ->
try

{
{

Process p = pb.start();

System.out.printf ("Start %d, %s%n",
p.pid(), p.info() .commandLine () .orElse("<na>"));

p.onExit() .get();
printGrepResults (p) ;

} catch (IOException|InterruptedException|ExecutionException e)
System.err.println ("Exception caught");

e.printStackTrace();

The ComputableFuture class contains a variety of methods that you can call to schedule tasks
when a process exits including the following:

* thenApply: Similar to thenAccept, except that it takes a lambda expression of type
Function (alambda expression that returns a value).

6-9

Chapter 6
Controlling Access to Sensitive Process Information

* thenRun: Takes a lambda expression of type Runnable (no formal parameters or return
value).

* thenApplyAsyc: Runs the specified Function with a thread from
ForkJoinPool.commonPool ().

Because ComputableFuture implements the Future interface, this class also contains
synchronous methods:

e get(long timeout, TimeUnit unit):Waits, if necessary, at most the time specified
by its arguments for the process to complete.

e isDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information

Process information may contain sensitive information such as user IDs, paths, and arguments
to commands. Control access to process information with a security manager.

When running as a normal application, a ProcessHandle has the same operating system
privileges to information about other processes as a native application; however, information
about system processes may not be available.

If your application uses the SecurityManager class to implement a security policy, then to
enable it to access process information, the security policy must grant

RuntimePermission ("manageProcess"). This permission enables native process
termination and access to the process ProcessHandle information. Note that this permission
enables code to identify and terminate processes that it did not create.

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager. See
JEP 411 for discussion and alternatives.

ORACLE 510

https://openjdk.java.net/jeps/411

Preferences API

The Preferences API enables applications to manage preference and configuration data.

Applications require preference and configuration data to adapt to the needs of different users
and environments. The java.util.prefs package provides a way for applications to store
and retrieve user and system preference and configuration data. The data is stored persistently
in an implementation-dependent backing store. There are two separate trees of preference
nodes: one for user preferences and one for system preferences.

All of the methods that modify preference data are permitted to operate asynchronously. They
may return immediately, and changes will eventually propagate to the persistent backing store.
The f1ush method can be used to force changes to the backing store.

The methods in the Preferences class may be invoked concurrently by multiple threads in a
single JVM without the need for external synchronization, and the results will be equivalent to
some serial execution. If this class is used concurrently by multiple JVMs that store their
preference data in the same backing store, the data store will not be corrupted, but no other
guarantees are made concerning the consistency of the preference data.

Topics:

e Comparing the Preferences API to Other Mechanisms

 Usage Notes

e Design FAQ

Comparing the Preferences API to Other Mechanisms

ORACLE

Prior to the introduction of the Preferences API, developers could choose to manage
preference and configuration data in a dynamic fashion by using the Properties API or the Java
Naming and Directory Interface (JNDI) API.

Often, preference and configuration data was stored in properties files, accessed through the
java.util.Properties APIl. However, there are no standards as to where such files
should reside on disk, or what they should be called. Using this mechanism, it is extremely
difficult to back up a user's preference data, or transfer it from one machine to another.
Furthermore, as the number of applications increases, the possibility of file name conflicts
increases. Also, this mechanism is of no help on platforms that lack a local disk, or where it is
desirable that the data be stored in an external data store, such as an enterprise-wide LDAP
directory service.

Less frequently, developers stored user preference and configuration data in a directory
service accessed through the JNDI API. Unlike the Properties API, JNDI allows the use of
arbitrary data stores (back-end neutrality). While JNDI is extremely powerful, it is also rather
large, consisting of 5 packages and 83 classes. JNDI provides no policy as to where in the
directory name space the preference data should be stored, or in which name space.

Neither Properties nor JNDI provide a simple, ubiquitous, back-end neutral preferences
management facility. The Preferences API does provide such a facility, combining the simplicity
of Properties with the back-end neutrality of JNDI. It provides sufficient built-in policy to prevent

7-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html#flush()
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html

Chapter 7
Usage Notes

name clashes, foster consistency, and encourage robustness in the face of inaccessibility of
the backing data store.

Usage Notes

The information in this section is not part of the Preferences API specification. It is intended to
provide some examples of how the Preferences API might be used.

Topics:

* Obtain Preferences Obijects for an Enclosing Class

» Obtain Preferences Objects for a Static Method

e Atomic Updates

» Determine Backing Store Status

Obtain Preferences Objects for an Enclosing Class

The examples in this section show how you can obtain the system and user Preferences
objects pertaining to the enclosing class. These examples only work inside instance methods.

The following example obtains per-user preferences. Reasonable defaults are provided for
each of the preference values obtained. These defaults are returned if no preference value has
been set, or if the backing store is inaccessible.

Note that static final fields, rather than inline String literals, are used for the key names
(NuM_Rows and NUM_COLS). This reduces the likelihood of runtime bugs from typographical
errors in key names.

package com.greencorp.widget;
import Jjava.util.prefs.*;

public class Gadget ({
// Preference keys for this package
private static final String NUM ROWS = "num rows";
private static final String NUM COLS = "num cols";

void getPrefs() {
Preferences prefs = Preferences.userNodeForPackage (Gadget.class);

int numRows = prefs.getInt (NUM ROWS, 40);
int numCols = prefs.getInt (NUM COLS, 80);

The previous example obtains per-user preferences. If a single, per-system value is desired,
replace the first line in getPrefs with the following:

Preferences prefs = Preferences.systemNodeForPackage (Gadget.class);

ORACLE .

Chapter 7
Usage Notes

Obtain Preferences Objects for a Static Method

The examples in this section show how you can obtain the system and user Preferences
objects in a static method.

In a static method (or static initializer), you need to explicitly provide the name of the package:

static String ourNodeName = "/com/greencorp/widget";
static void getPrefs() {
Preferences prefs = Preferences.userRoot () .node (ourNodeName) ;

It is always acceptable to obtain a system preferences object once, in a static initializer, and
use it whenever system preferences are required:

static Preferences prefs = Preferences.systemRoot ().node (ourNodeName) ;

In general, it is acceptable to do the same thing for a user preferences object, but not if the
code in question is to be used in a server, wherein multiple users are running concurrently or
serially. In such a system, userNodeForPackage and userRoot return the appropriate node for
the calling user, thus it's critical that calls to userNodeForPackage Or userRoot be made from
the appropriate thread at the appropriate time. If a piece of code may eventually be used in
such a server environment, it is a good, conservative practice to obtain user preferences
objects immediately before they are used, as in the prior example.

Atomic Updates

The Preferences APl does not provide database-like "transactions” wherein multiple
preferences are modified atomically. Occasionally, it is necessary to modify two or more
preferences as a unit.

For example, suppose you are storing the x and y coordinates where a window is to be placed.
The only way to achieve atomicity is to store both values in a single preference. Many
encodings are possible. Here's a simple one:

int x, y;

prefs.put (POSITION, x + "," + y);

When such a "compound preference" is read, it must be decoded. For robustness, allowances
should be made for a corrupt (unparseable) value:

static int X DEFAULT = 50, Y DEFAULT = 25;
void parsePrefs() {
String position = prefs.get (POSITION, X DEFAULT + "," + Y DEFAULT);
int x, y;
try {
int i = position.indexOf(',");
x = Integer.parselnt (coordinates.substring (0, 1i));
y = Integer.parselnt (position.substring(i + 1));
} catch(Exception e) {

ORACLE .

Chapter 7
Design FAQ

// Value was corrupt, just use defaults
x = X DEFAULT;
y = Y DEFAULT;

Determine Backing Store Status

Typical application code has no need to know whether the backing store is available. It should
almost always be available, but if it isn't, the code should continue to execute using default
values in place of preference values from the backing store.

Very rarely, some advanced program might want to vary its behavior, or simply refuse to run, if
the backing store is unavailable. Following is a method that determines whether the backing
store is available by attempting to modify a preference value and flush the result to the backing
store.

private static final String BACKING STORE AVAIL = "BackingStoreAvail";

private static boolean backingStoreAvailable() {

Preferences prefs = Preferences.userRoot () .node ("<temporary>");

try {
boolean oldValue = prefs.getBoolean (BACKING STORE AVAIL, false);
prefs.putBoolean (BACKING STORE AVAIL, !oldvalue);
prefs.flush();

} catch(BackingStoreException e) {
return false;

}

return true;

Design FAQ

ORACLE

This section provides answers to frequently asked questions about the design of the
Preferences API.

Topics:

e How does this Preferences API relate to the Properties API?

* How does the Preferences API relate to JNDI?

e Why do all of the get methods require the caller to pass in a default?

e How was it decided which methods should throw BackingStoreException?

e Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction”, with all or nothing semantics?

e Why does this APl have case-sensitive keys and node-names, while other APIs playing in
a similar space (such as the Microsoft Windows Registry and LDAP) do not?

* Why doesn't this API use the Java 2 Collections Framework?

e Why don't the put and remove methods return the old values?

7-4

ORACLE

Chapter 7
Design FAQ

* Why does the API permit, but not require, stored defaults?
* Why doesn't this API contain methods to read and write arbitrary serializable objects?
* Why is Preferences an abstract class rather than an interface?

* Where is the default backing store?

How does this Preferences API relate to the Properties API?

It is intended to replace most common uses of Properties, rectifying many of its deficiencies,
while retaining its light weight. When using Properties, the programmer must explicitly specify a
path name for each properties file, but there is no standard location or naming convention.
Properties files are "brittle”, as they are hand-editable but easily corrupted by careless editing.
Support for non-string data types in properties is non-existent. Properties cannot easily be
used with a persistence mechanism other than the file system. In sum, the Properties facility
does not scale.

How does the Preferences API relate to JNDI?

Like JNDI, it provides back-end neutral access to persistent key-value data. JNDI, however, is
far more powerful, and correspondingly heavyweight. JNDI is appropriate for enterprise
applications that need its power. The Preferences API is intended as a simple, ubiquitous,
back-end neutral preferences-management facility, enabling any Java application to easily
tailor its behavior to user preferences and maintain small amounts of state from run to run.

Why do all of the get methods require the caller to pass in a default?

This forces the application authors to provide reasonable default values, so that applications
have a reasonable chance of running even if the repository is unavailable.

How was it decided which methods should throw BackingStoreException?

Only methods whose semantics absolutely require the ability to communicate with the backing
store throw this exception. Typical applications will have no need to call these methods. As
long as these methods are avoided, applications will be able to run even if the backing store is
unavailable, which was an explicit design goal.

Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction”, with all or nothing semantics?

While the API does provide rudimentary persistent data storage, it is not intended as a
substitute for a database. It is critical that it be possible to implement this API atop standard
preference/configuration repositories, most of which do not provide database-like guarantees
and functionality. Such repositories have proven adequate for the purposes for which this API
is intended.

Why does this APl have case-sensitive keys and node-names, while other APIs playing
in a similar space (such as the Microsoft Windows Registry and LDAP) do not?

In the Java programming universe, case-sensitive String keys are ubiquitous. In particular, they
are provided by the Properties class, which this API is intended to replace. It is not uncommon
for people to use Properties in a fashion that demands case-sensitivity. For example, Java
package names (which are case-sensitive) are sometimes used as keys. It is recognized that
this design decision complicates the life of the systems programmer who implements
Preferences atop a backing store with case-insensitive keys, but this is considered an
acceptable price to pay, as far more programmers will use the Preferences API than will
implement it.

7-5

Chapter 7
Design FAQ

Why doesn't this API use the Java 2 Collections Framework?

This API is designed for a very particular purpose, and is optimized for that purpose. In the
absence of generic types (see JSR-14), the API would be less convenient for typical users. It
would lack compile-time type safety, if forced to conform to the Map API. Also, it is not
anticipated that interoperability with other Map implementations will be required (though it
would be straightforward to implement an adapter class if this assumption turned out to be
wrong). The Preferences APl is, by design, so similar to Map that programmers familiar with
the latter should have no difficulties using the former.

Why don't the put and remove methods return the old values?

It is desirable that both of these methods be executable even if the backing store is
unavailable. This would not be possible if they were required to return the old value. Further, it
would have negative performance impact if the APl were implemented atop some common
back-end data stores.

Why does the API permit, but not require, stored defaults?

This functionality is required in enterprise settings for scalable, cost-effective administration of
preferences across the enterprise, but would be overkill in a self-administered single-user
setting.

Why doesn't this API contain methods to read and write arbitrary serializable objects?

Serialized objects are somewhat fragile: if the version of the program that reads such a
property differs from the version that wrote it, the object may not deserialize properly (or at all).
It is not impossible to store serialized objects using this API, but we do not encourage it, and
have not provided a convenience method.

Why is Preferences an abstract class rather than an interface?

It was decided that the ability to add new methods in an upward compatible fashion
outweighed the disadvantage that Preferences cannot be used as a "mixin". That is to say,
arbitrary classes cannot also be made to serve as Preferences objects. Also, this obviates the
need for a separate class for the static methods. Interfaces cannot contain static methods.

Where is the default backing store?

System and user preference data is stored persistently in an implementation-dependent

backing store. Typical implementations include flat files, OS-specific registries, directory

servers and SQL databases. For example, on Windows systems the data is stored in the
Windows registry.

On Linux systems, the system preferences are typically stored at java-

home/ .systemPrefs in a network installation, or /etc/.java/.systemPrefs in a local
installation. If both are present, /etc/.java/.systemPrefs takes precedence. The system
preferences location can be overridden by setting the system property
java.util.prefs.systemRoot. The user preferences are typically stored at user-

home/ .java/.userPrefs. The user preferences location can be overridden by setting the
system property java.util.prefs.userRoot.

ORACLE .

Java Logging Overview

The Java Logging APls, contained in the package java.util.logging, facilitate software
servicing and maintenance at customer sites by producing log reports suitable for analysis by
end users, system administrators, field service engineers, and software development teams.
The Logging APIs capture information such as security failures, configuration errors,
performance bottlenecks, and/or bugs in the application or platform.

The core package includes support for delivering plain text or XML-formatted log records to
memory, output streams, consoles, files, and sockets. In addition, the logging APIs are capable
of interacting with logging services that already exist on the host operating system.
Topics

* Overview of Control Flow

* Log Levels

e Loggers

* Logging Methods

* Handlers

* Formatters

e The LogManager

e Configuration File

* Default Configuration

* Dynamic Configuration Updates

* Native Methods

e« XMLDTD

e Unique Message IDs

e Security

* Configuration Management

» Packaging

* Localization

* Remote Access and Serialization

e Java Logging Examples

e Appendix A: DTD for XMLFormatter Output

Overview of Control Flow

Applications make logging calls on Logger objects. Logger objects are organized in a
hierarchical namespace and child Logger objects may inherit some logging properties from
their parents in the namespace.

ORACLE -

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

Chapter 8

These Logger objects allocate LogRecord objects which are passed to Handler objects for
publication. Both Logger and Handler objects may use logging Level objects and
(optionally) Filter objects to decide if they are interested in a particular LogRecord object.
When it is necessary to publish a LogRecord object externally, a Handler object can
(optionally) use a Formatter object to localize and format the message before publishing it to
an /O stream.

Figure 8-1 Java Logging Control Flow

Applicaton —— > Logger ———> Handler = —— > Outside World

Filter Filter Formatter

Each Logger object keeps track of a set of output Hand1ler objects. By default all Logger
objects also send their output to their parent Logger. But Logger objects may also be
configured to ignore Handler objects higher up the tree.

Some Handler objects may direct output to other Handler objects. For example, the
MemoryHandler maintains an internal ring buffer of LogRecord objects, and on trigger
events, it publishes its LogRecord object through a target Handler. In such cases, any
formatting is done by the last Handler in the chain.

Figure 8-2 Java Logging Control Flow with MemoryHandler

Applicaton —— > Logger —— > MemoryHandler ———>| Handler —— > Outside World

Filter Filter Filter Formatter

The APIs are structured so that calls on the Logger APIs can be cheap when logging is
disabled. If logging is disabled for a given log level, then the Logger can make a cheap
comparison test and return. If logging is enabled for a given log level, the Logger is still careful
to minimize costs before passing the LogRecord to the Handler. In particular, localization
and formatting (which are relatively expensive) are deferred until the Handler requests them.
For example, a MemoryHandler can maintain a circular buffer of LogRecord objects without
having to pay formatting costs.

Log Levels

Each log message has an associated log Level object. The Level gives a rough guide to the
importance and urgency of a log message. Log Level objects encapsulate an integer value,
with higher values indicating higher priorities.

The Level class defines seven standard log levels, ranging from FINEST (the lowest priority,
with the lowest value) to SEVERE (the highest priority, with the highest value).

ORACLE -

ORACLE

Chapter 8

Loggers

As stated earlier, client code sends log requests to Logger objects. Each logger keeps track of
a log level that it is interested in, and discards log requests that are below this level.

Logger objects are normally named entities, using dot-separated names such as java.awt.
The namespace is hierarchical and is managed by the LogManager. The namespace should
typically be aligned with the Java packaging namespace, but is not required to follow it exactly.
For example, a Logger called java.awt might handle logging requests for classes in the
java.awt package, but it might also handle logging for classes in sun.awt that support the
client-visible abstractions defined in the java.awt package.

In addition to named Logger objects, it is also possible to create anonymous Logger objects
that don't appear in the shared namespace. See the Security section.

Loggers keep track of their parent loggers in the logging namespace. A logger's parent is its

nearest extant ancestor in the logging namespace. The root logger (hamed ") has no parent.
Anonymous loggers are all given the root logger as their parent. Loggers may inherit various
attributes from their parents in the logger namespace. In particular, a logger may inherit:

e Logging level: If a logger's level is set to be null, then the logger will use an effective
Level that will be obtained by walking up the parent tree and using the first non-null
Level.

* Handlers: By default, a Logger will log any output messages to its parent's handlers, and
so on recursively up the tree.

* Resource bundle names: If a logger has a null resource bundle name, then it will inherit
any resource bundle name defined for its parent, and so on recursively up the tree.

Logging Methods

The Logger class provides a large set of convenience methods for generating log messages.
For convenience, there are methods for each logging level, corresponding to the logging level
name. Thus rather than calling 1ogger.log (Level .WARNING, ...),adevelopercan
simply call the convenience method logger.warning(...).

There are two different styles of logging methods, to meet the needs of different communities
of users.

First, there are methods that take an explicit source class hame and source method name.
These methods are intended for developers who want to be able to quickly locate the source of
any given logging message. An example of this style is:

void warning(String sourceClass, String sourceMethod, String msg);

Second, there are a set of methods that do not take explicit source class or source method
names. These are intended for developers who want easy-to-use logging and do not require
detailed source information.

void warning (String msgqg);

For this second set of methods, the Logging framework will make a "best effort" to determine
which class and method called into the logging framework and will add this information into the
LogRecord. However, it is important to realize that this automatically inferred information may
only be approximate. Virtual machines perform extensive optimizations when just-in-time

8-3

ORACLE

Chapter 8

compiling and may entirely remove stack frames, making it impossible to reliably locate the
calling class and method.

Handlers
Java SE provides the following Handler classes:

e StreamHandler: A simple handler for writing formatted records to an QutputStream.
°* ConsoleHandler: A simple handler for writing formatted records to System.err.

* FileHandler: A handler that writes formatted log records either to a single file, or to a set
of rotating log files.

* SocketHandler: A handler that writes formatted log records to remote TCP ports.
* MemoryHandler: A handler that buffers log records in memory.

It is fairly straightforward to develop new Handler classes. Developers requiring specific
functionality can either develop a handler from scratch or subclass one of the provided
handlers.

Formatters
Java SE also includes two standard Formatter classes:

e SimpleFormatter: Writes brief "human-readable" summaries of log records.
e XMLFormatter: Writes detailed XML-structured information.

As with handlers, it is fairly straightforward to develop new formatters.

The LogManager

There is a global LogManager object that keeps track of global logging information. This
includes:

e A hierarchical namespace of named Loggers.

« A set of logging control properties read from the configuration file. See the section
Configuration File.

There is a single LogManager object that can be retrieved using the static
LogManager.getLogManager method. This is created during LogManager initialization,
based on a system property. This property allows container applications (such as EJB
containers) to substitute their own subclass of LogManager in place of the default class.

Configuration File

The logging configuration can be initialized using a logging configuration file that will be read at
startup. This logging configuration file is in standard java.util.Properties format.

Alternatively, the logging configuration can be initialized by specifying a class that can be used
for reading initialization properties. This mechanism allows configuration data to be read from
arbitrary sources, such as LDAP and JDBC.

There is a small set of global configuration information. This is specified in the description of
the LogManager class and includes a list of root-level handlers to install during startup.

The initial configuration may specify levels for particular loggers. These levels are applied to
the named logger and any loggers below it in the naming hierarchy. The levels are applied in
the order they are defined in the configuration file.

8-4

ORACLE

Chapter 8

The initial configuration may contain arbitrary properties for use by handlers or by subsystems
doing logging. By convention, these properties should use names starting with the name of the
handler class or the name of the main Logger for the subsystem.

For example, the MemoryHandler uses a property
java.util.logging.MemoryHandler.size to determine the default size for its ring
buffer.

Default Configuration

The default logging configuration that ships with the JDK is only a default and can be
overridden by ISVs, system administrators, and end users. This file is located at java-home/
conf/logging.properties.

The default configuration makes only limited use of disk space. It doesn't flood the user with
information, but does make sure to always capture key failure information.

The default configuration establishes a single handler on the root logger for sending output to
the console.

Dynamic Configuration Updates
Programmers can update the logging configuration at run time in a variety of ways:

e FileHandler, MemoryHandler, and ConsoleHandler objects can all be created with
various attributes.

« New Handler objects can be added and old ones removed.
 New Logger object can be created and can be supplied with specific Handlers.

* Level objects can be set on target Handler objects.

Native Methods
There are no native APIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal JNI calls
into the Java Logging APIs.

XML DTD

The XML DTD used by the XMLFormatter is specified in Appendix A: DTD for XMLFormatter
Output.

The DTD is designed with a <1og> element as the top-level document. Individual log records
are then written as <record> elements.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an
XMLFormatter stream with the appropriate closing </log>. Therefore, tools that are
analyzing log records should be prepared to cope with un-terminated streams.

Unique Message IDs

The Java Logging APIs do not provide any direct support for uniqgue message IDs. Those
applications or subsystems requiring unique message IDs should define their own conventions
and include the unique IDs in the message strings as appropriate.

8-5

Chapter 8

Security

The principal security requirement is that untrusted code should not be able to change the
logging configuration. Specifically, if the logging configuration has been set up to log a
particular category of information to a particular Handler, then untrusted code should not be
able to prevent or disrupt that logging.

The security permission LoggingPermission controls updates to the logging configuration.

Trusted applications are given the appropriate LoggingPermission so they can call any of
the logging configuration APIs. Untrusted applets are a different story. Untrusted applets can
create and use named loggers in the normal way, but they are not allowed to change logging
control settings, such as adding or removing handlers, or changing log levels. However,
untrusted applets are able to create and use their own "anonymous" loggers, using
Logger.getAnonymousLogger. These anonymous loggers are not registered in the global
namespace, and their methods are not access-checked, allowing even untrusted code to
change their logging control settings.

The logging framework does not attempt to prevent spoofing. The sources of logging calls
cannot be determined reliably, so when a LogRecord is published that claims to be from a
particular source class and source method, it may be a fabrication. Similarly, formatters such
as the XMLFormatter do not attempt to protect themselves against nested log messages
inside message strings. Thus, a spoof LogRecord might contain a spoof set of XML inside its
message string to make it look as if there was an additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial of service
attacks. Any given logging client can flood the logging framework with meaningless messages
in an attempt to conceal some important log message.

Configuration Management

The APIs are structured so that an initial set of configuration information is read as properties
from a configuration file. The configuration information may then be changed programatically
by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be re-read.
When this happens, the configuration file values will override any changes that have been
made programatically.

Packaging

All of the logging class are in the java.* part of the namespace, in the java.util.logging
package.

Localization
Log messages may need to be localized.

Each logger may have a ResourceBundle hame associated with it. The corresponding
ResourceBundle can be used to map between raw message strings and localized message
strings.

Normally, formatters perform localization. As a convenience, the Formatter class provides a
formatMessage method that provides some basic localization and formatting support.

ORACLE -

Chapter 8
Java Logging Examples

Remote Access and Serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single address
space. All calls are intended to be local. However, it is expected that some handlers will want
to forward their output to other systems. There are a variety of ways of doing this:

Some handlers (such as the SocketHandler) may write data to other systems using the
XMLFormatter. This provides a simple, standard, inter-change format that can be parsed and
processed on a variety of systems.

Some handlers may wish to pass LogRecord objects over RMI. The LogRecord class is
therefore serializable. However, there is a problem in how to deal with the LogRecord
parameters. Some parameters may not be serializable and other parameters may have been
designed to serialize much more state than is required for logging. To avoid these problems,
the LogRecord class has a custom writeObject method that converts the parameters to
strings (using Object.toString ()) before writing them out.

Most of the logging classes are not intended to be serializable. Both loggers and handlers are
stateful classes that are tied into a specific virtual machine. In this respect they are analogous
to the java.io classes, which are also not serializable.

Java Logging Examples

ORACLE

Simple Use
The following is a small program that performs logging using the default configuration.

This program relies on the root handlers that were established by the LogManager based on
the configuration file. It creates its own Logger object and then makes calls to that Logger
object to report various events.

package com.wombat;
import java.util.logging.*;

public class Nose {
// Obtain a suitable logger.
private static Logger logger = Logger.getLogger ("com.wombat.nose");
public static void main(String argv([]) {
// Log a FINE tracing message
logger.fine ("doing stuff");
try {
Wombat.sneeze () ;
} catch (Exception ex) {
// Log the exception
logger.log(Level .WARNING, "trouble sneezing", ex);
}

logger.fine ("done");

8-7

ORACLE

Chapter 8
Java Logging Examples

Changing the Configuration

Here's a small program that dynamically adjusts the logging configuration to send output to a
specific file and to get lots of information on wombats. The pattern $t means the system
temporary directory.

public static void main(String[] args) {
Handler fh = new FileHandler ("$t/wombat.log");
Logger.getLogger ("") .addHandler (fh) ;
Logger.getLogger ("com.wombat") .setLevel (Level .FINEST) ;

Simple Use, Ighoring Global Configuration

Here's a small program that sets up its own logging Handler and ignores the global
configuration.

package com.wombat;
import java.util.logging.*;

public class Nose {
private static Logger logger = Logger.getLogger ("com.wombat.nose");
private static FileHandler fh = new FileHandler ("mylog.txt");
public static void main(String argv([]) {
// Send logger output to our FileHandler.
logger.addHandler (fh) ;
// Request that every detail gets logged.
logger.setLevel (Level.ALL);
// Log a simple INFO message.
logger.info("doing stuff");
try {
Wombat .sneeze () ;
} catch (Exception ex) {
logger.log(Level .WARNING, "trouble sneezing", ex);
}

logger.fine ("done");

Sample XML Output

Here's a small sample of what some XMLFormatter XML output looks like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE log SYSTEM "logger.dtd">

<log>

<record>

<date>2015-02-27T09:35:44.8855627z</date>
<millis>1425029744885</millis>
<nanos>562000</nanos>
<sequence>1256</sequence>
<logger>kgh.test.fred</logger>

8-8

Chapter 8
Appendix A: DTD for XMLFormatter Output

<level>INFO</level>
<class>kgh.test.XMLTest</class>
<method>writeLog</method>
<thread>10</thread>
<message>Hello world!</message>
</record>
</log>

Appendix A: DTD for XMLFormatter Output

ORACLE

<!-- DTD used by the java.util.logging.XMLFormatter -->
<!-- This provides an XML formatted log message. -->

<!-- The document type is "log" which consists of a sequence
of record elements -->
<!ELEMENT log (record*)>

<!-- Each logging call is described by a record element. -->
<!ELEMENT record (date, millis, nanos?, sequence, logger?, level,
class?, method?, thread?, message, key?, catalog?, param*, exception?)>

<!-- Date and time when LogRecord was created in ISO 8601 format -->
<!ELEMENT date (#PCDATA)>

<!-- Time when LogRecord was created in milliseconds since
midnight January 1lst, 1970, UTC. -->
<!ELEMENT millis (#PCDATA)>

<!-- Nano second adjustement to add to the time in milliseconds.
This is an optional element, added since JDK 9, which adds further
precision to the time when LogRecord was created.

-=>
<!ELEMENT nanos (#PCDATA)>

<!-- Unique sequence number within source VM. -->
<!ELEMENT sequence (#PCDATA)>

<!-- Name of source Logger object. -->
<!ELEMENT logger (#PCDATA)>

<!-- Logging level, may be either one of the constant
names from java.util.logging.Level (such as "SEVERE"
or "WARNING") or an integer value such as "20". -->

<!ELEMENT level (#PCDATA)>

<!-- Fully qualified name of class that issued
logging call, e.g. "javax.marsupial.Wombat". -->
<!ELEMENT class (#PCDATA)>

<!-- Name of method that issued logging call.

