ORACLE

Oracle® Fusion Middleware

Desktop Integration Developer's Guide for Oracle Application
Development Framework

11gRelease 1 (11.1.1.9.0)

E52954-01

April 2015

Documentation for Oracle ADF Desktop Integration
developers that describes how to extend the functionality
provided by a Fusion web application to desktop
applications.

Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development
Framework 11g Release 1 (11.1.1.9.0)

E52954-01
Copyright © 2009, 2015, Oracle and/or its affiliates. All rights reserved.
Primary Author: Walter Egan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is in preproduction status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and
conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle
PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been
executed by you and Oracle and with which you agree to comply. This document and information contained
herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

Contents

PrefacCeo s XV
ATIEIICE ... XV
Documentation AcCesSSIDIlitycccooiiiiiiiiiiiiiii e XV
Documentation ACCESSIDILILYcccciuiiuiiiiiiiciiicccee e XV
Related DOCUIMENLScouiiiuiiiiiiiiiiic e XV
CONVEINEIONS ...ttt sttt sttt ae e ene e Xvi

What's New in This Guide for Release 11.1.1.9.0 ..., Xvii
New and Changed Features for Release 11.1.1.9.0cccccoovviriiiiiiiniiiicieec e XVii
Other Significant Changes in this Document for Release 11.1.1.9.0cccccevieirvvninnviiirneene xviii

1 Introduction to ADF Desktop Integration

1.1 About ADF Desktop INtegrationcccccccccueueiiiciiiiciiiiicceeeereeeeeeseeeeesee e 1-1
1.2 About ADF Desktop Integration with Microsoft Excel.........ccooooiiiiiiiii 1-2
1.2.1 Overview of Creating an Integrated Excel Workbookccccoovviiniiiiniiiiiinne. 1-2
1.2.2 Advantages of Integrating Excel with a Fusion Web Applicationc.ccccccccuvuvuence 1-3

2 Introduction to the ADF Desktop Integration Sample Application

2.1 About the Summit Sample Application for ADF Desktop Integrationcccccevvunneee. 2-1

2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration.......
2-1

2.21 How to Download the Application ReSOUTICes...........ccccviuiimiiiiiiiiiiiiiiiciccieeienns 2-2

222 How to Install the Summit ADF Schemacccccooviiiiiiiiiiccccs 2-2

2.2.3 How to Run the Summit Sample Application for ADF Desktop Integration 2-5

2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF
Desktop Integration 2-6

2.31 About the Fusion Web Application in the Summit Sample Application for ADF
Desktop Integration 2-6
2.3.2 Downloading Integrated Excel WOrkbooKSs...........cccueiiiiiiiiiiiiiic 2-6

2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF
Desktop Integration 2-7

2.41 Log on to the Fusion Web Application from an Integrated Excel Workbook 2-7
2.4.2 Downloading Data ROWS.........c.cceuiiiiiiiic 2-7
243 Modify Customers and Warehouses Information in the Workbooks.......................... 2-8
244 Upload Modified Information to the Fusion Web Application..........ccccoooviviiinnnnnes 2-8

3 Setting Up Your Development Environment

3.1
3.2
3.3
3.4
3.4.1
3.5
3.6

About Setting Up Your Development Environmentcoooooiiiiiiiiccnicceccne 3-1
Required Oracle ADF Modules and Third-Party Software.cccccoevceceicccccccennnas 3-1
Configuring Excel to work with ADF Desktop Integrationccoeeveiiiiiininiccnene. 3-2
Installing ADF Desktop Integration............ccoeoiiiiiiiccc e 3-3

How to Install ADF Desktop Integration...........ccccocieiiecieeeeeeceeeeeeeeenenennns 3-4
Removing ADF Desktop Integrationccceiiiiiiiiiiicc e 3-5
Upgrading ADF Desktop Integration ..o 3-5

4 Preparing Your Integrated Excel Workbook

41
4.2
4.21
422
423
4.2.4

4.3

4.3.1
4.3.2
4.3.3
4.4

4.41
442
4.5

4.5.1
4.5.2

4.5.3
4.6

About Preparing Your Integrated Excel Workbooks.............coocvoieiiiiiiiiii 4-1
Working with Page Definition Files for an Integrated Excel Workbook.............c.ccc.cc..... 4-1
How to Create ADF Desktop Integration Page Definition File ..o 4-2
What Happens When You Create a Page Definition Filec.cccoooooiiiinnn. 4-3
How to Reload a Page Definition File in an Excel Workbook...........ccccccccecucucicuicnnnes 4-4

What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook 4-5

Adding an Integrated Excel Workbook to a Fusion Web Applicationcccceueeenee. 4-5
How to Add an Integrated Excel Workbook to a Fusion Web Application 4-5
How to Configure a New Integrated Excel Workbook ..., 4-7
How to Add Additional Worksheets to an Integrated Excel Workbook 4-10

Enabling ADF Desktop Integration in an Excel Workbook..........c.cccccccoeeiiicninnnnnene. 4-11
How to Enable ADF Desktop Integration in an Existing Workbook...................... 4-11
How to Manually Configure a New Integrated Excel Workbook.............cccccceueune 4-12

Enabling ADF Desktop Integration Manually...........ccccccvuveiiiinniinincrrceeenes 4-13
How to Manually Add ADF Desktop Integration In Fusion Web Application....... 4-14

What Happens When You Add ADF Desktop Integration to Your JDeveloper Project...
4-15
Adding ADF Library Web Application SUPPOTtccccceueuiiciiiiciciccccciccicrenenees 4-15

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration.......
4-16

5 Getting Started with the Development Tools

5.1
5.1.1
5.1.2
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

About Development TOOIS.........ccciiiiiiiiiiii 5-1
ADF Desktop Integration Development Tools Use Cases and Examples................... 5-2
Additional Functionality for ADF Desktop Integration Development Tools............. 5-3

Designer Ribbon Tab ... e 5-3

ADF Desktop Integration Designer Task Pane...........cccccccoceiiiiiiiiiiniiiiicics 5-6

Using the BIndings Palette.cooooiiiiii e 5-7

Using the Components Palette............ooouoiiiiioiiiiii e 5-8

Using the Property INSPeCctorcccccciiiiiiiiiiiiiiiicccces e 5-9

Using the BINding ID PiCKETccccoiiiiiiiiiiiiiicccceeeeeee e 5-11

Using the Expression Builder ... 5-11

Using the Web Page Picker ..o 5-12

Using the File System Folder Picker.........cccccocoiiiiiiiiiiiiicccccceeeccceeceeeeeeees 5-13

Using the Page Definition Pickercoooiiiiiiiiiiii 5-14

Using the Collection EdItors..........cccccoiuiiiiiiiiiiiiiiiiiiiiiccccccs 5-15

5.13 Using the Cell Context MenU.........cccovuiiiiiiiiiiiiiiiiiiiee s 5-16

5.14 Removing ADF Desktop Integration Components............c.cccoooruevniimeieiciiciiiiccceee 5-17
5.15 Exporting and Importing Excel Workbook Integration Metadatacccccoeevevvrirenccacee 5-18
5.15.1 How to Export Workbook Integration Metadata.............cccoevvvviiiiiiiiiniiicnn, 5-19
5.15.2 How to Import Workbook Integration Metadatacccooeoeiiiiiiiiiic 5-20

5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook
Integration Metadata 5-21

6 Working with ADF Desktop Integration Form-Type Components

6.1 About ADF Desktop Integration Form-Type Components..........ccccccevuvurevevrerrercrercrerenenc. 6-1
6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples.......... 6-2
6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components.... 6-3
6.2 Inserting an ADF Label COMPONENtcccccoeueuriiiiiiiiiiiiiiieiereeieiereeeeeeesreseeeeees e 6-3
6.3 Inserting an ADF Input Text Componentcccoevviiieiiiiiiiiniiin, 6-5
6.4 Inserting an ADF Output Text COmMpOnentcoccueueueiiiiiiiiiiiicicicceeeis 6-6
6.5 Inserting an ADF Input Date Component............ccccoeiiininiiiiiniiiiinicccee 6-8
6.6 Inserting an ADF Image COMPONENt.........cccueiiiiiiiiieiiiciceeec s 6-10
6.7 Inserting an ADF Button Component.............cccoeieiiiiiiiiiiiiccc 6-12
6.8 Displaying Output from a Managed Bean in an ADF Component...........cccccceeuvueuvunnnnne. 6-14
6.8.1 How to Display Output from a Managed Beanccooooviiiiiiiicce 6-14
6.8.2 What Happens at Runtime: How an ADF Component Displays Output from a
Managed Bean 6-15

6.9 Displaying Concatenated or Calculated Data in Componentsccccccceevverereeereneenes 6-15
6.9.1 How to Configure a Component to Display Calculated Dataccccoooirieinnne. 6-15
6.9.2 Using Form Components and Merged Cells...........ccccoooeiiiiiiiiiiiniiccce 6-17

7 Working with ADF Desktop Integration Table-Type Components

71 About ADF Desktop Integration Table-Type Components............cccceueioieieiiiciceinicicnnen 7-2
711 ADF Desktop Integration Table-Type Components Use Cases and Examples.......... 7-2
7.1.2 Additional Functionality of Table-Type Components............cccooeuevviirieiiiiciceinnnen, 7-3
7.2 Page Definition Requirements for an ADF Table Component...........cccccccceuvuereieuriniiiiinnnnnns 7-3
7.3 Inserting an ADF Table Component into an Excel Worksheetcccoovvrvnnnnnnce. 7-5
7.3.1 How to Insert an ADF Table Componentcccccovieiiiiiiiiniiniiiiiiececens 7-5
7.3.2 How to Add a Column in an ADF Table Componentccccceeuvirvviinnnniienenenn. 7-8
7.4 Downloading Data to an ADF Table COmMpPOnent...........ccccceuevevverererenenernernennrreeceeeenne 7-9
7.41 How to Download Data to an ADF Table Component............ccccocoeveviiniiiniininininininenn. 7-9
7.4.2 What Happens at Runtime: How an ADF Table Component Downloads Data..... 7-10
7.5 Downloading Pending Insert and Pending Update Rows to an ADF Table Component
7-11
7.51 What Happens at Runtime: Download Action is Invoked..........ccccocovininiiinnnnnn. 7-12
7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts...........ccccccccciiiiicnnnnne. 7-12
7.5.3 What You May Need to Know About DownloadForInsert Action..........ccccccceueee. 7-12
7.6 Updating Existing Data in an ADF Table Component.............cccoooiiiiiiiniiiiincnes 7-12
7.6.1 How to Configure an ADF Table Component to Update Dataccccoevvurrennncen. 7-13
7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data......... 7-14
7.7 Inserting Data in an ADF Table Componentcooeeioiiiiiciiiiincieecncee 7-14

vi

7.71

7.8
7.8.1

7.8.2
7.8.3

7.8.4
7.8.5
7.8.6
7.8.7
7.9

7.9.1
7.9.2
7.9.3

7.10
7.10.1

7.10.2

7.11
7.11.1
711.2
712
7.12.1
713
7.13.1
7.13.2
714
7141
7.14.2

7.14.3
7.14.4
7.15

7.16

7.16.1
7.16.2

7.16.3
7.16.4

717
7171

How to Configure an ADF Table Component to Insert Data Using a View Object's
Operations 7-14

Uploading Changes from an ADF Table Componentcccccovvvviiinnnnninnininnnn 7-16
How to Configure an ADF Component to Upload Data from an ADF Table
Component 7-17
What Happens at Runtime: How the ADF Table Component Uploads Data......... 7-18

What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During
Upload 7-20

What Happens at Runtime: How Row Errors Are Handled During Upload 7-20
What You May Need to Know About Upload Options..........ccceeeeiiiiiiniiiniennnnn 7-20
How to Create a Custom Upload Dialogcccouiiiieioiiiiiicc 7-21
What Happens at Runtime: Custom Upload Dialog.........ccccoeiiiiiiciccccccenne 7-22

Uploading Changes from an ADF Table Component Using an Upload AllOrNothing
Action 7-22

How to Configure an ADF Component to use Upload AllOrNothing Action 7-23
What Happens at Runtime: Upload AllOrNothing Action is Invoked...................... 7-23

Limiting the Amount of Changed Data That Can Be Uploaded With
UploadAllOrNothing Action 7-24

Deleting ADF Table Component Rows in the Fusion Web Application......................... 7-25
How to Configure an ADF Table Component to Delete Rows in the Fusion Web
Application 7-25

What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion
Web Application 7-26

Batch Processing in an ADF Table Component.............cccouoiiiiiniiiieiiiccceecceean 7-28
How to Configure Batch Options for an ADF Table Componentccccccccuueeee. 7-28
Troubleshooting Errors While Uploading Data............ccooeieiiiiiiiiiiie 7-29

Special Columns in the ADF Table Componentccccooiiieieiiiicieecceeeciee 7-29
Row Flagging in an ADF Table Component...........cccccceuvuveverurererneninrnrerrnereceenes 7-31

Configuring ADF Table Component Key Columm.........ccccoooiiiiiiiiiiiiiceci 7-32
How to Configure the Key Column..........c.oooiiiiiiiiiiicec 7-32
How to Manually Add the Key Column At Design Time.........cccccceevvvrvnvennenenes 7-33

Adding a Dynamic Column to Your ADF Table Component...........ccccccouviieieiiirinieinnes 7-34
How to Configure a Dynamic ColumMIcccccocuviviviiiniiiiiniiincierrcens 7-35

What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic
Column 7-36

How to Specify Header Labels for Dynamic Columns..........cccccovviinieiniiicieininne 7-36
How to Specify Styles for Dynamic COlUMNScccceviviviviiininininiiiirrinine 7-37

Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component 7-37

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime..........
7-38
How to Configure an ADF Table Component to Resize Columns at Runtime....... 7-38

How to Configure an Action Set to Resize Columns of an ADF Table Component at
Runtime 7-40

What Happens at Runtime: How the ADF Table Columns are Resized.................. 7-41

What You May Need to Know About Resizing Columns of an ADF Table Component
at Runtime 7-42

Grouping Columns Together in an ADF Table Component..........c.cccccoeeueucucucniceencunnnnes 7-42
How to Group Columns in an ADF Table Component..........ccccocevvevviiienniienennnnn 7-43

717.2
717.3
7.18
7.18.1
7.19
7.19.1
7.20
7.20.1
7.20.2
7.21
7.22
7.22.1
7.22.2

7.22.3

How to Group Columns that Render in a Dynamic Columnccceooiiiiiiinnnnnen 7-46
What Happens at Runtime: How an ADF Table Component Groups Columns.... 7-48
Configuring an ADF Table Component to be Read-onlyccccceevrvvninnninnnnes 7-48
How to Configure an ADF Table Component to be Read-only.........cccccoovurnennnne. 7-48
Creating an ADF Read-Only Table Componentcccccooiiiiiiiiiiiiccce 7-49
How to Insert an ADF Read-only Table Component.........c.cccccccucucucucieiccucueunicncnnnnnnes 7-50
Limiting the Number of Rows Your Table-Type Component Downloads 7-51
How to Limit the Number of Rows a Component Downloadscccccceuvuinnnne 7-51
What Happens at Runtime: How the RowLimit Property Workscccccccccc...... 7-52
Tracking Changes in an ADF Table Componentc.ccccooeeiniiinniiiiicciinn 7-53
Evaluating EL Expressions for ReadOnly Properties...........ccccooeiiiiniiiiiiininnnnn, 7-53
What Happens at Runtime: Evaluating EL Expression While Downloading Data 7-54
What Happens at Runtime: Evaluating EL Expression While Uploading Data or
Tracking Changes 7-54
What You May Need to Know About Evaluating EL Expression While Uploading Data

or Tracking Changes 7-54

Working with Lists of Values

8.1
8.1.1
8.1.2

8.2
8.3
8.3.1
8.3.2
8.4
8.4.1

8.5
8.5.1
8.5.2

8.5.3
8.5.4

About List of Values in an Integrated Excel Workbook............c.cccoooiiiii 8-1
Adding Lists of Values to Integrated Excel Workbooks Use Cases and Examples... 8-1

Additional Functionality for Adding List of Values to an Integrated Excel Workbook ...
8-2

Creating a List of Values in an Excel Worksheet............ccoooiii 8-2
Creating a List of Values in an ADF Table Component Columncccccevueevuvureeurnnnnne 8-5
How to Create a List of Values in an ADF Table Component Column....................... 8-5
What Happens at Runtime: How the ADF Table Column Renders a List of Values 8-7
Adding a Model-Driven List Picker to an ADF Table Component...........cccccccceueucueueueuennnns 8-7

What You May Need to Know About Model-Driven List Pickers in ADF Table
Components 8-10

Creating Dependent Lists of Values in an Integrated Excel Workbook 8-10
How to Create Dependent Lists of Values in Excel Worksheets............c.cccccccceeee. 8-13

What Happens at Runtime: How an Excel Worksheet Renders a Dependent List of
Values 8-14

How to Create Dependent Lists of Values in ADF Table Component Columns.... 8-15

What Happens at Runtime: ADF Table Component Column Renders a Dependent List
of Values 8-16

Adding Interactivity to Your Integrated Excel Workbook

9.1
9.1.1
9.1.2

9.2

9.2.1
9.2.2
9.2.3

About Adding Interactivity to an Integrated Excel Workbook............cccccccecicicniiiinnnns 9-1
Adding Interactivity to Integrated Excel Workbook Use Cases and Examples......... 9-2

Additional Functionality for Adding Interactivity to an Integrated Excel Workbook......
9-3

USING ACHON SELS ...t 9-3
How to Invoke a Method Action Binding in an Action Set...........ccoooeiiiiiiiinnnnnn. 9-5
How to Invoke Component Actions in an Action Set...........cccccoevvviceeniiciieiicennnn. 9-6

What You May Need to Know About an Action Set Invoking a Component Action.......
9-7

Vii

10

viii

9.24 How to Invoke an Action Set from a Worksheet Eventccccccovvvvevieiiiiiceeeiiee, 9-8

9.2.5 How to Display a Progress Bar while an Action Set Executes...........ccccccoceviiiinninnnns 9-9
9.2.6 What Happens at Runtime: How the Action Set Displays a Status Message 9-12
9.2.7 What You May Need to Know About Progress Barscccooeeiiiieininnnn, 9-12
9.2.8 What You May Need to Know About Canceling an Actioncccocueveireiinnnen. 9-13
9.2.9 How to Provide an Alert After the Invocation of an Action Set...........ccccocovvvvvinnnn 9-14
9.2.10 What Happens at Runtime: How the Action Set Provides an Alert 9-16
9.2.11 How to Configure Error Handling for an Action Set ..o 9-16
9.2.12 How to Invoke a Confirmation Action in an Action Set.........cccccovvviiniiininnnn 9-17
9.2.13 What Happens at Runtime: How the Action Set Provides a Confirmation............. 9-19
9.3 Configuring the Runtime Ribbon Tabcccooooiii 9-19
9.3.1 How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab 9-21
9.3.2 How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab.. 9-22
9.3.3 What Happens at Runtime: Ribbon Commands in the Ribbon Tab 9-23
9.4 Displaying Web Pages from a Fusion Web Application..........ccccccceeuevvveiicvnvincnenenes 9-25
9.4.1 How to Display a Web Page in a Popup Dialogcoooeueieiiiiieiiiiie 9-25
94.2 How to Display a Web Page Search Form in a Popup Dialog........cccceeveiriiinnne. 9-27
9.4.3 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane...... 9-29
9.4.4 What You May Need to Know About Displaying Pages from a Fusion Web
Application 9-30
9.4.4A1 Sending Data Between an Integrated Excel Worksheet and a Fusion Web
Application Page 9-30
9.4.4.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion
Web Application Pages 9-31
9.44.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame
Sharing 9-31
9.5 Using Row-Level Action Sets in a Table Columncccooiiiiiic 9-32
9.5.1 How to Enable Row-Level Action Set Model Management...........c.cccoeveveerenenccncnee 9-32
9.5.2 What Happens at Runtime: RowActionSetModelMgmtEnabled is Set to True...... 9-33
9.5.3 How to Synchronize Changes from ADF Table Component Using RowUpSyncNoFail .
9-34
954 What Happens at Runtime: RowUpSyncNoFail Action is Invoked 9-35
9.5.5 How to Add a Custom Popup Picker Dialog to an ADF Table Column.................. 9-35
9.6 Using EL Expression to Generate an Excel Formula ..., 9-36
9.6.1 How to Configure a Cell to Display a Hyperlink Using EL Expression 9-37
9.6.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression..
9-38
9.7 Using Calculated Cells in an Integrated Excel Workbook...........c.cccoceuiiiininiiiiiiiinininnes 9-38
9.7.1 How to Calculate the Sum of a Table-Type Component Column..........cccccceueuneee. 9-39
9.7.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type
Component Column 9-40
9.8 Using Macros in an Integrated Excel Workbookccccccceiiniiinininiiin 9-40

Configuring the Appearance of Your Integrated Excel Workbook

10.1 About Configuring the Appearance of an Integrated Excel Workbook 10-1
10.1.1 Integrated Excel Workbook Configuration Use Cases and Examples...................... 10-2
10.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel

Workbook 10-2

1

10.2 Working With Styles ... 10-2

10.2.1 Predefined Styles in ADF Desktop Integration..........c.ccooeeieirieiniiciiccce 10-2
10.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options.. 10-3
10.2.3 How to Apply a Style to an Oracle ADF Componentccccoeeeeiiiinnininienenennn, 10-4
10.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component 10-5
10.3 Applying Styles Dynamically Using EL EXPressions..........cccccceeueueuvervieienvrvncnenenes 10-6
10.3.1 What Happens at Runtime: How an EL Expression Is Evaluated 10-7
10.3.2 How to Write an EL Expression That Applies a Style at Runtime............c.............. 10-7
10.3.3 What You May Need to Know About EL Expressions That Apply Styles 10-8
10.4 Using Labels in an Integrated Excel Workbookcooeviiiiiiiiiiiiic 10-9
10.4.1 Retrieving the Values of String Keys from a Resource Bundle...............ccccccocooo. 10-9
10.4.2 Retrieving the Values of Attribute Control Hints..........cccocovirvennnnncncenccees 10-10
10.4.3 How an Integrated Excel Workbook Evaluates a Label Propertycccucuuee... 10-10
10.5 Branding Your Integrated Excel Workbook............cccooiiiiiiiiii, 10-10
10.5.1 How to Brand an Integrated Excel Workbookccccooviiininiciiniiciiiccnns 10-11
10.5.2 What Happens at Runtime: the BrandingItems Group of Properties..................... 10-12
10.6 Displaying Tooltips in ADF Desktop Integration Componentsccccccooorueurieinnnne. 10-13
10.6.1 How to Add a Tool Tip to an ADF Table Component...........ccccceueueueueerrerenerereneenes 10-14
10.6.2 How to Add a Tool Tip to a Form-Type Component...........ccccecevvvvvvivnnnnnninincnnns 10-15
10.6.2.1 What You May Need to Know About Tooltips for Form-Type Components 10-16
10.6.3 What You May Need to Know About Tooltips for Table Columns........................ 10-17
10.7 Using Worksheet Protection.............cooocuoiiiiiiiici s 10-18
10.7.1 How to Enable Worksheet Protection............ccccocoviviviiiinininniccn 10-18
10.7.2 What Happens at Runtime: How the Locked Property Works..........ccccccerunennne. 10-19
10.7.3 What You May Need to Know About Worksheet Protection...........ccccoooeueiennnneo. 10-19
10.8 Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties......
10-20
10.8.1 How to Enable Custom Attribute Properties in Integrated Excel Workbook 10-20
10.8.2 What Happens at Runtime: CustomAttributePropertiesEnabled is Set to True... 10-21
10.8.3 What You May Need to Know About the CustomAttributePropertiesEnabled Property
10-21

Internationalizing Your Integrated Excel Workbook

11.1 About Internationalizing Your Integrated Excel Workbook...........cccccccceuvirivininninnnnne. 11-1
11.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples............... 11-2
11.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook......... 11-2
11.2 Using Resource Bundles in an Integrated Excel Workbookcccccccciiiiiiiinininininnnne. 11-3
11.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook 11-3
11.2.2 How to Override Resources That Are Not Configurable.c.ccccooooeiiiinenn. 11-4
11.2.3 What Happens at Runtime: Override Resources That Are Not Configurable 11-5
11.2.4 What You May Need to Know About Resource Bundles..........cccccccceuiininnnnnne. 11-5
11.3 Localization in ADF Desktop Integrationc.ccoooeeiiiiiniii 11-6
11.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings..... 11-7
11.3.1.1 How to Create a User Preference Handler ..o, 11-7
11.3.1.2 How to Register the User Preference Handler ..o, 11-8

12

13

14

Securing Your Integrated Excel Workbook

12.1 About Security In Your Integrated Excel Workbook..........ccccooiuiiiiiiiiiiiiii 12-1
12.1.1 Integrated Excel Workbook Security Use Cases and Examplescccccccueueueunnene. 12-2
12.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web
Application 12-3
12.2 Authenticating the Excel Workbook User............coocuiiiiiiiiiiiiic 12-3
12.2.1 What Happens at Runtime: How the Login Method Is Invokedcccccccceeeuee. 12-3
12.2.2 What Happens at Runtime: How the Web Application Session is Terminated...... 12-4
12.3 Checking the Integrity of an Integrated Excel Workbook's Metadata.............cccccccoee. 12-4
12.3.1 How to Reset the Workbook ID.........ccccviiiiiiniiiiiiiicccces 12-5
12.3.2 What Happens When the Metadata Tamper-Check Is Performedccccue... 12-6
12.4 What You May Need to Know About Securing an Integrated Excel Workbook........... 12-6
12.5 Authorizing the Excel WOrkbook USer ... 12-7
12.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet ..
12-8

Adding Validation to Your Integrated Excel Workbook

13.1 About Adding Validation to an Integrated Excel Workbook.............ccccoerveriiirinininnne. 13-1
13.1.1 Integrated Excel Workbook Validation Use Cases and Examples..............c.c............ 13-1
13.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook.........
13-2
13.2 Using the Status Viewer to Report Error Messages to End Usersccccevviviivinnnnn 13-2
13.2.1 How to Manage the Automatic Display of the Status Viewer ... 13-4
13.3 Providing Data Entry Validation for an Integrated Excel Workbook..............ccccccec.... 13-4
13.3.1 Providing Data Entry Validation Using ADF Desktop Integration............c.c............ 13-4
13.3.1.1 How to Enable or Disable ADF Desktop Integration Data Entry Validation .. 13-6
13.3.2 Providing Data Validation Using EXcel........c.cccccccceoeiiiiinniniiccrencnreecne 13-7
13.4 Providing Server-Side Validation for an Integrated Excel Workbook..............ccc..c......... 13-7
13.5 Providing a Row-by-Row Status on an ADF Table Componentccocoviiiiunnnnnne. 13-7
13.6 Adding Detail to Error Messages in an Integrated Excel Workbook.............c.ccccccueeeee. 13-9
13.7 Handling Data Conflicts When Uploading Data from a Workbook...............cccccoeeee. 13-9
13.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data............
13-10
13.7.2 What Happens at Runtime: How Data Conflicts Are Handled............cccccoeeee.ee. 13-10

Testing Your Integrated Excel Workbook

14.1 About Testing Your Integrated Excel Workbook...........cccccceiiiiiiiiiiiicciccceeee 14-1
14.1.1 Integrated Excel Workbook Testing Use Cases and Examples..........cccccouiruennnnen. 14-1
14.1.2 Additional Functionality for Testing an Integrated Excel Workbook 14-2
14.2 Testing Your Fusion Web APpliCation ... 14-2
14.3 Validating the Integrated Excel Workbook Configuration............cccceueeieiiiiiinininnnne. 14-3
14.3.1 How to Validate the Integrated Excel Workbook Configuration.............ccccccevnneee. 14-3
14.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration........
14-3

14.3.3 How to Fix Validation Failures..........cccoooiiiiiiiiiiiiiicccces 14-4
14.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at

Runtime 14-5

15

16

14.4 Testing Your Integrated Excel WOrkbookcccovviiiiiiiiiiiiiiiiiiiiiiicc 14-5

Deploying Your Integrated Excel Workbook

15.1 About Deploying Your Integrated Excel Workbookccoviuiiiiininiiiiiiiiinn, 15-1

15.1.1 Integrated Excel Workbook Deployment Use Cases and Examples........................ 15-2

15.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook 15-2

15.2 Making ADF Desktop Integration Available to End Usersccccooeviiiiiiiiccne. 15-3

15.3 Publishing Your Integrated Excel WOrkbookc.cccoiiiiiiiiiiiiii 15-3

15.3.1 How to Publish an Integrated Excel Workbook from Excel.........ccccccceevrvnvenenencne. 15-3

15.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
15-4

15.3.3 What Happens When You Publish an Integrated Excel Workbook 15-5

15.4 Deploying a Published Workbook with Your Fusion Web Application..........c.ccc.c........ 15-6

15.4.1 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web
Application from JDeveloper 15-7

15.4.1.1 Fusion Web Application is Deployed on Oracle WebLogic Server 15-7

15.4.1.2 Web Application is Deployed on IBM WebSphere Application Server-........... 15-8

15.4.2 What Happens at Runtime: End User Requests a Published Workbook................. 15-8

15,5 Passing Parameter Values from a Fusion Web Application Page to a Workbook......... 15-9

15.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters.......... 15-12

15.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook 15-13

15.5.3 How to Configure the Page Definition File for the Worksheet to Receive Parameters.....
15-17

15.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web
Application to the Integrated Excel Workbook 15-18

15.6 Customizing Workbook Integration Metadata at Runtime.........c.ccccoooeiiin, 15-18

15.6.1 How to Enable Workbook Customization at Runtimeccccccovvniinnnnnne 15-19

15.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized 15-19

15.6.3 What You May Need to Know About Customizing Workbook Integration Metadata
15-19

15.7 Integrating ADF Workbook Composer into Your Fusion Web Application................. 15-20

15.7.1 How to Integrate ADF Workbook Composer into Your Fusion Web Application
15-20

15.7.2 What Happens at Runtime: ADF Workbook Composer is Invoked....................... 15-22

15.7.3 What You May Need to Know About ADF Workbook Composer................c........ 15-22

Using an Integrated Excel Workbook Across Multiple Web Sessions
16.1 About Using an Integrated Excel Workbook Across Multiple Web Sessions................. 16-1
16.1.1 Using an Integrated Excel Workbook Across Multiple Web Sessions Use Cases and

Examples 16-2

16.1.2 Additional Functionality for Using an Integrated Excel Workbook Across Multiple
Web Sessions 16-2

16.2 Restore Server Data Context Between Sessions............ccccoeeiiviiiiniinniiinnccccne, 16-2
16.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context 16-3

16.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data
Context 16-4

16.3 Caching of Static Information in an Integrated Excel Workbookccccccoovvrernnnnen. 16-4

xi

16.4 Caching Lists of Values for Use Across Multiple Web Sessions...........c.cccccevveviiiiiiinnnnnn 16-5

16.5 Using Explicit Worksheet Setup AcCtioncoooeieiiiiiiiiiiic e 16-6
16.5.1 How to Configure Explicit Worksheet Setup Actioncccceeuevvviicncnvinene 16-6
16.5.2 What You May Need to Know About Explicit Worksheet Setup Action................. 16-7

A ADF Desktop Integration Component Properties and Actions

A Frequently Used Properties in the ADF Desktop Integration............ccccocevvivviinnnnnnn A-1
A2 ADF Input Text Component Properties ... A-3
A3 ADF Output Text Component Properties ... A-3
A4 ADF Label Component Properties ... A-3
A5 ADF List of Values Component Propertiesccooceeiiieioioiiccicicceecceee, A-4
A6 ADF Image Component Properties..........cccoooiivviiiininiiiiniiiiiiicciessccsneeeennes A-4
A7 ADF Input Date Component Properties...........cccoveveiiiieeiiiiiiiiiceieeeeeeeens A-5
A.8 ModelDrivenColumnComponent Subcomponent Propertiescccooceeieiircieiinnnen. A-5
A9 TreeNodeList Subcomponent Properties ... A-6
A.10 ADF Button Component Properties ... A-7
A.11 ADF Table Component Properties and Actionscccooieieiniiieieiiccceeccec A-7
Al111 ADF Table Component Properties..........cccccvcccceiieieiiiieceeeeeeeeeeeeeeeeeeeeeeeeeeenes A-7
A11.2 ADF Table Component Column Properties ..o A-12
A113 ADF Table Component ACtiONS...........ccocueuiiiiieiiiicie s A-15
A.12 ADF Read-only Table Component Properties and Actions..........cccccoccecuccucucceicrcnecnenen A-17
A13 Action Set PrOPerties ... A-18
A.13.1 Confirmation Action Propertiesccocoorieiiiiciiiiccece A-21
A.13.2 Dialog Action Propertiesc.ccocciiiiiiniiiiccccceceeeeeeeeee e A-21
A.14 Workbook Actions and Properties ... A-22
A.15 Worksheet Actions and Properties...........cccooeriieioiiiiieiiccc A-27
A.16 ADF Desktop Integration Compatibility Properties...........cccccocvvvrurrrvninnnnccrnene A-33

B ADF Desktop Integration EL Expressions

B.1 Guidelines for Creating EL EXPressions........ccccccocceeiiciennieiiiniereeeereeeeeeeeeseeeeeeeeseeeens B-1
B.2 EL Syntax for ADF Desktop Integration Components..........c.cccoueerueiiiinieiniicicinicnee, B-2
B.3 Attribute Control Hints in ADF Desktop Integrationcc.coooeoeeiviiinicincee, B-3

C Troubleshooting an Integrated Excel Workbook

Xii

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration C-1
Cc.2 Generating an ADF Desktop Integration Diagnostic Reportcoeeevevveveecninincnceccnaes C-2
C.2.1 How to Generate the ADF Desktop Integration Diagnostic Reportcccceueuneee. C-2
c.2z2 What You May Need to Know About the ADF Desktop Integration Diagnostic Report.
C-2
C.3 Verifying End-User Authentication for Integrated Excel Workbooks..........c.ccccccceueeeenene. C-3
C4 Generating Log Files for an Integrated Excel Workbook.............cccoovviiiiiniiiiiinnennnn, C-3
C.41 About Server-Side LOgEINgcccoviiimiiiiiiiiiiiiiccceee s C-3
C4.2 Using the Oracle Diagnostics Log Analyzer to Analyze ADF Desktop Integration
Servlet Requests C-4
C.4.3 About Client-Side LOGZING........cocviuiimimiiiiiiiiiiiiiiiicee s C-4
C.4.31 How to Configure ADF Desktop Integration to Save Logs........ccccoevvvuernininrnnnn. C-4

C.4.32 About the ADF Desktop Integration Configuration File..........c.ccccoooiiinini. C-7
C.4.33 How to Configure Logging Using User Environment Variables C-7
C.43.4 What You May Need to Know About the adfdi-common Object........................ C-8
C5 Common ADF Desktop Integration Error Messages and Problems..............ccoocuevinnnen. C-8

D ADF Desktop Integration Settings in the Web Application Deployment

Descriptor
D1 Configuring the ADF Desktop Integration Servlet.............cccooooiiiiiii, D-1
D.2 Configuring the ADF Desktop Integration Excel Download Filtercccccccccevvennnne. D-3
D.3 Configuring the ADF Library Filter for ADF Desktop Integrationc.cccccooeueiinnnan. D-6
D.4 Examples in a Deployment Descriptor File..........ccoooiiiiiii, D-7

E String Keys in the Overridable Resources

F Java Data Types Supported By ADF Desktop Integration

G Using the ADF Desktop Integration Model API
G.1 About the Temporary ROW ObjJectcooviiiiiiiniiiiiiiniccc e G-1
G.2 About ADF Desktop Integration Model API ..o G-2
G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project .

G-2

G.3 ADF Desktop Integration Model API Classes and Methods..........ccccccoeuviniiniicniicniccnnnes G-3
G.3.1 The oracle.adf.desktopintegration.model. ModelHelper Class..........ccccccccceuvuerrucnnnene. G-3
G.3.1.1 The getAdfdiTempChildRow Methodccooouoiiiiiiiiii e, G-3
G.3.1.2 The getAdfdiTempRowForView Method..........ccccccviiiiniiniiniiiiin, G-3
G.3.1.3 The getChildViewDef Methodccccceiiiiiiniiiirccccrcceeeeeeceeaes G-3

H End User Actions
H.1 Installing, Upgrading, and Removing ADF Desktop Integrationcccccccccceuccucnenne. H-1
H.1.1 How to Install ADF Desktop Integration on Your System..........cccccoueeieiiiiciennnnnn. H-1
H.1.2 How to Remove ADF Desktop Integration............cccccoeeuciiiiieiiniiiicniicicccccee, H-2
H.1.3 How to Upgrade ADF Desktop Integration On a Local Systemcccccccceueucuennnene. H-2
H.2 Removing Personal INformation............cc.oirioiiiiiiiicc e, H-3
H.3 Limitations of an Integrated Excel Workbook at Runtimecccccooovoveeiniiinininnnnn. H-3
H.4 Using an Integrated Excel Workbook ... H-4
H.4.1 How to Insert or Paste Rows in an ADF Table Componentcccccceeeviiiiiinnnnnnn H-5
H.4.2 How to Sort ADF Table Data in an Integrated Excel Workbook..............ccccccceueunneenn. H-6
H.4.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook H-6
H.5 Handling Time Zone CONVETISION.........ccccoiirieiiiiiicie ettt H-7

xiii

Xiv

Audience

Preface

Welcome to the Desktop Integration Developer’s Guide for Oracle Application Development
Framework.

This manual is intended for enterprise developers who configure desktop applications
to integrate with the Oracle Application Development Framework (Oracle ADF).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following:
» Administrator’s Guide for Oracle Application Development Framework
» Fusion Developer’s Guide for Oracle Application Development Framework

n Web User Interface Developer’s Guide for Oracle Application Development Framework

XV

Conventions

The following text conventions are used in this document:

XVi

Convention

Meaning

boldface

italic

monospace

Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates language and syntax elements, directory and
file names, URLSs, text that appears on the screen, or text that you enter.

What's New in This Guide for Release
11.1.1.9.0

The following topics introduce the new and changed features of ADF Desktop
Integration and other significant changes that are described in this guide, and provides
pointers to additional information.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the What's New page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index
.html.

New and Changed Features for Release 11.1.1.9.0

Oracle ADF Desktop Integration in Release 11.1.1.9.0 includes the following new and
changed development features for this document.

Note: The version of ADF Desktop Integration delivered in Release
11.1.1.9.0 of Oracle JDeveloper and Oracle Application Development
Framework is 11.1.1.7.5.

= New feature, a Status Viewer, that displays error messages to end users in Excel’s
task pane. For more information, see Section 13.2, "Using the Status Viewer to
Report Error Messages to End Users."

= Provides the option to create worksheet commands that download and upload
data at runtime when you insert an ADF Table component at design time. For
more information, see Section 7.3, "Inserting an ADF Table Component into an
Excel Worksheet."

= New property, DisplayUploadOptions, to control whether the Upload Options
dialog displays. For more information, see Section 7.8, "Uploading Changes from
an ADF Table Component."

= New feature that makes an ADF Table component report errors in the specific
rows that contain errors rather than report all rows in a batch as containing errors.
For more information, see Section 7.11, "Batch Processing in an ADF Table
Component."

= New property, Options.AbortOnFailure that controls whether
DeleteFlaggedRows continues processing if it encounters failures. For more
information, see Section 7.10, "Deleting ADF Table Component Rows in the Fusion
Web Application."

xvii

ADF Table component's DeleteFlaggedRow action can now be invoked in the same
action set as the component's Upload action. For more information, see

Section 7.10, "Deleting ADF Table Component Rows in the Fusion Web
Application."

New property, GroupHeader, to enable the grouping of columns (including
dynamic columns) in an ADF Table component by displaying an extra header row
on top of the ADF Table component's header row. For more information, see
Section 7.17, "Grouping Columns Together in an ADF Table Component.”

New groups (Workbook and Worksheet) to appear in the runtime ribbon tab that
you can add to an integrated Excel workbook. These new groups replace the
previous groups of Connection, Worksheet, Clear, and About. For more
information, see Section 9.3, "Configuring the Runtime Ribbon Tab."

New property, Image, that lets you choose one of a number of images to display as
a worksheet ribbon command. For more information, see Section 9.3.2, "How to
Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab."

New styles that conform to the look and feel of Oracle Alta Ul Integrated Excel
workbooks that you create with this release of ADF Desktop Integration use these
styles by default. For more information, see Chapter 10, "Configuring the
Appearance of Your Integrated Excel Workbook."

New feature, data entry validation, that validates certain types of user input in the
integrated Excel workbook. For more information, see Section 13.3, "Providing
Data Entry Validation for an Integrated Excel Workbook."

New property, AutoConvertNewRowsEnabled, that controls whether data entered
after the last row of a table is converted into pending insert rows. For more
information, see Section A.11.1, "ADF Table Component Properties."

Other Significant Changes in this Document for Release 11.1.1.9.0

For Release 11.1.1.9.0, this document has been updated in several ways, to include
corrections and clarifications. In addition, the following significant changes or
additions have occurred in these sections:

xviii

Added a new section, Section 7.15, "Adding a ModelDrivenColumnComponent
Subcomponent to Your ADF Table Component", to describe the Search and Select
user interface in integrated Excel workbooks.

Added a new chapter, Chapter 8, "Working with Lists of Values", with the content
that describes how to create dropdown lists of values (including dependent lists of
values) in integrated Excel workbooks.

1

Introduction to ADF Desktop Integration

This chapter introduces ADF Desktop Integration and provides an overview of the
framework. The chapter also describes the advantages of integrating Microsoft Excel
with a Fusion web application.

This chapter includes the following sections:
= About ADF Desktop Integration
= About ADF Desktop Integration with Microsoft Excel

1.1 About ADF Desktop Integration

Many end users of Fusion web applications use desktop applications, such as
Microsoft Excel, to manage information also used by their web application. ADF
Desktop Integration provides a framework for Oracle Application Development
Framework (Oracle ADF) developers to extend the functionality provided by a Fusion
web application to desktop applications. It allows end users to avail themselves of
Oracle ADF functionality when they are disconnected from their company network.
End users may also prefer ADF Desktop Integration because it provides Excel's
familiar user interface to undertake information management tasks, such as
performing complex calculations or uploading a large amount of data, easily and
seamlessly.

ADF Desktop Integration is a part of the Oracle ADF architecture. More information
about the Oracle ADF architecture can be found in the "Oracle ADF Architecture"”
section of Fusion Developer’s Guide for Oracle Application Development Framework.

Figure 1-1 illustrates the architecture of ADF Desktop Integration, which comprises of
the following components:

s ADF Desktop Integration
s ADF Desktop Integration remote servlet

= ADF Model layer

Introduction to ADF Desktop Integration 1-1

About ADF Desktop Integration with Microsoft Excel

Figure 1-1 ADF Desktop Integration Architecture

Desktop Application Server
Microsoft Office 1 Oracle ADF
] -
ADF Desktop Remote ADF Model ! E 1
S g gt il : j
i ' Oracle
----------------------------------- L Database
. Microsoft
|| oracie ADF

|_ ADF Desktop Integration

For more information about ADF Desktop Integration, see the ADF Desktop
Integration page on Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-08553
4 .html

1.2 About ADF Desktop Integration with Microsoft Excel

Currently, ADF Desktop Integration supports integration with Microsoft Excel.

Note: This guide uses the term integrated Excel workbook to refer to
Excel workbooks that you integrate with a Fusion web application
and to distinguish these workbooks from workbooks that have not
been integrated with a Fusion web application or configured with
Oracle ADF functionality.

1.2.1 Overview of Creating an Integrated Excel Workbook

Creating an integrated Excel workbook involves the steps described in Table 1-1.

Table 1-1 Steps to Create an Integrated Excel Workbook

Use To

JDeveloper s Create a Fusion web application.

For information about creating a Fusion web application, see the Fusion
Developer’s Guide for Oracle Application Development Framework.

= Add data controls that expose the elements you require in Microsoft
Excel.

s Create page definition files that expose the Oracle ADF bindings to use
in Excel.

For more information, see Section 4.2, "Working with Page Definition
Files for an Integrated Excel Workbook."

1-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

About ADF Desktop Integration with Microsoft Excel

Table 1-1 (Cont.) Steps to Create an Integrated Excel Workbook

Use

To

Excel

Create the Excel workbooks that you intend to configure with Oracle
ADF functionality.

For more information, see Section 4.3, "Adding an Integrated Excel
Workbook to a Fusion Web Application."

Configure the Excel workbook using the Oracle ADF bindings that you
exposed in the page definition files and the Oracle ADF components
that ADF Desktop Integration provides.

For more information, see the following sections and chapters:

— Chapter 5, "Getting Started with the
Development Tools"

This chapter provides an overview of the
tools that ADF Desktop Integration
provides to configure an Excel workbook
with Oracle ADF functionality.

- Chapter 6, "Working with ADF Desktop
Integration Form-Type Components"

This chapter describes how to insert ADF
Desktop Integration form-type
components into Excel worksheets and
configure their properties to determine
behavior at runtime.

— Chapter 7, "Working with ADF Desktop
Integration Table-Type Components"

This chapter describes how to use the ADF
Table and Read-only Table components to
provide end users with a means of
displaying and editing data hosted by a
Fusion web application.

— Chapter 13, "Adding Validation to Your
Integrated Excel Workbook"

This chapter describes how to provide
validation for your integrated Excel
workbook.

Test your integrated Excel workbook.

For more information, see Chapter 14, "Testing Your Integrated Excel
Workbook."

After completing the integration of the Excel workbook with the Fusion
web application, you deploy it to make it available to the end users.

For information about this task, see Chapter 15, "Deploying Your
Integrated Excel Workbook."

1.2.2 Advantages of Integrating Excel with a Fusion Web Application

Advantages that accrue from integrating Microsoft Excel workbooks with your Fusion
web application include:

Introduction to ADF Desktop Integration 1-3

About ADF Desktop Integration with Microsoft Excel

= Providing end users with access to data and functionality hosted by a Fusion web
application through a desktop interface (Microsoft Excel) that may be more
familiar to them.

= End users can access data hosted by a Fusion web application while not connected
to the application. They must log on to the Fusion web application to download
data. Once data is downloaded to an Excel workbook, they can modify it while
disconnected from the Fusion web application.

= Bulk entry and update of data may be easier to accomplish through a
spreadsheet-style interface.

» End users can use native Excel features such as macros and calculation.

1-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

2

Introduction to the ADF Desktop Integration
Sample Application

This chapter provides an overview of the Summit sample application for ADF Desktop
Integration. The Summit sample application for ADF Desktop Integration contains
several Microsoft Excel workbooks that are integrated with the sample's Fusion web
application.

This chapter includes the following sections:
= About the Summit Sample Application for ADF Desktop Integration

s Setting Up and Running the Summit Sample Application for ADF Desktop
Integration

s Overview of the Fusion Web Application in the Summit Sample Application for
ADF Desktop Integration

» Overview of the Integrated Excel Workbooks in the Summit Sample Application
for ADF Desktop Integration

2.1 About the Summit Sample Application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration is a set of sample
demonstrations that illustrate the main capabilities from ADF Desktop Integration.
Each of the samples contain specific features that can also be identified on the
developer's guide. All of the samples use the same underlying database schema which
makes it very easy for accessing the source code, and also to experience the runtime
behavior in a standalone way.

2.2 Setting Up and Running the Summit Sample Application for ADF
Desktop Integration

Set up the development environment as described in Chapter 3, "Setting Up Your
Development Environment" before you download and run the Summit sample
application for ADF Desktop Integration.

Running the Summit sample application for ADF Desktop Integration requires you to:

1. Download the application resources, as described in Section 2.2.1, "How to
Download the Application Resources."

2. Install the Summit ADF schema, as described in Section 2.2.2, "How to Install the
Summit ADF Schema."

Introduction to the ADF Desktop Integration Sample Application 2-1

Setting Up and Running the Summit Sample Application for ADF Desktop Integration

3. Run the Summit sample application, as described in Section 2.2.3, "How to Run
the Summit Sample Application for ADF Desktop Integration.”

2.2.1 How to Download the Application Resources

You download the application resources from Oracle Technology Network.

Before you begin:

It may be helpful to have an overview of the steps required to set up and run the
Summit sample application. For more information, see Section 2.2, "Setting Up and
Running the Summit Sample Application for ADF Desktop Integration."

To download the application resources:
1. Download and install Oracle JDeveloper Release 11g. For more information, see
Installation Guide for Oracle JDeveloper.

2. Install ADF Desktop Integration. For more information, see Section 3.4, "Installing
ADF Desktop Integration.”

Note: If you have an old version of ADF Desktop Integration
installed on your system, upgrade ADF Desktop Integration as
described in Section 3.6, "Upgrading ADF Desktop Integration."

3. Download and install the Summit ADF schema from Oracle Technology Network.
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/adfllgsamples-
1969708 .html
For more information, see Section 2.2.2, "How to Install the Summit ADF Schema."

4. Download and install the Summit sample application for ADF Desktop
Integration ZIP file from Oracle Technology Network.

http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/adfllgsamples-

1969708.html

For more information, see Section 2.2.3, "How to Run the Summit Sample
Application for ADF Desktop Integration.”

2.2.2 How to Install the Summit ADF Schema

To install the Summit ADF schema, extract the schema files, configure the database
connection, and execute the build_summit_schema.sql script in JDeveloper.

Before you begin:

It may be helpful to have an overview of the steps required to set up and run the
Summit sample application. For more information, see Section 2.2, "Setting Up and
Running the Summit Sample Application for ADF Desktop Integration."

To install the Summit ADF schema to your database:

1. Navigate to the location where you downloaded the Summit ADF schema archive
file and unzip it.

2. Start JDeveloper and in the main menu, choose File and then Open.

2-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Setting Up and Running the Summit Sample Application for ADF Desktop Integration

3. Inthe Open dialog, navigate to where you expanded the ZIP file for the
SummitADF_Schema directory, select the Summit_Schema.jws application workspace
and click Open.

4. In the Application Navigator window, expand the Application Resources panel.
5. Right-click Connections and choose New Connection and then Database.
6. In the Create Database Connection dialog, modify the properties shown in

Table 2-1 for your environment. For help with the dialog, press F1 or click Help.

Table 2-1 Properties Required to Install a Summit ADF Sample Application

Property Description

Connection Name Descriptive name for the connection. This name must be a
valid Java identifier, such as system_for_summit.

User Name The system user for your database. For example:
system

Password The password for the system user.

Driver The JDBC driver for the database. Select a value from the

dropdown menu. The default is thin, which is also the
default value to specify for Oracle Database XE and any
other Oracle database that is not using Oracle Call Interface

(OCD).

Host Name The name of the server running the Oracle database. Use an
IP address or a host name that can be resolved by TCP/IP.
The default value is localhost.

SID The unique system identifier (SID) of an Oracle Database
instance. The default is XE, which is also the default value to
specify if your database server is running Oracle Database
XE. If your server is running another Oracle database, the
SID is typically ORCL.

JDBC Port The port of your database. The default value is 1521.

Note: If your server resides on a remote machine, you may also need
to modify the script that builds the schema. To open the script,
right-click build_summit_schema.sql and choose Open.

Figure 2-1 shows the completed Create Database Connection dialog. In this
example, the connection is made to an Oracle Database XE instance residing on a
local machine.

Introduction to the ADF Desktop Integration Sample Application 2-3

Setting Up and Running the Summit Sample Application for ADF Desktop Integration

Figure 2-1 Create Database Connection Dialog for Summit ADF Schema

= Create Database Connection @
Choose Application Resources to create a database connection owned by and deployed with the Ea]

current application {(MySummit). Choose IDE Connections to create a connection that can be
added to any application.

Create Connection In: (2) Application Resources () IDE Connections

Connection Name: |syshem_f0r_summit |

Connection Type: |0rade (IDBC) '|
Username: |system | Role: | \dl
Password: |uu-u | Sawve Password

- Orade (JDBC) Settings

[Enter Custom JDBC LRL
Driver: |ﬁ1in v|
Host Name: | BCPOrt:
(®) SID: [x |
() Service Name:
Test Connection
| Help | | oK | | Cancel |

7. Click Test Connection to verify that you have a working connection.
8. Click OK to create the connection and exit the dialog.

9. In the Application Navigator, in the Projects panel, expand Database and then
Resources.

10. Right-click build_summit_schema.sql and choose Run in Sql*Plus > connection
name.

The connection name displayed is the one you configured in Step 6.

11. In the SQL*Plus Connection dialog, verify that the information matches the
configuration you specified in Step 6 and click OK.

12. In the SQL*Plus Location dialog, click Browse and locate the sqlplus.exe
executable for your database.

Typically, the executable is installed in the BIN directory under $ORACLE_HOME,
where SORACLE_HOME represents the path to your Oracle database installation.

13. Click Open to select the sqlplus.exe executable and then OK to exit the dialog.

14. In the SQL*Plus window, enter the password for the system user you specified in
Step 6.

Once you enter the password, the Ant build script creates the Summit ADF sample
application users and populates the tables in the Summit ADF schema. In the
Messages - Log window, you will see a series of SQL scripts and finally:

Commit complete.

Commit complete.
SQL>

2-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Setting Up and Running the Summit Sample Application for ADF Desktop Integration

15.
16.

At the SQL prompt, enter quit to exit the SQL*Plus window.

In JDeveloper, in the main menu, choose Application and then Close to close the
Summit ADF schema application.

2.2.3 How to Run the Summit Sample Application for ADF Desktop Integration

To run the Summit sample application, extract the contents of the zip file and open the
.Jws file in JDeveloper.

Before you begin:

It may be helpful to have an overview of the steps required to set up and run the
Summit sample application. For more information, see Section 2.2, "Setting Up and
Running the Summit Sample Application for ADF Desktop Integration."

To run the Summit sample application for ADF Desktop Integration:

1.

Extract the contents of the zip file that contains the sample application to a local
directory.

Open the Summi tADFdi . jws file in JDeveloper.

This file is located in the Summit_ADFDI directory.

In the Application Navigator, click and expand the Model project.

Open Model > Application Sources > oracle.summitdi.model > Model.jpx file.

Expand the Connection group of the General tab, and click the Add icon to create
a database connection.

In the Create Database Connection dialog, add the connection information shown
in Table 2-2 for your environment.

Table 2-2 Database Connection Properties for the Summit Sample Application for ADF
Desktop Integration

Property Description

Username c##summit_adf

Password summit_adf

Host Name The host name for your database.

For example:

localhost

JDBC Port The port for your database.
For example:
1521

SID The SID of your database.

For example:

ORCL or XE

Click Test Connection to verify the connection, and then click OK to close the
dialog.

Save the Model . jpx file.

Select the ViewController project and click the Run button in JDeveloper's main
menu.

Introduction to the ADF Desktop Integration Sample Application 2-5

Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration

2.3 Overview of the Fusion Web Application in the Summit Sample
Application for ADF Desktop Integration

The Fusion web application in the Summit sample application for ADF Desktop
Integration enables end users to download the integrated Excel workbooks.

2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF
Desktop Integration

When the end user runs the Summit sample application for ADF Desktop Integration
in JDeveloper, the default browser opens the application home page. The end user can
download various integrated Excel workbooks from the home page.

Figure 2-2 Home page of Summit Sample Application for ADF Desktop Integration

ORACLE summit Sample Application for ADF Desktop Integration

Demo Workbooks

Edit Customers Sample Download Workbook
Edit Customers Sample A b < o P F i W T n CR—-]
ORACLE tarsustarers ot
Edit Warehouse Inventory Sample s Chengel Flagmd Sun Hime " Crotit Rating m.a..o um Ty St Tp Cis Rigios .tourxy 54

Edit All Inventory Sample

Search Customers Sample

QETESES T e |

This sample illustrates the most commonly used ADF Deskiop Integration Table features. You can download, insert, update and
commit data. It also demonstrates multiple ways to choose avalue from a list of choices.

2.3.2 Downloading Integrated Excel Workbooks

The Summit sample application for ADF Desktop Integration provides various
integrated Excel workbooks to meet different requirements. End users can navigate
and download different workbooks from the MainPage.jsf of the application.

Table 2-3 lists the menu options and the downloaded integrated Excel workbooks.

Table 2-3 Integrated Excel Workbooks of Summit sample application for ADF Desktop

Integration
Menu Option Description
Edit Customers Sample Downloads EditCustomers.x1sx workbook.

Edit Warehouse Inventory Downloads EditWarehouseInventory.xlsx workbook.
Sample

Edit All Inventory Sample Downloads EditAllInventory.x1sx workbook.

Search Customers Sample = Downloads CustomerSearch.x1sx workbook.

2-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

2.4 Overview of the Integrated Excel Workbooks in the Summit Sample
Application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration provides the
EditCustomers.xlsx, EditWarehouses.xlsx, EditCustomerSearch.xlsx, and
WarehouseLocations.x1sx integrated Excel workbooks.

The EditCustomers.x1lsx workbook illustrates the most commonly used ADF Desktop
Integration ADF Table component features. You can download, insert, update and
commit data. It also demonstrates multiple ways to choose a value from a list of
choices.

The EditWarehouseInventory.xlsx workbook illustrates how to use ADF Desktop
Integration form components with a detail table. You can download and update data
in a master form and its detail table. This sample also demonstrates how to use
workbook parameters to control the workbook initialization.

The EditAllInventory.xlsx workbook demonstrates how to create an editable table
with a denormalized master-detail relationship. It also demonstrates how to use a date
picker, group columns, and delete existing data records.

The EditCustomerSearch.xlsx workbook demonstrates how a custom web page can
be used to perform a search prior to downloading data into an ADF Table component
configured to be read-only.

Subsequent sections in this chapter provide more information about the functionality
in the workbooks along with cross-references to implementation details.

2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook

At runtime, the integrated Excel workbooks in the Summit sample application for
ADF Desktop Integration render an Excel ribbon tab that allows end users to log on to
the Fusion web application. Figure 2-3 shows the runtime Customers tab in the
Ribbon of the EditCustomers.x1lsx workbook.

Figure 2-3 Runtime Customers Tab

~ Home Insert Page Layout Formulas Data Review View Add-Ins Acrobat Customers

dde L0 88

Login Logout Clear Edit About Download Upload Status
All Data Options Viewer

Workbook Worksheet

B3 - £ | Changed

2.4.2 Downloading Data Rows

Some workbooks, such as EditCustomers.xlsx workbook, use an ADF Table
component to download information from the Fusion web application. This
component allows end users to edit rows and upload modified rows to the Fusion web
application.

The following sections provide information about how to implement the download
functionality:

= Each worksheet that you integrate with a Fusion web application requires an
associated page definition file.

Introduction to the ADF Desktop Integration Sample Application 2-7

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

For example, the Customers worksheet in the EditCustomers.x1lsx workbook is
associated with the ExcelCustomers.xml page definition file. In JDeveloper,
expand the following nodes in the Application Navigator to view this file:

ViewController > Application Sources > oracle.summitdi.view > pageDefs

For information about how to configure a page definition file, see Section 4.2,
"Working with Page Definition Files for an Integrated Excel Workbook."

s The ADF Table component Download action downloads data from the Fusion web
application to the worksheet. For information about how you invoke this action,
see Section 7.4, "Downloading Data to an ADF Table Component."

s In the EditCustomers.xlsx workbook, the worksheet Startup event invokes an
action set that includes the ADF Table component Download action. For
information about configuring worksheet events, see Section 9.2.4, "How to Invoke
an Action Set from a Worksheet Event."

