
Learn more from Oracle University at education.oracle.com

Oracle Cloud Infrastructure
Architect Professional Workshop

Lab Practices Guide

D1102590GC10

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual property laws.
The document may not be modified or altered in any way. Except where your use constitutes "fair use" under
copyright law, you may not use, share, download, upload, copy, print, display, perform, reproduce, publish, license,
post, transmit, or distribute this document in whole or in part without the express authorization of Oracle.

The information contained in this document is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the documentation on behalf
of the United States Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are
"commercial computer software" or "commercial computer software documentation" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i)
Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or
iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Trademark Notice

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

Third-Party Content, Products, and Services Disclaimer

This documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

1004032024

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Oracle Cloud Infrastructure Architect Professional Workshop – Table of Contents iii

Table of Contents

Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR
Block .. 5

Get Started .. 6
Launch Virtual Cloud Network and Compute Instances .. 8
Create a Nested Network Security Group .. 11

Design and Implement a Real-World Network Architecture: Configuring Private DNS
Zones, Views, and Resolvers .. 13

Get Started .. 14
Set Up Lab Environment ... 16
Create zone-a.local Custom Private Zone ... 18
Create zone-b.local Custom Private Zone ... 19
Test Instance for Associated Zones ... 20
Configure the VCN Resolver Adding the Other Private View ... 21
Test Instance for Associated Zones ... 22

Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an
Oracle Function .. 23

Get Started .. 24
Create a VCN and Functions Application ... 25
Create a Private Repository in OCIR and Set Up Cloud Shell for Access 26
Build & Deploy the Function Container and Test Function ... 28

Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway
Deployment ... 31

Get Started .. 32
Create a New API Gateway .. 34
Create a New API Gateway Deployment .. 35
Validate a Policy Statement That Allows API Gateway to Access the Function 37
Add an Ingress Rule for the Public Subnet ... 38
Call the Function via Your API Gateway Deployment .. 39

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push
and Pull Images Using Docker CLI ... 41

Get Started .. 42
Access the Dockerfile ... 44
Build the Docker Image ... 46
Run Your Docker Image as a Container ... 47
Access the Web Application Running Within the Container ... 48

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

iv Oracle Cloud Infrastructure Architect Professional Workshop – Table of Contents

Delete the Docker Container ... 49
Create an Auth Token ... 50
Create a New Container Repository ... 51
Sign In to OCIR from the Cloud Shell ... 52
Tag the Docker Image .. 54
Push the Tagged Docker Image to OCIR Repository ... 55
Verify if the Image has Been Pushed ... 56
Pull the Image from OCIR Repository .. 57

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced
Web application on an OKE cluster using Kubectl ... 59

Get Started .. 60
Set Up the kubeconfig File.. 62
Run kubectl Commands Against Kubernetes Clusters ... 63
Create a Kubernetes (OKE) Secret .. 67
Add the Secret and the Image Path to the Deployment Manifest... 69
Deploy the Sample Web Application to OKE Cluster ... 71
Verify if the Sample Web Application Is Accessible ... 72
Clean Up the Resources Deployed Within OKE Cluster .. 74

Infrastructure As Code: Create a Reusable VCN Configuration with Terraform 75
Get Started .. 76
Create a Terraform Folder and File in Code Editor .. 78
Create and Destroy a VCN Using Terraform .. 80
Create and Destroy a VCN Using Resource Manager ... 84

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Network Security Group
(NSG) as an Ingress Rule for
Another NSG, Instead of a
CIDR Block

Lab Practices

Estimated Time: 25 minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

6 Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block

Get Started

Overview

In this lab, you will create two Network Security Groups (NSG). The first NSG will be a source to
the second one. To demonstrate the power of the NSGs, we will create four compute
instances, the first three of which will be in a public subnet, and the fourth in a private subnet.
All three instances in the public subnet will be SSH enabled, which is a default rule in a Security
List. We will enable ICMP Echo on the third instance only via an NSG. From your personal
computer in your office, you can attempt to SSH to all three compute instances. You will
succeed as the Default Security list allows this by default. Then you will ping the public IP
address of all three compute instances. Only the third one will reply because the NSG enabled
this.

Then we will create the second NSG, where the first one will be a source. In this NSG you will
also enable ICMP echo. You will also assign this second NSG to the compute instance in the
private subnet.

Thanks to this feature, you will be able to successfully ping the compute instance in the private
subnet from the third compute instance, but not from the first or second. You will prove this
by using SSH to access the third compute instance, then the first one. You will leave ping
running, and then add the first compute instance to the first NSG. You will immediately see
that ping will start working in the first compute instance.

A Network Security Group (NSG) acts as a virtual firewall for your compute instances and
other kinds of resources. An NSG consists of a set of ingress and egress security rules that
apply only to a set of vNICs of your choice in a single VCN (for example: all the compute
instances that act as web servers in the web tier of a multi-tier application in your VCN).

Compared to Security Lists, NSGs let you separate your VCN's subnet architecture from your
application security requirements.

You can specify an NSG as the source (for ingress rules) or destination (for egress rules) in a
given NSG's security rule. The two NSGs must be in the same VCN.

Currently, the following types of parent resources support the use of NSGs:

• Compute instances

• Load balancers

• DB systems

• Autonomous Databases

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block 7

• Kubernetes clusters

• API gateways

• GoldenGate deployments

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

8 Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block

Launch Virtual Cloud Network and Compute Instances

Create the following resources in the Ashburn region

VCN (Create with the VCN Wizard)

• Name: IAD-AP-LAB04-1-VCN-01

• CIDR Block: 10.0.0.0/16

• Public Subnet

• CIDR Block: 10.0.0.0/24

• Private Subnet

• CIDR Block: 10.0.1.0/24

VMs

• On Public Subnet (Oracle Linux 8, VM.Standard.A1.Flex)

1. IAD-AP-LAB04-1-VM-01 (Add SSH keys, with the best option for you)

2. IAD-AP-LAB04-1-VM-02 (Add SSH keys, with the best option for you)

3. IAD-AP-LAB04-1-VM-03 (Add SSH keys, with the best option for you)

4. IAD-AP-LAB04-1-VM-04 (No SSH keys required)

• On Private Subnet (Oracle Linux 8, VM.Standard.A1.Flex)

From your personal computer in your office, ping the public IP addresses of all three compute
instances.

They will all fail; the Security List does not have an ICMP Echo rule. Now SSH to all three of
them. This will succeed because the Default Security List comes with SSH port 22 enabled by
default.

Create the first NSG

1. Log in to your tenancy and compartment on the Cloud Console.

2. Make sure you are in the Ashburn region.

3. In the main menu, in Networking, click Virtual Cloud Networks.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block 9

4. Select the VCN you just created, IAD-AP-LAB04-1-VCN-01.

5. Under Resources, click Network Security Groups.

6. Click Create Network Security Group.

a. Name: IAD-AP-LAB04-1-NSG-01

b. Create in Compartment: <Your Assigned Compartment>

c. Click Next.

d. Direction: Ingress

e. Source Type: CIDR

f. Source CIDR: 0.0.0.0/0

g. IP Protocol: ICMP

h. Type: 8

i. Code: All

7. Click Create.

8. From the main Menu, under Compute, click Instances.

9. Click IAD-AP-LAB04-1-VM-03.

10. Scroll down to Resources, click on Attached VNICs.

11. Click IAD-AP-LAB04-1-VM-03 (Primary VNIC).

12. Under VNIC Information click on the Edit link next to Network Security Groups.

13. Select the NSG you just created: IAD-AP-LAB04-1-NSG-01.

14. Click Save Changes.

 �.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

10 Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block

You just completed part one of the lab, now let’s test it.

1. Go to the Main Menu (Top Right)

2. Under Compute, click Instances

3. Take Note of the three public IP Addresses

4. From your Personal Computer in your office ping all three IP Addresses.

5. Only IAD-AP-LAB04-1-VM-03 will reply!

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block 11

Create a Nested Network Security Group

Now SSH again to all three compute instances, and from each one of them ping the Private IP
Address of IAD-AP-LAB04-1-VM-04. They will all fail. We will now create a nested NSG.

1. Log in to your tenancy and compartment on the Cloud Console.

2. Make sure you are in the Ashburn region.

3. In the main menu, under Networking, click Virtual Cloud Networks.

4. Select VCN IAD-AP-LAB04-1-VCN-01.

5. Under Resources, click Network Security Groups.

6. Click Create Network Security Group.

• Name: IAD-AP-LAB04-1-NSG-02
• Create in Compartment: <Your Assigned Compartment>
• Click on Next
• Direction: Ingress
• Source Type: Network Security Group(NSG)
• Source NSG in <Your Assigned Compartment>: IAD-AP-LAB04-1-NSG-01
• IP Protocol: ICMP
• Type: 8
• Code: All

7. Click Create.

8. Go to the Main Menu (Top Right).

9. Under Compute, click Instances.

10. Click IAD-AP-LAB04-1-VM-04.

11. Scroll down to Resources, and click Attached VNICs.

12. Click IAD-AP-LAB04-1-VM-04 (Primary VNIC).

13. Under VNIC Information, click the Edit link next to Network Security Groups.

14. Select NSG IAD-AP-LAB04-1-NSG-02.

15. Click Save Changes.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

12 Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block

Now SSH again to all three compute instances, and from each one of them ping the Private IP
Address of IAD-AP-LAB04-1-VM-04. Only IAD-AP-LAB04-1-VM-03 succeeds!

It’s because compute instance IAD-AP-LAB04-1-VM-04’s vNIC is bound by the rule in NSG
IAD-AP-LAB04-1-NSG-02 in addition to the rules of the Default Security List. Also because
NSG IAD-AP-LAB04-1-NSG-02 has NSG IAD-AP-LAB04-1-NSG-01 as a source, which is the
NSG you added to the vNIC of IAD-AP-LAB04-1-VM-03.

