

JavaFX
Using JavaFX Collections

Release 8

E50649-01

March 2014

Learn about the concept of collections as used in JavaFX.

JavaFX Using JavaFX Collections, Release 8

E50649-01

Copyright © 2011, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Scott Hommel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 Using JavaFX Collections

Reviewing Java Collections Basics ... 1-1
Learning JavaFX Collections .. 1-6

iv

v

Preface

This preface describes the document accessibility features and conventions used in this
tutorial - Using JavaFX Collections.

Audience
This document is intended for JavaFX developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the JavaFX documentation set:

■ Getting Started with JavaFX

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

Using JavaFX Collections 1-1

1Using JavaFX Collections

This tutorial describes the JavaFX Collections API — an extension of the Java
Collections Framework — providing code samples that you can compile and run.

This tutorial begins with a short review of the relevant classes and interfaces from the
Java Collections Framework, then explains how the JavaFX Collections API extends
them to provide additional behavior. For an in-depth tutorial on Java Collections, see
the Collections trail of the Java Tutorial.

Reviewing Java Collections Basics
This section summarizes the java.util.List and java.util.Map interfaces, and the
java.util.Collections class. If you are already familiar with Java Collections, skip to
the next section entitled Learning JavaFX Collections.

List

A List is an ordered collection of objects, represented by the java.util.List
interface. The objects in a List are called its elements, and duplicate elements can exist
in the same List. The List interface defines a number of useful methods, enabling you
to add elements, access or change elements at a particular index, create sublists, search
for an element within a list, clear a list, and more.

 Example 1–1 demonstrates these methods with a List of String objects:

Example 1–1 Using a List

package collectionsdemo;

import java.util.List;
import java.util.ArrayList;

public class CollectionsDemo {

 public static void main(String[] args) {

 // Create a List.
 System.out.println("Creating the List...");
 List<String> list = new ArrayList<String>();
 list.add("String one");
 list.add("String two");
 list.add("String three");

 // Print out contents.
 printElements(list);

Reviewing Java Collections Basics

1-2 JavaFX Using JavaFX Collections

 // Set a new element at index 0.
 System.out.println("Setting an element...");
 list.set(0, "A new String");
 printElements(list);

 // Search for the newly added String.
 System.out.println("Searching for content...");
 System.out.print("Contains \"A new String\"? ");
 System.out.println(list.contains("A new String"));
 System.out.println("");

 // Create a sublist.
 System.out.println("Creating a sublist...");
 list = list.subList(1,3);
 printElements(list);

 // Clear all elements.
 System.out.println("Clearing all elements...");
 list.clear();
 printElements(list);
 }

 private static void printElements(List<String> list) {
 System.out.println("Size: "+list.size());
 for (Object o : list) {
 System.out.println(o.toString());
 }
 System.out.println("");
 }
}
The output from Example 1–1 is as follows:

Creating the List...

Size: 3

String one

String two

String three

Setting an element...

Size: 3

A new String

String two

String three

Searching for content...

Contains "A new String"? true

Creating a sublist...

Size: 2

String two

Reviewing Java Collections Basics

Using JavaFX Collections 1-3

String three

Clearing all elements...

Size: 0

This program first instantiates an ArrayList (a concrete implementation of the List
interface) and assigns it to the list variable. Next, three String objects are added to
the list by invoking its add method. (At various points throughout its execution, the
program prints out the elements by invoking a custom private static method
named printElements.) The line list.set(0,"A new String") replaces the original
String object at the first index position with a new String object. The contains
method reports whether or not the specified element is present in the List, and the
sublist method returns a new List from the range specified by the given index
values. Finally, the clear method removes all elements from the List.

Map

A Map is an object that maps keys to values. A Map can not contain duplicate keys; each
key can map to only one value. You can put keys and values into a Map, then retrieve a
value by passing in its key. For example, the key apple might return fruit, whereas
carrot might return vegetable.