2.4.3 Modify Customers and Warehouses Information in the Workbooks

The EditCustomers.xlsx and EditWarehouseInventory.xlsx workbooks enable end
users to edit customers and warehouses information that the ADF Table component
and form components downloads from the Fusion web application. Columns in the
runtime ADF Table component that have an UpdateComponent property configured
permit end users to modify values and upload the changes to the Fusion web
application. For example, end users can modify the values that appear in the Name,
Phone, and Address columns in EditCustomers.xlsx.

Other columns, such as Status and Changed, appear in the ADF Table component to
provide status information about upload operations and changed columns.

The following sections provide information about how to implement this
functionality:

= For information about inserting an ADF Table component, see Section 7.3,
"Inserting an ADF Table Component into an Excel Worksheet."

s For information about special columns, such as Status and Changed, see
Section 7.12, "Special Columns in the ADF Table Component."

= For information about action sets, see Chapter 9, "Adding Interactivity to Your
Integrated Excel Workbook."

» For information about lists of values, see Chapter 8, "Working with Lists of
Values."

2.4.4 Upload Modified Information to the Fusion Web Application

The integrated workbooks allow end users to upload modified data in the ADF Table
component to the Fusion web application. An action set is configured for the runtime
Upload ribbon command that invokes the ADF Table component's Upload action. For
information about implementing this functionality, see Section 7.8, "Uploading
Changes from an ADF Table Component."

2-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

3

Setting Up Your Development Environment

This chapter describes how to set up the development environment to integrate an
Excel workbook with a Fusion web application, how to upgrade and remove ADF
Desktop Integration.

This chapter includes the following sections:

= About Setting Up Your Development Environment

= Required Oracle ADF Modules and Third-Party Software
s Configuring Excel to work with ADF Desktop Integration
» Installing ADF Desktop Integration

s Removing ADF Desktop Integration

s Upgrading ADF Desktop Integration

3.1 About Setting Up Your Development Environment

Setting up the development environment involves making sure that you have the
correct versions of JDeveloper and Microsoft Office installed, as described in
Section 3.2, "Required Oracle ADF Modules and Third-Party Software."

After verifying that you have the required software, complete the setup of your
development environment by:

s Configuring Microsoft Excel to work with ADF Desktop Integration
s Installing ADF Desktop Integration

Note: The instructions in this guide assume that you are using
Windows 7 operating system and Microsoft Excel 2007. Note that the
steps might be different for different editions of Windows and Excel.

3.2 Required Oracle ADF Modules and Third-Party Software

Before you begin to integrate your Excel workbook with a Fusion web application,
ensure that you have the required Oracle ADF modules and third-party software
installed and configured:

s Oracle JDeveloper

Install the current release of JDeveloper. ADF Desktop Integration is available as a
JDeveloper feature.

s Microsoft Windows

Setting Up Your Development Environment 3-1

Configuring Excel to work with ADF Desktop Integration

Microsoft Windows operating systems support the development and deployment
of Excel workbooks that integrate with Fusion web applications. For more
information about supported versions of Windows, click the "Certification
Information" link for this release on the following OTN page:

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/in
dex.html

Microsoft Excel

ADF Desktop Integration supports the integration of Fusion web applications with
the following types of Excel workbook:

— Excel Workbook

The default file format for Excel workbooks is the Excel XML-based file format
(.x1lsx).

— Excel Macro-Enabled Workbook

Workbooks in this format (. x1sm) use the Excel XML-based file format and can
store VBA macro code.

ADF Desktop Integration does not support the use of other Excel file formats. For
more information about supported versions of Excel, click the "Certification
Information" link for this release on the following OTN page:

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/in
dex.html

Internet Explorer

Some features in ADF Desktop Integration use a web browser control from the
Microsoft .NET Framework. This browser control relies on the local Internet
Explorer installation to function properly.

ADF Desktop Integration uses Internet Explorer to render web pages inside Excel,
regardless of other browsers installed on the system or any other browser set as
the default browser.

3.3 Configuring Excel to work with ADF Desktop Integration

You must configure Microsoft Excel settings to make it accessible from ADF Desktop
Integration. You only need to perform this procedure once.

To allow Excel to run an integrated Excel workbook:

1.
2.
3.

Open Excel.
Click the Microsoft Office button, and choose Excel Options.

In the Excel Options dialog, choose the Trust Center tab, and then click Trust
Center Settings.

In the Trust Center dialog, choose the Macro Settings tab, and then click the Trust
access to the VBA project object model checkbox, as shown in Figure 3-1.

3-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Installing ADF Desktop Integration

Figure 3—-1 Excel Trust Center Dialog

Excel Options | ? = |
Popular
Help keep your documents safe and your computer secure and healthy.
Formulas
Proafing Protecting your privacy
Save Microsoft cares about your privacy. For more information about how Microsoft Office Excel helps to protect your privacy,
please see the privacy statements.
Advanced
Show the Microsoft Office Excel privacy statement
Customize Microsoft Office Online privacy statement
Customer Experience Improvement Proaram
Add-Ins
Trust Center LTl I
Resources
Trust Center
.
Trusted Publishers
Macro Settings
Trusted Locations . . .
For macros in documents not in a trusted location:
- X o Trust Center Settings...
Add-ins () Disable all macros without notification
. . @ Disable all macros with notification
ActiveX Settings -
() Disable all macros except digitally signed macros
Macro Settings (7) Enable all macros (not recommended; potentially
dangerous code can runj
Message Bar
External Content foper Macro Settings
Privacy Optians iTrust access to the VBA project object model;
5. Click OK.

3.4 Installing ADF Desktop Integration

When you run the ADF Desktop Integration installer, it verifies whether software in
the following list is installed on the system where you want to install the add-in. If one
or more of these pieces of software is not installed, the installer automatically
downloads and installs it in the order specified.

1. Windows Installer 3.1
2. Microsoft .NET Framework

The Microsoft NET Framework 4 provides the runtime and associated files
required to run applications developed to target the Microsoft .NET Framework.
You can download the framework from http://www.microsoft.com/download/.

Notes:

= Do not download the Client Profile edition of Microsoft .NET
Framework as it is insufficient to run ADF Desktop Integration.

» Installation of Microsoft .NET Framework may require you to
restart the system where you install it. After the restart, the
installer automatically recommences to finalize installation.

3. Microsoft Visual Studio 2010 Tools for Office Runtime

The Microsoft Visual Studio 2010 Tools for Office Runtime (version 4) is required
to run VSTO solutions for the Microsoft Office system. You can download the

Setting Up Your Development Environment 3-3

Installing ADF Desktop Integration

Microsoft Visual Studio 2010 Tools for Office Runtime from
http://www.microsoft.com/download/.

4. ADF Desktop Integration add-in

You can install the ADF Desktop Integration add-in from JDeveloper, or from the
adfdi-excel-addin-installer.exe installer available in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_11.1.1

For more information about how to set up ADF Desktop Integration, see

Section 3.4.1, "How to Install ADF Desktop Integration." You can also install it
from an ADF Desktop Integration-enabled Fusion web application. For more
information, see the "How to Install the ADF Desktop Integration Add-in From a
Web Server" section in Administrator’s Guide for Oracle Application Development
Framework.

Note that the ADF Desktop Integration installation is specific to the current
Windows user profile. If you have multiple Windows user profiles on your system,
and you want to use ADF Desktop Integration integrated Excel workbooks from
some specific user profiles, you must log in to each user profile and install the
ADF Desktop Integration add-in. For more information, see Section 3.4.1, "How to
Install ADF Desktop Integration."

3.4.1 How to Install ADF Desktop Integration

You can install the ADF Desktop Integration add-in from JDeveloper, and then create
and test integrated Excel workbooks.

Although you do not require administrator privileges to install the ADF Desktop
Integration add-in, administrator privileges may be required to run the installer for
additional software that the installer attempts to download and install. You should
also ensure that the proxy settings for Internet Explorer are configured to allow access
to *.microsoft.combecause the installer attempts to automatically download missing
prerequisite software from the Microsoft's website.

Before you begin:

It may be helpful to have an understanding of ADF Desktop Integration requirements.
For more information, see Section 3.4, "Installing ADF Desktop Integration."

To install ADF Desktop Integration:
1. Open JDeveloper.

2. From the Tools menu, choose Install ADF Desktop Integration.

Note: The Install ADF Desktop Integration menu option is
available only on the Windows installation of JDeveloper.

3. In the ADF Desktop Integration Installer page of Oracle ADF 11g Desktop
Integration Add-In for Excel wizard, click Install.

Follow the instructions that appear in the dialog boxes to successfully install the
required components. If you encounter an error during the installation process, an
error message with a description appears, and installation is rolled back. For more
details, check the adfdi-installer-log. txt error log file in the temp directory of
the user profile.

3-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Upgrading ADF Desktop Integration

4.

If prompted, click Yes to restart the system and complete the install of ADF
Desktop Integration.

Notes:

You can also install ADF Desktop Integration by running
adfdi-excel-addin-installer.exe available in the following
directory:

MW_HOME/oracle_
common/modules/oracle.adf.desktopintegration_11.1.1

Before you run the installer, remember that the ADF Desktop
Integration add-in installer does not enable designer features by
default. You must enable the designer features in the add-in to
create and edit integrated Excel workbooks.

In the ADF Desktop Integration Installer page of the wizard, click
Developer Options, and then in the Developer Options page
select the Enabled option, and click Install.

Designer features are automatically enabled if you install ADF
Desktop Integration from JDeveloper.

You can also install ADF Desktop Integration from the command
line.

The ADF Desktop Integration files are installed in the \Oracle\Oracle ADF 1llg
Desktop Integration Add-In for Excel subdirectory of the system-defined Local
App Data directory (For example, C: \Users\johndoe\AppData\Local\Oracle\Oracle
ADF Desktop 11g Integration Add-In for Excel).

If you want to install ADF Desktop Integration for end users, see Section H.1,
"Installing, Upgrading, and Removing ADF Desktop Integration."

3.5 Removing ADF Desktop Integration

Use the Microsoft Windows Control Panel to remove the ADF Desktop Integration
add-in from the system where you set it up. After removing ADF Desktop Integration,
you can no longer use integrated Excel workbooks on this system unless you reinstall
ADF Desktop Integration.

To remove the ADF Desktop Integration add-in:
Click the Windows Start button, and then choose Control Panel.

1.
2.
3.

In the Control Panel, select and open Programs and Features.

Select the Oracle ADF 11g Desktop Integration Add-in for Excel program and
click Uninstall.

Note: If you have installed ADF Desktop Integration on multiple
user profiles, you must remove it from each user profile.

3.6 Upgrading ADF Desktop Integration

To upgrade to a new version, run the ADF Desktop Integration installer from the new
version. It is not necessary to uninstall the old version first.

Setting Up Your Development Environment 3-5

Upgrading ADF Desktop Integration

You can run the installer from:
s JDeveloper Tools menu

= Welcome page of the running Fusion web application (see Section C.1, "Verifying
That Your Fusion Web Application Supports ADF Desktop Integration")

= File system (see the Notes section of Section 3.4.1, "How to Install ADF Desktop
Integration")

Note: If you are upgrading from a previous release, you may receive
a message that says that ADF Desktop Integration was installed with
an incompatible installer. In this case, you must uninstall the ADF
Desktop Integration add-in prior to running the installer.

3-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

4

Preparing Your Integrated Excel Workbook

This chapter describes how to prepare Excel workbooks and integrate them with
Fusion web applications using ADF Desktop Integration, how to use the page
definition files with an integrated Excel workbook, and how to enable ADF Desktop
Integration manually to integrate an existing workbook with the Fusion web
application.

This chapter includes the following sections:

= About Preparing Your Integrated Excel Workbooks

= Working with Page Definition Files for an Integrated Excel Workbook
» Adding an Integrated Excel Workbook to a Fusion Web Application

= Enabling ADF Desktop Integration in an Excel Workbook

= Enabling ADF Desktop Integration Manually

= Using an Integrated Excel Workbook with Older Versions of ADF Desktop
Integration

4.1 About Preparing Your Integrated Excel Workbooks

This chapter (and the guide as a whole) assumes that you have developed a
functioning Fusion web application, as described in Fusion Developer’s Guide for Oracle
Application Development Framework.

Having developed the Fusion web application, you perform the tasks described in this
chapter to configure an integrated Excel workbook with the Fusion web application.
The subsequent chapters of the guide enable you to configure the integrated workbook
with Oracle ADF components that provide the functionality you require at runtime.

Note: Before you start, ensure that designer tools of ADF Desktop
Integration are enabled. For more information, see Section 3.4,
"Installing ADF Desktop Integration."

4.2 Working with Page Definition Files for an Integrated Excel Workbook

Page definition files define the bindings that populate the data in the Oracle ADF
components at runtime. Page definition files also reference the action bindings and
method action bindings that define the operations or actions to use on this data. You
must define a separate page definition file for each Excel worksheet that you are going
to integrate with a Fusion web application.

Preparing Your Integrated Excel Workbook 4-1

Working with Page Definition Files for an Integrated Excel Workbook

The ADF Desktop Integration task pane displays only those bindings that ADF
Desktop Integration supports in the bindings palette. If a page definition file
references a binding that ADF Desktop Integration does not support (for example, a
graph binding), it is not displayed.

Table 4-1 lists and describes the binding types that the ADF Desktop Integration
module supports.

Table 4-1 Binding Requirements for ADF Desktop Integration Components

ADF Desktop
Integration
component Supported Binding Additional comments

ADF Input Text Attribute binding

ADF Output Text Attribute binding

ADF Label Attribute and list bindings This ADF Desktop Integration component
uses the label property of a control binding.

ADF List of List binding

Values

ADF Button Various The ADF Button component in ADF Desktop

Integration can invoke action sets. Action sets
can reference action bindings, method action
bindings, or actions exposed by components
in ADF Desktop Integration. For more
information about action sets, see Section 9.2,

"Using Action Sets."
ADF Read-only Tree binding
Table
ADF Table Tree binding

For information about the bindings that components in ADF Desktop Integration use,
see Appendix A, "ADF Desktop Integration Component Properties and Actions."

For information about the elements and attributes in page definition files, see the
"pageNamePageDef.xml" section of Fusion Developer’s Guide for Oracle Application
Development Framework.

For information about ADF data binding and page definition files in a Fusion web
application, see the "Using ADF Model in a Fusion Web Application" chapter of Fusion
Developer’s Guide for Oracle Application Development Framework.

4.2.1 How to Create ADF Desktop Integration Page Definition File

You create and configure a page definition file that determines the Oracle ADF
bindings to expose in the JDeveloper project.

Before you begin:

It may be helpful to have an understanding of page definition files. For more
information, see Section 4.2, "Working with Page Definition Files for an Integrated
Excel Workbook."

To create an ADF Desktop Integration page definition file:

1. In]JDeveloper, add a new JSF page in the ADF Desktop Integration application's
project.

4-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Working with Page Definition Files for an Integrated Excel Workbook

Tip: Add an ADF Faces Table component to the JSF page.
JDeveloper generates the tree bindings in the JSF page that the ADF
Table-type components use in the page definition file.

Note: JDeveloper creates a page definition file's name based on the
name of the JSF page you choose. If you want a page definition file's
name to indicate an association with a particular workbook or
worksheet, choose this name when creating the JSF page.

2. Inthe Application Navigator, right-click the page and choose Go to Page
Definition.

3. Inthe Confirm Create New Page Definition dialog, click Yes.

4. Add the bindings that you require for the integrated Excel workbook to the page
definition file.

5. Save the page definition file.

Figure 4-1 shows the ExcelCustomers.xml page definition file that the Customers
worksheet in the EditCustomers-DT.x1sx workbook references.

Figure 4-1 Page Definition File with Bindings for an Integrated Excel Workbook

E ExcelCustomers. xml

Ql
Page Data Binding Definition

This shows the Orade ADF data bindings defined for your page. Select a binding to see its relationship to the underlying Data Contral,
Data Binding Registry: orade fsummitdifview /DataBindings. cpx

Bindings and Executables ~ Contextual Events =~ Parameters

Bindings e 7 K Executables & 7 X Data Contral

. customers | e E CustomersIterator | E SummitAppModuleDataControl
E Alwarehouses

’5— Createlnsert
& Corni =
[Execute [E| customerssearchview

E InventoryWarehouseView
[E] WarehouseMaster
Filter'WarehouseMasterByld(String)

6. Make and run the Fusion web application if you plan to run the integrated Excel
workbook in test mode or to publish it.

For information about working with page definition files, see the "Working with Page
Definition Files" section in Fusion Developer’s Guide for Oracle Application Development
Framework.

4.2.2 What Happens When You Create a Page Definition File

JDeveloper creates the DataBindings. cpx file the first time you add a page definition
file in the JDeveloper project using the procedure described in Section 4.2.1, "How to
Create ADF Desktop Integration Page Definition File."

The DataBindings. cpx file defines the binding context for the Fusion web application
and provides the configuration from which the Oracle ADF bindings are created at
runtime. Information about working with this file can be found in the "Working with
the DataBindings.cpx File" section of Fusion Developer’s Guide for Oracle Application

Preparing Your Integrated Excel Workbook 4-3

Working with Page Definition Files for an Integrated Excel Workbook

Development Framework. Information about the elements and attributes in the file can
be found in the "DataBindings.cpx" section of the same guide.

4.2.3 How to Reload a Page Definition File in an Excel Workbook

If you make changes in your JDeveloper desktop integration project to a page
definition file that is associated with an Excel worksheet, rebuild the JDeveloper
desktop integration project and reload the page definition file in the Excel worksheet
to ensure that the changes appear in the ADF Desktop Integration task pane. You
associate a page definition file with an Excel worksheet when you choose the page
definition file, as described in Section 4.3.2, "How to Configure a New Integrated Excel
Workbook."

The Oracle ADF tab provides a button that reloads all page definition files in an Excel
workbook.

Errors may occur when you switch an integrated Excel workbook from design mode
to runtime if you do not rebuild the JDeveloper desktop integration project and restart
the application after making changes to a page definition file. For example, if you:

= Remove an element in a page definition file
= Do not rebuild and restart the Fusion web application
= Or do not reload the page definition file in the integrated Excel workbook

an error message such as the following may appear when you attempt to switch a
workbook to test mode:

[ADFDI-05530] unable to initialize worksheet: MyWorksheet
[ADFDI-05517] unable to find control MyBindingThatWasRemoved

Before you begin:
It may be helpful to have an understanding of page definition files. For more

information, see Section 4.2, "Working with Page Definition Files for an Integrated
Excel Workbook."

To reload page definition files in an Excel workbook:
1. Ensure that you have saved the updated page definition file in JDeveloper.

2. In the Excel workbook, click the Refresh Bindings button in the Components
group of the Oracle ADF tab.

For information about the Refresh Bindings button, see Section 5.1, "About
Development Tools."

After reloading the page definition file, the ADF Desktop Integration task pane of the
worksheet displays the same bindings that are available in its associated page of the
Fusion web application. For example, Figure 4-2 shows the bindings in the
ExcelCustomers.xml page definition file and the same bindings in the worksheet of
the EditCustomers-DT.x1sx workbook.

4-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding an Integrated Excel Workbook to a Fusion Web Application

Figure 4-2 Page Definition Bindings in JDeveloper and Integrated Excel Workbook

E ExcelCustomers.xml

Q|
Page Data Binding Definition

This shows the Orade ADF data bindings defined for your pag

Data Binding Registry: orade/summitdifview DataBindings.g

Bindings and Executables ~ Contextual Events = Parame

Bindings + / X
@ Customers

ﬁ. Createlnsert

ﬁ. Commit

ﬁ. Execute

Page Definition Bindings in JDeveloper

Gindrgs | Comporents |

Available Bindings (ExcelEditCustomers):

Createlnsert (action)
Commit {action)
@ Execute (action)

Inzert Binding

Worksheet Properties...
Workbook Properties..

Page Definition Bindings in Excel

4.2.4 What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook

Note the following points about page definition files in an ADF Desktop Integration

project:

» Integrating Multiple Excel Worksheets: You can integrate multiple worksheets in
an Excel workbook with a Fusion web application. You associate a separate page
definition file with each worksheet as described in Section 4.3.3, "How to Add
Additional Worksheets to an Integrated Excel Workbook."

= EL Expressions in a Page Definition File: Use the following syntax to write EL
expressions in a page definition file:

Dynamic (${})

Do not use the syntax Deferred (#{}) to write EL expressions. EL expressions
using this syntax generate errors because they attempt to access the ADF Faces
context, which is not available.

Note: EL expressions that you write for ADF Desktop Integration
component in the integrated Excel workbook, such as the Input Text
component, must use the Deferred (#{}) syntax.

4.3 Adding an Integrated Excel Workbook to a Fusion Web Application

The Fusion web application is automatically enabled with ADF Desktop Integration
when you add an integrated Excel workbook to a project. An integrated Excel
workbook enables you to add ADF components and ADF data bindings.

4.3.1 How to Add an Integrated Excel Workbook to a Fusion Web Application

To add an integrated Excel workbook, open the Fusion web application in JDeveloper
and add an Excel workbook to the project from New Gallery.

Before you begin:

It may be helpful to have an understanding of adding ADF Desktop Integration to a
Fusion web application. For more information, see Section 4.3, "Adding an Integrated
Excel Workbook to a Fusion Web Application."

Preparing Your Integrated Excel Workbook 4-5

Adding an Integrated Excel Workbook to a Fusion Web Application

To add an integrated Excel workbook in JDeveloper:
1. Open the Fusion web application in JDeveloper.

2. In the Application Navigator, select the user interface project, such as
ViewController, to which you want to add the new integrated Excel workbook.

3. From the File menu, choose New > From Gallery.

4. In the New Gallery, expand Client Tier, select ADF Desktop Integration, then
Microsoft Excel Workbook, and then click OK.

Figure 4-3 shows the New Gallery with ADF Desktop Integration category and
the Microsoft Excel Workbook option.

Figure 4-3 New Gallery - Microsoft Excel Workbook

~» New Gallery @

r All Technologies r Current Project Technologies

This list iz filtered according to the current project's selected technologies.

(&0

Categories: Items: [] Show All Descriptions
’ """ Applications F‘i] Microsoft Excel Workbook
. Connections Launches the Create ADF Desktop Integration-Enabled Excel Workbook dialog,
+--Deployment Descriptors in which you create a new ADF Desktop Integration-enabled Excel workbook in
+-Deployment Profiles a specified location.

To enable this option, you must select a project or a file within a projectin the
application navigator

[=-Client Tier

B, "\ Deskiop Integration

Meb Tier

[
L-Serviets
- All Ttems

| Help | 0K | ‘ Cancel

Click OK.

5. In the Create ADF Desktop Integration-Enabled Excel Workbook dialog, verify the
desired location and type a unique workbook name. Consider adding a suffix of
-DT to help with publishing later. For example, MyWorkbook-DT . x1sX.

By default, the integrated Excel workbook is saved as adfdi-workbook.x1sx in the
<PROJECT_HOME>\src\excel directory of the selected project. Although you can
save the workbook anywhere you choose, you should save the workbook with the
other files of the Fusion web application.

6. Click OK.

JDeveloper adds the integrated Excel workbook into the Fusion web application,
and automatically enables the project with ADF Desktop Integration. Figure 4-4
shows the ViewController project in the Application Navigator.

4-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding an Integrated Excel Workbook to a Fusion Web Application

Figure 4-4 adfdi-workbook.xIsx in Application Navigator

Application 1 v |v
=| Projects VR R T
Model

=[] ViewController

&=)-[] Application Sources
(=

-7 Web Content

+| Application Resources
+| Data Controls
+| Recent Files

4.3.2 How to Configure a New Integrated Excel Workbook

After adding the integrated Excel workbook, you must configure it.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Section 4.3, "Adding an
Integrated Excel Workbook to a Fusion Web Application."

To configure a new integrated Excel workbook:
1. Open the integrated Excel workbook.
s If you have saved the workbook with other files of the Fusion web application,

the Page Definition dialog automatically appears, as illustrated in Figure 4-5.

Figure 4-5 Page Definition Dialog

Page Definition @

Choose a Page Definition

ExcelEditAlllnventory

ExcelEditCustomers

ExcelSearchCustomers
ExcelWarehouselnventory
oracle_summitdi_view_MainPagePageDef
oracle_summitdi_view_searchFomPageDef

Cancel

Select the page definition file for the active worksheet from the Page
Definition dialog, and click OK.

= If you have saved the workbook elsewhere, configure the workbook as

described in Section 4.4.2, "How to Manually Configure a New Integrated
Excel Workbook."

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, set or verify the values for the following

properties so that you can switch between design mode and test mode as you
configure the workbook:

s ApplicationHomeFolder

The value for this property corresponds to the absolute path for the root
directory of the JDeveloper application workspace (. jws). If the workbook is

Preparing Your Integrated Excel Workbook 4-7

Adding an Integrated Excel Workbook to a Fusion Web Application

located within the JDeveloper application workspace, the value of the
ApplicationHomeFolder workbook property is assigned automatically.

Note: If you are opening the Excel file after moving the application
directory, ensure that the ApplicationHomeFolder property's value
reflects the correct path.

m Project

The value for this property corresponds to the name of the JDeveloper project
(.3jpr) in the JDeveloper application workspace. To change the project, click
the browse (...) icon and choose the project from the Project dialog, which lists
the projects defined in the JDeveloper application workspace.

By default, Project is set to the name of the project that contains the Excel
document. ADF Desktop Integration loads the names of the available projects
from the application_name. jws specified as a value for
ApplicationHomeFolder.

s WebAppRoot

Set the value for this property to the fully qualified URL for the web context
root that you want to integrate the Fusion web application with. The fully
qualified URL has the following format:

http://<hostname>:<portnumber>/context-root

In JDeveloper, you specify the web context root (context-root) in the Java EE
Application page of the Project Properties dialog. Figure 4-6 shows the web
context root used for the Summit sample application for ADF Desktop
Integration in JDeveloper and integrated Excel workbook.

4-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding an Integrated Excel Workbook to a Fusion Web Application

Figure 4-6 Setting Web Context Root in JDeveloper and Integrated Excel Workbook

e

Project Source Paths
ADF Model

- ADF Task Flow

- ADF View

-~ Ant

- Business Components
- Compiler

- Dependencies

- Deployment

EJE Module

- Extension

- Javadoc

™ Java EE Application

- JSP Tag Libraries

- J5P Visual Editor

- Libraries and Classpath
- Resource Bundle

Run/Debug/Profile

- Technology Scope

Help

~ Project Properties - Dt\jdevips7_11.1.1.9.0DEVADF 11.1.1.9.0_GEMERIC_141022.0755.6642\install\jdeveloper\mywork... @

(@
E -

Java EE Application
(") Use Custom Settings
(%) Use Project Settings
The following properties are used when running this project as a Java EE module or application

in the integrated WLS server.

Java EE Web Application Name:
[summitADF di |

Java EE Web Context Root:
[summit] |

Integrated WLS Command Line:
§{jvm} ${java.options}

Restore Default

[] Enable Access Log

oK | ‘ Cancel

Edit Workbook Properties

41

Data

» Brandingltems

Farameters
RemoteServietPath

> Resources

‘webAppRoot

Reset Workbook!D

Security

Edit the properties and press OK to save your changes.

Brandingltems (5)

fadidiRemote Serviet
UlIResources from web app =
http-/Aocalhost -7101/summit

Note that the fully qualified URL is similar to the following if you set up a test
environment on your system using the Summit sample application for ADF
Desktop Integration:

http://localhost:7101/summit

For information about how to verify that the Fusion web application is online
and that it supports ADF Desktop Integration, see Section C.1, "Verifying That
Your Fusion Web Application Supports ADF Desktop Integration."

If you are integrating an Excel file with a secure Fusion web application, you
should use the https protocol while entering the value for WebAppRoot. For
more information about securing the Fusion web application, see Programming
Security for Oracle WebLogic Server.

WebPagesFolder

Set the value for this property to the directory that contains web pages for the
Fusion web application. The directory path should be relative to the value of
ApplicationHomeFolder. For example, in the EditCustomers-DT.x1lsx
workbook, liebPagesFolder is set to ViewController\public_html.

Preparing Your Integrated Excel Workbook 4-9

Adding an Integrated Excel Workbook to a Fusion Web Application

Figure 4-7 shows an example of workbook properties in the Edit Workbook
Properties dialog of the Summit sample application for ADF Desktop Integration
EditCustomers-DT.x1lsx workbook.

Figure 4-7 Edit Workbook Properties Dialog

Edit Workbook Properties @

Edit the properties and press OK to save your changes.

22

4 Behavior
AutoDisplayStatusViewerEnabled True
> Compatibility
> Runtime Ribbon Tab
4 Data
» Brandingltems Brandingltems (5)
Farameters
RemoteServietPath fadfdiRemote Serviet
» Resources UlResources from web app
pHoot http-/Aocalhost:7101/summit

Annotation

ApplicationHomeFolder D:\install\jdev\JDEVADF_MAIN_GENERIC_141
CustomizationEnabled False
Project ViewController
\webPagesFolder ViewController\public_html
nlorkbooklD 137c6b77-d905-4ad0-87ecf399h 402:936
> Secunty

Beset Workbook|D

Design

G

4. Click OK.

Note: In Step 1, if the fully qualified path of the selected page
definition file exceeds the Windows path length limit, a warning
message appears when the Workbook Properties dialog is closed, and
the page definition will not load.

5. Save the Excel workbook.

4.3.3 How to Add Additional Worksheets to an Integrated Excel Workbook

To use Oracle ADF functionality, associate each worksheet with a page definition file.
You associate a page definition file with a worksheet when you add a worksheet to the
integrated Excel workbook. You can integrate multiple worksheets in an integrated
Excel workbook with a Fusion web application. Use a different page definition file for
each worksheet in the integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Section 4.3, "Adding an
Integrated Excel Workbook to a Fusion Web Application."

To associate a page definition file with an Excel worksheet:

1. While the Excel workbook is in design mode, click the Home tab in the Excel
ribbon, and then choose Insert > Insert Sheet in the Cells group.

2. In the Choose Page Definition dialog, select the page definition file.

4-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Enabling ADF Desktop Integration in an Excel Workbook

This populates the bindings palette in the ADF Desktop Integration task pane with
the bindings contained in the page definition file. You can now configure the
worksheet with Oracle ADF functionality.

Note: If you get an error message Programmatic access to Visual
Basic Project is not trusted when you run an integrated Excel
workbook after inserting a new worksheet, enable the Trust access to
the VBA project object model checkbox in Excel Options. For more
information, see Section 3.3, "Configuring Excel to work with ADF
Desktop Integration.”

4.4 Enabling ADF Desktop Integration in an Excel Workbook

Workbooks that you create, as described in Section 4.3, "Adding an Integrated Excel
Workbook to a Fusion Web Application,"are automatically configured to use ADF
Desktop Integration functionality. For existing Excel workbooks, you must enable ADF
Desktop Integration in the workbook to make it an integrated Excel workbook and
configure a number of properties in the newly-integrated Excel workbook.

4.4.1 How to Enable ADF Desktop Integration in an Existing Workbook

To integrate an existing workbook with the ADF Desktop Integration enabled Fusion
web application, you must manually enable ADF Desktop Integration for the
workbook. For information about the supported file formats of Excel workbooks that
you can use for integration with a Fusion web application, see Section 3.2, "Required
Oracle ADF Modules and Third-Party Software."

Before you begin:

It may be helpful to have an understanding of adding integrated Excel workbook to a
Fusion web application. For more information, see Section 4.3, "Adding an Integrated
Excel Workbook to a Fusion Web Application.”

To enable ADF Desktop Integration in an existing Excel workbook:
1. In Excel, open the workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.
3. In the Enable Workbook dialog, click Yes, as shown in Figure 4-8.

Figure 4-8 Enable Workbook Dialog

Enable Workbook 3

~ This workbook will be enabled to be used with Oracle ADF 11g Desktop
&Y' Integration. Do you want to continue?

ADF Desktop Integration prepares your workbook, displays the ADF Desktop
Integration Designer task pane, and opens the Browse For Folder dialog. For more
information, see Section 4.4.2, "How to Manually Configure a New Integrated
Excel Workbook."

4. Save the workbook.

Preparing Your Integrated Excel Workbook 4-11

Enabling ADF Desktop Integration in an Excel Workbook

Although you can store the Excel workbooks that you integrate with Fusion web
applications anywhere you choose, there are several advantages to storing them with
the other files of the Fusion web application. Some of these advantages are:

= Source control of the workbooks
= Facilitating the download of workbooks from web pages

s The file system folder picker that appears the first time a workbook is opened
defaults to the location where you store the workbook

For example, the Summit sample application for ADF Desktop Integration stores the
Excel workbooks it integrates in the following subdirectory:

Summit_HOME\ViewController\src\oracle\summitdi\excel

where Summit_HOME is the root directory that stores the source files for the Summit
sample application for ADF Desktop Integration.

4.4.2 How to Manually Configure a New Integrated Excel Workbook

After enabling ADF Desktop Integration manually in a workbook, you would need to
configure it.

Before you begin:

It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Section 4.5, "Enabling ADF
Desktop Integration Manually."

To manually configure a new integrated Excel workbook:
1. Open the integrated Excel workbook.

The Browse For Folder dialog automatically appears, as illustrated in Figure 4-9.

Figure 4-9 Browse For Folder Dialog
f Browse For Folder ﬁ1

Select IDeveloper Application Home Folder

4 M Computer &
\l;v System (C:)
* = Data (D)
» 45 DVD RW Drive (F)
glll MNetwork
-[E3 Control Panel
& Recycle Bin o

m

[OK] | Cancel |

" — =—

Use the Browse for Folder dialog to select the JDeveloper application home
directory. In a typical JDeveloper project, the JDeveloper application home
directory stores the application_name. jws file. The value you select is assigned to
the ApplicationHomeFolder workbook property.

4-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Enabling ADF Desktop Integration Manually

Note: The Browse for Folder dialog does not appear if the workbook
is located within the JDeveloper application workspace. In such a
case, the value of the ApplicationHomeFolder workbook property is
assigned automatically.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, configure the properties as described in
Step 3 of Section 4.3.2, "How to Configure a New Integrated Excel Workbook."

4. Click OK.
5. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

6. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the Page
Definition input field and select a page definition file from the Page Definition
dialog, as shown in Figure 4-10.

Figure 4-10 Page Definition Dialog

Edit Worksheet Properties =
Edit the properties and press OK to save your changes.
4 Behavior
Events
> Protection
Ribbon Commands
4 Data
CustomAttribute PropertiesEnabled False
Page Definition Excel Edit Cust omers |
Parameters Page Definition @
> RowData
> ServerContext -
SetupAction|D Choose a Page Definition
E:i |ExcelEditCustormers]
4 on ExcelEditWarehouses
Excel SearchCustomers
ExcelWarehouseLocations
oracle_summitdi_view_MainPagePageDef
oracle_summitdi_view_searchForm Page Def
Page Definition |
The page definition file associated with this worlcshg)|

7. Click OK.

The Excel worksheet appears with ADF Desktop Integration in the task pane. The
bindings of the page definition file that you selected in Step 6, appear in the
Bindings tab.

8. Save the Excel workbook.

4.5 Enabling ADF Desktop Integration Manually

To enable ADF Desktop Integration in the Fusion web application without adding the
integrated Excel workbook, you must add ADF Desktop Integration manually.

Preparing Your Integrated Excel Workbook 4-13

Enabling ADF Desktop Integration Manually

4.5.1 How to Manually Add ADF Desktop Integration In Fusion Web Application

Use the Project Properties dialog in JDeveloper to add ADF Desktop Integration to
your project.

Before you begin:

It may be helpful to have an understanding of adding ADF Desktop Integration to a
Fusion web application. For more information, see Section 4.5, "Enabling ADF Desktop
Integration Manually."

To manually add ADF Desktop Integration to your project:
1. Open the project in JDeveloper.

2. In the Application Navigator, right-click the project to which you want to add
ADF Desktop Integration and choose Project Properties.

If the application uses the Fusion Web Application (ADF) application template,
select the user interface project, such as ViewController. If the application uses
another application template, select the project that corresponds to the web
application.

3. In the Project Properties dialog, select Technology Scope to view the list of
available technologies.

4. In the Technology Scope page, select ADF Desktop Integration and add it to the
Selected list, as shown in Figure 4-11.

Figure 4-11 Add Technology Scope Dialog

~» Project Properties - Dt\jdevips7_11.1.1.9.0DEVADF 11.1.1.9.0_GEMERIC_141022.0755.6642\install\jdeveloper\mywork... @
(@ |)| Technology Scope
[#- Project Source Paths (") Use Custom Settings
(- ADF Model (%) Use Project Settings
- ADF Task Flow
- ADF View rPrquctTEmnulugiEs r Generated Components r Assodiated Libraries |
(- Ant Available: Selected:
- Eusm:ss Components ADF Business Components ADF Desktop Int=gration
8-~ Compiler) ADF Library Web Application Suppart \ADF Faces
- Dependencies ADF Mobile Browser \ADF Page Flow
- Deployment ADF Sning HTML
EJE Module Ant Java
-+ Extension Database (Offine) ‘ > | J5F
- Javadoc (=] ? 5P and Serviets
- Java EE Application JavaBeans ‘ | ML
- JSP Tag Libraries JSP for Business Components
- J5P Visual Editor Oracle Cloud
- Libraries and Classpath Struts
- Resource Bundle Swing/AWT
Run/Debug/Profile TopLink
& Technology Scope Technology Description:
ADF Desktop Integration with Microsoft Office.
| Help | Ok | ‘ Cancel

5. Click OK to close dialogs.

For more information about what happens when you add ADF Desktop Integration,
see Section 4.5.2, "What Happens When You Add ADF Desktop Integration to Your
JDeveloper Project."

4-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Enabling ADF Desktop Integration Manually

Note: If you plan to distribute integrated Excel workbooks by
adding them to ADF library files through EAR and JAR files, add
ADF Library Web Application Support to your project. For more
information, see Section 4.5.3, "Adding ADF Library Web Application
Support."

4.5.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper

Project

When you add the ADF Desktop Integration feature to a project, the following events
occur:

The project adds the ADF Desktop Integration Runtime library. This library
references the following . jar files in its class path:

— adf-desktop-integration.jar
— adf-desktop-integration-model-api.jar
— resourcebundle.jar

The project's deployment descriptor (web.xml) is modified to include the following
entries:

An ADF bindings filter (adfBindings)

A servlet named adfdiRemote

Note: The value for the url-pattern attribute of the
servlet-mapping element for adfdiRemote must match the value of
the RemoteServletPath workbook property described in Table A-20.

— A filter named adfdiExcelDownload
- A MIME mapping for Excel files (.x1sx and .x1sm)

The previous list is not exhaustive. Adding ADF Desktop Integration to a project
makes other changes to web.xml. Note that some entries in web.xml are added only
if they do not already appear in the file.

4.5.3 Adding ADF Library Web Application Support

If you want to distribute integrated workbooks by adding them to ADF library files,
add ADF Library web application support to the Fusion web application. For more
information, see the "Packaging a Reusable ADF Component into an ADF Library"
section in Fusion Developer’s Guide for Oracle Application Development Framework.

When updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

Figure 4-12 shows the Filters tab of the overview editor of the web.xml in JDeveloper.

Preparing Your Integrated Excel Workbook 4-15

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

Figure 4-12 Filters Tab of web.xml

% web,xml

Application
’ Filters @+ X
Servlets

Filters
Security
Pages

Name Class -
JpsFilter oracle.security.jps.ee.hitp. JpsFilter
trinidad org.apache.myfaces. trinidad. webapp. TrinidadFilter
orade.adf. model.servlet. ADFBindingFilter
adfdiExcelDownload orade. adf, desktopintegration. filter, DIExcelDownloadFilter
ADFLibraryFilter

References

16 6 =

orade.adf.library.webapp.LibraryFilter

General Filter Filter Mappings ~ Initialization Parameters

Dizplay Name:

Description:

You should also update the include-extension-1list initialization parameter to add
the Excel file extensions (such as .x1sx and .x1lsm), as shown in Figure 4-13.

Figure 4-13 ADFLibraryFilter Using include-extension-1ist Parameter

[yweb.xml x]
= =
©)

Application
i Filters 4= X
Servlets
Filters
Security Mame Class -
Pages JpsFilter orade.security.jps.ee.http. JpsFilter @
Febeores trinidad org.apache.myfaces. trinidad. webapp. Trinidad. .. {}
adfBindings oradle.adf.model.servlet, ADFBindingFilter (}
adfdiExcelDownload orade.adf.desktopintegration. filter. DIExcelDo. .. &
orade.adf.library. webapp. LibraryFilter 4 ==

r General Filter |/ Filter Mappings |/ Initizlization Parameters

+ X

Name Value Description

indude-extension-ist png,jpa,jpea,gif,js,css,htm,html,xlsx | The list of file extensions to allow ...

i 1

For more information about web.xml, see Appendix D, "ADF Desktop Integration
Settings in the Web Application Deployment Descriptor."

4.6 Using an Integrated Excel Workbook with Older Versions of ADF
Desktop Integration

When you or your end users open an integrated Excel workbook created, or last
updated, by a newer version of ADF Desktop Integration on a system running an
older version of ADF Desktop Integration, a dialog appears if the integrated Excel
workbook contains features that are incompatible with the older version of ADF
Desktop Integration.

When you click OK on this dialog, ADF Desktop Integration disables the integrated
Excel workbook and the end user cannot interact with the ADF Desktop Integration

4-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

features in the workbook. The data in the workbook is not removed, but ADF Desktop
Integration treats the workbook as a non-integrated workbook.

If the integrated Excel workbook does not contain incompatible features, no dialog
appears and the workbook functions normally. For integrated Excel workbooks that
contain incompatible features, upgrade the client version of ADF Desktop Integration,
as described in Section 3.6, "Upgrading ADF Desktop Integration." End users can
upgrade their client version, as described in Section H.1.3, "How to Upgrade ADF
Desktop Integration On a Local System."

Integrated Excel workbooks created using 11.1.1.7.5 or earlier of ADF Desktop
Integration do not have features that are incompatible with the ADF Desktop
Integration 11.1.1.7.5 client. A future release of ADF Desktop Integration may
introduce features that will be incompatible with clients using 11.1.1.7.5 or earlier of
ADF Desktop Integration. A possible example is a change that would lead to a
deserialization error, such as a new workbook ribbon command.

Note: When the integrated Excel workbook is not compatible with
the installed version of the ADF Desktop Integration client, a message
is displayed when you open the workbook. In such a case, you should
install the newer version of the ADF Desktop Integration client in
order to interact with the newer workbook.

Preparing Your Integrated Excel Workbook 4-17

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

4-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

O

Getting Started with the Development Tools

This chapter describes how to use the development tools (such as the Bindings Palette,
Components Palette, Property Inspector, and Expression Builder) provided by ADF
Desktop Integration. It provides an overview of the development environment that
ADF Desktop Integration exposes in the Excel Ribbon.

This chapter includes the following sections:

= About Development Tools

= Designer Ribbon Tab

= ADF Desktop Integration Designer Task Pane

= Using the Bindings Palette

= Using the Components Palette

= Using the Property Inspector

= Using the Binding ID Picker

= Using the Expression Builder

= Using the Web Page Picker

= Using the File System Folder Picker

= Using the Page Definition Picker

= Using the Collection Editors

= Using the Cell Context Menu

s Removing ADF Desktop Integration Components
= Exporting and Importing Excel Workbook Integration Metadata

5.1 About Development Tools

ADF Desktop Integration provides several tools to configure Excel workbooks so that
they can integrate with your Fusion web application. Using these tools you configure
the workbook and corresponding worksheets to display, and edit, data from the
Fusion web application in the integrated Excel workbook. The tools are available in the
Oracle ADF tab and in the ADF Desktop Integration Designer task pane.

ADF Desktop Integration development tools include the following tools, also shown in
Figure 5-1:

= Bindings Palette

s Components Palette

Getting Started with the Development Tools 5-1

About Development Tools

»s Property Inspector

= Binding ID Picker

= Expression Builder

= Web Page Picker

= File System Folder Picker
= Page Definition Picker

s Collection Editors

Figure 5-1 ADF Desktop Integration Development Tools

Edit Worksheet Properti
e et B | et ppresson 5 Browse For Folder [5] | [select Binding ==
Edit the properties and press OK to save your changes .
N | Expression: H @ g Choose JDeveloper Application Home folder Page Definition ExcelEditCustomers
G| 7 - @
> Events Ensure that Customers - | [Crestelnsert (sction)
> Protection B Desktop e (£ Commit (action)
> g\hlbcn Commands Ribbon Commands (2) . g Libraries 1 B Execute (action)
ata . =
CustomAttributePrapert False 41 Computer
Page Definition ExcelEditCustomers PS > & System (C)
Parameters - *|y Data (D:)
> RowData r Y .
> ServerContext % Bindings ;‘\ﬂ DVD RW Drive (F:)
SetupActionlD (] Components > €l Network B
inding |D Picker
Title #Hres['excel customers] Resources i 9
4 Design {1 Styles
Annotation e (#-{1] Workbook
’ R
Annotation G Bxcel Functions
An optional nete describing the purpose or usage of this
abject. ;
File System Folder Picker

Property Inspector Expression Builder
Edit Ribbon Commands ==
Members: Dovnload all Customers properties
Select Page for Dialeg (=) =P Page Definition (=)

(2=_| 2
Web Pages Folder: 4 Appearance - Chaose a Page Definition
D:\install\dev\JDEVADF_MAIN_GENERIC_141107 'Lm;‘ile ?{;‘[“’aﬂ — T T

a ‘excel_custome elEditAllnventor

e Tooltip Hiresl'excel.custome
Aaces = E ExcelSearchCustomers

4 Behavior I\

nor § ExcelWarehouselnventory

Choose Page: > SelectictionSet Actions (3) oracle_summitdi_view_MainPagePageDef

4 Design oracle_summitdi_view_searchFommPageDef
Jextemal/searchForm jspx . - e
ManFage of Enmtatlcn :Z:g:rix:ad all Custorr

MENE65102024
Annotaion
An optional note deseribing the purpose or usage
of this object.
X Page Definition Picker
Web Page Picker

Collection Editor

ADF Desktop Integration provides two modes, design mode and the test mode, in
which you can work while you configure the Excel workbook.

In design mode, you use the tools provided by Oracle ADF in Excel to design and
configure the integrated Excel workbook. In test mode, you can view and test the
changes you made in the design mode, in the same way that the end user views the
published integrated Excel workbook.

5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples

You use the development tools to configure and design the integrated Excel workbook.
For example, as shown in Figure 5-2, in EditCustomers-DT.x1sx an ADF Table
component is inserted in the integrated Excel workbook using the Customers binding
from the Bindings palette.

5-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Designer Ribbon Tab

Figure 5-2 ADF Desktop Integration Components and Bindings

A

B

fimages/oracle logo_sm.png #{res['excel.customers.title']}

#{_ADFDlre #{ ADFDIres[COMPO_* #{bindings.Cust #{bindings.Cu_#{bindi
s['COMPL™ NENTS TABLE STAT™ #[bmqus Custor ™ omers.hints. C stomers hint ™ ers. hmt.s

& D E F | Oracle ADF Desktop Integration

Bindings Componer

Awvailable Bindings (ExcelEditC

|

E Customers (tree)
Createlnsert (action)
Commit (action)

(&5 Execute (action)

w.bindingz.Mame.i #{ro £ ingz.F #{row. bind
n| sutValus} editRatingld.ing ut honeinputyalus ﬂm| ut faly

Other ADF Desktop Integration components, such as ADF Input Text, ADF Input Date
and ADF Label, can be inserted from the Components palette, and configured using
the Property Inspector and Expression Builder.

5.1.2 Additional Functionality for ADF Desktop Integration Development Tools

After adding the desired components and configuring your workbook, you may find
that you need additional functionality such as changing the appearance of the
workbook, and localizing it. The following sections describe other functionality that
you can use:

s Interactivity: You add one or more action sets to your integrate Excel workbook
for it to integrate with your Fusion web application. For more information, see
Chapter 9, "Adding Interactivity to Your Integrated Excel Workbook."

s Localization: You can customize the integrated Excel workbook as part of the
process to internationalize and localize with the Fusion web application. For more
information, see Chapter 11, "Internationalizing Your Integrated Excel Workbook."

= Styles: You can configure the display of your components using several
predefined Excel styles. For more information, see Section 10.2, "Working with
Styles."

= EL Expressions: You can use EL expressions with the ADF Desktop Integration
components. For more information, see Appendix B, "ADF Desktop Integration EL
Expressions."

5.2 Designer Ribbon Tab

You use the Oracle ADF tab, also called as Designer Ribbon tab, for various tasks such
as configuring the integrated workbook and worksheets properties, insert Oracle ADF
components and edit their properties, run the workbook in test mode, and publish the
workbook. The Oracle ADF tab, also shown in Figure 5-3, provides various buttons in
design mode.

Figure 5-3 Oracle ADF Tab in Design Mode

(s o swokookl Mookl

Home Insert Page Layout Formulas Data Review View Oracle ADF
[@] Workbook Properties %) Export || [Insert Component - {§}) Refresh Bindings @ D D . ESet Output Level @
@WorksheetProper‘ties &Import @EditProperties sf.Add Log Output File
Validate Run Stop Console Publish
'@\About R Delete EE} Refresh Config
Workbook Pl ADF Components Fi Test Logging Publish

Tip: Press Alt+C to access the Oracle ADF tab and view the shortcut
keys for Oracle ADF tab ribbon commands from the keyboard.

You can use Oracle ADF tab buttons to invoke the actions described in Table 5-1.

Getting Started with the Development Tools 5-3

Designer Ribbon Tab

Table 5-1

Oracle ADF Tab Options

In this
group...

Click this button...

To...

Mode when the
button is
available...

Workbook

@ Workbook Properties

Display the Edit Workbook
Properties dialog to view and
edit integrated Excel workbook
properties.

The button is also used to enable
ADF Desktop Integration in a
non-integrated Excel workbook.

Design

Workbook

@ Worksheet Properties

Display the Edit Worksheet
Properties dialog to view and
edit the current worksheet
properties.

Design

Workbook

T rbout

Open the About ADF Desktop
Integration dialog that provides
version and property
information of integrated Excel
workbook. The dialog also
provides access to the diagnostic
report described in Section C.2,
"Generating an ADF Desktop
Integration Diagnostic Report."

The button is also available in
non-integrated Excel workbooks
after ADF Desktop Integration
is installed.

Design, Test

Workbook

|i| Export

Open the Save Workbook
Definition as dialog that exports
the current workbook definition
as .xml file.

Design

Workbook

&Impor‘t

Open the Choose Workbook
Definition File to Import dialog
that imports the workbook
integration metadata from the
saved .xml file.

Design

ADF
Components

Insert Component ~

Display a dropdown list of
Oracle ADF components that
you can insert in the selected
cell.

Design

ADF
Components

B Edit Properties

Display the property inspector
window to view and edit
component properties of the
selected component.

Design

ADF
Components

x Delete

Delete the selected component
from the Excel worksheet.

Design

5-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Designer Ribbon Tab

Table 5-1 (Cont.) Oracle ADF Tab Options

Mode when the

In this button is
group... Click this button... To... available...
ADF @ Refresh Bindings = Reload the application Design
Components workspace file (. jws) and

project file (. jpr)
referenced by the workbook
properties of the integrated
Excel workbook.

s Refresh all information
from the page definition
files used in the active
integrated Excel workbook.

Any modifications that you
made to the page definition files
in the JDeveloper project now
become available in the Excel
workbook. For more
information, see Section 4.2.3,
"How to Reload a Page
Definition File in an Excel
Workbook."

Test Validate the Excel workbook Design
@ configuration against ADF
validate Desktop Integration validation
rules.

For more information about
validating a workbook, see

Section 14.3, "Validating the
Integrated Excel Workbook
Configuration."

Test Switch the Excel workbook from Design
design mode to test mode. This
Run button is active only when you
are in design mode.

Test Switch the Excel workbook from Test
test mode to design mode. This
Stap button is active only when you
are in test mode.

For more information about
switching between design mode
and test mode, see Section 14.4,
"Testing Your Integrated Excel

Workbook."
Logging Display a window that shows Design, Test
the most recent client-side log
Console entries. For more information,

see Section C.4.3, "About
Client-Side Logging."

Logging [st Output Level Display the Set Output Level Design, Test
dialog to choose client-side log
output level. For more
information, see Section C.4.3,
"About Client-Side Logging."

Getting Started with the Development Tools 5-5

ADF Desktop Integration Designer Task Pane

Table 5-1 (Cont.) Oracle ADF Tab Options

In this
group... Click this button...

To...

Mode when the
button is
available...

Logging 5% Add Log Output File

Create a new temporary logging
listener to act as a client-side log
output file. For more
information, see Section C.4.3,
"About Client-Side Logging."

Design, Test

LOggll’lg @ Refresh Config

Reload the ADF Desktop
Integration configuration file.
For more information, see
Section C.4.3, "About
Client-Side Logging."

Design, Test

Publish @

Publish

Publish the Excel workbook
after you complete the
integration between the Excel
workbook and the Fusion web
application.

For more information about
publishing an integrated Excel
workbook, see Chapter 15,
"Deploying Your Integrated
Excel Workbook."

Design

Tip: For quick and easy access, you can add Oracle ADF tab buttons
to the Excel Quick Access toolbar.

5.3 ADF Desktop Integration Designer Task Pane

The development tools in ADF Desktop Integration Designer Task Pane are organized
in two palettes, the Bindings palette and the Component palette. You use the Bindings
palette of ADF Desktop Integration Designer task pane to insert a predefined binding
into the integrated Excel workbook. ADF Desktop Integration inserts an Oracle ADF
component that references the binding you selected, and prepopulates the properties
of the Oracle ADF component with appropriate values. Similarly, you use the
Components palette to insert an Oracle ADF component in the integrated Excel
workbook. Figure 54 displays the ADF Desktop Integration Designer task pane.

Figure 5-4 ADF Desktop Integration Designer Task Pane

Bindings

Available Bindings (ExcelEditCustomers):

CreateInsert (action)
Commit (action)

Execute (action)

Insert Binding

Worksheet Properties...
Workbook Properties..

You can hide or show the ADF Desktop Integration Designer task pane through
launcher buttons (highlighted by the red boxes in Figure 5-5) available in the

5-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Bindings Palette

bottom-right corner of the Workbook and ADF Components group on the Oracle ADF
tab.

Figure 5-5 ADF Desktop Integration Designer Task Pane Launcher Buttons

@ Workbook Properties |i| Export E? Insert Component - Eﬁ Refresh Bindings
E‘ Worksheet Properties &| Import @ Edit Properties

& About 3K Delete

Workbook ADF Components

Table 5-2 lists the view tabs and links that appear in the task pane, provides a brief
description of each item.

Table 5-2 Overview of ADF Desktop Integration Designer Task Pane

Task Pane Ul Element Description

Workbook Properties Click to display the Edit Workbook Properties dialog. This
dialog enables you to view and edit properties that affect the
whole workbook. Examples include properties that reference the
directory paths to page definition files, the URL for your Fusion
web application, and so on.

Worksheet Properties Click to display the Edit Worksheet Properties dialog. This
dialog enables you to view and edit properties specific to the
active worksheet. An example is the file name of the page
definition file that you associate with the worksheet.

About Click to display the About dialog. This dialog provides the
version and property information that can be useful when
troubleshooting an integrated Excel workbook. For example, it
provides information about the underlying Microsoft NET and
Oracle ADF frameworks that support an integrated Excel
workbook. The dialog also provides access to the diagnostic
report described in Section C.2, "Generating an ADF Desktop
Integration Diagnostic Report." After a successful login, it also
provides access to the server's current client installer.

5.4 Using the Bindings Palette

The bindings palette presents the available Oracle ADF bindings that you can insert
into the Excel worksheet. The page definition file for the current Excel worksheet
determines what Oracle ADF bindings appear in the bindings palette. Figure 5-6
shows a bindings palette populated with Oracle ADF bindings in the ADF Desktop
Integration Designer task pane. Note that the bindings palette does not display
bindings that an integrated Excel workbook cannot use, so the bindings that appear
may differ from those that appear in the page definition file viewed in JDeveloper.
Check the log for ignored bindings (see Section C.4, "Generating Log Files for an
Integrated Excel Workbook").

Getting Started with the Development Tools 5-7

Using the Components Palette

Figure 5-6 Oracle ADF Bindings Palette in the ADF Desktop Integration Designer Task
Pane

Bindings

Available Bindings (ExcelEditCustomers):

Ei‘é Customers (tree)
CreateInsert (action)
Commit (action)

Execute (action)

Insert Binding

Worksheet Properties...
Workbook Properties..

You use the bindings palette in design mode to insert a binding. When you attempt to
insert a binding, ADF Desktop Integration prompts you to select and insert an Oracle
ADF component appropriate for the binding you selected. ADF Desktop Integration
also prepopulates the properties of the Oracle ADF component with appropriate
values. For example, if you insert a binding, such as the Customers (tree) binding
illustrated in Figure 5-6, a Select Component dialog appears where you can select and
insert an ADF Table component.

To insert an Oracle ADF binding, select the cell to anchor the Oracle ADF component
that is going to reference the binding in the Excel worksheet, and then insert the
binding in one of the following ways:

s Double-click the Oracle ADF control binding you want to insert.
= Select the binding that you want to insert, and drag it to the desired cell.

= Select the control binding and click Insert Binding in the ADF Desktop Integration
Designer task pane.

A Select Component dialog appears that prompts you to select one Oracle ADF
component from a list of Oracle ADF components where multiple Oracle ADF
components can be associated with the binding. After you select an Oracle ADF
component from the list, a property inspector appears

If you choose the Oracle ADF component as ADF Input Text, ADF Output Text, or
ADF Label, the binding name is assigned to the Value property. If you choose the
Oracle ADF component as ADF Button or ADF Ribbon Command, the binding
name is assigned to the Label property. If you choose the Oracle ADF component
as ADF Table or ADF Read-only Table, the binding name is assigned to the TreeID

property.

5.5 Using the Components Palette

The components palette displays the available ADF Desktop Integration components
that you can insert into an Excel worksheet. Figure 5-7 shows the components palette
as it appears in the ADF Desktop Integration Designer task pane.

5-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Property Inspector

Figure 5-7 Oracle ADF Components Palette in the ADF Desktop Integration Designer
Task Pane

AvailableComponents:
[e=siorimputes |
[E] ADF Input Date

A ADF Output Text
ADF Label

ADF List of Values
(@ ADF Button

[E5] ADF Image

[EH ADF Table

[ADF Read-only Table

Insert Component

Worksheet Properties...
Workbook Properties..

You use the components palette in design mode to insert an Oracle ADF component.
First, select the cell to anchor the Oracle ADF component in the Excel worksheet, and
then insert the Oracle ADF component in one of the following ways:

= Double-click the Oracle ADF component you want to insert.
= Select the component that you want to insert, and drag it to the desired cell.

= Select the component and click Insert Component in the ADF Desktop Integration
Designer task pane.