It may be either an unqualified method name such as
"fred" or it may include argument type information
in parenthesis, for example "fred(int,String)". -->
<!ELEMENT method (#PCDATA)>

8-9

ORACLE

Chapter 8
Appendix A: DTD for XMLFormatter Output

<!-- Integer thread ID. -->
<!ELEMENT thread (#PCDATA)>

<!-- The message element contains the text string of a log message. -->
<!ELEMENT message (#PCDATA)>

<!-- If the message string was localized, the key element provides
the original localization message key. -->
<!ELEMENT key (#PCDATA)>

<!-- If the message string was localized, the catalog element provides
the logger's localization resource bundle name. -->
<!ELEMENT catalog (#PCDATA)>

<!-- If the message string was localized, each of the param elements
provides the String value (obtained using Object.toString())
of the corresponding LogRecord parameter. -->

<!ELEMENT param (#PCDATA)>

<!-- An exception consists of an optional message string followed
by a series of StackFrames. Exception elements are used
for Java exceptions and other java Throwables. -->

<!ELEMENT exception (message?, framet+)>

<!-- A frame describes one line in a Throwable backtrace. -->
<!ELEMENT frame (class, method, line?)>

<!-- an integer line number within a class's source file. -->
<!ELEMENT line (#PCDATA)>

8-10

Java NIO

ORACLE

The Java NIO (New Input/Output) API defines buffers, which are containers for data, and other
structures, such as charsets, channels, and selectable channels. Charsets are mappings
between bytes and Unicode characters. Channels represent connections to entities capable of
performing I/O operations. Selectable channels are those that can be multiplexed, which
means that they can process multiple I/O operations in one channel.

Java NIO Examples
The following code examples demonstrate the Java NIO API:

e Grep NIO Example
e Checksum NIO Example
e Time Query NIO Example
e Time Server NIO Example
e Non-Blocking Time Server NIO Example
e Internet Protocol and UNIX Domain Sockets NIO Example
e File NIO examples:
— Chmod File NIO Example
— Copy File NIO Example
— Disk Usage File NIO Example
— User-Defined File Attributes File NIO Example

Buffers
They are containers for a fixed amount of data of a specific primitive type. See the java.nio
package and Table 9-1.

Table 9-1 Buffer Classes
]

Buffer Class Description

Buffer Base class for buffer classes.
ByteBuffer Buffer for bytes.
MappedByteBuffer Buffer for bytes that is mapped to a file.
CharBuffer Buffer for the char data type.
DoubleBuffer Buffer for the double data type.
FloatBuffer Buffer for the float data type.
IntBuffer Buffer for the int data type.
LongBuffer Buffer for the 1ong data type.
ShortBuffer Buffer for the short data type.

9-1

ORACLE

Charsets

Chapter 9

They are named mappings between sequences of 16-bit Unicode characters and sequences of
bytes. Support for charsets include decoders and encoders, which translate between bytes and
Unicode characters. See the java.nio.charset package and Table 9-2.

Table 9-2 Charset Classes

Charset Class

Description

Charset Named mapping between characters and bytes, for
example, US-ASCII and UTF-8.

CharsetDecoder Decodes bytes into characters.

CharsetEncoder Encodes characters into bytes.

CoderResult Describes the result state of an decoder or

encoder.

CodingErrorAction

Describes actions to take when coding errors are
detected.

Channels

They represent an open connection to an entity such as a hardware device, a file, a network
socket, or a program component that is capable of performing one or more distinct 1/O
operations, for example reading or writing. See the java.nio.channels package and

Table 9-3.

Table 9-3 Channel Interfaces and Classes

Channel Interface or Class

Description

Channel

Base interface for channel interfaces and classes.

ReadableByteChannel

A channel that can read bytes.

ScatteringByteChannel

A channel that can read bytes into a sequence of
buffers. A scattering read operation reads, in a
single invocation, a sequence of bytes into one or
more of a given sequence of buffers.

WritableByteChannel A channel that can write bytes.
GatheringByteChannel A channel that can write bytes from a sequence of
buffers. A gathering write operation writes, in a
single invocation, a sequence of bytes from one or
more of a given sequence of buffers.
ByteChannel A channel that can read and write bytes. It unifies
ReadableByteChannel and
WritableByteChannel.
SeekableByteChannel A byte channel that maintains a current position

and allows the position to be changed. A seekable
byte channel is connected to an entity, typically a
file, that contains a variable-length sequence of
bytes that can be read and written.

AsynchronousChannel

A channel that supports asynchronous 1/O
operations.

AsynchronousByteChannel

An asynchronous channel that can read and write
bytes.

NetworkChannel

A channel to a network socket.

9-2

Chapter 9

Table 9-3 (Cont.) Channel Interfaces and Classes

Channel Interface or Class

Description

MulticastChannel

A network channel that supports Internet Protocol
(IP) multicasting. IP multicasting is the transmission
of IP datagrams to members of a group that is zero
or more hosts identified by a single destination
address.

FileChannel

A channel for reading, writing, mapping, and
manipulating a file. It's a
SeekableByteChannel thatis connected to a
file.

SelectableChannel

A channel that can be multiplexed through a
Selector.

Multiplexing is the ability to process multiple I/O
operations in one channel. A selectable channel
can be put into blocking or non-blocking mode. In
blocking mode, every /O operation invoked upon
the channel will block until it completes. In non-
blocking mode, an 1/0 operation will never block
and may transfer fewer bytes than were requested
or possibly no bytes at all.

DatagramChannel

A selectable channel that can send and receive
UDP (User Datagram Protocol) packets.

You can create datagram channels with different
protocol families:

* Create channels for Internet Protocol sockets
with the INET or INET6 protocol families.
These channels support network
communication using TCL and UDP. Their
addresses are of type
InetSocketAddress, which encapsulates
an IP address and port number.

* Create channels for UNIX Domain sockets with
the UNIX protocol family. These sockets
support local interprocess communication on
the same host. Their addresses are of type
UnixDomainSocketAddress, which
encapsulate a file system path name on the
local system.

Pipe.SinkChannel

A channel representing the writable end of a pipe.
A Pipe is a pair of channels: A writable sink
channel and a readable source channel.

Pipe.SourceChannel

A channel representing the readable end of a pipe.

ServerSocketChannel

A selectable channel for stream-oriented listening
sockets.

Like datagram channels, you can create server
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

SocketChannel

A selectable channel for stream-oriented
connecting sockets.
Like datagram channels, you can create socket

channels that are for Internet Protocol sockets or
Unix Domain sockets.

ORACLE

9-3

Chapter 9

Grep NIO Example
Table 9-3 (Cont.) Channel Interfaces and Classes
Channel Interface or Class Description
AsynchronousFileChannel An asynchronous channel for reading, writing, and
manipulating a file.
AsynchronousSocketChannel An asynchronous channel for stream-oriented
connecting sockets.
AsynchronousServerSocketChannel An asynchronous channel for stream-oriented

listening sockets.

Grep NIO Example

ORACLE

This example searches a list of files for lines that match a given regular expression pattern. It
demonstrates NIO-mapped byte buffers, charsets, and regular expressions.

public class Grep {

// Charset and decoder for IS0-8859-15
private static Charset charset = Charset.forName ("IS0-8859-15");
private static CharsetDecoder decoder = charset.newDecoder();

// Pattern used to parse lines
private static Pattern linePattern = Pattern.compile(".*\r?\n");

// The input pattern that we're looking for
private static Pattern pattern;

// Compile the pattern from the command line
private static void compile(String pat) {
try {
pattern = Pattern.compile (pat);
} catch (PatternSyntaxException x) {
System.err.println(x.getMessage());
System.exit (1);

// Use the linePattern to break the given CharBuffer into lines, applying
// the input pattern to each line to see if we have a match
private static void grep(File f, CharBuffer cb) {
Matcher 1m = linePattern.matcher(cb); // Line matcher
Matcher pm = null; // Pattern matcher
int lines = 0;
while (Im.find()) {
lines++;
CharSequence cs = lm.group(); // The current line
if (pm == null)
pm = pattern.matcher(cs);
else
pm.reset (cs);
if (pm.find())
System.out.print(f + ":" + lines + ":" + cs);
if (Im.end() == cb.limit())

9-4

Chapter 9
Checksum NIO Example

break;

// Search for occurrences of the input pattern in the given file
private static void grep(File f) throws IOException {

// Open the file and then get a channel from the stream
try (FileInputStream fis = new FileInputStream(f);
FileChannel fc = fis.getChannel()) {

// Get the file's size and then map it into memory
int sz = (int) fc.size();
MappedByteBuffer bb = fc.map(FileChannel.MapMode.READ ONLY, O,

sz);

// Decode the file into a char buffer
CharBuffer cb = decoder.decode (bb) ;

// Perform the search
grep(f, cb);

public static void main(String[] args) {
if (args.length < 2) {
System.err.println("Usage: java Grep pattern file...");

return;

}
compile (args[0]);
for (int 1 = 1; 1 < args.length; i++) {
File f = new File(args[i]);
try {
grep (f);
} catch (IOException x) {
System.err.println(f + ": " + x);

Checksum NIO Example

This example computes 16-bit checksums for a list of files. It uses NIO-mapped byte buffers for
speed.

public class Sum {

// Compute a 16-bit checksum for all the remaining bytes
// in the given byte buffer

private static int sum(ByteBuffer bb) {

int sum = 0;
while (bb.hasRemaining()) {
if ((sum & 1) != 0)

ORACLE o5

Chapter 9
Time Query NIO Example

sum = (sum >> 1) + 0x8000;
else
sum >>= 1;
sum += bb.get() & 0xff;
sum &= Oxffff;
}

return sum;

// Compute and print a checksum for the given file
private static void sum(File f) throws IOException {

// Open the file and then get a channel from the stream
try (
FileInputStream fis = new FileInputStream(f);
FileChannel fc = fis.getChannel()) {

// Get the file's size and then map it into memory

int sz = (int) fc.size();

MappedByteBuffer bb = fc.map(FileChannel.MapMode.READ ONLY, O,
sz);

// Compute and print the checksum

int sum = sum(bb);

int kb = (sz + 1023) / 1024;

String s = Integer.toString(sum);
System.out.println(s + "\t" + kb + "\t" + f);

public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java Sum file...");
return;
}
for (int 1 = 0; 1 < args.length; i++) {
File £ new File(args[i]);
try {
sum(f) ;
} catch (IOException e) {
System.err.println(f + ": " + e);

Time Query NIO Example
This example asks a list of hosts what time it is. It's a simple, blocking program that
demonstrates NIO socket channels (connection and reading), buffer handling, charsets, and

regular expressions.

public class TimeQuery {

ORACLE 0.6

Chapter 9
Time Query NIO Example

// The standard daytime port
private static int DAYTIME PORT = 13;

// The port we'll actually use
private static int port = DAYTIME PORT;

// Charset and decoder for US-ASCII
private static Charset charset = Charset.forName ("US-ASCII");
private static CharsetDecoder decoder = charset.newDecoder();

// Direct byte buffer for reading
private static ByteBuffer dbuf = ByteBuffer.allocateDirect (1024);

// Ask the given host what time it is
private static void query(String host) throws IOException ({

try (SocketChannel sc = SocketChannel.open()) {
InetSocketAddress isa = new InetSocketAddress (
InetAddress.getByName (host), port);

// Connect
sc.connect (isa);

// Read the time from the remote host. For simplicity we assume
// that the time comes back to us in a single packet, so that we
// only need to read once.

dbuf.clear();

sc.read (dbuf) ;

// Print the remote address and the received time

douf.flip();
CharBuffer cb = decoder.decode (dbuf) ;
System.out.print(isa + " : " + cb);

public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: java TimeQuery [port] host...");
return;
}
int firstArg = 0;

// If the first argument is a string of digits then we take that

// to be the port number

if (Pattern.matches("[0-9]+", args[0])) {
port = Integer.parselnt(args([0])
firstArg = 1;

’

for (int i = firstArg; i < args.length; i++) {
String host = args[i];
try {
query (host) ;
} catch (IOException e) {

ORACLE o

Chapter 9
Time Server NIO Example

System.err.println(host + ": " + e);
e.printStackTrace();

Time Server NIO Example

This example listens for connections and tells callers what time it is. Is a simple, blocking
program that demonstrates NIO socket channels (accepting and writing), buffer handling,
charsets, and regular expressions.

public class TimeServer {

// We can't use the normal daytime port (unless we're running as root,
// which is unlikely), so we use this one instead
private static int PORT = 8013;

// The port we'll actually use
private static int port = PORT;

// Charset and encoder for US-ASCII
private static Charset charset = Charset.forName ("US-ASCII");
private static CharsetEncoder encoder = charset.newEncoder();

// Direct byte buffer for writing
private static ByteBuffer dbuf = ByteBuffer.allocateDirect (1024);

// Open and bind the server-socket channel

private static ServerSocketChannel setup() throws IOException {
ServerSocketChannel ssc = ServerSocketChannel.open();
InetSocketAddress isa = new InetSocketAddress(
InetAddress.getLocalHost (), port);
ssc.socket () .bind(isa);
return ssc;

// Service the next request to come in on the given channel

private static void serve (ServerSocketChannel ssc) throws IOException {

try (SocketChannel sc = ssc.accept()) {
String now = new Date () .toString();
System.out.println("now: " + now);
sc.write(encoder.encode (CharBuffer.wrap (now + "\r\n")));
System.out.println(sc.socket().getInetAddress() + " : " + now);

public static void main(String[] args) {
if (args.length > 1) {
System.err.println("Usage: java TimeServer [port]");
return;

ORACLE 0.8

Chapter 9
Non-Blocking Time Server NIO Example

// If the first argument is a string of digits then we take that

// to be the port number

if ((args.length == 1) && Pattern.matches("[0-9]+", args[0]))
port = Integer.parselnt(args([0]);

try {
ServerSocketChannel ssc = setup();
for (;;) {
serve(ssc);
}
} catch (IOException e) {
e.printStackTrace();

Non-Blocking Time Server NIO Example
This example implements a non-blocking internet time server.

public class NBTimeServer ({
private static final int DEFAULT TIME PORT = 8900;

// Constructor with no arguments creates a time server on default port.
public NBTimeServer () throws Exception {
acceptConnections (this.DEFAULT TIME PORT);

// Constructor with port argument creates a time server on specified port.
public NBTimeServer (int port) throws Exception {
acceptConnections (port);

// Accept connections for current time. Lazy Exception thrown.
private static void acceptConnections(int port) throws Exception ({
// Selector for incoming time requests
Selector acceptSelector = SelectorProvider.provider () .openSelector();

// Create a new server socket and set to non blocking mode
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false);

// Bind the server socket to the local host and port

InetAddress 1h = InetAddress.getLocalHost();
InetSocketAddress isa = new InetSocketAddress(lh, port);
ssc.socket () .bind(isa);

// Register accepts on the server socket with the selector. This

// step tells the selector that the socket wants to be put on the

// ready list when accept operations occur, so allowing multiplexed

// non-blocking I/0 to take place.

SelectionKey acceptKey = ssc.register (acceptSelector,
SelectionKey.OP ACCEPT);

ORACLE 9-9

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

int keysAdded = 0;

// Here's where everything happens. The select method will

// return when any operations registered above have occurred, the

// thread has been interrupted, etc.

while ((keysAdded = acceptSelector.select()) > 0) {
// Someone is ready for I/0, get the ready keys
Set<SelectionKey> readyKeys = acceptSelector.selectedKeys();
Tterator<SelectionKey> i = readyKeys.iterator();

// Walk through the ready keys collection and process date

requests.

while (i.hasNext()) {
SelectionKey sk = (SelectionKey) i.next();
i.remove();
// The key indexes into the selector so you
// can retrieve the socket that's ready for I/0
ServerSocketChannel nextReady = (ServerSocketChannel) sk
.channel();
// Bccept the date request and send back the date string
Socket s = nextReady.accept().socket();
// Write the current time to the socket
PrintWriter out = new PrintWriter (s.getOutputStream(), true);
Date now = new Date();
out.println (now);
out.close();

// Entry point.
public static void main(String[] args) {

// Parse command line arguments and
// create a new time server (no arguments yet)
try {
NBTimeServer nbt = new NBTimeServer();
} catch (Exception e) {
e.printStackTrace();

}

Internet Protocol and UNIX Domain Sockets NIO Example

ORACLE

This example illustrates how to intermix AF_UNIX and AF_INET/6 channels with the
SocketChannel and ServerSocketChannel classes in a non-blocking client/server single-
threaded application.

This example mimics some of the capabilities of the socat command-line utility. It can create
listeners or clients and connect them to listeners and perform various different types of binding.
Run this command with the -h option to print usage information.

9-10

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

Special handling is only required for the different address types at initialization. For the server
side, once a listener is created and bound to an address, the code managing the selector can
handle the different address families identically.

import java.io.IOException;

import java.io.UncheckedIOException;

import java.net.*;

import java.nio.ByteBuffer;

import java.nio.channels.*;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import jdk.net.ExtendedSocketOptions;
import jdk.net.UnixDomainPrincipal;

import static java.net.StandardProtocolFamily.UNIX;
import static java.net.StandardProtocolFamily.INET;
import static java.net.StandardProtocolFamily.INET6;

public class Socat {
static void usage() {
String ustring = """

usage: java Socat -s <baddr>...
java Socat -c [-bind <baddr>] <daddr> N [delay]
java Socat -h

-s means create one or more listening servers bound to addresses <baddr>...,
then accept all incoming connections and display (counts of) received data. If
more than one <baddr> is supplied, then multiple channels are created, each
bound to one of the supplied addresses. All channels are non-blocking and
managed by one Selector.

-Cc means create a client, connect it to <daddr> and send N (16 Kb) buffers.
The

client may optionally bind to a given address <baddr>. If a delay is
specified,

then the program pauses for the specified number of milliseconds between each
send. After sending, the client reads until EOF and then exits.

Note: AF UNIX client sockets do not bind to an address by default. Therefore,
the remote address seen on the server side (and the client's local address) is
an empty path. This is slightly different from AF INET/6 sockets, which, if
the

user does not choose a local port, then a randomly chosen one is assigned.

-h means print this message and exit.

<baddr> and <daddr> are addresses specified as follows:

UNIX:{path}

ORACLE 011

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

INET: {host}:port

INET6: {host}:port

{path} is the name of a socket file surrounded by curly brackets,
{}, which can be empty when binding a server signifying a randomly chosen

local
address.

{host}:port is an internet address comprising a domain name or IPv4/v6 literal

surrounded

by curly brackets, {}, which can be empty when binding (signifying

any local address) and a port number, which can be zero when binding.

wonw,
’

System.out.println(ustring);

static
static
static
static
static

static
static

boolean isClient;

boolean initialized = false;

final int BUFSIZE = 8 * 1024;

int N; // Number of buffers to send

int DELAY = 0; // Milliseconds to delay between sends

List<AddressAndFamily> locals = new LinkedList<>();
AddressAndFamily remote;

// family is only needed in cases where address is null.
// It could be a Record type.

static

class AddressAndFamily {

SocketAddress address;
ProtocolFamily family;
AddressAndFamily (ProtocolFamily family, SocketAddress address) {

this.address = address;
this.family = family;

static AddressAndFamily parseAddress (String addr) throws
UnknownHostException ({
char ¢ = addr.charAt (0);

if

(c !'='0U'" && c !='1")
throw new IllegalArgumentException("invalid address");

String family = addr.substring (0, addr.indexOf(':')).toUpperCase();

return switch (family) {

case "UNIX" -> parseUnixAddress (addr);

case "INET" -> parselnetSocketAddress (INET, addr);
case "INET6" -> parselnetSocketAddress (INET6, addr);
default -> throw new IllegalArgumentException();

static AddressAndFamily parseUnixAddress (String token) {
String path = getPathDomain (token);
UnixDomainSocketAddress address;

ORACLE

9-12

ORACLE

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

if (path.isEmpty())
address = null;
else
address = UnixDomainSocketAddress.of (path);
return new AddressAndFamily (UNIX, address);

static AddressAndFamily parseInetSocketAddress (StandardProtocolFamily
family, String token) throws UnknownHostException {
String domain = getPathDomain (token);
InetAddress address;
if (domain.isEmpty()) {
address = (family == StandardProtocolFamily.INET)
? InetAddress.getByName ("0.0.0.0")
InetAddress.getByName ("::0");
} else {
address = InetAddress.getByName (domain);
}
int cp = token.lastIndexOf(':'"') + 1;
int port = Integer.parselnt (token.substring(cp));
var isa = new InetSocketAddress(address, port);
return new AddressAndFamily(family, isa);

// Return the token between braces, that is, a domain name or UNIX path.

static String getPathDomain (String s) {
int start = s.indexOf('{"') + 1;
int end = s.indexOf('}'");
if (start == -1 || end == -1 || (start > end))
throw new IllegalArgumentException(s);
return s.substring(start, end);

// Return false if the program must exit.

static void parseArgs(String[] args) throws UnknownHostException {
if (args[0].equals("-h")) {
usage();
} else if (args[0].equals("-c")) {
isClient = true;
int nextArg;
AddressAndFamily local = null;
if (args[l].equals("-bind")) {
local = parseAddress(args[2]);
locals.add(local);
nextArg = 3;
} else {
nextArg = 1;
}
remote = parseAddress(args[nextArgt++]);
N = Integer.parselnt(args[nextArg++]);
if (nextArg == args.length - 1) {
DELAY = Integer.parselnt (args[nextArg]);
}

initialized = true;

9-13

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

} else if (args[0].equals("-s")) {
isClient = false;
for (int i = 1; i < args.length; i++) {
locals.add (parseAddress (args[i]));
}
initialized = true;
} else
throw new IllegalArgumentException();

public static void main(String[] args) throws Exception {
try {
parseArgs (args) ;
} catch (Exception e) {
System.out.printf ("\nInvalid arguments supplied. See the
following for usage information\n");
usage();
}
if (!initialized)
return;
if (isClient) {
doClient();
} else {
doServer();

static Map<SocketChannel, Integer> byteCounter = new HashMap<>();
private static void initListener (AddressAndFamily aaf, Selector selector)

try {
ProtocolFamily family = aaf.family;
SocketAddress address = aaf.address;
ServerSocketChannel server = ServerSocketChannel.open (family);
server.bind(address) ;
server.configureBlocking(false);
postBind (address) ;
server.register (selector, SelectionKey.OP ACCEPT, null);
System.out.println("Server: Listening on " +
server.getLocalAddress());
} catch (IOException e) {
throw new UncheckedIOException(e);

private static void doServer() throws IOException {

ByteBuffer readBuf = ByteBuffer.allocate(64 * 1024);
final Selector selector = Selector.open();
locals.forEach(localAddress -> initListener(localAddress, selector));
int nextConnectionId = 1;
while (true) {

selector.select();

var keys = selector.selectedKeys();

for (SelectionKey key : keys) {

try {

ORACLE 914

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

SelectableChannel ¢ = key.channel();
if (c instanceof ServerSocketChannel) ({

var server = (ServerSocketChannel)c;
var ch = server.accept();
var userid = "";

if (server.getLocalAddress () instanceof
UnixDomainSocketAddress) {

// An illustration of additional capability of
UNIX
// channels; it's not required behavior.

UnixDomainPrincipal pr =
ch.getOption (ExtendedSocketOptions.SO PEERCRED) ;
userid = "user: " + pr.user().toString() + "
group: " +
pr.group () .toString();
}
ch.configureBlocking (false);
byteCounter.put(ch, 0);
System.out.printf ("Server: new connection\n\tfrom {%s}
\n", ch.getRemoteAddress());
System.out.printf ("\tConnection id: %s\n",
nextConnectionId);
if (userid.length() > 0) {
System.out.printf ("\tpeer credentials: %s\n",
userid) ;
}
System.out.printf ("\tConnection count: %d\n",
byteCounter.size());
ch.register (selector, SelectionKey.OP READ,
nextConnectionId++) ;

} else {
var ch = (SocketChannel) c;
int id = (Integer)key.attachment();

int bytes = byteCounter.get(ch);
readBuf.clear();
int n = ch.read(readBuf);
if (n < 0) {
String remote = ch.getRemoteAddress().toString();
System.out.printf ("Server: closing
connection\n\tfrom: {%s} Id: %d\n", remote, 1id);
System.out.printf ("\tBytes received: %d\n",
bytes);
byteCounter.remove (ch) ;
ch.close();

} else {
readBuf.flip();
bytes += n;

byteCounter.put (ch, bytes);
display(ch, readBuf, id);

}

} catch (IOException e) {
throw new UncheckedIOException(e);

ORACLE 015

ORACLE

when

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

i
keys.clear();

private static void postBind(SocketAddress address) {
if (address instanceof UnixDomainSocketAddress) {
var usa = (UnixDomainSocketAddress)address;
usa.getPath().toFile().deleteOnExit () ;

private static void display(SocketChannel ch, ByteBuffer readBuf, int id)
throws IOException
{
System.out.printf ("Server: received %d bytes from: {%s} Id: %d\n",
readBuf.remaining(), ch.getRemoteAddress(), id);

private static void doClient() throws Exception {
SocketChannel client;
if (locals.isEmpty())
client = SocketChannel.open (remote.address);
else {
AddressAndFamily aaf = locals.get(0);
client = SocketChannel.open(aaf.family);
client.bind(aaf.address);
postBind (aaf.address);
client.connect (remote.address) ;
}
ByteBuffer sendBuf = ByteBuffer.allocate(BUFSIZE);
for (int i=0; i<N; i++) {
fill (sendBuf) ;
client.write (sendBuf);
Thread.sleep (DELAY) ;
}
client.shutdownOutput () ;
ByteBuffer rxb = ByteBuffer.allocate(64 * 1024);

int c;
while ((c = client.read(rxb)) > 0) {
rxb.flip();

System.out.printf ("Client: received %d bytes\n", rxb.remaining());
rxb.clear();

}

client.close();
private static void fill (ByteBuffer sendBuf) {
// Because this example is for demonstration purposes, this method
// doesn't fill the ByteBuffer sendBuf with data. Instead, it sets the
// limits of sendBuf to its capacity and its position to zero.
// Consequently, when the example writes the contents of sendBuf, it

// writes the entire contents of whatever happened to be in memory

// sendBuf was allocated.

9-16

Chapter 9
Chmod File NIO Example

sendBuf.limit (sendBuf.capacity());
sendBuf.position(0);

Example of Running the Socat Example
The following is an example of running the Socat example:

1. In a command-line shell, run Socat as follows:

$ java Socat -s UNIX:{/tmp/uds.sock}
Server: Listening on /tmp/uds.sock

2. In another command-line shell, run Socat as follows:

$ java Socat -c UNIX:{/tmp/uds.sock} 1

In the first command-line shell, you'll see output similar to the following:

Server: new connection
from {}
Connection id: 1
peer credentials: user: yourusername group: yourgroup
Connection count: 1
Server: received 8192 bytes from: {} Id: 1
Server: closing connection
from: {} Id: 1
Bytes received: 8192

If you don't specify a file name when you create a UNIX domain socket, then the JVM creates
a socket file and automatically binds the socket to it:

$ java Socat -s UNIX:({}
Server: Listening on /tmp/socket 837668026

This is the same as calling ServerSocketChannel.bind (null). You can change the default
directory where the JVM saves automatically generated socket files by setting the
jdk.net.unixdomain.tmpdir system property. See Networking System Properties.

Chmod File NIO Example

ORACLE

This example compiles a list of one or more symbolic mode expressions that can change a set
of file permissions in a manner similar to the UNIX chmod command.

The symbolic-mode-1ist parameter is a comma-separated list of expressions where each
expression has the following form:

who operator [permissions]

* who: One or more of the following characters: u, g, o, or a, meaning owner (user), group,
others, or all (owner, group, and others), respectively.

9-17

ORACLE

Chapter 9
Chmod File NIO Example

operator: The character +, -, or =, signifying how to change the permissions:
— +: Permissions are added

— -: Permissions are removed

— =: Permissions are assigned absolutely

permissions: A sequence of zero or more of the following:

— r: Read permission

— w: Write permission

— x: Execute permission

If permissions is omitted when permissions are assigned absolutely (with the = operator),
then the permissions are cleared for the owner, group or others as identified by who. When
permissions is omitted, then the operators + and - are ignored.