You can continue this lab on your own with the two NSG you have. Assign the right one to the
vNIC of compute instance IAD-AP-LAB04-1-VM-01.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Design and Implement a
Real-World Network
Architecture: Configuring
Private DNS Zones, Views,
and Resolvers

Lab Practices

Estimated Time: 30 minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

14 Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers

Get Started

Overview

Customers want to specify their own private DNS domain names to manage their private
assets in OCI, as well as support DNS resolution between VCNs and between VCNs and on-
premises networks. With private DNS, customers can:

• Create private DNS zones with their desired names and create records for their
private resources

• Create a private DNS resolver for DNS resolution to and from other private networks

• Resolve queries for custom private zones and system-generated zones, such as
oraclevcn.com

• See DNS views and implement conditional forwarding for split-horizon environments

In this lab, you’ll:

a. Create custom private zones

b. Configure a VCN resolver

c. Configure the VCN resolver to add the other private view

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers 15

Prerequisites

• Required policies have been set up for you.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

16 Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers

Set Up Lab Environment

In order to do this lab, you’ll first need to create two peered VCNs and an instance.

Create Two VCNs and a Subnet

1. Log in to your tenancy and compartment on the Cloud Console.

2. Make sure you are in the Ashburn region.

3. In the navigation menu, navigate to Networking, and click Virtual Cloud Networks.

4. Confirm that you are in the proper compartment at the left.

5. Create the First VCN. Click Start VCN Wizard

a. VCN Name: IAD-AP-LAB06-1-VCN-01

b. Make sure your compartment is selected.

c. VCN IPv4 CIDR block: 10.0.0.0/16

d. Public Subnet CIDR Block: 10.0.0.0/24

e. Private Subnet CIDR Block: 10.0.1.0/24

f. Leave everything else as default.

6. Create the Second VCN. Click Start VCN Wizard.

a. VCN Name: IAD-AP-LAB06-1-VCN-02

b. Make sure your compartment is selected.

c. VCN IPv4 CIDR block: 172.0.0.0/16

d. Public Subnet CIDR Block: 172.0.0.0/24

e. Private Subnet CIDR Block: 172.0.1.0/24

f. Leave everything else as default.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers 17

Establish Local Peering for VCNs

1. Click the first VCN, and then click Create Local Peering Gateway.

2. Name it IAD-AP-LAB06-1-LPG-01.

3. Click the second VCN and create a second local peering gateway named IAD-AP-LAB06-
1-LPG-02.

4. Click the More Actions menu (three vertical dots at the far right of the listed LPG) and
select Establish Peering Connection.

5. Select the other VCN and LPG in your compartment.

Create a VM Instance

1. In the navigation menu, navigate to Compute, and then Instances.

2. Click Create Instance. Fill in the following fields:

• Name: IAD-AP-LAB06-1-VM-01

• Availability Domain: AD-1

• Image and Shape: Oracle Linux 8.x, VM.Standard.A1.Flex with 1 OCPU and 6 GB
Memory.

• Virtual cloud network: IAD-AP-LAB06-1-VCN-01

• Subnet: IAD-AP-LAB06-1-VCN-01

• Assign a public IP address.

• Generate or upload SSH keys.

3. Click Create Instance.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

18 Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers

Create zone-a.local Custom Private Zone

Private DNS zones contain DNS data only accessible from within a virtual cloud network
(VCN), such as private IP addresses. A private DNS zone has similar capabilities to an internet
DNS zone, but provides responses only for clients that can reach it through a VCN. In this
practice, you’ll create a private zone and a record. Later you will use that to play with the VCN
resolvers and fetch records from zones associates with other VCNs.

Tasks

1. From the main menu, navigate to Networking > DNS Management > Zones > Private
Zones. You should see the private zones that are created automatically for your subnets.

2. Click Create Zone and create a zone called zone-a.local. Select Selecting existing
DNS Private View, and then select IAD-AP-LAB06-1-VCN-01. Click Create.

3. After the zone is created, you will see the automatically generated NS and SOA records.

4. Click Manage Records.

5. Click Add Record.

• Name: server01

• Type: A - IPv4 Address

• TTL: 30 seconds. If the lock icon is engaged, click on it to disengage, and enable the
field.

• Address: 10.0.0.2

6. Click Add Record.

7. Click Publish Changes and Click Confirm Publish Changes.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers 19

Create zone-b.local Custom Private Zone

In this practice, you’ll create a second private zone for your second VCN.

Tasks

1. In the breadcrumbs, click Zones, and then Private Zones. You should see the private
zones that are created automatically for your subnets.

2. Click Create Zone and create a zone called zone-b.local. Select Selecting existing
DNS Private View, and then select IAD-AP-LAB06-1-VCN-02. Click Create.

3. After the zone is created, you will see the automatically generated NS and SOA records.

4. Click Manage Records.

5. Click Add Record.

• Name: server01

• Record Type: A - IPv4 Address

• TTL: 60 seconds.

• Address: 172.16.0.123

6. Click Add Record.

7. Click Publish Changes and Click Confirm Publish Changes.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

20 Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers

Test Instance for Associated Zones

Next, you’ll SSH into the instance you created to verify the DNS records and how they are
displayed, depending on the zones and private views associated to the VCNs. Note that while
both zone-a.local and zone-b.local have been created, only the VCN for zone-a.local has a
configured resolver and view.

Tasks

1. Click the Cloud Shell icon (next to where your region is listed at the top right) and SSH into
your instance with your private SSH key filename and public IP address (Remember not to
include the $ when you paste the commands).

$ ssh -i <private_ssh_key opc@<ip-address>

2. Look up server01. zone-a.local:

$ host server01.zone-a.local

You should see this response:
server01.zone-a.local has address 10.0.0.2

3. Look up the system-generated zone entry:
$ host -t NS zone-a.local

You should see this response:

zone-a.local name server vcn-dns.oraclevcn.com.

4. Look up the authority record for the zone
$ host -t SOA zone-a.local

You should see this response:

zone-a.local has SOA record vcn-dns.oraclevcn.com.
hostmaster.oracle.com. 2 3600 3600 3600 10

5. Lookup server01.zone-b.local:
$ host server01.zone-b.local

You should see this response:
Host server01.zone-b.local not found: 3(NXDOMAIN)

This means that zone-b is not associated with any of the VCN's views. Exit cloud shell for now.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers 21

Configure the VCN Resolver Adding the Other Private
View

Now, you’ll configure a resolver by adding a private view for the other VCN.

Tasks

1. From the main menu, click Virtual Cloud Networks under Networking.

2. Click IAD-AP-LAB06-1-VCN-01. You will be directed to the VCN details.

3. Within the VCN information, go to the DNS resolver and click IAD-AP-LAB06-1-VCN-01.
You will be directed to the Private resolver details.

4. Click Manage Private Views. In the Manage Private View page, perform the following
actions:

a. In Choose a Private View of the new added line, select IAD-AP-LAB06-1-VCN-02
from the drop-down list.

b. Click Save Changes.

Note: Please wait until the status of Private resolver details page changes from Updating to
Active.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

22 Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers

Test Instance for Associated Zones

Now, you’ll SSH into your instance one more time to verify that the server resolves properly.

Tasks

1. In Cloud Shell, SSH to your instance.

$ ssh -i <private_ssh_key> opc@<ip-address>

2. Lookup server01. zone-b.local
$ host server01.zone-b.local

You should see this response:

server01.zone-b.local has address 172.16.0.123

If it does not resolve, be aware that the resolver’s change may
take a few minutes. If you don’t want to wait, reboot the
instance.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Design Cloud-Native,
Microservices, and
Serverless Architecture:
Build and Deploy an Oracle
Function

Lab Practices

Estimated Time: 30 minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

24 Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function

Get Started

Overview

In this practice, you will build and deploy a sample serverless function written in Python
to Oracle Functions. This will be segmented into three sections:

a. Create a Virtual Cloud Network (VCN) and Functions application.

b. Create a private repository in OCIR and setup Cloud Shell for access.

c. Build and deploy the Function container and validate function.

Prerequisites

• An assigned OCI tenancy, compartment, and user credentials.

• The code for the Python function has been staged in GitHub at this location:
https://github.com/ou-developers/oci-functions

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://github.com/ou-developers/oci-functions

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function 25

Create a VCN and Functions Application

Serverless functions are deployed to an OCI Functions Application, which must be configured
to run functions in one to three subnets belonging to a specific VCN. The tasks for this part will
assume that you require a new VCN.

You’ll use the VCN with the Internet Connectivity wizard to create the new VCN that includes a
regional public subnet, a regional private subnet, an internet gateway, a NAT gateway, and a
service gateway. In addition, the wizard will set up basic security list rules for the two subnets.

Tasks

1. Sign in to the Oracle Cloud Infrastructure (OCI) console.

2. Click the navigation menu, click Networking, and then click Virtual Cloud Networks.

3. Select the compartment that has been assigned to you in the left column under List
Scope.

4. Click Start VCN Wizard.

5. Select Create VCN with Internet Connectivity, and then click Start VCN Wizard.

6. Enter AP-LAB07-1-VCN-1 as the VCN name. Leave the default values for the remaining
fields. Click Next and click Create to provision the VCN.

7. In the main menu, click Developer Services. Under Functions, click Applications.

8. Click Create application, and specify:

a. Name: DP-APP

b. VCN: AP-LAB07-1-VCN-1

c. Subnets: Private Subnet-AP-LAB07-1-VCN-1 (Regional)

d. Shape: Generic_X86

9. Click Create. �.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

26 Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function

Create a Private Repository in OCIR and Set Up Cloud
Shell for Access

Prior to uploading and deploying a container image containing the function code, you need
to specify a private repository in the Container Registry that is within the same OCI region of
the Function Application.