Example 1–2 demonstrates these methods with a Map of String objects:

Example 1–2 Using a Map

package collectionsdemo;

import java.util.Map;
import java.util.HashMap;

public class CollectionsDemo {

 public static void main(String[] args) {

 // Create a Map.
 Map<String,String> map = new HashMap<String,String>();
 map.put("apple", "fruit");
 map.put("carrot","vegetable");
 System.out.println("Size: "+map.size());
 System.out.println("Empty? "+map.isEmpty());

 // Pass in keys; print out values.
 System.out.println("Passing in keys and printing out values...");
 System.out.println("Key is apple, value is: "+map.get("apple"));
 System.out.println("Key is carrot, value is: "+map.get("carrot"));
 System.out.println("");

 // Check keys and values.
 System.out.println("Inspecting keys and values:");
 System.out.println("Contains key \"apple\"? "+
 map.containsKey("apple"));
 System.out.println("Contains key \"carrot\"? "+
 map.containsKey("carrot"));
 System.out.println("Contains key \"fruit\"? "+
 map.containsKey("fruit"));
 System.out.println("Contains key \"vegetable\"? "+
 map.containsKey("vegetable"));
 System.out.println("Contains value \"apple\"? "+

Reviewing Java Collections Basics

1-4 JavaFX Using JavaFX Collections

 map.containsValue("apple"));
 System.out.println("Contains value \"carrot\"? "+
 map.containsValue("carrot"));
 System.out.println("Contains value \"fruit\"? "+
 map.containsValue("fruit"));
 System.out.println("Contains value \"vegetable\"? "+
 map.containsValue("vegetable"));
 System.out.println("");

 // Remove objects from the map.
 System.out.println("Removing apple from the map...");
 map.remove("apple");
 System.out.println("Size: "+map.size());
 System.out.println("Contains key \"apple\"? "+
 map.containsKey("apple"));
 System.out.println("Invoking map.clear()...");
 map.clear();
 System.out.println("Size: "+map.size());
 }
}
The output of Example 1–2 is as follows:

Size: 2

Empty? false

Passing in keys and printing out values...

Key is apple, value is: fruit

Key is carrot, value is: vegetable

Inspecting keys and values:

Contains key "apple"? true

Contains key "carrot"? true

Contains key "fruit"? false

Contains key "vegetable"? false

Contains value "apple"? false

Contains value "carrot"? false

Contains value "fruit"? true

Contains value "vegetable"? true

Removing apple from the map...

Size: 1

Contains key "apple"? false

Invoking map.clear()...

Size: 0

This program first instantiates a HashMap (a concrete implementation of the Map
interface) and assigns it to the map variable. Key-value pairs are then added to map by
invoking its put method. The program then obtains (and prints out) some information
about the map by invoking size() and isEmpty(). The program also demonstrates

Reviewing Java Collections Basics

Using JavaFX Collections 1-5

how to obtain the value for a given key (for example, map.get("apple") returns the
value fruit). The containsKey and containsValue methods demonstrate how to test if
a particular key or value is present, and the clear method removes all of the
key-value mappings.

Collections

In addition to the methods found in List and Map, the Collections class exposes a
number of static utility methods that operate on or return collections. Example 1–3
demonstrates a few such methods by creating a List, then using the Collections class
to reverse, swap, and sort its elements.