The following are examples of the symbolic-mode-1ist parameter:

u=rw: Sets the owner permissions to read and write.
ug+w: Sets the owner write and group write permissions.

utw, o-rwx: Sets the owner write permission and removes the others read, others write,
and others execute permissions.

o=: Sets the others permission to none (others read, others write, and others executed
permissions are removed if set).

public class Chmod ({

public static Changer compile(String exprs) {
// minimum is who and operator (u= for example)
if (exprs.length() < 2)
throw new IllegalArgumentException("Invalid mode");

// permissions that the changer will add or remove
final Set<PosixFilePermission> toAdd = new

HashSet<PosixFilePermission> () ;

final Set<PosixFilePermission> toRemove = new

HashSet<PosixFilePermission> () ;

// iterate over each of expression modes
for (String expr: exprs.split(",")) {
// minimum of who and operator
if (expr.length() < 2)
throw new IllegalArgumentException("Invalid mode");

int pos = 0;

// who
boolean u = false;
boolean g = false;
boolean o = false;
boolean done = false;
for (;;) {
switch (expr.charAt(pos)) {

case 'u' u = true; break;

9-18

ORACLE

Chapter 9
Chmod File NIO Example

case 'g' : g = true; break;
case 'o' : o = true; break;
case 'a' : u = true; g = true; o = true; break;

default : done = true;

}

if (done)
break;
post+;

}
if ('u && !'g && !o)
throw new IllegalArgumentException("Invalid mode");

// get operator and permissions
char op = expr.charAt (pos++);
String mask = (expr.length() == pos) ? "" : expr.substring(pos);

// operator
boolean add = (op == "+');
boolean remove = (op == '-
boolean assign (op == '=");
if ('add && !remove && 'assign)

throw new IllegalArgumentException("Invalid mode");

// who= means remove all

if (assign && mask.length() == 0) {
assign = false;
remove = true;
mask = "rwx";

// permissions

boolean r false;

boolean w = false;

boolean x = false;

for (int i=0; i<mask.length(); i++) {
switch (mask.charAt(i)) {

case 'r' : r = true; break;
case 'w' : w = true; break;
case 'x' : x = true; break;
default:

throw new IllegalArgumentException("Invalid mode");

// update permissions set
if (add) {
if (u) |
if (r) toAdd.add(OWNER_READ);
(
(

if (w) toAdd.add(OWNER WRITE);
if (x) toAdd.add(OWNER EXECUTE);
}
if (g)

if (w) toAdd.add(GROUP WRITE);

{
if (r) toAdd.add(GROUP_READ);
(
if (x) toAdd.add(GROUP EXECUTE);

9-19

if (o) {
if (r)
if (w)
if (x)
}
}
if (remove) {
if (u) |
if (r)
if (w)
if (x)
}
if (g) |
if (r)
if (w)
if (x)
}
if (o) |
if (r)
if (w)
if (x)
}
}
if (assign) {
if (u) {
if (r)
else
if (w)
else
if (x)
else
}
if (g) |
if (r)
else
if (w)
else
if (x)
else
}
if (o) |
if (r)
else
if (w)
else
if (x)
else

// return changer

Chapter 9
Chmod File NIO Example

toAdd.add (OTHERS READ) ;
toAdd.add (OTHERS WRITE) ;
toAdd.add (OTHERS EXECUTE) ;

toRemove.
toRemove.
toRemove.

add (OWNER_READ) ;
add (OWNER_WRITE) ;
add (OWNER_EXECUTE) ;

toRemove.
toRemove.
toRemove.

add (GROUP_READ) ;
add (GROUP_WRITE) ;
add (GROUP_EXECUTE) ;

toRemove.
toRemove.
toRemove.

add (OTHERS_READ) ;
add (OTHERS WRITE) ;
add (OTHERS EXECUTE) ;

toAdd.add(OWNER_READ);
toRemove.add (OWNER READ) ;
toAdd.add(OWNER_WRITE);
toRemove.add (OWNER WRITE) ;
toAdd.add(OWNER_EXECUTE);
toRemove.add (OWNER EXECUTE) ;

toAdd.add(GROUP_READ);
toRemove.add (GROUP_READ) ;
toAdd.add(GROUP_WRITE);
toRemove.add (GROUP_WRITE) ;
toAdd.add (GROUP_EXECUTE) ;
toRemove.add (GROUP_EXECUTE) ;

toAdd.add(OTHERS_READ);
toRemove.add (OTHERS READ) ;
toAdd.add(OTHERS_WRITE);
toRemove.add (OTHERS WRITE) ;
toAdd.add(OTHERS_EXECUTE);
toRemove.add (OTHERS EXECUTE) ;

return new Changer() {

@Override

public Set<PosixFilePermission> change (Set<PosixFilePermission>

perms) |

ORACLE

9-20

Chapter 9
Chmod File NIO Example

perms.addAll (toAdd) ;
perms.removeAll (toRemove) ;
return perms;

/**
* A task that <i>changes</i> a set of {@link PosixFilePermission}
elements.
*/
public interface Changer {
/**

* Applies the changes to the given set of permissions.

* @param perms
* The set of permissions to change

* @return The {@code perms} parameter
*/

Set<PosixFilePermission> change (Set<PosixFilePermission> perms);

/**
* Changes the permissions of the file using the given Changer.
*/
static void chmod(Path file, Changer changer) {
try {
Set<PosixFilePermission> perms = Files
.getPosixFilePermissions (file);
Files.setPosixFilePermissions (file, changer.change (perms));
} catch (IOException x) {
System.err.println(x);

/**
* Changes the permission of each file and directory visited
*/
static class TreeVisitor implements FileVisitor<Path> {
private final Changer changer;

TreeVisitor (Changer changer) ({
this.changer = changer;

@Override
public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
chmod (dir, changer);
return CONTINUE;

@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {

ORACLE 991

Chapter 9
Copy File NIO Example

chmod (file, changer);
return CONTINUE;

@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc) {
if (exc != null)

System.err.println ("WARNING: " + exc);
return CONTINUE;

@Override

public FileVisitResult visitFileFailed(Path file, IOException exc) {
System.err.println ("WARNING: " + exc);
return CONTINUE;

static void usage() {
System.err.println("java Chmod [-R] symbolic-mode-list file...");
System.exit (-1);

public static void main(String[] args) throws IOException {
if (args.length < 2)
usage();
int argi = 0;
int maxDepth = 0;
if (args[argi].equals("-R")) {
if (args.length < 3)
usage () ;
argi++;
maxDepth = Integer.MAX VALUE;

// compile the symbolic mode expressions
Changer changer = compile(args[argi++]);
TreeVisitor visitor = new TreeVisitor (changer);

Set<FileVisitOption> opts = Collections.emptySet();
while (argi < args.length) {
Path file = Paths.get(args[argil]):;

Files.walkFileTree(file, opts, maxDepth, visitor);
argi++;

Copy File NIO Example

This example copies files in a similar manner to the copy command.

public class Copy {

/**

ORACLE 9-22

Chapter 9
Copy File NIO Example

* Returns {@code true} if okay to overwrite a file ("cp -i")
*/
static boolean okayToOverwrite (Path file) {
String answer = System.console().readLine ("overwrite %s (yes/no)? ",
file);
return (answer.equalsIgnoreCase ("y") ||
answer.equalsIgnoreCase ("yes"));

}

/**
* Copy source file to target location. If {@code prompt} is true then
* prompt user to overwrite target if it exists. The {@code preserve}
* parameter determines if file attributes should be copied/preserved.
*/
static void copyFile (Path source, Path target, boolean prompt, boolean
preserve) {
CopyOption[] options = (preserve) ?
new CopyOption[] { COPY ATTRIBUTES, REPLACE EXISTING }
new CopyOption[] { REPLACE EXISTING };
if (!prompt || Files.notExists(target) || okayToOverwrite (target)) {
try {
Files.copy(source, target, options);
} catch (IOException x) {
System.err.format ("Unable to copy: %s: %s%n", source, x);

/**
* A {@code FileVisitor} that copies a file-tree ("cp -r")
*/
static class TreeCopier implements FileVisitor<Path> {
private final Path source;
private final Path target;
private final boolean prompt;
private final boolean preserve;

TreeCopier (Path source, Path target, boolean prompt, boolean
preserve) {
this.source = source;
this.target target;
this.prompt = prompt;
this.preserve = preserve;

@Override
public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
// before visiting entries in a directory we copy the directory
// (okay if directory already exists).
CopyOption[] options = (preserve) ?
new CopyOption[] { COPY ATTRIBUTES } : new CopyOption[0];

Path newdir = target.resolve (source.relativize(dir));

try {
Files.copy(dir, newdir, options);

ORACLE 0.93

Chapter 9
Copy File NIO Example

} catch (FileAlreadyExistsException x) {
// ignore
} catch (IOException x) {
System.err.format ("Unable to create: %s: %s%n", newdir, x);

return SKIP SUBTREE;

}
return CONTINUE;

@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes

attrs) |
copyFile(file, target.resolve (source.relativize(file)),
prompt, preserve);
return CONTINUE;

@Override
public FileVisitResult postVisitDirectory(Path dir, IOException exc) {

// fix up modification time of directory when done
if (exc == null && preserve) {
Path newdir = target.resolve(source.relativize(dir));
try {
FileTime time = Files.getlastModifiedTime (dir);
Files.setlLastModifiedTime (newdir, time);

} catch (IOException x) {
System.err.format ("Unable to copy all attributes to: %s:

o°

s%n", newdir, Xx);
}

}
return CONTINUE;

@Override
public FileVisitResult visitFileFailed(Path file, IOException exc) {

if (exc instanceof FileSystemLoopException) {
System.err.println("cycle detected: " + file);

} else {
System.err.format ("Unable to copy: %s: %s%n", file, exc);

}
return CONTINUE;

static void usage() {
System.err.println("java Copy [-ip] source... target");
System.err.println("java Copy -r [-ip] source-dir... target");

System.exit (-1);

public static void main(String[] args) throws IOException {
boolean recursive = false;
boolean prompt = false;
boolean preserve = false;

// process options

ORACLE 904

Chapter 9
Copy File NIO Example

int argi = 0;
while (argi < args.length) {
String arg = argslargi];
if (larg.startsWith("-"))
break;
if (arg.length() < 2)
usage () ;
for (int i=1; i<arg.length(); 1i++) {
char ¢ = arg.charAt(i);
switch (c) {

case 'r' : recursive = true; break;
case 'i' : prompt = true; break;
case 'p' : preserve = true; break;

default : usage();

}

argi++;

// remaining arguments are the source files(s) and the target location
int remaining = args.length - argi;
if (remaining < 2)

usage();
Path[] source = new Path[remaining-1];
int i=0;
while (remaining > 1) {
source[i++] = Paths.get (args[argi++]);

remaining--;
}
Path target = Paths.get(argslargi]);

// check if target is a directory
boolean isDir = Files.isDirectory(target);

// copy each source file/directory to target
for (i=0; i<source.length; i++) {
Path dest = (isDir) ? target.resolve(source[i].getFileName())
target;

if (recursive) {
// follow links when copying files
EnumSet<FileVisitOption> opts =
EnumSet.of (FileVisitOption.FOLLOW LINKS) ;
TreeCopier tc = new TreeCopier(source[i], dest, prompt,
preserve);
Files.walkFileTree (source[i], opts, Integer.MAX VALUE, tc);
} else {
// not recursive so source must not be a directory
if (Files.isDirectory(source[i])) {
System.err.format ("%s: is a directory%n", source([i]);
continue;
}

copyFile (source[i], dest, prompt, preserve);

ORACLE 0 05

Chapter 9
Disk Usage File NIO Example

Disk Usage File NIO Example

This example prints disk space information in a similar manner to the df command.

public class DiskUsage {
static final long K = 1024;

static void printFileStore (FileStore store) throws IOException {
long total = store.getTotalSpace() / K;
long used = (store.getTotalSpace() - store.getUnallocatedSpace()) / K;
long avail = store.getUsableSpace() / K;

String s = store.toString();
if (s.length() > 20) {
System.out.println(s);
s ="";
}
System.out.format ("%-20s %12d %$12d %$12d\n", s, total, used, avail);

public static void main(String[] args) throws IOException {
System.out.format ("%$-20s %$12s %12s %$12s\n", "Filesystem", "kbytes",
"used", "avail");

if (args.length == 0) {
FileSystem fs = FileSystems.getDefault();
for (FileStore store: fs.getFileStores()) {

printFileStore (store);
}
} else {
for (String file: args) {
FileStore store = Files.getFileStore (Paths.get(file));
printFileStore (store);

User-Defined File Attributes File NIO Example

This example lists, sets, retrieves, and deletes user-defined file attributes.
public class Xdd {

static void usage() {
System.out.println("Usage: java Xdd <file>");
System.out.println (" java Xdd -set <name>=<value> <file>");
System.out.println (" java Xdd -get <name> <file>");
System.out.println (" java Xdd -del <name> <file>");
System.exit (-1);

ORACLE 9-26

Chapter 9
User-Defined File Attributes File NIO Example

public static void main(String[] args) throws IOException ({
// one or three parameters
if (args.length != 1 && args.length != 3)
usage();

Path file = (args.length == 1) ? Paths.get(args[0])
Paths.get (args[2]);

// check that user defined attributes are supported by the file store
FileStore store = Files.getFileStore(file);
if (!store
.supportsFileAttributeView (UserDefinedFileAttributeView.class)) {
System.err.format (
"UserDefinedFileAttributeView not supported on %$s\n", store);
System.exit (-1);

}
UserDefinedFileAttributeView view = Files.getFileAttributeView(file,
UserDefinedFileAttributeView.class);

// list user defined attributes
if (args.length == 1) {
System.out.println (" Size Name");
System.out
.println("-------- - "),
for (String name : view.list()) {
System.out.format ("$8d %s\n", view.size(name), name);
}

return;

// Add/replace a file's user defined attribute
if (args[0].equals("-set")) {
// name=value

String[] s = args[l].split("=");
if (s.length != 2)
usage () ;

String name = s[0];
String value = s[1];

view.write (name, Charset.defaultCharset().encode (value));
return;

// Print out the value of a file's user defined attribute
if (args[0].equals("-get")) {
String name = args[l];
int size = view.size (name);
ByteBuffer buf = ByteBuffer.allocateDirect (size);
view.read (name, buf);
buf.flip();

System.out.println(Charset.defaultCharset () .decode (buf).toString());
return;

ORACLE 9-27

Chapter 9
User-Defined File Attributes File NIO Example

// Delete a file's user defined attribute
if (args[0].equals("-del")) {
view.delete(args([1l]);
return;

}

// option not recognized
usage () ;

ORACLE’ 998

Java Networking

The Java networking API provides classes for networking functionality, including addressing,
classes for using URLs and URIs, socket classes for connecting to servers, networking
security functionality, and more. It consists of these packages and modules:

e java.net: Classes for implementing networking applications.

* java.net.http: Contains the API for the HTTP Client, which provides high-level client
interfaces to HTTP (versions 1.1 and 2) and low-level client interfaces to WebSocket
instances. See Java HTTP Client for more information about this API, including videos and
sample code.

Note:
You can use the jwebserver tool for testing and debugging your client
application.
 javax.net: Classes for creating sockets.
e javax.net.ssl: Secure socket classes.

* jdk.httpserver: Platform-specific APIs for building HTTP servers for educational and
testing purposes, as well as the jwebserver tool for running a minimal HTTP server.

* jdk.net: Platform-specific socket options for the java.net and java.nio.channels
socket classes.

Networking System Properties

You can set the following networking system properties in one of three ways:
* Using the -D option of the java command
* Usingthe System.setProperty (String, String) method

» Specifying them in the $JAVA HOME/conf/net.properties file. Note that you can
specify only proxy-related properties in this file.

Unless specified otherwise, a property value is checked every time it's used.

See Networking Properties and the java.net.http and jdk.httpserver modules in the
Java SE API Specification for more information.

HTTP Client Properties

ORACLE

Some of the following properties are subject to predefined minimum and maximum values that
override any user-specified values. Note that the default value of boolean values is true if the
property exists but has no value.

10-1

https://openjdk.java.net/groups/net/httpclient/

ORACLE

Table 10-1 HTTP Client Properties
]

Property

Default Value

Chapter 10
Networking System Properties

Description

jdk.httpclient.allowRestri No default value

ctedHeaders

A comma-separated list of
normally restricted HTTP header
names that users may set in
HTTP requests or by user code in
HttpRequest instances.

By default, user code cannot set
the following request headers:
connection, content-length,
expect, host, and upgrade. You
can override this behavior with
this property.

Header names specified in this
property are case-insensitive, and
whitespace is ignored. Note that
this property is intended for
testing and not for real-world
deployments. Protocol errors or
other undefined behavior are
likely to occur when using this
property.

There may be other headers that
are restricted from being set
depending on the context. This
includes the Authorization
header when the relevant
HttpClient has an
authenticator set. These
restrictions cannot be overridden
by this property.

jdk.httpclient.

imit

auth.retryl

The number of attempts the Basic
authentication filter will attempt to
retry a failed authentication.

jdk.httpclient.bufsize 16384 (16 kB) The size to use for internal
allocated buffers in bytes.
jdk.httpclient.connectionP 0 The maximum number of
o0olSize connections to keep in the
HTTP/1.1 keep alive cache. A
value of 0 means that the cache
is unbounded.
jdk.httpclient.connectionWW 2726 The HTTP/2 client connection
indowSize window size in bytes.
The maximum size is 2731-1.
This value cannot be smaller than
the stream window size.
jdk.httpclient.disableRetr false Whether automatic retry of
yConnect connection failures is disabled. If
false, then retries are attempted
(subject to the retry limit).
jdk.httpclient.enableAllMe false Whether it is permitted to

thodRetry

automatically retry non-
idempotent HTTP requests.

10-2

ORACLE

Table 10-1 (Cont.) HTTP Client Properties

Property

Default Value

Chapter 10
Networking System Properties

Description

jdk.httpclient.enablepush

1

Whether HTTP/2 push promise is
enabled. A value of 1 enables
push promise; a value of 0
disables it.

jdk.httpclient.hpack.maxhe 16384 (16 kB)

adertablesize

The HTTP/2 client maximum
HPACK header table size in
bytes.

jdk.httpclient.HttpClient.
log

No default value

Enables high-level logging of
various events through the Java
Logging API (which is contained
in the package
java.util.logging).

The value contains a comma-
separated list of any of the
following items:

e errors

. requests

* headers

. content

. frames

. ssl

. trace

. channel

You can append the frames item

with a colon-separated list of any
of the following items:

. control

. data
e window
. all

Specifying an item adds it to the
HTTP client's log. For example, if
you specify the following value,
then the Java Logging API logs
all possible HTTP Client events:

errors,requests, headers, fr
ames:control:data:window, s
sl, trace, channel

Note that you can replace
control:data:window with
all.

The name of the logger is
jdk.httpclient.HttpClient,
and all logging is at level INFO.

jdk.httpclient.keepalive.t 30

imeout

The number of seconds to keep
idle HTTP/1.1 connections alive
in the keep alive cache.

10-3

ORACLE

Table 10-1 (Cont.) HTTP Client Properties

Chapter 10
Networking System Properties

Property Default Value

Description

jdk.httpclient.keepalive.t See the description
imeout.h2

The number of seconds to keep
idle HTTP/2 connections alive. If
not set, then the
jdk.httpclient.keepalive.t
imeout setting is used.

jdk.httpclient.maxframesiz 16384 (16 kB)
e

The HTTP/2 client maximum
frame size in bytes. The server is
not permitted to send a frame
larger than this.

jdk.httpclient.maxLiteralW 512
ithIndexing

The number of additions a server
may request a client to make to
the HPack dynamic table when
decoding a set of headers.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or
negative value, then there's no
limit.

jdk.httpclient.maxNonFinal 8
Responses

The number of interim responses
the client will accept before
receiving a final response. An
interim response is considered
informational and is a response
whose status is in the range [100,
199]. These responses are
typically either handled internally
or simply discarded by the
implementation.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or

negative value, then there's no
limit.

jdk.httpclient.maxstreams 100

The maximum number of
concurrent HTTP/2 streams per
connection.

jdk.httpclient.receiveBuff The operating system's default
erSize value

The HTTP client socket receive
buffer size in bytes. See
StandardSocketOptions.
SO_RCVBUF.

jdk.httpclient.redirects.r 5
etrylimit

The maximum number of
attempts to send a HTTP request
when redirected or any failure
occurs for any reason.

jdk.httpclient.sendBufferS Operating system default
ize

The HTTP client socket send
buffer size. See
StandardSocketOptions.
SO_SNDBUF. Values less than or
equal to zero are ignored.

10-4

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_RCVBUF
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_RCVBUF
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_SNDBUF
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/net/StandardSocketOptions.html#SO_SNDBUF

Table 10-1 (Cont.) HTTP Client Properties

Chapter 10
Networking System Properties

Property

Default Value

Description

jdk.httpclient.websocket.w 16384 (16 kB)

riteBufferSize

The buffer size used by the web
socket implementation for socket
writes.

jdk.httpclient.windowsize

16777216 (16 MB)

The HTTP/2 client stream window
size in bytes.

jdk.internal.httpclient.di false

sableHostnameVerification

If true (or set to an empty
string), hostname verification in
SSL certificates is disabled. This
is a system property only and not
available in conf/
net.properties.ltis
provided for testing purposes
only.

< Note:

HTTP Server Properties

The following are JDK-specific system properties used by the default HTTP server
implementation in the JDK. Any of these properties that take a numeric value assume the

ORACLE

default value if given a string that does not parse as a number.

Table 10-2 HTTP Server Properties

The properties jdk.http.auth.proxying.disabledSchemes and
jdk.http.auth.tunneling.disabledSchemes, described in Other Proxy-Related
Properties, are also taken into account by HttpClient.

Property

Default Value

Description

jdk.http.maxHeaderSize

393216 (384 kB)

The maximum response header
size that the JDK built-in
implementation of the legacy URL
protocol handler for HTTP,
java.net.HttpURLConnec
tion and the newer HTTP
client,
java.net.http.HttpClie
nt, will accept from a remote
party. This limit is computed as
the cumulative size of all header
names and header values plus an
overhead of 32 bytes per header
name-value pair.

If this limit is exceeded, then the
request fails with a protocol
exception.

If this property has a zero or
negative value, then there's no
limit.

10-5

Table 10-2 (Cont.) HTTP Server Properties

Chapter 10
Networking System Properties

Property Default Value

Description

jdk.httpserver.maxConnecti -1
ons

The maximum number of open
connections at a time. This
includes active and idle
connections. If this property has a
zero or negative value, then no
limit is enforced.

sun.net.httpserver.drainAm 65536
ount

The maximum number of bytes
that will be automatically read
and discarded from a request
body that has not been
completely consumed by its
HttpHandler. If the number of
remaining unread bytes are less
than this limit, then the
connection will be put in the idle
connection cache. If not, then it
will be closed.

sun.net.httpserver.idleInt 30
erval

The maximum duration in
seconds which an idle connection
is kept open. This timer has an
implementation-specific
granularity that may mean that
idle connections are closed later
than the specified interval. If this
property has a zero or negative
value, then the default value is
used.

sun.net.httpserver.maxIdle 200
Connections

The maximum number of idle
connections that may exist at the
same time. If this property has a
zero or negative value, then
connections are closed after use.

sun.net.httpserver.maxReg 200
eaders

The maximum number of header
fields accepted in a request. If
this limit is exceeded while the
headers are being read, then the
connection is terminated and the
request ignored. If this property
has a zero or negative value, then
the default value is used.

sun.net.httpserver.maxReqH 393216 (384 kB)
eaderSize

The maximum request header
size that the JDK built-in
implementation of
com.sun.net.httpserver
.HttpServer will accept. This
limit is computed the same way
as jdk.http.maxHeaderSize.
If the limit is exceeded. then the
connection is closed. If this
property has a zero or negative
value, then there's no limit.

ORACLE

10-6

Table 10-2 (Cont.) HTTP Server Properties

Chapter 10
Networking System Properties

Property Default Value

Description

sun.net.httpserver.maxReqT -1
ime

The maximum time in
milliseconds allowed to receive a
request headers and body. In
practice, the actual time is a
function of request size, network
speed, and handler processing
delays. If this property has a zero
or negative value, then the time is
not limited. If the limit is
exceeded, then the connection is
terminated and the handler will
receive an IOException. This
timer has an implementation-
specific granularity that may
mean requests are aborted later
than the specified interval.

sun.net.httpserver.maxRspT -1
ime

The maximum time in
milliseconds allowed to receive a
response headers and body. In
practice, the actual time is a
function of response size,
network speed, and handler
processing delays. If this property
has a zero or negative value, then
the time is not limited. If the limit
is exceeded then the connection
is terminated and the handler will
receive an IOException. This
timer has an implementation-
specific granularity that may
mean responses are aborted
later than the specified interval.

sun.net.httpserver.nodelay false

A boolean value, which if true,
sets the TC P NODELAY socket
option on all incoming
connections.

IPv4 and IPv6 Protocol Properties

These two properties are checked only once, at startup.

ORACLE

10-7

IPv4 and IPv6 Protocol Properties

Chapter 10
Networking System Properties

Default Value

Description

java.net.preferIPv4Stack

If IPv6 is available on the
operating system, then the
underlying native socket will be,
by default, an IPv6 socket, which
lets applications connect to, and
accept connections from, both
IPv4 and IPv6 hosts.

Set this property to true if you
want your application use IPv4-
only sockets. This implies that it
won't be possible for the
application to communicate with
IPv6-only hosts.

java.net.preferIPv6Address false

When dealing with a host which
has both IPv4 and IPv6
addresses, and if IPv6 is
available on the operating
system, the default behavior is to
prefer using IPv4 addresses over
IPv6 ones. This is to ensure
backward compatibility, for
example, for applications that
depend on the representation of
an IPv4 address (such as
192.168.1.1).

Set this property to true to
change this preference and use
IPv6 addresses over IPv4 ones
where possible.

Set this property to system to
preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties

The following proxy settings are used by the HTTP protocol handler and the default proxy

Table 10-4 HTTP Proxy Properties

Default Value

Description

http.proxyHost No default value

Proxy server that the HTTP
protocol handler will use.

http.proxyPort

Port that the HTTP protocol
handler will use.

ORACLE

10-8

Table 10-4 (Cont.) HTTP Proxy Properties

Chapter 10
Networking System Properties

Property

Default Value

Description

http.nonProxyHosts

localhost|127.*%|[::1]

Indicates the hosts that should be
accessed without going through
the proxy. Typically, this defines
internal hosts. The value of this
property is a list of hosts,
separated by the vertical bar (|)
character. In addition, you can
use the asterisk (*) for pattern
matching. For example, the
following specifies that every host
in the exmaple.com domain and
localhost should be accessed
directly even if a proxy server is
specified:
Dhttp.nonProxyHosts="*.exa
mple.com|localhost"

The default value excludes all

common variations of the
loopback address.

HTTPS Proxy Properties

HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality is
needed (such as payment web sites). The following proxy settings are used by the HTTPS

protocol handler and the default proxy selector.

Note:

The HTTPS protocol handler uses the same http.nonProxyHosts property as the

HTTP protocol.

Table 10-5 HTTPS Proxy Properties

Property

Default Value

Description

https.proxyHost

No default value

Proxy server that the HTTPS
protocol handler will use.

https.proxyPort

Port that the HTTPS protocol
handler will use.

FTP Proxy Properties

The following proxy settings are used by the FTP protocol handler.

ORACLE

10-9

Table 10-6 FTP Proxy Properties
]

System Property

Default Value

Chapter 10
Networking System Properties

Description

ftp.proxyHost

No default value

Proxy server that the FTP
protocol handler will use.

ftp.proxyPort

80

Port that the FTP protocol
handler will use.

ftp.nonProxyHosts

localhost|127.*%|[::1]

Similar to
http.nonProxyHosts, this
property indicates the hosts that
should be accessed without going
through the proxy. Typically, this
defines internal hosts. The value
of this property is a list of hosts,
separated by the vertical bar (|)
character. In addition, you can
use the asterisk (*) for pattern
matching. For example, the
following specifies that every host
in the exmaple.com domain and
localhost should be accessed
directly even if a proxy server is
specified:
Dftp.nonProxyHosts="*.exam
ple.com|localhost"

The default value excludes all

common variations of the
loopback address.

SOCKS Proxy Properties

The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP level.
Specifying a SOCKS proxy server results in all TCP connections going through that proxy
server unless other proxies are specified. The following proxy settings are used by the SOCKS

protocol handler.

Table 10-7 SOCKS Proxy Properties
]

Property

Default Value

Description

java.net.socks.username

No default value

See Acquiring the SOCKS User
Name and Password

java.net.socks.password

No default value

See Acquiring the SOCKS User
Name and Password

socksProxyHost No default value SOCKS proxy server that the
SOCKS protocol handler will use.
socksProxyPort 1080 Port that the SOCKS protocol

handler will use.

ORACLE

10-10

Table 10-7 (Cont.) SOCKS Proxy Properties

Chapter 10
Networking System Properties

Property

Default Value

Description

socksProxyVersion

The version of the SOCKS
protocol supported by the server.
The default is 5 indicating
SOCKS V5; alternatively 4 can
be specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password

The SOCKS user name and password are acquired in the following way:

1. First, if the application has registered a java.net.Authenticator default instance,
then this will be queried with the protocol set to the string Socks5, and the prompt set to the

string SOCKS authentication.

2. If the authenticator does not return a user name/password or if no authenticator is
registered, then the system checks the values of properties java.net.socks.username and

java.net.socks.password.

3. If these values don't exist, then the system property user.name is checked for a user name.

In this case, no password is supplied.

Other Proxy-Related Properties

Table 10-8 Other Proxy-Related Properties

Property

Default Value

Description

jdk.http.auth.proxying.dis See conf/net.properties

abledSchemes

Lists the authentication schemes
that will be disabled when
proxying HTTP.

The value of this property is a
comma-separated list of case-
insensitive authentication scheme
names, as defined by their
relevant RFCs. Schemes include
Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may be
undesirable when proxying HTTP
or HTTPS. For example, Basic
results in effectively the cleartext
transmission of the user's
password over the physical
network.

ORACLE

10-11

Table 10-8 (Cont.) Other Proxy-Related Properties
]

Property

Default Value

Chapter 10
Networking System Properties

Description

jdk.http.auth.tunneling.di
sabledSchemes

See conf/net.properties

Lists the authentication schemes
that will be disabled when
tunneling HTTPS over a proxy
with the HTTP CONNECT
method.

The value of this property is a
comma-separated list of case-
insensitive authentication scheme
names, as defined by their
relevant RFCs. Schemes include
Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

java.net.useSystemProxies

false

If true, then the operating
system's proxy settings are used.

Note that the system properties
that explicitly set proxies like
http.proxyHost take
precedence over the system
settings even if
java.net.useSystemProxies
is set to true.

This property is checked only
once, at startup.

UNIX Domain Sockets Properties

Calling serverSocketChannel .bind with a null address parameter will bind the channel's
socket to an automatically assigned socket address. For UNIX domain sockets, this means a

unigue path in some predefined

system temporary directory.

Use these properties to control the selection of this directory:

Table 10-9 UNIX Doman Sockets Properties
]

Property

Default Value

Description

java.io.tmpdir

Dependent on the operating
system

If the temporary directory can't be
determined with the
jdk.net.unixdomain.tmpdir
system property, then the
directory specified by the
java.io.tmpdir system
property is used.

jdk.net.unixdomain.tmpdir

On some platforms, (for example,
some UNIX systems) this will
have a predefined default value.
On others, (for example,
Windows) there is no default
value.

Specifies the directory to use for
automatically bound server
socket addresses.