In all of the above cases, the Oracle ADF component's property inspector appears. Use
the property inspector to specify values for the component before you complete its
insertion into the Excel worksheet.

Note: The ADF Desktop Integration components are also available in
the Insert Component dropdown list of Oracle ADF tab.

5.6 Using the Property Inspector

The property inspector is a dialog that enables you to view and edit the properties of
Oracle ADF components, Excel worksheets, or the Excel workbook. You can open the
property inspector in one of the following ways:

= Select the component or binding, and click the Edit Properties icon in the Oracle
ADF tab.

= Select the component or binding, right-click and choose Edit ADF Component
Properties.

= Double-click the component or binding.

To open the property inspector of an ADF Table or ADF Read-only Table,
double-click any cell that is part of the table.

Note: ADF Button does not support the right-click or double-click
action, click the button to open the property inspector dialog.

Getting Started with the Development Tools 5-9

Using the Property Inspector

The property inspector also appears automatically after you insert an Oracle ADF
binding or component into an Excel worksheet. Figure 5-8 shows a property inspector
where you can view and edit the properties of an ADF Label component.

At design time, you can edit key properties of certain Oracle ADF components by
editing the Excel cell where the component appears. For example, you can edit the
Value property of ADF Label and ADF Input Text components by editing the value
displayed in the cell.

Note: The property inspector does not validate the values you enter
for a property, or combinations of properties. Invalid values may
cause runtime errors. To avoid runtime errors, make sure you specify
valid values for properties in the property inspector.

You can display the properties in an alphabetical list or in a list where the properties
are grouped by categories such as Behavior, Data, and so on. Table 5-3 describes the
buttons that you can use to change how properties display in the property inspector.

Table 5-3 Buttons to Configure Properties Display in Property Inspector

Button Description

Use this button to display the properties according to category.

A ~|r Use this button to display the properties in an alphabetical list.

In Figure 5-8, the property inspector displays the properties grouped by category.

Figure 5-8 Property Inspector Window for ADF Label Component

Insert Component: ADF Label @

Add values for the properties and press 0K to save your changes.

8|

4 Appearance
Label
StyleMame Label
Tooltip

4 Design
Annotation
Component]

LBL2025927413

5838

Layout

OK || Cancel

5-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Expression Builder

5.7 Using the Binding ID Picker

The binding ID picker is a dialog that enables you to select Oracle ADF bindings at
design time to configure the behavior of Oracle ADF components at runtime. You
invoke the binding ID picker from the property inspector. The binding ID picker filters
the Oracle ADF bindings that appear, based on the type of binding that the Oracle
ADF component property accepts. For example, the ListID property for an ADF List
of Values component supports list bindings. Therefore, the binding ID picker filters the
bindings from the page definition file so that only list bindings appear, as illustrated in
Figure 5-9.

Figure 5-9 Binding ID Picker

Insert Component: ADF List of Values 2 |
Add values fer the properties and press ‘0K to save your changes.
B2 |
4 Appearance
StyleMame Input Text
Tooltip
4 Data
4 ListOfValues Select Binding (23]
DependsOnListliD
ListiD Page Definition: ExcelWarehouselmentory
ReadOnly
4 Design @] Countryld (list)
Annctation @] Managerld (list)
CompanentlD [} Regionld (list)
4 Layout
> Position

For more information about ADF Desktop Integration component properties and the
bindings they support, see Appendix A, "ADF Desktop Integration Component
Properties and Actions."

5.8 Using the Expression Builder

You use the expression builder to write Expression Language, or EL, expressions that
configure the behavior of components at runtime in the Excel workbook. You invoke
the expression builder from the property inspector of component properties that
support EL expressions. For example, the Label property in Figure 5-10 supports EL
expressions and, as a result, you can invoke the expression builder to set a value for
this property.

You can reference bindings in the EL expressions that you write. Note that the
expression builder does not filter bindings. It displays all bindings that the page
definition file exposes. See Table 4-1 to identify the types of bindings that each ADF
Desktop Integration component supports.

To add an expression in the Expression box, select the item and click Insert Into
Expression. You can also double-click the item to add it in the Expression box.
Table 54 describes the folders available in the expression builder.

Getting Started with the Development Tools 5-11

Using the Web Page Picker

Figure 5-10 Expression Builder

Edit Expression ﬁ
Expression: L@ I‘i}j é/
I
@

E Bindings
-] Components
(-] Resources
-2 Workbook
-] Worksheet
-] Excel Functions

L ——

Cancel

I —— |

Table 5-4 Expression Builder Folders

Folder Name

Description

Bindings

Lists the bindings supported in ADF Desktop Integration from
the current worksheet's page definition.

Components

Lists the ADF components available in the current worksheet.

Resources

Lists the resource bundles registered in Workbook .Resources
along with the built-in resource bundle _ADFDIres.

Styles

Lists all Excel styles defined in the current workbook. For more
information, see Section 10.2, "Working with Styles.".

Workbook

Lists parameters defined in Workbook . Parameters.

Worksheet

Lists the errors expression.

Excel Functions

Lists sample Excel functions that you can use with ADF Desktop
Integration. For more information, see Excel's documentation.

For more information about using the expression builder, see Section 10.3, "Applying
Styles Dynamically Using EL Expressions." For information about the syntax of EL
expressions in ADF Desktop Integration, and guidelines on how you write these
expressions, see Appendix B, "ADF Desktop Integration EL Expressions."

5.9 Using the Web Page Picker

Use the web page picker to select a web page from your Fusion web application. At
runtime, an Oracle ADF component, for example an Oracle ADF Button component,
can invoke the web page that you associate with the Oracle ADF component.

You can invoke the web page picker when you add a Dialog action to an action set in
the Action Collector Editor. You use the web page picker to specify a web page for the
Page property of the Dialog action, as illustrated in Figure 5-11.

5-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the File System Folder Picker

Figure 5-11 Web Page Picker Dialog

- Data Review View Add-Ins Oracle ADF Acrobat

Edit Worksheet Properties | 3 |
A Edit the properties and press OK to save your changes.
N > Events Startup [
= > Protection
4 Ribbon Commands Ribbon Commands (2)
r a4 [0] #ires[excel search ribbon search Tr
Annotation = |
- 1D MEN1551560310
a Image Search
f"f Label #res['excel search ribbon_search'T}
e 4 SelectictionSet Actions (2)
= > ActionDptions T
4 Actions Actions (2)
4 [0] #{res[excel search popup title T
Annotation
Page faces/extemal /searchForm jspx
ShareFrame
Target Select Page for Dialog @
Title
. WindowSize \wleb Pages Folder:
Page D:vinstall\jdev\JDEVADF_MAIN_GENERIC_141107.0801.5\install\idevelopermywe
The web page to be displayed in the di Page Prefix:
Aaces
Choose Page:
Jextemal/searchForm jsp
/MainPage jsf
[ok][cancel |

For more information about displaying web pages in your integrated Excel workbook,
see Section 9.4, "Displaying Web Pages from a Fusion Web Application."

5.10 Using the File System Folder Picker

Use the file system folder picker to navigate over the Windows file system and select
folders. You use this picker to specify values for the following workbook properties:

s ApplicationHomeFolder
m WebPagesFolder

The first time you open an Excel workbook the picker appears so that you can set
values for the previously listed properties. For more information about opening an
Excel workbook for the first time and the properties you set, see Section 4.3.2, "How to
Configure a New Integrated Excel Workbook."

Figure 5-12 shows the file system folder picker selecting a value for the
WebPagesFolder workbook property.

Getting Started with the Development Tools 5-13

Using the Page Definition Picker

Figure 5-12 File System Folder Picker

Edit Workbook Properties)
Edit the properties and press OK to save your changes.
A
H
4 Behavior -
AutoDisplay StatusViewerEnabled False T
> Compatibility
> Runtime Ribbon Tab
4 Data ~ ~
> Brandingltems Browse For Folder @
Parameters
RemateServiet Path Choose JDeveloper Web Pages Folder L
> Resources
VWebAppRoat
4 Design > (W src o
Annotation 4| . ViewController
ApplicationHome Folder 4
CustomizationEnabled > L adfmsre
Project > | classes i kS
WebPagesFolder s [l model [
Workbook|D . -
o a 3 1 public_html A
Reset WorkbookID >l sre
WebP Folder 3 > | netbeans 52 -
Thefile path, relative to ApplicationHomeFalder, to the raff| L I | :
N [oK] ’ Cancel] -

5.11 Using the Page Definition Picker

Use the page definition picker to select the page definition ID of a page definition file
and associate the file with a worksheet. The picker appears the first time that you
activate a non-integrated worksheet in an integrated Excel workbook. It can also be
invoked when you attempt to set a value for the worksheet property, PageDefinition,
as illustrated in Figure 5-13.

5-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Collection Editors

Figure 5-13 Page Definition Picker

Edit Worksheet Properties =
Edit the properties and press OK to save your changes.
Startup
> Protection
> Ribbon Commands Ribbon Commands {5)
4 Data
CustomAttribute PropertiesEnabled False
Page Defintion e — ~
Parameters Page Definition @
> RowData
> ServerContext Choose a Page Defintion
SetupActionlD
Tile
Desi ExcelEditWarehouses
‘ Ani m ExcelSearchCustomers
notation ExcelWarehouseLocations
oracle_summitdi_view_MainPagePageDef
oracle_summitdi_view_searchForm Page Def
Page Definition | 1
The page definition file associated with this wd/|
[
\ b,

For more information about page definition files, see Section 4.2, "Working with Page
Definition Files for an Integrated Excel Workbook."

5.12 Using the Collection Editors

ADF Desktop Integration uses collection editors to manage the properties of elements
in a collection. The title that appears in a collection editor's title bar describes what the
collection editor enables you to configure. Examples of titles for collection editors
include Edit CachedAttributes, Edit Columns, and the Edit Actions. These collection
editors allow you to configure collections of cached data, table columns in the ADF
Table component, and actions in an action set. Figure 5-14 shows the collection editor.

Getting Started with the Development Tools 5-15

Using the Cell Context Menu

Figure 5-14 Collection Editor

Edit Worksheet Properties

% |or

Edit Ribbon Commands

Members:

il f] Execute query on Customers ites
1| TAB1598787742 Download
2| TAB1538787742 ResizeColumns

EIEY

Execute query on Customers iterator properties:

B4 |

4 Action

Action|D
4 Data

Detail Status Message
4 Design

Annotation

ActionlD
The action binding invoked.

Members Download all Customers properties:
I 0 Duvdoad all Customers =D A
L 1| Upload all changes in Customers Ll |
| 4 Appearance
1 Image Download
Label #{res['excel .customers ribbon. dor
Tooltip #{res['excel .customers ribbon. dor
4 Behavior
4 SelectActionSet Actions (3)
> ActionOptions
> Actions Actions (3)
! Edit Actions (=3

Execute query on Customers iterator

Tip: Write a description in the Annotation field for each element that
you add to the Edit Action dialog. The description you write appears
in the Members list view and, depending on the description you
write, may be more meaningful than the default entry that ADF

Desktop Integration generates.

5.13 Using the Cell Context Menu

When working with ADF components at design time, right-click any cell of the
component to get menu options to edit or delete the component. Some keyboards
feature a key that invokes the context menu. Using this key, you will see the edit and
delete menu options as well. Figure 5-15 shows the context menu options of an ADF
Table component.

5-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Removing ADF Desktop Integration Components

Figure 5-15 Context Menu Options of the ADF Table Component

Microsoft Excel

Home Insert Page Layout Formulas Data Review View
B3 - ‘ 5 | #{_ADFDIres['COMPONENTS_TABLE_C
A B c D 'iOracleADF D
| . Amage Helvetice ~ 10~ A" A7 Eg - % oy <F 5 title']] 7Bindings
= - - L =0 .00
< B|I = & é w8 5% B : Available B
#{_ADFDIF'?CKDFDIW‘{:KDFDIE[’CUMPWEndmgs. 0 Cust
3 ' me.lz iz LUSEO
* Cut v binding @ Create!
4 53| Copy i [Delete
5 lﬁ Paste @ Commi
Paste Spedial...
&6 Insert...
7 Delete...
Clear Contents
E Filter 3
9 Sort 4 2
Insert Comment
10 | m
% Format Cells...
1 Pick From Drop-down List...
12 Mame a Range...
% Hyperlink...
13 .)
Edit ADF Conrgonent Properties...
14 Delete ADF Component

5.14 Removing ADF Desktop Integration Components

At design time, you can remove the inserted ADF Desktop Integration components (or
bindings) from the integrated workbooks using the Delete ribbon command, or the
Delete ADF Component context menu option (see Figure 5-15).

When you remove a component, ADF Desktop Integration prompts you to confirm
your action, as shown in Figure 5-16.

Figure 5-16 Removing ADF Desktop Integration Component

fimages/oracle_logc #{res['excel.customers.title']}

|#{_ADFDIr|#{_ADFDIr #{_ADFDIres[COMP #{bindings.Customers.hi #{bindings.C #{bindings.Cus
! 1es['COMP ONENTS TABLE S nts.Name.label} ustomers.hin tomers.hints.P
#row.bindingz. Mame.inputy #{r indings. + bindings.F
alue} CreditRatingldi honesinputyalus}

' B
Delete @J

Are you sure that you want to delete the 'ADF Table' component at
. location 'B3'?

e %]

You can also remove multiple components by selecting a range of cells anchoring the
components (see Figure 5-17), or select individual component cells using the Ctrl key,
and then click the Delete ribbon button.

Getting Started with the Development Tools 5-17

Exporting and Importing Excel Workbook Integration Metadata

Figure 5-17 Removing Multiple ADF Desktop Integration Components

fimages/oracle_logc#{res['excel.customers.title']}

E{_ADFDIr #{_ADFDIr #{_ADFDIres['COMP #{bindings.Customers.hi #{bindings
Sl

es['COMP ONENTS TABLE S nts.Name.label} ustomers.h

#row bindingz. Mame.inputy nclin

alus}

f Delete Lr

Are you sure that you want to delete the 2 components currently
l % selected?

While removing the components, make a note of the following;:

To delete a component that occupies more than one cell (such as a table
component, or a component in a merged cell), you need not select the entire
component. If the selected range intersects any cell of the component, it will be
removed.

Do not delete cells or clear cells of the workbook if your selection includes one or
more ADF Desktop Integration components. Always use the Delete ribbon
command to remove a ADF Desktop Integration component.

ADF Desktop Integration context menu options are not available if multiple cells
are selected when the context menu is invoked.

After removing ADF Desktop Integration components, you should validate the
integrated Excel workbook configuration in order to find any references to the
deleted components. For more information about validating the workbook, see
Section 14.3, "Validating the Integrated Excel Workbook Configuration."

5.15 Exporting and Importing Excel Workbook Integration Metadata

Workbook integration metadata, also known as the workbook definition, is a set of
information that describes how a given workbook is integrated with a particular
Fusion web application. It includes the placement and configuration of components as
well as workbook- and worksheet-level properties. Workbook integration metadata is
defined by Oracle ADF. It does not include settings of a workbook that are native to
Excel.

You can export the integration metadata of your Excel workbook to an XML file with a
name and location that you specify. The XML file contains child elements for each
worksheet in the workbook, resources such as the relative path to the remote servlet,
and so on. The exported XML file enables you to do the following actions:

Edit or analyze the Excel workbook integration metadata. For example, you might
write a program to search the xml file for custom policy violations.

Using an XML editor, copy or move components between worksheets and
workbooks.

Copy action-set definitions between buttons or events.
Perform global search and replace operations.

Quickly rearrange, or copy, columns of table components.

5-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Exporting and Importing Excel Workbook Integration Metadata

5.15.1 How to Export Workbook Integration Metadata

The following procedure describes how you export XML configuration metadata from
an integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of workbook integration metadata. For
more information, see Section 5.15, "Exporting and Importing Excel Workbook
Integration Metadata."

To export workbook integration metadata from an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Click Export in the Oracle ADF tab.
The Save Workbook Definition As dialog box appears.

3. Specify the file name and location of the XML file that stores the exported
metadata, and click Save. ADF Desktop Integration writes the workbook
definition to the specified file.

4. In Export Workbook Metadata dialog, click OK to complete the export process.

Note: The exported XML file does not contain any native Excel
settings such as named styles, named ranges, cell properties, content
in unbound cells, and so on. The file name comprises the full name of
the design-time workbook suffixed with -workbook-defintion.xml.
For example, the exported XML file name of EditCustomers-DT.x1lsx
is EditCustomers-DT.x1lsx-workbook-definition.xml.

Publishing a workbook also exports the workbook definition. For
more information about publishing a workbook, see Section 15.3,
"Publishing Your Integrated Excel Workbook."

After exporting the workbook definition, you can edit the XML file in any XML editor,
such as JDeveloper. Figure 5-18 shows the workbook definition of
EditCustomers-DT.xlsx in JDeveloper. While editing the workbook definition file in
JDeveloper, JDeveloper automatically validates your changes against the workbook
definition schema. It will display warnings that help you avoid problems later on.

Getting Started with the Development Tools 5-19

Exporting and Importing Excel Workbook Integration Metadata

Figure 5-18 Editing Workbook Definition in JDeveloper

El EditCustomers-DT. xlsx-workbook-definition. xml

Qr{ Find G AME B
MG U G 4 g YL G GO Y S e T
</command-1ist>
</runtime-ribbon-tab>

B <worksheet-list>

=] <worksheet name="Customers™>

=] <event-list>

=] <event invoke-once-only="true” type="3tartup”>

=] <action-set>

=] <status mode="MainBarOnly">
<title>${res['excel.customers.ribbon.download.title’] }</title>
<messager#{res['excel.customers.ribbon.download.message'] }</message>

</status>
=] <action-list>
=] <component-action>

<component-id>TAB1598737742</ component-id>
<action>Initialize</action>
<detail-status-messager#[res['excel.customers.ribbon.initialize.detailmessage’] }</detail-status-message>
<annotation>Initialize needed in Startup before download+resize</anncotation>
</component-action>
=] <server-action>
<action-id>Execute</action-id>
<annotation>Execute query on Customers iterator</annotation>
</server-action>
=] <component-action>
<component-id>TAB1598737742</ component-id>
<action>Download</action>
<detail-status-message>${res['excel.customers.ribbon.download.detailmessage'] }</detail-status-message>
<annotation></annotation>
</component-action>
=] <component-action>
<component-id>TAB1598737742</ component-id>
<action>ResizeColumns</action>
<detail-status-messager#[res['excel.customers.ribbon.resize.detailmessage’] }</detail-status-message>
</component-action>
</action-list>
</action-set>
<annotation>Ensure that Customers table gets populated when workbook is opened for the first time</annotation>

P

5.15.2 How to Import Workbook Integration Metadata

After editing, you can import the workbook definition file into the original workbook
from which it was exported, or into an empty integrated workbook to create a copy of
the source integrated Excel workbook. Note that the empty workbook must be enabled
with ADF Desktop Integration before you import the metadata.

The following procedure describes how to import XML configuration metadata to an
integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of workbook integration metadata. For
more information, see Section 5.15, "Exporting and Importing Excel Workbook
Integration Metadata."

Before you import the integration metadata from an XML file, perform basic XML
validations such as whether the XML code is well formed and the XML file contains
the root element. You may import the workbook definition into the same workbook
from which it was exported, or import it in a new workbook.

To import workbook integration metadata to an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Click Import in the Oracle ADF tab.
The Choose a Workbook Definition file to Import dialog box appears.
3. Select the XML file that stores the workbook integration metadata, and click Open.

4. InImport Workbook Metadata dialog, click OK to complete the import process.

5-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Exporting and Importing Excel Workbook Integration Metadata

The changes made in the workbook definition appear automatically in the integrated
Excel workbook. If you use this method to create a new (and independent) integrated
Excel workbook from an existing one, make sure to reset the workbook ID after the
import is complete so that the two integrated Excel workbooks do not share the same
workbook ID. For more information, see Section 12.3.1, "How to Reset the Workbook
ID."

For example, Figure 5-19 shows the branding value of workbook changed to Edit
Customers New Workbook in the workbook definition file.

Figure 5-19 Editing Branding Value in the Workbook Definition

EditCustomers-DT. xdsx-workbook-definition. xml

Q- Find EAMRR E
</branding>
= <branding>
<name>Workbook Name</name>
<value>Edit Customers New i\‘crkbcck(.-’value}
</branding>
= <branding>
<name>Workbook Version</name:>
<valuerl.0</value>
</branding>

Figure 5-20 shows the changed branding workbook value in the Edit Workbook
Properties dialog after importing the workbook definition.

Figure 5-20 Updated Branding Value in Edit Workbook Properties Dialog

Edit Workbook Properties @
Edit the properties and press OK to save your changes.
541 |
4 Brandingltems Brandingltems (5) e
: [0] Application Name
= [11 Version =
4 [2] ‘Workbook Name
Name Workbook Name
Walue Edit Customers New Workbook
> [3] ‘Workbook Version
. 4] Copyright =

5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook
Integration Metadata

The workbook integration metadata XML file uses the
adfdi-workbook-definition.xsd XML schema document, which defines the XML
namespace as http://xmlns.oracle.com/adf/desktopintegration/workbook. The
schema is integrated into JDeveloper through the ADF Desktop Integration add-in.
You can find a copy of the schema at <Mw_
HOME>\jdeveloper\adfdi\etc\adfdi-workbook-definition.xsd, where MW_HOME is
the Middleware Home directory.

While importing the workbook integration metadata, make a note of following points:

= When the import process is initiated, the schema version number (schema-version
attribute of <workbook>) of the XML file is compared against the schema version
number of the installed ADF Desktop Integration client.

If both values match, the workbook integration metadata is imported to the

workbook. If the schema version of the XML file is lower than the schema version
of the installed client, the XML file is migrated to use the installed client's schema.
No prompt appears when the file is migrated, but a log of the same is maintained.

Getting Started with the Development Tools 5-21

Exporting and Importing Excel Workbook Integration Metadata

If the schema version of the XML file is greater than the schema version of the
installed client, the import process fails and an error message appears.

= After verifying the schema version, the imported XML file is validated against the
schema of the installed client. If the validation fails, the validation failure details
are logged, an error is reported to the user, and the import process aborts. If the
schema validation succeeds, the import process continues.

s If an element is missing in the imported XML file, the default value of the element
is used in the integrated Excel workbook.

= All pre-existing worksheet and component metadata is removed before the
import.

s If the imported worksheet's name matches an existing worksheet in the integrated
workbook, that worksheet is used. Otherwise, a new worksheet is created.

= All non-integrated worksheets of the integrated Excel workbook are not affected
by the import.

s If the imported component does not have valid origin information, the import
process attempts to place that component on the first unused row in the target
integrated worksheet.

= After the XML file is imported, the integrated Excel workbook's Workbook ID is
replaced with the Workbook ID of the XML file. If the workbook ID is missing in
the XML file, a new ID is generated.

5-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

6

Working with ADF Desktop Integration
Form-Type Components

This chapter describes how to insert and configure form components (such as labels,
input and output text, and list of values) that ADF Desktop Integration provides to
allow end users to manage data retrieved from a Fusion web application, and how to
display calculated data in these components using Excel formulae.

This chapter includes the following sections:

= About ADF Desktop Integration Form-Type Components

s Inserting an ADF Label Component

s Inserting an ADF Input Text Component

s Inserting an ADF Output Text Component

s Inserting an ADF Input Date Component

s Inserting an ADF Image Component

s Inserting an ADF Button Component

= Displaying Output from a Managed Bean in an ADF Component

= Displaying Concatenated or Calculated Data in Components

6.1 About ADF Desktop Integration Form-Type Components

The ADF Desktop Integration Form-type components allow end users to manage data
retrieved from the Fusion web application in the integrated Excel workbook. ADF
Desktop Integration uses the following components to create form-type functionality
in an integrated Excel workbook:

= ADF Input Text

s ADF Input Date

s ADF Output Text
= ADF Label

= ADF List of Values
= ADF Button

s ADFImage

Figure 6-1 shows some of these components. Note that the ribbon commands shown
in Figure 6-1 are worksheet-level ribbon commands (not ADF Button components)

Working with ADF Desktop Integration Form-Type Components 6-1

About ADF Desktop Integration Form-Type Components

that appear in the Excel Ribbon of your integrated Excel workbook at runtime. For
more information, see Section 9.3, "Configuring the Runtime Ribbon Tab."

Use of the ADF List of Values component is described in Section 8.2, "Creating a List of

Values in an Excel Worksheet."

Figure 6—1 ADF Desktop Integration Form-Type Components

ADF Input Text

Manager Roberta Menchu

(=]
o
2]

Country

Ribbon Commands

|
2 8 &8

Download Upload Delete

rv

Brazil

Slate

Phone

Fowered By ADF Dezktop Integration

ADF Label ADF Output Text

Flagged

ADF List of WValues

6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples

The ADF Desktop Integration form-type components are used to build forms in the

integrated Excel workbook for user input, and output from the Fusion web

application. As shown in Figure 6-2, the form-type components used in navigation
form of EditWarehouseInventory-DT.x1lsx enable end users to navigate and update

data.

Figure 6-2 Using ADF Desktop Integration Form-Type Components

ORACLE Edit Warehouse Inventory

Warehouse

Warehouse Id. 301

Address 6921 King Way
City Lagos
Slate
Zip Code
Inventory
Changed Status Product Amount in Stock

20510

20512

30321

A04m

Reorder Point

Region
Country
Manager

Phone

Max in Stock

Africa / Middle East

Migeria

Een Eiri

Qut of Stock Explanation

6-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Restock Date

Inserting an ADF Label Component

6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components

After you have added a component to the worksheet, you may find that you need to
add functionality such as responding to events or end user actions. Following are links
to other functionality that form components can use:

= Lists of values: You can use an ADF List of Values component to create a list of
values in your integrated Excel workbook. For more information, see Chapter 8,
"Working with Lists of Values."

ADF Label or ADF Output Text components to display output from a managed
bean. For more information, see Section 6.8, "Displaying Output from a Managed
Bean in an ADF Component.”

» Displaying output from a managed bean: You can use ADF Label or ADF Output
Text components to display output from a managed bean. For more information,
see Section 6.8, "Displaying Output from a Managed Bean in an ADF Component."

= Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Section 10.2, "Working with
Styles."

= EL Expressions: You can use EL expressions with form-type components. For
more information, see Appendix B, "ADF Desktop Integration EL Expressions."

6.2 Inserting an ADF Label Component

The ADF Label component is a component that you can insert into the active
worksheet to display a static string value. You specify a value in the input field for
Label in the property inspector or alternatively you invoke the expression builder to
write an EL expression that resolves to a string at runtime. The retrieved string can be
defined in a resource bundle or in an attribute control hint for an entity or view object.
For example, the following EL expression resolves to the value of label of Countryld
attribute binding at runtime:

#{bindings.CountryId.label}
The value that you specify for the Label property in an ADF Label component or other

Oracle ADF components is evaluated after the worksheet that hosts the Oracle ADF
component is initialized (opened for the first time).

You can configure a number of properties for the component, such as style and
position, in the worksheet using the property inspector.

Figure 6-3 shows an ADF Label component with its property inspector in the
foreground. The ADF Label component references an EL expression that resolves to
the label of Countryld attribute binding at runtime.

Working with ADF Desktop Integration Form-Type Components 6-3

Inserting an ADF Label Component

Figure 6-3 ADF Label Component in Design Mode

I #{bindings Countryld.label} JCountryld

Edit Component: ADF Label (=3

Edit the properties and press OK to save your changes.

Label #{bindings Countryld label}
StyleName Label

Tooltip

> Desi

0K || Ccancel

To insert an ADF Label component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. Inthe components palette, select ADF Label and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Label from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
design, and layout of the component.

5. Click OK.

Figure 64 shows an example of the ADF Label component (in black box) at runtime.

Figure 6-4 ADF Label Component at Runtime
ORACLE Edit Warehouse Inventory

Warehouse

Warehouse Id. 301

Address 321 King Way Region Africa / Middle East
City Lagos Country [Migeria
State Manager Een Eiri
bl
Zip Code Phone

Note: An ADF Label component renders only once, and is not
updated after a call to Worksheet . DownSync. Consider using an ADF
OutputText component instead if you want the displayed value to
change after a call to Worksheet . DownSync.

For more information about using labels in an integrated Excel workbook, see
Section 10.4, "Using Labels in an Integrated Excel Workbook."

6-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Input Text Component

6.3 Inserting an ADF Input Text Component

The ADF Input Text component is a component that you insert into the active
worksheet using the components palette. At runtime, the active cell in the worksheet
where you inserted the component displays the current value from the component's
binding after the worksheet DownSync action is invoked. End users can edit this value
at runtime. Configure the worksheet UpSync action to transfer changes end users make
to the value to the Fusion web application. Configure a Comnit action binding to
commit the changes in the Fusion web application.

You can configure a number of properties for the component, such as its position, style
and behavior when a user double-clicks the cell (DoubleClickActionSet properties), in
the worksheet using the property inspector. For more information about
DoubleClickActionSet, see Section 9.2, "Using Action Sets."

Figure 6-5 shows an ADF Input Text component with its property inspector in the
foreground. The ADF Input Text component binds to the City attribute binding in the
Summit sample application for ADF Desktop Integration. The end user enters a city
name in this component.

Figure 6-5 ADF Input Text Component in Design Mode

|.‘. {bindings. City} #{bindings State labhs

3
Edit Component: ADF Input Text @

Edit the properties and press OK to save your changes.

E)2]

4 Appearance
StyleMName Input Text
Tooltip

4 Data

4 InputText #{bindings.City}
> DoubleClick Action Set

ReadOnly False
#{bindings City}

£

> Design
> Layout

Value
The valuz of this component.

oK | [Cancdl

To insert an ADF Input Text component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Input Text and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Input Text from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component. Table 6-1 outlines some properties that
you must specify values for. For information about the component's other
properties, see Section A.2, "ADF Input Text Component Properties."

Working with ADF Desktop Integration Form-Type Components 6-5

Inserting an ADF Output Text Component

Table 6-1 ADF Input Text component properties

For this property... Specify...

InputText.Value An EL expression for the Value property to determine what
binding the component references.

Note that if you specify an Excel formula in the Value property,
the component behaves as if its ReadOnly property were True.
The component ignores the actual value of the Readonly

property.

InputText.ReadOnly An EL expression that resolves to False so that changes the end
user makes are uploaded. Write an EL expression that resolves
to True if you want the component to ignore changes. False is
the default value.

5. Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit ADF Component Properties to open the property
inspector.

To remove the component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration
Components."

Figure 6-6 shows an example of the ADF Input Text component (in black box) at
runtime.

Figure 6—6 ADF Input Text Component at Runtime
OR’ACLE Edit Warehouse Inventory

Warehouse

Warehouse Id. 301

Address 5921 King Way Region Africa / Middle East
City JLagos= Country Migeria
State Manager Ben Eiri
~
Zip Code Phane

6.4 Inserting an ADF Output Text Component

The ADF Output Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component's binding after
you invoke the worksheet DownSync action. The value the component displays is
read-only. Changes that the end user makes to the value in the cell that anchors the
component are ignored when changes are sent to the Fusion web application. To
prevent end users from altering the cell contents, enable automatic sheet protection in
worksheet properties, as described in Section 10.7, "Using Worksheet Protection."

6-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Output Text Component

This component can also serve as a subcomponent for the ADF Table and ADF
Read-only Table components. Columns in the ADF Table and ADF Read-only Table
components can be configured to use the ADF Output Text component.

You can configure a number of properties for the component such as style, behavior
when a user double-clicks the cell (DoubleClickActionSet properties), and position, in
the worksheet using the property inspector.

Figure 6-7 shows an ADF Output Text component with its property inspector in the
foreground.

Figure 6—-7 ADF Output Text Component in Design Mode

#bindingz. Warshouzeld}

Edit Component: ADF Output Text @

Edit the properties and press OK to save your changes.

Output Text
> #{bindings Warchouseld}
> Design
> Layout
Output Text

The properties that govemn the Output Text.

oK | [Ccancel

To insert an ADF Output Text component:

1.
2.
3.

Open the integrated Excel workbook.
Select the cell in the Excel worksheet where you want to anchor the component.

In the components palette, select ADF Output Text, and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Output Text from the Insert
Component dropdown list

Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component.

For example, you must write or specify an EL expression for the Value property to
determine what binding the ADF Output Text component references. For more
information about the values that you specify for the properties of the ADF
Output Text component, see Section A.3, "ADF Output Text Component
Properties."

Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit ADF Component Properties to open the property
inspector.

To remove the component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration
Components."

Working with ADF Desktop Integration Form-Type Components 6-7

Inserting an ADF Input Date Component

Figure 6-8 shows an example of the ADF Output Text component (in black box) at

runtime.

Figure 6—8 ADF Output Text Component at Runtime

ORACLE

Edit Warehouse Inventory

Warehouse

Warehouse id. |301

Address 5921 King Way

City Lagos

State

Zip Code

6.5 Inserting an ADF Input Date Component

The ADF Input Date component displays a date picker at runtime that enables the end

user to choose a date value for a date-type field. At

design-time, you can specify an

attribute binding or an EL expression that resolves to a date-time value at runtime in
the input field for Value. Other date-time values are not supported.

Figure 6-9 shows an ADF Input Date component at design-time.

Figure 6-9 ADF Input Date Component in Design Mode

Edit Component: ADF Input Date

Edit the properties and press OK to save your changes.

2|

4 Appearance
StyleMame
Tooltip
Data
Input Date
Design
Annotation
Component|D
Layout

> Postion

Input Text

#{row bindings Hiredate input Value}

anag4 72

Annotation
An optional note describing the purpose or usage of this object.

s

You can insert the ADF Input Date component as a field in a form, or as a column in a
table component. You can also add the ADF Input Date component as a model-driven

column with date attribute.

To insert an ADF Input Date component:
1. Open the integrated Excel workbook.

2.
3.

Select the cell in the Excel worksheet where you want to anchor the component.

In the components palette, select ADF Input Date and click Insert Component.

Alternatively, in the Oracle ADF tab, select ADF Input Date from the Insert

Component dropdown list.

6-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Input Date Component

4. Configure properties in the property inspector to determine the actions the
component invokes at runtime in addition to the appearance, design, and layout of
the component. Table 6-2 outlines some properties you must specify values for.
For information about the component's other properties, see Section A.7, "ADF
Input Date Component Properties."

Table 6—2 ADF Input Date Component Properties

For this property...

Specify...

ReadOnly

To upload end user's changes, set this property to (or write an
EL expression) False. To ignore end user's changes during
upload, set the property to True. If set to True, the date picker
does not appear at runtime.

False is the default value.

Value

A date attribute. You can also specify an EL expression that
resolves to a date-time value at runtime. An attribute or an EL
expression that does not resolve to a date-time value at runtime
will cause an error.

If no date-time value is specified at design-time, the calendar
shows the date that corresponds to the cell's current value at
runtime. If the cell is empty (or does not contain a date value),
the calendar defaults to today's date.

5. Click OK.

Figure 6-10 shows an example of the ADF Input Date component at runtime.

Figure 6—-10 ADF Input Date Component at Runtime

A B C D E

F

ORACLE’ Edit All Inventory Sheet

G H I 1 K L

Inventory Details

Changed Flagged Status Product Amount in Stock Out of Stock Explanation Max in Stock Reorder Point Restock Date Warehouse Manager P

5(

0169

41100

41080

41050

41020

41010

40

422

0421

O Phenomenal zalss..

578

2600 1500 | 101
800 a5 |Choose a date B
14 Movemnber 2014 [

F00 400
Mon Tue Wed Thu Fri Sat Sun
750 450|| 27 28 29 30 31 1 2
3 4 5 [7 8 9
750 450l 10 11 12 13 14 15 16
7 18 19 20 A 2 B
24 25 26 21 28 29 30
1 2 3 4 5 6
Today: 15/11/2014

350 101

At runtime, when selected, the ADF Input Date component displays a calendar in a
modeless window. The end user can pick a date from the displayed month, or use the
arrow icons to navigate to other months. You can also click the month or the year to
navigate to another month, year, or decade (see Figure 6-11).

End users can enter a time manually in the cell that hosts the ADF Input Date
component. To accept this input from your end users, configure the Excel's Format
Cells properties to permit entry of a time value along with a date value in the cell that
hosts the ADF Input Date component. The ADF binding type determines whether the
time value will be used. By default, the time value defaults to 0:00.

Working with ADF Desktop Integration Form-Type Components 6-9

Inserting an ADF Image Component

Figure 6-11 Navigation in ADF Input Date Component at Runtime

Choose a date @ Choose a date @ Choose a date
4 2014 v « 2010-2019 v 4 2000-2009
Jan Feb Mar Apr 009 2000 2011 2012 1339' iggg igig
May Jun Jul Aug mz | 2 014 015 2016 iggg igjg iggg
Sp Ot Nov Dec w17 w8 w9 2020 Ty e e
Today: 1/31/2014 Today: 1/31/2014 Today: 1/31/2014

6.6 Inserting an ADF Image Component

Using the ADF Image component, you can insert an image (for example, a company
logo) in the integrated Excel worksheet. At design time, specify the URL of the image

file in Source, and the ADF Image component renders the image at runtime. The

image is rendered at original size at runtime.

At runtime, when the ADF Image component renders, ADF Desktop Integration

determines whether the Source property value is an absolute URL or a relative URL.
The source URL is considered to be absolute if it starts with http and https, the only
supported schemes. If the URL is absolute, it is used as is to fetch the image and insert
that image into the worksheet. If the URL is not absolute, the partial URI is assumed to
be relative to the workbook's WebAppRoot. In such a case, the WebAppRoot value and the

Source value are concatenated to form the complete image URL.

If the image does not render at runtime for any reason (for example, an invalid URL),

the short description text that you configure at design time appears instead of the

image and ADF Desktop Integration creates a log entry. The technical details regarding
the failure are reported in the client logs. ADF Desktop Integrate does not interrupt the
worksheet initialization and does not present a warning or error message to the end

user. The end user sees the short description of the image in the cell location where the

image would have displayed in the case of success.

Figure 6-12 shows an ADF Image component at design time.

Figure 6—-12 ADF Image Component in Design Mode

fimages/oracle_logo_sm.pj#{res['excel.warehouses.title']}

Edit Component: ADF Image @

Edit the properties and press OK to save your changes.

Short Desc Oracle Logo
4 Data
ESTNN /images/oracle_logo_sm.png
4 Design
Component|D IMGZ220851331
4 Layout
> Position $Bs1

Source
An absolute or relative URL to the image file.

oK | [Cancel

6-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Image Component

To insert an ADF Image component:

1.
2.
3.

Open the integrated Excel workbook.

Select the cell in the Excel worksheet where you want to anchor the component.

In the components palette, select ADF Image and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Image from the Insert
Component dropdown list

Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component. Table 6-3 outlines some properties that
you must specify values for. For information about the component's other
properties, see Section A.6, "ADF Image Component Properties."

Table 6-3 ADF Image component properties

For this property... Specify...

Source The URL of the image file.

You can use absolute or relative URLs as the source of the image.
If the URL is not absolute, the partial URI is assumed to be
relative to the workbook's WebAppRoot.

Examples:

/images/myLogo.png

/resourceServlet?image=myLogo
http://www.oracle.com/ocom/groups/public/@otn/documents
/digitalasset/110224.gif

Note that the Source property does not support EL expressions.
For the list of supported image formats, see Microsoft Excel
documentation.

ShortDesc The String message as the alternate text of the image, if the
image is not found or cannot be rendered. You can also specify
an EL expression that resolves to the alternate text of the image
component.

Note that the ShortDesc property does not support binding
expressions.

5. Click OK.

Note:

You can modify the properties of the component at a later time

by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit ADF Component Properties to open the property

inspector.

To remove the component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration

Components."

Figure 6-13 shows an example of the ADF Image component at runtime.

Working with ADF Desktop Integration Form-Type Components 6-11

Inserting an ADF Button Component

Figure 6—-13 ADF Image Component at Runtime

ORACLE Edit Warehouse Inventory

Warehouse

Warshouse Id. 301

Note: If the worksheet is not protected, the end user may resize or
move the image at runtime. Depending on the size of the image, it
might appear over (and hide) other worksheet contents, including
other ADF Desktop Integration components.

6.7 Inserting an ADF Button Component

The ADF Button component renders a button in the Excel worksheet at runtime. End
users click this button to invoke one or more actions specified by the ClickActionSet
group of properties.

Due to technical limitations with ADF Button components (described in the notes
below), consider using worksheet-level ribbon commands instead. For more
information, see Section 9.3.2, "How to Configure a Worksheet Ribbon Command for
the Runtime Ribbon Tab."

The LowerRightCorner and Position properties determine the area that the button
occupies on the Excel worksheet at runtime.

Figure 6-14 shows an ADF Button component with its property inspector. When an
end user clicks the button at runtime, it invokes the array of actions specified by
ClickActionSet.

Figure 6—14 ADF Button Component in Design Mode
o]

Edit Component: ADF Button @

Edit the properties and press 0K to save your changes.

> Appearance o

4 Behavior
4 ClickActionSet Actions (2)
> ActionOptions |
4 Actions Actions (2) 5
> [0] Up Sync
[I, First
ActionlD First

Annctation
Detail StatusMessage
> Alert
Annotation -

[l

[ok |[cancel |

For more information about the properties of the ADF Button component, see
Section A.10, "ADF Button Component Properties."

To insert an ADF Button component:
1. Open the integrated Excel workbook.

6-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Button Component

Select the cell in the Excel worksheet where you want to anchor the component.

In the components palette, select ADF Button and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Button from the Insert
Component dropdown list.

Configure properties in the property inspector to determine the actions the
component invokes at runtime in addition to the appearance, design, and layout of
the component. Table 64 outlines some properties you must specify values for,
and provides links to additional information.

Table 6-4 ADF Button component properties

For this property... Specify...

Label

A string or an EL expression that resolves to a label at runtime to
indicate the purpose of the ADF Button component. The button
label defaults to the action binding ID.

The EL expression, if used, references a string key in the res
resource bundle. For more information about resource bundles,
see Section 11.2, "Using Resource Bundles in an Integrated Excel
Workbook." For more information about using labels in
integrated Excel workbooks, see Section 10.4, "Using Labels in
an Integrated Excel Workbook."

To include the ampersand (&) character in the label, use &&. A
single & character acts as a special character and is not displayed
in the label.

ClickActionSet Specify one or more actions in the Actions array of the

ClickActionSet that the end user invokes when he or she clicks
the ADF Button component. For more information about action
sets, see Section 9.2, "Using Action Sets."

5.

Click OK.

Notes:

If you change the view mode of the Excel worksheet to the Page
Layout or Page Break mode, the ADF Button components may be
rendered in an unexpected position. You must return back to
Normal mode without saving the workbook, and then Run and
stop the integrated Excel workbook to render the buttons to their
original positions.

You can modify the properties of the component at a later time by
selecting the cell in the worksheet. Click the ADF Button
component to open its property inspector.

The ADF Button components are active at 100% zoom only, and
are disabled when the end user zooms in or out on an integrated
Excel worksheet.

To remove the component, use the Delete ribbon command. For
more information, see Section 5.14, "Removing ADF Desktop
Integration Components."

Tip:

In design mode, you can click the button, or press the spacebar

when the button is in focus, to open the property inspector. Buttons do
not respond to a mouse right-click.

Working with ADF Desktop Integration Form-Type Components 6-13

Displaying Output from a Managed Bean in an ADF Component

6.8 Displaying Output from a Managed Bean in an ADF Component

You can configure an ADF component to display output from a managed bean in your
Fusion web application. Information about how to use managed beans in a Fusion web
application can be found in the "Using a Managed Bean in a Fusion Web Application"
section of Fusion Developer’s Guide for Oracle Application Development Framework. You
reference a managed bean in an integrated Excel workbook through an EL expression.
Add a method action binding to the page definition file you associate with the Excel
worksheet to retrieve the value of the managed bean and assign it to an attribute
binding. Use an EL expression to retrieve the value of the attribute binding at runtime.

6.8.1 How to Display Output from a Managed Bean

You write an EL expression for a property that supports EL expressions (for example,
the Label property).

Before you begin:
It may be helpful to have an understanding of managed beans. For more information,
see Section 6.8, "Displaying Output from a Managed Bean in an ADF Component."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 6.1.2,
"Additional Functionality for ADF Desktop Integration Form-Type Components."

To display output from a managed bean:
1. Open the integrated Excel workbook.

2. Select the ADF component to display the output from the managed bean, and
open its property inspector.

Figure 6-15 shows an example where an ADF Label component is configured to
display the output from an attribute binding that has its value populated by an
action binding.

Figure 6—-15 ADF Label Component That Displays Output from a Managed Bean at

Runtime
Insert Component: ADF Label @
Add values for the properties and press ‘0K to save your changes.
o
4 Appearance
Label #res['excel connectionPrefix']} #{bindings loggedinUser}
StyleMame Label

Tooltip

Layout

[ok][Cancal |

3. Write an EL expression that gets the output from a managed bean at runtime.

The example in Figure 6-15 shows an EL expression that retrieves the value of a
string key (excel.connectionPrefix) from the res resource bundle and the value
of the loggedInUser attribute binding. This attribute binding references the output
from the managed bean.

6-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Concatenated or Calculated Data in Components

4. Click OK.

6.8.2 What Happens at Runtime: How an ADF Component Displays Output from a
Managed Bean

The method action binding retrieves values from the managed bean and populates the
attribute binding. The EL expression that you write retrieves the value from the
attribute binding and displays it to the end user through the ADF component that you
configured to display output. For example, the ADF Label component shown in design
mode in Figure 6-16 displays a string similar to the following at runtime:

Connected as sking

Figure 6—-16 Output from a Managed Bean at Runtime
ORACLE

Connected as sking

In Figure 6-16, sking is the user name of the user that is logged on to the Fusion web
application through the integrated Excel workbook.

6.9 Displaying Concatenated or Calculated Data in Components

The ADF Desktop Integration module supports EL expressions within components
that allow a single component to display data that is based on a calculation or
concatenation of multiple binding expressions.

6.9.1 How to Configure a Component to Display Calculated Data

You write an EL expression for the Value property of an Input Text or Output Text
component.

Figure 6-17 shows an EL expression example where an ADF Output Text component
is configured to display the margin between two fields: List Price and Cost Price.

Working with ADF Desktop Integration Form-Type Components 6-15

Displaying Concatenated or Calculated Data in Components

Figure 6—17 ADF Output Text Component Displaying Calculated Data

-

Insert Component: ADF Qutput Text L2 |

Add values for the properties and press QK to save your changes.

StyleMName Output Text

Tooltip
4 Data
4 QutputText =(("#{row bindings_List Price_input Value}"-"#{row binding

> DoubleClick Action Set

Value =(("#{row bindings_List Price_input Value}"-"#{row binding

. Design
> Layout

Edit Expression @
Expression: L‘? f@j é

Value
The value of this ¢

E Bindings
D Components
[1-{Z7] Resources

e =%
-2 Workbook

G- Workshest
[#1-{20) Exeel Functions

Before you begin:

It may be helpful to have an understanding of how to display concatenated or
calculated data in ADF components. For more information, see Section 6.9,
"Displaying Concatenated or Calculated Data in Components."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 6.1.2,
"Additional Functionality for ADF Desktop Integration Form-Type Components."

To create an EL expression to display calculated data
1. Open the integrated Excel workbook.

2. Select the ADF Input Text or ADF Output Text component to display calculated
data.

3. Open the property inspector and click the browse (...) icon of the Value property.
4. Write an EL expression that gets the output from two, or more, expressions.

The following example shows an EL expression that calculates the difference
between the values of two fields, List Price and Cost Price, and then divides it with
value of Cost Price column to generate a margin.

=(("#{row.bindings.ListPrice.inputValue}"-"#{row.bindings.CostPrice. inputValue}
") /"#{row.bindings.CostPrice.inputValue}")

5. Click OK.

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

6-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Concatenated or Calculated Data in Components

Note: If the Value property of an ADF Input Text component
contains a formula, the ADF Input Text component becomes read-only
at runtime regardless of the value of the ReadOnly property.

6.9.2 Using Form Components and Merged Cells

You can insert a form component or a binding in a merged cell, or merge cells after
inserting the form component or binding, but you cannot insert multiple form
components in a merged cell or merge cells that are occupied by different form
components.

Before you insert a component in a merged cell, make a note of the following:

Drag-and-drop functionality is not supported for inserting component in a merged
cell.

Do not merge a component cell with non-empty cells that are above or left to it.
When two or more cells are merged, Excel keeps the data and style of the most
upper-left cell and discards the data of the remaining cells. So, merging a
component cell with a non-empty cell above or left to itself results in the
component data being overwritten.

Do not merge an empty component cell that has no value or binding with empty
cells above or left to it. Merging an empty component cell with empty cells above
or left to itself results in the style of that component cell being overwritten.

ADF Buttons do not expand to the whole merged area automatically. You can edit
the Position and LowerRightCorner properties of the button to resize it as
needed.

Working with ADF Desktop Integration Form-Type Components 6-17

Displaying Concatenated or Calculated Data in Components

6-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

7

Working with ADF Desktop Integration
Table-Type Components

This chapter describes the table-type components that ADF Desktop Integration
provides, how to configure and use them, how to download data from Fusion web
application, how to insert, update, and delete data rows from the table-type
components in the integrated Excel workbook, how to track the changes, how to
configure special columns in the table-type components, and other tasks that you can
do with table-type components.

This chapter includes the following sections:

= About ADF Desktop Integration Table-Type Components

= Page Definition Requirements for an ADF Table Component
s Inserting an ADF Table Component into an Excel Worksheet
s Downloading Data to an ADF Table Component

= Downloading Pending Insert and Pending Update Rows to an ADF Table
Component

= Updating Existing Data in an ADF Table Component
» Inserting Data in an ADF Table Component
s Uploading Changes from an ADF Table Component

s Uploading Changes from an ADF Table Component Using an
UploadAllOrNothing Action

s Deleting ADF Table Component Rows in the Fusion Web Application
= Batch Processing in an ADF Table Component

s Special Columns in the ADF Table Component

s Configuring ADF Table Component Key Column

s Adding a Dynamic Column to Your ADF Table Component

s Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component

s Configuring an ADF Table Component to Resize Columns Based on Data at
Runtime

s Grouping Columns Together in an ADF Table Component
s Configuring an ADF Table Component to be Read-only
s Creating an ADF Read-Only Table Component

Working with ADF Desktop Integration Table-Type Components 7-1

About ADF Desktop Integration Table-Type Components

= Limiting the Number of Rows Your Table-Type Component Downloads
s Tracking Changes in an ADF Table Component
= Evaluating EL Expressions for ReadOnly Properties

7.1 About ADF Desktop Integration Table-Type Components

ADF Desktop Integration provides the ADF Table component to display structured
data. It provides end users with the functionality to download rows of data. It also
enables end users to edit or delete downloaded data, insert new rows of data, and to
upload new and edited rows of data. For this to happen, you must expose methods on
data controls, create action bindings in your page definition file, and set properties for
the ADF Table component that an Excel worksheet hosts. Figure 7-1 shows the ADF
Table component.

Figure 7-1 ADF Desktop Integration Table-Type Components

EditCustomers-DT.xdsx - Microsoft Excel

@9)s

Home Insert Page Layout Formulas Data Review View Add-Ins Oracle ADF Customers Acrobat

Ao o0 B a3

Logout Clear Edit About Download Upload Status

All Data Options Viewer
Workbook Worksheet
aa - £ |
B & D E G H J e M (8]
ORACLE Edit Customers
) ~)
Changed | Status + 1" Name - | Credit Rating | Address ~1City . Zip Code _ Country _ Sales Rep. | Key =
Zebra's Bicycles Fair 3810 Colley Ave MNarfaolk 23508 LISA Magee
Superior Bioyelz Fair 538 SuperiorAve E - Cleveland 44114 USA Magee
Eicyele World Fair 5300 SWA1Tth St Topska GEE04 USA Magee
Schindlers Sports Fair 4479 Farest Park Ave Stlouiz E3108 LISA Magese oo
Earry's Baskethall Fair 56 E Superior 5t Chizago G0E11 USA Magee
Gavin Sporting Goodsz Fair 1E‘Tﬂ|c SE Hawthorns Partland 97214 LUSA Mages
Haot Stuff Fair 25513 Dollar St Hayward 24544 USA Magee
Acme Sporting Goods Fair TT0 4th Ave San Disgo 92101 LISA Mages oo

Each ADF Table component contains a Key column. Do not remove the Key column as
it contains important information that is used by ADF Desktop Integration for the
proper functioning of the table. Removal of the Key column, or any modification in the
Key column cell, results in errors and data corruption. For more information about the
Key column, see Section 7.13, "Configuring ADF Table Component Key Column."

The other ADF Desktop Integration components that you can use with these table-type
components are described in Chapter 6, "Working with ADF Desktop Integration
Form-Type Components" and Chapter 8, "Working with Lists of Values."

7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples

Tables are used to display the structured information. For example, Figure 7-2 shows
an ADF Table component of Summit sample application for ADF Desktop Integration
with data downloaded from the respective Fusion web application.

7-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Page Definition Requirements for an ADF Table Component

Figure 7-2 ADF Table Component with Downloaded Data

Changed Flagged Status MName ‘Credit Rating Phone ‘Addreas ‘City State Zip Code Region Country
Unizports Good 55-206E101 72 Via Bahia Sao Paulo South America Brazil
Simme Athletics Faor &1-20101 Takaszhi Qezaka Azia Japan
Celhi Sport Exczellent a1-10351 Chanakya Mew Delhi Azia Inclia
-M-Maore Faar 1749 W sth Ave Columbus OH 43212 Morth America LISA
Eall and Glove Excellent 14527 Madizon Ave Cleveland OH 44107 Morth America USA

7.1.2 Additional Functionality of Table-Type Components

After you have added a table component to your integrated Excel workbook, you may
find that you need to add additional functionality to configure your table. Following
are links to other functionality that table components can use.

= Search and Select dialog: You can configure a ModelDrivenColumnComponent
subcomponent in a table column, as described in Section 8.4, "Adding a
Model-Driven List Picker to an ADF Table Component," to display a dialog where
end users can search and select data.

= Dependent List of Values: You can add dependent list of values components in
your table component. For more information, see Section 8.5, "Creating Dependent
Lists of Values in an Integrated Excel Workbook."

= Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Section 10.2, "Working with
Styles."

= Tooltips: You can configure tooltips to display additional information or
instructional text to your end users. For more information, see Section 10.6,
"Displaying Tooltips in ADF Desktop Integration Components."

= EL Expressions: You can use EL expressions with table-type components. For
more information, see Appendix B, "ADF Desktop Integration EL Expressions."

7.2 Page Definition Requirements for an ADF Table Component

The ADF Table component is one of the Oracle ADF components that ADF Desktop
Integration exposes. It appears in the components palette of the ADF Desktop
Integration Designer task pane and, after inserted into an Excel worksheet, allows the
following operations:

= Read-only

s Insert-only

= Update-only

= Insert and update

Review the following sections for information about page definition file requirements
specific to an ADF Table component.

Before you can configure an ADF Table component to provide data-entry functionality
to your end users, you must configure the underlying page definition file for the Excel
worksheet with ADF bindings. For general information about the page definition file
requirements for an integrated Excel workbook, see Section 4.2, "Working with Page
Definition Files for an Integrated Excel Workbook."

Working with ADF Desktop Integration Table-Type Components 7-3

Page Definition Requirements for an ADF Table Component

Expose the following control bindings when you create a page definition file for
authoring an ADF Table component:

s Tree binding that exposes the desired attribute bindings. Note that ADF Desktop
Integration only supports scrollable and range paging access modes for view
objects. The other access modes are not supported.

Consider using the range paging access mode when your integrated Excel
workbook has to download large amounts of data. For more information, see the
"Efficiently Scrolling Through Large Result Sets Using Range Paging" section in
the Fusion Developer’s Guide for Oracle Application Development Framework.

If you decide to use the range paging access mode, make sure that the
application's view object supports this access mode before using it with ADF
Desktop Integration. For example, the view object must work properly with
TOP-N queries described in the "Understanding How Oracle Supports "TOP-N"
Queries" section in the Fusion Developer’s Guide for Oracle Application Development
Framework.

In addition, note that view objects with range paging access mode cannot be
scrolled with unposted rows. For this reason, make sure that ADF Desktop
Integration action sets commit or roll back any pending changes as expected. If
pending changes are not committed or rolled back before invoking an ADF Table
component's Download action, the application reports the following exception:

An attempt has been made to navigate a rowset in range paging mode when the
rowset has pending changes.

Before inserting new rows, the iterator repositions to the first row, if necessary.
This is because inserting new rows after the first row can result in unexpected
scrolling. This behavior applies to the ADF Table component's Upload action as
well as double-click action sets for insert rows.

= Method action bindings and action bindings (such as Execute, Commit, and
Createlnsert) if you intend to configure values for the ADF Table component's
RowActions and BatchOptions groups of properties. Examples of procedures
where you set values for these groups of properties include:

- Section 7.3, "Inserting an ADF Table Component into an Excel Worksheet"
- Section 7.7, "Inserting Data in an ADF Table Component"

- Section 7.5, "Downloading Pending Insert and Pending Update Rows to an
ADF Table Component"

Figure 7-3 shows the bindings that the ExcelCustomers.xml page definition file
includes. This page definition file can support the use of an ADF Table component in
the Excel worksheet that it is associated with.

7-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Table Component into an Excel Worksheet

Figure 7-3 ADF Bindings Supporting Use of an ADF Table Component

E ExcelCustomers, xml
Q Find
Page Data Binding Definition

OE

This shows the Oracle ADF data bindings defined for your page. Select a binding to see its relationship to the underlying Data Contral,

Data Binding Registry: orace /summitdi/view DataBindings. cpx

Bindings and Executables Contextual Events ~ Parameters

Bindings + / x Executables + / % Data Control
I Customers = E variables % SummitAppModuleDataControl
Createlnsert —I—' b [Customerslterator - {ill Customershodule
oot =
Commit i) WarehouseModule
- ----- {Ell WarehouseMadule
- iﬁ CustomersModule

7.3 Inserting an ADF Table Component into an Excel Worksheet

After you configure a page definition file correctly, you can insert an ADF Table
component into the worksheet and configure its properties to achieve the functionality
you want. The ADF Table component enables you to download, edit, and upload rows
of data.

7.3.1 How to Insert an ADF Table Component

You insert an ADF Table component using one of the following methods:

s In the bindings palette of the ADF Desktop Integration Designer task pane, select
the tree binding to use and click Insert Binding.

The following procedure describes how to insert an ADF Table component using
the bindings palette. One benefit of this method over the other two is that you do
not have to manually add each column that you want to appear in the component
at runtime.

s In the Oracle ADF tab, select ADF Table from the Insert Component dropdown
list.

s In the components palette of the ADF Desktop Integration Designer task pane,
select ADF Table and click Insert Component.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more
information, see Section 7.3, "Inserting an ADF Table Component into an Excel
Worksheet."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To insert an ADF Table component into an Excel worksheet:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet into which you want to insert the ADF Table
component.

Working with ADF Desktop Integration Table-Type Components 7-5

Inserting an ADF Table Component into an Excel Worksheet

When selecting a cell, make sure that the:
= Data of two tables do not overlap at runtime
s Selected cell is not a merged cell

3. In the bindings palette of the ADF Desktop Integration Designer task pane, select
the tree binding to use and click Insert Binding.