Example 1–3 Using the Collections Class

package collectionsdemo;

import java.util.List;
import java.util.ArrayList;
import java.util.Collections;

public class CollectionsDemo {

 public static void main(String[] args) {
 System.out.println("Creating the list...");
 List<String> list = new ArrayList<String>();
 list.add("a");
 list.add("b");
 list.add("c");
 list.add("d");
 printElements(list);
 System.out.println("Reversing the elements...");
 Collections.reverse(list);
 printElements(list);

 System.out.println("Swapping the elements around...");
 Collections.swap(list, 0, 3);
 Collections.swap(list, 2, 0);
 printElements(list);

 System.out.println("Alphabetically sorting the elements...");
 Collections.sort(list);
 printElements(list);
 }

 private static void printElements(List<String> list) {
 for (Object o : list) {
 System.out.println(o.toString());
 }
 }
}

The output of Example 1–3 is as follows:

Creating the list...

a

b

c

d

Learning JavaFX Collections

1-6 JavaFX Using JavaFX Collections

Reversing the elements...

d

c

b

a

Swapping the elements around...

b

c

a

d

Alphabetically sorting the elements...

a

b

c

d

This program first adds the letters a b c and d to a List, again using ArrayList as the
concrete implementation.) It then reverses the elements of the list by invoking
Collections.reverse(list). To swap the elements around within the List, the
program invokes the Collections.swap method (For example,
Collections.swap(list,0,3) swaps the elements at index positions 0 and 3. Finally,
the Collections.sort() method alphabetically sorts the elements.

Having reviewed the most relevant areas of the Java Collections Framework, you are
now ready to learn how Collections are represented in JavaFX.

Learning JavaFX Collections
Collections in JavaFX are defined by the javafx.collections package, which consists
of the following interfaces and classes:

Interfaces

ObservableList: A list that enables listeners to track changes when they occur

ListChangeListener: An interface that receives notifications of changes to an
ObservableList

ObservableMap: A map that enables observers to track changes when they occur

MapChangeListener: An interface that receives notifications of changes to an
ObservableMap

Classes

FXCollections: A utility class that consists of static methods that are one-to-one copies
of java.util.Collections methods

ListChangeListener.Change: Represents a change made to an ObservableList

MapChangeListener.Change: Represents a change made to an ObservableMap

The following section explains how to use these interfaces and classes

Learning JavaFX Collections

Using JavaFX Collections 1-7

Using ObservableList, ObservableMap, and FXCollections

The javafx.collections.ObservableList and javafx.collections.ObservableMap
interfaces both extend javafx.beans.Observable (and java.util.List or
java.util.Map, respectively) to provide a List or Map that supports observability. If
you look at the API specification for either of these interfaces, you will find methods
for adding or removing the appropriate listeners (ListChangeListener for
ObservableList, and MapChangeListener for ObservableMap). Unlike the previous
List and Map examples — which used ArrayList and HashMap as their concrete
implementations — Example 1–4 uses the javafx.collections.FXCollections class
to create and return the ObservableList and ObservableMap objects.

Example 1–4 Using an ObservableList

package collectionsdemo;

import java.util.List;
import java.util.ArrayList;
import javafx.collections.ObservableList;
import javafx.collections.ListChangeListener;
import javafx.collections.FXCollections;

public class CollectionsDemo {

 public static void main(String[] args) {

 // Use Java Collections to create the List.
 List<String> list = new ArrayList<String>();

 // Now add observability by wrapping it with ObservableList.
 ObservableList<String> observableList = FXCollections.observableList(list);
 observableList.addListener(new ListChangeListener() {

 @Override
 public void onChanged(ListChangeListener.Change change) {
 System.out.println("Detected a change! ");
 }
 });

 // Changes to the observableList WILL be reported.
 // This line will print out "Detected a change!"
 observableList.add("item one");

 // Changes to the underlying list will NOT be reported
 // Nothing will be printed as a result of the next line.
 list.add("item two");

 System.out.println("Size: "+observableList.size());

 }
}
In Example 1–4, a standard List is first created. It is then wrapped with an
ObservableList, which is obtained by passing the list to
FXCollections.observableList(list). A ListChangeListener is then registered, and
will receive notification whenever a change is made on the ObservableList.

You can listen for changes on an ObservableMap in a similar manner, as shown in
Example 1–5.