ORACLE

10-12

Chapter 10
Networking System Properties

On Linux and macOS, the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the $SJAVA HOME/conf/net.properties file
3. The system property java.io.tmpdir
On Windows, the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the $JAVA HOME%\conf\net.properties file
3. The TEMP environment variable
4. The system property java.io.tmpdir

Because UNIX domain socket addresses are limited in length to approximately 100 bytes
(depending on the platform), it is important to ensure that the temporary directory's name
together with the file name used for the socket does not exceed this limit.

Note:

If a client socket is connected to a remote destination without calling bind first, then
the socket is implicitly bound. In this case, UNIX domain sockets are unnamed (that
is, their path is empty). This behavior is not affected by any system or networking
properties.

Other HTTP URL Stream Protocol Handler Properties

ORACLE

These properties are checked only once, at startup.

Table 10-10 Other HTTP URL Stream Protocol Handler Properties

|
Property Default Value Description

http.agent Java/<version> Defines the string sent in the
User-Agent request header in
HTTP requests. Note that the
string Java/<version> will be
appended to the one provided in
the property.
For example, if -
Dhttp.agent="example" is
specified, the User-Agent header
will contain example Java/
1.8.0 if the version of the JVM is

1.8.0).
http.auth.digest.cnonceRep 5 See System Properties That
eat Modify the Behavior of HTTP

Digest Authentication

Mechanism.

10-13

ORACLE

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value

Description

http.auth.digest.reEnabled No default value
Algorithms

By default, certain message
digest algorithms are disabled for
use in HTTP Digest
authentication due to their proven
security limitations. This only
applies to proxy authentication
and plain-text HTTP server
authentication. Disabled
algorithms are still usable for
HTTPS server authentication.
The default list of disabled
algorithms is specified in the
java.security properties file
and currently comprises MD5 and
SHA-1. If it is still required to use
one of these algorithms, then
they can be re-enabled by setting
this property to a comma-
separated list of the algorithm
names.

http.auth.digest.validateP false
TOXY

See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth.digest.validateS false
erver

See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

10-14

ORACLE

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property Default Value

Description

http.auth.ntlm.domain No default value

Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the
java.net.Authenticator
class to acquire user names and
passwords when they are
needed. However, NTLM also
needs the NT domain name.
There are three options for
specifying the domain:

1. Do not specify it. In some
environments, the domain is
not actually required and the
application does not have to
specify it.

2. The domain name can be
encoded within the user
name by prefixing the
domain name followed by a
backslash (\) before the user
name. With this method,
existing applications that use
the Authenticator class
do not need to be modified,
as long as users are made
aware that this notation must
be used.

3. If adomain name is not
specified as in the second
option and the system
property
http.auth.ntlm.domain
is defined, then the value of
this property will be used as
the domain name.

http.keepAlive true

Indicates if persistent (keep-alive)
connections should be supported.
They improve performance by
allowing the underlying socket
connection to be reused for
multiple HTTP requests. If this is
set to true, then persistent
connections will be requested
with HTTP 1.1 servers.

Set this property to false to

disable the use of persistent
connections.

http.KeepAlive.queuedConne 10
ctions

The maximum number of keep-
alive connections to be on the
gueue for clean up.

10-15

ORACLE

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property

Default Value

Description

http.KeepAlive.remainingDa 512

ta

The maximum amount of data in
kilobytes that will be cleaned off
the underlying socket so that it
can be reused.

http.keepAlive.time.server 5

and
http.keepAlive.time.proxy

These properties modify the
behavior of the HTTP keepalive
cache in the case where the
server (or proxy) has not
specified a keepalive time. If the
property is set in this case, then
idle connections will be closed
after the specified number of
seconds. If the property is set,
and the server does specify a
keepalive time in a "Keep-Alive"
response header, then the time
specified by the server is used. If
the property is not set and also
the server does not specify a
keepalive time, then connections
are kept alive for an
implementation defined time,
assuming http.keepAlive is
true.

http.maxConnections

If HTTP persistent connections
(see the http.keepAlive
property) are enabled, then this
value determines the maximum
number of idle connections that
will be simultaneously kept alive
per destination.

http.maxRedirects

Integer value that determines the
maximum number, for a given
request, of HTTP redirects that
will be automatically followed by
the protocol handler.

10-16

ORACLE

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties
]

Property

Default Value

Description

jdk.https.negotiate.cbt

never

Controls the generation and
sending of TLS channel binding
tokens (CBT) when Kerberos or
the Negotiate authentication
scheme using Kerberos are
employed over HTTPS with
HttpsURLConnection.
There are three possible settings:

e never: Thisis also the
default value if the property
is not set. In this case, CBTs
are never sent.

* always: CBTs are sent for
all Kerberos authentication
attempts over HTTPS.

. domain: <comma-
separated domain 1list>:
Each domain in the list
specifies the destination host
or hosts for which a CBT is
sent. Domains can be:

— Single hosts like
example or
example.com

— Literal IP addresses as
specified in RFC 2732

— Hostnames that contain
wildcards like
* example. com; this
example matches all
hosts under
example.com and its
subdomains.

The channel binding tokens

generated are of the type t1s-

server-end-point as defined

in RFC 5929.

10-17

Chapter 10
Networking System Properties

Table 10-10 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

jdk.http.ntlm.transparentA No default value Enables transparent New

uth Technology LAN Manager
(NTLM) HTTP authentication on
Windows.

Transparent authentication can
be used for the NTLM scheme,
where the security credentials
based on the currently logged in
user's name and password can
be obtained directly from the
operating system, without
prompting the user.

If this value is not set, then

transparent authentication is
never used.

This property has three possible
values:

* disabled: Transparent
authentication is never used.
e allHosts: Transparent.
authentication is used for all
hosts
* trustedHosts: Transparent
authentication is enabled for
hosts that are trusted in
Windows Internet settings.
Note that NTLM is not a strongly
secure authentication scheme;
care should be taken before
enabling it.

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

The system properties http.auth.digest.validateServer and
http.auth.digest.validateProxy modify the behavior of the HTTP digest authentication
mechanism. Digest authentication provides a limited ability for the server to authenticate itself
to the client (that is, by proving that it knows the user's password). However, not all servers
support this capability and by default the check is switched off. To enforce this check for
authentication with an origin, set http.auth.digest.validateServer to true; with a proxy
server, set http.auth.digest.validateProxy to true.

It is usually not necessary to set the system property http.auth.digest.cnonceRepeat. This
determines how many times a cnonce value is reused. This can be useful when the MD5-sess
algorithm is being used. Increasing the value reduces the computational overhead on both the
client and the server by reducing the amount of material that has to be hashed for each HTTP
request.

Specify Mappings from Host Names to IP Addresses

ORACLE 1018

Chapter 10
Networking System Properties

You can customize the mapping from host names to IP addresses by deploying a system-wide
resolver. See the InetAddressResolverProvider class in the Java SE API Specification
for more information. In cases where this is not practical, such as testing, you can configure
InetAddress to use a specific hosts file, rather than the system-wide resolver, to map host
names to IP addresses. Specify this hosts file with the system property jdk.net.hosts.file.

¢ Note:

Use a specific hosts file for testing; it's not intended as a general purpose solution
because the complete list of host names is not always known in advance.

By default, the system property jdk.net.hosts.file is not set. If it's set, then name service
lookups are obtained from the file specified by this system property. If this system property
specifies a file that doesn't exist, then it treats it as an empty file, and a name/address lookup
throws an UnknownHostException.

The structure of the hosts file is similar to a Linux or macOS /etc/hosts file. Each line of
this text file has the following syntax:

IPAddress hostname [host aliases...]

* IPAddress: IP address
* hostname: Host name to which the IP address is mapped

— A host name should have the syntax and structure of a fully qualified domain name
(FQDN), composed of alphanumeric characters, hyphens (-), and periods (.). It should
begin and end with an alphanumeric character.

— Note that no syntax checking or host name validation is performed.
e [host aliases...]:An optional list of host aliases

The fields of an entry are separated by any humber of whitespace (spaces and tabs).

A comment, which starts with a number sign (#) and followed by text until the end of the line, is
ignored.

The following is an example of a hosts file:
sample jdk.net.hosts.file entries

127.0.0.1 localhost
127.0.0.1 host.rabbit.hole

127.0.0.1 cl.this.domain
192.0.2.0 testhost.testdomain
192.0.2.255 testhost2.testdomain

Address Cache Properties

ORACLE

The java.net package, when performing name resolution, uses an address cache for both
security and performance reasons. Any address resolution attempt, be it forward (hame to IP
address) or reverse (IP address to name), will have its result cached, whether it was
successful or not, so that subsequent identical requests will not have to access the naming
service. These properties enable you to tune how the address cache operates.

10-19

Note:

Properties.

Table 10-11 Address Cache Properties

Chapter 10
Networking System Properties

The following properties are part of the security policy. They are not set by the -D
option or the System.setProperty () method. Instead, they are set as Security

Property Default Value Description
networkaddress.cache.ttl 30 Specified in the SJAVA HOME/
conf/security/

java.security file to
indicate the caching policy for
successful name lookups from
the name service. The value is an
integer corresponding to the
number of seconds successful
name lookups will be kept in the
cache.

A value of -1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no
caching.

networkaddress.cache.negat 10
ive.ttl

Specified in the SJAVA HOME/
conf/security/
java.security fileto
indicate the caching policy for
unsuccessful name lookups from
the name service.

The value is an integer
corresponding to the number of
seconds an unsuccessful name
lookup will be kept in the cache.
A value of -1 (or any negative
value) means “cache forever,”
while a value of 0 (zero) means
no caching.

Enhanced Exception Messages

By default, for security reasons, exception messages do not include potentially sensitive
security information such as hostnames or UNIX domain socket address paths. Use the
jdk.includeInExceptions to relax this restriction for debugging and other purposes.

ORACLE

10-20

ORACLE

Table 10-12 Enhanced Exception Messages Property

Chapter 10
Networking System Properties

Property

Default Value

Description

jdk.includeInExceptions

No default value

The value is a omma-separated
list of keywords that refer to
exception types whose messages
may be enhanced with more
detailed information.

In particular, if the value includes
the string hostInfo, then socket
addresses will be included in
exception message texts (for
example, hostnames and UNIX
domain socket address paths).

10-21

Pseudorandom Number Generators

Random number generators included in Java SE are more accurately called pseudorandom
number generators (PRNGS). They create a series of numbers based on a deterministic
algorithm.

The most important interfaces and classes are RandomGenerator, which enables you to
generate random numbers of various primitive types given a PRNG algorithm, and
RandomGeneratorFactory, which enables you to create PRNGs based on characteristics

other than the algorithm's name.
See the java.util.random package for more detailed information about the PRNGs
implemented in Java SE.
Topics
* Characteristics of PRNGs
e Generating Pseudorandom Numbers with RandomGenerator Interface
e Generating Pseudorandom Numbers in Multithreaded Applications
— Dynamically Creating New Generators
— Creating Stream of Generators
e Choosing a PRNG Algorithm

Characteristics of PRNGs

ORACLE

Because PRNGs generate a sequence of values based on an algorithm instead of a “random”
physical source, this sequence will eventually restart. The number of values a PRNG
generates before it restarts is called a period.

The state cycle of a PRNG consists of the sequence of all possible values a PRNG can
generate. The state of a PRNG is the position of the last generated value in its state cycle.

In general, to generate a value, the PRNG bases it on the previously generated value.
However, some PRNGs can generate a value many values further down the sequence without
calculating any intermediate values. These are called jumpable PRNGs because they could
jump far ahead in the sequence of values, usually by a fixed distance, typically 264. A leapable
PRNG can jump even further, typically 2128 values. An arbitrarily jumpable PRNG can jump to
any value in the generated sequence of values.

The java.util.Random Class Compared to Other PRNGs

The java.util.random.RandomGeneratorFactory class enables you to create various
PRNGs, many of which are in the jdk. random package. The most significant difference
between the PRNGS in jdk.random and the java.util.Random class is that Random has a
very short period: only 248 values.

11-1

Chapter 11
Generating Pseudorandom Numbers with RandomGenerator Interface

Generating Pseudorandom Numbers with RandomGenerator
Interface

The following example demonstrates the basic way to create a PRNG and use it to generate a
random number:

RandomGenerator randoml = RandomGenerator.of ("Random");
long valuel = randoml.nextLong();
System.out.println(valuel);

It uses the method RandomGenerator.of (String). The argument of this method is the
algorithm name of the PRNG. Java SE contains many PRNG classes. Unlike Random,
however, most of them are in the jdk.random package.

The RandomGenerator interface contains many methods such as nextLong (),
nextInt (), nextDouble (), and nextBoolean () to generate a random number of various
primitive data types.

The following example demonstrates how to create a PRNG using the
RandomGeneratorFactory class:

RandomGeneratorFactory<RandomGenerator> factory2 =
RandomGeneratorFactory.of ("SecureRandom") ;

RandomGenerator random2 = factory2.create();

long value2 = random2.nextLong();

System.out.println(value?2);

To obtain a list of PRNGs implemented by Java SE, call the
RandomGeneratorFactory.all () method:

RandomGeneratorFactory.all ()
.map (f -> f.name())
.sorted()
.forEach(n -> System.out.println(n));

This method returns a stream of all the available RandomGeneratorFactory instances
available.

You can use the RandomGeneratorFactory class to create PRNGs based on
characteristics other than an algorithm’s name. The following example finds the PRNG with the
longest period, and creates a RandomGeneratorFactory based on this characteristic:

RandomGeneratorFactory<RandomGenerator> greatest =
RandomGeneratorFactory

.allq()
.sorted((f, g) -> g.period().compareTo (f.period()))
.findFirst ()

.orElse (RandomGeneratorFactory.of ("Random")) ;
System.out.println(greatest.name());
System.out.println(greatest.group())
System.out.println(greatest.create()

’

.nextLong());

ORACLE 110

Chapter 11
Generating Pseudorandom Numbers in Multithreaded Applications

Generating Pseudorandom Numbers in Multithreaded
Applications

If multiple threads in your application are generating sequences of values using PRNGs, then
you want to ensure that there’s no chance that these sequences contain values that coincide
with each other, especially if they’re using the same PRNG algorithm. (You would want to use
the same PRNG algorithm to ensure that all your application’s pseudorandom number
sequences have the same statistical properties.) Splittable, jumpable, and leapable PRNGs
are ideal for this; they can create a stream of generators that have the same statistical
properties and are statistically independent.

There are two techniques you can use to incorporate PRNGs into your applications. You can
dynamically create a new generator when an application needs to fork a new thread.
Alternatively, you can create a stream of RandomGenerator objects based on an initial
RandomGenerator, then map each RandomGenerator object from the stream to its own
thread.

Dynamically Creating New Generators

If you're using a PRNG that implements the RandomGenerator.SplittableGenerator
interface, then when a thread running in your application needs to fork a new thread, call the
split () method. It creates a new generator with the same properties as the original
generator. It does this by partitioning the original generator’s period into two; each partition is
for the exclusive use of either the original or new generator.

The following example uses the L128X1024MixRandom PRNG, which implements the
RandomGenerator.SplittableGenerator interface. The IntStream processes stream
represents tasks intended to be run on different threads.

int NUM PROCESSES = 100;

RandomGeneratorFactory<SplittableGenerator> factory =
RandomGeneratorFactory.of ("L128X1024MixRandom") ;
SplittableGenerator random = factory.create();

IntStream processes = IntStream.rangeClosed(l, NUM PROCESSES);

processes.parallel().forEach(p -> {
RandomGenerator r = random.split();
System.out.println(p + ": " + r.nextLong());
1

Splittable PRNGs generally have large periods to ensure that new objects resulting from a split
use different state cycles. But even if two instances "accidentally” use the same state cycle,
they are highly likely to traverse different regions of that shared state cycle.

Creating Stream of Generators

If the initial generator implements the interface
RandomGenerator.StreamableGenerator, then call the method rngs (), jumps () (for
jumpable generators), or 1eaps () (for leapable generators) to create a stream of generators.
Call the map () method on the stream to assign each generator to its own thread.

ORACLE 113

Chapter 11
Choosing a PRNG Algorithm

When you call the jumps () method, the generator changes its state by jumping forward a
large fixed distance within its state cycle, then creates a new generator based on the

generator’'s new state. The generator repeatedly jumps and creates generators, creating a
stream of generators. The 1eaps () method is similar; the size of the jump is much larger.

The following example creates a jumpable generator, then creates a stream of generators
based on this initial generator by calling the jumps () method. The first several generators in
the stream (defined by NUM TASKS) are wrapped in a Task instance, then each Task is run in its
own thread.

int NUM TASKS = 10;

RandomGeneratorFactory<JumpableGenerator> factory =
RandomGeneratorFactory.of ("Xoshiro256PlusPlus") ;
JumpableGenerator random = factory.create();

class Task implements Runnable {

private int p;

private RandomGenerator r;

public Task(RandomGenerator prng) {
r = prng;

}

public void run() {
System.out.println(r.nextLong());

}

}

List<Thread> taskList = random
. jumps ()
.limit(NUM_TASKS)
.map (prng -> new Thread(new Task(prng)))
.collect (Collectors.toList());
taskList.stream().forEach(t -> t.start());

Choosing a PRNG Algorithm

For applications (such as physical simulation, machine learning, and games) that don't require
a cryptographically secure algorithm, the java.util.random package provides multiple
implementations of interface RandomGenerator that focus on one or more PRNG properties,
which include speed, space, period, accidental correlation, and equidistribution.

Note:

As PRNG algorithms evolve, Java SE may add new PRNG algorithms and deprecate
older ones. It's recommended that you don't use deprecated algorithms; they may be
removed from a future Java SE release. Check if an algorithm has been deprecated
by calling either the RandomGenerator.isDeprecated () or
RandomGeneratorFactory.isDeprecated () method

Cryptographically Secure

For applications that require a random number generator algorithm that is cryptographically
secure, use the SecureRandom class in the java.security package.

ORACLE 112

ORACLE

Chapter 11
Choosing a PRNG Algorithm

See The SecureRandom Class in Java Platform, Standard Edition Security Developer's Guide
for more information.

General Purpose

For applications with no special requirements, L64X128MixRandom balances speed, space,
and period well. It's suitable for both single-threaded and multithreaded applications when used
properly (a separate instance for each thread).

Single-Threaded, High Performance

For single-threaded applications, Xoroshiro128PlusPlus is small, fast, and has a sufficiently
long period.

32-Bit Applications

For applications running in a 32-bit environment and using only one or a small number of
threads, L32X64StarStarRandom or L32X64MixRandom are good choices.

Multithreaded Applications with Static Threads

For applications that use many threads that are allocated in one batch at the start of
computation, consider a jumpable generator such as Xoroshiro128PlusPlus or
Xoshiro256PlusPlus or a splittable generator such as L64X128MixRandom or
L64X256MixRandom. If your application uses only floating-point values from a uniform
distribution where no more than 32 bits of floating-point precision is required and exact
equidistribution is not required, then MRG32k3a, a classic and well-studied algorithm, may be
appropriate.

Multithreaded Applications with Dynamic Threads

For applications that create many threads dynamically, perhaps through the use of spliterators,
a splittable generator such as L64X128MixRandom or L64X256MixRandom is recommended.

If the number of generators created dynamically may be very large (millions or more), then
using generators such as L128X128MixRandom or L128X256MixRandom will make it much
less likely that two instances use the same state cycle.

Tuples of Consecutively Generated Values

For applications that use tuples of consecutively generated values, consider a generator that is
k-equidistributed such that k is at least as large as the length of the tuples being generated.
For example, the generator L64X256MixRandom is shown to be 4-equidistributed, which
means that you can have a sequence of tuples that contain four values, and these tuples will
be uniformly distributed (there’s an equal chance that any 4-tuple will appear in the sequence).
It's also shown that L64X1024MixRandom is 16-equidistributed.

Large Permutations

For applications that generate large permutations, consider a generator whose period is much
larger than the total number of possible permutations; otherwise, it will be impossible to
generate some of the intended permutations. For example, if the goal is to shuffle a deck of 52
cards, the number of possible permutations is 52! (52 factorial), which is approximately 222558,
so it may be best to use a generator whose period is roughly 2256 or larger, such as
L64X256MixRandom, L64X1024MixRandom, L128X256MixRandom, or
L128X1024MixRandom.

11-5

Foreign Function and Memory API

The Foreign Function and Memory (FFM) API enables Java programs to interoperate with
code and data outside the Java runtime. This API enables Java programs to call native
libraries and process native data without the brittleness and danger of JNI. The API invokes
foreign functions, code outside the JVM, and safely accesses foreign memory, memory not
managed by the JVM.

For background information about the FFM API, see JEP 454,

The FFM API is contained in the package java.lang.foreign.

Topics

* On-Heap and Off-Heap Memory

¢ Memory Segments and Arenas

e Calling a C Library Function with the Foreign Function and Memory API
» Upcalls: Passing Java Code as a Function Pointer to a Foreign Function
e Foreign Functions That Return Pointers

e Memory Layouts and Structured Access

» Checking for Native Errors Using errno

« Slicing Allocators and Slicing Memory Segments

* Restricted Methods

« Calling Native Functions with jextract

On-Heap and Off-Heap Memory

On-heap memory is memory in the Java heap, which is a region of memory managed by the
garbage collector. Java objects reside in the heap. The heap can grow or shrink while the
application runs. When the heap becomes full, garbage collection is performed: The JVM
identifies the objects that are no longer being used (unreachable objects) and recycles their
memory, making space for new allocations.

Off-heap memory is memory outside the Java heap. To invoke a function or method from a
different language such as C from a Java application, its arguments must be in off-heap
memory. Unlike heap memaory, off-heap memory is not subject to garbage collection when no
longer needed. You can control how and when off-heap memory is deallocated.

You interact with off-heap memory through a MemorySegment object. You allocate a
MemorySegment object with an arena, which enables you to specify when the off-heap
memory associated with the MemorySegment object is deallocated.

Memory Segments and Arenas

ORACLE 191

https://openjdk.java.net/jeps/454
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html

Chapter 12
Memory Segments and Arenas

You can access off-heap or on-heap memory with the Foreign Function and Memory (FFM)
API through the MemorySegment interface. Each memory segment is associated with, or
backed by, a contiguous region of memory. There are two kinds of memory segments:

e Heap segment: This is a memory segment backed by a region of memory inside the Java
heap, an on-heap region.

e Native segment: This is a memory segment backed by a region of memory outside the
Java heap, an off-heap region. The examples in this chapter demonstrate how to allocate
and access native segments.

An arena controls the lifecycle of native memory segments. To create an arena, use one of the
methods in the Arena interface, such as Arena.ofConfined (). You use an arena to
allocate a memory segment. Each arena has a scope, which specifies when the region of
memory that backs the memory segment will be deallocated and is no longer valid. A memory
segment can only be accessed if the scope associated with it is still valid or alive.

Most of the examples described in this chapter use a confined arena, which is created with
Arena::ofConfined. A confined arena provides a bounded and deterministic lifetime. Its
scope is alive from when it's created to when it's closed. A confined arena has an owner
thread. This is typically the thread that created it. Only the owner thread can access the
memory segments allocated in a confined arena. You'll get an exception if you try to close a
confined arena with a thread other than the owner thread.

There are other kinds of arenas:

* A shared arena, which is created with Arena: : of Shared, has no owner thread. Multiple
threads may access the memory segments allocated in a shared arena. In addition, any
thread may close a shared arena, and the closure is guaranteed to be safe and atomic.
See Slicing Memory Segments for an example of a shared arena.

e An automatic arena, which is created with Arena: : ofAuto. This is an area that's
managed, automatically, by the garbage collector. Any thread can access memory
segments allocated by an automatic arena. If you call Arena: : close on an automatic
arena, you'll get a UnsupportedOperationException

e Aglobal arena, which is created with Arena: : global. Any thread can access memory
segments allocated with this arena. In addition, the region of memory of these memory
segments is never deallocated; if you call Arena: : close on a global arena, you'll get a
UnsupportedOperationException

The following example allocates a memory segment with an arena, stores a Java Stringin
the off-heap memory associated with the memory segment, and then prints the contents of the
off-heap memory. At the end of the try-with-resources block, the arena is closed, and the off-
heap memory associated with the memory segment is deallocated.

String s = "My string";
try (Arena arena = Arena.ofConfined()) {

// Allocate off-heap memory
MemorySegment nativeText = arena.allocateFrom(s);

// Access off-heap memory
for (int 1 = 0; 1 < s.length(); i++) {
System.out.print ((char)nativeText.get (ValueLayout.JAVA BYTE, 1i));
}
} // Off-heap memory is deallocated

ORACLE 1o

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Arena.html

Chapter 12
Memory Segments and Arenas

The following sections describe this example in detail:
e Allocating a Memory Segment with an Arena and Storing a String in It
e Printing the Contents of Off-Heap Memory

e Closing an Arena

Allocating a Memory Segment with an Arena and Storing a String in It

The Arena interface extends the SegmentAllocator interface, which contains methods that
both allocate off-heap memory and copy Java data into it. The previous example calls the
method SegmentAllocator.allocateFrom(String), which allocates a memory segment
with an arena, converts a string into a UTF-8 encoded, null-terminated C string, and then
stores the string into the memory segment.

String s = "My string";
try (Arena arena = Arena.ofConfined()) {

// Allocate off-heap memory
MemorySegment nativeText = arena.allocateFrom(s);

/o

Tip:

You can call SegmentAllocator.allocateFrom(String, Charset) to store a
string with a different charset. The SegmentAllocator interface contains several
allocateFrom methods that enable you to store data of various data types in a
memory segment.

See Memory Layouts and Structured Access for information about allocating and accessing
more complicated native data types such as C structures.

Printing the Contents of Off-Heap Memory

ORACLE

The following code prints the characters stored in the MemorySegment named nativeText:

// Access off-heap memory
for (int i = 0; i < s.length(); i++) {
System.out.print ((char)nativeText.get (ValueLayout.JAVA BYTE,

The MemorySegment interface contains various access methods that enable you to read from
or write to memory segments. Each access method takes as an argument a value layout,
which models the memory layout associated with values of basic data types such as primitives.
A value layout encodes the size, the endianness or byte order, the bit alignment of the piece of
memory to be accessed, and the Java type to be used for the access operation.

For example, MemoryLayout.get (ValueLayout.OfByte, long) takes as an argument
ValueLayout.JAVA BYTE. This value layout has the following characteristics:

¢ The same size as a Java byte

12-3

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/Arena.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/SegmentAllocator.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/SegmentAllocator.html#allocateFrom(java.lang.String)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/SegmentAllocator.html#allocateFrom(java.lang.String,java.nio.charset.Charset)

Chapter 12
Calling a C Library Function with the Foreign Function and Memory AP

« Byte alignment set to 1: This means that the memory layout is stored at a memory address
that's a multiple of 8 bits.

e Byte order set to ByteOrder.nativeOrder (): A system can order the bytes of a multibyte
value from most significant to least significant (big-endian) or from least significant to most
significant (little-endian).

Closing an Arena

When an arena is closed, such as through a try-with-resources statement, then the arena's
scope is no longer alive: All memory segments associated with its scope are invalidated, and
the memory regions backing them are deallocated.

If you try to access a memory segment associated with an arena scope that's closed, you'll get
an IllegalStateException, which the following example demonstrates:

String s = "My String";
MemorySegment nativeText;
try (Arena arena = Arena.ofConfined()) {

// Allocate off-heap memory
nativeText = arena.allocateFrom(s);
}
for (int i = 0; i < s.length(); i++) {
// Exception in thread "main" java.lang.IllegalStateException:
Already closed
System.out.print ((char)nativeText.get (ValueLayout.JAVA BYTE, 1i));

}

Calling a C Library Function with the Foreign Function and
Memory API

ORACLE

The following example calls st r1en with the Foreign Function and Memory API:

static long invokeStrlen (String s) throws Throwable {
try (Arena arena = Arena.ofConfined()) {
// Allocate off-heap memory and
// copy the argument, a Java string, into off-heap memory
MemorySegment nativeString = arena.allocateFrom(s);

// Link and call the C function strlen

// Obtain an instance of the native linker
Linker linker = Linker.nativelLinker();

// Locate the address of the C function signature
SymbolLookup stdLib = linker.defaultLookup();
MemorySegment strlen addr = stdLib.find("strlen").get();

// Create a description of the C function
FunctionDescriptor strlen sig =

12-4

Chapter 12
Calling a C Library Function with the Foreign Function and Memory API

FunctionDescriptor.of (ValueLayout.JAVA LONG,

ValueLayout.ADDRESS) ;

// Create a downcall handle for the C function
MethodHandle strlen = linker.downcallHandle(strlen addr,

strlen sig);

// Call the C function directly from Java
return (long)strlen.invokeExact (nativeString);

The following is the declaration of the strlen C standard library function:

size t strlen(const char *s);

It takes one argument, a string, and returns the length of the string. To call this function from a
Java application, you would follow these steps:

1.

Allocate off-heap memory, which is memory outside the Java runtime, for the strlen
function's argument.

Store the Java string in the off-heap memory that you allocated.
The invokeStrlen example performs the previous step and this step with the following
statement:

MemorySegment nativeString = arena.allocateFrom(s);

Build and then call a method handle that points to the strlen function. The topics in this
section show you how to do this.

The following sections describe this example in detail:

Obtaining an Instance of the Native Linker
Locating the Address of the C Function
Describing the C Function Signature

Creating the Downcall Handle for the C Function

Calling the C Function Directly from Java

Obtaining an Instance of the Native Linker

The following statement obtains an instance of the native linker, which provides access to the
libraries that adhere to the calling conventions of the platform in which the Java runtime is
running. These libraries are referred to as "native" libraries.

Linker linker = Linker.nativelLinker();

Locating the Address of the C Function

To call a native method such as strlen, you need a downcall method handle, which is a
MethodHandle instance that points to a native function. This instance requires the native

ORACLE

12-5

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/lang/invoke/MethodHandle.html

Chapter 12
Calling a C Library Function with the Foreign Function and Memory AP

function's address. To obtain this address, you use a symbol lookup, which enables you to
retrieve the address of a symbol (such as the strlen function) in one or more libraries.