4. In the dialog that appears, select ADF Table and click OK.

Notes:

= By default, the ModelDrivenColumnComponent subcomponent is
defined as the subcomponent type for all columns when you
insert an ADF Table component using the bindings palette.

If you want a column to have a different subcomponent type,
open the ADF Table property inspector (select any cell of the ADF
Table component and click the Edit Properties button in the
Oracle ADF tab), click the browse (...) icon of the Columns
property. In the Edit Columns dialog, select the column, and click
the browse (...) icon of the UpdateComponent property. In the Select
Component dialog, select the desired subcomponent type, verify
the binding and other properties, and click OK.

= For tree bindings with multiple <nodeDefinition> elements (child
nodes), attribute names used in the expressions for Value
properties of UpdateComponent and InsertComponent must be
unique across all <nodeDefinitions>.

5. Configure properties for the ADF Table component, as described in Table 7-1,
using the property inspector shown in Figure 7—4.

7-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Table Component into an Excel Worksheet

Figure 7-4 ADF Table Property Inspector

F B
Edit Component: ADF Table ‘ M

Edit the properties and press OK to save your changes.
)41 |
4 Appearance -
ResizeColumnsMode UseColumnValue
> Behavior
4 Data
a Columns (15)]
> [0] _ADF_ChangedColumn
> [1] _ADF_FagColumn
> [2] _ADF_StatusColumn
> [3] #{row bindings. Name inputValue}
> [4] #{row hindings CreditRatingld input Value} =
> [5] #{row bindings. Phone.input Valug}
> [B] #{row bindings . Address inputValue}
> [7] #irow bindings City inputValue}
> 18] #{row bindings.State inputValue}
> [9] #{row bindings.ZipCode inputValue}
> [10] #{row hindings Regionld input Value}
> [11] #{row bindings. Countryld inputValue}
> [12] #{row bindings.SalesRepld input Value}
> [13] #{row bindings Comments inputValue} =5
> [14] _ADF_RowKeyColumn
> RowData
TreelD Customers -
Columns

The collection of table columns.

Table 7-1 ADF Table Component Properties

Set this property to... This value...

BatchOptions.CommitBatchActionID The Commit action binding that the page definition file
exposes.

UniqueAttribute Specify a binding expression that uniquely identifies

each row in the iterator associated with the tree
binding. A UniqueAttribute property value should
only be specified if the tree binding's iterator does not
support row keys.

RowLimit (Optional) configure this group of properties to
determine the number of rows that the ADF Table
component downloads.

For more information, see Section 7.20, "Limiting the
Number of Rows Your Table-Type Component
Downloads."

6. Click OK.
7. Choose the appropriate option in the Insert Component: ADF Table dialog;:

» Yes to create default ribbon commands for the new table to download and
upload data. You can delete or edit these ribbon commands at a later time. We
recommend that you change the default ribbon command label. For more
information, see Section 9.3.2, "How to Configure a Worksheet Ribbon
Command for the Runtime Ribbon Tab."

= No if you want to configure the download and upload of data at a later time
or use one of the other available methods (for example, a worksheet event), as
described in Section 7.4, "Downloading Data to an ADF Table Component,"
and Section 7.8, "Uploading Changes from an ADF Table Component.”

Working with ADF Desktop Integration Table-Type Components 7-7

Inserting an ADF Table Component into an Excel Worksheet

Figure 7-5 shows the ADF Table component in EditCustomers-DT.x1sx in design
mode.

Figure 7-5 ADF Table Component in Design Mode

fimages/oracle_logo_sm.png #{res['excel.customers.title']}

#{ ADFDIre #{ ADFDIres[COMPO_* #Ibindings.Cus #{bindings.Cus #{bindings.Cus #{bindings.Cus #{bindi #{bindings.Cus #{bindings
s['COMPL™ NENTS TABLE STAT #(bindinas.Cul™ tomers.hints.” tomers.hints. ™ tomers.hints. ™ tomers.hints. ¥ tomers.hints.” tomers.hin
#row bindings.Na #{ ind bindingz.P #{row bindingz.A #{row binding bi #{row bindings Zi #{row. bindir

=inputValue} cd dnput¥alu tyinputValue

Figure 7-6 shows the ADF Table component in EditCustomers-DT.x1sx at runtime.

Figure 7-6 ADF Table Component at Runtime

ORACLE Edit Customers

) ~ ~

Changed | Status * Name Address | City Region | Country | Sales Rep. [Key

- -

VA 23508 N

orth America LISA [Magee

Superior Bic OH Morth America Usa Magee
5300 SW 17th St Topeka KS Morth America Usa Magee e g
Schindler's Sports i4 8 Forest Park St Louis [T B3108 Morth America LISA [Magee
Barry'=z Baskethall 56 E Superior St Chicago IL a0E11 Marth America LISA [Magee s
Fartland OR 47214 Marth America LISA [Magee
25613 Dollar St Hayward CA 94544 Morth America Usa Magee s
San Diego CA 2101 Morth America LISA [Magee
_ :\ Dallas TX 75204 Morth America Usa Magee
SE10E -
Buyhdydunk Callaz Tx Morth America LISA [Magee
Maockingbird L

For more information about the properties that you can set for the ADF Table
component, see Section A.11, "ADF Table Component Properties and Actions."

To remove the table component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration Components."

7.3.2 How to Add a Column in an ADF Table Component

If you inserted the table without using the tree binding (for example, you inserted the
table from the component palette) you add columns to the table to display the data for
each attribute that you want to appear in the table. For example, a customers' table
will have columns that displays customer name, phone, credit rating, and so on.

The procedure is the same if you want to add a column to table you inserted using the
tree binding.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more
information, see Section 7.3, "Inserting an ADF Table Component into an Excel
Worksheet."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

7-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Downloading Data to an ADF Table Component

To add a column in an ADF Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon of the Columns
property.
The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. Click Add to add a new column. The new column is inserted at the end of the
Members list. To move the column to a specific position, select the column and use
the Up and Down arrow keys.

5. Configure the new column's properties in the right pane of the dialog.
6. Click OK.

ADF Desktop Integration does not limit the number of columns you can add to an
ADF Table component. You can add as many columns as your version of Excel
supports. However, a wide table can result in a poor user experience and slow
performance. If you experience slow performance, try to reduce the number of table
columns before investigating other causes. ADF Desktop Integration recommends
configuring less than 30 columns per table when possible to optimize performance and
user experience.

7.4 Downloading Data to an ADF Table Component

After you add an ADF Table component to a worksheet, you configure the worksheet
to download data from the Fusion web application. To achieve this, you configure an
Oracle ADF component, such as a worksheet ribbon command, to invoke an action set.
The action set that is invoked must include the ADF Table component Download action
among the actions that it invokes.

The number of rows that an ADF Table component contains expands or contracts
based on the number of rows to download from a Fusion web application. You should
not place anything to the left or right of a table-type component unless you want to
replicate it when Excel inserts rows to accommodate the data that one of the table-type
components downloads. You can place other components above or below a table-type
component as they maintain their position relative to the table-type component at
runtime.

7.4.1 How to Download Data to an ADF Table Component

Configure a ribbon command to invoke the ADF Table component Download action.

Before you begin:

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

It may be helpful to have an understanding of how to configure ADF component to
download data to an ADF Table data component. For more information, see
Section 7.4, "Downloading Data to an ADF Table Component."

To download data to an ADF Table component:
1. Open the integrated Excel workbook.

Working with ADF Desktop Integration Table-Type Components 7-9

Downloading Data to an ADF Table Component

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command. For more information about adding a ribbon command in a worksheet,

see Section 9.3.1, "How to Define a Workbook Ribbon Command for the Runtime
Ribbon Tab."

Note: Instead of adding a ribbon command, you can configure a
worksheet event to invoke the action set at runtime.

3. Open the Edit Action dialog to configure an action set. For more information about
invoking action sets, see Section 9.2, "Using Action Sets."

4. Add the following actions in the following order to the action set that invokes at
runtime:

= ADFmAction Execute action binding to execute the query on the iterator
binding referenced by the ADF Table component TreeID property. This makes
sure the binding is up-to-date before the action set invokes the ADF Table
component Download action.

= ADF Table component Download action.

The ADF Table component Download action downloads the current state of the
binding referenced by the ADF Table component TreeID property.

Figure 7-7 shows the Edit Action dialog in the EditCustomers-DT.x1sx workbook
where the action set invoked by the Download ribbon command in the Excel
ribbon is configured.

Figure 7-7 Action Set Downloading Data to an ADF Table Component

g g

@ - @™ x
Edit Worksheet Properties [==]]
r 1
Edit Ribbon Commands Lo |]‘
Edit Actions =5
Members: TAB1538787742 Download properties:
0| Execute query on Customers iter
il TAB1598787742.Download
2| TAB1598787742 ResizeColumns | | 4
Action Download
ComponentlD TAB1598787742
! Options No options available
4 Data
DetzilStatusMessage it{res['excel customers ribbon_download detailmessage’]
4 Design
Annotation
N] i 3 Action
The name of component methed invok
I Add VI I Bemove
5. Click OK.

7.4.2 What Happens at Runtime: How an ADF Table Component Downloads Data

The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the Download action

of the ADF Table component. When invoked, the Download action downloads all rows
from the tree binding referenced by the ADF Table component TreeID property.

Make a note of the following points when the Download action is invoked at runtime:

7-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Downloading Pending Insert and Pending Update Rows to an ADF Table Component

= If any rows are marked as changed when the Download action is invoked, the end
user is prompted to confirm the action and to continue (see Figure 7-8). If the end
user chooses No, the action and the action set are cancelled without error.

= All existing Excel rows are removed from the table in Excel.
s The status column is cleared of all messages.

= Any criteria that has been applied to the worksheet using Excel's Filter
functionality is automatically cleared prior to the upload action.

Figure 7-8 Confirmation Prompt Before Downloading Data in ADF Table

C)RACLE Edit Customers Sheet

Changed Flagged Status Name ‘Credit Rating |
Unizparts Good]
Simme Athletic Faor
Celhi Sportz Excellznt
Soccer-MN-More Foar
Dol ancl Glaae Cyrallant
Download 3

! " Do you wish te discard the pending changes?

e %]

The number of rows that the action downloads depends on the values set for the
RowLimit group of properties in the ADF Table component. For more information, see
Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads."

7.5 Downloading Pending Insert and Pending Update Rows to an ADF
Table Component

A Pending Insert row is a worksheet table row with data that, on upload, is inserted as
a new data row in the iterator. For example, if the end user creates a new row in the
table by using the Insert option in the right click context menu, the new row is treated
as a pending insert row and is inserted to the iterator when being uploaded.

A Pending Update row is a worksheet table row with data that, on upload, updates an
existing data row in the iterator. For example, if the iterator of the tree binding
contains some rows retrieved from the database and when these rows are downloaded
to the ADF table, they are treated as pending update rows. If the end user makes
changes to these rows and uploads them, the existing rows in the iterator are updated
with new values from the ADF Table row.

In most cases, rows in the iterator of the tree binding are downloaded as pending
update rows into the ADF Table. If you want some rows to be downloaded as pending
inserts, you need to set the state of these rows to STATUS_INITIALIZED. For more
information about how to set a row's state as STATUS_INITIALIZED, see the
setNewRowState method in Oracle Fusion Middleware Java API Reference for Oracle ADF
Model.

Working with ADF Desktop Integration Table-Type Components 7-11

Updating Existing Data in an ADF Table Component

Note the following differences between pending insert rows and pending update
rows:

= Pending insert rows are populated with the value of the EL expression for the
insert component that is associated with each column in the ADF Table component
(if the InsertUsesUpdate column property is set to False), while pending update
rows are populated with the value of the EL expression for the update component
that is associated with each column in the ADF Table component.

s When evaluated for pending insert rows, the EL expression
#{components.componentID.currentRowMode} returns Insert. In contrast, the
same EL expression returns Update for pending update rows.

Note that the componentID part of the EL expression
#{components.componentID.currentRowMode} references the ID of the ADF Table
component.

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

7.5.1 What Happens at Runtime: Download Action is Invoked

When the Download action is invoked, it examines the state of each row in the iterator.
Rows of state STATUS_INITIALIZED are downloaded as pending insert rows in the
table, while rows of other states are downloaded as pending update rows.

7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts

You can use STATUS_INITIALIZED rows to pre-populate values for some, or all,
attributes of the pending insert rows. As a STATUS_INITIALIZED row is not validated,
you can configure an action to populate the STATUS_INITIALIZED row partially and
insert it into the iterator before the Download action is invoked. The Download action
then treats this row as a pending insert row so that a new row, based on the
pre-populated row, can be inserted.

Note that STATUS_INITIALIZED rows are not automatically removed from the iterator
during download. You can configure another action to remove STATUS_INITIALIZED
rows after download. For example, you can configure an action set with the following
actions:

1. ADFmAction that creates STATUS_INITIALIZED rows
2. Table.Download action

3. ADFmAction that cleans up STATUS_INITIALIZED rows

7.5.3 What You May Need to Know About DownloadForinsert Action

ADF Desktop Integration also supports a table action called DownloadForInsert.
DownloadForInsert is an obsolete action and can be replaced with the Download action.
DownloadForInsert continues to work as it always has worked in previous
releases.The key difference, with respect to Download, is that DownloadForInsert only
considers rows in the iterator that are in the STATUS_INITIALIZED state.

7.6 Updating Existing Data in an ADF Table Component

This section describes how you configure an ADF Table component so that end users
can edit and upload changes to existing data rows in the table. Section 7.8, "Uploading
Changes from an ADF Table Component" describes how you can configure the ADF

7-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Updating Existing Data in an ADF Table Component

Table component so that end users can upload modified data rows.

7.6.1 How to Configure an ADF Table Component to Update Data

If you want the end user to be able to edit existing data, but want to restrict the
addition or deletion of data rows, no additional configuration is required. Make sure
that your project and the ADF Table component is configured as shown in the
following procedure.

To configure an ADF Table component to update data:
1. Open the project in JDeveloper.

2. If not present, add a Commit action binding to the page definition file that is
associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.2, "Working with Page Definition Files for an
Integrated Excel Workbook" and Section 7.2, "Page Definition Requirements for an
ADF Table Component.”

3. Open the integrated Excel workbook.

4. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

5. Make sure that the ADF Table component RowAction properties are set, as
described in Table 7-2, and shown in Figure 7-9.

Table 7-2 RowAction Properties of ADF Table Component

Property Value
InsertRowEnabled False
DeleteRowEnabled False
UpdateRowEnabled True

Figure 7-9 ADF Table RowActions Properties to Update Data

Edit Component: ADF Table 3

Edit the properties and press OK to save your changes.
2 41 |
4 Appearance -
ResizeColumnsMode UseColumnValue
4 Behavior
> BatchOptions
DisplaylUploadOptions False

4 Rowhctions
AutoConvertNewRowsEnable True
DeleteRowAction|D
Delete RowEnabled False
Failure Action|D
InsertAfterRowAction|D
InsertBefore RowAction|D
InsertRowEnabled False
Insert RowsAfterlploadEnable False
Insert TempRowAction|D
UpdateRowAction|D
UpdateRowEnabled True

> RowLimit

m

M
RowActions
The properties that govem row-wise behavior.

0K | [Cancel

Working with ADF Desktop Integration Table-Type Components 7-13

Inserting Data in an ADF Table Component

7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data

When the end user changes data in a row, ADF Desktop Integration marks the row
and an upward pointing triangle appears in a row of the _ADF_ChangedColumn column.
After updating the existing data, the end user initiates the upload process to save the
changes. For more information about the ADF Table component's upload process, see
Section 7.8, "Uploading Changes from an ADF Table Component.”

Excel uploads modified rows from the integrated workbook in batches rather than row
by row. You can configure the number of rows uploaded for each batch as well as the
actions an ADF Table component invokes when it uploads and commits a batch of
rows. For more information about batch processing, see Section 7.11, "Batch Processing
in an ADF Table Component."

For more information about the properties that you can set for the ADF Table
component, see Section A.11, "ADF Table Component Properties and Actions."

Note: Any criteria that has been applied to the worksheet using
Excel's Filter functionality is automatically cleared prior to the Upload
action.

7.7 Inserting Data in an ADF Table Component

You can configure an ADF Table component to allow end users to insert new data
rows. Once you complete this task, you may want to also configure the component to
allow end users to upload new and modified data rows, as described Section 7.8,
"Uploading Changes from an ADF Table Component.”

7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's

Operations

To commit the changes that an end user makes in an ADF Table component, you add
action bindings to the page definition file that is associated with the Excel worksheet
that hosts the ADF Table component and configure a number of ADF Table component
properties.

Before you begin:

It may be helpful to have an understanding of how to configure ADF Table component
to insert data. For more information, see Section 7.7, "Inserting Data in an ADF Table
Component."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure an ADF Table component to insert data using a view object's
operations:

1. Open the project in JDeveloper.

2. If not present, add a CreateInsert and a Commit action binding to the page
definition file that is associated with the Excel worksheet that hosts the ADF Table
component.

For more information, see Section 4.2, "Working with Page Definition Files for an
Integrated Excel Workbook" and Section 7.2, "Page Definition Requirements for an
ADF Table Component.”

7-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting Data in an ADF Table Component

3. Open the integrated Excel workbook.

4. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

5. In the Edit Component: ADF Table dialog, configure the RowActions properties of
the ADF Table component as described in Table 7-3:

Table 7-3 RowActions properties of ADF Table component

Set this property to... This value...

AutoConvertNewRowsEnable True. When True, end users can edit the rows under the ADF

d Table component or paste new data directly into the rows under
the component to convert them to rows in the ADF Table
component provided that the worksheet Protection.Mode
property is set to Off (the default value).

For more information about worksheet properties, see
Section A.15, "Worksheet Actions and Properties.”

InsertRowEnabled True

InsertBeforeRowActionID The CreateInsert action binding that the page definition file
exposes.

InsertRowsAfterUploadEna True, to upload the inserted rows again regardless of whether
bled they have been previously uploaded. By default, this property is
set to False.

The property is ignored if InsertRowEnabled is set to False.

6. Configure the BatchOptions properties of the ADF Table component as described
in Table 7—4.

Table 7-4 BatchOptions Properties of the ADF Table Component

Set this property to... This value...

CommitBatchActionID The Commit action binding that the page definition file exposes.

7. Configure the Columns property of the ADF Table component as described in
Table 7-5.

Note: ADF Desktop Integration automatically sets the appropriate
property values if you selected a tree binding when inserting the ADF
Table component, as described in Section 7.3.1, "How to Insert an ADF
Table Component." (Optional) Review and adjust the other Columns
property values as needed. For more information, see Section A.11.2,
"ADF Table Component Column Properties."

Table 7-5 Columns property of ADF Table component

Set this property to... This value...

InsertUsesUpdate True

Working with ADF Desktop Integration Table-Type Components 7-15

Uploading Changes from an ADF Table Component

Table 7-5 (Cont.) Columns property of ADF Table component

Set this property to... This value...

UpdateComponent = Set the Value field of the UpdateComponent property to the
update attribute from the page definition file. For example,
#{row.bindings.ProductId.inputValue}.

= Verify that ReadOnly property of UpdateComponent is set
appropriately. Set ReadOnly to False if you do want users to
edit the values in the column, set to True otherwise. The
default value of the ReadOnly property is False.

For more information, see Section 7.15, "Adding a
ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component.”

8. Repeat Step 7 for each column that contains data to commit during invocation of
the Upload action.

For information about ADF Table component properties, see Section A.11, "ADF
Table Component Properties and Actions."

Notes:

= If you are using a polymorphic view object and want to insert a
new row, the default CreateInsert action binding is not
sufficient. You must create a custom method that also sets the
discriminator value in the newly created row.

While creating the custom method, you must expose the custom
method as an action binding in the page definition file. The action
binding must be specified as the InsertBeforeActionId rather
than CreateInsert.

» If the InsertRowsAfterUploadEnabled property is set to False
and the end user tries to upload the inserted rows again, an error
message in the status column is displayed indicating that the row
cannot be inserted more than once.

7.8 Uploading Changes from an ADF Table Component

You configure the ADF Table component and the worksheet that hosts it so that end
user can upload changes they make to data in the ADF Table component to the Fusion
web application. To configure this functionality, you decide what user gesture or
worksheet event invokes the action set that invokes the ADF Table component's
Upload action.

The Upload action commits all successful rows even when some other rows have
failures. Use the UploadAllOrNothing action instead if you want no row changes to get
committed if one, or more, row failures occur (see Section 7.9, "Uploading Changes
from an ADF Table Component Using an Upload AllOrNothing Action"). To provide
upload options to end users in a web page from the Fusion web application that differ
from the default upload dialog, you must specify a Dialog action in the action set
before the action that invokes the ADF Table Component's Upload action. For more
information, see Section 7.8.6, "How to Create a Custom Upload Dialog."

7-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Uploading Changes from an ADF Table Component

Note: In a master-detail relationship, ADF Desktop Integration does
not support editing of the ViewLink source attributes, as the selections
in the child view object would change as a result. To prevent any
accidental editing, define the ViewLink source attributes to be
read-only, or use a model configuration that does not include a view
link between master and detail.

7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table

Component

Configure an ADF component, such as a worksheet ribbon command, to invoke an
action set that, in turn, invokes the ADF Table component Upload action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Section 7.8, "Uploading Changes from an ADF Table Component."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure an ADF component to upload changed data from an ADF Table
component:

1. Open the integrated Excel workbook.

2. Open the Edit Action dialog to configure the action set that invokes the ADF Table
component Upload action.

For more information about action sets, see Section 9.2, "Using Action Sets."

3. Add the ADF Table component Upload action to the list of actions that the action
set invokes at runtime.

Figure 7-10 shows the Edit Actions dialog in the EditCustomers-DT.x1lsx
workbook, where the action set invoked by the ribbon command labeled Upload
at runtime is configured.

Working with ADF Desktop Integration Table-Type Components 7-17

Uploading Changes from an ADF Table Component

Figure 7-10 Action Set Uploading Data from an ADF Table Component

4.
5.

Edit Worksheet Properties &=
Edit the properties and press OK to save your changes.
)24 | L
4 Behavior
» Ewvents Ensure that Customers table gets populated when workb:
> Protection
4 Ribbon Commands Ribbon Commands (2)
> [0] Download all Customers m_ #{bind
> [1] Upload all changes in Customers table L ltomer:
Edit Ribbon Commands
Members: Upload all changes in Customers table properties:
0| Download all Customers + CERFY
il Upload all changes in Customers, G2 |
» Appearance
4 .
4 SelectActionSet TAB1598787742_Upload
> ActionOptions
> Actions TAB1598787742 Upload
 Alert
Annotation
4 Status
AlowCancel True
Enabled True
Message #ires['excel customers.ribbon upload message'T}
Mode MainBarOnly
Title: #res['excel .customers ribbon.upload title T}
4 Design
Annotation Upload all changes in Customers table
D MEN191833632
P T b Behavior
Add I l Remove
oK Ca
Click OK.

If you do not want the Upload Options dialog to appear, select the cell in the Excel
worksheet that references the ADF Table component and click the Edit Properties
button in the Oracle ADF tab.

Set DisplayUploadOptions to False in the Table Properties dialog and click OK.

Note: The action set does not include a call to a commit-type action
as the ADF Table component's batch options already include calls to
Commit. For more information, see Section 7.11.1, "How to Configure
Batch Options for an ADF Table Component."

7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data

At runtime, the end user invokes the action set through whatever mechanism you
configured (ADF component, worksheet ribbon command, or worksheet event). This
triggers the following sequence of events:

1.

If the ADF Table component contains dynamic columns, ADF Desktop Integration
verifies whether the dynamic columns that were expanded the last time the ADF
Table component's Download action was invoked are still present in the Fusion web
application. If the columns are not present, ADF Desktop Integration prompts the
end user to determine whether to continue upload process. If the end user decides
not to continue, ADF Desktop Integration returns an abort code to the executing
action set.

If the ADF Table component contains no pending changes to upload, the ADF
Table component's Upload action returns a success code to the executing action set.

7-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Uploading Changes from an ADF Table Component

3. The ADF Table component uploads modified rows in batches, rather than row by
row. You can configure the batch options using the BatchOptions group of
properties. For more information about batch options for the ADF Table
component, see Section 7.11, "Batch Processing in an ADF Table Component."

Each row of a batch is processed in the following way, and the process continues
until all changed rows of each batch are processed:

a.
b.

C.

For inserted rows, invoke the InsertBeforeRowActionID action, if specified.
For edited rows, position the tree binding iterator to the correct row.

Set attributes from the worksheet into the model, including any cached row
attribute values.

For edited rows, invoke the UpdateRowActionID action; and for inserted rows,
invoke the InsertAfterRowActionID action, if specified.

For each uploaded row, displays a status message indicating success or failure
in the Status column. If a row fails to upload, the Status column displays a
message (for example, Update Failed). More detailed information about the
failure is shown in the Status Viewer when the end user clicks in any cell on
the row with the failure. For more information, see Section 13.2, "Using the
Status Viewer to Report Error Messages to End Users."

For more information about the Status column, see Section 7.12, "Special
Columns in the ADF Table Component."

For any row failure, the ADF Table component verifies the value of
AbortOnFail. If AbortOnFail is set to False, it continues the upload process.
Otherwise the component stops uploading data and invokes the Commit
action.

4. While uploading data, the ADF Table component returns a success or failure code
to the executing action set based on the following;:

If the ADF Table component commits all batches successfully, it returns the
success status to the executing action set. If Table.DisplayUploadOptions
property is set to True and the end user has selected the Download all rows
after successful upload option in Upload Options dialog, the ADF Table
component then downloads all rows from the Fusion web application.

If the ADF Table component did not commit all batches successfully, the action
set invokes the action specified by the RowActions.FailureActionID property,
if an action is specified for this property. ADF Desktop Integration returns a
failure code to the action set.

If the Table.DisplayUploadOptions property is set to True and the On failure,
continue to upload subsequent rows checkbox is selected in the Upload Options
dialog, the Upload action returns a success code to the action set even if some
individual rows encountered validation failures.

Note: When the Upload action is invoked on an ADF Table that has
an Excel filter applied, Excel filter's criteria is cleared to show any
hidden Excel worksheet rows, but the filter is not removed.

Working with ADF Desktop Integration Table-Type Components 7-19

Uploading Changes from an ADF Table Component

7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During

Upload

At runtime, if an ADF Table component column's ReadOnly property evaluates to True,
the ADF Table component's Upload action ignores all changes in the column's cells.

For more information about change tracking, see Section 7.22, "Evaluating EL
Expressions for ReadOnly Properties."

7.8.4 What Happens at Runtime: How Row Errors Are Handled During Upload

When the ADF Table component starts uploading data, ADF Desktop Integration
creates a DataControlFrame savepoint before initiating the upload process (once per
batch of uploaded rows). In case of any error, ADF Desktop Integration reverts back to
the savepoint, ensuring the integrity of the server-side state of the Fusion web
application.

For each row in a batch of uploaded rows, ADF Desktop Integration does the
following:

1. Invokes configured actions, applies row attribute value changes, and performs
data validation.

2. In case of any error, reverts back to the savepoint state.

Note: A second iteration is performed, if required, to re-upload any
successfully uploaded rows whose changes were reverted due to a
subsequent upload error.

For more information about savepoints, see the "Using Trees to Display Master-Detail
Objects" section in Fusion Developer’s Guide for Oracle Application Development
Framework.

7.8.5 What You May Need to Know About Upload Options

At runtime, when the end user uploads data from the integrated Excel workbook to
the Fusion web application, ADF Desktop Integration continues to upload subsequent
data rows in case of any row failure, and does not refresh or download data of all rows
after a successful upload.

If required, you can enable or disable the Upload Options dialog, as shown in
Figure 7-11, by setting the Table.DisplayUploadOptions property. When
DisplayUploadOptions is set to True, ADF Desktop Integration presents the Upload
Options dialog.

Figure 7-11 Default Upload Dialog
Upload Options ﬁ

| On failure, continue to upload subsequent rows

Download all rows after successful upload

oK | [Cancel

7-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Uploading Changes from an ADF Table Component

Note: The Table.DisplayUploadOptions property is set to True by
default in ADF Table components of integrated Excel workbooks
created with versions of ADF Desktop Integration that did not include
Table.DisplayUploadOptions property.

Using the Upload Options dialog, end users can enable or disable the following
options:

= Continue to upload subsequent rows on failure. This is the default behavior.

When disabled, ADF Desktop Integration aborts the upload process in case of any
row failure.

= Download all data rows after a successful upload. This behavior is disabled by
default.

When enabled, ADF Desktop Integration downloads the latest data from the view
object cache after the successful upload.

Note: If the Download all data rows after a successful upload
checkbox is selected, ADF Desktop Integration downloads the data
from the view object cache, not from the database.

Therefore, if another user happens to update the same rows that the
end user has updated, the end user will not see the updates made by
the other user after downloading data rows.

If the end user clicks Cancel in the Upload Options dialog, ADF Desktop Integration
returns an abort code to the executing action set. If the end user clicks OK, the action
set continues executing with the options specified in the dialog for the upload
operation.

You may also create a custom upload dialog. For more information, see Section 7.8.6,
"How to Create a Custom Upload Dialog."

7.8.6 How to Create a Custom Upload Dialog

You display a page from Fusion web application that offers end users different options
to those presented in the default upload dialog. You add a Dialog action before the
action that invokes the ADF Table component's Upload action in the action set.

Note: You can prevent the appearance of the standard Upload
Options dialog by setting the DisplayUploadOptions property to
False, as described in Section 7.8.5, "What You May Need to Know
About Upload Options."

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Section 7.8, "Uploading Changes from an ADF Table Component" and

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

Working with ADF Desktop Integration Table-Type Components 7-21

Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action

To create a custom upload dialog:

1.

Create a page in the JDeveloper project where you develop the Fusion web
application. For information on how to create this page, see Section 9.4,
"Displaying Web Pages from a Fusion Web Application."

In addition to the ADFdi_CloseWindow element (for example, a span element)
described in Section 9.4, "Displaying Web Pages from a Fusion Web Application,"
the page that you create in Step 1 must include the elements described in

Table 7-6.

Table 7-6 Span Elements Required for Custom Upload

Name Description
ADFdi_ If you set this element to True, the action set stops uploading if it
AbortUploadOnFailure encounters a failure. If the element references False, the action

set attempts to upload all rows and indicates if each row
succeeded or failed to upload.

ADFdi_ Set this element to True so the action set downloads data from
DownLoadAfterUpload the Fusion web application to the ADF Table component after

the action set uploads modified data.

Note: The page you create must include both elements to prevent
ADF Desktop Integration presenting the default upload dialog to end
users.

Add a Dialog action to invoke the page you created in Step 1 before the action in
the action set that invokes the ADF Table component's Upload action.

For more information about displaying pages from a Fusion web application, see
Section 9.4, "Displaying Web Pages from a Fusion Web Application."

7.8.7 What Happens at Runtime: Custom Upload Dialog

When a custom dialog appears, the page from the Fusion web application that you
configure the Dialog action in the action set to display appears instead of the default
upload dialog.

Note: If there is no server connectivity when the end user tries to
upload data, the end user gets an error when the Dialog action fails to
find the custom upload page. ADF Desktop Integration does not
revert to the standard dialog when server connectivity is not available.

For more information about displaying a page from the Fusion web application, see
Section 9.4, "Displaying Web Pages from a Fusion Web Application." Otherwise, the
runtime behavior of the action set that you configure to upload data is as described in
Section 7.8.2, "What Happens at Runtime: How the ADF Table Component Uploads
Data."

7.9 Uploading Changes from an ADF Table Component Using an
UploadAliOrNothing Action

ADF Desktop Integration commits all row changes that are successfully uploaded
during a Table.Upload operation, even when one or more rows has failures. For

7-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action

example, if 100 rows are uploaded and only three rows contain failures, 97 rows are
still committed to the database. For more information, see Section 7.8, "Uploading
Changes from an ADF Table Component."

Using the UploadAllOrNothing action, you can configure the upload process to
commit all changed rows only if all rows are successfully uploaded. For example, if
100 rows are uploaded, and if any row fails, no rows are committed to the database.

Uploading a large number of changed worksheet rows with the UploadAl1l0rNothing
action can result in significant memory consumption on the application server. This is
because the UploadAllOrNothing action commits only after all rows are processed
successfully. For this reason, the UploadAl10rNothing action is not intended for use
with large data sets. You can limit the amount of data that the UploadAl1l0rNothing
action can upload using the UploadAl10rNothing.ChangedDataLimit servlet
parameter. For more information about the UploadAllOrNothing.ChangedDataLimit
servlet parameter, see Section 7.9.3, "Limiting the Amount of Changed Data That Can
Be Uploaded With Upload AllOrNothing Action."

7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action

Configure an ADF component, such as a worksheet ribbon command, to invoke an
action set that, in turn, invokes the ADF Table component UploadAllOrNothing action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Section 7.9, "Uploading Changes from an ADF Table Component Using an

Upload AllOrNothing Action."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure an ADF component to use UploadAllOrNothing action:
1. Open the integrated Excel workbook.

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command that the end user uses to invoke the action set at runtime. For more
information about adding a ribbon command in a worksheet, see Section 9.3.2,
"How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab."

3. Open the Edit Action dialog to configure the action set that invokes the ADF Table
component actions.

For more information about action sets, see Section 9.2, "Using Action Sets."

4. Add the ADF Table component UploadAllOrNothing action to the list of actions
that the action set invokes at runtime.

5. Click OK.

7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked

If you have chosen the UploadAll0rNothing action, ADF Desktop Integration commits
row changes only when all rows are uploaded successfully.

Working with ADF Desktop Integration Table-Type Components 7-23

Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action

Note: The UploadAllOrNothing action uploads data in the same way
as the Upload action. For more information about how data gets
uploaded during Upload as well as UploadAllOrNothing, see

Section 7.8.2, "What Happens at Runtime: How the ADF Table
Component Uploads Data."

During the UploadAll0rNothing action, ADF Desktop Integration uploads all changed
worksheet rows prior to invoking the action specified by CommitBatchActionID. If one,
or more, row-level failures occur, the action specified by FailureActionID is invoked
and the action specified by CommitBatchActionID is not invoked.

In the event of a failure, all values in the Changed column remain unchanged. The
Status column displays failure messages for the rows that contain errors, but remains
empty for all rows without errors. When all rows successfully commit, the Changed
column values are cleared and the Status column for the uploaded rows reports
success.

Notes:

s The UploadAllOrNothing action is only supported for
DataControls that support database transactions.

= If CommitBatchActionID is not configured and an action set
contains the UploadAll0rNothing action, a validation error is
reported.

s The UploadAllOrNothing action treats all update and insert rows
as a single batch. This means that the action bindings specified by
the ADF Table component RowData.BatchOption's
StartBatchActionID and CommitBatchActionID properties get
invoked one time per operation.

7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With
UploadAllOrNothing Action

Uploading a large number of changed worksheet rows with the UploadAllOrNothing
action can result in significant memory consumption on the application server. For this
reason, it is not intended for use with large data sets. To prevent end users from
uploading too much data during the UploadAllOrNothing action, set the
UploadAllOrNothing.ChangedDataLimit servlet parameter (specified in Kb) to limit
the total amount of changed data that can get uploaded. If no parameter value is
specified, a default limit of 10,240 Kb is used. If you specify a value for this servlet
parameter larger than the default, performance and scalability testing and analysis
should be performed to measure the impact on the application server.

If the total amount of changed data uploaded exceeds the
UploadAllOrNothing.ChangedDataLimit value, an error message is reported to the
end user, and the UploadAllOrNothing action is aborted. Note that the action specified
by Table.RowActions.FailureActionID is invoked when the changed data limit is
exceeded.

To alter the limit for the amount of changed data that can be uploaded:
1. Open the web.xnl file of your Fusion web application.

7-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

Deleting ADF Table Component Rows in the Fusion Web Application

2. Add the UploadAllOrNothing.ChangedDataLlimit servlet parameter, as described
in Table 7-7.

Table 7-7 Limiting the Amount of Changed Data That Can be Uploaded

Property Value

Name Enter the name of the servlet parameter as follows

UploadAllOrNothing.ChangedDatalLimit

Value Specify the total amount of changed data in Kb that can be
uploaded.

3. Save the web.xml file.
4. Rebuild and restart your Fusion web application.

Example 7-1 shows the entry for UploadAll0rNothing.ChangedDataLimit in the
Summit sample application for ADF Desktop Integration's web.xm1 file.

Example 7-1 web.xml File With UploadAllOrNothing.ChangedDatalLimit Serviet Parameter

<servlet>

<servlet-name>adfdiRemote</servlet-name>
<servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-class>

<init-param>

<param-name>UploadAl10rNothing.ChangedDataLimit</param-name>
<param-value>10240</param-value>

</init-param>

</servlet>

7.10 Deleting ADF Table Component Rows in the Fusion Web Application

The ADF Table component exposes an action (DeleteFlaggedRows) that, when
invoked, deletes the rows in the Fusion web application that correspond to the flagged
rows in the ADF Table component. A flagged row in an ADF Table component is a row
where the end user has double-clicked or typed a character in the cell of the _ADF_
FlagColumn column as described in Section 7.11, "Batch Processing in an ADF Table
Component." The _ADF_FlagColumn column must be present in the ADF Table
component to configure it to delete rows in the Fusion web application.

In addition, the page definition file that you associate with the worksheet that hosts
the ADF Table component must expose a Delete action binding.

7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web

Application

To delete rows from an ADF Table component, you must add the Delete action
binding to the page definition file, configure the RowActions group of ADF Table
component properties, and configure an action set to invoke the DeleteFlaggedRows
action.

Before you begin:

It may be helpful to have an understanding of how to configure ADF Table component
to delete data rows in Fusion web application. For more information, see Section 7.10,
"Deleting ADF Table Component Rows in the Fusion Web Application."

Working with ADF Desktop Integration Table-Type Components 7-25

Deleting ADF Table Component Rows in the Fusion Web Application

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure an ADF Table component to delete rows in a Fusion web
application:
1. Open your Fusion web application in JDeveloper.

2. If not present, add a Delete action binding to the page definition file that is
associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.2, "Working with Page Definition Files for an
Integrated Excel Workbook."

3. Open the property inspector for the ADF Table component and set values for the
RowActions group of properties as described in Table 7-8.

Table 7-8 RowActions Properties of ADF Table component

Set this property... To...

DeleteRowActionID The Delete action binding that the page definition file exposes.
The specified Delete action binding is expected to delete the
current row in the iterator.

DeleteRowEnabled True to enable the ADF Table component to delete rows in the
Fusion web application.

False is the default value.

For more information about ADF Table component properties, see Section A.11,
"ADF Table Component Properties and Actions."

4. Click OK.
5. Open the integrated Excel workbook.

6. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command that the end user uses to invoke the action set at runtime. For more
information about adding a ribbon command in a worksheet, see Section 9.3.2,
"How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab."

7. Add the ADF Table component's DeleteFlaggedRows action to the list of actions
that the action set invokes at runtime.

For more information about invoking action sets, see Section 9.2, "Using Action
Sets."

8. (Optional) Set the DeleteFlaggedRows action's Options.AbortOnFailure property
to False if you want the action set to continue processing even if it encounters
failures. The default value is True.

9. Click OK.

7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a
Fusion Web Application

The end user flags rows to delete, as described in Section 7.12.1, "Row Flagging in an
ADF Table Component." The end user then invokes the action set. The following
sequence of events occurs:

1. If specified, the action binding referenced by the
BatchOptions.StartBatchActionID property is invoked.

7-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

Deleting ADF Table Component Rows in the Fusion Web Application

Failures from this step are treated as errors. An error stops the action set invoking.
It also returns the error condition to the action set. If an action binding is specified
for the ActionSet.FailureActionID property, the action set invokes the specified
action binding.

For more information about configuring batch options, see Section 7.11, "Batch
Processing in an ADF Table Component.”

For each flagged row in the ADF Table component, the action set positions the tree
binding iterator to the correct row, then it invokes the delete-type action binding
specified by RowActions.DeleteRowActionID.

Note: Rows inserted since the last invocation of the ADF Table
component's Download action but not uploaded to the Fusion web
application are ignored even if flagged for deletion.

For each flagged row in the ADF Table component, if the delete-type action
binding specified by RowActions.DeleteRowActionID fails, the next event depends
on the value you specified for the DeleteFlaggedRows action's
Options.AbortOnFailure property. If False, the action set attempts to delete all
flagged rows without stopping at the first failure it encounters. If the action set
fails to delete a flagged row, that row:

= Remains in the ADF Table component
s Ismarked as Failed in the ADF Table component's Status column

= Isskipped while the action set commits the batch of successfully deleted
flagged rows

= Remains flagged in the Flagged column cell

If the DeleteFlaggedRows action's Options.AbortOnFailure property is set to True
(the default value), the ADF Table component stops invocation of the
DeleteFlaggedRows action.

If an action binding is specified for the BatchOptions.CommitBatchActionID
property, the action set invokes it. If this step fails, the action set stops processing
batches. If no failures occur, the action set processes the next batch by invoking the
action binding specified by the BatchOptions.StartBatchActionID property, and
so on until the action set processes all batches.

If the action set processes all batches successfully, it invokes the action binding
specified by its ActionOptions. SuccessActionID property if an action binding is
specified for this property. It then removes the rows deleted in the Fusion web
application by invocation of the delete-type action binding specified by
RowActions.DeleteRowActionID from the worksheet and returns a success code to
the action set.

If failures occur while the action set processes the batches, the action set invokes
the action binding specified by its ActionOptions.FailureActionID property if an
action binding is specified for this property. This action binding returns a failure
code to the action set.

If an unexpected exception occurs while the action set invokes its actions, an error
code is returned to the action set. All relevant error messages are available in the
Status Viewer. For more information, see Section 13.2, "Using the Status Viewer to
Report Error Messages to End Users."

Working with ADF Desktop Integration Table-Type Components 7-27

Batch Processing in an ADF Table Component

Note: When the DeleteFlaggedRows action is invoked on an ADF
Table that has an Excel filter applied, Excel filter's criteria is cleared to
show any hidden Excel worksheet rows, but the filter is not removed.

7.11 Batch Processing in an ADF Table Component

The ADF Table component's Upload and DeleteFlaggedRows actions both commit
changes in batches rather than row-by-row in order to optimize performance and
scalability. You can configure batch option properties that determine the size of batches
and what actions the ADF Table component invokes when it uploads a batch.

7.11.1 How to Configure Batch Options for an ADF Table Component

The ADF Table component has a group of properties (BatchOptions) that allow you to
configure how the ADF Table component manages batches of rows. Information about
these properties can be found in Section A.11, "ADF Table Component Properties and
Actions."

Before you begin:

It may be helpful to have an understanding of how ADF Table components upload
data, delete data, and batch process both tasks. For more information, see Section 7.8.2,
"What Happens at Runtime: How the ADF Table Component Uploads Data,"

Section 7.10.2, "What Happens at Runtime: How the ADF Table Component Deletes
Rows in a Fusion Web Application," and Section 7.11, "Batch Processing in an ADF
Table Component."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure batch options for an ADF Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Set values for the BatchOptions group of properties in the property inspector that
appears.

Table 7-9 RowData.BatchOptions Properties

Set this property... To...

BatchSize Specify how many rows to process before an ADF Table
component action (Upload or DeleteFlaggedRows) invokes the
action binding specified by CommitBatchActionID. Any value
other than a positive integer results in all rows being processed
in a single batch. The default value is 100 rows.

CommitBatchActionID The action binding to invoke after the ADF Table component
processes each batch. Typically, this is the Commit action binding.

7-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Special Columns in the ADF Table Component

Table 7-9 (Cont.) RowData.BatchOptions Properties

Set this property... To...

LimitBatchSize True

When True, the ADF Table component processes rows in batches
determined by the value of BatchSize. True is the default value.

When False, the ADF Table component uploads all modified
rows in a single batch.

Note that it is not sufficient to set this property to False if you
want the ADF Table component to upload all rows or no rows in
the case of failure. Instead, you need to invoke the
UploadAllOrNothing action, as described in Section 7.9,
"Uploading Changes from an ADF Table Component Using an
Upload AllOrNothing Action."

StartBatchActionID (Optional) Specify the action binding to invoke at the beginning
of each batch.

4. Click OK.

Note that a failure at the entity-level is not considered a batch failure. A failure at the
commit level (for example, a wrong value for a foreign key attribute) is considered a
batch failure.

7.11.2 Troubleshooting Errors While Uploading Data

End users may see reports of errors under certain circumstances while uploading data
from ADF Table components. After posting changes from a batch, ADF Desktop
Integration runs the action specified by the CommitBatchActionID. Rows from a batch
that experiences a failure executing the action specified by the CommitBatchActionID
display the details of the failure in the Status Viewer. Any rows in the batch that had
changes posted successfully on the server before the failure show Batch Failedin the
Status column.

Errors that occur during the commit action might continue to be reported on
subsequent batch commit actions, even though subsequent batches of records do not
contain errors. This can happen when any pending model updates are not
automatically reverted when the CommitBatchActionID action fails. To avoid any such
error, you must explicitly revert pending model updates that exist after a commit
failure. For example, you could create a custom action for the CommitBatchActionID
that first attempts to commit the pending model changes. However, if an exception
occurs during commit, the custom method should first roll back the pending model
changes, so that any subsequent batch commit attempts can succeed.

Note: It is important that the commit exception gets thrown again
after rollback so that the commit errors are reported as expected on the
client.

7.12 Special Columns in the ADF Table Component

By default, the ADF Table component includes some columns when you insert an ADF
Table component in a worksheet. You can retain or remove these columns, if required.
The following list describes the columns and the purpose they serve:

m _ADF_ChangedColumn

Working with ADF Desktop Integration Table-Type Components 7-29

Special Columns in the ADF Table Component

The cells in this column track changes to the rows in the ADF Table component. If
a change has been made to data in a row of the ADF Table component since
download or the last successful upload, a character that resembles an upward
pointing arrow appears in the corresponding cell of the _ADF_ChangedColumn
column. This character toggles (appears or disappears) when a user double-clicks
a cell in this column. Figure 7-12 shows an example.

Figure 7-12 Changed Column in an ADF Table Component

| C)éACl_E Edit All In;fentnr\,f

Changed_| Flagged [Status - Product

411

410

Note: If the end user does not want the ADF Table component's
Upload action to upload changes in the rows marked by this column,
the user must clear the entry that appears in the corresponding cell.

When an ADF Table component invokes its Upload action, it uploads all rows with
non-empty cells in the _ADF_ChangedColumn column. For more information, see
Section 7.8, "Uploading Changes from an ADF Table Component."

m _ADF FlagColumn

When the end user double-clicks a cell in this column, the corresponding row is
flagged for flagged-row processing. A solid circle character appears to indicate
that the row is flagged for flagged-row processing. For more information about the
use of this column, see Section 7.12.1, "Row Flagging in an ADF Table
Component."

Note: By default, the solid circle character indicates a row flagged for
flagged-row processing. However, any nonempty cell in a _ADF_
FlagColumn flags the corresponding row for flagged-row processing.

m _ADF StatusColumn

This column reports the results of invocation of ADF Table component actions,
such as DeleteFlaggedRows and Upload.

A message appears in the cell of the _ADF_StatusColumn to indicate the result of
the invocation for the corresponding row. If the end user invokes a
DoubleClickActionSet defined in an ADF Table column and an error occurs, the
errors are also reported in the Status column of the corresponding row. Figure 7-13
shows an example of a Status column message for a row where an update failed.
More detailed information about status appears in the Status Viewer, as described
in Section 13.2, "Using the Status Viewer to Report Error Messages to End Users."

7-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

Special Columns in the ADF Table Component

Figure 7-13 Status Column in an ADF Table Component

ORACLE Edit Customers She

Changed Flagged Status Ni
S
o

Update failed

m _ADF_RowKeyColumn

This column, also referred to as the Key column, contains important information
about the ADF Table component used by ADF Desktop Integration at runtime. The
column appears both at runtime and design time. Do not remove the Key column
because it is required for the proper functioning of the ADF Table component. You
can configure its appearance-related properties.

For more information about the _ADF_RowKeyColumn, see Section 7.13,
"Configuring ADF Table Component Key Column."

The ADF Table component treats the properties of the _ADF_ChangedColumn, _ADF_
FlagColumn, ADF_RowKeyColumn, and _ADF_StatusColumn columns differently from
the properties of other columns that it references. It ignores the values set for
properties such as InsertComponent, InsertUsesUpdate, and UpdateComponent unless
it invokes the DisplayRowErrors action described in Table A-13. It reads the values for
properties related to style and appearance, for example CellStyleName and
HeaderStyleName.

7.12.1 Row Flagging in an ADF Table Component

By default, the ADF Table component includes a column, _ADF_FlagColumn, that
facilitates the selection of rows for flagged-row processing. Double-clicking a cell of
the _ADF_FlagColumn column flags the corresponding row for processing by actions
invoked by a component action.

When the end user double clicks a cell of the _ADF_FlagColumn column, a solid circle
appears, or disappears, in the cell to indicate that the row is flagged, or not.
Figure 7-14 shows an example of a flagged column.

Figure 7-14 Flagged Column in ADF Table Component

) OéACl_é Edit All Inventory

Changed_ | Flagged [Status Pra

Note: By default, the solid circle character indicates a row flagged for
flagged-row processing. However, any nonempty cell in a _ADF_
FlagColumn column flags the corresponding row for flagged-row
processing.

Working with ADF Desktop Integration Table-Type Components 7-31

Configuring ADF Table Component Key Column

The following component actions can be invoked on flagged rows:
m DeleteFlaggedRows
s DownloadFlaggedRows

You can use the FlagAl1lRows component action to flag all rows, and the
UnflagAllRows component action to unflag all rows of the ADF Table component.

Notes:

s The ADF Table component's DownloadFlaggedRows action does
not support changes in table column structure after the last
invocation of the Download or DownloadForInsert action. The
table column structure usually changes if you are using dynamic
columns, or if the table contains columns with complex
expressions in the Visible property.

s The DownloadFlaggedRows action is not applicable to inserted
rows.

Use of these component actions is dependent on the appearance of the _ADF_
FlagColumn column in the ADF Table component. If you remove the _ADF_FlagColumn
column from the ADF Table component, you cannot invoke any of these component
actions. For more information about these component actions, see Section A.11.3, "ADF
Table Component Actions."

At runtime, the end user can invoke any of the previously listed component actions
from an action set. The invoked component action processes all flagged rows. For
example, it downloads or deletes all flagged rows. For more information about
configuring an action set to invoke a component action, see Section 9.2.2, "How to
Invoke Component Actions in an Action Set."

7.13 Configuring ADF Table Component Key Column

When you add ADF Table to your integrated Excel workbook, the Key column
(column ID: _ADF_RowKeyColumn) appears automatically at design time. The Key
column contains important information that is used by ADF Desktop Integration for
proper functioning of the table. Note that you must not remove the Key column at
runtime.

7.13.1 How to Configure the Key Column

You can configure the Key column's position, style properties, and header label. By
default, the Key Cell style is applied to it.

Before you begin:

It may be helpful to have an understanding of the Key column in the ADF Table
component. For more information, see Section 7.13, "Configuring ADF Table
Component Key Column."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

7-32 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring ADF Table Component Key Column

To configure the Key column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. Select the column with ID as _ADF_RowKeyColumn.

5. Change the column properties as desired, but do not change the following
properties:

s DynamicColumn

n InsertComponent
m InsertUsesUpdate
s UpdateComponent
n ID

s Visible

6. If desired, change the position of the column using the Up and Down arrow keys
and the values of properties that determine the appearance of the column (Label,
Tooltip, and Style).

7. Click OK to close Edit Columns dialog.
8. Click OK to close the Edit Component: ADF Table dialog.

7.13.2 How to Manually Add the Key Column At Design Time

If you are using the integrated Excel workbook prepared and configured using an
earlier version of ADF Desktop Integration, the Key column will not be available at
design time. It will appear only at runtime. To configure the Key column properties,
you can add it in the workbook at design time.

Before you begin:

It may be helpful to have an understanding of the Key column in the ADF Table
component. For more information, see Section 7.13, "Configuring ADF Table
Component Key Column."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To manually add the Key column at design time:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Add anew column in the ADF Table, and specify the properties as described in
Table 7-10. For more information about adding a column, see Section 7.3.2, "How
to Add a Column in an ADF Table Component."

Working with ADF Desktop Integration Table-Type Components 7-33

Adding a Dynamic Column to Your ADF Table Component

Table 7-10 Key Column Properties

Set this property... To ...

CellStyleName Key Cell

HeaderStyleName Column Header

DynamicColumn False

HeaderLabel #{_ADFDIres [COMPONENTS_TABLE_ROWKEY_COL_LABEL]}
D _ADF_RowKeyColumn

InsertUsesUpdate True

UpdateComponent OutputText

The Value property must be empty.

Visible True

If desired, change the position of the column using the Up and Down arrow keys
and the values of properties that determine the appearance of the column (Label,
Tooltip, and Style).

4. Click OK.

Note: You must specify the ID property of the new column as _ADF_
RowKeyColumn; otherwise, the column will not be considered to be a
Key column, and another Key column will automatically appear at
runtime.

7.14 Adding a Dynamic Column to Your ADF Table Component

You can add dynamic columns to an ADF Table component so that the ADF Table
component expands or contracts at runtime depending on the available attributes
returned by the view object. The DynamicColumn property of the Columns group in the
TableColumn array controls this behavior. To make a column dynamic, set the
DynamicColumn property to True. A dynamic column in the TableColumn array is a
column that is bound to a tree binding or a tree node binding whose attribute names
are not known at design time. A dynamic column can expand to more than a single
worksheet column at runtime.

The ADF Table component's dynamic column supports the following subcomponent
types:
= ModelDrivenColumnComponent

s Input Text
s Output Text

Note: ADF Desktop Integration does not support the subcomponent
type TreeNodeList in a dynamic column.

Support for Model-Driven List of Values

You can also configure a dynamic column to support the List of Values subcomponent
where the subcomponent type is determined from model configuration at runtime. At
design time, specify the subcomponent type as ModelDrivenColumnComponent for the
UpdateComponent or InsertComponent properties. At runtime, during dynamic column

7-34 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a Dynamic Column to Your ADF Table Component

expansion, the model-driven runtime component is determined before caching the list
of values. The remote servlet allows the client to retrieve Model configuration,
allowing the client to choose the desired column subcomponent type. For more
information, see Section 7.15, "Adding a ModelDrivenColumnComponent
Subcomponent to Your ADF Table Component" and Section 8.3, "Creating a List of
Values in an ADF Table Component Column."

Note: In cases where the ADF Table component uses a tree binding
containing multiple <nodeDefinition> elements, model-driven lists
used in dynamic columns must have unique names across all nodes.

7.14.1 How to Configure a Dynamic Column

You configure a dynamic column by specifying an EL expression with the following
format for the Value property of the component specified by the ADF Table
component column's InsertComponent property as a subcomponent:

#{bindings. TreeID. [TreeNodeID] .AttributeNamePrefix*.inputValue}

or:

#{bindings. TreeID.AttributeNamePrefix*.inputValue}

where:
= TreelDis the ID of the tree binding used by the ADF Table component

= TreeNodelD is an optional value that specifies the tree node binding ID. If you omit
this value, all matching attributes from the tree binding display regardless of
which tree node binding the attribute belongs to.

= AttributeNamePrefix identifies a subset of attributes that exist within the tree
binding's underlying iterator. If you do not specify a value for
AttributeNamePrefix, all attributes for the tree binding or tree binding node are
returned. Always use the * character.

Note: While adding a dynamic column, ensure that tree node
attribute names are not specified in the page definition file. At
runtime, the tree node object returns all attribute names from the
underlying iterator. If there are attribute names specified in the page
definition file, the tree node object limits the list of available attribute
names based on that list.

The following example returns all attributes that begin with the name "period" in the
model . EmpView node of the EmpTree binding;:

#{bindings.EmpTree. [model .EmpView] .period*.inputValue}

Support for View Objects with Declarative SQL Mode

To support view objects that are configured with declarative SQL mode and
customized at runtime, expose a tree binding in the page definition file that has no
attributes defined. For example:

<tree IterBinding="DeclSQLModeIterator" id="DeclSQLModeTree">
<nodeDefinition Name="DeclSQLModeTreeNode" />
</tree>

Working with ADF Desktop Integration Table-Type Components 7-35

Adding a Dynamic Column to Your ADF Table Component

At runtime, the tree binding returns the selected attributes from the underlying
declarative SQL mode view object to the integrated Excel worksheet.

7.14.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic

Column

When the ADF Table component's Download or DownloadForInsert action is invoked,
the ADF Table component automatically updates the dynamic columns so that they
contain an up-to-date set of matching attributes. For each invocation of Download, ADF
Desktop Integration requires that all rows must have the same set of attributes for the
dynamic column. It may generate errors if the set of attributes changes from row to
row during Download.

If a dynamic column supports both Insert and Update operations, you should specify
the same EL expression for the Value properties of the dynamic column's
InsertComponent and UpdateComponent subcomponents. At runtime, the ADF Table
component expands to include a dynamic column that displays the value of the
attribute binding returned by the EL expression.

Typically the set of matching attributes does not change between invocation of the
ADF Table component's Download and Upload actions. However, if previously
downloaded attributes no longer exist in the tree binding when the ADF Table
component invokes the Upload action, the integrated Excel workbook prompts the end
user to determine if the end user wants to continue to upload data. For information
about how to avoid the scenario just described (downloaded attributes no longer exist
in the tree binding), see Chapter 16, "Using an Integrated Excel Workbook Across
Multiple Web Sessions."

Note: The ADF Table component ignores the value of a column's
Visible property when you configure a column to be dynamic. For
more information about ADF Table component column properties, see
Table A-12.

7.14.3 How to Specify Header Labels for Dynamic Columns

Use the following syntax to write EL expressions for the HeaderLabel property of a
dynamic column:

#{bindings.TreelID. [TreeNodeID] .hints.AttributeNamePrefix*.label}

or:

#{bindings.TreelID.hints.AttributeNamePrefix*.label}

Specify the same tree binding ID, tree node binding ID, and attribute name prefix
values in the HeaderLabel property of the dynamic column as the values you specify
for the Value properties of the dynamic column's InsertComponent and
UpdateComponent if the dynamic column supports Insert and Update operations.

If you want the mandatory columns, where the end user must enter a value, to be
marked with a character or a string, you must configure the HeaderLabel property.
Use the following syntax to write EL expression to add a character or string to all
mandatory columns:

=IF (#{bindings. TreeID.[TreeNodeID].hints.*.mandatory}, "<prefix for_
mandatory_cols>", "") & "#{bindings.TreeID.[TreeNodeID].hints.*.label}"

7-36 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component

For example, the following EL expression adds an asterisk (*) character to the
mandatory columns label:

=IF (#{bindings.MyTree. [myapp.model.MyChildNode] .hints.* .mandatory}, "* ",
"") & "#{bindings.MyTree. [myapp.model.MyChildNode] .hints.*.label}"

7.14.4 How to Specify Styles for Dynamic Columns

If the same style can be applied for all expanded columns, specify the literal style
name for the CellStyleName property of a dynamic column.

However, if different styles are needed for different expanded columns, an EL
expression must be specified for the Cel1StyleName property of a dynamic column.