Learning JavaFX Collections

1-8 JavaFX Using JavaFX Collections

Example 1–5 Using ObservableMap

package collectionsdemo;

import java.util.Map;
import java.util.HashMap;
import javafx.collections.ObservableMap;
import javafx.collections.MapChangeListener;
import javafx.collections.FXCollections;

public class CollectionsDemo {

 public static void main(String[] args) {

 // Use Java Collections to create the List.
 Map<String,String> map = new HashMap<String,String>();

 // Now add observability by wrapping it with ObservableList.
 ObservableMap<String,String> observableMap = FXCollections.observableMap(map);
 observableMap.addListener(new MapChangeListener() {
 @Override
 public void onChanged(MapChangeListener.Change change) {
 System.out.println("Detected a change! ");
 }
 });

 // Changes to the observableMap WILL be reported.
 observableMap.put("key 1","value 1");
 System.out.println("Size: "+observableMap.size());

 // Changes to the underlying map will NOT be reported.
 map.put("key 2","value 2");
 System.out.println("Size: "+observableMap.size());

 }
}
And finally, you can you use the static utility methods from either Collections or
FXCollections (for example, to reverse the elements of a list). Keep in mind, however,
that the FXCollections class will yield the smallest number of change notifications
(usually one) when its methods are invoked. Invoking Collections methods, on the
other hand, might result in multiple change notifications, as shown in Example 1–6.

Example 1–6 Collections Vs. FXCollections Change Notifications

package collectionsdemo;

import java.util.List;
import java.util.ArrayList;
import javafx.collections.ObservableList;
import javafx.collections.ListChangeListener;
import javafx.collections.FXCollections;

public class CollectionsDemo {

 public static void main(String[] args) {

 // Use Java Collections to create the List
 List<String> list = new ArrayList<String>();
 list.add("d");
 list.add("b");
 list.add("a");

Learning JavaFX Collections

Using JavaFX Collections 1-9

 list.add("c");

 // Now add observability by wrapping it with ObservableList
 ObservableList<String> observableList = FXCollections.observableList(list);
 observableList.addListener(new ListChangeListener() {
 @Override
 public void onChanged(ListChangeListener.Change change) {
 System.out.println("Detected a change! ");
 }
 });

 // Sort using FXCollections
 FXCollections.sort(observableList);

 }
}
In Example 1–6, the line FXCollections.sort(obervableList) alphabetically sorts the
String objects in the list, and prints only one change notification to the screen; but if
you use Collections.sort(observableList), the change notification is printed four
times.

When using a ListChangeListener or MapChangeListener, the onChanged method
always contains an object that encapsulates information about the change. This is an
instance of ListChangeListener.Change (for ObservableList) or
MapChangeListener.Change (for ObservableMap). When working with
ListChangeListener.Change, always wrap any calls to the change object in a loop that
invokes change.next(). Example 1–7 provides a demonstration.

Example 1–7 Querying a ListChangeListener.Change Object

...
// This code will work with any of the previous ObservableList examples
observableList.addListener(new ListChangeListener() {

@Override
public void onChanged(ListChangeListener.Change change) {
 System.out.println("Detected a change! ");
 while (change.next()) {
 System.out.println("Was added? " + change.wasAdded());
 System.out.println("Was removed? " + change.wasRemoved());
 System.out.println("Was replaced? " + change.wasReplaced());
 System.out.println("Was permutated? " + change.wasPermutated());
 }
 }
});

...
Example 1–7 invokes various methods on the ListChangeListener.Change object. The
most important point to remember is that a ListChangeListener.Change object can
contain multiple changes, and therefore must be iterated by calling its next() method
in a while loop. Note, however, that MapChangeListener.Change objects will only
contain a change that represents the put or remove operation that was performed.

For information on available methods, see the ListChangeListener.Change and
MapChangeListener.Change API documentation.

Learning JavaFX Collections

1-10 JavaFX Using JavaFX Collections

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using JavaFX Collections
	Reviewing Java Collections Basics
	Learning JavaFX Collections