The following statements obtain the address of the strlen function:

// Obtain an instance of the C function
Linker linker = Linker.nativelLinker();

// Locate the address of the C function signature
SymbolLookup stdLib = linker.defaultLookup();
MemorySegment strlen addr = stdLib.find("strlen").get();

Because strlen is part of the C standard library, this example uses the native linker's default
lookup by calling Linker.defaultLookup (). A default lookup is a symbol lookup for
symbols in a set of commonly used libraries (including the C standard library).

Note:

Call the method SymbolLookup.libraryLookup (String, Arena) to create a
symbol lookup from the name of a library. This method loads the specified library and
associates it with an arena, which controls the symbol lookup's lifetime. The following
example specifies 1ibc. so. 6, which is the name of the C standard library for many
Linux systems.

SymbolLookup stdLib =
SymbolLookup.libraryLookup ("libc.so.6", arena);
MemorySegment strlen addr = stdLib.find("strlen").get();

Tip:

Call symbolLookup.loaderLookup () to find symbols in libraries that are loaded
with System.loadLibrary (String).

Describing the C Function Signature

ORACLE

A downcall method handle also requires a description of the native function's signature, which
is represented by a FunctionDescriptor instance. A function descriptor describes the
layouts of the native function's arguments and its return value, if any.

Each layout in a function descriptor maps to a Java type, which is the type that should be used
when invoking the resulting downcall method handle. Most value layouts map to a Java
primitive type. For example, ValueLayout.JAVA INT maps to an int value. However,
ValueLayout.ADDRESS maps to a pointer.

Composite types such as struct and union types are modeled with the GroupLayout
interface, which is a supertype of StructLayout and UnionLayout. See Memory Layouts
and Structured Access for an example of how to initialize and access a C structure.

12-6

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#defaultLookup()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.lang.String,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/SymbolLookup.html#loaderLookup()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/System.html#loadLibrary(java.lang.String)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/FunctionDescriptor.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#ADDRESS
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/GroupLayout.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/StructLayout.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/UnionLayout.html

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

The following creates a function descriptor for the str1en function:

// Create a description of the C function signature
FunctionDescriptor strlen sig =
FunctionDescriptor.of (ValueLayout.JAVA LONG,
ValueLayout.ADDRESS) ;

The first argument of the FunctionDescriptor: : of method is the layout of the native
function's return value. Native primitive types are modeled using value layouts whose size
matches that of such types. This means that a function descriptor is platform-specific. For
example, size t has a layout of JAVA LONG on 64-bit or x64 platforms but a layout of
JAVA INT on 32-bit or x86 platforms.

Q Tip:

To determine the layout of a native primitive type that the native linker uses for your
platform, call the method Linker: :canonicallayouts.

The subsequent arguments of FunctionDescriptor: :of are the layouts of the native
function's arguments. In this example, there's only one subsequent argument, a
ValueLayout.ADDRESS. This represents the only argument for strlen, a pointer to a string.

Creating the Downcall Handle for the C Function

The following statement creates a downcall method handle for the strlen function with its
address and function descriptor.

// Create a downcall handle for the C function

MethodHandle strlen = linker.downcallHandle(strlen addr,
strlen sig);

Calling the C Function Directly from Java

The following statement calls the strlen function with a memory segment that contains the
function's argument:

// Call the C function directly from Java
return (long)strlen.invokeExact (nativeString);

You need to cast a method handle invocation with the expected return type; in this case, it's
long.

Upcalls: Passing Java Code as a Function Pointer to a Foreign
Function

An upcall is a call from native code back to Java code. An upcall stub enables you to pass
Java code as a function pointer to a foreign function.

ORACLE 12-7

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/FunctionDescriptor.html#of(java.lang.foreign.MemoryLayout,java.lang.foreign.MemoryLayout...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_LONG
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/Linker.html#canonicalLayouts()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#ADDRESS

ORACLE

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

Consider the standard C library function gsort, which sorts the elements of an array:

void gsort(void *base, size t nmemb, size t size,
int (*compar) (const void *, const void *));

It takes four arguments:

* Dbase: Pointer to the first element of the array to be sorted

* nbemb: Number of elements in the array

* size: Size, in bytes, of each element in the array

e compar: Pointer to the function that compares two elements

The following example calls the gsort function to sort an int array. However, this method
requires a pointer to a function that compares two array elements. The example defines a
comparison method named Qsort: :gsortCompare, creates a method handle to represent this
comparison method, and then creates a function pointer from this method handle.

import java.lang.foreign.*;
import java.lang.invoke.*;
import java.lang.foreign.ValueLayout.*;

public class InvokeQsort {

class Qsort {
static int gsortCompare (MemorySegment eleml, MemorySegment elem?) {
return Integer.compare (eleml.get (ValueLayout.JAVA INT, 0),
elem2.get (ValueLayout.JAVA INT, 0));
}
}

// Obtain instance of native linker
final static Linker linker = Linker.nativeLinker();

static int[] gsortTest (int[] unsortedArray) throws Throwable {
int[] sorted = null;

// Create downcall handle for gsort
MethodHandle gsort = linker.downcallHandle (
linker.defaultLookup () .find ("gsort") .get (),
FunctionDescriptor.ofVoid(ValueLayout.ADDRESS,
ValueLayout.JAVA LONG,
ValueLayout.JAVA LONG,
ValueLayout.ADDRESS)) ;

// Create method handle for gsortCompare
MethodHandle comparHandle = MethodHandles.lookup ()
.findStatic(Qsort.class,
"gsortCompare",
MethodType.methodType (int.class,
MemorySegment.class,
MemorySegment.class));

// Create a Java description of a C function implemented by a Java

12-8

ORACLE

method

it

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

FunctionDescriptor gsortCompareDesc = FunctionDescriptor.of (
ValueLayout.JAVA INT,
ValueLayout.ADDRESS.withTargetLayout (ValueLayout.JAVA INT),
ValueLayout.ADDRESS.withTargetLayout (ValueLayout.JAVA INT));

// Create function pointer for gsortCompare

MemorySegment compareFunc = linker.upcallStub (comparHandle,
gsortCompareDesc,
Arena.ofAuto());

try (Arena arena = Arena.ofConfined()) {
// BAllocate off-heap memory and store unsortedArray in

MemorySegment array = arena.allocateFrom(ValueLayout.JAVA INT,
unsortedArray) ;

// Call gsort

gsort.invoke (array,
(long)unsortedArray.length,
ValueLayout.JAVA INT.byteSize(),
compareFunc) ;

// Access off-heap memory
sorted = array.toArray(ValueLayout.JAVA INT);
}

return sorted;

public static void main(String[] args) {

try {
int[] sortedArray = InvokeQsort.gsortTest(new int[] { 0, 9, 3, 4,
1, 8, 2, 7 1});
for (int num : sortedArray) {
System.out.print (num + " ");
}
System.out.println();
} catch (Throwable t) {
t.printStackTrace();

The following sections describe this example in detail:

e Defining the Java Method That Compares Two Elements

e Creating a Downcall Method Handle for the gsort Function

e Creating a Method Handle to Represent the Comparison Method gsortCompare

e Creating a Function Pointer from the Method Handle compareHandle

e Allocating Off-Heap Memory to Store the int Array

e Calling the gsort Function

e Copying the Sorted Array Values from Off-Heap to On-Heap Memory

12-9

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

Defining the Java Method That Compares Two Elements

The following class defines the Java method that compares two elements, in this case two int
values:

class Qsort {
static int gsortCompare (MemorySegment eleml, MemorySegment elem?2) {
return Integer.compare (eleml.get (ValueLayout.JAVA INT, 0),
elem2.get (ValueLayout.JAVA INT, 0));
}
}

In this method, the int values are represented by MemorySegment objects. A memory
segment provides access to a contiguous region of memory. To obtain a value from a memory
segment, call one of its get methods. This example calls the get (ValueLayout.0OfInt,
long), where the second argument is the offset in bytes relative to the memory address's

location. The second argument is 0 because the memory segments in this example store only
one value.

Creating a Downcall Method Handle for the gsort Function

The following statements create a downcall method handle for the gsort function:

// Obtain instance of native linker
final static Linker linker = Linker.nativelLinker();

static int[] gsortTest(int[] unsortedArray) throws Throwable {
int[] sorted = null;

// Create downcall handle for gsort
MethodHandle gsort = linker.downcallHandle (
linker.defaultLookup () .find("gsort") .get (),
FunctionDescriptor.ofVoid(ValueLayout.ADDRESS,
ValueLayout.JAVA LONG,
ValueLayout.JAVA LONG,
ValueLayout.ADDRESS)) ;

Creating a Method Handle to Represent the Comparison Method
gsortCompare

The following statement creates a method handle to represent the comparison method
Qsort::gsortCompare:

// Create method handle for gsortCompare
MethodHandle comparHandle = MethodHandles.lookup ()
.findStatic(Qsort.class,
"gsortCompare",
MethodType.methodType (int.class,
MemorySegment.class,
MemorySegment.class));

ORACLE 1510

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/MemorySegment.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/MemorySegment.html#get(java.lang.foreign.ValueLayout.OfInt,long)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/MemorySegment.html#get(java.lang.foreign.ValueLayout.OfInt,long)

Chapter 12
Upcalls: Passing Java Code as a Function Pointer to a Foreign Function

The MethodHandles.Lookup.findStatic (Class, String, MethodType) method
creates a method handle for a static method. It takes three arguments:

* The method's class
* The method's name

e The method's type: The first argument of MethodType: :methodType is the method's
return value's type. The rest are the types of the method's arguments.

Creating a Function Pointer from the Method Handle compareHandle

The following statement creates a function pointer from the method handle compareHandle:

// Create a Java description of a C function implemented by a Java
method

FunctionDescriptor gsortCompareDesc = FunctionDescriptor.of (
ValueLayout.JAVA INT,
ValueLayout.ADDRESS.withTargetLayout (ValueLayout.JAVA INT)
ValueLayout.ADDRESS.withTargetLayout (ValueLayout.JAVA INT));

// Create function pointer for gsortCompare

MemorySegment compareFunc = linker.upcallStub (comparHandle,
gsortCompareDesc,
Arena.ofAuto());

The Linker: :upcallstub method takes three arguments:

* The method handle from which to create a function pointer

* The function pointer's function descriptor; in this example, the arguments for
FunctionDescriptor.of correspond to the return value type and arguments of
QOsort::gsortCompare

* The arena to associate with the function pointer. The static method Arena.ofAuto ()
creates a new arena that is managed, automatically, by the garbage collector.

Allocating Off-Heap Memory to Store the int Array

The following statements allocate off-heap memory, then store the int array to be sorted in it:

try (Arena arena = Arena.ofConfined()) {

// Allocate off-heap memory and store unsortedArray in
it
MemorySegment array = arena.allocateFrom(ValueLayout.JAVA INT,
unsortedArray) ;

Calling the gsort Function

The following statement calls the gsort function:

// Call gsort
gsort.invoke (array,
(long)unsortedArray.length,

ORACLE 1911

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/MethodHandles.Lookup.html#findStatic(java.lang.Class,java.lang.String,java.lang.invoke.MethodType)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/MethodType.html#methodType(java.lang.Class,java.lang.Class,java.lang.Class...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.MemorySession)
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/FunctionDescriptor.html#of(java.lang.foreign.MemoryLayout,java.lang.foreign.MemoryLayout...)

Chapter 12
Foreign Functions That Return Pointers

ValueLayout.JAVA INT.byteSize(),
compareFunc) ;

In this example, the arguments of MethodHandle: : invoke correspond to those of the
standard C library gsort function.

Copying the Sorted Array Values from Off-Heap to On-Heap Memory

Finally, the following statement copies the sorted array values from off-heap to on-heap
memory:

// Access off-heap memory
sorted = array.toArray(ValueLayout.JAVA INT);

Foreign Functions That Return Pointers

Sometimes foreign functions allocate a region of memory, then return a pointer to that region.
For example, the C standard library function void *malloc (size t) allocates the
requested amount of memory, in bytes, and returns a pointer to it. However, when you invoke a
native function that returns a pointer, like malloc, the Java runtime has no insight into the size
or the lifetime of the memory segment the pointer points to. Consequently, the FFM APl uses a
zero-length memory segment to represent this kind of pointer.

The following example invokes the C standard library function malloc. It prints a diagnostic
message immediately after, which demonstrates that the pointer returned by malloc is a zero-
length memory segment.

static MemorySegment allocateMemory(long byteSize, Arena arena) throws
Throwable {

// Obtain an instance of the native linker
Linker linker = Linker.nativeLinker();

// Locate the address of malloc ()
var malloc_addr = linker.defaultLookup().find("malloc").orElseThrow();

// Create a downcall handle for malloc ()
MethodHandle malloc = linker.downcallHandle (

malloc addr,

FunctionDescriptor.of (ValueLayout.ADDRESS, ValueLayout.JAVA LONG)
)

// Invoke malloc(), which returns a pointer
MemorySegment segment = (MemorySegment) malloc.invokeExact (byteSize);

// The size of the memory segment created by malloc() is zero bytes!
System.out.println(
"Size, in bytes, of memory segment created by calling
malloc.invokeExact (" +
byteSize + "): " + segment.byteSize());

// Locate the address of free()
var free addr = linker.defaultLookup().find("free").orElseThrow();

ORACLE 1910

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/MethodHandle.html#invoke(java.lang.Object...)

ORACLE

Chapter 12
Foreign Functions That Return Pointers

// Create a downcall handle for free()
MethodHandle free = linker.downcallHandle (
free addr,
FunctionDescriptor.ofVoid(ValueLayout.ADDRESS)
)

// This reintepret method:

// 1. Resizes the memory segment so that it's equal to byteSize

// 2. Associates it with an existing arena

// 3. Invokes free() to deallocate the memory allocated by malloc ()
// when its arena is closed

Consumer<MemorySegment> cleanup = s -> {
try {
free.invokeExact (s);
} catch (Throwable e) {
throw new RuntimeException(e);

}i

return segment.reinterpret (byteSize, arena, cleanup);

The example prints a message similar to the following:

Size, in bytes, of memory segment created by calling malloc.invokeExact (100) :
0

The FFM API uses zero-length memory segments to represent the following:

* Pointers returned from a foreign function
* Pointers passed by a foreign function to an upcall
* Pointers read from a memory segment

If you try to access a zero-length memory segment, the Java runtime will throw an
IndexOutOfBoundsException because the Java runtime can't safely access or validate
any access operation of a region of memory whose size is unknown. In addition, zero-length
memory segments are associated with a fresh scope that's always alive. Consequently, even
though you can't directly access zero-length memory segments, you can pass them to other
pointer-accepting foreign functions.

However, the MemorySegment: : reinterpret method enables you to work with zero length
memory segments so that you can safely access them and attach them to an existing arena so
that the lifetime of the region of memory backing the segment can be managed automatically.
This method takes three arguments:

e The number of bytes to resize the memory segment: The example resizes it to the value of
the parameter byteSize.

* The arena with which to associate the memory segment: The example associates it to the
arena specified by the parameter arena.

e The action to perform when the arena is closed: The example deallocates the memory
allocated by malloc by invoking the C standard library function void free (void
*ptr), which deallocates the memory referenced by a pointer returned by malloc. Note

12-13

Chapter 12
Memory Layouts and Structured Access

that this is an example of passing a pointer pointing to a zero-length memory segment to a
foreign function.

Note:

MemorySegment: :reinterpret is a restricted method, which, if used incorrectly,
might crash the JVM or silently result in memory corruption. See Restricted Methods
for more information.

The following example calls allocateMemory (long, Arena) to allocate a Java string with
malloc:

String s = "My string!";
try (Arena arena = Arena.ofConfined()) {

// Allocate off-heap memory with malloc()
var nativeText = allocateMemory (
ValueLayout.JAVA CHAR.byteSize() * (s.length() + 1), arena);

// Access off-heap memory
for (int i = 0; i < s.length(); i++) {

nativeText.setAtIndex (ValueLayout.JAVA CHAR, i, s.charAt(i));
}

// Add the string terminator at the end
nativeText.setAtIndex (
ValueLayout.JAVA CHAR, s.length(), Character.MIN VALUE);

// Print the string
for (int i = 0; i < s.length(); i++) {

System.out.print ((char)nativeText.getAtIndex (ValueLayout.JAVA CHAR, 1i));

}

System.out.println();
} catch (Throwable t) {

t.printStackTrace();

See Zero-length memory segments in the java.lang.foreign.MemorySegment API
specification and Functions returning pointers in the java.lang.foreign.Linker API
specification for more information.

Memory Layouts and Structured Access

Accessing structured data using only basic operations can lead to hard-to-read code that's
difficult to maintain. Instead, you can use memory layouts to more efficiently initialize and
access more complicated native data types such as C structures.

ORACLE 1514

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#wrapping-addresses
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#by-ref

ORACLE

Chapter 12
Memory Layouts and Structured Access

For example, consider the following C declaration, which defines an array of Point structures,
where each point structure has two members, Point.x and Point.y:

struct Point {
int x;
int y;

} pts[10];

You can initialize and access such a native array as follows:
try (Arena arena = Arena.ofConfined()) {

MemorySegment segment =
arena.allocate((long) (2 * 4 * 10), 1);

for (int 1 = 0; 1 < 10; i++) {
int xValue = i;
int yvalue = 1 * 10;
segment.setAtIndex (ValueLayout.JAVA INT, (i * 2), xValue) ;
segment.setAtIndex (ValueLayout.JAVA INT, (i * 2) + 1, yValue);

for (int 1 = 0; 1 < 10; i++) {
int xVal = segment.getAtIndex(ValueLayout.JAVA INT, (i * 2));
int yvVal = segment.getAtIndex(ValueLayout.JAVA INT, (i * 2) +

System.out.println(" (" + xval + ", " + yval + ")");

The first argument in the call to the Arena: :allocate method calculates the number of
bytes required for the array. The arguments in the calls to the

MemorySegment : : setAt Index method calculate which memory address offsets to write into
each member of a Point structure. Similar arguments perform the same calculations for the
MemorySegment : : getAt Index method. To avoid these calculations, you can use a memory
layout.

To represent the array of Point structures, the following example uses a sequence memory
layout:

try (Arena arena = Arena.ofConfined()) {

SequencelLayout ptsLayout
= MemoryLayout.sequenceLayout (10,
MemoryLayout.structLayout (
ValueLayout.JAVA INT.withName ("x"),
ValueLayout.JAVA INT.withName ("y")));

VarHandle xHandle
= ptsLayout.varHandle (PathElement.sequenceElement (),
PathElement.groupElement ("x"));
VarHandle yHandle
= ptsLayout.varHandle (PathElement.sequenceElement (),
PathElement.groupElement ("y"));

12-15

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#setAtIndex(java.lang.foreign.ValueLayout.OfInt,long,int)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#getAtIndex(java.lang.foreign.ValueLayout.OfInt,long)

ORACLE

Chapter 12
Memory Layouts and Structured Access

MemorySegment segment = arena.allocate(ptsLayout);

for (int i = 0; i < ptsLayout.elementCount(); i++) {
int xValue = i;
int yvalue = 1 * 10;
xHandle.set (segment, 0L, (long) i, xValue);
yHandle.set (segment, 0L, (long) i, yValue);

for (int 1 = 0; i < ptsLayout.elementCount(); i++) {
int xVal = (int) xHandle.get (segment, 0L, (long) 1i);
int yvVal = (int) yHandle.get (segment, 0L, (long) 1i);
System.out.println(" (" + xval + ", " + yval + ")");

The first statement creates a sequence memory layout, which is represented by a
SequenceLayout object. It contains a sequence of ten structure layouts, which are
represented by StructLayout objects. The method MemoryLayout: :structLayout
returns a StructLayout object. Each structure layout contains two JAVA INT value layouts
named x and v:

Sequencelayout ptsLayout
= MemoryLayout.sequenceLayout (10,
MemoryLayout.structLayout (
ValueLayout.JAVA INT.withName ("x"),
ValueLayout.JAVA INT.withName ("y")));

The predefined value ValueLayout.JAVA INT contains information about how many bytes a
Java int value requires.

The next statements create two memory-access VarHandles that obtain memory address
offsets. A VarHandle is a dynamically strongly typed reference to a variable or to a
parametrically-defined family of variables, including static fields, non-static fields, array
elements, or components of an off-heap data structure.

VarHandle xHandle
= ptslayout.varHandle (PathElement.sequenceElement (),
PathElement.groupElement ("x"));
VarHandle yHandle
= ptslayout.varHandle (PathElement.sequenceElement (),
PathElement.groupElement ("y"));

The method PathElement.sequenceElement () retrieves a memory layout from a
sequence layout. In this example, it retrieves one of the structure layouts from ptsLayout. The
method call PathElement.groupElement ("x") retrieves a memory layout named x. You
can create a memory layout with a name with the withName (String) method.

The for statements call varHandle: :set and VarHandle: :get to access memory like
MemorySegment: : setAtIndex and MemorySegment: :getAtIndex.

MemorySegment segment = arena.allocate(ptslLayout);

12-16

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/SequenceLayout.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/foreign/StructLayout.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.html#structLayout(java.lang.foreign.MemoryLayout...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/ValueLayout.html#JAVA_INT
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.PathElement.html#sequenceElement()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.PathElement.html#groupElement(java.lang.String)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemoryLayout.html#withName(java.lang.String)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/VarHandle.html#set(java.lang.Object...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/invoke/VarHandle.html#get(java.lang.Object...)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#setAtIndex(java.lang.foreign.ValueLayout.OfInt,long,int)
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/foreign/MemorySegment.html#getAtIndex(java.lang.foreign.ValueLayout.OfInt,long)

Chapter 12
Checking for Native Errors Using errmo

for (int i = 0; i < ptslLayout.elementCount(); i++) {
int xValue = i;
int yvalue i *10;

xHandle.set (segment, 0L, (long) i, xValue);
yHandle.set (segment, 0L, (long) i, yValue);

for (int 1 = 0; i < ptsLayout.elementCount(); i++) {
int xVal = (int) xHandle.get (segment, 0L, (long) 1i);
int yvVal = (int) yHandle.get (segment, 0L, (long) 1i);
System.out.println(" (" + xval + ", " + yval + ")");

In this example, the set method uses four arguments:

1. segment:the memory segment in which to set the value

2. 0L: the base offset, which is a Long coordinate that points to the start of the array

3. (long) i:asecond long coordinate that indicates the array index in which to set the value
4. xValue and yvalue: the actual value to set

The VarHandles xHandle and yHandle know the size of the Point structure (8 bytes) and the
size of its int members (4 bytes). This means you don't have to calculate the number of bytes
required for the array's elements or the memory address offsets like in the setAtIndex
method.

Tip:

The base offset enables you to express complex access operations by injecting
additional offset computation into the VarHandle. In particular, you can use memory
segments and base offsets to model variable-length arrays. These are arrays whose
size are not known statically and that cannot be represented using a sequence
layout. You can access such memory segments with the

MemoryLayout: :arrayElementVarHandle method. See the section Working
with variable-length arrays in the JavaDoc APl documentation for the
MemoryLayout interface for examples.

Checking for Native Errors Using errno

ORACLE

Some C standard library functions indicate errors by setting the value of the C standard library
macro errno. You can access this value with a FFM API linker option.

The Linker: :downcallHandle method contains a varargs parameter that enables you to
specify additional linker options. These parameters are of type Linker.Option.

One linker option is Linker.Option.captureCallState (String...), which you use to
save portions of the execution state immediately after calling a foreign function associated with
a downcall method handle. You can use it to capture certain thread-local variables. When used
with the "errno” string, it captures the errno value as defined by the C standard library.
Specify this linker option (with the "errno" string) when creating a downcall handle for a native
function that sets errno.

12-17

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/MemoryLayout.html#arrayElementVarHandle(java.lang.foreign.MemoryLayout.PathElement...)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/MemoryLayout.html#variable-length
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/MemoryLayout.html#variable-length
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.Option.html

Chapter 12
Checking for Native Errors Using errno

An example of a C standard library function that sets errno is fopen (const char
*filename, const char *mode), which opens a file using the give mode. Examples of
modes include r, which opens a file for reading and w, which opens the file for writing. If fopen
attempts to open a file that doesn't exist, then errno is set to the value 2, which means that
the file doesn't exist. As most users won't know this, you can invoke the C standard library
function strerror, which returns a textual description of the errno value.

The following example opens and reads a file with the following C standard library functions:

e FILE *fopen(const char *filename, const char *mode):As mentioned
previously, opens the file £ilename with the mode mode (in this example, the mode is r)
and returns a pointer to a FILE object, which is represented by a MemorySegment.

e char *strerror (int errnum):As mentioned previously, returns a pointer to an error
message string that corresponds to the value of errnum.

e char *fgets(char *str, int n, FILE *stream):.Reads n-1 characters from a
pointer to a FILE object stream and stores it in an array pointed to by str.

e int feof (FILE *stream): Returns a non-zero value if the FILE pointer stream has
encountered the end-of-file indicator. Otherwise, it returns zero.

e int fclose(FILE *stream): Closes the file to which stream points.

The example reads a file that should exist, ReadFileWithFopen. java, and a file that
shouldn't exist, file-doesnot-exist.txt. When the example invokes the fopen function,
it uses captureCallState ("errno") to obtain error messages set by it:

import java.lang.foreign.*;
import java.lang.foreign.MemoryLayout.*;
import java.lang.invoke.*;

public class ReadFileWithFopen {
static int BUFFER SIZE = 1024;
static void readFile (String path) throws Throwable {
System.out.println ("Reading " + path);

// Setup handles
Linker.Option ccs = Linker.Option.captureCallState ("errno");
StructLayout capturedStatelayout = Linker.Option.captureStatelayout () ;
VarHandle errnoHandle =

capturedStatelayout.varHandle (PathElement.groupElement ("errno")) ;

// Linker and symbol lookup for C Standard Library functions
Linker linker = Linker.nativelinker();
SymbolLookup stdLib = linker.defaultLookup();

// char *strerror (int errnum)

MethodHandle strerror = linker.downcallHandle (
stdLib.find ("strerror") .orElseThrow(),
FunctionDescriptor.of (ValueLayout.ADDRESS,

ValueLayout.JAVA INT));

// FILE *fopen(const char *filename, const char *mode)
MethodHandle fopen =

ORACLE 1518

Chapter 12
Checking for Native Errors Using errmo

linker.downcallHandle (stdLib.find ("fopen") .orElseThrow(),
FunctionDescriptor.of (
ValueLayout.ADDRESS,
ValueLayout.ADDRESS,
ValueLayout.ADDRESS),
cecs);

// char *fgets(char *str, int n, FILE *stream)
MethodHandle fgets =
linker.downcallHandle (stdLib.find ("fgets") .orElseThrow(),
FunctionDescriptor.of (
ValueLayout.ADDRESS,
ValueLayout.ADDRESS,
ValueLayout.JAVA INT,
ValueLayout.ADDRESS)) ;

// int feof (FILE *stream)
MethodHandle feof =
linker.downcallHandle (stdLib.find ("feof") .orElseThrow(),
FunctionDescriptor.of (
ValueLayout.JAVA INT,
ValueLayout.ADDRESS)) ;

// int fclose(FILE *stream)
MethodHandle fclose =
linker.downcallHandle (stdLib.find("fclose") .orElseThrow(),
FunctionDescriptor.of (
ValueLayout.JAVA INT,
ValueLayout.ADDRESS)) ;

// Actual invocation

try (Arena arena = Arena.ofConfined()) {
MemorySegment capturedState = arena.allocate (capturedStatelayout);
MemorySegment location = arena.allocateFrom(path);
MemorySegment openMode = arena.allocateFrom("r");

var filePointer = (MemorySegment)
fopen.invokeExact (capturedState, location, openMode);

if (filePointer.address() == 0) {
printErrnoCode (errnoHandle, capturedState, strerror);
return;

var buffer = arena.allocate(ValueLayout.JAVA BYTE, BUFFER SIZE);

var eof = (int) feof.invokeExact (filePointer);
while (eof == 0) {
System.out.print (buffer.getString(0));
var read = (MemorySegment) fgets.invokeExact (buffer,
BUFFER SIZE, filePointer);
eof = (int) feof.invokeExact (filePointer);
}
var close = (int) fclose.invokeExact (filePointer);

ORACLE 1510

ORACLE

Chapter 12

Checking for Native Errors Using errno

private static void printErrnoCode (
VarHandle errnoHandle,
MemorySegment capturedState,
MethodHandle strerror) throws Throwable {

// Get more information by consulting the value of errno:

int errno = (int) errnoHandle.get (capturedState, 0);

// BAn errno value of 2 (ENOENT) is "No such file or directory"

System.out.println("errno: " + errno);

// Convert errno code to a string message:

String errrorString = ((MemorySegment) strerror.invokeExact (errno))

.reinterpret (Long.MAX VALUE) .getString(0);
System.out.println("errno string: " + errrorString);

public static void main(String[] args) {
try {
readFile ("ReadFileWithFopen.java");
readFile ("file-does-not-exist.txt");
} catch (Throwable t) {
System.out.println(t.getMessage());

The example prints the following output:

Reading ReadFileWithFopen.java

import java.lang.foreign.*;

import java.lang.foreign.MemoryLayout.*;
import java.lang.invoke.*;

Reading file-does-not-exist.txt
errno: 2
errno string: No such file or directory

In this example, the method captureStateLayout () returns a structure layout of the errno

function. See Memory Layouts and Structured Access for more information.