Tasks

1. In the Console, open the navigation menu and click Developer Services.
Under Containers & Artifacts, click Container Registry.

2. Click Create repository.

3. For Repository name, enter <userID>/hello-python where <userID> is the

OCI username assigned to you. For example: user22/hello-python

4. Ensure Access is set to Private. Click Create repository.

5. Go to the navigation menu and click Developer Services. Go to Functions and click
Applications.

6. Click DP-APP, and then click Getting Started in the left navigation pane under Resources.

7. Scroll down to reveal Begin your Cloud Shell session. Click Launch Cloud Shell.

Note: The Cloud Shell environment can take up to 60 seconds to start.

8. Click within the Cloud Shell window to open the Actions menu located in the top-left
pane, then select "Architecture."

9. Select X86_64 architecture, select the appropriate radio button and then click the
Confirm and Restart button.

Note: After a successful architecture migration, you will see this notification: Welcome back
you have successfully switched your architecture to X86_64

10. In the Console, scroll down further to quickly familiarize yourself with the series of
commands listed in the Setup fn CLI on Cloud Shell section. In the following steps, you
will execute some but not all those listed commands. Note the Copy links found to the
right of listed commands. You will click these links and paste the copied commands into
Cloud Shell when executing the subsequent steps.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function 27

11. Proceed to (2) Use the context for your region. Click the Copy link and paste to execute
the fn use context <region name> in Cloud Shell to set your region identifier.

You’ll see a message such as: “Fn: Context <region name> currently in use”

or “Now using context: <region name!´

12. Perform (3) Update the context with the function's compartment ID. Issue the fn
update context oracle.compartment-id command to update the fn CLI context for

your compartment.

13. Perform (4) Provide a unique repository name prefix to distinguish your function
images from other people’s. Edit, then issue the fn update
context registry command to update the fn CLI context for the prefix of

the repository you just created. Note: Replace [repo-name-prefix] with the <userID> prefix
you used earlier when creating the repository.

For example: fn update context registry phx.ocir.io/ocuocictrng21/user22

14. Perform (5) Generate an Auth Token.

a. Click Generate an Auth Token. This will open the User Details page.

b. Click Generate Token and enter mytoken for the description. Click Generate
Token, then copy the token in a notepad so you can use it later.

WARNING: The token cannot be retrieved in the Console later, so this value must
be saved for later use. After you have copy-pasted your token to a saved text
document, click Close. Close the Auth Token browser tab.

15. Return to the list of Setup fn CLI on Cloud Shell commands. Perform (6)
Log into the Registry using the Auth Token as your password. Log in to the Container
Registry using the listed docker login command.

Note: When prompted for the password, paste in the Auth Token you just copied in the
previous step. You will not see the password be pasted, but you will get a login success
message.

10. Do not execute any other commands listed in Setup fn CLI on Cloud Shell.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

28 Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function

Build & Deploy the Function Container and Test
Function

The function code is available in a GitHub repository. In this section, you will bring the files
into your Cloud Shell VM, and then use the fn command to build and deploy the function.

Tasks

1. In Cloud Shell, create a new directory called labs and then navigate to that
new subdirectory.

$ mkdir labs
$ cd labs

2. Clone the GitHub repository that contains the Python function.
$ git clone https://github.com/ou-developers/oci-functions

3. Navigate to the directory containing the hello-python function code.

$ cd oci-functions/hello-python

4. Use the fn deploy command to build a container image for the function and add it to the

repository. (This may take up to 60 seconds).

$ fn -v deploy --app DP-APP

5. Use the fn invoke command to execute the function. (This may take up to 30 seconds).

$ fn invoke DP-APP hello-python

If successful, a JSON result will be returned: {“message”: “Hello World”}

6. To further validate the deployment, in the Console, open the navigation menu and
click Developer Services. Under Containers & Artifacts, click Container Registry.

7. Expand the repository to view the image label and information.

8. Now navigate to Developer Services, and then click Functions.

9. Click the application link for DP-APP.

a. Scroll down and notice the Image, Image digest, and Invoke endpoint for the hello-
python function.

b. Click the hello-python link. Note the General Information, as well as the function
metrics below.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://github.com/ou-developers/oci-functions

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function 29

Congratulations, you created a VCN and function application. You also built and deployed a
sample serverless function written in Python to Oracle Functions.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

30 Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Design Cloud-native,
Microservices, and
Serverless Architecture:
Create an API Gateway
Deployment

Lab Practices

Estimated Time: 30 Minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

32 Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment

Get Started

Overview

Oracle Cloud Infrastructure (OCI) API Gateway makes it possible to expose OCI Functions on
public endpoints that do not require complex signed HTTP requests. Any function that should
be publicly accessible can be given such easy access by creating an API deployment on an API
gateway and associating a route in that API deployment with an Oracle Function Backend.

In this lab exercise, you will expose a function previously deployed to a private subnet to be
accessed via the API Gateway.

The instructions will be organized into these five practice sections:

a. Create a new API gateway.

b. Create a new API gateway deployment.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment 33

c. Validate a policy statement that allows API gateway to access the function.

d. Add an ingress rule for the public subnet.

e. Call the function via your API gateway deployment.

Prerequisites

• An assigned OCI tenancy, compartment, and user credentials

• You must have completed the preceding lab (Build and Deploy an Oracle Function) to
use the same virtual cloud network and application to perform tasks for this practice.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

34 Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment

Create a New API Gateway

You can use a single API gateway to link multiple backend services (such as load balancers,
compute instances, and Oracle Functions) into a single consolidated API endpoint.

You will create an API Gateway that will later be used to create an API gateway deployment to
call one or more functions.

Tasks

1. Open the navigation menu and click Developer Services. Under API Management,
click Gateways.

1. Select your assigned compartment from the Compartment drop-down.

2. Click Create Gateway.

3. Fill in the following information to define your API gateway.

a. Name: AP-LAB08-1-GTW-1

b. Type: Public

c. Compartment: <your-compartment-name>

d. Virtual Cloud Network: AP-LAB07-1-VCN-1

This is the VCN that you created in the Serverless Functions and API Management:
Build and Deploy an Oracle Function practice.

e. Subnet: Public Subnet-AP-LAB07-1-VCN-1

4. Click Create. Wait a few minutes for API Gateway to be created.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment 35

Create a New API Gateway Deployment

Having used the API Gateway service to create an API gateway, you can now create an API
Deployment that invokes serverless functions defined in Oracle Function.

You will create a new API deployment for your API gateway named oci-functions (using /v1 as
the path prefix) in the AP-LAB08-1-GTW-1 and create a new Route (using /hello as the path;
selecting GET as the method) that invokes the hello-python function.

Tasks

1. On the Gateways page, click the name of the API gateway you just created, for example,
AP-LAB08-1-GTW.

2. On the Gateway Details page, select Deployments from the Resources list and then
click Create Deployment.

3. Click From Scratch and fill in the Basic Information section:

• Name: oci-functions

• Path Prefix: /v1
Note that the deployment path prefix you specify must be preceded by one or multiple forward
slash but must not end with it. It can include alphanumeric uppercase and lowercase
characters, special characters like $ - _ . + ! * ' () , % ; : @ & =, and must not include parameters
and wildcards

• Compartment: <your-compartment-name>

4. Click Next to display the Authentication page and select No Authentication to give
unauthenticated access to all routes in the API deployment.

5. Click Next to enter details of the routes in the API deployment and edit Route 1 to specify
the first route in the API deployment that maps a path and one or more methods to a
back-end service:

• Path: /hello

• Methods: GET

• Select Add a single backend

• Type: Oracle Functions

• Application: DP-APP

• Function Name: hello-python

where,

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

36 Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment

• Path refers to the path for the API calls using the listed methods to the back-end
service.

• Methods refers to one or more methods accepted by the back-end service.

• Type refers to the type of the back-end service.

• Application refers to the name of the application in Oracle Functions that contains
the function.

• Function Name refers to the name of the function in Oracle Functions.

6. Click Next to review the details you entered for the new API deployment.

7. Click Create to create the new API deployment.

Note that it can take a few minutes to create the new API deployment.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment 37

Validate a Policy Statement That Allows API Gateway to
Access the Function

Verify if an IAM policy statement is present in your compartment that allows API Gateway to
access Oracle Functions in your compartment.

Tasks

1. Open the navigation menu and click Identity & Security. Under Identity, click Policies.

2. Ensure you are in your assigned compartment, then click the existing policy link.

3. Verify that the following policy statement is present:

allow any-user to use functions-family in compartment
[compartment-name] where ALL {request.principal.type =
µ$Si*ateway’`

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

38 Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment

Add an Ingress Rule for the Public Subnet

You will create a new stateful CIDR Ingress Rule that allows TCP HTTPS traffic (port 443) from
all IP addresses and ports in the default Security List for the virtual network. It will also allow
you access from your Cloud Shell.

Tasks

1. Open the navigation menu, click Networking, and then click Virtual Cloud Networks.

2. Click the VCN that you have created earlier. For example: AP-LAB07-1-VCN-1.

3. Under Resources, click Security Lists.

4. In the Security List page, click the Default Security List for AP-LAB07-1-VCN-1 link.

5. Click Add Ingress Rule. Choose whether it's a stateful or stateless rule. By default, rules
are stateful unless you specify otherwise. Enter the other basic information:

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Destination Port: 443

6. Click Add ingress Rule. The rule will be added and you can see that in the Ingress Rules
table.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment 39

Call the Function via Your API Gateway Deployment

With your API Gateway and deployment created, you can now call the Function via your API
Gateway deployment.