You can specify different styles for each attribute using a custom attribute property, for
example, adfdiCellStyle. The following syntax would be used for the Cel1StyleName
EL expression:

#{bindings.TreelD. [TreeNodeID] .hints.*.adfdiCellStyle}

For more information about custom attribute properties, see Section 10.8, "Using ADF
Desktop Integration EL-based Properties with Custom Attribute Properties."

Alternatively, you can specify different styles for each attribute using more complex
EL expressions to compute the style name.

In the following example, the MyDateStyle style is applied to all date columns, and
MyDefaultStyle is applied to other data type columns:

=IF ("#{bindings.MyTree. [myapp.model .MyChildNode] .hints.*.dataType}"="date"
, "MyDateStyle", "MyDefaultStyle")

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component

The ModelDrivenColumnComponent is the default subcomponent when you insert an
ADF Table component. The column subcomponent type is determined at runtime by
the column's attribute Control Type hint specified on the server.

At design time for a column, specify the subcomponent type as
ModelDrivenColumnComponent for the UpdateComponent or InsertComponent
properties. At runtime, if there is a model-driven list associated with the attribute, then
the column uses a dropdown list containing the model-driven list items.

Working with ADF Desktop Integration Table-Type Components 7-37

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

Notes:

= To use the (optional) date picker for a model-driven column with
a date attribute, set the
Compatibility.TableComponents.ModelDrivenColumns.DatePick
erEnabled property to True. For more information, see
Section A.16, "ADF Desktop Integration Compatibility Properties."

s If there is no model-driven list associated with the attribute, or if
any non-list-based control type is specified, then the column uses
an Input Text subcomponent. If there is a model-driven list whose
control type is combo_lov, then the column uses an Input Text
subcomponent.

= Ina dependent list of values implementation, ADF Desktop
Integration determines if each list subcomponent depends on
another model-driven list when an ADF Table component uses
multiple ModelDrivenColumnComponent subcomponents. To do
this, it verifies that the bind variable specified for a list references
an attribute bound to another list. For more information, see
Section 8-1, " Dependent List of Values Configuration Options."

For more information about creating a model-driven list, see the "How to Create a
Model-Driven List" section of Fusion Developer’s Guide for Oracle Application
Development Framework.

7.16 Configuring an ADF Table Component to Resize Columns Based on
Data at Runtime

You can configure column widths of an ADF Table component so that they are
automatically resized at runtime. The columns can be resized using Excel's AutoFit
column width feature, which determines the width based on the data values in the
column. ADF Desktop Integration can also resize the columns using explicit width
values derived from EL expressions.

The resizing behavior of ADF Table columns is configured at the table level. You can
then override them at the column level.

Resizing a column's width at runtime is a two-step process. First, you configure the
table column with the desired width-related property values. Secondly, add the ADF
Table component's ResizeColumns action to the desired action set. Typically, you add
this action after the ADF Table component's Download action in the action set. The
EditCustomers-DT.x1lsx workbook in the Summit sample application, described in
Chapter 2, "Introduction to the ADF Desktop Integration Sample Application,"
demonstrates this implementation.

7.16.1 How to Configure an ADF Table Component to Resize Columns at Runtime

You can use the design-time ResizeColumnsMode property to specify the common
resizing behavior for all columns of the ADF Table component. Use the ResizeColumns
table component method to control when the resizing occurs. To override resizing
behavior of a particular column, use the column's ResizeMode property.

7-38 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

Before you begin:

It may be helpful to have an understanding of configuring resizing behavior of ADF
Table columns. For more information, see Section 7.16, "Configuring an ADF Table
Component to Resize Columns Based on Data at Runtime."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure resizing behavior of ADF Table columns:
1. Open the integrated Excel workbook.

2. Select any cell in the ADF Table component and click the Edit Properties button in
the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, configure and set the
ResizeColumnsMode property as described in Table 7-11:

Table 7-11 ResizeColumnsMode Values of the ADF Table Component

Value Description

UseColumnValue Default. All columns in the table will be resized (or not) based
on their Column.ResizeMode property values. Columns with
InheritFromTable will not be resized. Individual columns
that have Column.ResizeMode properties set to a value other
than InheritFromTable are resized accordingly.

AutoFitAllWithHeader All columns within the table boundaries are resized to best fit
using Excel's AutoFit support. Data values in the columns'
cells, including the header cells, are used to determine the
best fit.

Individual columns that have Column.ResizeMode properties
set to a value other than InheritFromTable are resized
accordingly.

Note that values in the column's cells above or below the
table are not considered when finding the best fit.

AutoFitAllwWithoutHeader All columns within the table boundaries are resized to best fit
using Excel's AutoFit support. Data values in the columns'
cells, excluding the header cells, are used to determine the
best fit.

Individual columns that have Column.ResizeMode properties
set to a value other than InheritFromTable are resized
accordingly.

Note that values in the column's cells above or below the
table are not considered when finding the best fit.

4. To configure the resizing behavior of a column and override the table-level
resizing behavior, set the ResizeMode property.

In the Edit Component: ADF Table dialog, expand the Columns property and set
the ResizeMode property as described in Table 7-12:

Table 7-12 ResizeMode Values of the ADF Table Column Property

Value Description
Manual The column is not resized; column width is left at the current
setting.

Working with ADF Desktop Integration Table-Type Components 7-39

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

Table 7-12 (Cont.) ResizeMode Values of the ADF Table Column Property

Value Description

InheritFromTable Default. The column is resized based on the table's
ResizeColumnsMode setting.
If ResizeColumnsMode is set to UseColumnValue, then no
resizing occurs.

AutoFitWithHeader Including the header cell, the column is resized to best fit
using the Excel's AutoFit support.

AutoFitWithoutHeader Excluding the header cell, the column is resized to best fit
using the Excel's AutoFit support.

Specifiedwidth ADF Desktop Integration uses the Width property to

determine the desired width of the column. You can specify a
numerical value, or an EL expression.

5. If the ADF Table component's ResizeColumnsMode property is set to
UseColumnValue and a column's ResizeMode property is set to Specifiedwidth, set
the Column.Width property to the number of characters you want to display in the

column.

A column's Width property may be set to a literal numerical value or an EL
expression that evaluates to a number between 1 and 255, inclusive. An example
EL expression for Width that makes use of the UI Hint displayWidth for an

attribute is:

#{bindings.Customers.hints.Name.displayWidth}

Notes:

= If the expression cannot be evaluated, or if the expression
evaluates to less than 1 or greater than 255, the ResizeMode is
considered to be Manual and the column is not resized.

= Use a decimal point regardless of the environment's Region and
Language settings if you want to specify a fractional value. A
'decimal comma' (such as is seen in French locales) is not

supported.

6. Click OK.

7.16.2 How to Configure an Action Set to Resize Columns of an ADF Table Component

at Runtime

You can configure the action set in a worksheet ribbon command or a worksheet event

to invoke the ADF Table component ResizeColumns action.

Note that resizing a table with many columns and many rows might take a noticeable

amount of time.

Before you begin:

It may be helpful to have an understanding of configuring resizing behavior of ADF
Table columns. For more information, see Section 7.16, "Configuring an ADF Table
Component to Resize Columns Based on Data at Runtime" and Section 9.2, "Using

Action Sets."

7-40 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an ADF Table Component to Resize Columns Based on Data at Runtime

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To configure an action set to resize Columns of an ADF Table component:
1. Open the integrated Excel workbook.

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command. For more information about adding a ribbon command in a worksheet,
see Section 9.3.1, "How to Define a Workbook Ribbon Command for the Runtime
Ribbon Tab."

Note: Instead of adding a ribbon command, you can configure a
worksheet event to invoke the action set at runtime.

3. Open the Edit Action dialog to configure an action set. For more information about
invoking action sets, see Section 9.2, "Using Action Sets."

4. Add the ADF Table component ResizeColumns action to the list of actions that the
action set invokes at runtime. Note that ResizeColumns is a component action.

5. Click OK.

Figure 7-15 shows the ResizeColumns action at design-time that is configured in the
worksheet Events property of the EditCustomers-DT.x1sx workbook.

Note: If you configure an action set that is invoked by the worksheet
Startup event and this action set invokes the ADF Table component's
ResizeColumns action after the Download action, make sure that the
action set invokes the ADF Table component's Initialize action
before the Download action. Figure 7-15 demonstrates this
configuration.

Figure 7-15 ResizeColumns Action

pe

Edit Events

Members: Ensure that Customers table gets populated when workbook is opened for the first time properties:
Ml Ensure that Customers table oets/HIFY GElA ||
Edit Actions

Members:

0| Initialize needed in Startup before B
1| Execute query on Customers iter
3| TAB1588727742. Download

TAB1598787742 ResizeColumns| Action ResizeColumns

Component|D TAB1598787742

Cptions No options available
4 Data

Detail StatusMessage #res['excel .customers ribbon resize det
4 Design

Annotation

7.16.3 What Happens at Runtime: How the ADF Table Columns are Resized

The ADF Table columns are resized as the result of running of Table.ResizeColumns
component action in an action set (see Section 7.16.2, "How to Configure an Action Set
to Resize Columns of an ADF Table Component at Runtime").

Working with ADF Desktop Integration Table-Type Components 7-41

Grouping Columns Together in an ADF Table Component

7.16.4 What You May Need to Know About Resizing Columns of an ADF Table
Component at Runtime

The entire worksheet columns containing the ADF Table component columns are
resized depending on the values in the Table.ResizeColumnsMode and
Column.ResizeMode properties. Resizing the table columns affects the contents of the
cells or any other components (such as form components) located in the same Excel
worksheet column outside of the table's boundaries.

If a worksheet contains two or more ADF Table components configured with action
sets to resize columns at runtime, all ADF Table components attempt to resize their
columns independently. However, the ADF Table component's ResizeColumns action
that runs last sets the column width.

Tip: For worksheets that contain more than one ADF Table
component, call the ResizeColumns action only on the primary table

Notes:

s The Column.wWidth property does not support row-specific
bindings.

= A common strategy is to call ResizeColumns after one of the
Download actions. See Figure 7-15 for an example.

= Resizing the columns for a large table may take a significant
amount of time. The end user may perceive a download to be
slower due to this extra work. Be sure to test your workbook with
typical data loads to determine whether resizing is worth the
delay for your use case.

= Excel internally rounds the specified width values to the nearest
whole pixel value. For example, a value of 8.5 characters rounds to
8.43, which equates to 64 pixels.

= Using one of the AutoFit resizing modes on cells that have Wrap
Text selected in their style definition may not resize as expected.
Using SpecifiedWidth mode, explicitly setting the row height of
table cells at design time, or removing the Wrap Text setting from
the style may produce better results.

= It may help to make Excel columns wider at design time if you use
one of the AutoFit resizing modes and want to avoid text
wrapping at runtime. This is due to the way that Excel's AutoFit
resizing modes work.

7.17 Grouping Columns Together in an ADF Table Component

You can render group headers for columns that render in an ADF Table component to,
for example, provide your end users with a more intuitive interface by using
descriptive labels for groups of columns. Figure 7-22 shows an example where the
EditAllInventory-DT.x1lsx workbook from the Summit sample application for ADF
Desktop Integration groups the Product to Restock Date columns into an Inventory
Details group header while the Warehouse to Country columns have been grouped
into a Warehouse Details group of columns.

7-42 Desktop Integration Developer's Guide for Oracle Application Development Framework

Grouping Columns Together in an ADF Table Component

Figure 7-16 Providing a Grouping Header for Columns in an ADF Table Component

EditAlllnventory-DT.xlsx - Microsoft Excel

e Layout Formulas Data Review View Add-Ins Oracle ADF Inventory Acrobat

DEBBS

bout || Download Upload Delete Status
Flagged Viewer
Worksheet

%]
G H | J K I M I
Inventory Details Warehouse Details
Out of Stock Max in Stock _ Reorder Point | Restock Date ‘Warehouse Manager First Name _ Manager Last Name _ | Address City
~ | Explanation . e SA A b e nt Z
580 2600 1500 107 Kalky Urguhart 283 King Strest Seattle
350 E00 450 1071 Kalky Urguhart 283 King Streat Scattle
400 oo 400 107 Walky Urguhart 203 King Strec Saattke
201 TED 450 107 Wl Urguhart 263 King Stres Sealtle
47 TE0 450 107 Kalky Urguhart 283 King Strest Seattle
250 437 280 101 Mol Urcwhart 283 Kina Strest Sealtl

ADF Desktop Integration implements the functionality shown in Figure 7-16 by
rendering an extra table header row above the ADF Table component's regular table
header row at runtime. It renders this extra table header row if you configure the
GroupHeader properties in one of the column definitions of the ADF Table component.
You can also implement this functionality for dynamic columns. If you want to
implement this functionality for dynamic columns, you must define custom attributes,
as described in Section 7.17.2, "How to Group Columns that Render in a Dynamic
Column." For information about how to configure the GroupHeader properties for
static and dynamic columns, see Section 7.17.1, "How to Group Columns in an ADF
Table Component."

Leave the row above the ADF Table component empty of data and styles if you want
to render an extra table header row to group columns because, at runtime, existing
data and styles will be overwritten to render the extra table header row.

7.17.1 How to Group Columns in an ADF Table Component

You group columns in an ADF Table component by configuring the GroupHeader
properties for the start and end columns in the group of columns.

Before you begin:

It may be helpful to have an understanding of how you can group columns in an ADF
Table component. For more information, see Section 7.17, "Grouping Columns
Together in an ADF Table Component."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

Define custom attribute properties, as described in Section 7.17.2, "How to Group
Columns that Render in a Dynamic Column," if you want to group header columns
that render in a dynamic column. This step is not required if you want to group header
columns in static columns.

To group columns in an ADF Table component:
1. Open the integrated Excel workbook.

Working with ADF Desktop Integration Table-Type Components 7-43

Grouping Columns Together in an ADF Table Component

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon of the
Columns property.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4. In the Edit Columns dialog, select the column that you want to start the group of
columns.

5. In the right pane of the Edit Columns dialog, expand the GroupHeader property
under the Layout field and configure the properties, as described in Table 7-13.

Table 7-13 GroupHeader Properties of an ADF Table Component's Group Start Column

Set this property to ... This value

Boundary Set to start or an EL expression that evaluates to start.
This defines the column as the start of a group of columns.

If you want to define a dynamic column as the start of a group of
columns, we recommend that you define a custom attribute
property with a value of start, as described in Section 7.17.2,
"How to Group Columns that Render in a Dynamic Column."
Write an EL expression that retrieves the value of this custom
attribute property.

Label Set this property to a string or to an EL expression that evaluates
to a label in the column group header at runtime. The evaluated
value renders in the cell of the start column. The start column in
the column group header requires a value for this property. No
column group header forms at runtime if you do not specify a
value. For more information about labels, see Section 10.4,
"Using Labels in an Integrated Excel Workbook."

You can also edit this property by editing the Excel cell where
the label text appears. Editing the text in the cell directly only
affects this property. There is no effect on the Boundary property.

StyleName Set this property to a style defined in the workbook or to an EL
expression that evaluates to a style name. The named style is
applied to the column group's header cell at runtime. For more
information about styles, see Chapter 10, "Configuring the
Appearance of Your Integrated Excel Workbook."

Tooltip (Optional) Specify a tooltip. The tooltip that you specify renders
from the extra table header cell of the end column in the group.
For more information, see Section 7.17.3, "What Happens at
Runtime: How an ADF Table Component Groups Columns."

For more information about tooltips, see Section 10.6.1, "How to
Add a Tool Tip to an ADF Table Component.”

Figure 7-17 shows the values configured for the GroupHeader properties to start
the Inventory Details group of columns in EditAllInventory-DT.x1lsx workbook
shown in Figure 7-16.

7-44 Desktop Integration Developer's Guide for Oracle Application Development Framework

Grouping Columns Together in an ADF Table Component

Figure 7-17 Configuring the Start Column of a Group of Columns

= ' =) " ' u '

y.title'T}

#[res['excel.inventory.groupheader.inventorydetails']

#{bindina_ #{bindings.Invento #{bindings.InventoryWa #{bindings.Inv_#{bindings.Inye_#{bindings.Inv_#{bind
s.Invent ™| ryWarehouseVie' ™| rehouseView. hints. OU™ | entoryWareh! ™ | ntoryWarehou ™ |entoryWareh ™| nvento

2/ poass hinglin 2 rew hinclinae Ameuntl & e hindince CutOStee kEy e hindinas bla /e bindinas Boor 2/ o hinclinae B 20 oo il
4 Edit Compenent: ADF Table =
Edit Colurnns (==

Members: #{row bindings . Productld inputValue} properties:
_0 | _ADF_ChangedColumn + =) A
7| CADF_FlsgColumn 2! |

2 | _ADF_StatusColumn E] > Appearance

BN #irow bindings . Productld input > Data
_4 | #lrow bindings AmountinStock.i > Design
_5 | #lrow bindings . OutOfStockExpl 4 Layout
6| #{row bindings. MaxInStock.inpu| 4 GroupHeader Start
_7 | #row bindings.ReorderPoint.in Boundary Start
_8 | #lrow bindings RestockDate.ing Label #{res['excel inventory.groupheadet
0| #{row bindings \Warehouseld.ing| StyleMame Column Header
10} #{row bindings.Firstlame.input' Taokip
1 #{row bindings.LastName.input)| Visibl T
12| #{row bindings Address.inputVa e ue
13| #lrow bindings City.inputValue}
14| #{row bindings . State.inputValue|
15| #{row bindings. ZipCode.inputVs
_1&| #irow bindings.Country inputVal
_17| _ADF_RowKeyColumn

e |F I b GroupHeader

The properties used for the column group header.
= Add] [Remove

6. In the Edit Columns dialog, select the column that you want to end the group of
columns.

Note: If you do not configure a column to end the group of columns,
the column that you configured as the start column in Step 5 renders
as a single-column group.

7. In the right pane of the Edit Columns dialog, expand the GroupHeader property
under the Layout category and configure the following property:

= Boundary: Set to end or an EL expression that evaluates to end.
This defines the column as the end of a group of columns.

If you want to define a dynamic column as the end of a group of columns,
define a custom attribute property with a value of end, as described in
Section 7.17.1, "How to Group Columns in an ADF Table Component" and
write an EL expression that retrieves the value of this custom attribute

property.
= Do not set values for the remaining properties in GroupHeader. The values that

you set for the start column in Step 5 determine the label, style and tooltip that
render in the group of columns' header at runtime.

Working with ADF Desktop Integration Table-Type Components 7-45

Grouping Columns Together in an ADF Table Component

Note: You do not need to set properties for the columns between the
start and end columns.

If, at runtime, the integrated Excel workbook does not find a start
column to the left of the column that you configure as the end column,
the value that you specify for the end column is ignored.

8. Click OK.

Note: Remember to leave the row above the ADF Table component
empty of data and styles if you want to group columns because, at
runtime, existing data and styles will be overwritten to render the
extra table header row that will appear above the ADF Table
component.

7.17.2 How to Group Columns that Render in a Dynamic Column

A dynamic column can expand to more than a single worksheet column at runtime. At
runtime, the integrated Excel workbook evaluates EL expressions defined for the
GroupHeader properties after the dynamic column expands. Depending on the results
of evaluating the GroupHeader properties, column groups form and the integrated
Excel workbook renders grouped headers for the dynamic column.

To configure GroupHeader properties for columns that render in a dynamic column,
you first define custom attribute properties on the view object attributes that render in
the dynamic column's columns at runtime.

Define custom attribute properties for the attributes that you want to render the start
and end boundaries of the grouped header in the dynamic column at runtime.
Configure custom attribute properties for the start attribute that the GroupHeader
Boundary, Label, StyleName, and Tooltip properties reference at runtime using EL
expressions. Configure a custom attribute property for the end attribute that the
GroupHeader Boundary property references at runtime using an EL expression.

For more information about defining custom attribute properties, see Section 10.8,
"Using ADF Desktop Integration EL-based Properties with Custom Attribute
Properties."

Figure 7-18 shows an attribute (Address) that defines custom attribute properties to
start a grouped header.

7-46 Desktop Integration Developer's Guide for Oracle Application Development Framework

Grouping Columns Together in an ADF Table Component

Figure 7-18 Custom Attribute Property to Start a Grouped Header in a Dynamic Column

] customersview,xml

General
Entity Objects Attributes Set Source Ordi
Attributes View object attributes can be mapped to entity attributes, calculated or SQL-derived.
Business Rules
+ Name -

Query Q # x
View Criteria Mame Type Alias Name 1
Java City String CITY

Comments String COMMENTS
Accessors

a2 Chrimn COLIKNTDY
List UI Hints

UI Categories
Details ~ UILHints = Entity Attribute = Dependendes = Custom Properties List of Values

@#- 7R
Property Value
GroupHeaderBoundary start
GroupHeaderLabel Details
GroupHeaderStyleName Group Header
GroupHeaderToolTip Tool tip to appear in a Grouped Header in Dynamic Column

Figure 7-19 shows an attribute (Comment) that defines custom attribute property to
end a grouped header.

Figure 7-19 Custom Attribute Property to End a Grouped Header in a Dynamic Column

General

Entity Objects Attributes Set Source Order
Attributes View object attributes can be mapped to entity attributes, calculated or SQL-derived.

Business Rules

Query Qo Name - X

View Criteria Nams Type Alias Name =
Row Finders Address String ADDRESS

Java City String CITY

List UI Hints Country String COUNTRY

UI Categories A

Details ~ UIHints Entity Attribute =~ Dependendies = Custom Properties List of Values

Property Value
GroupHeaderBoundary end

At runtime, a dynamic column expands to render columns for the view object's
attributes. For this example the expanded columns are Address, City, and Comments
that are configured to render a grouped header. Figure 7-20 shows the GroupHeader
properties that you configure in the dynamic column at design time. At runtime, the
EL expressions retrieve and evaluate the values of the configured custom attribute
properties shown in Figure 7-18 and Figure 7-19. A grouped header labeled Details
forms for the Address, City, and Comments columns.

For more information about how to configure the GroupHeader properties, see
Section 7.17.1, "How to Group Columns in an ADF Table Component."

Working with ADF Desktop Integration Table-Type Components 7-47

Configuring an ADF Table Component to be Read-only

Figure 7-20 Starting a Grouped Header in a Dynamic Column

Layout
GroupHeader itbindings Customers_[oracle summitdi model queries CustomersView] hints_* GroupHeaderBoundary}
Boundary #{bindings Customers_[oracle summitdi model queries CustomersView] hints_* GroupHeaderBoundary}
Label #{bindings Customers_[oracle summitdi model queries CustomersView] hints_* GroupHeaderlabel }
Group Header
Tooltip #{bindings Customers_[oracle summitdi model queries CustomersView] hints_* GroupHeaderTool Tip}
Visible True

7.17.3 What Happens at Runtime: How an ADF Table Component Groups Columns

An extra table header row renders above the ADF Table component's regular table
header row at runtime if you configure values for the GroupHeader properties. The
values you specify for the Label, StyleName and Tooltip properties of the start
column in each group determines the label, style and tooltip of the group header. Any
values that you configure for those GroupHeader properties of other columns in the
column group are ignored.

The style specified by the GroupHeader . StyleName property in the column that you
configure as the start column is applied on the extra table header cells of all columns in
the group. The horizontal alignment of the group header label centers across the extra
table header cells of all columns in the group.

The tooltip defined by the GroupHeader . Tooltip property in the start column renders
on the extra table header cell of the end column in the group, as shown in Figure 7-21.

Figure 7-21 Grouped Columns Rendering Styles and Displaying a Tooltip

) T° | These columns help you manage inventory I)
Inventory Details wenehouse Details

Out of Stock
~ |Explanation

50169 2530 2600 101 Mally Urguhart

Product [| Amount in Stock - | Max in Stock [| Restock Date | Warehouse | Manager First Name [_ | Manager Last Name [

Make sure that columns you configure as start and end columns render at runtime. If a
column that you configure as a start column does not render at runtime, no column
group forms. For example, if you configure Column 1 as a start column and Column 3
as an end column and Column 1 does not render at runtime because its Visible
property returns false, no column group forms. Similarly, if Column 3 does not render,
no column group forms that spans Column 1, Column 2, and Column 3. Instead,
Column 1 renders as a single-column group.

7.18 Configuring an ADF Table Component to be Read-only

The ADF Table component offers multiple features that are not available in the ADF
Read-Only Table component, described in Section 7.19, "Creating an ADF Read-Only
Table Component." Examples of features available in the ADF Table component
include dynamic columns, the ability to group columns together and the ability to
resize columns. For this reason, you may want to create an ADF Table component and
configure it to be read-only rather than creating an ADF Read-only Table component.
The CustomerSearch-DT.x1sx workbook in the Summit sample application contains
an ADF Table component that is configured to be read-only.

7.18.1 How to Configure an ADF Table Component to be Read-only

You make an ADF Table component read-only by setting the RowActions
UpdateRowEnabled and InsertRowEnabled properties to False and deleting the _ADF_

7-48 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating an ADF Read-Only Table Component

ChangedColumn, _ADF_FlagColumn, and _ADF_StatusColumn columns from the ADF
Table component.

Before you begin:

It may be helpful to have an understanding of ADF Table component. For more
information, see Section 7.18, "Configuring an ADF Table Component to be
Read-only."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

Insert an ADF Table component in your integrated Excel workbook, as described in
Section 7.3, "Inserting an ADF Table Component into an Excel Worksheet."

To configure an ADF Table component to be read-only:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, set the RowActions.UpdateRowEnabled
property of the ADF Table component to False.

4. In the Edit Component: ADF Table dialog, click the browse (...) icon of the
Columns property.

The Edit Column dialog appears, listing all the columns of the ADF Table
component.

5. Delete the _ADF_ChangedColumn, _ADF_FlagColumn, and _ADF_
StatusColumn columns by selecting these columns and clicking Remove in the
Edit Columns dialog.

Note: Do not remove the Key column. For more information about
the Key column, see Section 7.13, "Configuring ADF Table Component
Key Column."

6. (Optional) Consider changing each column's UpdateComponent component type
value from ModelDrivenColumnComponent to OutputText.

This is not necessary if the view object is configured to be read-only. This is
because the ReadOnly property of each UpdateComponent is bound to the
corresponding readOnly attribute hint by default if you create an ADF Table
component from a tree binding. The CustomerSearch-DT.x1sx workbook
demonstrates this implementation.

7. (Optional) Consider changing each column's Cel1StyleName property to
Read-only Cell to visually distinguish read-only cells from editable cells.

For more information, see Section 10.2, "Working with Styles."

8. Click OK.

7.19 Creating an ADF Read-Only Table Component

At runtime, the ADF Read-only Table component renders a table across a continuous
range of cells that displays data from the tree binding that the ADF Read-only Table

Working with ADF Desktop Integration Table-Type Components 7-49

Creating an ADF Read-Only Table Component

component references. Use this component to display data that you do not want the
end user to edit.

Note: The ADF Table component offers multiple features that are not
available in the ADF Read-Only Table component. For this reason, you
may want to consider creating an ADF Table component and
configure it to be read-only rather than creating an ADF Read-Only
Table component. For more information, see Section 7.18,
"Configuring an ADF Table Component to be Read-only."

The ADF Read-only Table component supports several properties, such as RowLimit,
that determine how many rows the component downloads when it invokes its
Download action. It also includes a group of properties (Columns) that determine what
columns from the tree binding appear at runtime in the Excel worksheet. The TreeID
property specifies the tree binding that the component references. More information
about these properties and others that the ADF Read-only Table component supports
can be found in Section A.12, "ADF Read-only Table Component Properties and
Actions."

Notes:

= Atruntime, inserting a row into the ADF Read-only Table
component results in a new Excel row that behaves as if it is part
of the downloaded data set, but the new row exists only in Excel.
The data from the new row is not uploaded to the server, and does
not affect the Fusion web application data.

= Read-only columns include double-click action sets. However,
these actions cannot reliably position on the current row. So, the
results of using row-level action sets with the ADF Read-only
Table component is not consistent. If you need to use row-level
action sets with reliable row positioning, use the ADF Table
component instead of the ADF Read-only Table component.

7.19.1 How to Insert an ADF Read-only Table Component

You use the ADF Desktop Integration Designer task pane to insert an ADF Read-only
Table component into a worksheet.

Before you begin:

It may be helpful to have an understanding of ADF Read-only Table component. For
more information, see Section 7.19, "Creating an ADF Read-Only Table Component."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To insert an ADF Read-only Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

When inserting a table component, you must ensure that the data of two tables
does not overlap at runtime, and the selected cell is not a merged cell

7-50 Desktop Integration Developer's Guide for Oracle Application Development Framework

Limiting the Number of Rows Your Table-Type Component Downloads

3. In the bindings palette, select the binding to create the ADF Read-only Table
component, and then click Insert Binding.

4. In the dialog that appears, select ADF Read-only Table.

Note: You can also insert an ADF Read-only Table component by
using the components palette or Oracle ADF tab. Select ADF
Read-only Table and click Insert Component. If you use the
components palette to create the component, you would have to add
each column to appear in the component at runtime.

5. Configure properties in the property inspector that appears to determine the
columns to appear and the actions the component invokes at runtime.

6. Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector.

To remove the table component, use the Delete ribbon command. For
more information, see Section 5.14, "Removing ADF Desktop
Integration Components."

7.20 Limiting the Number of Rows Your Table-Type Component

Downloads

You can configure the number of rows that an ADF Table or ADF Read-only Table
component downloads by setting values for the component's RowLimit group of
properties. You can also display a warning message, if desired, that alerts the end user
when the number of rows available to download exceeds the number of rows specified
for download.

7.20.1 How to Limit the Number of Rows a Component Downloads

Specify the number of rows that the component downloads when it invokes its
Download action as a value for the RowLimit.MaxRows property. Optionally, write an EL
expression for the RowLimit.WarningMessage property so that the end user receives a
message if the number of rows available to download exceeds the number specified by
RowLimit .MaxRows.

Before you begin:

It may be helpful to have an understanding of how to limit the number of rows while
downloading data in your ADF Table component. For more information, see
Section 7.20, "Limiting the Number of Rows Your Table-Type Component Downloads."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 7.1.2,
"Additional Functionality of Table-Type Components."

To limit the number of rows a table-type component downloads:
1. Open the integrated Excel workbook.

Working with ADF Desktop Integration Table-Type Components 7-51

Limiting the Number of Rows Your Table-Type Component Downloads

2. Select the cell in the Excel worksheet that references the table-type component and
click the Edit Properties button in the Oracle ADF tab.

For more information, see Section 9.2, "Using Action Sets."

3. Configure properties for the RowLimit group of properties, as described
inTable 7-14. For more information about these properties, see Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

Table 7-14 RowLimit Group of Properties

Set this property to...

This value...

RowLimit.Enabled

Set to True to limit the number of rows downloaded to the value
specified by RowLimit .MaxRows.

RowLimit .MaxRows

Specify an EL expression that evaluates to the maximum
number of rows to download.

RowLimit.WarningMessage

Write an EL expression for this property to generate a message
for the end user if the number of rows available to download
exceeds the number specified by RowLimit.MaxRows.

If the value for this property is null, the Download action
downloads the number of rows specified by RowLimit .MaxRows
displaying the default warning message to the end user.

4. Click OK.

Figure 7-22 shows the Edit Component dialog in the EditCustomers-DT.x1lsx
workbook where the row limit of an ADF Table component is configured.

Figure 7-22 Limiting Number of Rows of an ADF Table Component

-

Edit Component: ADF Table

]

> Appearance

4 Behavior

> BatchOptions

> RowhActions

4 RowLimit
Enabled True

| MaxRows |

wiarningMessage

> Data

> Design

> Layout

MaxRows

The maximum number of rows downloaded.

Edit the properties and press OK to save your changes.

m

£

0K

] I Cancel

——— 4

7.20.2 What Happens at Runtime: How the RowLimit Property Works

When invoked, the Table-type component's Download action downloads the number of
rows that you specified as the value for RowLimit .MaxRows from the Fusion web
application. A message dialog similar to the one in Figure 7-23 appears if you specify
an EL expression for RowLimit .MaxRows or do not modify its default value.

7-52 Desktop Integration Developer's Guide for Oracle Application Development Framework

Evaluating EL Expressions for ReadOnly Properties

Figure 7-23 Row Limit Exceeded Warning Message

Row Limit Exceeded l__]

There are too many rows available. Do you want to show the first 5
l % rows?

[ve [Mo

7.21 Tracking Changes in an ADF Table Component

End users can create or modify data in the cells of an integrated Excel workbook that
hosts an ADF Table component.

If a column is updatable and not read-only, change tracking is activated. End users can
make the following changes to activate change tracking:

s Edit cell values
s Insert or delete cell values

= Paste values to cells in the ADF Table component column that they copied
elsewhere

A character that resembles an upward pointing arrow appears in a row of the _ADF_
ChangedColumn column if the end user makes a change to data in a corresponding row.
Figure 7-24 shows an example.

Figure 7-24 Changed Column in an ADF Table Component

| C)éACl_E Edit All Inventory

Changed | Flagged | Status - | Product

411

410

This character appears if the end user makes a change to data hosted by a component
where the component's ReadOnly property value is False. Various subcomponents,
such as the ModelDrivenColumnComponent, have a ReadOnly property. You can write
an EL expression or a literal string for this ReadOnly property that evaluates to True or
False. If you write a static string or an EL expression that evaluates to True, no
character appears in the _ADF_ChangedColumn column. For more information about
ReadOnly EL expressions and change tracking, see Section 7.22, "Evaluating EL
Expressions for ReadOnly Properties."

7.22 Evaluating EL Expressions for ReadOnly Properties

If a table column's ReadOnly property EL expression contains a binding expression
(for example, #{row.bindings.color.inputValue}), the runtime evaluation of that

Working with ADF Desktop Integration Table-Type Components 7-53

Evaluating EL Expressions for ReadOnly Properties

expression will be different depending on when the evaluation occurs. The evaluation
happens during the following:

s Downloading data (Download, DownloadFlaggedRows, DownloadForInsert)

s Uploading data (Upload, UploadAllOrNothing), and change tracking

7.22.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data

During Download, the EL expression is evaluated with the current binding value as
expected.

7.22.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or
Tracking Changes

During Upload, or when the end user changes values in the editable table, the EL
expression is evaluated differently than Download. Specifically, an empty string is
substituted for the binding expression prior to evaluation of the EL expression.

For example, if you have the following EL expression in an editable cell:
=IF("#{row.bindings.color.inputvValue}"="RED", True, False)

During Upload, or when the end user changes values in the editable table, the EL
expression evaluates to =IF (""="RED", True, False), and always returns False.

Note: During change tracking, column component Value properties
are not evaluated. So, for example, cell values will be blank for newly
inserted rows regardless of the configured Value EL expression.

7.22.3 What You May Need to Know About Evaluating EL Expression While Uploading
Data or Tracking Changes

During Upload and change tracking, an extra round trip to the server would be
required to retrieve the binding values, in order to evaluate the EL expression
properly. The extra round trip to the server would impact performance negatively, and
could even require a new login if the end user did not have a currently valid session.

Note: The same EL expression evaluation behavior also applies to
the CellstyleName EL expression property when inserting new
worksheet rows during table change tracking.

Due to the difference in behavior, if possible, you should avoid ReadOnly EL
Expressions that contain binding expressions. However, if it is important for a given
use case to use an attribute value in the ReadOnly expression, you should consider
setting the worksheet protection to Automatic. For more information about worksheet
protection, see Section 10.7, "Using Worksheet Protection.”

For example, if you have the following EL expression in a cell:
=IF("#{row.bindings.color.inputvValue}"="RED", True, False)

During Download, the RED cells in this column will be set to Locked and the end user
will not be able to edit those cells.

7-54 Desktop Integration Developer's Guide for Oracle Application Development Framework

8

Working with Lists of Values

This chapter describes how to create dropdown lists of values (including dependent
lists of values) in integrated Excel workbooks, in tables within workbooks, and how to
display Search and Select list picker dialogs from Fusion web applications that users
can invoke from workbooks.

This chapter includes the following sections:

= About List of Values in an Integrated Excel Workbook

» Creating a List of Values in an Excel Worksheet

» Creating a List of Values in an ADF Table Component Column

» Adding a Model-Driven List Picker to an ADF Table Component

» Creating Dependent Lists of Values in an Integrated Excel Workbook

8.1 About List of Values in an Integrated Excel Workbook

Consider implementing list of values in your integrated Excel workbooks for scenarios
where you want to offer end users the ability to choose from a range of values or you
want to constrain the values that end users can enter in the integrated Excel workbook.
ADF Desktop Integrations provides a number of ways to address these use cases. You
can, for example, configure:

= A dropdown list of values in an Excel worksheet's cell

= A dependent list of values where the values displayed in one list (the child list of
values) depends on the selected value in another list (the parent list of values)

s Configure the display of a Search and Select list picker dialog that provides
advanced functionality for selecting values from lists

Consider configuring lists of values in the integrated Excel workbook in scenarios
where the full set of values that end users can choose is relatively small (for example,
numbers less than 30 values. The use of a Search and Select list picker dialog in a page
from the Fusion web application may offer a better user experience when you have
lists of values with more than 30 values.

8.1.1 Adding Lists of Values to Integrated Excel Workbooks Use Cases and Examples

Using the ADF List of Values component and other subcomponents from ADF
Desktop Integration, you can create a variety of interfaces that present end users with
data to view and select. Figure 8-1 shows a number of examples from the Summit
sample application workbooks that subsequent sections in this chapter discuss in more
detail.

Working with Lists of Values 8-1

Creating a List 0

f Values in an Excel Worksheet

Figure 8—-1 List of Values Implementations in Summit Sample Application Workbooks

Dropdown list of values in worksheet

Region
Country
Manager

1
Phone

Asia '
-

frica / Middle East ‘

A
Asiz

rﬂ. pe
North America
South America

Dependent list of values

Region
I: Country
Manager

Phone

MNaorth America

Canada '
—

L]

Search and Select dialog

Sales Rep. | Comments

UsA
Dominican Republic
Canada

Dropdown list of values in ADF Table component column
Edit C

ustomers

‘
| Credit Rating | Phone

Fair

[Excallent

cle Waorld Good

Schindlers Sports Poar

Search and Select: Sales Rep.

Search
Match @ AllO) Any
Id

Last Name N

First Name
User Name

Id Last Name
2 Ngao

3 Magayama
14 Mguyen

18 Nozaki

20 Newman

First Name
LaDoris
Midori

Mai

Akira
Chad

User Name
Ingao
mnagayam
mnguyen
anozaki
cnewman

Advanced

Search Reset

0K Cancel

8.1.2 Additional Functionality for Adding List of Values to an Integrated Excel

Workbook

After you have added lists of values to your integrated Excel workbook, you may find

that you need to add additional functionality to configure your workbook. The
following sections describe other functionality that you can use:

= Styles: You can configure the display of your form-type components using several

predefined Excel styles. For more information, see Section 10.2, "Working with

Styles."

= EL Expressions: You can use EL expressions with form-type components. For
more information, see Appendix B, "ADF Desktop Integration EL Expressions."

= Tooltips: You can configure tooltips to display additional information or
instructional text to your end users. For more information, see Section 10.6,
"Displaying Tooltips in ADF Desktop Integration Components."

= Action sets: You can configure ordered lists of one or more actions to add
interactivity to your integrated Excel workbook, as described in Chapter 9,

"Adding Interactivity to Your Integrated Excel Workbook."

8.2 Creating a List of Values in an Excel Worksheet

Use the ADF List of Values component when you want to create a dropdown list of
values in an Excel worksheet cell at runtime. The ADF List of Values component is

8-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating a List of Values in an Excel Worksheet

intended for a short choice list, for example 20 or 30 items at most, but can display a
maximum of 250 values at runtime. You can insert the ADF List of Values component
into a cell in the Excel worksheet. Figure 8-2 shows an implementation from the
Summit sample application's EditWarehouseInventory-DT.x1lsx where the user is
constrained to picking one of the valid values for a list of regions.

Figure 8-2 Runtime List of Values in an Excel Worksheet
ORACLE Edit Warehouse Inventory

Warehouse

Warehouse Id. 301

Address 6921 King Way Region JAzia ’v
o i Africa [Middle East
City Lagos country | o
State Manager |Morth America ;
. South America
Zip Code Phone

You must specify a value for the ListID property. The ListID property references the
list binding which populates the dropdown menu with a list of values at runtime after
you invoke the worksheet DownSync action.

Figure 8-3 shows an ADF List of Values component with its property inspector in the
foreground. The ADF List of Values component references a list binding (RegionId)
that populates a dropdown menu in the Excel worksheet at runtime.

Notes:

= You can display a dropdown menu in an ADF Table component's
column. For more information, see Section 8.3, "Creating a List of
Values in an ADF Table Component Column."

= ADF List of Values components using date values are not
supported.

= ADF List of Values does not support multi-column list. At
design-time, if you select multiple attributes, the ADF List of
Values component renders the list with the first attribute.

Working with Lists of Values 8-3

Creating a List of Values in an Excel Worksheet

Figure 8-3 ADF List of Values Component

#{bindings Regionld.labe [} |Fi+-;|i-:-n|-:|

4

" Edit Compenent: ADF List of Values (=3

p o ey

A

Edit the properties and press QK to save your changes.

StyleMame Input Text
Tooltip
4 Data
4 ListOfValues Regionld
DependsCnListID
Regionld =)
ReadOnhy False
4 Design
Annotation
Component|D LST103403603
4 Layout
> Position $Cs5
ListID
Alist binding.
[ok][canesl

To insert an ADF List of Values component:
1.

2.

3.

Open the integrated Excel workbook.
Select the cell in the Excel worksheet where you want to anchor the component.

In the components palette, select ADF List of Values and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF List of Values from the Insert
Component dropdown list

Invoke the binding ID picker by clicking the browse (...) icon beside the input field
for the ListID property and select a list binding that the page definition file
exposes.

Configure other properties in the property inspector to determine the appearance,
design, and layout of the component. For information about ADF List of Values
component properties, see Section A.5, "ADF List of Values Component
Properties."

Click OK.

8-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating a List of Values in an ADF Table Component Column

Notes:

= You can modify the properties of the component at a later time by
selecting the cell in the worksheet that anchors the component
and then displaying the property inspector. You can also
right-click in the cell and choose Edit ADF Component Properties
to open the property inspector.

To remove the component, use the Delete ribbon command. For
more information, see Section 5.14, "Removing ADF Desktop
Integration Components."

= An Excel form cannot be configured to use ADF List of Values
components that use model-driven list bindings if the form's
bound iterator is expected to contain zero rows. As a workaround,
you may configure the ADF List of Values component to use a
dynamic list binding instead.

8.3 Creating a List of Values in an ADF Table Component Column

Use the ModelDrivenColumnComponent subcomponent when you want to render a
dropdown list of values in an ADF Table component column. The list of values
component is intended for a short choice list, for example 20 or 30 items at most, but
can display a maximum of 250 values at runtime. Unlike other ADF Desktop
Integration components, the ModelDrivenColumnComponent subcomponent does not
appear in the components palette described in Section 5.5, "Using the Components
Palette." Instead, you select it as a subcomponent when you specify values for the
UpdateComponent properties of an ADF Table component column. For more
information about the properties of an ADF Table component column, see

Section A.11.2, "ADF Table Component Column Properties.” For more information
about creating a model-driven list, see Section 7.15, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table Component.”

After you specify the ModelDrivenColumnComponent subcomponent, you must
specify a tree binding attribute associated with a model-driven list as a value for the
ModelDrivenColumnComponent subcomponent's Value property. The model-driven
list of the tree binding attribute populates the dropdown menu in the ADF Table
component's column with a list of values at runtime. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of Fusion
Developer’s Guide for Oracle Application Development Framework.

8.3.1 How to Create a List of Values in an ADF Table Component Column

You add a column to the ADF Table component column and select
ModelDrivenColumnComponent as the subcomponent. You then specify a tree binding
attribute as the value for the ModelDrivenColumnComponent subcomponent's Value
property. A model-driven list must be associated with the tree binding attribute that
you specify.

Working with Lists of Values 8-5

Creating a List of Values in an ADF Table Component Column

Notes:

s The ModelDrivenColumnComponent subcomponent does not
support a model-driven list whose control type is combo_lov.

» Tree attributes with a control type of input_text_lov will not
render as ADF List of Values components. Instead, they expose
model-driven list picker functionality, as described in Section 8.4,
"Adding a Model-Driven List Picker to an ADF Table

Component."

= ADF List of Values components using date values are not
supported.

s The ModelDrivenColumnComponent subcomponent may not
support model-driven lists for EJB-based data controls in all cases.

Before you begin:

It may be helpful to have an understanding of how to create a list of values in ADF
Table component. For more information, see Section 8.3, "Creating a List of Values in
an ADF Table Component Column."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 8.1.2,
"Additional Functionality for Adding List of Values to an Integrated Excel Workbook."

To create a list of values in an ADF Table component column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component and
click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF Table
component.

4, Click Add to add a new column.
5. Choose the appropriate option for the newly created column:

» Click the browse (...) icon beside the input field for UpdateComponent to
configure the runtime list of values for update and download operations.

= (Optional) Click the browse (...) icon beside the input field for
InsertComponent to configure the runtime list of values for insert operations.
This is rare.

In both options, the Select subcomponent to create dialog appears.
6. Select ModelDrivenColumnComponent and click OK.

7. Expand the property that you selected in Step 5 and select a binding attribute
associated with a model-driven list for the Value property.

Set the ReadOnly property to False if you do want users to edit the values in the
column, set to True otherwise.

Figure 8—4 shows the property inspector for the Credit Rating column that renders
in the Summit sample application's EditCustomers-DT.x1sx workbook.

8-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a Model-Driven List Picker to an ADF Table Component

Figure 8—4 ADF Table Component Column Configured to Display a List of Values

Edit Columns @
Members: #i{row bindings CreditRating|d inputValue} properties:
0 | _ADF_ChangedColumn = A
1| _ADF_StatusColumn ,‘l |
2] #{row.bindings. Name.inputValus 4 Appearance
CelteNane Deta el
4 | #{row bindings.Phone.inputvalu, Headerlabel #{bindings Customers hints Credit Ratingld label}
1 #{row bindings Address inputVa HeaderStyleMame Column Header
_6 | #lrow bindings City.inputValue} ResizeMode Inherit From Table
_7 | #irow bindings State inputValue, Tooltip #{bindings Customers_hints_ Credit Ratingld tooltip}
8 | #row bindings.ZipCode.inputVa Width
E #{row bindings. Regionld.inputyz 4 Data
10 #row bindings.Countryld inputy DyramicColumn False
11 ﬁ‘_{row.b\nd!ngs.SalesF{ep.lqput\{ InseComponent
12| #rowbindings Comments input ! LsesUpdat T
13| _ADF_RowKey Column hsertlUsesUpdate uE o)
—= 4 UpdateComponent #{row bindings Credit Ratingld inputValue} (Model DrivenColumnComponent)
> DoubleClick ActionSst
ReadOnly #{bindings Customers_hints Credit Ratingld readOnly}
ETN H#irow.bindings. Credit Ratingld input Value} [
4 Design
Annotation
D CreditRating
4 Layout
> GroupHeader
Visible True
] [* Value
The value of this component.
Add] [Remove
8. Click OK.

8.3.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values

At runtime, the ADF Table component invokes the Download action and populates
each column. This action also populates the list of values in the column that you
configure to render a list of values. Figure 8-5 shows an example from
EditCustomers-DT.x1lsx workbook in the Summit sample application, where Credit
Rating is the column configured to display a list of values.

Figure 8-5 Runtime View of an ADF Table Component Column Displaying a List of Values

ORACLE

Changed_| Status

Edit Customers

bl
- | Credit Rating (| Phone

<" Name
Zebra's Bisycles Fair
Superior Bicysle | Fair ,
Bicycle Warld . (E;)écni:lent
Schindler's Sports Poor

~1Ad

447

8.4 Adding a Model-Driven List Picker to an ADF Table Component

You can configure an ADF Table component and use the existing model-layer
metadata of your Fusion web application to provide a Search and Select list picker
dialog in the integrated Excel workbook.

The Search and Select list picker dialog is similar to that seen when you click the
search icon or button to open the Search and Select popup of the
af:inputListOfvalues component on an ADF Faces page. Figure 8-6 shows an
example from the EditCustomers-DT.x1sx workbook where an end user double-clicks

Working with Lists of Values 8-7

Adding a Model-Driven List Picker to an ADF Table Component

the cell where they want to input a new data value. They search and select the new
value in the popup that appears.

Tip: Consider adding a column header tooltip that instructs users to
double-click column cells in order to pick a value.

Figure 8-6 Model-Driven List Picker Invoked from Table Column Cell

]

7 Sales Rep. | Comments Ke

-

Search and Select: Sales Rep. @

Search Advanced
Match @ allQ Any
d
Last Name N

First Name
User Name
Search Reset
1d Last Name First Name User Name
2 Mgao LaDoris Ingao
3 Nagayama Midori mnagayam
14 Nguyen Mai mnguyen
18 Nozaki Akira anozaki
20 Newman Chad cnewman

0K Cancel

To add a model-driven list picker to an ADF Table component:
1. Open your Fusion web application in JDeveloper.

2. Configure your view object in the same way as you would to use an
af:inputListOfValues component.

a. Add a view accessor.

For more information about creating a view accessor, see the "How to Create a
View Accessor for an Entity Object or View Object” section of Fusion
Developer’s Guide for Oracle Application Development Framework.

b. Create a List-of-Values (LOV) for the attribute.

For more information about creating a List of Values component, see the
"Creating List of Values (LOV)" section of Fusion Developer’s Guide for Oracle
Application Development Framework

c. Set the UI Hints for the LOV. Ensure that Default List Type is set to Input
Text with List of Values.

For more information about setting UI Hints, see the "How to Set User
Interface Hints on a View Object LOV-Enabled Attribute" section of Fusion
Developer’s Guide for Oracle Application Development Framework.

d. Expose the view object as a tree binding in the page definition used by your
worksheet.

3. Verify that your application's web.xml file configures the filter for ADF Library
Web Application Support (<filter-name>ADFLibraryFilter</filter-name>).

For more information, see Section D.3, "Configuring the ADF Library Filter for
ADF Desktop Integration."

8-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a Model-Driven List Picker to an ADF Table Component

4. Open the integrated Excel workbook.

5. For any table columns bound to LOV-backed attributes, be sure to use the
ModelDrivenColumnComponent component type in the column configuration. Note
that for table columns configured in this way, the DoubleClickActionSet property
of the UpdateComponent and InsertComponent will be ignored at runtime.

Figure 8-7 shows the type of component of the UpdateComponent property set to
ModelDrivenColumnComponent.

Figure 8-7 UpdateComponent Property of the ADF Table Component

Edit Component: ADF Table ==
Edit the properties and press OK to save your changes.
B4
> Appearance -
ai]
4 Columns Columns (15)
- [0] _ADF_ChangedColumn
- [11] #{row bindings .Countryld inputValue} =
a4 [12] #{row bindings . SalesRep inputValue}
Annotation
CellStyleName Data Cell
DynamicColumn False
» GroupHeader
HeaderLabel #{bindings Customers hints.SalesRep label}
HeaderStyleName Column Header
D COL1618322955
InsetComponent
Insert UsesUpdate True
ResizeMode InheritFrom Table
Tooltip #{bindings Customers hints. SalesRep tooltip}
4 |UpdateComponert #{row bindings.SalesRep inputValue} (Model DrivenColumnComponent)
4 DoubleClickActionSet
> ActionOptions
Actions
- Mert
Annctation
- Status
ReadOnty False
Value #{row bindings_SalesRep inputValue}
Visible True
Width -
Data
oo

6. If not set already, set the
Workbook.Compatibility.TableComponents.ModelDrivenColumns.InputListOfVa
luesPickerEnabled property to True.

For more information about the InputListOfValuesPickerEnabled property, see
Section A.16, "ADF Desktop Integration Compatibility Properties."

7. (Optional) Configure RowData.CachedAttributes for the ADF Table component
when a different attribute on the underlying iterator should be set by the action of
the model-driven list picker. For example, in the EditCustomers-DT.x1sx
workbook, the Sales Rep. column exposes a ModelDrivenColumnComponent
subcomponent, but also defines SalesRepId as a value for
RowData.CachedAttribute.

After configuring the Fusion web application, integrated Excel workbook, and table
columns, run the workbook and double-click the table columns that expose
LOV-backed attributes to open the model-driven list picker dialog.

Working with Lists of Values 8-9

Creating Dependent Lists of Values in an Integrated Excel Workbook

8.4.1 What You May Need to Know About Model-Driven List Pickers in ADF Table
Components

By default, all columns in a table are configured to use the
ModelDrivenColumnComponent subcomponent when you create an ADF Table
component by double-clicking a tree binding in the bindings palette. Any tree
attributes bound to model-driven lists with a control type of input_text_lov
automatically support the rendering of a Search and Select list picker dialog at
runtime. That is, no special configuration is needed.

If the tree attributes are not bound to model-driven lists or if you need a custom picker
user-interface, see Section 9.4, "Displaying Web Pages from a Fusion Web Application."

8.5 Creating Dependent Lists of Values in an Integrated Excel Workbook

ADF Desktop Integration provides the following components that you use to create
lists of values in an integrated Excel workbook:

s ADF List of Values

You configure properties for this component when you want to create a list of
values in the Excel worksheet.

= ModelDrivenColumnComponent subcomponent

You configure properties for this subcomponent when you want to create a list of
values in an ADF Table component column.

Using these two components, you can create a dependent list of values in your
integrated Excel workbook. A dependent list of values is a list of values component
(referred to as a child list of values) whose values are determined by another list of
values component (referred to as a parent list of values).

The server-side list bindings must be defined such that when the selected item of the
parent list of values is changed, the available child list of values items are updated
properly. Figure 8-8 shows an example with two illustrations from the
EditWarehouseInventory-DT.x1lsx workbook, where the Country field (child list of
values) changes when the value in the Region field (parent list of values) changes.

8-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating Dependent Lists of Values in an Integrated Excel Workbook

Figure 8-8 List of Values and Dependent List of Values

C D E F G H I

B
ORACLE Edit Warehouse Inventory

3

Warehouse

Warshouse Id. 301

Address 5921 King Way Region Morth America
City Toronto I:Country Canada !v';

USA
State Manager | pominican Republic

~
Zip Code Phone *

ORACLE Edit Warehouse Inventory

Warehouse

Warehouse Id. 301

Address 5921 King Way I: Region Asia
City Tokyo Country JJapan &l

State Manager

Zip Code Phore

Table 8-1 describes the dependent list of values implementations you can create using
the previously listed components and the requirements to achieve each
implementation.

Some of the implementations described in Table 8-1 require model-driven lists. For
information about creating a model-driven list, see the "How to Create a Model-Driven
List" section of Fusion Developer’s Guide for Oracle Application Development Framework.

Working with Lists of Values 8-11

Creating Dependent Lists of Values in an Integrated Excel Workbook

Table 8—1 Dependent List of Values Configuration Options

Configuration

Requirements

Render both the parent and child list of ~ Both instances of the ADF List of Values component must reference a
values in the Excel worksheet using list binding. One or both of the list bindings that you reference can be
ADF List of Values components. model-driven lists.

Both list bindings can reference model-driven lists only if the
underlying iterator has at least one row of data. At runtime, if the
underlying iterator has zero rows of data and the end user selects a
value from the parent list of values (list binding referenced by the ADF
List of Values component's DependsOnListID property), the child list of
values (list binding referenced by the ADF List of Values component's
ListID property) does not get filtered based on the value the end user
selects.

To work around this scenario, choose one of the following options:
= Ensure that the underlying iterator has at least one row of data

= Use an alternative list binding configuration where you expose
multiple iterators and all necessary iterators get refreshed

For more information, see Section 8.5.1, "How to Create Dependent Lists
of Values in Excel Worksheets."

Render both the parent and child list of =~ Both the parent and child list of values
values in ADF Table component (ModelDrivenColumnComponent subcomponents) must reference tree

columns using

ModelDrivenColumnComponent

subcomponents.

binding attributes associated with model-driven lists.

As server-side list binding dependencies are determined only for lists in
the same tree node, the following tree node list bindings are not
supported:

= Abinding that depends on a list binding in a different tree or tree
node

= Abinding that depends on a list binding in the page definition file

For more information, see Section 8.5.3, "How to Create Dependent Lists
of Values in ADF Table Component Columns."

Note the following points if you plan to create a dependent list of values:

If the selection in the parent list of values changes, the child list of values is reset
without warning the user.

The dependent list of values does not work unless the list specified in the
DependsOnList (or DependsOnListID) property is referenced by a component in
the Excel worksheet.

If a circular dependency is defined (List A depends on List B, and List B depends
on List A), the first dependency (List A depends on List B) triggers the expected
behavior. ADF Desktop Integration considers other dependencies to be
misconfigurations.

You can create a chain of dependencies as follows:
- List A depends on List B
- List B depends on List C

In this scenario, a change in List C (grandparent list of values) updates both Lists
A (grandchild list of values) and B (child list of values). If you create a similar
scenario, you must ensure that both the grandchild list of values and the child list
of values, get refreshed whenever the parent list of values selection is changed.
You can do this by specifying the two bind variables on the grandchild list of
values to set up an implicit dependency between the view attributes. Another way

8-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating Dependent Lists of Values in an Integrated Excel Workbook

is to declare explicit attribute dependencies between each of the view attributes
that have model-driven lists configured. For example, specify that attribute A
depends on attribute B and attribute C, and attribute B depends on attribute C.

s Caching in a dependent list of values is discussed in Section 16.4, "Caching Lists of
Values for Use Across Multiple Web Sessions."

= ADF Desktop Integration caches the values that appear in a dependent list of
values. Hence, the dependent list item values for a given parent list selection must
remain constant across all rows of an ADF Table component.

= ADF List of Values components using date values are not supported.

8.5.1 How to Create Dependent Lists of Values in Excel Worksheets

Use two instances of the ADF List of Values component to create a dependent list of
values in an Excel worksheet.

Specify the list binding referenced by the parent ADF List of Values component as a
value for the child ADF List of Values component's ListOfValues.DependsOnListID
property.

For more information about ADF List of Values, see Section A.5, "ADF List of Values
Component Properties."

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more
information, see Section 8.5, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 8.1.2,
"Additional Functionality for Adding List of Values to an Integrated Excel Workbook."

To create a dependent list of values in an Excel worksheet:
1. If not present, add the required list bindings to your page definition file.

For more information about adding bindings to page definition files, see
Section 4.2, "Working with Page Definition Files for an Integrated Excel
Workbook."

2. Open the integrated Excel workbook.

3. Insert two ADF List of Values components into your integrated Excel workbook,
as described in Section 8.2, "Creating a List of Values in an Excel Worksheet."

4. In the property inspector for the ADF List of Values component that is to serve as
the parent in the dependent list of values, set the value of the
ListOfValues.ListID property to the list binding that is the parent.

5. In the property inspector for the ADF List of Values component that is to serve as
the child in the dependent list of values, set the following properties:

m ListOfvValues.ListID
Specify the list binding that is the child in the dependent list of values.
s ListOfvalues.DependsOnListID

Select the list binding that you specified for the ADF List of Values component
that serves as a parent in Step 4.