12-20

Chapter 12
Slicing Allocators and Slicing Memory Segments

Q Tip:

Use the following code to obtain the names of the supported captured value layouts
forthe Linker.Option.captureCallState (String...) option for your
operating system:

List<String> capturedNames = Linker.Option.captureStateLayout ()
.memberLayouts ()
.stream()
.map (MemoryLayout: :name)
.flatMap (Optional: :stream)
.tolist();

Slicing Allocators and Slicing Memory Segments

A slicing allocator returns a segment allocator that responds to allocation requests by returning
consecutive contiguous regions of memory, or slices, obtained from an existing memory
segment. You can also obtain a slice of a memory segment of any location within a memory
segment with the method MemorySegment: :asSlice.

Topics

e Slicing Allocators

e Slicing Memory Segments

Slicing Allocators

ORACLE

The following example allocates a memory segment named segment that can hold 60 Java int
values. It then uses a slicing allocator by calling
SegmentAllocator.slicingAllocator (MemorySegment) to obtain ten consecutive
slices from segment. The example allocates an array of five integers in each slice. After, it
prints the contents of each slice.

void allocate60Int () {

try (Arena arena = Arena.ofConfined()) {
SequenceLayout SEQUENCE LAYOUT =
MemoryLayout.sequenceLayout (60L, ValueLayout.JAVA INT);
MemorySegment segment = arena.allocate (SEQUENCE LAYOUT) ;
SegmentAllocator allocator =
SegmentAllocator.slicingAllocator (segment) ;

MemorySegment s[] = new MemorySegment[10];
for (int 1 =0 ; 1 < 10 ; 1i++) {

s[i] = allocator.allocateFrom/(
ValueLayout.JAVA INT, 1, 2, 3, 4, 5);

for (int 1 =0 ; 1 < 10 ; i++) {

12-21

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SegmentAllocator.html#slicingAllocator(java.lang.foreign.MemorySegment)

Chapter 12
Slicing Allocators and Slicing Memory Segments

int[] intArray = s[i].toArray(ValueLayout.JAVA INT);
System.out.println(Arrays.toString(intArray));

} catch (Exception e) {
e.printStackTrace();

You can use segment allocators as building blocks to create arenas that support custom
allocation strategies. For example, if a large number of native segments will share the same
bounded lifetime, then a custom arena could use a slicing allocator to allocate the segments
efficiently. This lets clients enjoy both scalable allocation (thanks to slicing) and deterministic
deallocation (thanks to the arena).

The following example defines a slicing arena that behaves like a confined arena but internally
uses a slicing allocator to respond to allocation requests. When the slicing arena is closed, the
underlying confined arena is closed, invalidating all segments allocated in the slicing arena.

To keep this example short, it implements only a subset of the methods of Arena and
SegmentAllocator (which is a superinterface of Arena).

public class SlicingArena implements Arena {
final Arena arena = Arena.ofConfined();
final SegmentAllocator slicingAllocator;

SlicingArena (MemoryLayout m) {
slicingAllocator =
SegmentAllocator.slicingAllocator (arena.allocate(m));
}
public MemorySegment allocate(long byteSize, long byteAlignment) {
return slicingAllocator.allocate(byteSize, byteAlignment);
}
public MemorySegment.Scope scope() {
return arena.scope();
}
public void close() {
arena.close();

With this slicing arena, you can rewrite the first example in this section more succinctly:

void allocate60IntWithSlicingArena() {

SequenceLayout SEQUENCE LAYOUT =
MemoryLayout.sequencelLayout (60L, ValueLayout.JAVA INT);
try (Arena slicingArena = new SlicingArena (SEQUENCE LAYOUT)) {

MemorySegment s[] = new MemorySegment[10];

for (int 1 =0 ; 1 < 10 ; i++) {

s[i] = slicingArena.allocateFrom(
ValueLayout.JAVA INT, 1, 2, 3, 4, 5);

ORACLE 1995

Chapter 12
Slicing Allocators and Slicing Memory Segments

for (int 1 =0 ; 1 < 10 ; 1i++) {
int[] intArray = s[i].toArray(ValueLayout.JAVA INT);
System.out.println(Arrays.toString(intArray));

} catch (Exception e) {
e.printStackTrace();

Slicing Memory Segments

When a slicing allocator returns a slice, the slice's starting address is right after the end of the
last slice that the slicing allocator returned. You can call

MemorySegment.asSlice (long, long) to obtain a slice of a memory segment of any
location within the memory segment and of any size, provided that slice's size stays within the
spatial bounds of the original memory segment. The following example obtains a slice of a
memory segment, then prints its contents:

String s = "abcdefghijklmnopgrstuvwxyz";
char c[] s.toCharArray();

MemorySegment textSegment = MemorySegment.ofArray(c);
long b = ValueLayout.JAVA CHAR.byteSize();

long firstLetter = 5;

long size = 6;

MemorySegment fghijk = textSegment.asSlice(firstLetter*b, size*b);
for (int 1 = 0; 1 < size; i++) |
System.out.print ((char)fghijk.get (ValueLayout.JAVA CHAR, 1i*b));

}
System.out.println();

This example prints the following output:
fghijk

The method MemorySegment .elements (MemoryLayout) returns a stream of slices whose
size matches that of the specified layout. Multiple threads could work in parallel to access
these slices. To do this, however, the memory segment has to be accessible from multiple
threads. You can do this by associating the memory segment with a shared arena, which you
can create with Arena: :ofShared.

The following example sums all int values in a memory segment in parallel.
void addRandomNumbers (int numElements) throws Throwable {
int[] numbers = new Random().ints (numElements, 0, 1000).toArray();

try (Arena arena = Arena.ofShared()) {
SequenceLayout SEQUENCE LAYOUT =

ORACLE 1993

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#asSlice(long,long)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#elements(java.lang.foreign.MemoryLayout)

Chapter 12
Restricted Methods

MemoryLayout.sequencelLayout ((long) numElements, ValueLayout.JAVA INT);

MemorySegment segment =

arena.allocate (SEQUENCE LAYOUT) ;

MemorySegment.copy (numbers, 0, segment, ValueLayout.JAVA INT, OL,

numkElements) ;

int sum =

segment.elements (ValueLayout.JAVA INT).parallel()

.mapToInt (s -> s.get(ValueLayout.JAVA INT, 0))

.sum() ;

System.out.println(sum);

Restricted Methods

Some methods in the Foreign Function and Memory (FFM) API are unsafe and therefore
restricted. If used incorrectly, restricted methods can crash the JVM and may silently result in

ORACLE

memory corruption.

You must enable native access if an application calls any of the following restricted methods:

Table 12-1 Restricted Methods from the FFM API

Methods

Reasoning Behind Restricting the Methods

java.lang.ModulelLayer.Controller.e
nableNativeAccess (Module)

The method enables native access for the specified
module if the caller's module has native access.
This method is restricted because it propagates
privileges to call restricted methods.

AddressLayout.withTargetLayout (Mem
oryLayout)

Once you have an address layout with a given
target layout, you can use it in a dereference
operation, for example,

MemorySegment.get (AddressLayout,
long), to resize the segment being read, which is
unsafe.

Linker.downcallHandle (FunctionDesc
riptor, Linker.Option...)

Linker.downcallHandle (MemorySegmen
t, FunctionDescriptor,
Linker.Option...)

Creating a downcall method handle is intrinsically
unsafe. A linker has no way to verify that the
provided function descriptor is compatible with the
function being called.

A symbol in a foreign library does not typically
contain enough signature information, such as arity
and the types of foreign function parameters, to
enable the linker at runtime to validate linkage
requests. When a client interacts with a downcall
method handle obtained through an invalid linkage
request, for example, by specifying a function
descriptor featuring too many argument layouts, the
result of such an interaction is unspecified and can
lead to JVM crashes.

Linker.upcallStub (MethodHandle,
FunctionDescriptor, Arena,
Linker.Option...)

As with creating downcall handles, the linker can't
check whether the function pointer you are creating
(like the gsort comparator in the example in
Upcalls: Passing Java Code as a Function Pointer
to a Foreign Function) is the correct one for the for
the downcall you are passing it to (like the gsort
method handle in the same example).

12-24

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ModuleLayer.Controller.html#enableNativeAccess(java.lang.Module)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ModuleLayer.Controller.html#enableNativeAccess(java.lang.Module)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/AddressLayout.html#withTargetLayout(java.lang.foreign.MemoryLayout)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/AddressLayout.html#withTargetLayout(java.lang.foreign.MemoryLayout)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#downcallHandle(java.lang.foreign.MemorySegment,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Arena,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Arena,java.lang.foreign.Linker.Option...)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/Linker.html#upcallStub(java.lang.invoke.MethodHandle,java.lang.foreign.FunctionDescriptor,java.lang.foreign.Arena,java.lang.foreign.Linker.Option...)

Chapter 12
Restricted Methods

Table 12-1 (Cont.) Restricted Methods from the FFM API

___|
Methods Reasoning Behind Restricting the Methods

MemorySegment.reinterpret (long) These methods allows you to change the size and

lifetime of an existing segment by creating a new

alias to the same region of memory. See Foreign

Functions That Return Pointers for more

MemorySegment.reinterpret (Arena, information.

Consumer<MemorySegment>) The spatial or temporal bounds associated with the
memory segment alias returned by these methods
might be incorrect. For example, consider a region
of memory that's 10 bytes long that's backing a
zero-length memory segment. An application might
overestimate the size of the region and use
MemorySegment: :reinterpret to obtain a
segment that's 100 bytes long. Later, this might
result in attempts to dereference memory outside
the bounds of the region, which might cause a JVM
crash or, even worse, result in silent memory
corruption.

MemorySegment.reinterpret (long,
Arena, Consumer<MemorySegment>)

SymbolLookup.libraryLookup (String, Loading a library can always cause execution of
Arena) native code. For example, on Linux, they can be

SymbolLookup.libraryLookup (Path, executed through dlopen hooks.

Arena)

Enabling Native Access

To enable native access for specific modules on the module path, specify a comma-separated
list of module names:

java --enable-native-access=M1,M2,... MyApp

To enable native access for all code on the class path, use the following command-line option:

java --enable-native-access=ALL-UNNAMED MyApp

You can also specify the --enable-native-access option as follows:

* Setitin the environment variable JDK_JAVA OPTIONS. See Using the
JDK_JAVA OPTIONS Launcher Environment Variable.

e Specify it in a command-line argument file. See java Command-Line Argument Files.

e Add Enable-Native-Access: ALL-UNNAMED to the manifest of an executable JAR file. See
JAR Manifest.

e If you have created a custom runtime for your application, specify it in the jlink command
through the --add-options plugin. Run the command jlink -list-plugins for a list of
available plugins.

« If your code creates modules dynamically, enable native access for them with the
ModuleLayer.Controller: :enableNativeAccess method. Code can dynamically
check if its module has native access with the Module: : isNativeAccessEnabled
method.

ORACLE 1908

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(long)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(long,java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(long,java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/lang/foreign/MemorySegment.html#reinterpret(java.lang.foreign.Arena,java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.lang.String,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.lang.String,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.nio.file.Path,java.lang.foreign.Arena)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/foreign/SymbolLookup.html#libraryLookup(java.nio.file.Path,java.lang.foreign.Arena)

Chapter 12
Calling Native Functions with jextract

Enabling Native Access More Selectively

The --enable-native-access=ALL-UNNAMED option lifts native access restrictions for all
classes on the class path. It's recommended that you enable native access more selectively by
moving JAR files that use the FFM API to the module path. This allows native access to be
enabled for those JAR files specifically, not for the entire class path. You can move a JAR file
from the class path to the module path without it being modularized. The Java runtime will treat
it as an automatic module whose name is based on its file name. See Incremental
Modularization with Automatic Modules.

Controlling the Effect of Native Access Restrictions

If native access is not enabled for a module, then it is illegal for code in that module to call a
restricted method. You can specify what happens when such a module calls a restricted
method by setting the --i1legal-native-access command-line option to one of the following
values:

* allow: Allows the restricted operation to proceed.

* warn: Allows the restricted operation to proceed and issues a warning the first time that an
illegal native access occurs in a particular module. At most one warning per module is
issued. This is the default value in JDK 24 and later.

 deny: Throws an IllegalCallerException for every illegal native access operation.
This will be the default value in a future release of the JDK.

Calling Native Functions with jextract

The jextract tool mechanically generates Java bindings from a native library header file.
The bindings that this tool generates depend on the Foreign Function and Memory (FFM) API.
With this tool, you don't have to create downcall and upcall handles for functions you want to
invoke; the jextract tool generates code that does this for you.

Obtain the tool from the following site:
https://jdk.java.net/jextract/

Obtain the source code for jextract from the following site:
https://github.com/openjdk/jextract

This site also contains steps on how to compile and run jextract, additional documentation,
and samples.

Topics
* Run a Python Script in a Java Application

e Call the gsort Function from a Java Application

Run a Python Script in a Java Application

ORACLE

The following steps show you how to generate Java bindings from the Python header file,
Python.h, then use the generated code to run a Python script in a Java application. The
Python script prints the length of a Java string.

12-26

https://dev.java/learn/modules/automatic-module/
https://dev.java/learn/modules/automatic-module/
https://jdk.java.net/jextract/
https://github.com/openjdk/jextract

ORACLE

Chapter 12
Calling Native Functions with jextract

Run the following command to generate Java bindings for Python. h:

jextract -1 :<absolute path of Python shared library> \
--output <directory containing code generated by jextract> \
-1 <directory containing Python header files> \
-t org.python <absolute path of Python.h>

For example:

jextract -1 :/1ib64/libpython3.6m.s0.1.0 \
--output gensrc \
-I /usr/include/python3.6m \
-t org.python /usr/include/python3.6m/Python.h

On Linux, to obtain the path of the Python shared library, you can run the following
command:

ldconfig -p | grep libpython

Running this command prints output similar to the following:

libpython3.6m.so0.1.0 (libc6,x86-64) => /1ib64/libpython3.6m.s0.1.0
libpython3.6m.so (libc6,x86-64) => /1lib64/libpython3.6m.so
libpython3.so (libc6,x86-64) => /1ib64/libpython3.so
libpython2.7.s0.1.0 (libc6,x86-64) => /1ib64/libpython2.7.s0.1.0
libpython2.7.so0 (libc6,x86-64) => /1ib64/libpython2.7.so0

The value of the -1 option is a path or name of a shared library that the generated header
class should load. If it starts with a colon (:), then the value is interpreted as a library path.
Otherwise, it's a library name such as GL for 1ibGL. so.

The jextract tool can resolve any library specifier known by the dynamic linker.
Consequently, you can run this command as follows:

jextract -1 :libpython3.6m.so.1.0 \
--output gensrc \
-1 /usr/include/python3.6m \
-t org.python /usr/include/python3.6m/Python.h

On Linux systems, if you can't find Python.h or the directory containing the Python
header files, you might have to install the python-devel package.

In the same directory as classes, which should contain the Python Java bindings, create
the following file, PythonMain. java:

import java.lang.foreign.Arena;

import java.lang.foreign.MemorySegment;

import static java.lang.foreign.MemorySegment.NULL;
import static org.python.Python h.*;

public class PythonMain {

public static void main(String[] args) {

12-27

Chapter 12
Calling Native Functions with jextract

String myString = "Hello world!";
String script = """
string = "%s"
print(string, ': ', len(string), sep='")
""" formatted (myString) .stripIndent();
Py Initialize();

try (Arena arena = Arena.ofConfined()) {
MemorySegment nativeString = arena.allocateFrom(script);
PyRun SimpleStringFlags (
nativeString,
NULL) ;
Py Finalize();
}
Py Exit (0);

3. Compile PythonMain. java with the following command:
javac -sourcepath gensrc PythonMain.java
4. Run PythonMain with the following command:

java -cp gensrc:. --enable-native-access=ALL-UNNAMED PythonMain

Call the gsort Function from a Java Application

As mentioned previously, gsort is a C library function that requires a pointer to a function that
compares two elements. The following steps create Java bindings for the C standard library
with jextract, create an upcall handle for the comparison function required by gsort, and
then call the gsort function.

1. Run the following command to create Java bindings for std1ib.h, which is the header file
for the C standard library:

jextract --output <directory containing code generated by jextract> \
-t org.unix <absolute path to stdlib.h>

For example:

jextract --output gensrc -t org.unix /usr/include/stdlib.h

The generated Java bindings for stdlib.h include a Java class named stdlib h, which
includes a Java method named gsort (MemorySegment, long, long, MemorySegment),
and a Java interface named __ compar fn_t, which includes a method named
allocate that creates a function pointer for the comparison function required by the
gsort function.

ORACLE 1998

Chapter 12
Calling Native Functions with jextract

2. In the same directory where you generated the Java bindings for stdlib.h, create the
following Java source file, QsortMain. java:

import static org.unix.stdlib h.*;
import java.lang.foreign.Arena;

import java.lang.foreign.MemorySegment;
import java.lang.foreign.ValueLayout;

public class QsortMain {
public static void main(String[] args) {
int[] unsortedArray = new int([] { O, 9, 3, 4, 6, 5, 1, 8, 2, 7 };
try (Arena a = Arena.ofConfined()) {

// Allocate off-heap memory and store unsortedArray in it

//
// stdlib h.C_INT is a constant generated by jextract

MemorySegment array = a.allocateFrom(C INT,
unsortedArray) ;

// Create upcall stub for the comparison function
//
// MemorySegment
org.unix. compar fn t.allocate(compar fn t, Arena)
// is from _ compar fn t.java, generated by jextract

MemorySegment comparFunc = org.unix. compar fn t.allocate(
(addrl, addr2) ->
Integer.compare (
addrl.get (C_INT, 0),
addr2.get (C_INT, 0)),
a);

// Call gsort
gsort(array, (long) unsortedArray.length, C INT.byteSize(),
comparFunc) ;

// Copy off-heap memory into new int[]
int[] sortedArray = array.toArray(C_INT);

for (int num : sortedArray) {

System.out.print (num + " ");

}
System.out.println();

The following statement creates an upcall, comparFunc, from a lambda expression:

// Create upcall for comparison function

//

ORACLE 1990

ORACLE

Chapter 12
Calling Native Functions with jextract

// MemorySegment
org.unix. compar fn t.allocate(compar fn t, SegmentScope)
// is from _ compar fn-t.java, generated by jextract

MemorySegment comparFunc = org.unix. compar fn t.allocate(
(addrl, addrz) ->
Integer.compare (
addrl.get (C_INT, 0),
addr2.get (C_INT, 0)),
a);

Consequently, you don't have to create a method handle for the comparison function as
described in Upcalls: Passing Java Code as a Function Pointer to a Foreign Function .

Compile 9sortMain. java with the following command:
javac -sourcepath gensrc QsortMain.java

Run @sortMain with the following command:

java -cp gensrc:. --enable-native-access=ALL-UNNAMED QsortMain

12-30

Scoped Values

A scoped value is a value that may be safely and efficiently shared to methods without using
method parameters.

See the Scopedvalue class in the Java SE API specification for more information.

< Note:

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may exist
in a different form or not at all in future Java SE releases. To compile and run code
that contains preview features, you must specify additional command-line options.
See Preview Language and VM Features.

For background information about scoped values, see JEP 487.

ORACLE 121

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/ScopedValue.html
https://openjdk.org/jeps/487

Concurrency

ORACLE

Java SE's concurrency APIs provide a powerful, extensible framework of high-performance
threading utilities such as thread pools and blocking queues. This package frees the
programmer from the need to craft these utilities by hand, in much the same manner the
collections framework did for data structures. Additionally, these packages provide low-level
primitives for advanced concurrent programming.

The concurrency APIs, which are contained in the package java.util.concurrent, are
classes that are designed to be used as building blocks in building concurrent classes or
applications. Just as the collections framework simplified the organization and manipulation of
in-memory data by providing implementations of commonly used data structures, the
concurrency utilities simplify the development of concurrent classes by providing
implementations of building blocks commonly used in concurrent designs. The concurrency
utilities include a high-performance, flexible thread pool; a framework for asynchronous
execution of tasks; a host of collection classes optimized for concurrent access;
synchronization utilities such as counting semaphores; atomic variables; locks; and condition
variables.

Using the concurrency utilities, instead of developing components such as thread pools
yourself, offers a number of advantages:

« Reduced programming effort. It is easier to use a standard class than to develop it
yourself.

* Increased performance. The implementations in the concurrency utilities were developed
and peer-reviewed by concurrency and performance experts; these implementations are
likely to be faster and more scalable than a typical implementation, even by a skilled
developer.

* Increased reliability. Developing concurrent classes is difficult. The low-level concurrency
primitives provided by the Java language (synchronized, volatile, wait (), notify(), and
notifyall ()) are difficult to use correctly, and errors using these facilities can be difficult to
detect and debug. By using standardized, extensively tested concurrency building blocks,
many potential sources of threading hazards such as deadlock, starvation, race conditions,
or excessive context switching are eliminated. The concurrency utilities were carefully
audited for deadlock, starvation, and race conditions.

« Improved maintainability. Programs that use standard library classes are easier to
understand and maintain than those that rely on complicated, homegrown classes.

* Increased productivity. Developers are likely to already understand the standard library
classes, so there is no need to learn the API and behavior of ad hoc concurrent
components. Additionally, concurrent applications are simpler to debug when they are built
on reliable, well-tested components.

In short, using the concurrency APIs to implement a concurrent application can help your
program be clearer, shorter, faster, more reliable, more scalable, easier to write, easier to read,
and easier to maintain.

The concurrency APIs include the following:

14-1

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/package-summary.html

Chapter 14

Table 14-1 Concurrency APIs

___|
API Description

Virtual threads Virtual Threads are lightweight threads that reduce
the effort of writing, maintaining, and debugging
high-throughput concurrent applications.

Structured concurrency Structured Concurrency treats groups of related
tasks running in different threads as a single unit of
work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing
observability.

Task scheduling framework The Executor interface standardizes invocation,
scheduling, execution, and control of asynchronous
tasks according to a set of execution policies.
Implementations are provided that enable tasks to
be executed within the submitting thread, in a
single background thread (see
Executors::newSingleThreadExecutor
, as with events in Swing, in a newly created
thread, or in a thread pool (see
Executors: :newFixedThreadPool), and
developers can create customized implementations
of Executor that support arbitrary execution
policies. The built-in implementations offer
configurable policies such as queue length limits
and saturation policy (see
RejectedExecutionHandler) that can
improve the stability of applications by preventing
runaway resource use.

Fork/join framework Based on the ForkJoinPool class, this
framework is an implementation of Executor. It
is designed to efficiently run a large number of
tasks using a pool of worker threads. A work-
stealing technique is used to keep all the worker
threads busy, to take full advantage of multiple
processors.

Concurrent collections Concurrent collections include Queue,
BlockingQueue and BlockingDeque.

Atomic variables Utility classes are provided that atomically
manipulate single variables (primitive types or
references), providing high-performance atomic
arithmetic and compare-and-set methods. The
atomic variable implementations in the
java.util.concurrent.atomic package offer
higher performance than would be available by
using synchronization (on most platforms), making
them useful for implementing high-performance
concurrent algorithms and conveniently
implementing counters and sequence number
generators.

Synchronizers Synchronizers are general purpose synchronization
classes that facilitate coordination between
threads. These include Semaphore,
CyclicBarrier, CountdownLatch,
Phaser, and Exchanger

ORACLE 4o

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newSingleThreadExecutor--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/AbstractExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingDeque.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html#package.description
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Exchanger.html

Tab

Chapter 14
Virtual Threads

le 14-1 (Cont.) Concurrency APIs

API

Description

Loc

ks While locking is built into the Java language
through the synchronized keyword, there are a
number of limitations to built-in monitor locks. The
java.util.concurrent.locks package
provides a high-performance lock implementation
with the same memory semantics as
synchronization, and it also supports specifying a
timeout when attempting to acquire a lock, multiple
condition variables per lock, nonnested ("hand-
over-hand") holding of multiple locks, and support
for interrupting threads that are waiting to acquire a
lock

Nanosecond-granularity timing The System.nanoTime method enables access to

a nanosecond-granularity time source for making
relative time measurements and methods that
accept timeouts (such as the
BlockingQueue.offer, BlockingQueue.poll,
Lock.tryLock, Condition.await, and
Thread.sleep) can take timeout values in
nanoseconds. The actual precision of the
System.nanoTime method is platform-dependent.

Thread-local variables Thread-Local Variables are variables of type

ThreadLocal. Unlike "regular” variables, each
thread that access a thread-local variable has its
own, independently initialized copy of the variable.

Virtual Threads

Virtual threads are lightweight threads that reduce the effort of writing, maintaining, and
debugging high-throughput concurrent applications.

ORACLE

For

Ath
and

background information about virtual threads, see JEP 444.

read is the smallest unit of processing that can be scheduled. It runs concurrently with—
largely independently of—other such units. It's an instance of java.lang.Thread. There

are two kinds of threads, platform threads and virtual threads.

Top

ics

What is a Platform Thread?

What is a Virtual Thread?

Why Use Virtual Threads?

Creating and Running a Virtual Thread

Scheduling Virtual Threads and Pinned Virtual Threads
Debugging Virtual Threads

Virtual Threads: An Adoption Guide

14-3

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/package-summary.html#package.description
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html#offer-E-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html#poll-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#tryLock-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html#await-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#sleep-long-int-
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/ThreadLocal.html
https://openjdk.java.net/jeps/444
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

Chapter 14
Virtual Threads

What is a Platform Thread?

A platform thread is implemented as a thin wrapper around an operating system (OS) thread. A
platform thread runs Java code on its underlying OS thread, and the platform thread captures
its OS thread for the platform thread's entire lifetime. Consequently, the number of available
platform threads is limited to the number of OS threads.

Platform threads typically have a large thread stack and other resources that are maintained by
the operating system. They are suitable for running all types of tasks but may be a limited
resource.

What is a Virtual Thread?

Like a platform thread, a virtual thread is also an instance of java.lang.Thread. However, a
virtual thread isn't tied to a specific OS thread. A virtual thread still runs code on an OS thread.
However, when code running in a virtual thread calls a blocking 1/0 operation, the Java runtime
suspends the virtual thread until it can be resumed. The OS thread associated with the
suspended virtual thread is now free to perform operations for other virtual threads.

Virtual threads are implemented in a similar way to virtual memory. To simulate a lot of
memory, an operating system maps a large virtual address space to a limited amount of RAM.
Similarly, to simulate a lot of threads, the Java runtime maps a large number of virtual threads
to a small number of OS threads.

Unlike platform threads, virtual threads typically have a shallow call stack, performing as few
as a single HTTP client call or a single JDBC query. Although virtual threads support thread-
local variables and inheritable thread-local variables, you should carefully consider using them
because a single JVM might support millions of virtual threads.

Virtual threads are suitable for running tasks that spend most of the time blocked, often waiting
for 1/0 operations to complete. However, they aren't intended for long-running CPU-intensive
operations.

Why Use Virtual Threads?

Use virtual threads in high-throughput concurrent applications, especially those that consist of
a great number of concurrent tasks that spend much of their time waiting. Server applications
are examples of high-throughput applications because they typically handle many client
requests that perform blocking 1/0 operations such as fetching resources.

Virtual threads are not faster threads; they do not run code any faster than platform threads.
They exist to provide scale (higher throughput), not speed (lower latency).

Creating and Running a Virtual Thread

ORACLE

The Thread and Thread.Builder APIs provide ways to create both platform and virtual
threads. The java.util.concurrent.Executors class also defines methods to create an
ExecutorService that starts a new virtual thread for each task.

Topics

e Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface

e Creating and Running a Virtual Thread with the
Executors.newVirtualThreadPerTaskExecutor() Method

14-4

Chapter 14
Virtual Threads

e Multithreaded Client Server Example

Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface

ORACLE

Call the Thread.ofVirtual () method to create an instance of Thread.Builder for
creating virtual threads.

The following example creates and starts a virtual thread that prints a message. It calls the
join method to wait for the virtual thread to terminate. (This enables you to see the printed
message before the main thread terminates.)

Thread thread = Thread.ofVirtual().start(() -> System.out.println("Hello"));
thread.join();

The Thread.Builder interface lets you create threads with common Thread properties
such as the thread's name. The Thread.Builder.OfPlatform subinterface creates
platform threads while Thread.Builder.OfVirtual creates virtual threads.

The following example creates a virtual thread named MyThread with the Thread.Builder
interface:

Thread.Builder builder = Thread.ofVirtual () .name ("MyThread");
Runnable task = () -> {

System.out.println ("Running thread");
i
Thread t = builder.start (task);
System.out.println ("Thread t name: " + t.getName());
t.join();

The following example creates and starts two virtual threads with Thread.Builder:

Thread.Builder builder = Thread.ofVirtual () .name ("worker-", 0);
Runnable task = () -> {

System.out.println("Thread ID: " + Thread.currentThread().threadId());
i

// name "worker-Q0"

Thread tl1 = builder.start (task);

tl.join();

System.out.println(tl.getName() + " terminated");

// name "worker-1"

Thread t2 = builder.start (task);

t2.j0in();

System.out.println(t2.getName () + " terminated");

This example prints output similar to the following:

Thread ID: 21
worker-0 terminated
Thread ID: 24
worker-1 terminated

14-5

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.Builder.html

Chapter 14
Virtual Threads

Creating and Running a Virtual Thread with the
Executors.newVirtualThreadPerTaskExecutor() Method

Executors let you to separate thread management and creation from the rest of your
application.

The following example creates an ExecutorService with the
Executors.newVirtualThreadPerTaskExecutor () method. Whenever
ExecutorService.submit (Runnable) is called, a new virtual thread is created and
started to run the task. This method returns an instance of Future. Note that the method
Future.get () waits for the thread's task to complete. Consequently, this example prints a
message once the virtual thread's task is complete.

try (ExecutorService myExecutor =
Executors.newVirtualThreadPerTaskExecutor()) {

Future<?> future = myExecutor.submit(() -> System.out.println("Running
thread"));

future.get();

System.out.println("Task completed");

/...