You will use curl to call the function via your API Gateway deployment.

Tasks

1. To determine the deployment endpoint, navigate back to Developer Services, under API
Management, and click Gateways.

2. Select your API Gateway AP-LAB08-1-GTW-1.

3. Under the Resources section, click the Deployments link. Copy the Endpoint URL for oci-
functions deployment.

4. Click the Cloud Shell icon at the right of the OCI console header to launch it.

In Cloud Shell, execute curl endpoint-url/hello to invoke the function. (Be sure to

append /hello to the end of the URL you copied earlier).

To create the URL for curl, add your deployment path to your endpoint.

On successful execution, it will return: {“message”: “Hello World”}.

Congratulations, you have successfully exposed OCI Functions on public endpoints for easy
access.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

40 Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Design Cloud-Native,
Microservices, and
Serverless Architecture:
Manage OCIR and Push and
Pull Images Using Docker
CLI

Lab Practices

Estimated Time: 60 minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

42 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Get Started

Overview

There are certain ways for creating, running, and deploying applications in containers using
Docker. A Docker image contains application code, libraries, tools, dependencies, and other
files needed to make that application run. In addition, the development-to-production
workflow can be made simpler with the help of an Oracle-managed registry. For developers,
Container Registry makes it simple to store, share, and manage container images (such as
Docker images).

In this lab, you will create a Docker image using a Dockerfile, which will further be used to build
a container that can run on the Docker platform. You will also create a Container Registry and
perform some basic operations such as push and pull a Docker image.

In this lab, you’ll:

a. Access the Dockerfile

b. Build the Docker image

c. Run your Docker image as a container

d. Access the web application running within the container

e. Delete the Docker container

f. Create an Auth Token

g. Create a new Container Repository

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 43

h. Sign in to Oracle Cloud Infrastructure Registry (OCIR) from the Cloud Shell

i. Tag the Docker image

j. Push the tagged Docker image to OCIR Repository

k. Verify if the image has been pushed

l. Pull the image from OCIR Repository

For more information on Docker, see the OCI Docker Documentation.

For more information on Oracle Cloud Infrastructure Registry (OCIR), see the OCI Container
Registry Documentation.

Assumptions

• You are signed into your Oracle Cloud Infrastructure (OCI) account using your
credentials.

• You have access to the Git repository link that contains the Dockerfile.

• You will replace the <userID> placeholder with your user ID.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://www.oracle.com/in/cloud/cloud-native/container-registry/what-is-docker/
https://docs.oracle.com/en-us/iaas/Content/Registry/home.htm
https://docs.oracle.com/en-us/iaas/Content/Registry/home.htm

Copyright © 2024, Oracle and/or its affiliates.

44 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Access the Dockerfile

Access the Dockerfile needed to generate the Docker image by cloning a Git repository.

Tasks

1. Open the Cloud Shell from the Developer tools listed in the OCI console header.

Note: The OCI CLI running in the Cloud Shell will execute commands against the region
selected in the Console's region selection menu when the Cloud Shell was started.

2. Within Cloud Shell, clone the GitHub repository to access the sample Dockerfile which is a
simple Nginx HelloWorld application that you will use to build the Docker image.

$ git clone https://github.com/ou-developers/docker-helloworld-
demo

3. Navigate to the cloned directory.
$ cd docker-helloworld-demo/

4. Open Code Editor from the Developer tools listed in the OCI console header.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true
https://github.com/ou-developers/docker-helloworld-demo
https://github.com/ou-developers/docker-helloworld-demo

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 45

5. The tool bar is on the left side of the Code Editor window. Click the Explorer (top) icon
from the left side menu within the Code Editor window.

6. Browse to the cloned Git directory ³docNer-helloworld-demo´ to view the various

files you have in the directory including application code and Dockerfile for creating the
sample Nginx application.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

46 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Build the Docker Image

You’re using Cloud Shell as your development environment which comes preinstalled with
Docker.

Tasks

1. Check the Docker version using the following command in Cloud Shell. It will return a
string with the Docker version installed.

$ docker -v

For example, Docker version 19.03.11-ol, build 9bb540d

2. Check for existing Docker images in the Cloud Shell.

$ docker images

3. Create a docker image for the sample Web Application using docker build command.

This command needs Dockerfile as one of its parameters.
$ docker build -t oci_sample_webapp_<userID>:<tag> .

For example,

$ docker build -t oci_sample_webapp_user22:1.0 .
Where,
• -t is the switch used to specify the image name.

• Enter an image name using this format: oci_sample_webapp_<userID>.

Replace <userID> with your user ID.

For example, oci_sample_webapp_user22.

• A tag is used to give the image a version. In this lab, you will use 1.0 as tag.

• You are currently in the cloned directory which contains the Dockerfile. Use “.” as the
relative path at the end of the command.

4. Upon successful build of a Docker image, verify the image in the local repository using the
following command:

$ docker images

You’ll see two entries in the output. One is the base image ³ngin[´, and the other is the

custom Docker image for the Web Application ³ociBsamSleBwebaSSB<userID>”.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 47

Run Your Docker Image as a Container

Your Docker image holds the application that you want Docker to run as a container.

Tasks

1. Use the docker run command to spin a container based on the image created.

$ docker run -d --name webapp-<userID> -p 80:80/tcp
oci_sample_webapp_<userID>:<tag>

Where,

• -d flag is used to run container in background and print CONTAINER_ID.

• --name flag is used to assign a name to the container.

• -p flag is used to publish container port 80 to the host machine port 80.

• Replace <userID> with your user ID.

For example,
$ docker run -d --name webapp-user22 -p 80:80/tcp
oci_sample_webapp_user22:1.0

Note: This command returns the CONTAINER_ID of the container started in the
background.

2. Check the container that is currently running using the docker ps command.

$ docker ps

You will see a container running with the name webapp-<userID> and a corresponding

CONTAINER_ID.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

48 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Access the Web Application Running Within the
Container

Verify whether you can access the web application that is running in your container. Once you
have verified, stop the running container.

Tasks

1. Use the curl command to connect to the local host on port 80 to access the web

application.
 $ curl -k http://127.0.0.1:80

The output must display the webpage code. This confirms that your web application is up
and running.

2. Get the CONTAINER_ID and copy it on a notepad to use it in your next step.

 $ docker ps -a

3. Stop the running container.

 $ docker stop <CONTAINER_ID>

For example,
 $ docker stop ffab54628f8f

4. Use the curl command to connect to the localhost on port 80 to access the web
application.

 $ curl -k http://127.0.0.1:80

Output: curl: (7) Failed to connect to 127.0.0.1 port 80 after 0 ms:
&ouldn’t connect to server

This time output will return the above-mentioned error, since the container running the
application is no longer active.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

http://127.0.0.1/
http://127.0.0.1:80

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 49

Delete the Docker Container

Clean up your resources by removing the container used in this lab.

Tasks

1. Check the status of all the containers in the system.

 $ docker ps -a

The status for the container must show exited which means the container is stopped.

2. Delete the existing container using the rm flag.

 $ docker rm webapp-<userID>

For example,
 $ docker rm webapp-user22

Output: webapp-user22

Note: On successful deletion it’ll return the container name

3. Verify if the container is deleted.

 $ docker ps -a

The container entry should be gone.

Important Note: Do not delete the Docker image created in this lab, as it will be used as
an artifact in the upcoming labs.

Congratulations! You have successfully built and containerized a docker image.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

50 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Create an Auth Token

Create an auth token to use with Oracle Cloud Infrastructure Registry (OCIR).

Tasks

1. In the top-right corner of the OCI Console, open the Profile menu, and then click User
Settings.

2. On the Auth Tokens page, click Generate Token.

Note: Each user can only have two auth tokens at a time.

3. Enter IAD-AP-LAB09-1-AT-01, as a friendly description for the auth token.

4. Click Generate Token. The new auth token is displayed. Here’s a sample of how an auth
token looks like: R5kwpS-xxxxx((]51r]]. It’ll be different in your case.

Note: Copy the auth token to a notepad because you won't see the auth token again in
the Console. You’ll need this auth token later in this and other labs.

For example,
R5kwpS-xxxxx((]51r]]

5. Click Close.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 51

Create a New Container Repository

Create an empty repository in a compartment and give it a name that's unique across all
compartments in the tenancy. Having created the new repository, you can push an image to
the repository using the Docker CLI.

Tasks

1. Check if you can access Oracle Cloud Infrastructure Registry (OCIR):

a. In the Console, open the navigation menu and click Developer Services. Under
Containers & Artifacts, click Container Registry.

b. Select your <assigned compartment> from List scope on the left navigation pane.

c. Review the repositories that already exist.

2. Click Create Repository.

3. Select your <assigned compartment> to create a new repository.

4. Enter a name for the new repository: <region-key>-ap-lab09-1-ocir-
1/oci_sample_webapp_<userID>

Where,

• <region-key> is the key for the Oracle Cloud Infrastructure Registry region you're

using. For example, iad is the region key for US EAST (Ashburn) region. See the

Availability by Region topic in the Oracle Cloud Infrastructure documentation.

• Replace <userID> with your user ID.

For example, iad-ap-lab15-1-ocir-1/oci_sample_webapp_user22

5. Select the Private option to limit access to the new repository.

6. Click Create Repository.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm#top

Copyright © 2024, Oracle and/or its affiliates.

52 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Sign In to OCIR from the Cloud Shell

Once you have generated the auth token and created a new repository, sign in to Oracle Cloud
Infrastructure Registry (OCIR) from Docker CLI in the cloud shell.