Working with Lists of Values 8-13

Creating Dependent Lists of Values in an Integrated Excel Workbook

8.5.2 What Happens at Runtime: How an Excel Worksheet Renders a Dependent List of

Values

8-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Figure 8-9 shows the property inspector for the child ADF List of Values
where the RegionId list binding is specified as the parent list of values
(DependsOnListID property) and CountryId list is the dependent list of values

(ListID property).

Figure 8-9 Design Time Dependent List of Values in an Excel Worksheet

«dd-Ins

Oracle ADF

Acrobat

#{bindings .Regionic.label} Regionld

#{bindings Countryld.label}

#{bing”

"

ngs.|n
ail.hin
nalings
intinp

1
o
5
"

b3
=
o,

Edit Component: ADF List of Values

Edit the properties and press OK to save your changes

B2

4

Y

Appearance
StyleName
Tooltip
Data
ListCfValues
DependsOnList|D
ListlD
ReadOnhy
Design
Annotation
Companent|D
Layout

Fosttion

ListID
Alist binding.

6. Click OK.

At runtime, ADF Desktop Integration renders both instances of the ADF List of Values
component. When the end user selects a value from the parent list of values, the

Input Text
#{bindings Countryld_hints tooltip}

Regionld

CEEEPENEEsEEsE

Select Binding

Page Definition: ExcelWarehouselnventory

[@ Countryld (list)
(5} Managerld (list)
Regianld (list)

&

o) [oms

selected value determines the list of values in the child list.

Figure 8-10 shows an example where Country, a dependent list value, displays only

the states from the selected Region list value.

Creating Dependent Lists of Values in an Integrated Excel Workbook

Figure 8-10 Runtime Dependent List of Values in an Excel Worksheet

by B C D E F G H 1
ORACLE Edit Warehouse Inventory
Warehouse
Warehouse ld. 301
Address 8921 King Way Region Morth America
City Toronto Country JCanada ' =
State Manager |oon

Dominican Republic
Canada

~
Zip Code Phone *

8.5.3 How to Create Dependent Lists of Values in ADF Table Component Columns

Use instances of the ModelDrivenColumnComponent subcomponent to render both
lists of values in a dependent list of values in ADF Table component columns at
runtime.

Specify a tree binding attribute for the parent ModelDrivenColumnComponent
subcomponent's Value property. Also specify a tree binding attribute for the child
ModelDrivenColumnComponent subcomponent's Value property. Ensure that both
tree binding attributes are associated with model-driven lists before you add the tree
binding to your page definition file. Ensure also that the dependency between the
parent and child model-driven lists is configured on the server.

The Region and Country columns in the Summit sample application's
EditCustomers-DT.x1lsx workbook demonstrate an implementation of a dependent
list of values in an ADF Table component.

For information about creating a model-driven list, see the "How to Create a
Model-Driven List" section of Fusion Developer’s Guide for Oracle Application
Development Framework. For information about adding a tree binding to your page
definition file, see Section 4.2, "Working with Page Definition Files for an Integrated
Excel Workbook."

For information about the ModelDrivenColumnComponent subcomponent, see
Section A.8, "ModelDrivenColumnComponent Subcomponent Properties."

Before you begin:

It may be helpful to have an understanding of dependent list of values. For more
information, see Section 8.5, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 8.1.2,
"Additional Functionality for Adding List of Values to an Integrated Excel Workbook."

To create a dependent list of values in an ADF Table component:
1. Open the integrated Excel workbook.

2. If not present, insert an ADF Table component.

For more information, see Section 7.3, "Inserting an ADF Table Component into an
Excel Worksheet."

Working with Lists of Values 8-15

Creating Dependent Lists of Values in an Integrated Excel Workbook

In the property inspector for the ADF Table component, invoke the Edit Columns
dialog by clicking the browse (...) icon beside the input field for Columns.

Add a new column (or modify an existing column) to serve as the parent list of
values. Specify ModelDrivenColumnComponent as the column's subcomponent
type. For more information about creating a list of values, see Section 8.3,
"Creating a List of Values in an ADF Table Component Column."

Add a new column (or modify an existing column) to serve as the child list of
values. Specify ModelDrivenColumnComponent as the column's subcomponent
type. For more information about creating a list of values, see Section 8.3,
"Creating a List of Values in an ADF Table Component Column."

Click OK.

8.5.4 What Happens at Runtime: ADF Table Component Column Renders a Dependent
List of Values

At runtime, the ADF Table component renders both instances of the
ModelDrivenColumnComponent subcomponent in the columns that you configured
to display these instances. When the end user selects a value from the parent list of
values, the selected value determines the list of values in the child list.

Figure 8-11 shows an example from the Summit sample application's
EditCustomers-DT.x1lsx workbook where the value that the end user selects in the
Region column list of values results in the corresponding values for sub-category
appearing in the Country column list of values.

Figure 8—11 Runtime Dependent List of Values in an ADF Table Component's Columns

ORACLE

Changed_| Status

Edit Customers

))
- 1" Name - | Credit Rating | Address - City | State 1 Zip Code | Region - | Country ~15al
Zebra's Bicyclss Fair 3910 Colley Ave Marfalk WA 23508 Morth America USA IMag
Superi ioyele Fair uperiordve E - Clevsland OH 44114 Europe France ,v 1

Schindle

53
c ir 53 (17th © o ceen TR |France .
e Fair = 17th St Topeka KS G804 North America | German <
R.epub
r's Sports Fair 4479 ForsstPark Ave Stlouis [Le] 3108 North America |Russian Federation <

Earry's Basksthall Fair 56 E Superior 5t Chizageo IL &0811 Morth America LSA Mag

Gavin Sp

sorting Goods Fair

935 SE Hawthorne Fortland R 47214 Morth America USA Mag

Note: When the end user changes the parent list selection, the child
list items are changed for the current row only.

8-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

9

Adding Interactivity to Your Integrated Excel

Workbook

This chapter describes how to configure action sets to allow your users invoke actions
such as Upload and Download, how to configure the ribbon tab, and how to use EL
expressions in Excel formulas.

This chapter includes the following sections:

About Adding Interactivity to an Integrated Excel Workbook
Using Action Sets

Configuring the Runtime Ribbon Tab

Displaying Web Pages from a Fusion Web Application
Using Row-Level Action Sets in a Table Column

Using EL Expression to Generate an Excel Formula

Using Calculated Cells in an Integrated Excel Workbook
Using Macros in an Integrated Excel Workbook

9.1 About Adding Interactivity to an Integrated Excel Workbook

You can make your integrated workbook interactive to the end user by using features
such as action sets, configuring the runtime ribbon tab, creating dependent list of
values, and so on. Figure 9-1 shows some of the interactive features.

Adding Interactivity to Your Integrated Excel Workbook 9-1

About Adding Interactivity to an Integrated Excel Workbook

Figure 9—-1 Interactivity Features in an Integrated Excel Workbook

o
Edit Actions =)
Members: Properties:
+] B8
+
Country Based Search &J
Search Customer By Country
Country name
Add - Search | Cancel
ADFmAction
OK Cancel
Compenentiction ok]
"W WorkshestMethod BT Web Page from Fusion Web Application
Confirmation
Action Sets L]
Dialog |
| @) @ =
i
Home Insert Page Layout Formulas Data Review View Developer Add-Ins Customers
= WS
dade PO B EB
Login Logout Clear Edit About Download Upload Status
All Data Options Viewer

Workbook Worksheet

Runtime Ribbon Tab

Adding interactivity to an integrated Excel workbook permits end users to run action
sets that invoke Oracle ADF functionality in the workbook. It also provides status
messages, alert messages, and error handling in the integrated Excel workbook while
these action sets run. In addition to end-user gestures (double-click, click, select) on the
ADF Desktop Integration components that invoke action sets, you can configure

workbook and worksheet ribbon commands that end users use at runtime to invoke
action sets.

9.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples

To make your integrated Excel workbook interactive, you can use action sets that are
invoked by the end user's gestures. For example, as shown in Figure 9-2, the
Download All Customers ribbon command in CustomerSearch-DT.x1sx uses an
action set with two actions to reset the query values associated with the worksheet.
Figure 9-2 also shows a ribbon command (Search Customers) where end users can
invoke search functionality.

9-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Figure 9-2 Action Sets of Download All Customers Ribbon Command

Edit Worksheet Properties

==l

Edit the properties and prese OK to save your changes

4 Behavior
> Events
> Protection
4 Ribbon Commands
> [0
4 1
Annotation
D
Image
Label
4 SelectActionSet
> ActionQptions
Actions
> [0
> 1l
> Alert
Annotation

Actions

IQQ\ =] 5

oy &
Startup Home Insert Page Layout Formulas Data Review View Add-I

Ribbon Commands (2) cbj @n é é//_zj @ El [E

:
#{res[encel search bbon search Tt login Logout Clear Edit About | Search | Download | Status

m

Hires[excel search rbbon reset T All Data Options Customers All Customers Viewer
Waorkbook Worksheet
MEN368572107 -
Downioad \ G17 - f= | North America
#{res['excel_search ribbon reset']} A B I o E F
Actions (2)
Actions (2)
resetCuenyValues
TABRE36E301 Dovrioad L

9.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook

In addition to action sets and runtime ribbon tab, you can add additional functionality
to configure your workbook. The following sections describe other functionality that
you can use:

Display Web Pages: You can display pages from the Fusion web application with
which you integrate your Excel workbook. For more information, see Section 9.4,
"Displaying Web Pages from a Fusion Web Application."

Dependent List of Values: You can configure an ADF List of Values component as
a dependent list of values component whose values are determined by another list
of values component. For more information, see Section 8.5, "Creating Dependent
Lists of Values in an Integrated Excel Workbook."

Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Section 10.2, "Working with
Styles."

Macros: Use macros and Excel formulas to manage the data that you want to
download from or upload to your Fusion web application. For more information,
see Section 9.7, "Using Calculated Cells in an Integrated Excel Workbook," and
Section 9.8, "Using Macros in an Integrated Excel Workbook."

9.2 Using Action Sets

An action set is an ordered list of one or more actions that run in a specified order. The
types of actions are as follows:

ADFmAction
ComponentAction
WorksheetMethod
Confirmation

Dialog

An action set can be invoked by an end-user's gesture (for example, clicking a ribbon
command) or an Excel worksheet event. Where an end-user gesture invokes an action
set, the name of the action set property in the ADF component's property inspector is
prefaced by the name of the gesture required. The following list describes the property

Adding Interactivity to Your Integrated Excel Workbook 9-3

Using Action Sets

names that ADF Desktop Integration displays in property inspectors, and what user
gesture can invoke an action set:

»s ClickActionSet for an ADF Button component, as the end user clicks the button
to invoke the associated action set

= DoubleClickActionSet for an ADF Input Text or ADF Output Text component, as
the end user double-clicks these components to invoke the associated action set

m SelectActionSet for a worksheet ribbon command, as the end user selects a
ribbon command to invoke the associated action set

= ActionSet for a worksheet event, as no explicit end-user gesture is required to
invoke the action set

You invoke the Edit Action dialog from an ADF component, worksheet ribbon
command, or worksheet event to define or configure an action set. In addition to
defining the actions that an action set invokes, you can configure the action set's Alert
properties to provide feedback on the result of invocation of an action set. You
configure the Status properties for an action set to display a progress bar to end users
while an action set runs the actions you define. For information about opening the Edit
Action dialog, see Section 5.12, "Using the Collection Editors."

The Summit sample application for ADF Desktop Integration provides many
examples of action sets in use. One example is the ribbon command labeled Upload at
runtime in the EditCustomers-DT.x1sx workbook. An action set has been configured
for this ribbon command that invokes the ADF Table component's Upload action
illustrated by Figure 9-3 which shows the Edit Action dialog in design mode.

Figure 9-3 Action Set for Upload Ribbon Command in EditCustomers-DT.xIsx Workbook

Edit Worksheet Properties Lo ||

Edit the properties and press OK to save your changes.

4 Behavior F| Oracle AC
» Events Ensure that Customers table gets populated when workb R
> Protection Bine
4 Ribbon Commands Ribbon Commands (2) Availab
> [0 Download all Customers m_ #{bindi
> 1] Upload all changes in Customers table . tomers @
Edit Ribbon Commands @
Members: Upload all changes in Customers table properties
0| Download zll Customers + B=c] A
il Upload all changes in Customers| Ll|
> :__Appealal'_»pe
4 SelectActionSet TAB1598787742 Upload
> ActionOptions
> Actions TAB1598787742 Upload
> Aet
Annctation
4 Status
AlowCancel True
Enabled True
Message #ires['excel customers ribbon_upload message']}
Mode MainBarOnly
Title #{res['excel customers ribbon_upload title T}
4 Design
—] Annotation Upload all changes in Customers table
D MEN151833632
] m b Behavior
Add] [Remove

9-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Tip: Write a description in the Annotation field for each action that
you add to the Edit Action dialog. The description you write appears
in the Members list view and can help you manage multiple items
more effectively.

Note: ADF Desktop Integration invokes the actions in an action set
in the order that you specify in the Members list view.

9.2.1 How to Invoke a Method Action Binding in an Action Set

You can invoke multiple method action bindings in an action set. Page definition files
define what action bindings are available to invoke in a worksheet that you integrate
with your Fusion web application. For more information about page definition files
and action bindings in an integrated Excel workbook, see Section 4.2, "Working with
Page Definition Files for an Integrated Excel Workbook."

You use the Edit Action dialog to specify a method action binding to invoke.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a method action binding in an action set:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and invoke the dropdown list from the Add button
illustrated here.

[Add YT‘L | Remove |
<

I Amre [

3. Select ADFmAction and configure its properties as described in the following list:
m ActionID

Click the browse (...) icon beside the input field for ActionID to invoke the
Binding ID picker and select the method action binding that the action set
invokes. Figure 94, for example, shows the Execute action binding that is the
first action the Download action set in the Summit sample application's
EditCustomers-DT.x1lsx workbook invokes.

= Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

Adding Interactivity to Your Integrated Excel Workbook 9-5

Using Action Sets

Figure 9-4 Execute Action Binding

Edit Actions

Members Execute query on Customers iterator properties:
[l] Execute query on Customers iter: J}l| 1
| 4 Action
ActionlD Execute
Select Binding (mE3a)

Page Definition: ExcelEditCustomers

Createlnsert (action)
(e Commit (action)

4. Click OK.

9.2.2 How to Invoke Component Actions in an Action Set

Some components, such as the ADF Table component, expose actions that can be used
to manage the transfer of data between Excel worksheets that you integrate with a
Fusion web application. More information about the actions available for ADF
Desktop Integration components can be found in Appendix A, "ADF Desktop
Integration Component Properties and Actions."

You configure action sets to invoke one or more component actions by adding
component actions to the array of actions in the action set. For example, Figure 9-5
shows the Choose Component Action dialog where the Download action exposed by
the ADF Table component present in the Summit sample application's
EditCustomers-DT.x1lsx workbook can be selected for invocation by that workbook's
Download ribbon command's SelectActionSet action set.

Figure 9-5 Choose Component Method Dialog

Edit Actions

Members TAB1598787742 Download properties:
0| Execute query on Customers iteri) | 4 EEEN
il TAB1598787742. Download 2l |
4 Action
Action Download
ComponentlD TAB1598787742
Ne options available
Choose Component Action @I

Choose an action exposed by compenents on the current worksheet. Hires{'excelcustomers.ribbon.download.d

=0 TAB1598787742 -
& ClearCachedRowAttibutes
- DeleteFlaggedRows
DigplayRowEmors

Display TableEmors

-{=] DownloadFlaggedRows
& DownloadForinsert

FlagAllRows

Inttialize
MarkAllRowsChanged
MarAllRows Unchanged
ResizeColumns

~{=] RowDownSync
RowlpSync
RowUpSyncNoFail
UnflagAlRows B
Upload

=11 Inlnad AllOrhrthina

m

-

9-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Note: The Choose Component Action dialog appears empty if the
current worksheet does not include any components that expose
component actions.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a component action from an action set:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and invoke the dropdown list from the Add button
illustrated here.

[Add YT‘U Remove |
[.« [

3. Select ComponentAction and configure its properties as described in the
following list:

s ComponentID

Click the browse (...) icon beside the input field for ComponentID to invoke the
Choose Component Method dialog and select the component action that the
action set invokes at runtime. This populates the ComponentID and Action
input fields.

= Action
The component's action that the action set invokes at runtime.
= Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

m DetailStatusMessage

Specify an optional literal value or EL expression that appears in the Status
Message window (see Section 9.2.5, "How to Display a Progress Bar while an
Action Set Executes").

4. Click OK.

9.2.3 What You May Need to Know About an Action Set Invoking a Component Action

Note the following pieces of information about the behavior of action sets in
integrated Excel workbooks.

Invoking Action Sets Before Logging In

Some component actions, such as the Download action of the ADF Table component,
require a connection to the Fusion web application to complete successfully. If the end
user invokes an action set that includes such a component action, the integrated Excel
workbook attempts to connect to the Fusion web application and, if necessary, invokes
the authentication process described in Section 12.2, "Authenticating the Excel

Adding Interactivity to Your Integrated Excel Workbook 9-7

Using Action Sets

Workbook User."

Verifying an Action Set Invokes the Correct Component Action

When creating an action set, ensure that you invoke the component action from the
correct instance of a component when a worksheet includes multiple instances of a
component. Figure 9—6 shows the Choose Component Action dialog displaying two
instances of the ADF Table component. Use the value of the ComponentID property
described in Table A-1 to correctly identify the instance of a component on which you
want to invoke a component action.

Figure 9—-6 Choose Component Action Dialog

1 Edit Ribbon Commands

Members: Download properties:

) S

N Edit Actions

Members:

3 EETTET—

Choose Component Action

Componentiction properties:

B4l |

=l

Choose an action exposed by components on the current worksheet
-3 TAB1197202060 -
=-E3 TAB1902267957
ClearCachedRow/Attributes
DeleteFlaggedRows
DisplayRowEmaors
Display TableErrors
DownloadFlaggedRows
DownloadForinsert
FlagAlIRows

m

YL
T .

9.2.4 How to Invoke an Action Set from a Worksheet Event

ADF Desktop Integration provides several worksheet events that, when triggered, can
invoke an action set. The following worksheet events can invoke an action set:

n Startup
s Shutdown

Do not invoke a Dialog action from this event if the Dialog action's Target
property is set to TaskPane.

s Activate
s Deactivate

You add an element to the array of events (WorksheetEvent list) referenced by the
Events worksheet property. You specify an event and the action set that it invokes in
the element that you add. For more information about the Events worksheet property
and the worksheet events that can invoke an action set, see Table A-21. See Table A-16
for more information about action sets.

Use the Edit Events dialog to specify an action set to be invoked by a worksheet event.

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

9-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke an action set from a worksheet event:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input
field for the Events property.

4, In the Edit Events dialog, click Add to add a new element that specifies an event
and a corresponding action set that the event invokes.

Figure 9-7 shows an example from the EditCustomers-DT.x1sx file where the
worksheet event, Startup, invokes an action set that invokes the ADF Table
component's Download action.

Figure 9—-7 Worksheet Startup Event Invokes an Action Set

E

Edit Worksheet Properties =] IF

Edit the properties and press OK to save your changes.

== ﬁl |
Behavior
a Events Ensure that Customers table gets populated when workb:
> [0] Ensure that Customers table gets populated when workbook is open
Edit Events @
Members: Ensure that Customers table gets populated when workbook: is opened for the first time properties:
1] Ensure that Customers table gets(lIFS = l|
4 Behavior
4 ActionSet Actions (4)
> ActionOptions
Actions (4) @
> [0] Initizlize needed in Startup before download-+esize
| Execute query on Customers iterator
> [2 TAB1598787742.Download
> [3] TAB1598787742 ResizeColumns
> Mlert
Annotation
F > Status
1 InvokeOnceOnly True
» Design
4 1 3 Actions
The callection of actions invoked.
Add] [Remove
5. Click OK.

9.2.5 How to Display a Progress Bar while an Action Set Executes

You can display a status message and visual progress bars to end users while an action
set runs by specifying values for the Status properties in an action set.

While using the Status properties in an action set, you can provide a visual indication
of the progress through progress bars. The Mode attribute of the Status properties
enables you to choose the visual appearance of the progress bars at runtime. There are
two types of progress bars available: main progress bar and detail progress bar. The
main progress bar indicates the progress through the actions in an action set, and the
detail progress bar indicates the progress of the current action.

Adding Interactivity to Your Integrated Excel Workbook 9-9

Using Action Sets

You use the property inspector for the action set where you want to configure the
Status properties in the action set. Use, for example, the Edit Ribbons Command
dialog if you want to configure Status properties in the SelectActionSet thata
ribbon command invokes at runtime.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To display a status message:
1. Open the integrated Excel workbook.

2. Open the Edit Actions dialog of, for example, the ribbon command that invokes
the action set.

3. Set values for the properties in the Status group of properties as described in
Table 9-1.

Table 9—1 Status Group of Properties

For this property... Enter or select this value...

AllowCancel True to display the Cancel button in the status dialog box.

It indicates whether the action set execution can be canceled by
the end user.

For more information about the Cancel button, see Section 9.2.8,
"What You May Need to Know About Canceling an Action."

Enabled True to display a status message. True is the default value.

Message An optional EL expression or literal value that resolves to the
status message to display at runtime.

For example, the Upload ribbon command in the
EditCustomers-DT.x1sx file has the following EL expression
configured for the Message property:

#{res['excel.customers.ribbon.upload.message']}

Mode Choose the visual appearance of progress bars.

= Automatic: ADF Desktop Integration analyzes the action set
to determine which progress bars to display.

= BothBarsAlways: Shows both main and detail progress bars.

= MainBarOnly: Shows one progress bar only. The bar displays
progress through the list of actions.

= DetailBarOnly: Shows one progress bar only. The bar
displays progress of the current action.

= MainMessageOnly: None of the progress bars are shown.

Title An optional EL expression or literal value that resolves to the
title of the status message to display at runtime.

For example, the Upload ribbon command in the
EditCustomers-DT.x1sx file has the following EL expression
configured for the Title property:

#{res['excel.customers.ribbon.upload.title']}

9-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Note: ADF Desktop Integration renders generic text at runtime if
you do not specify values for the Message and Title properties
described in Table 9-1. For this reason, we recommend that you
provide values for these properties that are specific to the functional
context of your action set.

Figure 9-8 shows the property values, along with their corresponding visual
elements, configured for the Status group of properties of an ADF Table
component's Upload action.

Figure 9-8 Status Message Properties in an Action Set

Edit Worksheet Properties @I

Edit the properties and press OK to save your changes.

» |

Startup
[» Protection
4 Ribbon Commands Ribbon Commands (4)
4 [0 #ires[excel customers ibbon upload T
Annotation
D MEN151833632 E
Image Upload
Label #res['excel .customers ribbon upload']}
4 SelectActionSet Upload Data
> ActionOptions
> Actions Upload Data Ll
> Alert
Annaotation
AllowCancel True
Enabled True
Message #lres['excel sibbon upload ge'T}
Mode BothBarsAlways T
Title #lres['excel customers ribbon upload title']} =
Status

The properties of the status feature that may appear while the Actions are invoked.

0K || Cancal |

Customer Records Upload

Submiting records to the application

Upload changes
I 0000

For more information about the Status group of properties, see the entry for
Status in Table A-16.

You can also use the optional DetailStatusMessage property to provide
additional information to the user. For more information about the
DetailStatusMessage property, see Section 9.2.2, "How to Invoke Component
Actions in an Action Set."

4. Click OK.

Adding Interactivity to Your Integrated Excel Workbook 9-11

Using Action Sets

9.2.6 What Happens at Runtime: How the Action Set Displays a Status Message

When an action set is invoked, a status message appears if the Status properties are
configured to display a status message. Figure 9-9 shows the status message that
appears at runtime when the action set configured for the Upload ribbon command in

the EditCustomers-DT.x1sx workbook runs.

Figure 9-9 Runtime View of Status Message

Customers

Submitting customer records to the application

Uploading customer data

At runtime, if the value of the Message property is empty, ADF Desktop Integration
provides a default localized value. If the Title property is empty, the label from the

action set container (such as a ribbon command) is used. If the label of the container is

also empty, then the default value provided by ADF Desktop Integration is used.

9.2.7 What You May Need to Know About Progress Bars

Note the following pieces of information about the progress bars:

The progress bar window hides automatically when an action (such as alert,
confirm, dialog, or upload options) prompts for user input.

Some action types, such as ADFmAction, do not support the display of incremental
progress in the detail bar. For example, Figure 9-10 shows the progress bar of the
Commit action with Mode set to BothBarsAlways. Notice that the detail bar appears,
but does not show any progress.

Figure 9-10 Progress Bar for ADFmAction Type

4 Commit

Processing...

Download form data

In the Automatic mode, if the action set has fewer than three actions, the status
message dialog shows the detail progress bar only. If the action set has three or
more actions, the dialog always shows the main bar, but the detail progress bar is
shown only if any of the actions in the action set is capable of incremental
progress. If none of the actions is capable of incremental progress, the detail bar is
suppressed.

If required, you can display the detail progress bar without displaying the main
progress bar. Such a configuration may be useful for an action set with a few quick
actions and one long action, for example, run a query and then download data.

9-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

s For very quick action sets (for example, Worksheet . DownSync) or action sets that
only display a dialog, the best practice is to disable the status message.

9.2.8 What You May Need to Know About Canceling an Action

Each action in an action set can be categorized as non-interruptible, interruptible, or
dialog.

The non-interruptible actions are atomic and cannot be canceled, or interrupted, during
their operation. The following actions are non-interruptible:

s Worksheet actions: UpSync, DownSync
s ADFmAction

s Table actions: RowUpSync, RowUpSyncNoFail, RowDownSync,
ClearCachedRowAttributes, FlagAllRows, UnflagAllRows, MarkAl1RowsChanged,
MarkAllRowsUnchanged, Initialize

If the Cancel button is clicked while a non-interruptible action is running, the
following happens:

1. The current action completes.

2. The action set is then aborted, and is not treated as a failure.

3. ActionSet.Alert is skipped.

4. The success or failure actions configured for the action set do not run.
5

The message content for the worksheet in the Status Viewer (if open) does not
change. For more information about the Status Viewer, see Section 13.2, "Using the
Status Viewer to Report Error Messages to End Users."

The interruptible actions can be canceled during their operation. The following Table
actions are interruptible:

s Upload, UploadAllOrNothing
m Download, DownloadFlaggedRows, DownloadForInsert
m DeleteFlaggedRows

If the Cancel button is clicked while an interruptible action is running, the following
happens:

1. The current operation halts without completing.
2. The table is cleaned up:

= Upload action: For rows that were successfully uploaded before the Cancel
button was clicked, the Changed column cell flags are cleared or are left as is,
and CommitBatchActionID action runs. If a row failed during upload, the
Changed column cell is not affected and error status is displayed. The rows
that did not get uploaded continue to display the changed status in the
Changed column and the Status column remains untouched.

m UploadAllOrNothing action: The CommitBatchActionID action does not run.
The Changed column flags for all rows remain set. Failed rows display error
message. Successfully uploaded rows have Status cells and error rows
unpopulated.

s Download, DownloadForInsert action: Rows that were downloaded before the
Cancel button was clicked are left as is and are not removed. The table is then
sized accordingly.

Adding Interactivity to Your Integrated Excel Workbook 9-13

Using Action Sets

= DownloadFlaggedRows action: Flagged rows that were downloaded before the
Cancel button was clicked have their flag cells cleared. The remaining flagged
rows continue to display the flag status.

s DeleteFlaggedRows action: The rows that were deleted on server before the
Cancel button was clicked are removed from the worksheet. The remaining
flagged rows continue to display the flag status.

3. Table.FailureActionID does not run.
4. Remaining actions in the action set are skipped.
5. The Status Viewer reflects the status of the rows processed before cancelation.

The dialog actions show modal dialogs which can be canceled or closed. The Action Set
Status Message dialog is not displayed during the execution of one of these actions.
The following actions are dialog type:

s Confirmation
s Dialog
s DisplayWorksheetErrors, DisplayRowErrors, DisplayTableErrors

The appearance of a Cancel button that allows end users cancel an action set requires
you to set the AllowCancel property set to True, as described in Section 9.2.5, "How to
Display a Progress Bar while an Action Set Executes." If the end user cancels the action
set, the Cancel button gets disabled, a warning message appears informing the user
that the operation has been canceled, and the action set is aborted.

Tip: To cancel the operation of an action set, the end user can press
the Space Bar key on the keyboard.

9.2.9 How to Provide an Alert After the Invocation of an Action Set

You can display an alert message to end users that notifies them when an action set
operation completes successfully or fails. For example, you can display a message
when all actions in an action set succeed or when there was at least one failure. The
ActionSet.Alert group of properties configures this behavior. Consider using an alert
message for action sets that execute very quickly but have no interactive actions. In
these cases, you may want to disable the ActionSet.Status group of properties and
enable the ActionSet.Alert properties.

Note: An alert message does not appear if the end user cancels the
execution of an action set. For example, you configure an alert
message to appear after an action set that invokes a web page in a
popup dialog completes execution. At runtime, the end user cancels
execution of the action set by closing the popup dialog using the close
button of the Excel web browser control that hosts the popup dialog.
In this scenario, no alert message appears. For more information about
displaying web pages, see Section 9.4, "Displaying Web Pages from a
Fusion Web Application.”

Before you begin:

It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,

9-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To add an alert to an action set:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand the Ribbon Commands node and
select the ribbon command that contains the SelectActionSet for which you want
to display an alert.

4. Expand the Alert group of properties for the action set and set values as described
in Table 9-2.

For example, Figure 9-11 shows values configured for the SuccessMessage
property in the Alert group of properties.

Table 9-2 ActionSet.Alert Group of Properties

For this property... Enter or select this value...

Enabled Select True from the dropdown list to display an alert message
once the action set completes. The default value is False.

FailureMessage Specify an optional EL expression or literal value that evaluates
to a message to appear in the dialog if errors occur during
execution of the action set.

For more information about error handling, see Section 13.2,
"Using the Status Viewer to Report Error Messages to End
Users."

OKButtonLabel Specify an optional EL expression or literal value that evaluates
to a message to appear in the OK button of the dialog.

SuccessMessage Specify an optional EL expression or literal value that evaluates
to a message to appear in the dialog if no errors occur during the
execution of the action set.

Figure 9-11 Alert Message Properties in an Action Set

Edit Ribbon Commands (23]
Members: Upload all changes in Customers table properties:
0| Download all Customers 2] A
e e e 2! |
> Appearance
4 Behavior
4 SelectActionSet TAB1598787742 Upload
> ActionOptions
> Actions TAB1598787742 Upload
a4 Mert
Enabled True
Failure Message
OKButton Label
SuccessMessage Upload Completed (=)
Title
Annotation
> Status
> Design
] i + Success

The text that appears in the main area of the alert window when the actions
complete successfully. f this property is empty, a default text appears at runtime.

5. Click OK.

Adding Interactivity to Your Integrated Excel Workbook 9-15

Using Action Sets

9.2.10 What Happens at Runtime: How the Action Set Provides an Alert

Figure 9-12 shows an alert message configured for the SuccessMessage property in the
Alert group of properties that appears at runtime when the action set successfully
completes execution.

Figure 9-12 Runtime View of an Alert Message

ORACLE Edit Customers
]
Changed | Status - " Name | Credit Rating | Phone | Address
Ity el Zebra's Bicycles Excellent
successfully | A
Superior Bicycle
Eicycle World Good 5300 SWH1
Upead ==
l Upload Completed ,
A
Il
Acme Sporting Goods Fair TT0 4th Avi

At runtime, if the value of the FailureMessage, OKButtonLabel, or SuccessMessage
property is empty, ADF Desktop Integration provides a default, localized value.

9.2.11 How to Configure Error Handling for an Action Set

You specify values for an action set's ActionOptions properties to determine what an
action set does if one of the following events occurs:

= An action in the action set fails
= All actions in the action set complete successfully

For information about how to invoke these editors, or about an ADF component's
property inspector, see Chapter 5, "Getting Started with the Development Tools." More
information about action set properties can be found in Table A.13.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

Integrated Excel workbooks report status information and errors that occur at runtime
to the end user in the Status Viewer. For more information, see Section 13.2, "Using the
Status Viewer to Report Error Messages to End Users."

To configure error handling for an action set:
1. Open the integrated Excel workbook.

2. Open the appropriate editor or property inspector and configure values for the
action set's ActionOptions properties as described in the Table 9-3.

9-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Table 9-3 ActionOptions Properties

Set this property... To...

AbortOnFailure True (default value) so that the action set does not run any
further actions if the current action fails. When set to False, the
action set runs all actions regardless of the success or failure of
previous actions.

FailureActionID (Optional) Specify an ADF Model action to invoke if an action
set does not complete successfully.

For example, you can specify an ADF Model action that rolls
back changes made during the unsuccessful invocation of the
action set.

Note that calling an action set that changes a record set's
currency during the execution of FailureActionID methods is
not supported. The Rollback method also should not be
specified as the FailureActionID in an action set.

SuccessActionID (Optional) Specify an ADF Model action to invoke if an action
set completes successfully.

For example, you can specify an action binding that runs a
commit action. A value for this property is optional and you can
specify a final action, such as an action binding that runs a
commit action, in the action set itself.

Note that calling an action set that changes a record set's
currency during the execution of SuccessActionID methods is
not supported.

3. Click OK.

9.2.12 How to Invoke a Confirmation Action in an Action Set

The Confirmation action presents the end user with a simple message dialog that
displays the title and prompt message specified in the Confirmation action properties.

The execution of the action set pauses until the end user clicks one of the two buttons
provided. If the user clicks OK, the action set proceeds with the remaining actions in
the Action Set. If the user clicks Cancel, the action set is aborted at that point and the
remaining actions are not invoked. As there is no error or success, the
FailureActionID or SuccessActionID action is not invoked.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 9.2, "Using Action Sets."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a Confirmation action from a component
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and click the down arrow in the Add button to open a
dropdown list, as illustrated here.

[Add YT‘L | Remove |
o

[arrea |

Adding Interactivity to Your Integrated Excel Workbook 9-17

Using Action Sets

3. Select Confirmation and configure its Data properties as described in the
following list:

m CancelButtonLabel

Specify an optional EL expression or literal value that evaluates to a message
to appear in the Cancel button of the dialog.

s OKButtonLabel

Specify an optional EL expression or literal value that evaluates to a message
to appear in the OK button of the dialog.

n Prompt

Specify an optional EL expression or literal value that evaluates to a message
to appear as the prompt of the dialog.

s Title

Specify an optional EL expression or literal value that evaluates to a title of the
confirmation dialog to display at runtime.

4. Optionally, enter a comment in the Annotation property about the purpose of the
action that you are configuring. The value you set for this property has no
functional impact.

5. Click OK.

Note: We recommend that you provide values for the Title and
Prompt properties that are specific to your business use case.

Figure 9-13 shows the Edit Action dialog with default attribute values for the Delete
flagged rows ribbon command in the Summit sample application's
EditAllInventory-DT.x1lsx workbook.

Figure 9-13 Confirmation Action Attributes

-

Edit Ribbon Commands | &2 | \wareh
Members: Delete flagged rows properties: nding.
oryW:

0| Download all inventory informatic
1| Upload all changes

ﬁl | e bindli

ess.in
Pl Delete flagged rows . > Appearance
4_Behavior
Edit Actions (=)
Members Corfimmation to delete properties:
0 — to delete +
1| Delete Flagged
CancelButtonLabel
OKButton Label
Prompt #{res['excel inventory ribbon delete_confirmation prompt T}
Title #{res['excel inventory ribbon delete _confirmation title T}
> Design
Add 'I [Remove

9-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the Runtime Ribbon Tab

9.2.13 What Happens at Runtime: How the Action Set Provides a Confirmation

Once the action set is invoked, the user is prompted with a confirmation dialog. If the
user clicks OK, the next action operation is performed; and if the user clicks Cancel,
the Action Set execution terminates without an error.

Note: If the user cancels a Confirmation action, the FailureActionID
binding does not run.

Figure 9-14 shows the Confirmation dialog that appears when you click the Delete
flagged rows ribbon command in the Summit sample application's
EditAllInventory-DT.x1lsx workbook.

Figure 9—-14 Confirmation Dialog

ORACLE" Editan Inventory

Changed | Flagged | Status | Product; | Amount in Stock [Out of Stock Ex
| | 50169 2530
L]
41100 350

Confirmation @

Flagged inventory records will be deleted, would you like to
continue?

o

AnADD M Pharmmamanal cala

At runtime, if the value of the CancelButtonLabel, OKButtonLabel, or Prompt property
is empty, ADF Desktop Integration provides a default, localized value. If the Title
property is empty, the label from the action set container (such as a ribbon command)
is used. If the label of the container is also empty, then the default value provided by
ADF Desktop Integration is used.

9.3 Configuring the Runtime Ribbon Tab

You can add a runtime ribbon tab to the Excel Ribbon in your integrated Excel
workbook with ribbon commands to invoke Oracle ADF functionality. The runtime
ribbon tab groups these items into two groups: workbook and worksheet. You
configure the workbook group to display ribbon commands to invoke the workbook
actions described in Section A.14, "Workbook Actions and Properties," while you
configure the worksheet group to invoke a range of actions on the active worksheet.

Figure 9-15 shows the Inventory runtime ribbon tab in the
EditAllInventory-DT.xlsx workbook that configures ribbon commands in both the
workbook and worksheet groups. The workbook group exposes ribbon commands to
invoke the standard default workbook actions while the worksheet group exposes
ribbon commands that invoke a number of component actions exposed by an ADF
Table component that renders in the worksheet (Upload, DeleteFlaggedRows, and so
on).

Adding Interactivity to Your Integrated Excel Workbook 9-19

Configuring the Runtime Ribbon Tab

Figure 9—-15 Runtime View of Ribbon Tab in EditAllinventory-DT.xIsx

-")E;'-a\'- (= = EditAlllnventory-DT.xlsxk - Microsoft Bxcel -

HY)
—~/ Home Insert Page Layout Formulas Data Review View Add-Ins Acrobat Oracle ADF Inventory]

Mo LD BB

Login Logout Clear Edit About | Download Upload Delete Status
All Data Options Flagged Viewer

Workbook Worksheet
| 112 - | 350
A C D E =

B C
;| ORACLE EditAllinventory

@
i

Inventory Details
Changed| _|Flagged | _|Status - |Product | Amcunt in Stock || Out of Stock Explanation [Max in Stock| _

50169 2530

41100 350

41080 400 700

Worksheet command items appear when the worksheet is active. If you remove a
workbook command, it does not appear in the runtime tab for that workbook. If you
remove all the commands for a given group, the group does not appear when the
integrated Excel workbook or worksheet is active.

You set the Visible workbook property to True to make the ribbon tab appear in the
Excel Ribbon at runtime. The value you specify for the Title property determines the
title of the tab that the end user sees at runtime, as illustrated in Figure 9-16.

Figure 9-16 Workbook Properties for Runtime Ribbon Tab

Edit Workbook Properties @

Edit the properties and press OK to save your changes.

4|
4 Behavior
AutoDisplay StatusViewerEnabled True
> Compatibility
g
Annotation
Title Inventory
Visible True
> Workbook Commands ‘Workbook Commands (6)
4 Data
> Brandinglems Brandingltems (5)
Farameters
RemoateServletPath /adidiRemoteServiet
> Resources res
WebAppRoot http:/Aecalbest - 7101/summit
> Design
4 Security
> Login

Besst WordbookID

Runtime Ribbon Tab
The propeties that determine the content and behavior of the runtime ribbon tab.

For information about how you define a workbook ribbon command, see Section 9.3.1,
"How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab." For
information about how you configure a worksheet ribbon command, see Section 9.3.2,
"How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab."

9-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the Runtime Ribbon Tab

9.3.1 How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab

You configure the Runtime Ribbon Tab group of workbook properties to define a
workbook ribbon command.

Before you begin:
It may be helpful to have an understanding of the runtime ribbon tab in Excel. For
more information, see Section 9.3, "Configuring the Runtime Ribbon Tab."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To define a workbook ribbon command:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Runtime Ribbon Tab, and select
Workbook Commands. Click the browse (...) icon beside the Workbook Commands
to display the dialog, as illustrated in Figure 9-17.

Figure 9-17 Edit Workbook Commands Dialog

Edit Workbook Properties =]

Edit the properties and press OK to save your changes.

B2 |

4 Behavior -
AutoDisplayStatusViewerEnabled True
> Compatibility
4 Runtime Ribbon Tab
Annotation
Title Customers
Visible Tue
> Workbook Commands Workbook Commands (6)

m

Edit Workbook Commands @

Members ClearAlData properties:

] CleariliData EJ
1| EditOptions
2| ViewAboutDizlog +
3| Login
4| Logout
5| ToggleStatusViewsr

ClearAllData

Annotation

Annotation
An optional nate describing the purpose or usage of this object.

i)

4. Click Add and specify values for the properties of the workbook ribbon
commands as follows:

— Method

Specify the workbook action that you want the workbook ribbon command to
invoke. For the list of available workbook actions, see Section A.14, "Workbook
Actions and Properties."

— Label

If no label is specified, ADF Desktop Integration uses a default label at
runtime.

Adding Interactivity to Your Integrated Excel Workbook 9-21

Configuring the Runtime Ribbon Tab

5.

(Optionally) Enter a value in the input field that appears as the label at
runtime. Alternatively, invoke the expression builder by clicking the browse
(...) icon and write an EL expression that resolves to a string value in a
resource bundle.

Note that the runtime value that appears in the label cannot exceed 1024
characters. A runtime value that exceeds 1024 characters is truncated so that
only 1024 characters appear.

For more information about using resource bundles, see Section 11.2, "Using
Resource Bundles in an Integrated Excel Workbook."

For more information about labels, see Section 10.4, "Using Labels in an
Integrated Excel Workbook."

Click OK.

9.3.2 How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab

You configure the Ribbon Command group of worksheet properties to define a
worksheet ribbon command. By default, no ribbon commands are defined for the
worksheet group in the worksheet properties.

Before you begin:

It may be helpful to have an understanding of the runtime ribbon tab in Excel. For
more information, see Section 9.3, "Configuring the Runtime Ribbon Tab."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

Make sure to set the Runtime Ribbon Tab.Visible workbook property to True. If the
Runtime Ribbon Tab.Visible is set to False, no runtime ribbon tab appears for this

workbook. For more information about workbook properties, see Table A-20.

To define a worksheet ribbon command:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input

field for the Ribbon Commands property to invoke the editor, as illustrated in
Figure 9-18.

9-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the Runtime Ribbon Tab

Figure 9-18 Edit Ribbon Commands Dialog

Edit Ribbon Commands - — D W W — — - 3

Members: tHres[excel customers ribbon upload 1} properties:

] #{res[excel customers ribbon. up[P A

1| #{res[excel customers.ribbon.del u ﬁl |
2| #{res[excel customers ribbon.doy 4 Appearance

3| #lres['excel customers ribbon.res Image Upload

Label #{res['excel .customers ribbon upload']}
Tooltip
4 Behavior

8 SelectActionSet Uplead Data

Add l I Remove

" = —

4. Click Add to add a new ribbon command in the Members list of the collection
editor.

5. Configure the ribbon command properties as described in Table 9—4.

Table 9-4 Worksheet Ribbon Command Properties

Set this property to... This value...

SelectActionSet Specify the type of action(s) that the ribbon command invokes.
For more information about action sets, see Section 9.2, "Using
Action Sets."

Image Select an appropriate image for the ribbon command from the

dropdown list. For example, if the ribbon command's action set
invokes an ADF Table component's Download action, select
Download. Choose Generic if the other options do not
correspond to the action that the ribbon command invokes.

ADF Desktop Integration provides the images that you can use.

Label Specify text to appear as a label or an EL expression that
evaluates to a label at runtime. For information about EL
expressions in ADF Desktop Integration, see Appendix B, "ADF
Desktop Integration EL Expressions." For information about
using labels, see Appendix 10.4, "Using Labels in an Integrated
Excel Workbook."

Tooltip Specify text to appear as a tooltip or an EL expression that
evaluates to a tooltip at runtime.

Note that ribbon command tooltips have a maximum size of
1024 characters. If a tooltip value exceeds that limit, only the first
1024 characters are shown.

6. Click OK.

9.3.3 What Happens at Runtime: Ribbon Commands in the Ribbon Tab

Figure 9-19 shows the Customers ribbon tab from the Summit sample application's
EditCustomers-DT.x1lsx workbook. The order and grouping of the workbook-level
ribbon commands is always the same at runtime. The worksheet commands appear in
the same order as you define them in the Edit Ribbon Commands dialog.

Adding Interactivity to Your Integrated Excel Workbook 9-23

Configuring the Runtime Ribbon Tab

Although the Status Viewer is configured once per workbook and appears in the
workbook commands at design time, it appears in the worksheet group at runtime.
This is because the Status Viewer is worksheet-specific and displays information about
the worksheet that is in focus. If your end users navigate to a non-integrated
worksheet and click the Status Viewer ribbon command, a message appears that tells
the end user the Status Viewer cannot be used in that worksheet.

Figure 9-19 Ribbon Commands in the Ribbon Tab

EditCustomers-DT.xdsx - Microsoft Excel = =] x

o =
(Ea) =
—/ Home Insert Page Layout Formulas Data Review View Add-Ins Acrobat Oracle ADF Customers 'Q) - T X

Wade PO 233

Login Logout Clear Edit About | Download Upload Status
All Data Options Viewer

Workbook Worksheet

When the user hovers the mouse over the ribbon command with the tooltip, a
multi-part tooltip appears. The ribbon command label appears first in bold followed
by the text from the Tooltip property. Below this text, the add-in name appears.
Figure 9-20 shows the tooltip that appears when you hover over the Download
worksheet ribbon command in the Summit sample application's
EditCustomers-DT.x1lsx workbook.

Figure 9-20 Ribbon Command Displaying a Tooltip

EditCustomers-DTxlsx - Microsoft Excel | Edit Ribbon Commands E

Formulas Data Review View Add-Ins

2a

Downlogd Upload Status
T\Xs Viewer

Members: Download all Customers properties:

0 Duwrload all Customers +
1| Upload zll changes in Customers

Download

Worksheet

Download

> SelectActionSet

Retrieves customer records from the - , Design

application

#{res['excel .customers ribbon.download T}
#{res['excel .customers ribbon.download tooltipT}

Actions (3)

If you define 5 or fewer worksheet-level ribbon commands, each appears in the
worksheet group with a large icon. If you define 6 or more worksheet-level ribbon
commands, the first 4 ribbon commands appear with a large icon. The remaining
ribbon commands appear in a menu labelled More, as shown in Figure 9-21.

Figure 9-21 Worksheet's More Ribbon Command Displaying Dropdown List

— . ()
.-Qg \ lﬂ
- Home Insert Fage Layout Formulas Data Review View Add-Ins i
= = /| El -
dWae¢ & ® B8 Ea0E S
Login Logout Clear Edit About | Download Upload Delete Search | More | Status
All Data Options Flagged v |Viewer
Warkbook Worksheet '_ﬁ Example Label 1
112 - f;r| 350 [[@ Example Label 2
A E Cc] E [T Example Label 3
;| ORACLE" Edit All Inventory [Example Label {y

9-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Web Pages from a Fusion Web Application

Note: The ribbon controls of the toolbar are shared among all open
integrated workbooks. If you open two, or more, workbooks using
different ribbon commands occupying the same location in the
toolbar, Excel always shows the key tip of the first opened workbook
in all open workbooks. This is an Excel limitation.

9.4 Displaying Web Pages from a Fusion Web Application

You configure a Dialog action in an action set to display pages from the Fusion web
application with which you integrate your Excel workbook. These pages provide
additional functionality for your integrated Excel workbook. Examples of additional
functionality that you can provide include search dialogs that interact with your
Fusion web application.

The Dialog action in an action set can be configured to display in one of the following
two types of dialog;:

= Popup dialog
= Runtime task pane

The value for the Dialog.Target property (Popup or TaskPane) of the component's
action set determines where a web page is rendered.

The value for the Dialog. Page property specifies the web page to display when the
action is invoked. Valid values include a URL relative to the value of the WebAppRoot
property or an absolute URL.

For example, the CustomerSearch-DT.x1sx workbook specifies the following relative
URL as a value for the page to invoke when a user clicks the Search Customers ribbon
command at runtime:

/faces/external/searchForm. jspx

Absolute URLs such as the following are also valid:

http://www.oracle.com/technetwork/middleware/fusion-middleware/overview/index.html

Tip: If you want to add a model-driven list picker to a table column,
see Section 8.4, "Adding a Model-Driven List Picker to an ADF Table
Component" for more information.

Note: The Dialog action does not support ADF task flows.

9.4.1 How to Display a Web Page in a Popup Dialog

You can configure a Dialog action in an action set to invoke a web page in a modal
popup dialog hosted by Excel's web browser control. This feature provides end users
with functionality that allows them to, for example, input values displayed by a page
from the Fusion web application into the integrated Excel workbook.

The web page that the action set invokes must contain a reserved HTML
element that has a case-sensitive ID attribute set to ADFdi_CloseWindow.

The following example shows how you can automatically set the value of the span
element using the rendered property of the f:verbatim tag.

<f:verbatim rendered="#{requestScope.searchAction eq 'search'}">

Adding Interactivity to Your Integrated Excel Workbook 9-25

Displaying Web Pages from a Fusion Web Application

Continue

</f:verbatim>

<f:verbatim rendered="#{requestScope.searchAction eq 'cancel'}">
Abort

</f:verbatim>

Figure 9-22 shows the searchForm. jspx page hosted by the CustomerSearch-DT.x1sx
workbook's browser control.

Figure 9-22 Search Popup Dialog

Country Based Search @
Search Customer By Country

Country name

Search = Cancel

In scenarios where you cannot use the rendered property of the f:verbatim tag, you
may need to:

1. Create a backing bean that exposes the Dialog action's result value as a property

2. Use an action listener to invoke the backing bean, and an EL expression in the
 element to set the value ADFdi_CloseWindow to the bean property value.

Whichever approach you take, ADF Desktop Integration monitors the value of ADFdi_
CloseWindow to determine when to close the popup dialog. If the content of the ADFdi_
CloseWindow element is:

= Anempty string or is not present, the popup dialog remains open.

= Continue, the popup dialog closes and the action set invokes its next action.
The following example shows ADFdi_CloseWindow assigned a value of "Continue™
var closeWindowSpan = document.getElementById("ADFdi_CloseWindow") ;
closeWindowSpan.innerHTML = "Continue";

= Abort, the popup dialog closes and the action set stops running. No additional
actions are invoked.

= Some other string value, the popup dialog remains open.

You set the Target property for a Dialog action to Popup to display a custom web page
in a modal popup dialog using a .NET web browser control. Displaying a web page in
a modal popup dialog differs from displaying a web page in Excel's task pane because
the Dialog action that the action set invokes cannot continue execution until it receives
user input. While the popup dialog is open, the end user cannot interact with any
other part of the integrated Excel workbook, as the popup dialog retains focus.

End users can navigate between multiple web pages within the browser control until
they close the browser control, or ADF Desktop Integration closes it.

You may want to add additional actions after the Dialog action to take advantage of
user choices in your custom page. For example, a user is expected to type a country
name in a country-based search. In this scenario, the next logical actions to invoke are
Execute (a query with the country name the user entered) and the Download action for
the ADF Table component.

9-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Web Pages from a Fusion Web Application

Notes:

= If the Title property is left blank, the web page's title will be used
as the dialog's window title.

s The value of the ADFdi_CloseWindow is monitored on
every page transition in the browser control. When the value is
Continue, the popup dialog closes and the action set continues to
run. When the value is Abort, the popup dialog closes and no
further actions in the action set run. If the element is not
present, or the value is other than Continue or Abort, the popup
dialog will remain open.

On each page transition, if the reserved element is present,
client-side Javascript can run and change the value of the element.
If the value changes to Continue or Abort, the popup dialog also
closes and has the same effect on the action set.

= You should avoid configuring the web page that appears in a
popup dialog so that it allows the end user to download an
integrated Excel workbook. In that case, the Oracle ADF
functionality becomes disabled when the end user opens a
workbook downloaded from a popup dialog.

s If you use the HTML <select> components, such as list box or
dropdown list, note that <select> components do not follow
z-order configuration when the page displays through Dialog
actions. In the NET Web Browser control, on a web page with
layered and overlapping components, the <select> components
might appear on top of other components.

9.4.2 How to Display a Web Page Search Form in a Popup Dialog

You can use a ribbon command to invoke a page from the Fusion web application that
displays a search form to the end user. Configure the action set for the ribbon
command to invoke the Download action for the ADF Table component so that the
search results from the search operation are downloaded to the integrated Excel
workbook.

For information about creating a search form in a Fusion web application, see the
"Creating ADF Databound Search Forms" chapter in Fusion Developer’s Guide for Oracle
Application Development Framework.

Note: ADF Desktop Integration does not support usage of the
FindMode attribute in page definition files. For more information about
the FindMode attribute, see the "pageNamePageDef.xml" section of
Fusion Developer’s Guide for Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how web pages render in an integrated
Excel workbook. For more information, see Section 9.4, "Displaying Web Pages from a
Fusion Web Application."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

Adding Interactivity to Your Integrated Excel Workbook 9-27

Displaying Web Pages from a Fusion Web Application

To invoke a web page from an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Create the ribbon command in the Excel worksheet, as described in Section 9.3.2,
"How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab."

3. Set the Label property of the component so that it displays a string at runtime to
indicate to end users that they can start a search operation by clicking the button.

4. Use the Edit Action dialog to configure the array of actions (Action list) in the
ClickActionSet properties (SelectActionSet properties if you are configuring a
ribbon command) of the component. Table 9-5 describes the actions to invoke in
sequence.

Table 9-5 Actions to Invoke an Advanced Search Form

Add this action... To...

Dialog Display the page from your Fusion web application that
contains the search form. For more information about displaying
pages from a Fusion web application, see Section 9.4.1, "How to
Display a Web Page in a Popup Dialog."

ComponentAction Invoke a Download action from the ADF Table or ADF Read-only
Table components to download the results that match the search
criteria specified.

5. Click OK.

Figure 9-23 shows an example from the CustomerSearch-DT.x1sx workbook where
the ribbon command's SelectActionSet contains a Dialog action followed by the
ADF Table component's Download action. When the end user invokes the ribbon
command, the Dialog action will show the search page (searchForm. jspx) in a
browser window. After the end user specifies search criteria in the search page and
selects the Search button there, the ADF Table component's Download action runs. This
will retrieve the rows matching the specified search criteria into the integrated
worksheet.

9-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Web Pages from a Fusion Web Application

Figure 9-23 Ribbon Command Configured to open a Web Page

Edit Worksheet Praperties @
Edit the properties and press OK to save your changes.
> Bvents Startup
> Protection
4 Ribbon Commands Ribbon Commands (2)
4 [0 #Hlres[excel search rbbon search T}
Annatation E
D MEN1551960310
Image Search
Label #{res['excel search ribbon search}
4 SelectiictionSet Adlions (2)
> ActionOptions
4 Actions Actions (2)
40 #Hlres[excel search popup fitle T
Annotation
[N faces/extemal fsearchFom jspx W
ShareFrame True
Target Papup
Title #{res['excel search popup title T}
> WindowSize 400,200 o
Page
The web page to be displayed in the dialog’s browser region

Figure 9-24 shows the web page search form at runtime.

Figure 9-24 Web Page Search Form

Country Based 5earch @
Search Customer By Country

Country name

Search = Cancel

9.4.3 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane

You can set the Dialog.Target property for an action to TaskPane to display a web
page specified by the Dialog. Page property in the ADF Desktop Integration task pane.
In contrast to displaying a web page in a popup dialog, displaying a web page in the
task pane allows an action set to continue executing actions while the web page
displays. End users can access and interact with other parts of the integrated Excel
workbook while the web page displays.

Adding Interactivity to Your Integrated Excel Workbook 9-29

Displaying Web Pages from a Fusion Web Application

Notes:

n If the Title property is left blank, the task pane's title will also
remain blank.

» If the Target property of a Dialog action is set to TaskPane, ADF
Desktop Integration ignores the value of ADFdi_CloseWindow (and
other elements).

9.4.4 What You May Need to Know About Displaying Pages from a Fusion Web

Application

You can keep the data an integrated Excel workbook contains synchronized with a
Fusion web application by specifying additional actions in the action set that invokes
the Dialog action. You can ensure that the Fusion web application page and the
integrated Excel worksheet both use the same data control frame by setting the
ShareFrame property of the Dialog action.

Notes:

= If your custom web page is based on ADF Faces and opens a
popup window, the web page must be configured in a certain way
to work properly. On the command component, set the
windowEmbedStyle to inlineDocument. For more information, see
Web User Interface Developer’s Guide for Oracle Application
Development Framework.

» The Dialog.Page property does not accept EL expressions.

9.4.4.1 Sending Data Between an Integrated Excel Worksheet and a Fusion Web
Application Page
To ensure that data in the integrated Excel workbook and the Fusion web application

remains synchronized while end users use pages from the Fusion web application,
configure the action set that invokes the Dialog action to:

= Send changes from the integrated Excel workbook to the Fusion web application
before invoking the Dialog action.

Invoke the RowUpSync or RowUpSyncNoFail worksheet action to synchronize
changes from the current row in the ADF Table component. You may also invoke
UpSync to synchronize changes in form components.

= One way to capture data state from the web page (if necessary) is for logic in the
web page's backing bean to retrieve data from its data bindings and to transfer
that data into the bindings for the integrated Excel worksheet.

= Send changes from the Fusion web application to the integrated Excel workbook
after invoking the Dialog action.

Invoke the RowDownSync worksheet action to send changes from the Fusion web
application to the current row in the ADF Table component. You may also invoke
DownSync to synchronize changes in form components.

For a DoubleClickActionSet, the server-side model must be in the same state after
executing the action set as it was before executing the action set. To achieve this, make
sure the ADF Table component supports row-level action set model management, as
described in Section 9.5.1, "How to Enable Row-Level Action Set Model Management.

"

9-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Web Pages from a Fusion Web Application

For more information about synchronizing data between an integrated Excel
workbook and a Fusion web application, see Chapter 16, "Using an Integrated Excel
Workbook Across Multiple Web Sessions." For information about worksheet actions
and ADF Table component actions, see Chapter A, "ADF Desktop Integration
Component Properties and Actions."

9.4.4.2 Sharing Data Control Frames Between Integrated Excel Worksheets and
Fusion Web Application Pages

Fusion web applications and integrated Excel workbooks both use data control frames
to manage the transactions and state of view objects and, by extension, the bindings
exposed in a page definition file. When you invoke a Fusion web application's page
from an integrated Excel worksheet, you can ensure that the page and the integrated
Excel worksheet both use the same data control frame by setting the ShareFrame
property of the Dialog action that invokes the page to True.

The page property in the Dialog action specifies the page that the Dialog action
invokes. If the Dialog action invokes an absolute URL or a page that is not part of your
Fusion web application, ADF Desktop Integration ignores the value of ShareFrame if
ShareFrame is set to True.

Set ShareFrame to False in the following scenarios:

» The Dialog.Page property in the action set references an absolute URL or a page
that is not part of your Fusion web application.

= TheDialog.Page property in the action set references a page that is part of your
Fusion web application, but that does not need to share information with the
integrated Excel worksheet. For example, a page that displays online help
information.

For more information about data control frames in a Fusion web application, see the
"Sharing Data Controls Between Task Flows" section of Fusion Developer’s Guide for
Oracle Application Development Framework.