Multithreaded Client Server Example

ORACLE

The following example consists of two classes. EchoServer is a server program that listens on
a port and starts a new virtual thread for each connection. EchoClient is a client program that
connects to the server and sends messages entered on the command line.

EchoClient creates a socket, thereby getting a connection to EchoServer. It reads input from
the user on the standard input stream, and then forwards that text to EchoServer by writing the
text to the socket. EchoServer echoes the input back through the socket to the EchoClient.
EchoClient reads and displays the data passed back to it from the server. EchoServer can
service multiple clients simultaneously through virtual threads, one thread per each client
connection.

public class EchoServer ({
public static void main(String[] args) throws IOException {

if (args.length != 1) {
System.err.println("Usage: java EchoServer <port>");
System.exit (1);

}

int portNumber = Integer.parselnt(args[0]);
try (
ServerSocket serverSocket =
new ServerSocket (Integer.parselnt (args[0]));
) |
while (true) {
Socket clientSocket = serverSocket.accept();
// Accept incoming connections
// Start a service thread
Thread.ofVirtual () .start (() -> {

14-6

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html#newVirtualThreadPerTaskExecutor()

Chapter 14
Virtual Threads

try (
PrintWriter out =
new PrintWriter (clientSocket.getOutputStream(),
true);
BufferedReader in = new BufferedReader (
new
InputStreamReader (clientSocket.getInputStream()));
) |
String inputline;
while ((inputLine = in.readLine()) != null) {
System.out.println(inputLine);
out.println (inputline);

} catch (IOException e) {
e.printStackTrace();

1)
}
} catch (IOException e) {
System.out.println("Exception caught when trying to listen on
port "
+ portNumber + " or listening for a connection");
System.out.println(e.getMessage());

public class EchoClient ({
public static void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println(
"Usage: java EchoClient <hostname> <port>");
System.exit (1);
}
String hostName = args[0];
int portNumber = Integer.parselnt(args[l]);
try (
Socket echoSocket = new Socket (hostName, portNumber);
PrintWriter out =
new PrintWriter (echoSocket.getOutputStream(), true);
BufferedReader in =
new BufferedReader (
new InputStreamReader (echoSocket.getInputStream())):

BufferedReader stdIn =
new BufferedReader (
new InputStreamReader (System.in));
String userInput;

while ((userInput = stdIn.readLine()) != null) {
out.println (userInput);
System.out.println("echo: " + in.readlLine());
if (userInput.equals("bye")) break;

}

} catch (UnknownHostException e) {

ORACLE 14-7

Chapter 14
Virtual Threads

System.err.println("Don't know about host " + hostName);
System.exit (1);
} catch (IOException e) {
System.err.println("Couldn't get I/O for the connection to " +
hostName) ;
System.exit (1);

Scheduling Virtual Threads and Pinned Virtual Threads

The operating system schedules when a platform thread is run. However, the Java runtime
schedules when a virtual thread is run. When the Java runtime schedules a virtual thread, it
assigns or mounts the virtual thread on a platform thread, then the operating system schedules
that platform thread as usual. This platform thread is called a carrier. After running some code,
the virtual thread can unmount from its carrier. This usually happens when the virtual thread
performs a blocking I/O operation. After a virtual thread unmounts from its carrier, the carrier is
free, which means that the Java runtime scheduler can mount a different virtual thread on it.

A virtual thread cannot be unmounted during blocking operations when it is pinned to its
carrier. A virtual thread is pinned when it runs a native method or a foreign function (see
Foreign Function and Memory API). Pinning does not make an application incorrect, but it
might hinder its scalability.

Debugging Virtual Threads

Virtual threads are still threads; debuggers can step through them like platform threads. JDK
Flight Recorder and the jcmd tool have additional features to help you observe virtual threads
in your applications.

Topics

* JDK Flight Recorder Events for Virtual Threads

e Viewing Virtual Threads in jcmd Thread Dumps

JDK Flight Recorder Events for Virtual Threads

ORACLE

JDK Flight Recorder (JFR) can emit these events related to virtual threads:

e jdk.VirtualThreadStart and jdk.VirtualThreadEnd indicate when a virtual thread starts
and ends. These events are disabled by default.

e jdk.VirtualThreadPinned indicates that a virtual thread was pinned (and its carrier thread
wasn't freed) for longer than the threshold duration. This event is enabled by default with a
threshold of 20 ms.

° jdk.VirtualThreadSubmitFailed indicates that starting or unparking a virtual thread
failed, probably due to a resource issue. Parking a virtual thread releases the underlying
carrier thread to do other work, and unparking a virtual thread schedules it to continue.
This event is enabled by default.

Enable the events jdk.VirtualThreadStart and jdk.VirtualThreadEnd through JDK Mission
Control or with a custom JFR configuration as described in Flight Recorder Configurations in
Java Platform, Standard Edition Flight Recorder API Programmer’s Guide.

14-8

Chapter 14
Virtual Threads

To print these events, run the following command, where recording. jfr is the file name of
your recording:

jfr print --events
jdk.VirtualThreadStart, jdk.VirtualThreadEnd, jdk.VirtualThreadPinned, jdk.VirtualTh
readSubmitFailed recording.jfr

Viewing Virtual Threads in jcmd Thread Dumps

You can create a thread dump in plain text was well as JSON format:

jemd <PID> Thread.dump to file -format=text <file>
jcmd <PID> Thread.dump to file -format=json <file>

The JSON format is ideal for debugging tools that accept this format.

The jcmd thread dump lists virtual threads that are blocked in network I/O operations and
virtual threads that are created by the ExecutorService interface. It does not include object
addresses, locks, JNI statistics, heap statistics, and other information that appears in traditional
thread dumps.

Virtual Threads: An Adoption Guide

Virtual threads are Java threads that are implemented by the Java runtime rather than the OS.
The main difference between virtual threads and the traditional threads—which we've come to
call platform threads—is that we can easily have a great many active virtual threads, even
millions, running in the same Java process. It is their high number that gives virtual threads
their power: they can run server applications written in the thread-per-request style more
efficiently by allowing the server to process many more requests concurrently, leading to higher
throughput and less waste of hardware.

Because virtual threads are an implementation of java.lang.Thread and conform to the
same rules that specified java.lang.Thread since Java SE 1.0, developers don't need to
learn new concepts to use them. However, the inability to spawn very many platform threads—
the only implementation of threads available in Java for many years—has bred practices
designed to cope with their high cost. These practices are counterproductive when applied to
virtual threads, and must be unlearned. Moreover, the vast difference in cost informs a new
way of thinking about threads that may be foreign at first.

This guide is not intended to be comprehensive and cover every important detail of virtual
threads. It is meant but to provide an introductory set of guidelines to help those who wish to
start using virtual threads make the best of them.

Write Simple, Synchronous Code Employing Blocking 1/O APIs in the Thread-Per-
Request Style

ORACLE

Virtual threads can significantly improve the throughput—not the latency—of servers written in
the thread-per-request style. In this style, the server dedicates a thread to processing each
incoming request for its entire duration. It dedicates at least one thread because, when
processing a single request, you may want to employ more threads to carry some tasks
concurrently.

Blocking a platform thread is expensive because it holds on to the thread—a relatively scarce
resource—while it is not doing much meaningful work. Because virtual threads can be plentiful,

14-9

Chapter 14
Virtual Threads

blocking them is cheap and encouraged. Therefore, you should write code in the
straightforward synchronous style and use blocking I/O APIs.

For example, the following code, written in the non-blocking, asynchronous style, won't benefit
much from virtual threads.

CompletableFuture.supplyAsync (info::getUrl, pool)
.thenCompose (url -> getBodyAsync (url,
HttpResponse.BodyHandlers.ofString()))
.thenApply(info::findImage)
.thenCompose (url -> getBodyAsync (url,
HttpResponse.BodyHandlers.ofByteArray()))
.thenApply(info::setImageData)
.thenAccept (this: :process)
.exceptionally(t -> { t.printStackTrace(); return null; });

On the other hand, the following code, written in the synchronous style and using simple
blocking 10, will benefit greatly:

try {
String page = getBody(info.getUrl(), HttpResponse.BodyHandlers.ofString());
String imageUrl = info.findImage (page);
byte[] data = getBody(imageUrl,
HttpResponse.BodyHandlers.ofByteArray());
info.setImageData (data);
process (info);
} catch (Exception ex) {
t.printStackTrace();
}

Such code is also easier to debug in a debugger, profile in a profiler, or observe with thread-
dumps. To observe virtual threads, create a thread dump with the jcmd command:

jemd <pid> Thread.dump to file -format=json <file>

The more of the stack that's written in this style, the better virtual threads will be for both
performance and observability. Programs or frameworks written in other styles that don't
dedicate a thread per task should not expect to see a significant benefit from virtual threads.
Avoid mixing synchronous, blocking code with asynchronous frameworks.

Represent Every Concurrent Task as a Virtual Thread; Never Pool Virtual Threads

ORACLE

The hardest thing to internalize about virtual threads is that, while they have the same behavior
as platform threads they should not represent the same program concept.

Platform threads are scarce, and are therefore a precious resource. Precious resources need
to be managed, and the most common way to manage platform threads is with thread pools. A
guestion that you then need to answer is, how many threads should we have in the pool?

But virtual threads are plentiful, and so each should represent not some shared, pooled,
resource but a task. From a managed resource threads turn into application domain objects.
The guestion of how many virtual threads we should have becomes obvious, just as the
guestion of how many strings we should use to store a set of user names in memory is
obvious: The number of virtual threads is always equal to the number of concurrent tasks in
your application.

14-10

https://docs.oracle.com/en/java/javase/20/docs/specs/man/jcmd.html

ORACLE

Chapter 14
Virtual Threads

Converting n platform threads to n virtual threads would yield little benefit; rather, it's tasks that
need to be converted.

To represent every application task as a thread, don't use a shared thread pool executor like in
the following example:

Future<ResultA> fl = sharedThreadPoolExecutor.submit (taskl);
Future<ResultB> f2 sharedThreadPoolExecutor.submit (task?2);
// ... use futures

Instead, use a virtual thread executor like in the following example:

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) {
Future<ResultA> fl = executor.submit (taskl);
Future<ResultB> f2 = executor.submit (task2);
// ... use futures

The code still uses an ExecutorService, but the one returned from
Executors.newVirtualThreadPerTaskExecutor () doesn't employ a thread pool.
Rather, it creates a new virtual thread for each submitted tasks.

Furthermore, that ExecutorService itself is lightweight, and we can create a new one just
as we would with any simple object. That allows us to rely on the newly added
ExecutorService.close () method and the try-with-resources construct. The close
method, that is implicitly called at the end of the try block will automatically wait for all tasks
submitted to the ExecutorService—thatis, all virtual threads spawned by the
ExecutorService—to terminate.

This is a particularly useful pattern for fanout scenarios, where you wish to concurrently
perform multiple outgoing calls to different services like in the following example:

void handle (Request request, Response response) {
var urll = ...
var url2 = ...

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) {
var futurel = executor.submit(() -> fetchURL(urll));
var future2 = executor.submit(() -> fetchURL(url2));
response.send (futurel.get () + futureZ.get()):

} catch (ExecutionException | InterruptedException e) {
response.fail (e);

}

String fetchURL(URL url) throws IOException ({
try (var in = url.openStream()) {
return new String(in.readAllBytes(), StandardCharsets.UTF 8);
}

You should create a new virtual thread, as shown above, for even small, short-lived concurrent
tasks.

14-11

Chapter 14
Virtual Threads

For even more help writing the fanout pattern and other common concurrency patterns, with
better observability, use structured concurrency.

As a rule of thumb, if your application never has 10,000 virtual threads or more, it is unlikely to
benefit from virtual threads. Either it experiences too light a load to need better throughput, or
you have not represented sufficiently many tasks to virtual threads.

Use Semaphores to Limit Concurrency

ORACLE

Sometimes there is a need to limit the concurrency of a certain operation. For example, some
external service may not be able to handle more than ten concurrent requests. Because
platform threads are a precious resource that is usually managed in a pool, thread pools have
become so ubiquitious that they're used for this purpose of restricting concurrency, like in the
following example:

ExecutorService es = Executors.newFixedThreadPool (10);

Result foo() {

try {
var fut = es.submit(() -> calllLimitedService());
return f.get();

} catch (...) { ...}

This example ensures that there are at most ten concurrent requests to the limited service.

But restricting concurrency is only a side-effect of thread pools' operation. Pools are designed
to share scarce resources, and virtual threads aren’t scarce and therefore should never be
pooled!

When using virtual threads, if you want to limit the concurrency of accessing some service, you
should use a construct designed specifically for that purpose: the Semaphore class. The
following example demonstrates this class:

Semaphore sem = new Semaphore (10);

Result foo() {
sem.acquire () ;
try {
return calllimitedService();
} finally {
sem.release();

}

Threads that happen to call foo will be throttled, that is, blocked, so that only ten of them can
make progress at a time, while others will go about their business unencumbered.

Simply blocking some virtual threads with a semaphore may appear to be substantially
different from submitting tasks to a fixed thread pool, but it isn't. Submitting tasks to a thread
pool queues them up for later execution, but the semaphore internally (or any other blocking
synchronization construct for that matter) creates a queue of threads that are blocked on it that
mirrors the queue of tasks waiting for a pooled thread to execute them. Because virtual threads
are tasks, the resulting structure is equivalent:

14-12

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Semaphore.html

Chapter 14
Virtual Threads

Figure 14-1 Comparing a Thread Pool with a Semaphore

A queue of waiting tasks A queue of blocked threads
Semaphore
Thread Pool (or any blocking
construct)
3 tasks making progress 3 threads making progress

Even though you can think of a pool of platform threads as workers processing tasks that they
pull from a queue and of virtual threads as the tasks themselves, blocked until they may
continue, the underlying representation in the computer is virtually identical. Recognizing the
equivalence between queued tasks and blocked threads will help you make the most of virtual
threads.

Database connection pools themselves serve as a semaphore. A connection pool limited to ten
connections would block the eleventh thread attempting to acquire a connection. There is no
need to add an additional semaphore on top of the connection pool.

Don't Cache Expensive Reusable Objects in Thread-Local Variables

ORACLE

Virtual threads support thread-local variables just as platform threads do. See Thread-Local
Variables for more information. Usually, thread-local variables are used to associate some
context-specific information with the currently running code, such as the current transaction
and user ID. This use of thread-local variables is perfectly reasonable with virtual threads.
However, consider using the safer and more efficient scoped values. See Scoped Values for
more information.

There is another use of thread-local variables which is fundamentally at odds with virtual
threads: caching reusable objects. These objects are typically expensive to create (and
consume a significant amount of memory), are mutable, and not thread-safe. They are cached
in a thread-local variable to reduce the number of times they are instantiated and their number
of instances in memory, but they are reused by the multiple tasks that run on the thread at
differerent times.

14-13

Chapter 14
Structured Concurrency

For example, an instance of SimpleDateFormat is expensive to create and isn't thread-safe.
A pattern that emerged is to cache such an instance in a ThreadLocal like in the following
example:

static final ThreadLocal<SimpleDateFormat> cachedFormatter =
ThreadLocal.withInitial (SimpleDateFormat: :new);

void foo() {

cachedFormatter.get () .format(...);

This kind of caching is helpful only when the thread—and therefore the expensive object
cached in the thread local—is shared and reused by multiple tasks, as would be the case when
platform threads are pooled. Many tasks may call foo when running in the thread pool, but
because the pool only contains a few threads, the object will only be instantiated a few times—
once per pool thread—cached, and reused.

However, virtual threads are never pooled and never reused by unrelated tasks. Because
every task has its own virtual threads, every call to foo from a different task would trigger the
instantiation of a new SimpleDateFormat. Moreover, because there may be a great many
virtual threads running concurrently, the expensive object may consume quite a lot of memory.
These outcomes are the very opposite of what caching in thread locals intends to achieve.

There is no single general alternative to offer, but in the case of SimpleDateFormat, you
should replace it with DateTimeFormatter. DateTimeFormatter iS immutable, and so a
single instance can be shared by all threads:

static final DateTimeFormatter formatter = DateTimeFormatter...;
void foo() {

formatter.format(...);

Note that using thread-local variables to cache shared expensive objects is sometimes done
behind the scenes by asynchronous frameworks, under their implicit assumption that they are
used by a very small number of pooled threads. This is one reason why mixing virtual threads
and asynchronous frameworks is not a good idea: a call to a method may result in instantiating
costly objects in thread-local variables that were intended to be cached and shared.

Structured Concurrency

ORACLE

Structured concurrency treats groups of related tasks running in different threads as a single
unit of work, thereby streamlining error handling and cancellation, improving reliability, and
enhancing observability.

The principal class of the structured concurrency APl is StructuredTaskScope in the
java.util.concurrent package. This class enables you coordinate a group of concurrent
subtasks as a unit. With a StructuredTaskScope instance, you fork each subtask, which
runs them in their own individual thread. After, you join them as a unit. As a result, the
StructuredTaskScope ensures that the subtasks are completed before the main task

14-14

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/ThreadLocal.html
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/StructuredTaskScope.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/package-summary.html

Chapter 14
Structured Concurrency

continues. Alternatively, you can specify that the application continues when one subtask
succeeds.

Note:

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may exist
in a different form or not at all in future Java SE releases. To compile and run code
that contains preview features, you must specify additional command-line options.
See Preview Language and VM Features.

For background information about structured concurrency, see JEP 499.

Basic Usage of the StructuredTaskScope Class

To use the structuredTaskScope class, you follow these general steps:

ORACLE

1.
2.
3.

4.
5.
6.

Create a StructuredTaskScope; use it with a try-with-resources statement.
Define your subtasks as instances of Callable.

Within the try block, fork each subtask in its own thread with
StructuredTaskScope: : fork.

Call structuredTaskScope: : join.
Handle the outcome from the subtasks.

Ensure that the StructuredTaskScope is shut down.

The following figure illustrates these steps. Notice that the task scope must wait for all
subtasks to finish execution because of the join () method. Afterward, it can handle the
results of the subtask.

14-15

https://openjdk.org/jeps/499

Chapter 14
Structured Concurrency

Figure 14-2 Using the StructuredTaskScope Class

Create StructuredTaskScope,
use with try-with-resources

\ 4
StructuredTaskScope
[Subtask [Subtask [Subtask} Subtask
\ 4 \ 4 A 4 \ 4
[join ()]
\ 4
[Handle outcome from subtasks]

In general, code that use the StructuredTaskScope class has the following structure:

Callable<String> taskl = ...
Callable<Integer> task2 = ...

try (var scope = new StructuredTaskScope<Object>()) {

Subtask<String> subtaskl = scope.fork(taskl);
Subtask<Integer> subtask2 = scope.fork(task2);

scope.join();
. process results/exceptions ...

} // close

Because the StructuredTaskScope was defined in a try-with-resources statement, at the end
of the try block, the StructuredTaskScope is shut down, and the task scope waits for threads
running any unfinished subtasks to complete.

ORACLE" 14-16

Chapter 14
Structured Concurrency

The StructuredTaskScope class defines the shutdown method to shut down a task scope
without closing it. This method cancels all unfinished subtasks by interrupting the threads. In
addition, the shutdown method enables subclasses of StructuredTaskScope to implement
a policy that doesn't require all subtasks to finish. The section Common Shutdown Policies:
ShutdownOnSuccess and ShutdownOnFailure describe two subclasses of
StructuredTaskScope, ShutdownOnSuccess and ShutdownOnFailure. The first
implements a policy that shuts down a task scope as soon as a subtask completes
successfully while the second shuts down a task scope as soon as a subtask throws an
exception.

Common Shutdown Policies: ShutdownOnSuccess and ShutdownOnFailure

The StructuredTaskScope class contains two subclasses, ShutdownOnFailure and
ShutdownOnSuccess. These subclasses implement two common shutdown policies.
ShutdownOnFailure cancels all subtasks if one of them fails, while ShutdownOnSuccess
cancels all remaining subtasks if one of them succeeds. These shutdown policies are
examples of short-circuiting patterns. A short-circuiting pattern encourages subtasks to
complete quickly by enabling the main task to interrupt and cancel subtasks whose outcomes
are no longer needed.

The following example demonstrates the StructuredTaskScope.ShutdownOnFailure
and StructuredTaskScope.ShutdownOnSuccess classes. Each task scope forks five
subtasks that sleep for a random duration of time. However, if the duration is greater than a
specified threshold, the subtask throws a TooSlowException. The
handleShutDownOnFailure () method prints the total duration of all subtasks if none of
them threw an exception. The handleShutDownOnSuccess () method prints the duration of
the subtask that is completed first:

Figure 14-3 SCRandomTasks.java

import java.util.*;

import java.util.concurrent.*;

import java.util.concurrent.StructuredTaskScope.*;
import java.util.concurrent.StructuredTaskScope.Subtask;
import java.util.function.*;

import java.util.stream.*;

public class SCRandomTasks {

class TooSlowException extends Exception ({
public TooSlowException (String s) {
super (s);

}

public Integer randomTask(int maxDuration, int threshold) throws

InterruptedException, TooSlowException {

int t = new Random() .nextInt (maxDuration);

System.out.println ("Duration: " + t);

if (t > threshold) {

throw new TooSlowException("Duration " + t + " greater than

threshold " + threshold);

}

Thread.sleep(t);

return Integer.valueOf (t);

ORACLE 14-17

Chapter 14
Structured Concurrency

void handleShutdownOnFailure() throws ExecutionException,
InterruptedException {
try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
// var t = new SCRandomTasks();
var subtasks = IntStream.range (0, 5)
.mapToObj (1 -> scope.fork(() ->
randomTask (1000, 850)))
.tolist();
scope.join()
.throwIfFailed();
var totalDuration = subtasks.stream()
.map(t -> t.get())
.reduce (0, Integer::sum);
System.out.println("Total duration: " + totalDuration);

void handleShutdownOnSuccess () throws ExecutionException,
InterruptedException {

try (var scope = new StructuredTaskScope.ShutdownOnSuccess()) {
IntStream.range (0, 5)
.mapToObj (i -> scope.fork(() -> randomTask (1000, 850)))
.tolList();
scope.join();
System.out.println("First task to finish: " + scope.result());

public static void main(String[] args) {

var myApp = new SCRandomTasks();

try {
System.out.println("Running handleShutdownOnFailure...");
myApp.handleShutdownOnFailure () ;

} catch (Exception e) {
System.out.println(e.getMessage());

}

try {
System.out.println("Running handleShutdownOnSuccess...");
myApp.handleShutdownOnSuccess () ;

} catch (Exception e) {
System.out.println(e.getMessage());

It prints output similar to the following:

Running handleShutdownOnFailure...
Duration: 359
Duration: 676
Duration: 322
Duration: 591

ORACLE Er

Chapter 14
Structured Concurrency

Duration: 315

Total duration: 2263

Running handleShutdownOnSuccess...
Duration: 480

Duration: 40

Duration: 868

Duration: 526

Duration: 532

First task to finish: 40

The StructuredTaskScope.ShutdownOnFailure class captures the first exception thrown by
one of its subtasks, then invokes the shutdown method. This prevents any new subtasks from
starting, interrupts all unfinished threads running other subtasks, and enables the application to
continue running. To access the captured exception, call the

ShutdownOnFailure: :exception method. If you want to rethrow the exception instead,
call the SshutdownOnFailure: :throwIfFailed method, which this example demonstrates:

scope.join()
.throwIfFailed();

The StructuredTaskScope.ShutdownOnSuccess class captures the result of the first subtask to
be completed successfully, and like ShutdownOnFailure, invokes the shutdown method. To
access the result of the subtask that completed successfully, call the

ShutdownOnSuccess: : result method, which this example demonstrates:

System.out.println("First task to finish: " + scope.result());

Implement Your Own StructuredTaskScope Policies

You can implement your own StructuredTaskScope policies that handle subtasks
differently than ShutdownOnFailure and ShutdownOnSuccess. Do this by extending the
StructuredTaskScope class.

The following example, CollectingScope, contains two methods that return two streams of
subtasks of the same type: successfulTasks () returns a stream of successful subtasks, and
failedTasks () returns a stream of subtasks that threw an exception:

Figure 14-4 CollectingScope.java

import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;

public class CollectingScope<T> extends StructuredTaskScope<T> {
private final Queue<Subtask<? extends T>> successSubtasks = new
LinkedTransferQueue<> () ;
private final Queue<Subtask<? extends T>> failedSubtasks = new
LinkedTransferQueue<> () ;

@Override
protected void handleComplete (Subtask<? extends T> subtask) {
if (subtask.state() == Subtask.State.SUCCESS) {

successSubtasks.add (subtask) ;

ORACLE 1410

ORACLE

Chapter 14
Structured Concurrency

} else if (subtask.state() == Subtask.State.FAILED) {
failedSubtasks.add (subtask);

@Override

public CollectingScope<T> join() throws InterruptedException {
super.join();
return this;

public Stream<Subtask<? extends T>> successfulTasks() {
super.ensureOwnerAndJoined () ;
return successSubtasks.stream();

public Stream<Subtask<? extends T>> failedTasks() {
super.ensureOwnerAndJoined () ;
return failedSubtasks.stream();

To use this class in the example SCRanndomTasks as described in Common Shutdown Policies:
ShutdownOnSuccess and ShutdownOnFailure, add the following method. It prints the total
duration of the subtasks that completed successfully and the exceptions of the subtasks that
threw exceptions.

void handleBoth () throws InterruptedException {
try (var scope = new CollectingScope()) {
// var t = new SCRandomTasks();
var subtasks = IntStream.range (0, 5)
.mapToObj (i -> scope.fork(() ->
randomTask (1000, 500)))
.tolList();
scope.join();

var totalDuration = scope.successfulTasks ()
.mapToInt (st -> (Integer)
((Subtask)st).get())
.reduce (0, Integer::sum);
System.out.println("Total duration: " + totalDuration);

scope.failedTasks ()
.forEach(ft ->
System.out.println(((Exception)
((Subtask) ft) .exception()) .getMessage()));
}

It prints output similar to the following:

Duration: 501
Duration: 211
Duration: 661

14-20

Chapter 14
Structured Concurrency

Duration: 903

Duration: 839

Total duration: 211

Duration 501 greater than threshold 500
Duration 661 greater than threshold 500
Duration 903 greater than threshold 500
Duration 839 greater than threshold 500

In the example CollectingScope, before successfulTasks () and failedTasks () return
streams for successSubtasks and failedSubtasks, respectively, it calls
StructuredTaskScope: :ensureOwnerAndJoined. This ensures that the example can
only access successSubtasks and failedSubtasks provided that the current thread is the
owner of the task scope, and the task scope has joined the subtasks after they have been
forked.

Debugging StructuredTaskScope and Its Forked Subtasks with the jcmd

Command

ORACLE

The jcmd tool can emit a thread dump in JSON format. This thread dump displays the threads
running the forked subtasks of a StructuredTaskScope in an array, along with their stack
traces.

Consider the following example that forks three subtasks. These subtasks repeatedly alternate
between printing a message and sleeping for one second.

Figure 14-5 SCObervable.java

import java.util.*;

import java.util.function.*;
import java.util.concurrent.*;
import java.util.stream.*;

public class SCObservable {

static Long sleepOneSecond(String s) throws InterruptedException {
long pid = ProcessHandle.current () .pid();
for (int 1 = 0; 1i<60; 1i++) {
System.out.println("[" + pid + ", " + s + "]" + " Sleeping for
1s...");
Thread.sleep(1000);
}

return Long.valueOf (pid);

void handle() throws ExecutionException, InterruptedException {
try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
Supplier<Long> taskl = scope.fork(() -> sleepOneSecond("taskl"));
Supplier<Long> task2 = scope.fork(() -> sleepOneSecond("task2"));
Supplier<Long> task3 = scope.fork(() -> sleepOneSecond("task3"));
scope.join()
.throwIfFailed();

14-21

Chapter 14
Structured Concurrency

public static void main(String[] args) {
try {
var myApp = new SCObservable();
myApp.handle () ;
} catch (Exception e) {
e.printStackTrace();

}

It prints output similar to the following:

10852, taskl
10852, task?2

[Sleeping for 1s...
[

[10852, task3

[

]
] Sleeping for 1s...
] Sleeping for 1s...
10852, taskl] Sleeping for 1s...