Tasks

1. Click Cloud Shell at the right of the OCI Console header.

Note: The OCI CLI running in the Cloud Shell will execute commands against the region
selected in the Console's region selection menu when the Cloud Shell was started.

2. In the Cloud Shell, log in to OCIR by entering:
$ docker login <region-key>.ocir.io

For example,

$ docker login iad.ocir.io

3. When prompted, enter your username in the format given below.

<tenancy-namespace>/<username>.

Replace the <tenancy-namespace> and <username> values from the information

given in the Profile menu.

Where,
<tenancy-namespace> is the auto-generated Object Storage namespace string of the

tenancy in which to create repositories (as shown on the Tenancy Information page). For
username, use the one shown in the profile menu.

For example, ansh81vru1zp/mahendra@acme.com. Or outenancy29/99239886-
lab.user16

Note that for some older tenancies, the namespace string might be the same as the
tenancy name in all lowercase letters (for example, acme-dev).

If your tenancy is federated with Oracle Identity Cloud Service, use the format <tenancy-
namespace>/oracleidentitycloudservice/<username>.

Enter the auth token IAD-AP-LAB09-1-AT-01 (random string) you copied earlier

as the password.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true
mailto:mahendra@acme.com

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 53

For example,
R5kwpS-xxxxx((]51r]]

Note: When you enter or paste the password, you’ll not see masked characters. Press
Enter on your keyboard to continue and you should see the ³/ogin 6ucceeded´

message on the screen.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

54 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Tag the Docker Image

A tag identifies the Oracle Cloud Infrastructure Registry (OCIR) region, tenancy, and repository
to which you want to push the image.

This task requires the Docker image oci_sample_webapp_<userID>:<tag>, which you

created earlier in this lab.

Tasks

1. In the Cloud Shell, run the following command to attach a tag to the image that you're
going to push to OCIR repository:

$ docker tag oci_sample_webapp_user22:1.0
<region-key>.ocir.io/<tenancy-namespace>/<repo-name>:<tag>

Where,

• <region-key> is the key for the Oracle Cloud Infrastructure Registry region you're

using. For example, iad is the region key for US EAST (Ashburn) region. See the

Availability by Region topic in the Oracle Cloud Infrastructure documentation.

• ocir.io is the Oracle Cloud Infrastructure Registry name.

• <tenancy-namespace> is the auto-generated Object Storage namespace string of

the tenancy (as shown on the Tenancy Information page) to which you want to push
the image. For example, oracletenancy.

• <repo-name> is the name of the target repository to which you want to push the

image (for example, iad-ap-lab09-1-ocir-1/oci_sample_webapp_user22).

• <tag> is an image tag you want to give the image in Oracle Cloud Infrastructure

Registry (for example, latest).

For example,

$ docker tag oci_sample_webapp_user22:1.0
iad.ocir.io/oracletenancy/iad-ap-lab09-1-ocir-
1/oci_sample_webapp_user22:latest

2. Validate if the new image with the tag is listed.

$ docker images

Note: Although two tagged images will be shown (1.0 and latest), both are based on

the same base image with the same IMAGE_ID.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm#top

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 55

Push the Tagged Docker Image to OCIR Repository

After assigning a tag to the image, you use the Docker CLI to push it to Oracle Cloud
Infrastructure Registry repository.

Tasks

1. In the Cloud Shell, run the following command to push the tagged Docker image to OCIR
repository:

$ docker push <region-key>.ocir.io/<tenancy-namespace>/<repo-
name>:<tag>

For example,
$ docker push iad.ocir.io/oracletenancy/iad-ap-lab09-1-ocir-
1/oci_sample_webapp_user22:latest

You will see the different layers of the image are pushed in turn and it prints the sha256
digest along with the size of the image on the screen.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true

Copyright © 2024, Oracle and/or its affiliates.

56 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

Verify if the Image has Been Pushed

Verify if the image has been pushed successfully to the OCIR repository.

Tasks

1. Go back to the OCIR Service page and select your <assigned compartment> from List
scope in the left navigation pane.

2. You’ll see the private repository iad-ap-lab09-1-ocir-
1/oci_sample_webapp_<userID> that you created.

3. Click the name of the repository that contains the image you just pushed from the
dropdown menu under label Repositories and images. You’ll see:

• An image with the tag latest

• A summary page that shows you the details about the repository, including who
created it and when, its size, and whether it's a public or a private repository

4. Click the image tag latest from the dropdown menu.

On the Summary page, you’ll see the image size, when it was pushed and by which user,
image sha256 digest, and the number of times the image has been pulled.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI 57

Pull the Image from OCIR Repository

Perform a pull operation after deleting the existing images from the local docker repository.
You will pull the same image that was previously pushed to the OCIR repository.

Tasks

1. Delete the existing images from the local docker repository.

a. In the Cloud Shell, list all the images.

 $ docker images

b. Run the docker rmi command to delete the tagged image and the original image

you created earlier.
$ docker rmi oci_sample_webapp_user22:1.0

Output: Untagged: oci_sample_webapp_user22:1.0

$ docker rmi iad.ocir.io/oracletenancy/iad-ap-lab09-1-ocir-
1/oci_sample_webapp_user22:latest

This command will first untag the image and delete the image by deleting all the
associated layers.

2. Verify if the images are deleted.

$ docker images

3. Switch to the OCI Console. From the OCIR page, select the repository and the image tag
that needs to be pulled.

4. Click Copy pull command. The command you copy includes the fully qualified path to the
image's location in Container Registry in the following format:

<region-key>.ocir.io/<tenancy-namespace>/<repo-name>:<tag>

5. Execute the copied command in the Cloud Shell to pull the image to the local repository.

For example,

$ docker pull iad.ocir.io/oracletenancy/iad-ap-lab09-1-ocir-
1/oci_sample_webapp_user22:latest

6. Verify the pulled image from OCIR repository.
$ docker images

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true

Copyright © 2024, Oracle and/or its affiliates.

58 Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI

You should see the pulled image listed within the local repository.

Important Note: Do not delete any artifacts and resources created in this lab as they
will be required in the upcoming labs.

Congratulations, you have successfully pushed and pulled an image from the OCIR repository.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Design Cloud-Native,
Microservices, and
Serverless Architecture:
Deploy a Load-Balanced Web
application on an OKE
cluster using Kubectl

Lab Practices

Estimated Time: 90 minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

60 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

Get Started

Overview

A Kubernetes cluster is a group of nodes (machines running applications). Each node can be a
physical machine or a virtual machine.

In this practice, you will set up access to your Kubernetes cluster to deploy your application.
The kubectl command line client is a versatile way to interact with a Kubernetes cluster,

including managing multiple clusters.

Additionally, you will create a named secret which contains your Oracle Cloud Infrastructure
(OCI) credentials and add them to a deployment manifest. You will then use this manifest to
deploy a sample Web application to an OKE cluster and later verify if the application is
accessible.

In this lab, you’ll:

a. Set up the kubeconfig file

b. Run kubectl commands against Kubernetes cluster

c. Create a Kubernetes (OKE) secret

d. Add the secret and the image path to the deployment manifest

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 61

e. Deploy the sample Web Application to OKE cluster

f. Verify if the sample Web Application is accessible

g. Clean up the resources deployed within OKE cluster

For more information on OCI Container Engine for Kubernetes (OKE), see the OCI Container
Engine Documentation.

Prerequisites

You will use the existing Docker image, OCIR repository, Auth token, and Kubernetes
namespace from the previous labs to perform tasks for this practice.

• Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and
push and pull images using Docker CLI (Lab09-1)

Assumptions

• You are signed into your Oracle Cloud Infrastructure (OCI) account using your
credentials.

• A pre-created OKE cluster <EventID>-OCI-ELS-ARCHPRO-OKE is available in the
root compartment. <EventID> can be fetched from the Lab tab available in the

course page.

• You will replace the <userID> placeholder with your user ID.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://docs.oracle.com/en-us/iaas/Content/ContEng/home.htm
https://docs.oracle.com/en-us/iaas/Content/ContEng/home.htm

Copyright © 2024, Oracle and/or its affiliates.

62 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

Set Up the kubeconfig File

To access a cluster using kubectl, you must set up a Kubernetes configuration file

(commonly known as the kubeconfig file) for the cluster. The kubeconfig file provides the

necessary details to access the cluster.

Tasks

1. In the Console, open the navigation menu and click Developer Services. Under
Containers and Artifacts, click Kubernetes Clusters (OKE).

2. Select root compartment from List Scope on the left navigation pane.

In the table listing Clusters, click the cluster <EventID>-OCI-ELS-ARCHPRO-OKE to
access using kubectl. The Cluster details page shows information on the cluster.

Note: <EventID> can be fetched from the Lab tab available in the course page.

3. Click Access Cluster to display the Access Your Cluster window.

4. Click Cloud Shell Access and copy the command to access the kubeconfig for your

cluster via the VCN-Native public endpoint and paste it on notepad.

5. Launch Cloud Shell and run the copied command. On successful execution, it will return a
new config written to kubeconfig file.

For example,

$ oci ce cluster create-kubeconfig --cluster-id
ocid1.cluster.oc1.iad.xxxxxaaaziwdigokvlwhuaeslgxi6tdk473xqgodcb
oc6nlgecsyudoxxxxx --file $HOME/.kube/config --region us-
ashburn-1 --token-version 2.0.0 --kube-endpoint PUBLIC_ENDPOINT

Note: This is just a representation of the command. Do not use this command to connect
with the cluster that’s created for this lab.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 63

Run kubectl Commands Against Kubernetes Clusters

Having set up the kubeconfig file, you can start using kubectl to access the cluster by

creating a sample deployment in OKE cluster.

Tasks

1. Verify that kubectl can connect to the cluster.

$ kubectl get nodes

This will return the IP addresses of three worker nodes set up within this OKE cluster.