9.4.4.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame
Sharing

When you add the ADF Desktop Integration feature to your Fusion web application,
the application is automatically configured to support ADF Desktop Integration frame
sharing. Frame sharing allows each worksheet of an integrated Excel workbook to use
a dedicated DataControl frame. Web pages displayed in dialogs invoked from each
worksheet can then share the same DataControl frame as the integrated Excel
worksheet.

To verify that your Fusion web application supports frame sharing:
1. Open your Fusion web application project in JDeveloper.

2. In the Application Navigator, expand the Application Resources panel.

3. Open the adf-config.xml file available in Descriptors > ADF META-INF node.
4. Click the Source tab to open the source editor.
5

Confirm that the following adf-desktopintegration-servlet-config element is
present in the file before the </adf-config> tag:

<adf-desktopintegration-servlet-config
xmlns="http://xmlns.oracle.com/adf/desktopintegration/servlet/config">
<controller-state-manager-class>
oracle.adf.desktopintegration.controller.impl.ADFcControllerStateManager

Adding Interactivity to Your Integrated Excel Workbook 9-31

Using Row-Level Action Sets in a Table Column

</controller-state-manager-class>
</adf-desktopintegration-servlet-config>

6. Save the adf-config.xml file and close JDeveloper.

9.5 Using Row-Level Action Sets in a Table Column

In certain cases, you may want to configure an action set that executes in the context of
the current table row whenever the end user double-clicks a column. For example, you
might configure an ADF Table component column DoubleClickActionSet to launch a
custom dialog that enables the end user to select server-side row attribute values for
the current table row, as described in Section 9.5.5, "How to Add a Custom Popup
Picker Dialog to an ADF Table Column."

Row-Level Action Set Model Management

You can automate the management of the server-side model state when table-based
row-level action sets that may alter the model state are invoked. ADF Desktop
Integration creates a save point before invoking the actions in the action set and
restores to the save point after the action set runs. This ensures that the model state
after the action set was invoked remains the same if the action set is aborted or
cancelled and reverts back to the same state as it was before the action set was
invoked.

For insert worksheet rows, ADF Desktop Integration automatically creates a
temporary server-side row that can be used during the action set. For both insert and
update worksheet rows, ADF Desktop Integration automatically reverts any model
changes that occur during the action set (including the temporary row in the insert
case).

This is useful if you have integrated Excel workbooks with ADF Table components
configured with row action sets that modify the server-side model. For example, a
column component double-click action set that launches a custom dialog to select
server-side row attribute values for the current worksheet row, as described in
Section 9.5.5, "How to Add a Custom Popup Picker Dialog to an ADF Table Column."

9.5.1 How to Enable Row-Level Action Set Model Management

To manage the server-side model state with a row-level action set, set the following
workbook property to True:

Compatibility.TableComponents.RowActionSetModelMgmtEnabled

Before you set the RowActionSetModelMgmtEnabled property to True, note that ADF
Desktop Integration creates a DataControl savepoint to capture and restore the model
state. So, make sure that the DataControl providers of your Fusion web application
support savepoints.

To enable row-level action set model management:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. If the ADF Table component supports row inserts (InsertRowEnabled row-level
action), set the InsertBeforeRowActionID action to create a temporary server-side
row during a row-level action set.

If your use case requires a separate action to create a temporary row for row-level
action sets, configure the InsertTempRowActionID property.

9-32 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Row-Level Action Sets in a Table Column

Note: If the InsertBeforeRowActionID action is sufficient for
creating a temporary server-side row during a row-level action set,
InsertTempRowActionID should be left blank.

4. In the Edit Workbook Properties dialog, if not set already, set the
Workbook.Compatibility.TableComponents.RowActionSetModelMgmtEnabled
property to True.

Note that the RowActionSetModelMgmtEnabled property is set to False in
integrated Excel workbooks created with versions of ADF Desktop Integration
that did not include this feature.

5. Click OK to close the Edit Workbook Properties dialog.

Note: For integrated Excel workbooks created with older versions of
ADF Desktop Integration, set the RowActionSetModelMgmtEnabled
property to True and remove any custom configuration or code that
manages model state during row-level action sets.

9.5.2 What Happens at Runtime: RowActionSetModelMgmtEnabled is Set to True

If RowActionSetModelMgmtEnabled property is set to True, ADF Desktop Integration
automatically manages the model state while the row-level action set runs.

For an insert worksheet row, a temporary server-side row is automatically created
when the action set runs and is automatically removed after a successful upload.
When the InsertTempRowActionID action is configured, it gets invoked to create the
temporary server-side row. Otherwise, the InsertBeforeRowActionID action is
invoked to create the temporary server-side row instead.

If neither the InsertTempRowActionID nor InsertBeforeRowActionID actions are
configured, no action is invoked for insert rows. The InsertTempRowActionID action is
ignored if InsertRowEnabled is set to False.

When the end-user invokes a row-level action set configured in an ADF Table
component and the row-level action set contains one or more actions that may alter the
model state, ADF Desktop Integration does the following:

1. Positions the server-side row (for update worksheet rows only)
2. Creates a data control save point

3. Invokes the InsertTempRowActionID or InsertBeforeRowActionID action to create
a temporary server-side row (for insert worksheet rows only)

4. Invokes the actions in the action set

5. Restores to the previously created save point after the action set invocation is
completed, regardless of how it terminates including:

= Upload successful
s Upload failure

s End user clicks the Cancel button

Adding Interactivity to Your Integrated Excel Workbook 9-33

Using Row-Level Action Sets in a Table Column

Note: The following actions (or action types) may alter the model
state:

m Table.RowUpSync
= Table.RowDownSync—only applies to insert rows
RowDownSync for an existing row does not alter the model state.
s Table.RowUpSyncNoFail
m Worksheet.UpSync
This action is also supported in row-level action sets.
= ADFmAction
s Dialog

The Dialog action may change the model state if ShareFrame is set
to True and the web page is part of the same web application.

If the RowActionSetModelMgmtEnabled property is set to False, you must explicitly
manage the creation and deletion of the temporary server-side row while the action set
runs.

9.5.3 How to Synchronize Changes from ADF Table Component Using
RowUpSyncNokFail

A row-level action set may contain ADFmAction or Dialog actions that depend on the
current state of the model to complete successfully. The Table.RowUpSync action sends
the current value of individual table rows from the worksheet to the model layer in the
Fusion web application. The Table.RowUpSync action requires all cells in a table row to
contain valid data for the action to complete successfully. For example, in a
newly-inserted row, all required attributes must have valid values for a
Table.RowUpSync action to complete. In contrast, the Table.RowUpSyncNoFail action
synchronizes valid values from cells in a table row and ignores any validation failures
for invalid values. Like RowUpSync, the RowUpSyncNoFail action is intended for use in
the row-level action sets of table columns that supports DoubleClickActionSet.

Enable row-level action set model management when using RowUpSyncNoFail, as
described in Section 9.5.1, "How to Enable Row-Level Action Set Model Management."

To synchronize changes from ADF Table Component using RowUpSyncNoFail:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the table-type component and
click the Edit Properties button in the Oracle ADF tab.

3. Click the browse (...) icon of the Columns property.

4. In the Edit Columns dialog, select the column, and click the browse (...) icon of the
UpdateComponent property.

5. Add the ADF Table component RowUpSyncNoFail action to the list of actions of the
column's DoubleClickActionSet.

6. Click OK.

9-34 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Row-Level Action Sets in a Table Column

9.5.4 What Happens at Runtime: RowUpSyncNoFail Action is Invoked

When the RowUpSyncNoFail action is invoked, data values from the current table row
are uploaded to the server and common failures, error reporting, and error handling
are ignored. Fatal errors, such as the server being unavailable, will be reported.

The RowUpSyncNoFail action modifies the state of the model and the changes are not
reverted on error. Consequently, it is possible that a call to RowUpSyncNoFail may leave
the row in the model with values that would cause row validation to fail. This may in
turn impact the behavior of subsequent calls to other methods, such as Table.Upload.
For this reason, you should ensure that row-level action set model management is
enabled.

9.5.5 How to Add a Custom Popup Picker Dialog to an ADF Table Column

You can configure the DoubleClickActionSet of an ADF Table component's column
subcomponent (UpdateComponent or InsertComponent) to invoke a Fusion web
application page that renders a pick dialog where the end user selects a value to insert
in the ADF Table component column.

This functionality is useful when you want to constrain the values that end users can
enter in an ADF Table component. For example, you may want a runtime ADF Table
component column to be read-only in the Excel worksheet so that end users cannot
manually modify values to prevent them from introducing errors. Invoking a pick
dialog rendered by a Fusion web application page allows the end user to change
values in the ADF Table component without entering incorrect data.

In addition to configuring the DoubleClickActionSet, you may configure the ADF
Table component's RowData.CachedAttributes property to reference attribute binding
values if you want:

= End users to modify values in the Fusion web application's page that you do not
want to appear in the ADF Table component of the integrated Excel workbook

= An ADF Table component's column to be read-only in the integrated Excel
workbook

s Cache data in an ADF Table component over one or more user sessions that is not
visible to end users but is modified by a pick dialog

For example, an ADF Table component displays a list of product names to end
users. A pick dialog is invoked that refreshes the list of product names in the ADF
Table component and, as part of the process, sets the value of product IDs. In this
scenario, you specify the attribute binding value for the product ID in the ADF
Table component's RowData.CachedAttributes property. After the action set runs,
the ADF Table component displays the refreshed list of product names in the rows
of the Excel worksheet and references the associated product IDs in its
RowData.CachedAttributes property.

For information about populating values in the pick dialog, see the "Creating
Databound Selection Lists and Shuttles" chapter in Fusion Developer’s Guide for Oracle
Application Development Framework.

Before you begin:
It may be helpful to have an understanding of using row-level action sets. For more
information, see Section 9.5, "Using Row-Level Action Sets in a Table Column."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

Adding Interactivity to Your Integrated Excel Workbook 9-35

Using EL Expression to Generate an Excel Formula

Make sure the ADF Table component supports row-level action set model
management, as described in Section 9.5.1, "How to Enable Row-Level Action Set
Model Management," if you want the custom pick dialog to function correctly in an
ADF Table component that supports an insert component. Without row-level action set
model management enabled, no temporary insert rows will be created at runtime.

To invoke a custom pick dialog from an ADF Table component column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that anchors the ADF Table component and
click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

3. Configure the ADF Table component's RowData.CachedAttributes property to
reference attribute binding values.

4. Click the browse (...) icon beside the input field for Columns to display the Edit
Columns dialog.

5. In the Members list, select the column from which the end user invokes the pick
dialog at runtime.

6. Configure the Actions attribute of DoubleClickActionSet of the column
subcomponent (UpdateComponent or InsertComponent), as described in Table 9-6.

Table 9-6 DoubleClickActionSet Properties
Add this action... To...

ComponentAction Invoke the ADF Table component's Table . RowUpSync action to
synchronize any pending changes in the current row of the ADF
Table component to the Fusion web application.

Dialog Configure the Dialog action to invoke the pick dialog page from
the Fusion web application. Set the Dialog action's ShareFrame
property to True. For more information, see Section 9.4,
"Displaying Web Pages from a Fusion Web Application."

ComponentAction Invoke the ADF Table component's Table . RowDownSync action to
synchronize data from the row in the ADF Table component's
iterator in the Fusion web application that corresponds to the
current ADF Table component row in the worksheet.

7. Click OK.

9.6 Using EL Expression to Generate an Excel Formula

You can use an EL expression to generate an Excel formula as the value of an ADF
component. For example, you can use an Excel HYPERLINK function in an EL
expression. If you use the Excel HYPERLINK function in an EL expression, you must
enclose the HYPERLINK function within an Excel T function if you want an Oracle ADF
component, such as an ADF Output Text component, to display a hyperlink at
runtime.

You enclose the HYPERLINK function because ADF Desktop Integration interprets the
Excel formula. To work around this, you wrap the T function around the HYERLINK
function so that the value of the HYPERLINK function is evaluated by the T function. The
resulting value is inserted into the Excel cell that the ADF component references. Use
the following syntax when writing an EL expression that invokes the HYPERLINK Excel
function:

9-36 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using EL Expression to Generate an Excel Formula

=T ("=HYPERLINK(""link_location"",""friendly name"")")

The EL expression in Example 9-1 uses HYPERLINK function to navigate to
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-08553
4 .html when end user clicks the component.

If you write an EL expression using the HYPERLINK function, you should select the
Locked checkbox in the Protection tab of the Format Cells dialog for the custom style
that you apply to prevent error messages appearing.

Note: When using EL expressions in formulas, ensure that after the
EL expression is evaluated, the resulting Excel formula has no more
than 255 characters. This applies to formulas used to set conditional
values to component properties in the editor.

Example 9—-1 HYPERLINK Function

=T ("=HYPERLINK (" "http://www.oracle.com/technetwork/developer-tools/adf/overview/in
dex-085534.html"", ""#{res['excel.workbook.powerby']}"")")

9.6.1 How to Configure a Cell to Display a Hyperlink Using EL Expression

You write an EL expression that uses the Excel T function to evaluate the output of the
Excel HYERLINK function. The following task illustrates how you configure an ADF
Output Text component to display a hyperlink that opens the Oracle ADF Desktop
Integration home page.

Before you begin:
It may be helpful to have an understanding of dynamic hyperlink. For more
information, see Section 9.6, "Using EL Expression to Generate an Excel Formula."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

To configure a cell to display a hyperlink using EL expression:
1. Open the integrated Excel workbook.

2. Insert an ADF Output Text component into the Excel worksheet.
3. Write an EL expression for the Value property of the ADF Output Text component.

The EL expression that you write invokes the Excel HYPERLINK function and uses
the Excel T function to evaluate the output. In Example 9-1, you entered the
following EL expression for the Value property:

=T ("=HYPERLINK (""http://www.oracle.com/technetwork/developer-tools/adf/overview
/index-085534.html"", ""#{res['excel.workbook.powerby']}"")")

Note: Excel requires that you write double double quotes (for
example, ""#{res['excel.workbook.powerby']}"")in the EL
expression so that it can evaluate the expression correctly.

4. Click OK.

Adding Interactivity to Your Integrated Excel Workbook 9-37

Using Calculated Cells in an Integrated Excel Workbook

9.6.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL
Expression

ADF Desktop Integration evaluates the EL expression that you write at runtime. In the
following example, ADF Desktop Integration:

m Retrieves the value of the excel .workbook.powerby from the resource file
s Inserts the result into a hyperlinked cell that a user can click

Figure 9-25 shows the runtime view of the example configured in Section 9.6.1, "How
to Configure a Cell to Display a Hyperlink Using EL Expression.” When the end user
clicks the cell that hosts the ADF Output Text component, the Oracle ADF Desktop
Integration home page opens in the web browser.

Figure 9-25 ADF Output Text Component Configured to Display a Hyperlink

Fowered By ADF Deszkto |:-{|._|.')té-;|rmi-:-n

http:/fwww. oracle. comftechnetwork/
developer-tools/adffoverview/index-085534.
htrl - Click once to follow. Click and hold to
select this cell.

ala http://www.oracle.com/technetwork/developer-tools/adf/overvie 2 ~ B ¢ X H E Oracle ADF Desktop Integra... | h

B -3 ;Q; v Pagev Safetyv Toolsw I@Iv i, Q

Sign In/Register Help Country ¥ Communities ¥ lama... v |we

ORACLE’

Products Solutions Downloads Store Supg

Oracle Technology Network > Developer Tools > Application Development Framework > Owerview

JDeveloper Overview || Downloads || Documentation || Community || Leamn I

MetBeans
Application Testing Sulte Oracle ADF Desktop Integration

SQL Developer

ANF Nackinn Intanratinn avtands tha Oracle Annlication

9.7 Using Calculated Cells in an Integrated Excel Workbook

You can write Excel formulas that perform calculations on values in an integrated
Excel workbook. Before you write an Excel formula that calculates values in an
integrated Excel workbook, note the following points:

= Formulas can be entered in cells that reference Oracle ADF bindings and cells that
do not reference Oracle ADF bindings

= End users of an integrated Excel workbook can enter formulas at runtime

= You (developer of the integrated Excel workbook) can enter formulas at design
time

s During invocation, the ADF Table component actions Upload and RowUpSync send
the results of a formula calculation to the Fusion web application and not the
formula itself

9-38 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Calculated Cells in an Integrated Excel Workbook

s Excel recalculates formulas in cells that reference Oracle ADF bindings when these
cells are modified by:

- Invocation of the ADF Table component RowDownSync and Download actions
- Rendering of Oracle ADF components

s The ADF Table and ADF Read-only Table components insert or remove rows as
they expand or contract to accommodate data downloaded from the Fusion web
application. Formulas are replicated according to Excel's own rules.

= You can enter formulas above or below a cell that references an ADF Table or ADF
Read-only Table component. A formula that you enter below one of these
components maintains its position relative to the component as the component
expands or contracts to accommodate the number of rows displayed.

For more information about Excel functions, see the Function reference section in
Excel's online help documentation.

9.7.1 How to Calculate the Sum of a Table-Type Component Column

The following task illustrates how you use the Excel functions AVERAGE and OFFSET to
calculate the average of the column labeled Salary at runtime. You use the OFFSET
function in an Excel formula that you write where you want to reference a range of
cells that expands or contracts based on the number of rows that an ADF Table or ADF
Read-only Table component downloads. The AVERAGE function calculates the average
value in a range of Excel cells.

Before you begin:

It may be helpful to have an understanding of how to use calculated cells in an
integrated Excel workbook. For more information, see Section 9.7, "Using Calculated
Cells in an Integrated Excel Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 9.1.2,
"Additional Functionality for Adding Interactivity to an Integrated Excel Workbook."

Make sure that the ADF Table component's RowActions.AutoConvertNewRowsEnabled
property is set to False. For more information about this property, see Section A.11.1,
"ADF Table Component Properties."

To calculate the sum of a column in an ADF Table component:

1. In design mode, select the cell in which you want to write the Excel formula. For
example, J2.

2. Write the Excel formula that performs a calculation on a range of cells at runtime.
For example:

=AVERAGE (OFFSET (J2,1,0) :OFFSET (J4,-1,0))

where AVERAGE calculates the average value in the range of cells currently
referenced by J2 and J4.

Figure 9-26 shows the design time view of the Excel formula in the integrated
Excel workbook.

Adding Interactivity to Your Integrated Excel Workbook 9-39

Using Macros in an Integrated Excel Workbook

Figure 9-26 Design Time View of Excel Formula in an Integrated Excel Workbook

- f- | =AVERAGE[OFFSET(J2,1,0):OFFSET(4,-1,0))

B C D E F G H I 1 K

#{_ADFDI #{ ADFDI #{_ADFDI

res['COM res['COM res['COM #{bindings :EI_CA(?;E'I:;:I
e N Vii CUEEIEES S | (EMEM I | g qe o oo o, (RIS CEMEEEES - res s
S _TABLE S_TABLE S_TABLE * a h'pt Id pView1.hints.Fir w1.hints.LastName.la Emaill gel P . © mpView1.hints. mpView1.hints. LE ROWKE
_CHANG _FLAGG _STATUs “'MNSIA giname.labell bel} maillzbal} StartDate.label} Salary.label} o
ED_COL_ED_COL__coL_La “#b=t Y_COL_LA
LABELT LABELT BELT BEL'}
Hrowbindin N P I
N,I,l-n; ing First #ros dingis. Lasthlam #irow bindings. Emailinputyalues}

Valuel einputvalus}

Linputy 7"
|
I

3. Save your changes and switch to runtime mode to test that the Excel formula you
entered evaluates correctly.

9.7.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type
Component Column

Figure 9-27 shows the runtime view in the integrated Excel workbook when the Excel
formula shown in Figure 9-26 is evaluated. The Excel formula calculates the average
of the values in the range of cells that you specified in design mode.

Figure 9-27 Runtime View of Excel Formula in an Integrated Excel Workbook

v f | =AVERAGE(OFFSET()2,1,0):0FFSET(J16,-1,0))
B C D E F G H I J K
Changed Flagged Status D First Name Last Name Email
1 Carmen Velasquez evelasqu@summitcom
2 Laloris

Urguhart
Raoberta Menchu
8 Een Eiri

9 Antoinstte

it.com

10 Iarta
11 Calin Magee

com

sumimitcom

surmriteom uso

Ush1 .51

12 Henry Giljum

13 Yasmin ahi 2 summit.com

Average Salary USD 1,454.77

9.8 Using Macros in an Integrated Excel Workbook

You can define and run macros based on Excel events in an integrated Excel
workbook.

Note the following points:

= Macros triggered by an Excel event do not get triggered if the Excel event is
invoked by ADF Desktop Integration.

= ADF Desktop Integration code invoked by running of an Excel event when the
Excel event is triggered by a macro.

9-40 Desktop Integration Developer's Guide for Oracle Application Development Framework

10

Configuring the Appearance of Your Integrated
Excel Workbook

This chapter describes how to configure the appearance of an integrated Excel
workbook using predefined and custom styles in Excel, how to use EL expressions to
dynamically apply styles to Oracle ADF components in a workbook at runtime, how
to use labels and brand the Excel workbook, and how to use Worksheet Protection
feature.

This chapter includes the following sections:

= About Configuring the Appearance of an Integrated Excel Workbook
s Working with Styles

= Applying Styles Dynamically Using EL Expressions

= Using Labels in an Integrated Excel Workbook

» Branding Your Integrated Excel Workbook

= Displaying Tooltips in ADF Desktop Integration Components

» Using Worksheet Protection

= Using ADF Desktop Integration EL-based Properties with Custom Attribute
Properties

10.1 About Configuring the Appearance of an Integrated Excel Workbook

You can configure the appearance of an integrated Excel workbook using both Excel
functionality and Oracle ADF functionality. Configuring the appearance of a
workbook may make the workbook more usable for end users. For example, applying
a particular style to cells that render ADF Output Text components at runtime may
indicate to end users that the cell is read-only. You may also want to configure the
appearance of an integrated Excel workbook so that it aligns with your company's
style sheet or the color scheme of the Fusion web application that the Excel workbook
integrates with.

Using styles to configure your data in your integrated Excel workbook gives you
many benefits. For example, you can use a particular style for ADF Output Text
components, and a different style for ADF Input Text components.

ADF Desktop Integration provides several predefined Excel styles to apply to the ADF
Desktop Integration components you configure in a workbook. You may want to
define additional styles to meet the needs of your desktop integration project. If you
do, familiarize yourself with the formats in an Excel workbook that render differently
depending on the locale, region, and language.

Configuring the Appearance of Your Integrated Excel Workbook 10-1

Working with Styles

10.1.1 Integrated Excel Workbook Configuration Use Cases and Examples

You can customize the appearance of ADF Desktop Integration components using
styles. For example, Figure 10-1 shows various styles applied to the columns of ADF
Table in EditCustomers-DT.x1lsx.

Figure 10-1 Styles Applied to Columns of ADF Table in EditCustomers-DT.xIsx

ORACLE Edit Customers

-) .
Changed/ | Status [* Name | Credit Rating (| Address City - 1Zip Code | Country | Sales Rep. | Comments [_|Key

f f z_+|:-m'.; E&--:I—:. Fail ’) N-:rl-:' *n: u:z..* mxﬁ* ’ ’

perior Ave B Cleveland 44114 USA Magee e o

Indicator Status Bicy Fait

Cell Cell Column Header
Schindler's Sports Fair 4 Key
Cell
Barry'z Baskethall Fair 58 E Superior 5t Chicago B0E11 USA Mages
Gavin Sporting Goods Fair 1935 SE Hawthorme Fartland 97214 LISA Magee

Elvel

Data Cell
MaorsAndiareStuffz Fair 3501 MeKinney Ave Dallas 75204 USA Magee
BEuy iy dunk Fair ET':' E Moskinabird Dallas 75206 USA Mages
Bventhing Underthe 198 F Atk St Trimenn a571a 1184 Manas

10.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook

After you have applied styles to configure the appearance of your integrated Excel
workbook, you may find that you need to add additional functionality to configure
your workbook. The following sections describe other functionality that you can use:

» Branding: In addition to styles, ADF Desktop Integration provides a collection of
properties (BrandingItems) that enable you to brand your integrated Excel
workbook with application name, application version details, and copyright
information. For more information, see Section 10.5, "Branding Your Integrated
Excel Workbook."

s Localization: You can customize the integrated Excel workbook as part of the
process to internationalize and localize with the Fusion web application. For more
information, see Chapter 11, "Internationalizing Your Integrated Excel Workbook."

10.2 Working with Styles

ADF Desktop Integration provides a mechanism to apply Excel-named styles to Oracle
ADF components at runtime. The Oracle ADF components that support the
application of styles have properties with StyleName in their name. For example, the
column properties of the ADF Table component support the properties
HeaderStyleName and CellStyleName that determine styles to apply at runtime.

10.2.1 Predefined Styles in ADF Desktop Integration

Many properties have default values that are drawn from a predefined list of ADF
Desktop Integration styles. For example, the HeaderStyleName property's default value
is Column Header, one of the predefined styles in ADF Desktop Integration. ADF
Desktop Integration automatically adds these predefined styles to the Excel workbook

10-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Working with Styles

when it is enabled for use with ADF Desktop Integration. The predefined styles that
ADF Desktop Integration provides are consistent with the Oracle Alta Ul, described in
http://www.oracle.com/webfolder/ux/middleware/alta/index.html.

The following is the list of predefined styles:
= Styles for forms:

— Form Header

— Form SubHeader

— Input Text

— Label

— Output Text
= Styles for tables:

— Column Header

— Data Cell

— Indicator Cell

— Key Cell

— Read-only Cell

— Status Cell
s Branding Area

Tip: Microsoft Excel has a Merge Styles dialog (accessed from the

Styles gallery in the Home runtime ribbon) that allows you to merge
all the named styles from one workbook to another workbook.

You may create additional styles for use in your Excel workbook. For example, to add
a date-specific formatting, you can duplicate Data Cell, call it My Date Cell, and add
your date-specific formatting.

Once you have decided what styles to apply to the ADF Desktop Integration
components at runtime, you can write EL expressions to associate a style with a
component. The ADF Desktop Integration component properties that include
StyleName in their name take an EL expression as a value. The ADF Label component
and the Label property of other ADF components also support EL expressions. These
EL expressions can retrieve the values of string keys defined in resource bundles or the
values of attribute control hints defined in your Fusion web application.

For more information about creating new styles and merging styles into a workbook,
see Excel's documentation.

10.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options

Some formats in the Date category of the Number styles that Excel can apply to cells
change if a user changes the locale of the local system using the Regional and
Language Options dialog that is accessible from the Microsoft Windows Control Panel.
The * character precedes these formats in the Type list. Figure 10-2 shows an example
of a Date type that formats dates in a cell using French (France) conventions.

Configuring the Appearance of Your Integrated Excel Workbook 10-3

Working with Styles

Figure 10-2 French Date Formats in Excel

lundi 7 décembre 1992
jeudi 13 avril 1995
mercredi 14 janvier 1987|
samedi 15 janvier 2011
mercredi 26 aoit 1992
mardi 17 janvier 1967
mardi 8 juin 1999|
dimanche 19 janvier 1992

Formats | Location | Keyboards and Languages | Adrninistmti\re|

Format:

[French (France)

Date and time formats

mardi 23 mars 2010 Short date: [da/MMyyyyy -

mardi 21 janvier 1992 Long date: [dddd d MMMM yyyy -]
lundi 12 juin 1967

Short time: ’HH.'mm ']

Long time: ’HH.'mm.'ss ']

First day of week: ’Iundi v]

If the end user changes the regional options of a system to use English (United
States), as illustrated in Figure 10-3, the cells that are formatted with the style in

What does the notation mean?

Examples
Short date: 18/05/2012
Long date: vendredi 18 mai 2012

Figure 10-2 use the English (United States) conventions.

Figure 10-3 US English Date Formats in Excel

Monday, December 07, 1992
Thursday, April 13, 1995
Wednesday, January 14, 1087|
Saturday, January 15, 2011
Wednesday, August 26, 1992
Tuesday, January 17, 1967|
Tuesday, June 08, 1999:

Formats | Location I Keyboards and Languages I Administlati\re|

Format:

|English (United States)

Date and time formats

Sunday, January 19, 1992

Tuesday, March 23, 2010 Short date: ’MM!ddfyy v]

Tuesday, January 21, 1892 Long date: [dddd, MMMM dd, yyyy -]
Monday, June 12, 1967

Short time: [h.'mmtt ‘]

Long time: [h:mm:sstt ']

First day of week: ’Sunday VI

What does the notation mean?

Examples
Short date: 05/18/12
Leng date: Friday, May 18, 2012

Note: In order for Excel to properly format and manipulate date
values with no time component, the form or table attributes must use
the java.sql.Date data type in the application's model definition.

10.2.3 How to Apply a Style to an Oracle ADF Component

To apply a style to an Oracle ADF component, use the property inspector to set values
for properties with StyleName in their name.

Before you begin:

It may be helpful to have an understanding of styles. For more information, see
Section 10.2, "Working with Styles."

10-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Working with Styles

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Configuring the Appearance of an Integrated Excel

Workbook."

To apply a style:

1. In the integrated Excel workbook, select the cell that references the Oracle ADF
component you want to modify and then click the Edit Properties button in the

Oracle ADF tab.

2. Select the StyleName property and click the browse (...) icon to display the Edit

Expression dialog.

3. Expand the Styles node and select the style to apply to cell at runtime.

For example, apply an Output Text style to the Binding Warehouse ID output text

field.

4. Click Insert Into Expression to insert the selected style into the Expression field.

Figure 104 shows the Edit Expression dialog where we define the style for the
OutputText component that displays the Warehouse ID in the Summit sample
application's EditWarehouseInventory-DT.x1sx workbook.

Figure 10-4 Edit Expression Dialog Applying a Style

‘'excel.warehouses.header.warehouse']}

#{bindings.Id.label}
{bindings Address label}
#{bindings .City label}
#{bindings State label}

t{bindings ZipC ode label}

#bincings.ld}

#bindings. Address}
#bindings. City}
#bindings. State}

#ibindingzZip Code}

‘'excel.warehouses.header.inventory']}

as[' #{ ADFDIres['COMP #{bindings.InventoryD #{bindings.Inv|

NT ONENTS TABLE S etail.hints.Productid.| etail.hints.Am

#irow bindingz.Productld. #{row.bindings.A

5. Click OK.

cckinputYalug

Edit Compenent: ADF Output Text

Edit the properties and press OK to save your changes.

B4

4 Appearance
StyleName
Todltip

4 Data

> OutputText

4 Design
Annatation
ComponentlD

4 Layout

> Position

StyleName
The name of the Excel Styld

[==]
Output Text
#{bindings.Id_hints tooltip}
Edit Expression @
Expression: Li“ éj é
Butput Tox]

<% Insert Into Expression

g Status Cell

m

10.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component

The EL expression that you entered as a value for the property with StyleName in its
name is evaluated at runtime. If it corresponds to one of the predefined styles or one
that you defined, the style is applied to the ADF component that you set the property

for.

Configuring the Appearance of Your Integrated Excel Workbook 10-5

Applying Styles Dynamically Using EL Expressions

If a style is applied to a cell that references an ADF component, the ADF component
overwrites that style at runtime with any property values (font, alignment, and so on)
defined by the style referenced by its StyleName property.

For example, Figure 10-5 shows the runtime appearance of the Warehouse ID field
defined by the Output Text style in the Summit sample application's
EditWarehouseInventory-DT.x1sx workbook.

Figure 10-5 Runtime Appearance of Component with Style Applied
ORACLE Edit Warehouse Inventory

Warehouse

Warehouse Id. 301

Address 6221 King Way Region Asia
City Lagos Country Japan
State Manager Roberta Menchu
hl
Zip Code Phone

10.3 Applying Styles Dynamically Using EL Expressions

Oracle ADF component properties that include StyleName in their name can take an EL
expression as a value. The EL expressions that you write can resolve to a named Excel
style at runtime that is applied to the ADF component. The EL expressions that you
write are Excel formulas that may include ADF data binding expressions.

The following examples show different contexts where you can use EL expressions to
determine the behavior and appearance of ADF components at runtime. Example 10-1
applies a style dynamically during download. If the status value for binding is Closed,
apply a read-only style (MyReadOnlyStyle). Otherwise apply another style
(MyReadWriteStyle).

Example 10-2 uses a mixture of Excel formulas and ADF binding expressions to
handle errors and type conversion. Example 10-3 demonstrates how to use a custom
attribute property to specify the style. For more information about custom attribute
properties, see Section 10.8, "Using ADF Desktop Integration EL-based Properties with
Custom Attribute Properties."

Example 10-1 Applying a Style Dynamically During Download
=IF ("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Example 10-2 EL Expressions to Handle Errors and Type Conversion

=IF (ISERROR (VALUE ("#{bindings.DealSize}")), "BlackStyle",
IF (VALUE ("#{bindings.DealSize}") > 300, "RedStyle", "BlackStyle"))

Example 10-3 Using a Custom Attribute Property to Specify the Style
#{bindings.EmpCompViewl.hints.EmployeeId.diCellStyle}

10-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Applying Styles Dynamically Using EL Expressions

10.3.1 What Happens at Runtime: How an EL Expression Is Evaluated

When evaluating EL expressions at runtime, ADF Desktop Integration determines the
value that the EL expression references. It then replaces the EL expression in the Excel
formula with the value. In Example 10-1, ADF Desktop Integration first determines
that value of the binding expression, #{bindings.Status}, in the following Excel
formula:

=IF ("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")
It then replaces the binding expression with the runtime value, as in the following
example, where the expression evaluated to Closed:

=IF("Closed" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Excel evaluates the formula and, in this example, applies the MyReadOnlyStyle style.

10.3.2 How to Write an EL Expression That Applies a Style at Runtime

You write EL expressions for the Oracle ADF component properties that support EL
expressions in the Edit Expression dialog that is accessible from the Oracle ADF
component's property inspector. Figure 10-6 displays an Edit Expression dialog
launched from the property inspector window of an ADF Button component.

Figure 10-6 Edit Expression Dialog

Edit Expression @
Expression: L@ é\“] é’
I
Y
+E Bindings

+-{_7] Components
-] Resources
-] Werkbook
-] Worksheet
+-_7] Excel Functions

—
L =

Before you begin:

It may be helpful to have an understanding of how to apply styles dynamically. For
more information, see Section 10.3, "Applying Styles Dynamically Using EL
Expressions."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook."

To write an EL expression that applies a style at runtime:
1. Open the integrated Excel workbook.

2. Select a cell in the Excel worksheet that references the Oracle ADF component for
which you want to write an EL expression.

Configuring the Appearance of Your Integrated Excel Workbook 10-7

Applying Styles Dynamically Using EL Expressions

Click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

Select the property in the property inspector with which you want to associate an
EL expression and click the browse (...) icon to display the Edit Expression dialog.

Note: The Edit Expression dialog appears only if the Oracle ADF
component that you selected in Step 2 supports EL expressions.
Depending on the context, the browse (...) icon can launch other
editors such as the Edit Action dialog.

The Edit Expression dialog, as illustrated in Figure 10-6, displays a hierarchical list
of the Oracle ADF components, bindings, styles, resources, and Excel functions
that you can reference in EL expressions. For more information about the syntax of
EL expressions that you enter in this dialog, see Appendix B, "ADF Desktop
Integration EL Expressions."

10.3.3 What You May Need to Know About EL Expressions That Apply Styles

Note the following points about EL expressions that apply styles:

EL expressions that evaluate to styles are applied when:

- An ADF Table component invokes its Download or DownloadForInsert actions
- Rows are inserted into an ADF Table component

— An action set invokes a worksheet DownSync action

EL expressions that evaluate to styles are not applied when:

- A row-level action set invokes an ADF Table component RowDownSync action
— The end user edits the format properties of a cell

- An EL expression that evaluates to a style is not reevaluated when an end user
edits a cell’s value.

— The runtime value of an EL expression does not match a style defined in the
end user's integrated Excel workbook

In this scenario the style formats of the targeted cells do not change. Instead,
they retain their existing style formats. If you configured client-side logging,
ADF Desktop Integration generates an entry in the log file when an EL
expression evaluates to a style that is not defined in the end user's integrated
Excel workbook. For more information about client-side logging, see

Section C.4, "Generating Log Files for an Integrated Excel Workbook."

— When a user navigates between cells or during upload. ADF Desktop
Integration does not evaluate or apply styles during these end user actions.

In Excel, given a workbook with various custom named styles, if you save a copy
of that workbook from Excel, Excel automatically (and silently) deletes any custom
named style that is not applied to any cell.

If you have styles that are only used in EL expressions and not applied to any cell,
Excel may delete them.

The ADF Desktop Integration Publish feature creates a copy of the workbook.
Hence, unused styles can disappear. The workaround is to apply each style once to
an unused cell on an unused worksheet.

10-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Labels in an Integrated Excel Workbook

10.4 Using Labels in an Integrated Excel Workbook

Use labels to provide end users with information about how they use the functionality
in an integrated Excel workbook. You can write EL expressions that retrieve the value
of string keys defined in a resource bundle or that retrieve the values of attribute
control hints. An integrated Excel workbook evaluates the value of a Label property
only when the workbook is initialized.

10.4.1 Retrieving the Values of String Keys from a Resource Bundle

Figure 10-7 shows a portion of the design time view of the
EditWarehouseInventory-DT.x1sx workbook in the Summit sample application for
ADF Desktop Integration. It shows an ADF Label component that uses an EL
expressions to retrieve the value of its Label property.

Figure 10-7 Design Time View of an ADF Label Component and an ADF Input Text Component with Label
Property

fimages/oracle_logo_sm.png [#{res['exoel.warehauses.title']}]

#{res['excel.warehouses.header.warehouse']}

#{bindings Idlabell #{bincingsz.ld}

#{bindings Address label} #{bindings. Address} #{bindings Regionld.label} Regionld
#{bindings City label} #{binding=.City} #{bindings Countryld.label} Countryld
#{bindings State labell #{bindings. State} #{bindings Managerld.labell Managerld
#{bindings ZipCode label} #{bindings ZipCode} #{bindings Phone label} #{bindingz.FPhaone}

At runtime, this EL expression resolves to a string key defined in the res resource
bundle that is registered with the Summit sample application for ADF Desktop
Integration. You define resource bundles in the workbook properties dialog. For
information about referencing string keys from a resource bundle, see Section 11.2,
"Using Resource Bundles in an Integrated Excel Workbook."

Figure 10-8 shows the corresponding runtime view of the ADF Label component
illustrated in design mode in Figure 10-7.

Figure 10-8 Runtime View of an ADF Label Component

ORACLE [Edit Warehouselnventnry]
Warehouse
Warehouse Id. 301
Address 6221 King Way Region Azia
City Lagos Country Japan
State Manager Roberta Menchu
ZipCode b Phone

Configuring the Appearance of Your Integrated Excel Workbook 10-9

Branding Your Integrated Excel Workbook

10.4.2 Retrieving the Values of Attribute Control Hints

In addition to string keys from resource bundles, the ADF Label component and the
Label property of other ADF components can reference attribute control hints that you
define for entity objects and view objects in your JDeveloper project. Figure 10-9
shows the expression builder for the Phone column in the EditCustomers-DT.x1sx
workbook's ADF Table component. The expression builder contains an EL expression
for the HeaderLabel property of the Phone column that retrieves the value (Phone)
defined for an attribute control hint at runtime.

Figure 10-9 EL Expression That Retrieves the Value of an Attribute Control Hint for a
Label Property

Edit Component: ADF Table L |

Edit Columns 23

Members: #{row bindings Phone inputValue} properties:

_ADF_ChangedColumn ﬂ |

_ADF_FlagCelumn

_ADF_StatusColumn 4 Appearance

#{row bindings. Name inputValug CellStyleName Data Cell

#{row bindings CreditRatingld.ir HeaderLabel #{bindings Customers_hints_Phone:
hindings. Phane.inputya HeaderStyleName Column Header

#{row bindings Address

7 | #irow bindings City.inpd Edit Expression @

#{row bindings. State.ing

#{row bindings. ZipCode]

#{row.bindings Regionld

#{row bindings Countryl|

#{row bindings SalesRel

«|[=+]

0
1
2|
31
4
B
6]

Expression © é‘-] &

]

w

#{row bindings Commer|
_ADF_RowKeyColumn

-

Attribute control hints can be configured for both view objects and entity objects.
Information about how to add an attribute control hint to an entity object can be found
in the "Defining Attribute Control Hints for Entity Objects" section of Fusion
Developer’s Guide for Oracle Application Development Framework. Information about how
to define a UI hint for a view object can be found in the "Defining UI Hints for View
Objects" section of Fusion Developer’s Guide for Oracle Application Development
Framework.

10.4.3 How an Integrated Excel Workbook Evaluates a Label Property

An integrated Excel workbook evaluates the Label properties of ADF components
when the workbook is initialized after the end user opens the workbook for the first
time. The integrated Excel workbook saves the retrieved values for the Label
properties when the workbook itself is saved to a directory on the system.

The retrieved values for the Label properties do not get refreshed during invocation of
actions such as the worksheet's DownSync action or the ADF Table component's
Download action. You indirectly refresh the retrieved values of the Label properties if
you invoke the workbook actions ClearAllData or EditOptions described in

Table A-19.

10.5 Branding Your Integrated Excel Workbook

ADF Desktop Integration provides several features that you can configure to brand
your integrated Excel workbook with information such as application name, version
information, and copyright information. You can use the workbook BrandingItems
group of properties to associate this information with an integrated Excel workbook.

10-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Branding Your Integrated Excel Workbook

You must configure a ribbon tab as described in Section 9.3, "Configuring the Runtime
Ribbon Tab" so that the end user can view this branding information by clicking a
ribbon command that invokes the ViewAboutDialog workbook action at runtime. For
more information about workbook actions, see Table A-19.

ADF Desktop Integration also provides a style (Branding Area) to assist you in
branding your integrated Excel workbooks. The ADF Desktop Integration sample
application applies this style to the first row of each of its sample workbooks. Used
with the ADF Image and ADF Output components, as demonstrated in Figure 10-10,
the style contributes to the consistent branding of the integrated Excel workbooks in
the sample application.

Figure 10-10 Branding Area in Sample Workbook

= = EditAlllnventory.xlsx - Microsoft Excel

(On)

]
a
—/ Home Insert Page Layout Formulas Data Review View Developer Add-Ins Inventory
[G15 - A
A E I+ D 5 I

4 ORACLE EditAll Inventory

Changed| _|Flagged | _ | Status - |Product | Ameunt in Stock | OQut of Stock Explanation

50169 2550

You can also define string keys in a resource bundle to define information, such as
titles, in one location that can then be used in multiple locations in an integrated Excel
workbook at runtime when EL expressions retrieve the values of these string keys. For
information about defining string keys, see Section 11.2, "Using Resource Bundles in
an Integrated Excel Workbook."

10.5.1 How to Brand an Integrated Excel Workbook

You define values for the workbook BrandingItems group of properties.

Before you begin:

It may be helpful to have an understanding of how to customize the brand of your
integrated Excel workbook. For more information, see Section 10.5, "Branding Your
Integrated Excel Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook."

To brand an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the browse (...) icon beside the input
field for Brandingltems.

4. In the Edit Brandingltems dialog, click Add and specify values for the new
element as follows:

n Name

Specify the name, or the EL expression, of the branding item to define.

Configuring the Appearance of Your Integrated Excel Workbook 10-11

Branding Your Integrated Excel Workbook

s Value

Specify a literal string or click the browse (...) icon to invoke the expression
builder and write an EL expression that retrieves a value at runtime.
BrandingItems must use literal strings or resource expressions, and must not
contain any binding expression.

Figure 10-11 shows the design time view of branding items in the Summit sample
application for ADF Desktop Integration.

Figure 10-11 Design Time View of Branding Items in the Summit Sample Application for
ADF Desktop Integration

Edit Brandingltemns @
Members: Application Mame properties:

] Application Name

1| Version

2| Workbook Name

3| Workbook Version
4| Copyright

Application Name
#{res['summitdi general branding.cop?

MName
The name of this branding attribute.

Add I I Remove

oK || Ccancsl

5. Click OK.

Tip: You may also add your brand's image or logo to the integrated
Excel spreadsheets. For more information about adding an image
component, see Section 6.6, "Inserting an ADF Image Component."

10.5.2 What Happens at Runtime: the Brandingltems Group of Properties

At runtime, the name-value pairs that you define for the BrandingItems group of
properties appear in the About tab of the About dialog that the end user invokes using
the About ribbon command of the runtime ribbon tab. You configure the runtime
ribbon tab to appear, as described in Section 9.3, "Configuring the Runtime Ribbon
Tab." Figure 10-12 shows the runtime view of branding items in the
EditWarehouseInventory-DT.x1lsx workbook.

10-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Tooltips in ADF Desktop Integration Components

Figure 10-12 Runtime View of Branding ltems in the Summit Sample Application for
ADF Desktop Integration

'@1 About @
About | Versions I Properties
MName Value
Summit sample appication
Workbook Name Edit Customer Details
‘Workbook Version 1.0
. Copyright (c) 2013, 2015, Oracle and/or its affiiates. All
Copyright rights reserved

Diagnostic Report

Note: No About tab appears in the About dialog at runtime if you do
not specify properties for the BrandingItems group of workbook
properties.

10.6 Displaying Tooltips in ADF Desktop Integration Components

You can use tooltips to display a hint or instruction text for ADF Desktop Integration
components and table column headers. The tooltip appears in the Comment window
of the cell that anchors the component or in the column header cell in the case of table
column headers.

Tooltips can be defined as literal strings or EL expressions. You enter the literal string
in the Tooltip property of the component or the column. You can also specify the EL
expression (including a resource expression) as a value for the Tooltip property. At
runtime, the EL expression resolves to the tooltip to display.

Note: ADF Desktop Integration also supports toolTip attribute
control hint in EL expressions. The support is similar to the mandatory
control hint described in Table B-3 of Appendix B, "ADF Desktop
Integration EL Expressions.”

If you create a component from a binding element, the tooltip is automatically set to
the model-driven tooltip, otherwise it is empty. Note that the tooltip is always initially
empty for the ADF Label component. For table column headers, the default value that
it renders is the value of the Fusion web application's attribute control Tooltip
property, as shown in Figure 10-13, if you created the ADF Table component from a
tree binding. The Special columns (Changed, Flagged, Status) are an exception. By
default, they do not render a tooltip.

Attribute control hints can be configured for view objects. Information about how to
define a UI hint for a view object can be found in the "Defining UI Hints for View
Objects" section of Fusion Developer's Guide for Oracle Application Development
Framework. For information about how to retrieve the value of an attribute control hint
in an integrated Excel workbook, see Section 10.4.2, "Retrieving the Values of Attribute
Control Hints."

For more information, see Section 10.6.1, "How to Add a Tool Tip to an ADF Table
Component" and Section 10.6.2, "How to Add a Tool Tip to a Form-Type Component."

Configuring the Appearance of Your Integrated Excel Workbook 10-13

Displaying Tooltips in ADF Desktop Integration Components

Figure 10-13 Attribute Control Hint Tooltip that Renders Tooltip in ADF Table Column Header

splications] Customerstiewsml
3] SummitACFdi i i
“rojects Rl @~ - =- Generel
& Medd ity Obiete | Attributes :
=1-{3 Application Saurces L ELE
511§ aracle. summitdi, model Attributes ‘fiew object attributes can be mapped to entity attributes, calculated or SQL-derived,
-1 eniities Business Rules
3@ querizs Qu=ry X rane +

=i 1] Ihk; \ \icvs Crilteria Name Type Alias Name Entity Usage [nfo
1 readorly T = 14 Integer D Customers
;:_"”"‘emwew I Lt Mame String NAME Customers
: View. 31
e Customerstiew.xm Phone String PHONE Customers
-2 rentoryven Actessors
&8 InventoryWarchouselien List UI Hints flidESs String ADORESS R
] ?E Warehouzelisw UL Catrgorics City 5tring CITY Customers
ﬂ i} FEQ]!.IFEE! TS State String STATE Customers
3@ SErvicess Countryld Integer COUNTRY _ID Customers
oz iR CreditRatneld Irteger CREDIT RATING 1D Qustomers
EEEIE SalesRenld Irteger SALES_REF_ID Customers
Lecent Files = = == =

tomere\i I- Struct
Fiemersiians xml - Stucture Detsle (THnts Enfity Attrbute | Dependencies | Custom Properties | List of Uzhiss

&2 Customersvisw Display: (3 Display () Hide
D SQLQuery Label: |Z\|:| Code

i.[[] Data

Label Flural: |
_| Properties = =
© Tooltip: The 2ip code needs 5 digis (eg. 98101) or a “ap+4” code (2g. 98101-1239)
- Atrbutes P [re ap Igi's (eg) p B]
P emd
= . » EditCustomers-DT.xlsx - Microseft Excel
Home Inzert Page Layout Formulas Data Review View Add.Ins Orade ADF Custamers ALerobat
¢ Pro & onent * i) Rerresn Bindings ; g [4 3
ok Prop :J anent - g} Refrasn Bindings];_;; L> . = SetDutputhwl . 'I_Ié
- « = falidata Run Stop Console e DE::-
ut K Delete () Refrech Canfig
Warkha ok ADF Camponents Tast Logging Eublish
13 - 5 | Zip Code
B C D E: F 1 K L M
DRACLE Edit Customers
b i . The 2p code needs 5 digte (2g. 98101 or a "z2p+4" code (20, 98101
Changed| _| Status " Name | Credit Rating | _ Phone = Re 1234)
Kiclz Bikes Exsallant 82808 M.

Note: In Figure 10-13, notice the small red arrow at the top-right of
the Zip Code column header cell in the EditCustomers-DT.x1sx
workbook. It indicates that the header cell has a comment. Hover your
mouse pointer over the cell to see the tooltip message.

10.6.1 How to Add a Tool Tip to an ADF Table Component

You configure the Tooltip property of the column in the ADF Table component that
you want to render a tooltip.

Before you begin:
It may be helpful to have an understanding of tooltips. For more information, see
Section 10.6, "Displaying Tooltips in ADF Desktop Integration Components.”

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook."

To add a tooltip to a table column header:
1. Open the integrated Excel workbook.

10-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Tooltips in ADF Desktop Integration Components

2. If the Table-type component has already been inserted in the Excel worksheet,
click any cell of the table, and click Edit Properties in the Oracle ADF tab.

To insert a Table-type to the worksheet, select the cell where you want to anchor
the component. In the components palette or the bindings palette, select the
Table-type component or the binding, and click Insert Component or Insert
Binding.

3. In the Edit Component: ADF Table dialog, expand the Columns property. Click the
browse (...) icon of the Tooltip property of the desired column, and enter the
tooltip message. You can enter a literal string or an EL expression.

Figure 10-14 shows the tooltip EL expression for the ADF Table column header in
the Summit sample application's EditCustomers-DT.x1sx workbook that renders
the runtime tooltip shown in Figure 10-13.

Figure 10-14 Tooltip for ADF Table Column Header at Design-time

Edit Columns @

Members: #{row bindings. ZipCode inputValue} properties:
0 | _ADF_ChangedColumn + @z (&
_1 | _ADF_StatusColumn E‘_"| -
_2 | #{row.bindings.Name.inputValue Annotation
_3 | #irow bindings.CreditRatingld.ir CellStyleName Data Cell
_4 | #row bindings.Phone.inputV/alu DynamicColumn False
5 | #lrow bindings Address.inputVa > GroupHeader
|_6 | #row.bindings City.inputValue} HeaderlLabel #{bindings Customers_hints_ZipCode label}

7 | #row bindings. State.inputValue HeaderStyleMame Column Header

[l #irow bindings ZipCode.input\/3 D ZipCode
191 #{row bindings. Regionld.inputVz InsetComponent
10} #{row bindings. Countryld.inputy InsertUsesUpdate True
11 #{row bindings.SalesRep.inputy) ResizeMode InhesitFromTable
2] #lrow bindings Comments inp T I tindings Cusiomers hints ZipCode ool

13| ADF_RowKeyColumn X #{bindings. ints 2 tooltip} [
= > UpdateComponent #{row bindings.ZipCode inputValue} (ModelDriver

Visible True
Width
] T 3 Tooltip
The toottip displayed on this column’s header
Add] [Bemove
4. Click OK.

10.6.2 How to Add a Tool Tip to a Form-Type Component

You configure the Tooltip property of component that you want to render a tooltip.

Before you begin:
It may be helpful to have an understanding of tooltips. For more information, see
Section 10.6, "Displaying Tooltips in ADF Desktop Integration Components."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook."

To add a tooltip to an inserted form-type component:
1. Open the integrated Excel workbook.

Configuring the Appearance of Your Integrated Excel Workbook 10-15

Displaying Tooltips in ADF Desktop Integration Components

If the form-type component has already been inserted in the Excel worksheet,
select the component, and click Edit Properties in the Oracle ADF tab.

To insert a component to the worksheet, select the cell where you want to anchor
the component. In the components palette or the bindings palette, select the
form-type component or the binding, and click Insert Component or Insert
Binding.

In the Property Inspector, click the browse (...) icon of the Tooltip property, and
enter the tooltip message.

If a component is created from a binding element, the Tooltip property would be

set to the model-driven tooltip. If required, you can configure and change the
tooltip message or the EL expression. The property would be empty if the
component is not created from a binding element.

Figure 10-15 shows the Tooltip property of an Input Text component.

Figure 10-15 Tooltip Property of Input Text Component

Edit Component: ADF Input Text

24 |
4 Appearance
StyleName

Edit the properties and press OK to save your changes.

Input Text

#{bindings_Phone hints tooltip}

X5

0K

] | Cancel

4. Click OK.

Figure 10-16 shows the tooltip message at the runtime. Notice the small red arrow at
the top-right of the Input Text component. It indicates the component, or the cell, has a
comment. Hover mouse pointer over the component to see the tooltip message.

Figure 10-16 Tooltip Message of Input Text Component at Runtime

ORACLE

Warehouse
Warehouse Id. 301
Address 5921 King Way
City Lagos

State

Edit Warehouse Inventory

Region Africa / Middle East
Country Nigeria

Manager Een Eiri

ZipCode

The z7ip code needs 5 digits (eg. 98101) or 3 "zip+4" code (eg. 98101-
1234)

10.6.2.1 What You May Need to Know About Tooltips for Form-Type Components

The tooltips are rendered once only, and are not updated after a call to

Worksheet .DownSync.

10-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Tooltips in ADF Desktop Integration Components

Any Excel comment added manually at design time to a cell (or merged area)
containing an ADF component is removed at runtime and replaced by the ADF
component's tooltip. Similarly, any Excel comment added manually to an ADF
component's cell during test mode is removed when the integrated Excel workbook
returns to design-time mode. Excel comments added to cells with no ADF
components, or to ADF components that do not support tooltips remain unchanged.

At runtime, if the Tooltip property is non-empty, the expression is evaluated and the
resulting text is trimmed of whitespace. If the final value is non-empty, it is inserted
into the target cell as an Excel comment.

When a component is positioned on a merged range of cells, the tooltip appears on the
top-right corner of the merged range.

You can also add tooltips to table columns (see Section 10.6.3, "What You May Need to
Know About Tooltips for Table Columns") and Worksheet Ribbon commands (see
Section 9.3.2, "How to Configure a Worksheet Ribbon Command for the Runtime
Ribbon Tab").

Notes:
= Tooltips are not editable in a protected worksheet.

= Ribbon command tooltips have a maximum size of 1024
characters. If a tooltip value exceeds that limit, only the first 1024
characters are shown.

» If Excel Comments are disabled, tooltips for form components and
table headers are not rendered.

= Extensive usage of tooltips may impact runtime performance.

10.6.3 What You May Need to Know About Tooltips for Table Columns

The tooltips for column headers are evaluated and rendered when the table column
headers are rendered including first time table initialization, Table.Initialize, and
Table.Download actions.

If the Tooltip property of a column is set to a non-empty EL expression, the text that
the EL expression evaluates to is trimmed of whitespace, and inserted into the target
cell as an Excel comment.

To get a unique tooltip for each expanded dynamic column at runtime, enter the
expression in the following syntax in the ToolTip property:

#{bindings.<TreelID>.hints.*.tooltip}

At runtime, the dynamic column expands to the available set of attributes in the
specified tree or the node. ADF Desktop Integration also retrieves the corresponding
tooltip values and applies each one to the appropriate column using the rules
described above.

For more information about tooltips, see Section 10.6.2.1, "What You May Need to
Know About Tooltips for Form-Type Components." You can also add tooltips to the
headers of special columns of the table components (see Section 7.12, "Special
Columns in the ADF Table Component") and the dynamic columns (see Section 7.14,
"Adding a Dynamic Column to Your ADF Table Component")

Configuring the Appearance of Your Integrated Excel Workbook 10-17

Using Worksheet Protection

10.7 Using Worksheet Protection

By default, end users can edit the values of locked cells and ADF Desktop Integration
components that have implied read-only behavior, such as ADF Label, ADF Output
Text and ADF Table component's header rows, at runtime. While uploading data, ADF
Desktop Integration ignores these changes and overwrites them when it next refreshes
the component.

Various ADF Desktop Integration components, (for example, ADF InputText
component) and subcomponents (for example, ModelDrivenColumnComponent
subcomponent) include a ReadOnly property.

To prevent editing of locked cells at runtime, enable ADF Desktop Integration
worksheet protection. Optionally, you can also provide a password to prevent the end
user from turning off worksheet protection.

Do not use the Excel's Protect Sheet or Protect Workbook features directly in an
integrated Excel workbook. Also, ensure that end users do not use these features.

10.7.1 How to Enable Worksheet Protection

Worksheet protection enables true read-only mode for locked and read-only cells, and
prevents any editing at runtime.

Before you begin:
It may be helpful to have an understanding worksheet protection. For more
information, see Section 10.7, "Using Worksheet Protection."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook."

To enable Worksheet Protection:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand the Protection property and
configure values as follows:

= To enable worksheet protection at runtime, set the Mode to Automatic.

» If desired, provide a value in the Password field. The end user cannot turn off
sheet protection at runtime without knowing this value.

Note that the password is not encrypted and that the maximum password
length allowed by Excel is 255 characters. If you specify a longer password, it
will be truncated silently at runtime when sheet protection is toggled.

Figure 10-17 shows the design time view of worksheet protection in the Summit
sample application for ADF Desktop Integration.

10-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Worksheet Protection

Figure 10-17 Design Time View of Worksheet Protection in the Summit Sample
Application for ADF Desktop Integration

Edit Worksheet Properties &J
Edit the properties and press OK to save your changes
2|
4 Behavior -
» Events Startup L
4 Protection]
Mode Automatic
helloworld
> Ribbon Commands Ribbon Commands (3) i
P -
Password
The (optional) password used when worksheet protection is automatic
o

4. Click OK.

10.7.2 What Happens at Runtime: How the Locked Property Works

At runtime, if the end user tries to edit a read-only cell or a ADF Desktop Integration
read-only component, Excel displays the warning message, as shown in Figure 10-18.

Figure 10-18 Worksheet Protection Warning at Runtime

ORACLE |Edit Warehouse Inv%ntr_-ry

Microsoft Office Excel @

The cell or chart that you are trying to change is protected and therefore read-only.

To modify a protected cell or chart, first remove protection using the Unprotect Sheet command {Review tab, Changes group). You may be prompted for a password.