While this example is running, you can create a thread dump by running the following
command in a different console, where <pid> is the process ID of the running Java process:

jemd <pid> Thread.dump to file -format=json <output file>

The following excerpt from a sample thread dump output file shows the
StructuredTaskScope with the threads of its forked subtasks in an array. The thread dump
also shows the reference to the parent of the St ructuredTaskScope so that the structure of
the program can be reconstituted from the thread dump:

"threadDump": {
"processId": "10852",
"time": "2023-06-22T713:59:05.156805300Z",
"runtimeVersion": "21-ea+27-LTS-2343",
"threadContainers": |
{

"container": "<root>",

"parent": null,

"owner": null,

"threads": [
{
"tidll: Hl",
"name": "main",
"stack": [

"Java.base\/jdk.internal.misc.Unsafe.park (Native Method)",
"Java.base\/
java.util.concurrent.locks.LockSupport.park (LockSupport.java:371)",
"Java.base\/
jdk.internal.misc.ThreadFlock.awaitAll (ThreadFlock.java:315)",
"Java.base\/
java.util.concurrent.StructuredTaskScope.implJoin (StructuredTaskScope.java:621
)"
"Java.base\/
java.util.concurrent.StructuredTaskScope.join (StructuredTaskScope.java:647)",

ORACLE ey

Chapter 14
Structured Concurrency

"Java.base\/
java.util.concurrent.StructuredTaskScope$ShutdownOnFailure.join (StructuredTask
Scope.java:1200)",

"SCObservable.handle (SCObservable.java:22)",

"SCObservable.main (SCObservable.java:30)"

1,
"threadCount": "7"

b

"container":
"java.util.concurrent.StructuredTaskScope$ShutdownOnFailure@5674cd4d",
"parent": "<root>",
"owner": "1",
"threads": [
{
"tid": "21",
"name": "",
"stack": [

"Java.base\/
java.lang.VirtualThread.parkNanos (VirtualThread.java:631)",
"Java.base\/
java.lang.VirtualThread.sleepNanos (VirtualThread.java:803)",
"jJava.base\/java.lang.Thread.sleep (Thread.java:507)",
"SCObservable.sleepOneSecond (SCObservable.java:12)",
"SCObservable.lambda$handle$0 (SCObservable.java:19)",
"Java.base\/
java.util.concurrent.StructuredTaskScope$SubtaskImpl.run (StructuredTaskScope.]
ava:883)",
"jJava.base\/java.lang.VirtualThread.run (VirtualThread.java:311)"

lltid": ll23",
llname" : " ",
"stack": [

"SCObservable.sleepOneSecond (SCObservable.java:12)",
"SCObservable.lambda$handle$l (SCObservable.java:20)",

lltid": ll24",
llname" : " ",
"stack": [

"SCObservable.sleepOneSecond (SCObservable.java:12)",
"SCObservable.lambda$handle$2 (SCObservable.java:21)",

ORACLE 143

}
1,
"threadCount": "3"

Thread-Local Variables

A thread-local variable is a variable of type ThreadLocal. Each thread that access a thread-
local variable has its own, independently initialized copy of the variable. To write or read a
thread-local variable's value, call its set or get method, respectively. Typically, a thread-local
variable is declared as a final static field so that many components can reach it easily.

ORACLE

Chapter 14
Thread-Local Variables

In the following example, the class TLDBRConn represents a database connection. The
TLBDBConn: : open method prints a string and the user's name. The class TLServer represents
the database itself. It contains one method, TLServer: : fetchOrder, which returns a string
containing the user's name. The class TLApplication creates several TLDBConn objects, each
created with a different user and each in its own thread. The TLApplication::testConnection
randomly varies the duration of the thread so that the threads have a chance to run

concurrently.

Figure 14-6 User.java

public class User {
public String name;
public User(String n) {

name = ny

}

Figure 14-7 TLDBConn.java

public class TLDBConn {

final static ThreadLocal<User> TLUSER = new ThreadLocal<>();

public static String open(String info) {

System.out.println(info + ":

" + TLUSER.get () .name);

return info + ": " + TLUSER.get () .name;

14-24

Chapter 14
Thread-Local Variables

Figure 14-8 TLServer.java

public class TLServer ({
public static String fetchOrder() {
return "Fetching order for " + TLDBConn.TLUSER.get () .name;

Figure 14-9 TLApplication.java

import java.util.*;
public class TLApplication ({
public void testConnection (User u) {

Runnable r = () -> {
TLDBConn.TLUSER.set (u) ;
TLDBConn.open ("Thread " + Thread.currentThread().getName() + ",
testConnection");
System.out.println(TLServer.fetchOrder());

try {
Thread.sleep (new Random() .nextInt (1000));
} catch (InterruptedException e) {
e.printStackTrace();

TLDBConn.TLUSER.set (new User (u.name + " renamed"));
TLDBConn.open ("Thread " + Thread.currentThread() .getName() + ",
testConnection");

}i

Thread t = new Thread(r, u.name);
t.start();

public static void main(String[] args) {
TLApplication myApp = new TLApplication();

for (int i=0 ; 1i<5; i++) {
myApp.testConnection (new User ("user" + i));
try {
Thread.sleep (new Random() .nextInt (1000));
} catch (InterruptedException e) {
e.printStackTrace();

ORACLE 1405

Chapter 14
Thread-Local Variables

TLApplication prints output similar to the following:

Thread user(, testConnection: user(
Fetching order for user0

Thread userl, testConnection: userl
Fetching order for userl

Thread user2, testConnection: user2
Fetching order for user2

Thread user(, testConnection: user(renamed
Thread userl, testConnection: userl renamed
Thread user2, testConnection: user2 renamed
Thread user3, testConnection: user3
Fetching order for user3

Thread user3, testConnection: user3 renamed
Thread userd4, testConnection: userd
Fetching order for user4

Thread userd4, testConnection: user4 renamed

Note that even though the member variable TLDBConn.USER is declared as final static, its
value is unique for each thread created by TLApplication.

Also, note that the TLServer: : fetchOrder method has no parameters. It doesn't require code,
in particular, TLApplication::testConnection to pass it a User parameter.
TLServer::fetchOrder can directly access the TLDBConn.USER thread-local variable that
corresponds to the thread in which it's running:

return "Fetching order for " + TLDBConn.TLUSER.get () .name;

Consequently, thread-local variables enable you to hide method arguments.

Inheriting Thread-Local Variables

When a parent thread starts a child thread, none of the values of the parent thread's thread-
local variables are inherited by the child thread. However, if you want a child thread to inherit
the values of its parent's thread-local values, then create a thread-local variable with the
InheritableThreadLocal class instead.

The following example includes a InheritableThreadLocal variabled named TLADMIN in
addition to the ThreadLocal named TLUSER:

Figure 14-10 TLDBConn.java

public class TLDBConn {

final static ThreadLocal<User> TLUSER = new ThreadLocal<>();
final static InheritableThreadLocal<User> TLADMIN = new
InheritableThreadLocal<>();

public static String open(String info) {
System.out.println(info + ": " + TLUSER.get () .name);
return info + ": " + TLUSER.get () .name;

ORACLE 1406

Chapter 14
Thread-Local Variables

The following method starts a thread named childThread within a thread. The thread
childThread retrieves the value of the InheritableThreadLocal variable named TLADMIN and
attempts to retrieve the value of the ThreadLocal variable named TLUSER:

public void testConnectionWithInheritableTL (User u) {

Runnable r = () -> {
TLDBConn.TLUSER.set (u) ;
TLDBConn.TLADMIN. set (new User ("Admin"));
TLDBConn.open ("Thread " + Thread.currentThread().getName() + "
testConnection");
System.out.println(TLServer.fetchOrder());

4

try {
Thread.sleep(new Random() .nextInt (1000));
} catch (InterruptedException e) {
e.printStackTrace () ;

Thread childThread = new Thread/(
0 > A
System.out.println("Child thread");
System.out.println ("TLADMIN: " +
TLDBConn.TLADMIN.get () .name) ;
try {
System.out.println ("TLUSER: " +
TLDBConn.TLUSER.get () .name) ;
} catch (NullPointerException e) {
System.out.println ("NullPointerException: TLUSER
hasn't beet set");

)
childThread.start () ;

TLDBConn.TLUSER.set (new User (u.name + " renamed"));
TLDBConn.open ("Thread " + Thread.currentThread() .getName() + ",
testConnection");

}i

Thread t = new Thread(r, u.name);
t.start();

When you call this method, the following statement in the instantiation of childThread throws a
NullPointerException:

System.out.println ("TLUSER: " + TLDBConn.TLUSER.get () .name);

ORACLE 14-27

Chapter 14
Thread-Local Variables

The value of the ThreadLocal variable TLUSER hasn't been inherited by childThread.
However, the value of the InheritableThreadLocal variable TLADMIN has been inherited
by childThread. When childThread is started, it prints the following output:

Child thread
TLADMIN: Admin
NullPointerException: TLUSER hasn't beet set

Issues with Thread-Local Variables

Unfortunately, thread-local variables have some design flaws.

Note:

Scoped Values can address these issues with thread-local variables.

Unconstrained Mutability

Every thread-local variable is mutable. This might make it difficult to discern in your
application's code which components update the shared state and in what order. In the
example described in Thread-Local Variables, TLApplication: :testConnection reassigns
TLDBConn.TLUSER with a new value:

Runnable r = () -> {

TLDBConn.TLUSER.set (u) ;

TLDBConn.open ("Thread " + Thread.currentThread().getName() + ",
testConnection");

System.out.println(TLServer.fetchOrder());

//

TLDBConn.TLUSER. set (new User (u.name + " renamed"));

TLDBConn.open ("Thread " + Thread.currentThread() .getName() + ",
testConnection");

}i

Unbounded Lifetime

The Java runtime retains a thread's incarnation of a thread-local variable for the lifetime of the
thread or until code in the thread calls the thread local variable's remove method. If you omit
calling this method, then the Java runtime might retain thread data longer than necessary. If
you're using a thread pool, then a value in a thread-local variable set in one task might leak
into another task. If you have set the value of a thread-local variable multiple times in a thread,
then there might not be a clear point when it's safe for the thread to call the remove method,
which may cause a long-term memory leak.

Expensive Inheritance

The overhead of thread-local variables may be worse when using large numbers of threads
because thread-local variables of a parent thread can be inherited by child threads.

ORACLE 1408

Stream Gatherers

Stream gatherers enable you to create custom intermediate operations, which enables stream
pipelines to transform data in ways that aren't easily achievable with exisiting built-in
intermediate operations.

Note:

This is a preview feature. A preview feature is a feature whose design, specification,
and implementation are complete, but is not permanent. A preview feature may exist
in a different form or not at all in future Java SE releases. To compile and run code
that contains preview features, you must specify additional command-line options.
See Preview Language and VM Features.

For background information about stream gatherers, see JEP 485.

Topics

* What Is a Gatherer?

e Creating a Gatherer

e Creating Gatherers with Factory Methods
e Built-In Gatherers

e Composing Gatherers

What Is a Gatherer?

A gatherer is an intermediate operation that transforms a stream of input elements into a
stream of output elements, optionally applying a final action when it reaches the end of the
stream of input elements.

Remember that an intermediate operation, such as Stream.map (Function), produces a
new stream, while a terminal operation, such as Stream. forEach (Consumer), produces a
non-stream result. A non-stream result could be a primitive value (like a double value), a
collection, or in the case of forEach, no value at all.

Gatherers can do the following:
« Transform elements in a one-to-one, one-to-many, many-to-one, or many-to-many fashion
* Track previously seen elements to influence the transformation of later elements

e Short-circuit, or stop processing input elements to transform infinite streams to finite ones

* Process a stream in parallel

ORACLE 151

https://openjdk.java.net/jeps/485

Chapter 15
Creating a Gatherer

Note:

A gather will process a stream in parallel only if you specify a combiner function
when you create the gatherer. See The Combiner Function in Creating a
Gatherer. A gatherer's default combiner turns parallelization off even if you call
parallel().

Examples of gathering operations include the following:

Grouping elements into batches
Deduplicating consecutively similar elements
Incremental accumulation functions

Incremental reordering functions

Creating a Gatherer

ORACLE

To create a gatherer, implement the Gatherer interface.

The following example creates a gatherer that returns the largest integer from a stream of
integers. However, if the gatherer encounters an integer equal or larger to its argument limit,
then it returns that integer and stops processing the stream's integers.

record BiggestInt (int limit) implements Gatherer<Integer, List<Integer>,

Integer> {

the

// The initializer creates a new private ArraylList to keep track of

// largest integer across elements.

@0override
public Supplier<List<Integer>> initializer() {
return () -> new ArrayList<Integer>(1l);

// The integrator

@override
public Integrator<List<Integer>, Integer, Integer> integrator() {
return Integrator.of(
(max, element, downstream) -> {

// Save the integer if it's the largest so far.
if (max.isEmpty()) max.addFirst (element);
else if (element > max.getFirst()) max.set (0, element);

// If the integer is equal or greater to the limit,
// "short-circuit": emit the current integer downstream
// and return false to stop processing stream elements
if (element >= limit) {

downstream.push (element) ;

return false;

15-2

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html

ORACLE

Chapter 15
Creating a Gatherer

// Return true to continue processing stream elements
return true;

// The combiner, which is used during parallel evaluation

@Override
public BinaryOperator<List<Integer>> combiner () {

return (leftMax, rightMax) -> {

// If either the "left" or "right" Arraylists contain
// no value, then return the other

if (leftMax.isEmpty()) return rightMax;

if (rightMax.isEmpty()) return leftMax;

// Return the ArrayList that contains the larger integer
int leftval = leftMax.getFirst();

int rightval = rightMax.getFirst();

if (leftval > rightVal) return leftMax;

else return rightMax;

@Override
public BiConsumer<List<Integer>, Downstream<? super Integer>>
finisher ()

{

// Emit the largest integer, if there is one, downstream
return (max, downstream) -> {
if (!max.isEmpty()) {
downstream.push (max.getFirst());

You can use this gather as follows:

System.out.println(Stream.of (5,4,2,1,6,12,8,9)

.gather (new BiggestInt (11))
.findFirst ()
.get());

It prints the following output:

You can also use this gatherer in parallel:

System.out.println(Stream.of (5,4,2,1,6,12,8,9)

.gather (new BiggestInt (11))

15-3

ORACLE

Chapter 15
Creating a Gatherer

.parallel()
.findFirst ()
.get());

The Gatherer<T, A, R> interface has three type parameters:

e T: The type of input elements to the gather operation. This example process a stream of
Integer elements.

e A: The type of the gatherer's private state object, which the gatherer can use to track
previously seen elements to influence the transformation of later elements. This example
uses a List<Integer> to store the largest Integer it has encountered so far in the input
stream.

* R: The type of output elements from the gatherer operation. This example returns an
Integer value.

You create a gatherer by defining four functions that work together that process input elements.
Some of these functions are optional depending on your gatherer's operation:

e initializer (): Creates the gatherer's private state object

* integrator (): Integrates a new element from the input stream, possibly inspects the
private state object, and possibly emits elements to the output stream

e combiner (): Combines two private state objects into one when the gatherer is
processing the stream in parallel

e finisher(): Optionally performs an action after the gatherer has processed all input
elements; it could inspect the private state object or emit additional output elements

The Initializer Function

The optional initializer function creates the gatherer's private state object. This example
creates an empty ArrayList with a capacity of only one Integer as its meant to store the
largest Integer the gatherer has encountered so far.

@Override
public Supplier<List<Integer>> initializer() {
return () -> new ArrayList<Integer>(1l);

The Integrator Function

Every gatherer requires an integrator function. To create an integrator function, call either
Gatherer.Integrator.of (Gatherer.Integrator) or
Gatherer.Integrator.ofGreedy (Gatherer.Integrator). These methods take as an
argument a lambda expression that contains three parameters. This example uses the
following lamda expression:

(max, element, downstream) -> ({
// Save the integer if it's the largest so far.
if (max.isEmpty()) max.addFirst(element);

else if (element > max.getFirst()) max.set (0, element);

// If the integer is equal or greater to the limit,
// "short-circuit": emit the current integer downstream

15-4

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#initializer()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#integrator()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#combiner()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#finisher()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Integrator.html#of(java.util.stream.Gatherer.Integrator)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Integrator.html#ofGreedy(java.util.stream.Gatherer.Integrator.Greedy)

ORACLE

Chapter 15
Creating a Gatherer

// and return false to stop processing stream elements
if (element >= limit) {

downstream.push (element) ;

return false;

// Return true to continue processing stream elements
return true;

The parameter max is the private state object.
The parameter element is the input element that the integrator function is currently processing.

The parameter downstream is @ Gatherer.Downstream object. When you call its push
method, it passes its argument to the next stage in the pipeline.

An integrator function returns a boolean value. If it returns true, then it will process the next
element of the input stream. if it returns false, then it will short-circuit and stop processing
input elements.

Tip:

The Downstream: : push method returns true if the downstream is willing to push

additional elements, so your integrator function can return its return value if you want
to continue processing stream elements.

In this example, if element is equal or greather than 1imit, the integrator function passes
element to the next stage in the pipeline, then returns false. The integrator won't process any
more input elements, and the Downstream object can no longer push values.

Note:

If you don't expect your integrator function to short-circuit and you want it to process
all elements of your input stream, use Integrator: :0fGreedy instead of
Integrator::of.

The Combiner Function

The optional combiner function is called only if you're running the gatherer in parallel. The
combiner function is a lambda expression that contains two parameters, which represent two
private state objects.

@Override
public BinaryOperator<List<Integer>> combiner() {
return (leftMax, rightMax) -> {

// If either the "left" or "right" ArraylLists contain
// no value, then return the other

if (leftMax.isEmpty()) return rightMax;

if (rightMax.isEmpty()) return leftMax;

15-5

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Downstream.html

Chapter 15
Creating Gatherers with Factory Methods

// Return the ArrayList that contains the larger integer
int leftval = leftMax.getFirst();

int rightval = rightMax.getFirst();

if (leftval > rightVal) return leftMax;

else return rightMax;

This example returns the private state object (an ArrayList) that contains the largest integer.

The Finisher Function

The optional finisher function is a lambda expression that contains two parameters:

@Override
public BiConsumer<List<Integer>, Downstream<? super Integer>>
finisher () {

// Emit the largest integer, if there is one, downstream
return (max, downstream) -> {
if (!max.isEmpty()) {
downstream.push (max.getFirst());
}
i

The parameter max is the private state object and downstream is a Gatherer.Downstream
object.

In this example, the finisher function pushes the value contained in the private state object.
Note that this value won't be pushed if the integrator function returned false. You can check
whether a Downstream object is no longer processing input elements by calling the method
Gatherer.Downstream: :isRejecting. Ifit returns true, it's no longer processing input
elements.

< Note:

If the finisher function pushes a value downstream, then that value is contained in an
Optional object.

Creating Gatherers with Factory Methods

Instead of implementing the Gatherer interface, you can call one of the factory methods in
the Gatherer interface to create a gatherer.

The following example is the same one as described in Creating a Gatherer except it calls the
Gatherer: :of method

static Gatherer<Integer, List<Integer>, Integer> biggestInt (int limit) {

return Gatherer.of(

ORACLE s

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.Downstream.html#isRejecting()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#of(java.util.function.Supplier,java.util.stream.Gatherer.Integrator,java.util.function.BinaryOperator,java.util.function.BiConsumer)

Chapter 15
Built-In Gatherers

// Supplier
() => { return new ArrayList<Integer>(1l); 1},
// Integrator

Gatherer.Integrator.of (

(max, element, downstream) -> {
System.out.println("Processing " + element);
if (max.isEmpty()) max.addFirst(element);
else if (element > max.getFirst()) max.set (0, element);
if (element >= limit) {

downstream.push (element) ;
return false;

}

return true;

)
// Combiner

(leftMax, rightMax) -> {
if (leftMax.isEmpty()) return rightMax;
if (rightMax.isEmpty()) return leftMax;
int leftval = leftMax.getFirst();
int rightval = rightMax.getFirst();
if (leftval > rightVal) return leftMax;
else return rightMax;

}I

// Finisher
downstream) -> {

(!max.isEmpty()) {
downstream.push (max.getFirst());

(max,
if

You can call this gatherer as follows:

System.out.println(Stream.of (5,4,2,1,6,12,8,9)

Built-In Gatherers

.gather (biggestInt (11))
.parallel ()
.findFirst ()

.get());

The Gatherers class contains the following built-in gatherers:

ORACLE

15-7

Chapter 15
Built-In Gatherers

e fold(Supplier initial, BiFunction folder): Thisis an many-to-one gatherer
that constructs an aggregate incrementally until no more input elements exist. It has two
parameters:

— initial: This is the identity value or the value that the gatherer emits if the input
stream contains no elements.

— folder: This is a lambda expression that contains two parameters: the first is the
aggregate the gatherer is constructing and the second is the element that's currently
being processed.

The following example uses the fold gatherer to convert a stream of numbers to a
semicolon-separated string:

var semicolonSeparated =
Stream.of(1,2,3,4,5,6,7,8,9)

.gather (
Gatherers.fold(
0 ="
(result, element) -> {
if (result.equals("")) return
element.toString();
return result + ";" + element;

)
.findFirst()

.get();

System.out.println(semicolonSeparated);

It prints the following:
1;2;3;4;5;6;7;8;9

e mapConcurrent (int maxConcurrency, Function mapper): This is a one-to-one
gatherer that invokes mapper for each input element in the stream concurrently, up to the
limit specified by maxConcurrency. You can use this limit for the following:

— As a rate-limiting construct to prevent the gatherer from issuing too many concurrent
requests to things like an external service or a database

— As a performance-enhancer to enable multiple, separate operations to be performed
concurrenty while avoiding converting the entire stream into a parallel stream

This gatherer preserves the ordering of the stream.

°* scan(Supplier initial, BiFunction scanner): Thisis a one-to-one gatherer
that performs a prefix scan, which is an incremental accumulation. Starting with an initial
value obtained from the parameter initial, it obtains subsequent values by applying
scanner to the current value and the next input element. The gatherer then emits the value
downstream. The following example demonstrates this gatherer:

Stream.of(1,2,3,4,5,6,7,8,9)
.gather (Gatherers.scan(() -> 100,
(current, next) -> current + next))
.forEach(System.out::println);

ORACLE 5

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#fold(java.util.function.Supplier,java.util.function.BiFunction)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#mapConcurrent(int,java.util.function.Function)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#scan(java.util.function.Supplier,java.util.function.BiFunction)

Chapter 15
Composing Gatherers

It prints the following output:

101
103
106
110
115
121
128
136
145

e windowFixed (int windowSize): This is a many-to-many gatherer that gathers
elements in windows, which are encounter-ordered groups of elements. The parameter
windowSize specifies the size of the windows. The following example demonstrates this
gatherer:

List<List<Integer>> windows =

Stream.of(1,2,3,4,5,6,7,8) .gather (Gatherers.windowFixed (3)) .toList();
windows.forEach (System.out::println);

It prints the following output:

(1, 2, 3]
(4, 5, 6]
[7, 8]

e windowSliding (int windowSize): Similar to windowFixed, this is a many-to-many
gatherer that gathers elements in windows. However, each subsequent window includes all
elements of the previous window except for its first element, and adds the next element in
the stream. The following example demonstrates this gatherer:

List<List<Integer>> moreWindows =

Stream.of (1,2,3,4,5,6,7,8) .gather (Gatherers.windowSliding(3)) .toList () ;
moreWindows.forEach (System.out::println);

It prints the following output:

~
~

~

~ ~

—_ — — — o/
o U1 W DN
~
~J o U1 W N
~
o J oy U1 b W

~
~

Composing Gatherers

You can compose two or more gatherers into a single gatherer with the
Gatherer.andThen (Gatherer).

ORACLE 5o

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream//Gatherers.html#windowFixed(int)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherers.html#windowSliding(int)
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/stream/Gatherer.html#andThen(java.util.stream.Gatherer)

ORACLE

Chapter 15
Composing Gatherers

The following example composes a new gatherer with the scan and fold gatherers examples
as described in the previous section Built-In Gatherers:

Gatherer<Integer, ?, Integer> sc =
Gatherers.scan(() -> 100,
(current, next) -> current + next);

Gatherer<Integer, ?, String> fo =

Gatherers.fold(() -> "",
(result, element) -> {
if (result.equals("")) return element.toString();

return result + ";" + element;

b i

var t = Stream.of(1,2,3,4,5,6,7,8,9)
.gather (sc.andThen (fo))
.findFirst ()
.get ()7

System.out.println(t);

This example prints the following output:

101;103;106;110;115;121;128;136;145

Note that the following statement to generate the value of t is the same as the previous
example:

var t = Stream.of(1,2,3,4,5,6,7,8,9)
.gather (sc)
.gather (fo)
.findFirst()
.get ()7

Successively calling the gather method is the same as calling andThen (Gatherer). The
following two statements are equivalent, where a and b are gatherers:

stream.gather (a) .gather(b);
stream.gather (a.andThen (b)) ;

15-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Java Core Libraries
	2 Serialization Filtering
	Addressing Deserialization Vulnerabilities
	Java Serialization Filters
	Filter Factories
	Allow-Lists and Reject-Lists
	Creating Pattern-Based Filters
	Creating Custom Filters
	Reading a Stream of Serialized Objects
	Setting a Custom Filter for an Individual Stream
	Setting a JVM-Wide Custom Filter
	Setting a Custom Filter Using a Pattern
	Setting a Custom Filter as a Class
	Setting a Custom Filter as a Method
	Creating a Filter with ObjectInputFilter Methods

	Setting a Filter Factory
	Setting a Filter Factory with setSerialFilterFactory
	Specifying a Filter Factory in a System or Security Property

	Built-in Filters
	Logging Filter Actions

	3 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	4 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	5 Java Collections Framework
	Creating Unmodifiable Lists, Sets, and Maps
	Use Cases
	Syntax
	Unmodifiable List Static Factory Methods
	Unmodifiable Set Static Factory Methods
	Unmodifiable Map Static Factory Methods

	Creating Unmodifiable Copies of Collections
	Creating Unmodifiable Collections from Streams
	Randomized Iteration Order
	About Unmodifiable Collections
	Space Efficiency
	Thread Safety

	Creating Sequenced Collections, Sets, and Maps
	SequencedCollection
	SequencedSet
	SequencedMap
	Demonstrating ArrayList and LinkedHashMap Reversed Views
	Demonstrating a Reverse-Ordered View of a Collection
	Demonstrating Composition of LinkedHashMap Views
	Demonstrating SequencedMap Does Not Support Mutation of the Underlying Map

	6 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

	7 Preferences API
	Comparing the Preferences API to Other Mechanisms
	Usage Notes
	Obtain Preferences Objects for an Enclosing Class
	Obtain Preferences Objects for a Static Method
	Atomic Updates
	Determine Backing Store Status

	Design FAQ

	8 Java Logging Overview
	Java Logging Examples
	Appendix A: DTD for XMLFormatter Output

	9 Java NIO
	Grep NIO Example
	Checksum NIO Example
	Time Query NIO Example
	Time Server NIO Example
	Non-Blocking Time Server NIO Example
	Internet Protocol and UNIX Domain Sockets NIO Example
	Chmod File NIO Example
	Copy File NIO Example
	Disk Usage File NIO Example
	User-Defined File Attributes File NIO Example

	10 Java Networking
	Networking System Properties
	HTTP Client Properties
	HTTP Server Properties
	IPv4 and IPv6 Protocol Properties
	HTTP Proxy Properties
	HTTPS Proxy Properties
	FTP Proxy Properties
	SOCKS Proxy Properties
	Acquiring the SOCKS User Name and Password

	Other Proxy-Related Properties
	UNIX Domain Sockets Properties
	Other HTTP URL Stream Protocol Handler Properties
	System Properties That Modify the Behavior of HTTP Digest Authentication Mechanism

	Specify Mappings from Host Names to IP Addresses
	Address Cache Properties
	Enhanced Exception Messages

	11 Pseudorandom Number Generators
	Characteristics of PRNGs
	Generating Pseudorandom Numbers with RandomGenerator Interface
	Generating Pseudorandom Numbers in Multithreaded Applications
	Dynamically Creating New Generators
	Creating Stream of Generators

	Choosing a PRNG Algorithm

	12 Foreign Function and Memory API
	On-Heap and Off-Heap Memory
	Memory Segments and Arenas
	Allocating a Memory Segment with an Arena and Storing a String in It
	Printing the Contents of Off-Heap Memory
	Closing an Arena

	Calling a C Library Function with the Foreign Function and Memory API
	Obtaining an Instance of the Native Linker
	Locating the Address of the C Function
	Describing the C Function Signature
	Creating the Downcall Handle for the C Function
	Calling the C Function Directly from Java

	Upcalls: Passing Java Code as a Function Pointer to a Foreign Function
	Defining the Java Method That Compares Two Elements
	Creating a Downcall Method Handle for the qsort Function
	Creating a Method Handle to Represent the Comparison Method qsortCompare
	Creating a Function Pointer from the Method Handle compareHandle
	Allocating Off-Heap Memory to Store the int Array
	Calling the qsort Function
	Copying the Sorted Array Values from Off-Heap to On-Heap Memory

	Foreign Functions That Return Pointers
	Memory Layouts and Structured Access
	Checking for Native Errors Using errno
	Slicing Allocators and Slicing Memory Segments
	Slicing Allocators
	Slicing Memory Segments

	Restricted Methods
	Calling Native Functions with jextract
	Run a Python Script in a Java Application
	Call the qsort Function from a Java Application

	13 Scoped Values
	14 Concurrency
	Virtual Threads
	What is a Platform Thread?
	What is a Virtual Thread?
	Why Use Virtual Threads?
	Creating and Running a Virtual Thread
	Creating a Virtual Thread with the Thread Class and the Thread.Builder Interface
	Creating and Running a Virtual Thread with the Executors.newVirtualThreadPerTaskExecutor() Method
	Multithreaded Client Server Example

	Scheduling Virtual Threads and Pinned Virtual Threads
	Debugging Virtual Threads
	JDK Flight Recorder Events for Virtual Threads
	Viewing Virtual Threads in jcmd Thread Dumps

	Virtual Threads: An Adoption Guide
	Write Simple, Synchronous Code Employing Blocking I/O APIs in the Thread-Per-Request Style
	Represent Every Concurrent Task as a Virtual Thread; Never Pool Virtual Threads
	Use Semaphores to Limit Concurrency
	Don't Cache Expensive Reusable Objects in Thread-Local Variables

	Structured Concurrency
	Basic Usage of the StructuredTaskScope Class
	Common Shutdown Policies: ShutdownOnSuccess and ShutdownOnFailure
	Implement Your Own StructuredTaskScope Policies
	Debugging StructuredTaskScope and Its Forked Subtasks with the jcmd Command

	Thread-Local Variables
	Inheriting Thread-Local Variables
	Issues with Thread-Local Variables

	15 Stream Gatherers
	What Is a Gatherer?
	Creating a Gatherer
	Creating Gatherers with Factory Methods
	Built-In Gatherers
	Composing Gatherers