2. Create a namespace in your Kubernetes cluster to manage your resources.

$ kubectl create ns ns-<userID>

Where,

ns-<userID> - is a unique namespace for your group of resources within a cluster.

 Replace <userID> with your user ID.

For example:
$ kubectl create ns ns-user22

3. View the cluster information.

$ kubectl cluster-info

It dumps relevant information regarding clusters for debugging and diagnosis.

4. Create a sample deployment in OKE cluster.
$ kubectl create deployment deploy-<userID> --
image=iad.ocir.io/ocuocictrng5/httpd:latest -n ns-<userID>

This command will return deployment.apps/deploy-<userID> created.

Where,

• kubectl create deployment - is used to create a pod with a single running

container.

• deploy-<userID> - is a name for your deployment.

• image= iad.ocir.io/ocuocictrng5/httpd:latest is the fully qualified path

to the image in OCIR repository.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

64 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

• -n ns-<userID> - is the namespace where your Kubernetes objects are created.

For example:

$ kubectl create deployment deploy-user22 --
image=iad.ocir.io/ocuocictrng5/httpd:latest -n ns-user22

5. Expose your deployment using service of type load balancer by using the following
command:

$ kubectl expose deployment deploy-<userID> --type=LoadBalancer
--name=svc-<userID> --port=80 --target-port=80 -n ns-<userID>

Where,

• deploy-<userID> - is a name for your deployment.

• --type=LoadBalancer - exposes the service externally using an OCI load

balancer.

• svc-<userID> - is the name for your service.

• --port=80 --target-port=80 - is used to expose the application running within

the cluster on port 80.

• ns-<userID> - is the namespace where your Kubernetes objects are created.

For example,
$ kubectl expose deployment deploy-user22 --type=LoadBalancer
--name=svc-user22 --port=80 --target-port=80 -n ns-user22

This command will return svc-<userID> exposed.

6. View all the deployments in your namespace.

$ kubectl get deploy -n ns-<userID>

The output of this command will be a row with the deployment name and ready column
set to 1/1. The age column determines the duration of the deployment created.

7. View all the pods in your namespace.
$ kubectl get pods -n ns-<userID>

The output of this command will be a row with the pod name and ready column set to 1/1.
The age column determines the duration of the pod created.

8. View all the services in your namespace.

$ kubectl get svc -n ns-<userID>

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 65

The output of this command is a row with service name and type set to Load Balancer. It
shows you the details of CLUSTER-IP and EXTERNAL-IP.

9. Copy the IP address listed under the EXTERNAL-IP column and paste it in a browser to
access your httpd application that is deployed within OKE cluster.
The webpage will display:
“It Works!”

10. Check the number of instances of pods running in your deployment.

$ kubectl get replicaset -n ns-<userID>

The output of this command should display the replicaset name. The desired and current
columns specify the number of replicas running. Age column determines the duration of
replica created.

11. Scale up the current replicas by three so that Kubernetes can start new pods to scale up
your service.

$ kubectl scale --replicas=3 deployment/deploy-<userID> -n ns-
<userID>

On successful execution, this command will return “deployment.apps/deploy-
<userID> scaled”.

12. Check if you have three replicas running.
$ kubectl get replicaset -n ns-<userID>

This shows that the Load Balancer service will now balance the incoming requests among
these three pods (replicaset).

13. View all the resources running in your namespace.

$ kubectl get all -n ns-<userID>

This command shows you all the pods, services, deployments, and replicaset running in
your namespace within the OKE cluster.

Notice that the pod count has changed to three after the previous scale-up instruction.

14. View the pod logs. The kubectl logs command lets you inspect the logs for a particular

pod.
$ kubectl logs <podname> -n ns-<userID>

Where,

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

66 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

<podname> - is the complete pod name to be used from the output of kubectl get
all -n ns-<userID> command. For example, pod/deploy-user22-cd95b4455-
f8plr.

15. Delete your deployment.
$ kubectl delete deploy deploy-<userID> -n ns-<userID>

On successful execution, this command will display “deployment.apps deploy-
<userID> deleted”.

16. Delete your service object.
$ kubectl delete svc svc-<userID> -n ns-<userID>

On successful execution, this command will display “service svc-<userID> deleted”.

17. Run the following command and you’ll not find any resources in your namespace.
$ kubectl get all -n ns-<userID>

Output: No resources found in ns-<userID> namespace.

18. Since all the resources are deleted, if you go back to your browser and hit refresh on the IP
address you pasted earlier. The page will no longer respond.

Important Note: Do not delete the namespace and entry created in the kubeconfig
file in this lab, as they will be required in the upcoming practice.

Congratulations! You have successfully deployed a sample web application to the OKE cluster.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 67

Create a Kubernetes (OKE) Secret

To enable Kubernetes to pull an image from OCIR repository when deploying an application,
you need to create a Kubernetes secret. The secret contains all the login details you would
provide while logging in to OCIR using the docker login command, including your auth

token.

Tasks

1. Open Cloud Shell available within the Developer tool in the Console header.

Note: The OCI CLI running in the Cloud Shell will execute commands against the region
selected in the Console's region selection menu when the Cloud Shell was started.

2. Run the following command to create a secret:
$ kubectl create secret docker-registry <name-of-secret>-<userID> -
-docker-server=<region-key>.ocir.io --docker-username=’<tenancy-
name>/<oci-username>’ --docker-password=’<oci-auth-token>’ --
docker-email=’<email-address>¶ -n ns-<userID>
Where,

• <name-of-secret>-<userID>: A unique name for the secret. For example, ocir-
secret-user22. Replace <userID> with your user ID.

• <region-key>: The <region-key> is the key for the Oracle Cloud Infrastructure

Registry region you're using. For example, iad is the region key for US EAST

(Ashburn) region. See the Availability by Region topic in the Oracle Cloud
Infrastructure documentation.

• ocir.io is the Oracle Cloud Infrastructure Registry name.

• <tenancy-namespace> is the auto-generated Object Storage namespace string of

the tenancy (as shown on the Tenancy Information page) to which you want to push
the image. For example, oracletenancy.

• <oci-auth-token>: Use the auth token (random string) created in the earlier lab

for IAD-AP-LAB09-1-AT-01, which was saved in your notepad.
For example, R5kwpS-xxxxx((]51r]].

Note: If you do not have an auth token, create a new one by referring to Design Cloud-
Native, Microservices, and Serverless Architecture: Manage OCIR and push and pull images
using Docker CLI (Lab09-1).

• <email-address>: Your email address.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm#top

Copyright © 2024, Oracle and/or its affiliates.

68 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

For example,
$ kubectl create secret docker-registry ocir-secret-user22 --
docker-server=iad.ocir.io --docker-username='oracletenancy/user22'
--docker-password='R5kwpS-xxxxx((]51r]]' --docker-
email='user22@oracle.com' -n ns-user22

You will see this confirmation message ³secret�ocir-secret-user�� created´ for

secret creation on the screen.

3. Run the following command to verify if the secret has been created:
$ kubectl get secrets -n ns-<userID>

For example,
$ kubectl get secrets -n ns-user22

You will see the secret details displayed with the name, age, and other attributes.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

mailto:user22@oracle.com

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 69

Add the Secret and the Image Path to the Deployment
Manifest

After the secret is created, you are required to include name of the secret (<name-of-
secret>-<userID>) and full path of the image (iad-ap-lab09-1-ocir-
1/oci_sample_webapp_<userID>:latest)pushed to OCIR repository in the deployment

manifest which is used for deploying the sample web application to an OKE cluster.

Note: You pushed the image to OCIR repository in Design Cloud-Native, Microservices, and
Serverless Architecture: Manage OCIR and push and pull images using Docker CLI (Lab09-1).
That’s the image you’ll be using in this task.

Tasks

1. Open the Code Editor available within the Developer tool in the Console header. Code
Editor allows you to edit files and source codes present in the cloned Git directory within
the Cloud Shell.

The Tool Bar is on the left side of the Code Editor window. Click the Explorer (top) icon
from the left side menu within the code editor window.

a. Within the Code Editor window, navigate to the cloned Git directory named docker-
helloworld-demo, which is present in the user’s home directory.

b. Browse to the file HelloWorld-lb.yaml in the cloned Git directory and replace the

placeholders with relevant values in the Deployment section:

1) name: helloworld-deployment-<userID>

2) namespace: ns-<userID>

3) image: <region-key>.ocir.io/<tenancy-namespace>/<repo-name>:<tag>
Where,

• <region-key>: The <region-key> is the key for the Oracle Cloud

Infrastructure Registry region you're using. For example, iad is the region

key for the US EAST (Ashburn) region. See the Availability by Region topic in

the Oracle Cloud Infrastructure documentation.

• <tenancy-namespace>: The auto-generated Object Storage namespace

string of the tenancy (as shown on the Tenancy Information page) to which
you want to push the image. For example, oracletenancy.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&codeeditor=true
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm#top

Copyright © 2024, Oracle and/or its affiliates.

70 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

• <repo-name>:<tag>: The repository name ‘iad-ap-lab09-1-ocir-
1/oci_sample_webapp_<userID>:latest’ used to tag and push the

image.

4) name : ocir-secret-<userID>

c. Also, replace the placeholders in the Service section:

1) name: helloworld-service-<userID>

2) namespace: ns-<userID>

The file will look similar after you’ve made all the changes:

3) Click Save from the File menu and exit the Code Editor.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 71

Deploy the Sample Web Application to OKE Cluster

After making changes to manifest, you are ready to deploy the application to the OKE cluster.

Tasks

1. Open Cloud Shell and change to the docker-helloworld-demo directory.

$ cd ~/docker-helloworld-demo

2. Run the following command:

$ kubectl create -f HelloWorld-lb.yaml

A confirmation of deployment and service creation will be displayed.

Note: The HelloWorld Service Load Balancer is implemented as an OCI Load Balancer with
a backend set to route incoming traffic to the cluster nodes.

The OKE service creates new Load Balancer in the root compartment. You can see the
new Load Balancer in the OCI Console by navigating to the Load Balancers page under
Networking by selecting the root compartment from the List Scope menu from the left
navigation pane.

Make a note of the overall health and public IP address for the Load Balancer.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&cloudshell=true

Copyright © 2024, Oracle and/or its affiliates.

72 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

Verify if the Sample Web Application Is Accessible

Your deployment should now be running on an OKE cluster node.

Tasks

1. Open Cloud Shell and run the command:
$ kubectl get services -n ns-<userID>

For example,
$ kubectl get services -n ns-user22

Note: The status of the EXTERNAL-IP column will show <pending> initially. Re-run the
command at some interval until the IP is allotted.

You’ll observe details of the services running on cluster nodes. You’ll also observe
HelloWorld-Service Load Balancer details such as External/Public IP and Port Number.

2. Launch an Internet Browser and enter the HelloWorld-Service Load Balancer’s
External/Public IP into the browser’s address bar to access the deployed application. The
load balancer routes the request to available nodes in the cluster.

In this lab, you’ll see one node as the replica count is set to 1 in the Kubernetes manifest.
Once the request reaches the node, you’ll see the following web page:

3. Now comes the fun part! Let’s pretend your sample web application has suddenly gained
popularity and you are now required to allocate more resources to it.

The OKE cluster is running on a single node pool with three worker nodes, thus you can
easily scale your deployment.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster
using Kubectl 73

a. To scale up twice as much and run an additional pod for your current single pod
deployment, run the command:
$ kubectl -n ns-<userID> scale --replicas=2
deployment/<deploymentname>

For example,
$ kubectl -n ns-user22 scale --replicas=2 deployment/helloworld-
deployment-user22

You will see a confirmation for deployment scaling on screen.

b. Further, to see pod and deployment details, run the command:
$ kubectl get all -n ns-<userID>

For example,

$ kubectl get all -n ns-user22

Here, you will observe an additional row for the new pod that has spawned. You can
identify the new pod by comparing the Container ID or the value in Age column of the
output.

Also, the Deployment row shows ‘���’ in the READY column, indicating the

deployment is now hosted on two pods.

If you refresh the webpage a few times, you will observe that the two Container IDs
alternatively serving your request. This is because the traffic can reach any of these
pods via the OCI Load Balancer.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

74 Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE
cluster using Kubectl

Clean Up the Resources Deployed Within OKE Cluster

Clean up the resources deployed within OKE cluster.

Tasks

1. To delete the sample web application and all other resources you created on the cluster,
run the following command:
$ kubectl delete -f HelloWorld-lb.yaml -n ns-<userID>

For example,
$ kubectl delete -f HelloWorld-lb.yaml -n ns-user22

2. To confirm the resources are cleared, run the command:
$ kubectl get all -n ns-<userID>

For example,
$ kubectl get all -n ns-user22

You will observe that no resources are found in the namespace.

Congratulations! You have successfully deployed a sample web application to the OKE cluster.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Infrastructure As Code:
Create a Reusable VCN
Configuration with
Terraform

Lab Practices

Estimated Time: 30 minutes

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

76 Infrastructure As Code: Create a Reusable VCN Configuration with Terraform

Get Started

Overview

There are multiple ways to create a VCN and subnet in the Oracle Cloud Console. Particularly if
you want to launch several VCNs with the same configuration, it’s beneficial to use Terraform
or Resource Manager to streamline and automate that process. Terraform can manage low-
level components like compute, storage, and networking resources, as well as high-level
components like DNS entries and SaaS features.

In this lab, you’ll launch and destroy a VCN and subnet by creating Terraform automation scripts
and issuing commands in Code Editor. Next, you’ll download those Terraform scripts and create
a stack by uploading them into Oracle Cloud Infrastructure Resource Manager. You’ll then use
that service to launch and destroy the same VCN and subnet.

In this lab, you’ll:

a. Create a Terraform folder and file in Code Editor

b. Create and destroy a VCN using Terraform

c. Create and destroy a VCN using Resource Manager

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Infrastructure As Code: Create a Reusable VCN Configuration with Terraform 77

Prerequisites

• Required IAM policies have already been set up for you.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

78 Infrastructure As Code: Create a Reusable VCN Configuration with Terraform

Create a Terraform Folder and File in Code Editor

In this practice, you’ll create a folder and file to hold your Terraform scripts.

Tasks

1. Log in to your tenancy in the Cloud Console and open the Code Editor, whose icon is at
the top right, to the right of the CLI Cloud Shell icon.

2. Expand the Explorer panel with the top icon on the left panel. It looks like two overlapping
documents.

3. Expand the drop-down for your home directory if it isn’t already expanded. It’s okay if it is
empty.

4. Create a new folder by clicking File, then New Folder, and name it terraform-vcn.

5. Create a file in that folder by clicking File, then New File, and name it vcn.tf. To make

Code Editor create the file in the correct folder, click the folder name in your home
directory to highlight it.

6. First, you’ll set up Terraform and the OCI Provider in this directory. Add these lines to the
file:

terraform {
 required_providers {
 oci = {
 source = "oracle/oci"
 version = ">=4.67.3"
 }
 }
 required_version = ">= 1.0.0"
}

7. Save the changes by clicking File, and then Save.

8. Now, run this code. Open a terminal panel in Cloud Editor by clicking Terminal, then New
Terminal.

9. Use pwd to check that you are in your home directory.

10. Enter ls and you should see your terraform_vcn directory.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://cloud.oracle.com/?bdcstate=maximized&codeeditor=true

Copyright © 2024, Oracle and/or its affiliates.

Infrastructure As Code: Create a Reusable VCN Configuration with Terraform 79

11. Enter cd terraform_vcn/ to change to that directory with.

12. Use terraform init to initialize this directory for Terraform.

13. Use ls -a and you should see that Terraform created a hidden directory and file.
�.�

.�
.!�

"
�.4

�"

�"
���

.�
.�

.!�
4"

�.4
�"

�"

(
��

.0
�2�

0�
� ��

.
�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

80 Infrastructure As Code: Create a Reusable VCN Configuration with Terraform

Create and Destroy a VCN Using Terraform

Terraform uses providers to interface between the Terraform engine and the supported cloud
platform. The Oracle Cloud Infrastructure (OCI) Terraform provider is a component that
connects Terraform to the OCI services that you want to manage. In this practice, you’ll create a
Terraform script that will launch a VCN and subnet. You’ll then alter your script and create two
additional files that will apply a compartment OCID variable to your Terraform script.

Tasks

Write the Terraform

1. Open the OCI Provider documentation in the Terraform Registry to familiarize yourself with
the OCI Terraform provider. As you go along the lab, it may be helpful to try and find the
relevant portions of the documentation.

2. Add the following code block to your Terraform script to declare a VCN, replacing
<your_compartment_ocid> with the proper OCID. The only strictly required parameter

is the compartment OCID, but you’ll add more later.

If you need to retrieve your compartment OCID, navigate to Identity & Security, then
Compartments. Find your compartment, hover over the OCID, and click Copy.

resource "oci_core_vcn" "example_vcn" {
 compartment_id = "<your_compartment_ocid>"
}

This snippet declares a resource block of type oci_core_vcn. The label that Terraform will
use for this resource is example_vcn.

3. In the terminal, run terraform plan, and you should see that Terraform would create a

VCN. Since most of the parameters were unspecified, terraform will list their values as
“(known after apply).” You can ignore the “-out option to save this plan” warning for this
lab.

Note that terraform plan parses your Terraform configuration and creates an execution

plan for the associated stack, while terraform apply applies the execution plan to create

(or modify) your resources.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

https://registry.terraform.io/providers/oracle/oci/latest/docs

Copyright © 2024, Oracle and/or its affiliates.

Infrastructure As Code: Create a Reusable VCN Configuration with Terraform 81

4. Add a display name and CIDR block (the bolded portion) to the code. Note that we want to
set the cidr_blocks parameter, rather than cidr_block (which is deprecated). The region code
IAD is used below, for the US East (Ashburn) region.

resource "oci_core_vcn" "example_vcn" {
 compartment_id = "<your_compartment_ocid>"
 display_name = "IAD-AP-LAB11-1-VCN-01"
 cidr_blocks = ["10.0.0.0/16"]
}

5. Save the changes and run terraform plan again. You should see the display name and

CIDR block reflected in Terraform’s plan.

6. Now add a subnet to this VCN. At the bottom of the file, add the following block:

resource "oci_core_subnet" "example_subnet" {
 compartment_id = "<your_compartment_ocid>"
 display_name = "IAD-AP-LAB11-1-SNT-01"
 vcn_id = oci_core_vcn.example_vcn.id
 cidr_block = "10.0.0.0/24"
}

Note the line where we set the VCN ID. Here we reference the OCID of the previously
declared VCN, using the name we gave it to Terraform: example_vcn. This dependency

makes Terraform provision the VCN first, wait for OCI to return the OCID, then provision
the subnet.

7. Run terraform plan to see that it will now create a VCN and subnet.

Add Variables

8. Before moving on there are a few ways to improve the existing code. Notice that the subnet
and VCN both need the compartment OCID. We can factor this out into a variable. Create a
file named variables.tf.

9. In variables.tf, declare a variable named compartment_id:

variable "compartment_id" {
 type = string
}

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

82 Infrastructure As Code: Create a Reusable VCN Configuration with Terraform

10. In vcn.tf, replace all instances of the compartment OCID with var.compartment_id as

follows:

terraform {
 required_providers {
 oci = {
 source = "oracle/oci"
 version = ">=4.67.3"
 }
 }
 required_version = ">= 1.0.0"
}

resource "oci_core_vcn" "example_vcn" {
 compartment_id = var.compartment_id
 display_name = "IAD-AP-LAB17-1-VCN-01"
 cidr_blocks = ["10.0.0.0/16"]
}

resource "oci_core_subnet" "example_subnet" {
 compartment_id = var.compartment_id
 display_name = "IAD-AP-LAB17-1-SNT-01"
 vcn_id = oci_core_vcn.example_vcn.id
 cidr_block = "10.0.0.0/24"
}

Save your changes in both vcn.tf and variables.tf.

11. If you were to run terraform plan or apply now, Terraform would see a variable and

provide you a prompt to input the compartment OCID. Instead, you’ll provide the variable
value in a dedicated file. Create a file named exactly terraform.tfvars.

12. Terraform will automatically load values provided in a file with this name. If you were to use
a different name, you would have to provide the file name to the Terraform CLI. Add the
value for the compartment ID in this file:

compartment_id = "<your_compartment_ocid>"

Be sure to save the file.

13. Run terraform plan and you should see the same output as before.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Infrastructure As Code: Create a Reusable VCN Configuration with Terraform 83

Provision the VCN

14. Run terraform apply and confirm that you want to make the changes by entering yes

at the prompt.

15. Navigate to VCNs in the console. Ensure that you have the right compartment selected. You
should see your VCN. Click its name to see the details. You should see its subnet listed.

Terminate the VCN

16. Run terraform destroy. Enter yes to confirm. You should see the VCN terminate.

Refresh your browser if needed.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

84 Infrastructure As Code: Create a Reusable VCN Configuration with Terraform

Create and Destroy a VCN Using Resource Manager

You can better manage the infrastructure provisioned through Terraform by migrating to
Resource Manager instead of running Terraform locally in Cloud Shell or Code Editor. In this
section, we will reuse the Terraform code but replace the CLI with Resource Manager.

Tasks

1. Create a folder named terraform_vcn on your host machine. Download the vcn.tf,

terraform.tfvars, and variables.tf files from Code Editor and move them to the

terraform_vcn folder to your local machine. To download from Code Editor, right-click

the file name in the Explorer panel, and select Download. You could download the whole
folder at once, but then you would have to delete Terraform’s hidden files.

Create a Stack

2. Navigate to Resource Manager in the Console’s navigation menu under Developer
Services. Go to the Stacks page.

3. Click Create stack.

a. The first page of the form will be for stack information.

1) For the origin of the Terraform configuration, keep My configuration selected.

2) Under Stack configuration, upload your terraform_vcn folder.

3) Under Custom providers, keep Use custom Terraform providers unselected.

4) Name the stack and give it a description.

5) Ensure that your compartment is selected

6) Click Next.

b. The second page will be for variables.

1) Since you uploaded a terraform.tfvars file, Resource Manager will auto-

populate the variable for compartment OCID.

2) Click Next.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

Infrastructure As Code: Create a Reusable VCN Configuration with Terraform 85

c. The third page will be for review.

1) Keep Run apply unselected.

2) Click Create. This will take you to the stack’s details page.

Run a Plan Job

4. The stack itself is only a bookkeeping resource—no infrastructure was provisioned yet.
You should be on the stack’s page. Click Plan. A form will pop up.

a. Name the job RM-Plan-01.

b. Click Plan again at the bottom to submit a job for Resource Manager to run
terraform plan. This will take you to the job’s details page.

5. Wait for the job to complete, and then view the logs. They should match what you saw when
you ran Terraform in Code Editor.

Run an Apply Job

6. Go back to the stack’s details page (use the breadcrumbs). Click Apply. A form will pop up.

a. Name the job RM-Apply-01.

b. Under Apply job plan resolution, select the plan job we just ran (instead of
“Automatically approve”). This makes it execute based on the previous plan, instead of
running a new one.

c. Click Apply to submit a job for Resource Manager to run terraform apply. This will

take you the job’s details page.

7. Wait for the job to finish. View the logs and confirm that it was successful.

View the VCN

8. Navigate to VCNs in the Console through the navigation menu under Networking and
Virtual Cloud Networks.

9. You should see the VCN listed in the table. Click on its name to go to its Details page.

10. You should see the subnet listed.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

Copyright © 2024, Oracle and/or its affiliates.

86 Infrastructure As Code: Create a Reusable VCN Configuration with Terraform

Run a Destroy Job

11. Go back to the stack’s details page in Resource Manager.

12. Click Destroy. Click Destroy again on the menu that pops up.

13. Wait for the job to finish. View the logs to see that it completed successfully.

14. Navigate back to VCNs in the Console. You should see that it has been terminated.

15. Go back to the stack in Resource Manager. Click the drop-down for More actions. Select
Delete stack. Confirm by selecting Delete.

You’ve now created a Terraform configuration for a VCN; created and destroyed the VCN
through Terraform running locally in Cloud Shell/Code Editor; and created and destroyed the
VCN through managed Terraform in Resource Manager.

�.�
.�

.!�

"

�.4
�"

�"

���
.�

.�
.!�

4"
�.4

�"

�"
(

��
.0

�2�
0�

� ��
.

�.

��
��

!�.
�

�2�
./

�2�
��0

2�
 2

�!�
�"

2�!
��

�

"��

2�

-
�.

"!
��

��%
2�

��2
��

��
"0

!��
��

��
��

�
!��

/"
!��

��
��

��
�/

�!2
��

�)
��

$�
�4

�!
C

�	
�	

�
�,

�.
0�

2�
-

��
@2

�
�!$

�.
��

��
���

!
�.

���
��.

!2
 �

	Oracle Cloud Infrastructure Architect Professional Workshop - Lab Practices Guide
	Table of Contents
	Network Security Group (NSG) as an Ingress Rule for Another NSG, Instead of a CIDR Block
	Get Started
	Overview

	Launch Virtual Cloud Network and Compute Instances
	From your personal computer in your office, ping the public IP addresses of all three compute instances.
	They will all fail; the Security List does not have an ICMP Echo rule. Now SSH to all three of them. This will succeed because the Default Security List comes with SSH port 22 enabled by default.
	Create the first NSG

	Create a Nested Network Security Group

	Design and Implement a Real-World Network Architecture: Configuring Private DNS Zones, Views, and Resolvers
	Get Started
	Overview
	Prerequisites

	Set Up Lab Environment
	Create Two VCNs and a Subnet
	Establish Local Peering for VCNs
	Create a VM Instance

	Create zone-a.local Custom Private Zone
	Tasks

	Create zone-b.local Custom Private Zone
	Tasks

	Test Instance for Associated Zones
	Tasks

	Configure the VCN Resolver Adding the Other Private View
	Tasks

	Test Instance for Associated Zones
	Tasks

	Design Cloud-Native, Microservices, and Serverless Architecture: Build and Deploy an Oracle Function
	Get Started
	Overview
	Prerequisites

	Create a VCN and Functions Application
	Tasks

	Create a Private Repository in OCIR and Set Up Cloud Shell for Access
	Tasks

	Build & Deploy the Function Container and Test Function
	Tasks

	Design Cloud-native, Microservices, and Serverless Architecture: Create an API Gateway Deployment
	Get Started
	Overview
	Prerequisites

	Create a New API Gateway
	Tasks

	Create a New API Gateway Deployment
	Tasks

	Validate a Policy Statement That Allows API Gateway to Access the Function
	Tasks

	Add an Ingress Rule for the Public Subnet
	Tasks

	Call the Function via Your API Gateway Deployment
	Tasks

	Design Cloud-Native, Microservices, and Serverless Architecture: Manage OCIR and Push and Pull Images Using Docker CLI
	Get Started
	Overview
	Assumptions

	Access the Dockerfile
	Tasks

	Build the Docker Image
	Tasks

	Run Your Docker Image as a Container
	Tasks

	Access the Web Application Running Within the Container
	Tasks

	Delete the Docker Container
	Tasks

	Create an Auth Token
	Tasks

	Create a New Container Repository
	Tasks

	Sign In to OCIR from the Cloud Shell
	Tasks

	Tag the Docker Image
	Tasks

	Push the Tagged Docker Image to OCIR Repository
	Tasks

	Verify if the Image has Been Pushed
	Tasks

	Pull the Image from OCIR Repository
	Tasks

	Design Cloud-Native, Microservices, and Serverless Architecture: Deploy a Load-Balanced Web application on an OKE cluster using Kubectl
	Get Started
	Overview
	Prerequisites
	Assumptions

	Set Up the kubeconfig File
	Tasks

	Run kubectl Commands Against Kubernetes Clusters
	Tasks

	Create a Kubernetes (OKE) Secret
	Tasks

	Add the Secret and the Image Path to the Deployment Manifest
	Tasks

	Deploy the Sample Web Application to OKE Cluster
	Tasks

	Verify if the Sample Web Application Is Accessible
	Tasks

	Clean Up the Resources Deployed Within OKE Cluster
	Tasks

	Infrastructure As Code: Create a Reusable VCN Configuration with Terraform
	Get Started
	Overview
	Prerequisites

	Create a Terraform Folder and File in Code Editor
	Tasks

	Create and Destroy a VCN Using Terraform
	Tasks
	Write the Terraform
	Add Variables
	Provision the VCN
	Terminate the VCN

	Create and Destroy a VCN Using Resource Manager
	Tasks
	Create a Stack
	Run a Plan Job
	Run an Apply Job
	View the VCN
	Run a Destroy Job