== T e
State Manager Roberta Menchu

Zip Code Phone

When worksheet protection is enabled, ADF Desktop Integration controls the Locked
property for cells that are within the bounds of ADF Desktop Integration components.
ADF Desktop Integration does not alter the Locked property of cells outside the
bounds of ADF Desktop Integration components.

At runtime, ADF Desktop Integration evaluates the read-only behavior of its
components. Some components such as ADF Label and ADF Output Text, are always
read-only, and other components, such as ADF Input Text, have a read-only property.
At runtime, the Locked property is set to true when read-only for the component
evaluates to true. The header labels of ADF Table components are always read-only,
but column subcomponents may or may not be read-only depending on their
configuration. At runtime, each component's read-only behavior is evaluated and the
corresponding cell's Locked property is set to the appropriate value.

10.7.3 What You May Need to Know About Worksheet Protection

Worksheet protection is not enabled by default. You enable it at design time if you
want to use it for a particular worksheet. Also, after worksheet protection is enabled,
the Locked property for cells is set at runtime.

Configuring the Appearance of Your Integrated Excel Workbook 10-19

Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

It is important to note that the password used for worksheet protection is itself not
encrypted or stored in a safe location. Worksheet protection is used to improve
worksheet usability, not to protect sensitive data.

After worksheet protection is enabled, Excel behaves differently. Here are some
differences that you can expect:

s The ADF Table components cannot be sorted, as they include read-only cells in the
Key column.

s The end user can insert a full row or column. However, once inserted, they cannot
be deleted.

s The end user cannot insert partial rows or columns.

10.8 Using ADF Desktop Integration EL-based Properties with Custom
Attribute Properties

You can use custom attribute properties defined in view objects on the server with
ADF Desktop Integration EL-based properties of the integrated Excel workbook. By
default, ADF Desktop Integration EL evaluation does not support custom attribute
properties defined on the server.

To enable the support, you must set the
Worksheet .CustomAttributePropertiesEnabled property to True.

After enabling the support, you can reference custom attribute property names in
EL-based property values.

10.8.1 How to Enable Custom Attribute Properties in Integrated Excel Workbook

Before you enable custom attribute properties, configure one (or more) custom
attribute properties in your Fusion web application. For mor information about how to
define a UI hint for a view object, see the "Defining UI Hints for View Objects" section
of Fusion Developer's Guide for Oracle Application Development Framework.

To enable custom attribute properties in integrated Excel workbook:
1. Open the integrated Excel Workbook.

2. In the Oracle ADF tab, click Worksheet Properties.
3. SetCustomAttributePropertiesEnabled to True.
4. C(Click OK.

After setting CustomAttributePropertiesEnabled to True, you can reference custom
attribute properties within EL expressions using one of the following formats:

s For attribute hint, use this format: "#{bindings. {attr id}.hints.{custom
property}}"

s For tree attribute hint, use this format: "#{bindings. {tree id}.hints. {attr
id}.{custom property}}"

s For dynamic column hint, use this format: "#{bindings. {tree id}.[{node
id}].hints.*.{custom property}}"

In the following examples, diCellStyle is a custom attribute property that the
developer added to the relevant model attribute:

= static column example:
#{bindings.EmpCompViewl.hints.EmployeeId.diCellStyle}

10-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

dynamic column example:
#{bindings.EmpCompDeclSglViewl . [model .EmpCompDeclSglView] .hints.*.diCel
1Style}

10.8.2 What Happens at Runtime: CustomAttributePropertiesEnabled is Set to True

When a worksheet's CustomAttributePropertiesEnabled is set to True, ADF Desktop
Integration EL-based properties start evaluating custom attribute property values
returned from the server.

Tip: For best performance, whenever possible, ensure that the
custom property value should be a literal value (for example: an Excel
style name).

10.8.3 What You May Need to Know About the CustomAttributePropertiesEnabled

Property

Note the following points about the CustomAttributePropertiesEnabled property
and its behavior:

Custom property names are case-sensitive.

If the custom property value is itself an EL expression (rather than a literal value),
the returned property value gets re-evaluated as EL.

EL re-evaluation does not apply to standard attribute hint values.

When CustomAttributePropertiesEnabled is True, configuration validation does
not report a validation error for custom property names in EL.

When CustomAttributePropertiesEnabled is False, configuration validation
does report a validation error for custom property names in EL.

If a custom property name matches a reserved hint name (for example, label), the
custom property is ignored.

Configuring the Appearance of Your Integrated Excel Workbook 10-21

Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties

10-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

11

Internationalizing Your Integrated Excel
Workbook

This chapter describes internationalization issues to consider when developing an
integrated Excel workbook, how to use resource bundles, and how to localize the
integrated Excel workbook.

This chapter includes the following sections:
= About Internationalizing Your Integrated Excel Workbook
= Using Resource Bundles in an Integrated Excel Workbook

s Localization in ADF Desktop Integration

11.1 About Internationalizing Your Integrated Excel Workbook

ADF Desktop Integration provides several features that allow you to deliver
integrated Excel workbooks as part of an internationalized Fusion web application.
One of the principal features is the use of resource bundles to manage the localization
of user-visible strings that appear in Oracle ADF components at runtime.

Note the following points about internationalization and localization in an integrated
Excel workbook:

s Internationalized Data

ADF Desktop Integration supports both single- and double-byte character sets. It
marshals data transmitted between an Excel worksheet and a Fusion web
application into XML payloads. These XML payloads use UTF-8 encoding with
dates, times, and numbers in canonical formats.

s Locale

The locale of the system where the Excel workbook is used determines the format
for dates, times, and numbers. These settings (formats and the locale of the
system) may differ from the settings used by the Fusion web application. ADF
Desktop Integration does not attempt to synchronize these settings, but it ensures
that the data retains its integrity. ADF Desktop Integration does not provide a
mechanism for end users to change the language or display settings of the Oracle
ADF components in an integrated Excel workbook at runtime.

When configuring or applying styles to ADF components in an integrated Excel
workbook, configure or choose styles that are locale-sensitive. For more
information, see Section 10.2, "Working with Styles."

Internationalizing Your Integrated Excel Workbook 11-1

About Internationalizing Your Integrated Excel Workbook

For more information about internationalizing Fusion web applications, see the
"Internationalizing and Localizing Pages" chapter in Web User Interface Developer's
Guide for Oracle Application Development Framework.

11.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples

You can create integrated Excel workbooks for your internationalized Fusion web
application. Designing your integrated Excel workbook as part of the
internationalized Fusion web application helps in its easy adaptation to specific local
languages and cultures. Using resource bundles, you can configure your integrated
Excel workbook for a specific local language or culture by providing translations of the
user-visible strings that appear to end users at runtime. For more information, see
Section 11.3, "Localization in ADF Desktop Integration."

Figure 11-1 shows an example of an integrated Excel workbook configured for the
Japanese language.

Figure 11-1 Integrated Excel Workbook in Japanese

=i AT lAFRR #E F-F BE O EF MR OradeADF | MyWorkbook | Team

EE YA 10

04 08 £F-4% ATLs N-f3 | AF-4
A Fub OWF ORE ARR | A-E-F

=075 |75t
Wz - I,: e
| A B (2 D E F G H L | I
1 4
ey P T AT = | e #BE |,
, TEH = {.‘-‘,97\ HEAES NHEAS itE v#*—¥y— BREED = +
5 7369 2002 M 7902 28572 20 IO SEarrars TRRry
a 7499 i S 7698 29637 300 e srars LRENCERY
= 7521 £ S TE98 20639 T PASEANEI St IRNBCERY
= 7568 | Bl 7839 20760 20 spcoressins. soiseunn SR
HATHERYEY HiEE 7698 20857 A0 eSSy IRNRCIRN

11.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook

After you have internationalized your integrated Excel workbook, you may find that
you need to add additional functionality to configure your workbook. The following
sections describe other functionality that you can use:

» Security: Whether you are using a secure Fusion web application or not, you
must be aware of security implementations in your integrated Excel workbook.
For more information, see Chapter 12, "Securing Your Integrated Excel Workbook.

"

= Validating integrated Excel workbook: You can configure server-side and
client-side data entry validation for the Fusion web application and the
integrated Excel workbook. For more information, see Chapter 13, "Adding
Validation to Your Integrated Excel Workbook."

s Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Chapter 15, "Deploying Your Integrated Excel
Workbook."

11-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Resource Bundles in an Integrated Excel Workbook

11.2 Using Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration uses resource bundles to manage user-visible strings that
appear in the ADF components of an integrated Excel workbook at design time and
runtime. You can use JDeveloper to create and manage resource bundles in your
Fusion web application.

You can register up to twenty resource bundles containing string values you define
with an integrated Excel workbook. Data in a resource bundle must not exceed 1
megabyte. At runtime, ADF Desktop Integration downloads the data in all registered
resource bundles during workbook initialization. To optimize performance, only enter
strings in the resource bundles that the integrated Excel workbooks use. Performance
can suffer if resource bundles contain many unused strings. For more information
about these resource bundles, see Section 11.2.4, "What You May Need to Know About
Resource Bundles."

The Resources workbook property specifies what resource bundles an integrated
Excel workbook can use. This property specifies an array of resource bundles
(Resources list) in the integrated Excel workbook. Each element in the array has a
property that uniquely identifies a resource bundle (Alias) and a property that
identifies the path to the resource bundle in the JDeveloper desktop integration project
(Class). For example, EditCustomers-DT.x1sx in the Summit sample application for
ADF Desktop Integration references the res resource bundle that has the following
value for the Class property:

oracle.summitdi.resources.UIResources

More information about the Resources workbook property can be found in
Section A.14, "Workbook Actions and Properties."

By default, ADF Desktop Integration provides a reserved resource bundle that supplies
string key values used by many component properties at runtime. ADF Desktop
Integration uses the value _ADFDIres to uniquely identify this resource bundle. Many
EL expressions reference string values in this resource bundle.

11.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook

You register a resource bundle by adding an element to the Resources list using the
Edit Resources dialog.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more
information, see Section 11.2, "Using Resource Bundles in an Integrated Excel
Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 11.1.2,
"Additional Functionality for Internationalizing Integrated Excel Workbook."

To register a resource bundle:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the browse (...) icon beside the input
field for Resources to display the Edit Resources dialog shown in Figure 11-2.

Internationalizing Your Integrated Excel Workbook 11-3

Using Resource Bundles in an Integrated Excel Workbook

Figure 11-2 Edit Resources Dialog

Edit Workbook Properties R

Edit the properties and press OK to save your changes.

)41

4 Behavior -
AutoDisplayStatusViewerEnabled True |

> Compatibility - L .

> Runtime Ribbon Tab Edit Resources @

4 Data
Brandingltems Members: res properties:
Parameters
Remote ServietPath
Resources
WebAppRoot Alias s

4 Design Annctation
Annotation Class oracle_summitdi resources_UlResources
ApplicationHomeFolder
CustomizationEnabled
Project
WebPagesFolder
Waorkbook|D

Beset WorkbookID

Resources

The collection of resource buny Class

The fully-qualified class name containing resources.

A Add] [Remove

[ok [cancel

4. Specify values for the resource bundle and then click OK.

For information about the values to specify for a resource bundle, see the entry for
Resources in Table A-20.

Tip: While registering a resource bundle class, do not include the file
extension.

11.2.2 How to Override Resources That Are Not Configurable

The overridable resources contains several user-visible runtime strings that you cannot
replace by configuring the properties of the ADF Desktop Integration components.
Examples include the strings that appear in the default upload dialog illustrated in
Figure 7-11.

To replace these user-visible runtime strings, you create a resource bundle in your
Fusion web application that contains the string keys from the overridable resource that
ADF Desktop Integration supports. Appendix E, "String Keys in the Overridable
Resources" lists these string keys. You define values for the string keys listed in
Appendix E to override in the resource bundle you create.

Before you begin:

It may be helpful to have an understanding of how to use resource bundles. For more
information, see Section 11.2, "Using Resource Bundles in an Integrated Excel
Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 11.1.2,
"Additional Functionality for Internationalizing Integrated Excel Workbook."

To override resources that are not configurable:
1. Create a resource bundle in your Fusion web application.

11-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Resource Bundles in an Integrated Excel Workbook

For information about creating a resource bundle, see the "Manually Defining
Resource Bundles and Locales" section in Web User Interface Developer’s Guide for
Oracle Application Development Framework.

2. Define the string key values you want to appear at runtime in the resource bundle
for the string keys listed in Appendix E, "String Keys in the Overridable
Resources."

3. Set _ADFDIres as the value of the Alias property when you register the resource
bundle you created in Step 1.

For information about how to register a resource bundle, see Section 11.2.1, "How
to Register a Resource Bundle in an Integrated Excel Workbook."

Table E-1 describes the string keys in the overridable resources that ADF Desktop
Integration supports. Supply an alternative value to the value listed in the English
value column for each string key in the overridable resource. Note that override
resources should not be used in component properties, they are only intended for the
original usages.

11.2.3 What Happens at Runtime: Override Resources That Are Not Configurable

ADF Desktop Integration retrieves the values of string keys listed in Table E-1 that
you defined in the resource bundle you created. It retrieves the values of other string
keys that you did not define in the resource bundle you created from the reserved
resource bundle.

11.2.4 What You May Need to Know About Resource Bundles

See the following sections for additional information about resource bundles in an
integrated Excel workbook.

Size and Number of Resource Bundles in an ADF Desktop Application

You can register up to twenty resource bundles containing string values you define
with an integrated Excel workbook. Data in a resource bundle must not exceed 1
megabyte. If you attempt to register more than twenty resource bundles or data in a
resource bundle exceeds 1 megabyte, ADF Desktop Integration writes a warning to the
client-side log file and stops registration of additional resource bundles or resource
bundle data after the 1 megabyte limit is reached.

For example, if resource bundle A measures 2 megabyte and resource bundle B
measures 1 megabyte, ADF Desktop Integration registers the first megabyte of data in
resource bundle A and all of the data in resource bundle B. For information about
client-side logging, see Section C.4.3, "About Client-Side Logging."

Resource Bundle Types
ADF Desktop Integration supports use of the following types of resource bundle:

» Properties bundle (.properties)
» List resource bundle (.rts)
» Xliff resource bundle (.x1f)

For more information about resource bundles, see the "Manually Defining Resource
Bundles and Locales" section in Web User Interface Developer’s Guide for Oracle
Application Development Framework.

Internationalizing Your Integrated Excel Workbook 11-5

Localization in ADF Desktop Integration

Caching of Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration caches the values of string keys from the resource bundles
that an integrated Excel workbook retrieves when it first connects to the Fusion web
application. If you change a string key value in a resource bundle after an integrated
Excel workbook has cached the previous value, the modified value does not appear in
the workbook unless the ClearAllData workbook action is invoked and the end user
closes and reopens the workbook so that it retrieves the modified value from the
Fusion web application. For more information about the ClearAl1lData workbook
action, see Table A-19.

EL Expression Syntax for Resource Bundles

ADF Desktop Integration requires that you enclose the string key name in EL
expressions using the [] characters, as in the following example:

#{res['StringKey']}
Note that ADF Desktop Integration does not support the following syntax:

#{res.StringKey}

11.3 Localization in ADF Desktop Integration

ADF Desktop Integration integrates several diverse sets of technologies. Each of these
technologies provides various options for controlling the choice of natural human
language when you localize your Fusion web application.

When the end user interacts with an integrated Excel workbook, various elements are
involved. Each of these elements has its own set of supported languages and resource
translations. In such a scenario, the translation of language is the responsibility of the
respective publisher.

Table 11-1 presents a summary of elements involved and their role in translation:

Table 11-1 Summary of Localization

Area subject to
localization Determination of language to use

Microsoft operating system Operating system language settings. You can choose the
language through Regional Settings on Control Panel.

Microsoft Office Microsoft Office language settings

Web pages displayed in Usually controlled by Microsoft Internet Explorer's Language
ADF Desktop Integration Preferences.
Dialog actions

ADF Desktop Integration Microsoft Office language settings
client resources

ADF Desktop Integration Microsoft Internet Explorer language preferences
server resources

ADF Desktop Integration Microsoft Internet Explorer language preferences
custom resource bundles

Figure 11-3 illustrates how various elements involved in a Fusion web application
play their role in translation.

11-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Localization in ADF Desktop Integration

Figure 11-3 Localization in ADF Desktop Integration

Desktop Client

Browser Settings

Culture Controlled By Locale Controlled by
Windows Operating System Application Server
MS Office Language Settings
Excel | ADFdi Server
Resources Resources
— _——'—"'_'_'__
Worksheet |
ADFdi Client A.pplg:atlon Custom
Resources esources
— — __1.--—-"_'“\
=
Embedded "
[— Appll;:uon Web
Expoloer ges
T Y

Locale Controlled by

Internet Explorer
Browser Settings

For more information about localization in ADF Desktop Integration, see the "Oracle
ADF Desktop Integration Localization whitepaper" on OTN at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-08553
4 .html

11.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings

The server-side localization comprises of ADF Desktop Integration server resources
and Application Custom Resources. By default, ADF Desktop Integration uses the
client-side Internet Explorer's language preference to determine server-side
localization, but you can configure the Fusion web application to determine the
server-side locale. To do that, you would need to create a user preference handler and
register it by adding a UserPreferences.Handler initialization parameter for ADF
Desktop Integration servlet.

11.3.1.1 How to Create a User Preference Handler

To create a user preference handler, create a public java class with a public method of
java.util.Locale getLocale() signature that determines the ADF Desktop
Integration server-side resources locale and returns the locale as a java.util.Locale
object.

Example 11-1 shows a sample implementation of a user preference handler.

Note: The handler class must have a constructor with no arguments,
or uses the default Java constructor.

Example 11-1 Implementation of a User Preference Handler

public class CustomUserPrefsHandler

{
public Locale getLocale ()

{

Internationalizing Your Integrated Excel Workbook 11-7

Localization in ADF Desktop Integration

UserPref info = (UserPref)
ADFContext.getCurrent () .getSessionScope () .map.get ("User_Pref_Info");
return info.getLocale();
}
}

11.3.1.2 How to Register the User Preference Handler

To register a user preference handler, add the UserPreferences.Handler initialization
parameter for ADF Desktop Integration in web. xml.

Before you begin:
It may be helpful to have an understanding of how to use resource bundles. For more
information, see Section 11.3, "Localization in ADF Desktop Integration."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 11.1.2,
"Additional Functionality for Internationalizing Integrated Excel Workbook."

To register a User Preference Handler:
1. Open the web.xnl file of your Fusion web application.

2. Add an initialization parameter to configure the user preference handler, as
described in Table 11-2.

Table 11-2 Configuring Locale User Preference

Property Value

Name Enter the name of the initialization parameter as follows

UserPreferences.Handler

Value Complete path of the handler class.

3. Save the web.xml file.
4. Rebuild and restart your Fusion web application.
Example 11-2 shows the web.xml file with UserPreferences.Handler.

In Example 11-2, myCompany .XYZ . CustomUserPrefsHandler is the complete path of the
handler class.

Example 11-2 web.xml File With UserPreferences.Handler

<servlet>
<servlet-name>adfdiRemote</servlet-name>
<servlet-class>
oracle.adf.desktopintegration.servlet.DIRemoteServlet
</servlet-class>
<init-param>
<param-name>UserPreferences.Handler</param-name>
<param-value>myCompany.XYZ.CustomUserPrefsHandler</param-value>
</init-param>
</servlet>

11-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

12

Securing Your Integrated Excel Workbook

This chapter describes security related features in ADF Desktop Integration.

This chapter includes the following sections:

= About Security In Your Integrated Excel Workbook

= Authenticating the Excel Workbook User

s Checking the Integrity of an Integrated Excel Workbook's Metadata

= What You May Need to Know About Securing an Integrated Excel Workbook
= Authorizing the Excel Workbook User

12.1 About Security In Your Integrated Excel Workbook

If you are using a Fusion web application that does not enforce authentication, the
integrated Excel workbook verifies and creates a valid user session when it connects to
the Fusion web application before downloading any data. The session that is
established is used for each and every data transfer between the integrated Excel
workbook and Fusion web application. The session is also used for web pages
displayed from the integrated Excel workbook.

In a Fusion web application that is enforcing authentication, the integrated Excel
workbook ensures that a valid, authenticated user session is established before
transferring data to or from the web application.

For both authenticated and non-authenticated Fusion web applications, ADF Desktop
Integration relies on the establishment of cookie-based sessions. With no
authentication mechanism in place, your Fusion web application is not completely
safe. Hence, you should enable ADF Security in your Fusion web application before
you deploy your web application with integrated Excel workbooks. For information
about ADF Security, see the "Enabling ADF Security in a Fusion Web Application"
chapter in Fusion Developer’s Guide for Oracle Application Development Framework.

When you open the integrated Excel workbook, ADF Desktop Integration detects if
the Fusion web application that the workbook runs against is a secure application and
enforces authentication automatically. For authenticated web applications, the end
user will always be prompted for credentials, even though the workbooks are
downloaded from an authenticated web browser. Since the web browser and Excel are
different operating system processes, they cannot share credentials (unless some form
of Integrated Windows Authentication is used, such as Kerberos or NTLM). For more
information about Microsoft Kerberos, see
http://msdn.microsoft.com/en-us/library/aa378747%28v=vs.85%29.aspx.

Securing Your Integrated Excel Workbook 12-1

About Security In Your Integrated Excel Workbook

12.1.1 Integrated Excel Workbook Security Use Cases and Examples

When you open the integrated Excel workbook of a secure Fusion web application, a
connection confirmation dialog appears and prompts you to connect to the Fusion web
application, as shown in Figure 12-1. Note that the connection confirmation dialog
also appears when the Fusion web application is not secure.

Figure 12-1 Dialog to Verify Connection

You are about to connect to the following application URL:
http://127.0.0.1:7101/summit/adfdiRemoteSenvlet

Do you want to connect?

If you click Yes to connect, another dialog appears that prompts you to enter user
credentials. The dialog that appears depends on how the Fusion web application is
configured to enforce authentication. Figure 12-2, for example, shows the dialog that
appears when the Fusion web application enforces form-based login using Oracle
Access Management.

Figure 12-2 Form-Based Login Dialog
A =W

ORACLE
| Access Manager

Welcome

Enter your Single Sign-On credentials below

12-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Authenticating the Excel Workbook User

12.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web

Application

After you have secured your integrated Excel workbook, you may find that you need
to add additional functionality for your workbook. The following sections describe
other functionality that you can use:

= Validating integrated Excel workbook: You can configure server-side and
client-side data entry validation for the Fusion web application and the integrated
Excel workbook. For more information, see Chapter 13, "Adding Validation to
Your Integrated Excel Workbook."

» Testing integrated Excel workbook: Before publishing and deploying your
integrated Excel workbook, you must test it. For more information, see Chapter 14,
"Testing Your Integrated Excel Workbook."

» Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Chapter 15, "Deploying Your Integrated Excel
Workbook."

12.2 Authenticating the Excel Workbook User

The integration of an Excel workbook with a secure Fusion web application requires
an authenticated web session established between the integrated Excel workbook and
the server that hosts the Fusion web application. ADF Security determines the
mechanism used to authenticate the user.

If the end user opens an Excel workbook without a valid authenticated session, a login
mechanism is invoked to authenticate the end user.

12.2.1 What Happens at Runtime: How the Login Method Is Invoked

A modal dialog appears that contains a web browser control after the login method is
invoked. The web browser control displays whatever login mechanism the Fusion web
application uses. For example, if the Fusion web application uses HTTP Basic
Authentication, the web browser control displays the dialog shown in Figure 12-3. If
the end-user successfully logs in, a new session between the integrated Excel
workbook and the Fusion web application is created.

Figure 12-3 Dialog That Appears When a Fusion Web Application Uses Basic
Authentication

Login | 29 |
1

Windows Security

The server 127.0.0.1 at weblogic requires a username and password.

Warning: This server is requesting that your username and password be
sent in an insecure manner (basic authentication without a secure
connection).

| LIEEI' name |

| Password |

Remember my credentials

[OK] | Cancel

G — —

Securing Your Integrated Excel Workbook 12-3

Checking the Integrity of an Integrated Excel Workbook's Metadata

The end user enters user credentials and, assuming these are valid, an authenticated
session is created.

Note: If the Login method is invoked when a session has already
been established, it first invokes the Logout action internally to
terminate that session.

12.2.2 What Happens at Runtime: How the Web Application Session is Terminated

After the logout method is invoked, a dialog appears informing users that they have
logged out of the current session. The user is automatically logged out when the
workbook is closed, or when the Clear All Data option is selected from the runtime
custom tab in Excel ribbon.

Figure 12-4 Dialog That Appears When a User Logs Out

Logout IéJ

"6" You have been logged out from your cument session.

After logging out, the end user may continue to work with data in the spreadsheet.
When the end user next attempts to interact with the server (for example, invoke an
Upload action), the end user will be prompted to log in again.

If two or more workbooks are open (in test or runtime mode) and running against the
same Fusion web application, closing one workbook does not initiate the logout
mechanism. The user continues to stay logged in and may continue to work on
remaining open workbooks, and can open the closed workbook without being asked
for credentials again. The user is logged out when all workbooks running against the
same Fusion web application are closed.

12.3 Checking the Integrity of an Integrated Excel Workbook's Metadata

ADF Desktop Integration provides a mechanism to verify that the metadata it uses to
integrate an Excel workbook with a Fusion web application is not tampered with after
you publish the Excel workbook for end users. It generates a hash code value and
inserts the value into the ADF Desktop Integration client registry file
(adfdi-client-registry.xml) that it also creates when you publish the integrated
Excel workbook as described in Section 15.3, "Publishing Your Integrated Excel
Workbook." ADF Desktop Integration stores the adfdi-client-registry.xml file in
the WEB-INF directory of the Fusion web application.

If you republish the integrated Excel workbook, ADF Desktop Integration generates a
new hash code value and replaces the value in the adfdi-client-registry.xmnl file.
ADF Desktop Integration creates the adfdi-client-registry.xml file if it does not
exist.

The ApplicationHomeFolder and WebPagesFolder workbook properties allow the
integrated Excel workbook to identify the location of the Fusion web application's
WEB-INF directory. You must set valid values for these properties before you can
publish the integrated Excel workbook and ADF Desktop Integration can generate a
hash code value.

12-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Checking the Integrity of an Integrated Excel Workbook's Metadata

ADF Desktop Integration generates the hash code value using most of the elements in
the metadata for the workbook and the value of the WorkbookID workbook property.
The WorkbookID workbook property is read-only and uniquely identifies the
integrated Excel workbook. You must reset the WorkbookID workbook property if you
create a new integrated Excel workbook by copying an existing integrated Excel
workbook. ADF Desktop Integration excludes the WebAppRoot property from the hash
code calculation since its value is expected to change at runtime.

For more information about the workbook properties discussed here, see Table A-20.

Note: Tamper-check is not performed for customization-enabled
workbooks.

12.3.1 How to Reset the Workbook ID

The value of the WorkbookID workbook property is unique to each workbook and
cannot be modified by you. You can, however, reset the WorkbookID workbook
property. You must do this when you create a new integrated Excel workbook by
copying an existing integrated Excel workbook.

Before you begin:

It may be helpful to have an understanding of how to verify the integrity of integrated
Excel workbook's metadata. For more information, see Section 12.3, "Checking the
Integrity of an Integrated Excel Workbook's Metadata."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 12.1.2,
"Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web
Application."

To reset a workbook ID:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.
3. In the Edit Workbook Properties dialog, click the Reset WorkbookID link.

4. Click Yes to confirm and reset the WorkbookID workbook property in the dialog
that appears., as shown in Figure 12-5.

Securing Your Integrated Excel Workbook 12-5

What You May Need to Know About Securing an Integrated Excel Workbook

Figure 12-5 Reset Workbook ID Dialog

Edit Workbook Properties =

[
1 Edit the properties and press OK to save your changes.
2]
4 Behavior o
I AutoDisplay StatusViewsrEnabled True
1 > Compatibility
3 > Runtime Ribbon Tab
4 Data
Brandingltems
Parameters
RemoteServietPath JadidiRemoteServiet
Resources

WebAppRoot -
4 Design Reset WorkbookID

Annotation
ApplicationHome Folder IC_1¢
CustomizationEnabled I

Project

WebPagesFolder

WorkbookID

m

b Are you sure you want to reset the WorkbookID?

Resst WorkbooklD ves || No

Annotation
An optional note describing the purpose or usage of this object

OK Cancel

5. Click OK.

12.3.2 What Happens When the Metadata Tamper-Check Is Performed

At runtime, the integrated Excel workbook regenerates the metadata hash code and
provides it to the Fusion web application with the first server request. If the Fusion

web application cannot get a match on this hash code, it returns an error to the
integrated Excel workbook. On receiving an error from the tamper check process, the
integrated Excel workbook reports this failure to the end user and closes the
integration framework.

12.4 What You May Need to Know About Securing an Integrated Excel

Workbook

Note the following points about securing an integrated Excel workbook with a Fusion
web application:

Data security

If you save an Excel workbook containing data downloaded from a Fusion web
application to a location, such as a network directory, where other users can access
the Excel workbook, the data stored in the Excel workbook is accessible to other
users.

Security in Microsoft Excel

You can enhance the security of an integrated Excel workbook using Excel's
functionality to set a password on a workbook. It prevents unauthorized users
from opening or modifying the workbook. For more information about Excel
security features, see Excel's documentation.

Integrated Excel workbooks can be configured to cache data, as described in
Section 16.2, "Restore Server Data Context Between Sessions." Make sure that you
do not cache sensitive data in the integrated Excel workbook.

If the Fusion web application is running on the https protocol, you may receive a
certificate error while connecting from an integrated Excel workbook. You can

12-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Authorizing the Excel Workbook User

either install the required certificate using Microsoft Internet Explorer, or choose to
continue to log in and connect to the web application.

= End users that download integrated Excel workbooks using Microsoft Internet
Explorer may be prompted unexpectedly for credentials before the Excel
application is visible, and then prompted again once the workbook opens. This
may occur when the web application is configured to use certain authentication
methods like Basic or Digest. The extra prompt is due to Excel making an
OPTIONS request on the web directory containing the workbook.

To avoid the extra login prompt, end users can choose to save the workbook
locally instead of opening it directly from the browser.

= For a non-authenticated Fusion web application, end-users will not be prompted
to log in. However if the application uses the https protocol, then end users may
briefly see a connection confirmation dialog appear when the first connection is
established to the web application. Workbook developers can control the size of
the dialog with the Workbook.Login.WindowSize property.

If you are an administrator, you should also see the "What You May Need to Know
About Configuring Security in a Fusion Web Application" section in Administrator’s
Guide for Oracle Application Development Framework.

12.5 Authorizing the Excel Workbook User

ADF Desktop Integration enforces view permission for integrated Excel worksheets
through page definition authorization. At runtime, end users without proper
permissions for a page definition (binding container) are prevented from interacting
with the associated integrated Excel worksheet. Any attempt to interact with an
unauthorized binding container (for example, download or submit data) is aborted,
the end user is informed of the authorization failure, and all ADF Desktop Integration
activity on the worksheet is disabled. No further interaction with the ADF Desktop
Integration-disabled worksheet is possible until a new user session is established. To
allow end users to interact with the integrated Excel worksheet, assign them the roles
that have been granted access to the page definition.

You may need to review the resource grants for all of the page definitions that are used
with integrated Excel worksheets. For example, if your Fusion web application
supports authorization, and you have a page definition myWorksheetPageDef .xml that
has no resource grants and is used by one (or more) integrated Excel worksheets, then
you need to assign end users the roles that have been granted access to the page
definition. During early development, you may find it helpful to temporarily create
resource grants for the worksheet page definitions that are granted to
authenticated-role, or some other generic role, allowing you to run those worksheets
while you fine tune your roles and resource associations.

For more information about authorization, roles, and resource grants, see the
"Enabling ADF Security in a Fusion Web Application” chapter in Fusion Developer’s
Guide for Oracle Application Development Framework.

Note: ADF Desktop Integration only enforces authorization for
resource grants that have the Web Page (page definition) resource
type. Other resource types are not supported.

You can configure resources and grants from the Resource Grants page of the
overview editor for the jazn-data.xml file. For more information, see the "Defining
ADF Security Policies" section in Fusion Developer’s Guide for Oracle Application

Securing Your Integrated Excel Workbook 12-7

Authorizing the Excel Workbook User

Development Framework.

On an authorization failure, the end user receives an error message, such as the
following, and ADF Desktop Integration in the worksheet is disabled:

ADFDI-05589 You are not authorized to use this worksheet for interacting
with the web application.

12.5.1 What You May Need to Know About ADF Desktop Integration-Disabled
Worksheet

The following limitations apply to an ADF Desktop Integration-disabled worksheet:

s All ADF buttons, worksheet-level ribbon commands, and worksheet-level events
are disabled.

» If the authorization failure occurs during worksheet initialization, no form labels,
table column headers, or buttons are drawn on the worksheet.

s If the authorization failure occurs for an initialized worksheet, all ADF buttons are
disabled, but other worksheet components (such as ADF Input Text and ADF
Table) are not affected and are left visually unchanged.

= End user can perform standard Excel interactions on the disabled worksheet. The
user may alter the data in an ADF Table component in the worksheet, but the
Changed column will not be updated.

s There is no impact on workbook-level commands. End users can continue to use
the following commands: Login, Logout, About, Edit Options, and Clear All Data.

An ADF Desktop Integration-disabled worksheet is automatically enabled when the
end user reopens the integrated Excel workbook and establishes a new session,
provided the new session is authorized. Logging out, and then logging in again, also
re-enables ADF Desktop Integration in a disabled integrated Excel worksheet.

12-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

13

Adding Validation to Your Integrated Excel
Workbook

This chapter describes how to provide server-side and data entry validation for your
integrated Excel workbook, how to report errors such as validation failures and data
conflict, and how to configure error reports using custom error handler.

This chapter includes the following sections:

= About Adding Validation to an Integrated Excel Workbook

= Using the Status Viewer to Report Error Messages to End Users

» Providing Data Entry Validation for an Integrated Excel Workbook
= Providing Server-Side Validation for an Integrated Excel Workbook
= Providing a Row-by-Row Status on an ADF Table Component

» Adding Detail to Error Messages in an Integrated Excel Workbook
» Handling Data Conflicts When Uploading Data from a Workbook

13.1 About Adding Validation to an Integrated Excel Workbook

You configure server-side and data entry validation for the Fusion web application
and the integrated Excel workbook to make use of the validation options offered by
the ADF Model layer, ADF Desktop Integration, and Microsoft Excel. In addition to
these validation options, you can make use of components in ADF Desktop Integration
to return error messages from the Fusion web application, to provide status on the
results of component actions, and to manage errors that may occur when data
modification in an integrated Excel workbook conflicts with data hosted by the Fusion
web application.

Adding validation to your integrated Excel workbook gives you several benefits. You
can create validation rules in your Fusion web application and in your integrated
Excel workbook to validate data entry by the end user.

13.1.1 Integrated Excel Workbook Validation Use Cases and Examples

Validation rules protect the server by preventing the upload of invalid data. ADF
Desktop Integration provides both data entry validation and server-side validation
capabilities. Figure 13—-1 shows an example of server-side validation from the Summit
sample application's EditCustomers-DT.x1sx workbook where an invalid zip code
(12345x) fails an entity validation rule. This failure appears in the Status Viewer entry
for the row that contains the invalid zip code.

Adding Validation to Your Integrated Excel Workbook 13-1

Using the Status Viewer to Report Error Messages to End Users

Figure 13-1 Status Viewer Displaying Entity Validation Rule Failure

B C D G H | 1 L ? Status Viewer v 3
ORACLE Edit Customers Messages for this worksheet are listed
below
Al bl
Changed | _ | Status -1 " Name - Address - City | State | Zip Code | Country

Messages for this table row are listed
uperiorAve E - Cleveland QH 44114 USA below

@ Mo error.
Update failed Zebra's Bicycles 3910 Colley Ave |N-:-|f-:-|k |‘-;'A 12345x LISA ‘B
]
o o :E-l i i 53

17th St Topeka KS GEE04 USA X -
° The zip code needs 5 digits (eg.

98101) or a “zip+4” code (eg. 98101-

Schindler's Sports 4473 Forest Park Ave Stlouis MO G3108 USA i
1234)

Earry's Baskethall 56 E Superior 5t Chicago IL &0611 USA

Gavin Sporting Goods 19\ SEHawthoma] 1o e oR 57214 USA

Hat Stuff 25613 Doellar St Hayward CA 24544 LUSA

Acme Sporting Goods 770 4th Ave San Diego CA 92101 USA

MaoreAndMaore3 3501 McKinney Ave Dallas TH 75204 USA

Figure 13-2 shows an example of a data entry validation failure from the same
workbook where no value appears in a cell that requires a value.

Figure 13-2 Data Entry Validation Message

ORACLE Edit Customers
| Al
Changed | Status - | Name | Credit Rating (| Phone . |Addrass | City - |State Zip Code | Region =
Zebra's Bicyeles Fair 3910 Colley Ave Marfalk WA 23508 Morth America
Invalicl d} JG-Z-C-J Cleveland OH 44114 MNorth America
* Name .l Topeka KS North America
o TR el el 4479 Forest Park Ave St Louis e E3108 Morth America
Enter a value.
Barry's Baskethall Good 58 E Superior St Chizagso IL E0E11 Morth America
Gavin Sporting Goods - Good 35 SE Havthome Fartland CR 97214 Morth America

13.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

After you have applied validation rules in your integrated Excel workbook, you may
find that you need to add additional functionality to configure your workbook. The
following sections describe other functionality that you can use:

s Testing integrated Excel workbook: Before publishing and deploying your
integrated Excel workbook, you must test it. For more information, see Chapter 14,
"Testing Your Integrated Excel Workbook."

s Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Chapter 15, "Deploying Your Integrated Excel
Workbook."

13.2 Using the Status Viewer to Report Error Messages to End Users

The Status Viewer displays information to end users in Excel's task pane. End users
can use the information that appears to review and correct errors at the same time.
Information that the Status Viewer always displays includes the worksheet-level status
of the current integrated worksheet. In addition, if the worksheet includes an ADF

13-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Status Viewer to Report Error Messages to End Users

Table component and the currently selected cell is a row in the ADF Table component,
the Status Viewer displays the status of the row.

Information about the result of action set invocation also appears in the Status Viewer.
For example, an end user enters a value that violates a declarative validation rule in
the Fusion web application's ADF Model layer. When the end user attempts to upload
the change, a failure is reported for the failed row. In this scenario, the Status Viewer
appears and displays a message about the validation failure.

Figure 13-3 shows the Status Viewer that appears in the EditCustomers-DT.x1lsx
workbook when an end user enters a zip code (12345x) that fails an entity validation
rule defined in the Fusion web application's ADF Model layer. Selecting a cell
anywhere in the table row that contains the validation failure causes the validation
failure message to appear in the Status Viewer. The worksheet-level status that
appears in the Status Viewer in Figure 13-3 indicates that the most recent action set
from this worksheet completed successfully.

Figure 13-3 Status Viewer

B C. D G H | 1l L

ORACLE Edit Customers

|| Status Viewer A

Messages for this worksheet are listad
below

) ‘
Changed| | Status -1 Name - | Address | City | State | Zip Code | Country

| @ no eror.
|N-:-| folk |‘-;'A 12345x LIsA 1
L]

Messages for this table row are listed
Cleveland OH 44114 UUSA below

Eicyale Waorld 530

W 17th St Topeka KS BEE04 USA . .
0 The zip code needs 5 digits (eg.
98101) or a "zip+4" code (eqg. 98101-

Schindler's Sports 4479 Forest Park Ave 5tLouiz MO 631058 USA h
1234)

Earry's Bazketball uperior St Chicago IL &0E11 LISA

FRow up E Hawthaorne

T Gavin Sporting Good Fartland R 97214 LUSA
zuccessully

Haot Stuff 25813 Dollar 5t Hayward CA 24544 USA

Acme Sporting Goods 770 4th Ave San Diego CA 22101 USA

[MoreAndiore Stuffz 3501 MeKinney Ave Dallas TX 75204 USA

Integrated Excel workbooks that you create using this release of ADF Desktop
Integration display the Status Viewer ribbon command in the Excel ribbon by default,
as shown in Figure 13-4.

Figure 13-4 Status Viewer Ribbon Command in Excel Ribbon

- = =
ddes® BEER
Login Logout Clear Edit About | Download Upload Status

All Data Options Viewer
Waorkbook Waorksheet

End users click the Status Viewer ribbon command to display or hide the Status
Viewer in Excel's task pane. By default, the Status Viewer appears automatically when
integrated Excel workbooks encounter errors at runtime. You can configure this
behavior for integrated Excel workbooks created using earlier releases so that they
automatically display the Status Viewer when errors occur. For more information, see
Section 13.2.1, "How to Manage the Automatic Display of the Status Viewer."

You add the Status Viewer ribbon command to the Excel ribbon by adding the
ToggleStatusViewer workbook action, as described in Section 9.3.1, "How to Define a
Workbook Ribbon Command for the Runtime Ribbon Tab." For more information
about workbook actions, see Section A.14, "Workbook Actions and Properties."

Adding Validation to Your Integrated Excel Workbook 13-3

Providing Data Entry Validation for an Integrated Excel Workbook

Although you add the Status Viewer ribbon command the Excel ribbon as a workbook
command, the Status Viewer is worksheet specific and displays information for the
integrated Excel worksheet that is in focus. If your end users navigate to a
non-integrated worksheet and click the Status Viewer ribbon command, a message
appears that tells the end user the Status Viewer cannot be used in that worksheet.

13.2.1 How to Manage the Automatic Display of the Status Viewer

You set the value of the AutoDisplayStatusViewerEnabled workbook property to True
or False to manage the automatic display of the Status Viewer in Excel's task pane.

Before you begin:

It may be helpful to have an understanding of the Status Viewer provided by ADF
Desktop Integration. For more information, see Section 13.2, "Using the Status Viewer
to Report Error Messages to End Users."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 13.1.2,
"Additional Functionality for Adding Validation to an Integrated Excel Workbook."

To manage the automatic display of the Status Viewer:
1. Open the integrated Excel workbook.

2. From the Excel Ribbon, in the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Behavior and set the
AutoDisplayStatusViewerEnabled property appropriately:

» True: Status Viewer automatically appears when an error occurs.

s False: End user must click the Status Viewer ribbon command in the Excel
ribbon to display the Status Viewer.

4. Click OK.

13.3 Providing Data Entry Validation for an Integrated Excel Workbook

ADF Desktop Integration automatically performs basic data entry validation after end
users modify cells bound to ADF components. Basic data entry validation includes
verifying the expected data type (for example, user entered a number for a numerical
attribute) and that required fields are not empty. ADF Desktop Integration performs
this validation as soon as end users leave the cell.

Metadata from the ADF Model layer is used to perform basic data entry validation. No
additional workbook configuration is needed. You can disable this validation using the
Compatibility.DataEntryValidationEnabled workbook properties described in
Section 13.3.1.1, "How to Enable or Disable ADF Desktop Integration Data Entry
Validation." ADF Desktop Integration enables basic data validation by default.

ADF Desktop Integration performs additional validation during upload. For more
information, see Section 13.4, "Providing Server-Side Validation for an Integrated Excel
Workbook."

13.3.1 Providing Data Entry Validation Using ADF Desktop Integration

ADF Desktop Integration performs data entry validation to verify that:

13-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Providing Data Entry Validation for an Integrated Excel Workbook

= Mandatory fields contain a value. ADF Desktop Integration reports a validation
failure if an Excel cell that contains an ADF component which requires a
mandatory value (for example, ADF Input Text component) is blank.

s The correct data type is entered. If, for example, you enter a string ("Bob") in an
input field where the required data type is a date or a number, ADF Desktop
Integration reports a validation failure.

ADF Desktop Integration performs the above types of validation without making a
request to the Fusion web application.

ADF Desktop Integration performs data entry validation on the ADF Input Text, ADF
Input Date and ADF Table components. It does not perform data entry validation on
read-only cells, label or headers cells, locked cells or cells in the columns described in
Section 7.12, "Special Columns in the ADF Table Component." It also does not perform
data entry validation on cells in the ADF Read-only Table or ADF List of Values
components.

Data entry validation performed by ADF Desktop Integration identifies failures upon
editing a single cell or multiple cells (simultaneously). Examples of edits that span
multiple cells include a selection of a column in an ADF Table component or an end
user pasting one or more rows of data into in an ADF Table component. ADF Desktop
Integration performs data entry validation only after an end user edits a single cell or
multiple cells and leaves edit mode for the cell(s). If a validation failure occurs, ADF
Desktop Integration applies a red border to the cell that failed validation after the end
user exits edit mode by pressing Enter, tabbing away, or selecting a different cell.

Once ADF Desktop Integration reports a validation failure, the end user can view a
non-modal popup message by selecting the cell without entering edit mode. This
non-modal popup message describes the validation failure and may suggest an action
to resolve the validation failure. It remains visible as long as the end user selects the
cell and the validation failure is present. No non-modal popup message appears if end
users select multiple cells with validation failures. In ADF Table component cells, a
message also appears in the Status column to indicate that a row contains at least one
cell with a validation failure. ADF Table component actions such as Download and
Upload clear this latter message. The ADF Table component's Download action also
clears the red border around cells that contain validation failures. For more
information about the Status column, see Section 7.12, "Special Columns in the ADF
Table Component."

The Status Viewer displays a message for a row with cells that contain validation
failures. It displays this message ("Row contains invalid pending changes") until
the end user resolves the validation failures. In addition to data entry validation
errors, the Status Viewer might display other messages, such as failure messages from
the last Upload operation. For more information about the Status Viewer, see

Section 13.2, "Using the Status Viewer to Report Error Messages to End Users."

Figure 13-1 shows a cell with a data entry validation failure in the Summit sample
application's EditCustomers-DT.x1sx workbook. The end user has not entered a value
in an ADF Table component cell that requires a value. The non-modal popup message
and the Status Viewer both display information about this failure.

Adding Validation to Your Integrated Excel Workbook 13-5

Providing Data Entry Validation for an Integrated Excel Workbook

Figure 13-5 ADF Desktop Integration Data Entry Validation

A

B
Changed | Status

C D E F ? Status Viewer ST
«
" Name - | Credit Rating [Phone Messages for this worksheet are listed below
Zebra's Bicycles Fair
@ Mo error.
Invalicl l:}\ Ja]
Messages for this table row are listed below
* Name ol
€ Avalue is required. d € Row contains invalid pending changes
Enter a value.
Earry's Baskethall Good

Gavin Sporting Goods Good

ADF Desktop Integration applies a red border to a cell that fails validation until the
end user resolves the issue that causes the validation failure. If you or an end user set a
cell border to red, ADF Desktop Integration does not consider the cell invalid until a
validation error occurs (missing mandatory value, for example). To prevent visual
confusion for end users, avoid the use of red borders on cells in your integrated Excel
workbook so that its use is reserved to ADF Desktop Integration reporting validation
failures.

Validation failures do not prevent end users from continuing to edit or enter data in
the integrated Excel workbook nor does the presence of data entry validation failures
prevent the upload of data from the integrated Excel workbook.

Note: If an end user modifies a large number of cells at the same
time, data validation can take a significant amount of time. In such
cases, a progress bar may appear to provide the end user with an
indication of progress. If the end user clicks Cancel, the validation
stops at that point.

13.3.1.1 How to Enable or Disable ADF Desktop Integration Data Entry Validation

Integrated Excel workbooks enable ADF Desktop Integration data entry validation by
default. You enable or disable ADF Desktop Integration data entry validation by
configuring the DataEntryValidationEnabled workbook property, described in
Section A.16, "ADF Desktop Integration Compatibility Properties."

Before you begin:

It may be helpful to have an understanding of ADF Desktop Integration data entry
validation. For more information, see Section 13.3.1, "Providing Data Entry Validation
Using ADF Desktop Integration."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 13.1.2,
"Additional Functionality for Adding Validation to an Integrated Excel Workbook."

To enable or disable ADF Desktop Integration Data Entry Validation:
1. Open the integrated Excel workbook.

2. From the Excel Ribbon, in the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Behavior > Compatibility and set
the DataEntryValidationEnabled property appropriately:

s True: Enables ADF Desktop Integration data entry validation.
» False: Disables ADF Desktop Integration data entry validation.

13-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Providing a Row-by-Row Status on an ADF Table Component

4. Click OK.

13.3.2 Providing Data Validation Using Excel

You can use Excel's data validation features to control the type of data or the values
that end users enter into a cell. These features allow you to restrict data entry to a
certain range of dates, limit choices by using a list, or ensure that only positive whole
numbers are entered in a cell. For example, you could configure the ZipCode field in
the EditWarehouseInventory-DT.x1sx workbook so that users can enter only whole
numbers in the cells of this field.

If you apply custom validation to cells that render lists of values, the validation is
propagated when ADF Desktop Integration populates cells with lists of values at
runtime. Note, however, that ADF Desktop Integration overwrites at runtime any
custom validation applied for components with lists of values. This is because ADF
Desktop Integration applies its own list-constraint validation, which is invoked at
runtime. For more information about lists of values, see Chapter 8, "Working with Lists
of Values."

For more information about data validation in Excel, see Excel's documentation.

13.4 Providing Server-Side Validation for an Integrated Excel Workbook

ADF Desktop Integration uses the validation rules that the ADF Model layer sets for a
binding's attributes. Data that the end user enters or edits in one of the ADF Desktop
Integration components, such as the ADF Table component, can be validated against
set rules and conditions in the Fusion web application's ADF Model layer. For general
information about defining validation rules in Oracle ADF, see the "Defining
Validation and Business Rules Declaratively" chapter in Fusion Developer’s Guide for
Oracle Application Development Framework.

For information about adding ADF Model layer validation, see the "Defining
Validation Rules in the ADF Model Layer" section in Fusion Developer’s Guide for Oracle
Application Development Framework.

Note: ADF Desktop Integration does not support server-side
validation warnings. Validation warnings, set for rules defined in the
Fusion web application, are not displayed by the integrated Excel
workbook.

13.5 Providing a Row-by-Row Status on an ADF Table Component

The Status Viewer, described in Section 13.2, "Using the Status Viewer to Report Error
Messages to End Users," appears by default if errors occur during the attempted
invocation of the following ADF Table component actions:

m DeleteFlaggedRows

s Upload

s UploadAllOrNothing

= DoubleClickActionSet invoked from an ADF Table component's column

End users can view a status message in the Status Viewer for each row in the ADF
Table component by selecting a cell in the ADF Table component row that interests
them.

Adding Validation to Your Integrated Excel Workbook 13-7

Providing a Row-by-Row Status on an ADF Table Component

In addition, the ADF Table component populates the _ADF_StatusColumn column with
the status for each row following the invocation of the ADF Table component action.
For example, it populates the _ADF_StatusColumn column with the upload status for
each row following the invocation of the ADF Table component's Upload action.

Figure 13-6 shows rows in an ADF Table component where the values in those rows
have been changed, as indicated by the upward pointing arrows in the Changed
column. In the ZipCode column, a value 12345x has been entered in one row where
12345 or 12345-6789 is expected.

Figure 13-6 ADF Table Component with Changed Rows Before Upload

ORACLE Edit Customers
Y Al
Changed/ | Status [_ " Name | Credit Rating (| Phone | Address | City - |State | Zip Code [Region | Country
Zebra Bicycles Fair Marfall WA 23508 Morth America USA
Superior Bicycles Good 538 SuperiorAve B Cleveland CH 12345x Morth America USA
ieyele Warld Good 5300 SW17th St Topeka K 66604 North America USA
schindler's Sports Good 4479 Forezt Park Ave St Louis M 63108 Morth America USA
Earry's Baskethall 56 E Superior St Chizago IL &0E11 Morth America USA

Figure 13-7 shows the same rows in the ADF Table component after invocation of the
ADF Table component's Upload action. The ADF Table component populates the _ADF_
StatusColumn column (labeled Status in this example at runtime) with a message
indicating whether the row updated successfully or not. If a row fails to update, the
Status Viewer appears automatically, as shown in Figure 13-7 and displays a message
describing why the row failed to update.

Note: A number of columns have been hidden in order to display
the Status Viewer in Figure 13-7.

Figure 13-7 ADF Table Component with Changed Rows After Upload

A

B &
ORACLE

Changed[_| Status

. . ey
] H I J L M Status Viewer ¥ X

Edit Customers Messages for this worksheet are listed below

Q Mo error.

Messages for this table row are listed below

bl
* Name | City State (| Zip Code | Country _Sales Re|

-

Zebra Bicycles Marfalk VA 23508 USA IMagee

Cleveland OH 12345x UsA IMagee

o The zip code needs 5 digits (eg. 98101)

Topeka ks or a "zip+4" code (eg. 98101-1234)

IMagee

Stlouis [Le]

IMagee

By default, the _ADF_StatusColumn column's DoubleClickActionSet is configured to
invoke the ADF Table component's DisplayRowErrors action. When end users
double-click a row in this column at runtime, the ADF Table component invokes the
DisplayRowErrors action. This action displays a dialog with a list of errors for that row
if errors exist. If no errors exist, the dialog displays a message to indicate that no errors
occurred. Figure 13-8 shows the dialog that appears if the end user double-clicks the
cell in Figure 13-7 that displays Update failed in the Status column.

13-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Handling Data Conflicts When Uploading Data from a Workbook

Figure 13-8 Dialog Displaying Row Error Message

Row Status = @

Messages for this table row are listed below

@ The zip code needs 5 digits (eg. 98101) or a “zip+4” code (eg. 98101-
1234)

For more information about the _ADF_StatusColumn column, see Section 7.12, "Special
Columns in the ADF Table Component."

13.6 Adding Detail to Error Messages in an Integrated Excel Workbook

You can configure your Fusion web application to report errors using a custom error
handler to provide more detail to the error messages displayed to end users in an
integrated Excel workbook.

To implement this functionality, the custom error handler must override the
getDetailedDisplayMessage method to return a DCErrorMessage object. At runtime,
ADF Desktop Integration detects the custom error handler and invokes the
getHtmlText method on the DCErrorMessage object. ADF Desktop Integration includes
the HTML returned by the getHtmlText method in the error message list as detail.

For more information about creating a custom error handler, see the "Customizing
Error Handling" section of Fusion Developer's Guide for Oracle Application Development
Framework.

13.7 Handling Data Conflicts When Uploading Data from a Workbook

If one of your end users (User X) makes changes to a row of data downloaded from a
Fusion web application to an Excel workbook, and another end user (User Y) in a
different session modifies the same row in the Fusion web application after User X
downloads the row, User X may encounter an error while uploading the modified row,
as the changes conflict with those that User Y made. Depending on the configuration
of your Fusion web application, User X may receive RowInconsistentException type
error messages. For information about how to configure your Fusion web application
to protect your data, see the "How to Protect Against Losing Simultaneously Updated
Data" section in Fusion Developer’s Guide for Oracle Application Development Framework.

To resolve this conflict in the integrated Excel workbook, User X needs to download
the most recent version of data from the Fusion web application. However, invoking
the ADF Table component's Download action causes the component to refresh all data
that the component hosts in the Excel workbook. This may overwrite other changes
that User X made that do not generate conflict error messages. To resolve this scenario,
you can expose the ADF Table component's DownloadFlaggedRows action. When
invoked, this action downloads data only for the rows that the end user flags for
download. Using this action, User X can resolve the conflict issues and upload his
modified data.

Chapter 16, "Using an Integrated Excel Workbook Across Multiple Web Sessions"
provides information about using an integrated Excel workbook across multiple
sessions. For information about flagging rows, see Section 7.12.1, "Row Flagging in an
ADF Table Component.” For information about invoking component actions, see

Adding Validation to Your Integrated Excel Workbook 13-9

Handling Data Conflicts When Uploading Data from a Workbook

Section 9.2.2, "How to Invoke Component Actions in an Action Set." For more
information about the components that the ADF Table component supports, see
Section A.11, "ADF Table Component Properties and Actions."

13.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data

You specify a row-specific attribute of the tree binding for the
RowData.ChangeIndicatorAttribute property to determine whether a row has been
modified by another user since the row was last downloaded by the ADF Table
component.

To configure a workbook to handle data conflicts:
1. Open the integrated Excel workbook.

2. Select any cell of the ADF Table component and click Edit Properties in the Oracle
ADF tab.

3. In Edit Component: ADF Table dialog, for the
RowData.ChangeIndicatorAttribute property, specify the row-specific attribute of
the tree binding that you use to determine whether a row has been modified by
another user since the row was last downloaded by the ADF Table component in
your integrated Excel workbook.

4. C(lick OK.

13.7.2 What Happens at Runtime: How Data Conflicts Are Handled

The ADF Table component caches the original value of the row-specific attribute of the
tree binding that you specified as a value for RowData.ChangeIndicatorAttribute
when it invokes the RowDownSync action. When the ADF Table component invokes the
RowUpSync action, it checks if the value of the binding hosted by the Fusion web
application and the original value cached by the ADF Table component differ. If they
differ, it indicates data conflict, as changes have been made to the value of the binding
hosted by the Fusion web application since the ADF Table component downloaded the
value of the binding.

13-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

14

Testing Your Integrated Excel Workbook

This chapter describes how to test and validate the integrated Excel workbooks as you
configure it, and how to run a server ping test.

This chapter includes the following sections:

= About Testing Your Integrated Excel Workbook

» Testing Your Fusion Web Application

= Validating the Integrated Excel Workbook Configuration
» Testing Your Integrated Excel Workbook

14.1 About Testing Your Integrated Excel Workbook

Testing an integrated Excel workbook before you publish and deploy it to your end
users enables you to verify that the functionality you configure behaves as you intend.
Before you test your integrated Excel workbook, test the Fusion web application with
which you integrate the Excel workbook.

Before you deploy the integrated Excel workbook, you should validate it and test its
integration with your Fusion web application. Testing an integrated Excel workbook
includes the following processes:

= Validating the integrated Excel workbook

= Running the integrated Excel workbook in test mode

14.1.1 Integrated Excel Workbook Testing Use Cases and Examples

To test your integrated Excel Workbook, click the Run button on the Oracle ADF tab,
and click the Stop button to return to the design mode. Figure 14-1 shows the buttons
of the Oracle ADF tab in design mode and in test mode.

Figure 14-1 Run and Stop buttons in Oracle ADF tab

A 2D

Validate Run 2 Stop

Test Test

Buttons in Design mode Buttons in Test mode

Testing Your Integrated Excel Workbook 14-1

Testing Your Fusion Web Application

14.1.2 Additional Functionality for Testing an Integrated Excel Workbook

After you have validated and tested your integrated Excel workbook, you may need to
perform additional steps to make your workbook available to end users.

s Publishing your integrated Excel workbook: After you test and validate your
workbook, you must publish it. For more information see, Section 15.3,
"Publishing Your Integrated Excel Workbook."

s Deploying your integrated Excel workbook: After you publish your workbook,
you may wish to deploy it with your Fusion web application. For more
information, see Section 15.4, "Deploying a Published Workbook with Your Fusion
Web Application.”

14.2 Testing Your Fusion Web Application

Test the Fusion web application that you integrate your Excel workbook with before
you start testing the integrated Excel workbook. For information about testing a
Fusion web application, see the Fusion Developer’s Guide for Oracle Application
Development Framework. Verify that the Fusion web application you want to integrate
an Excel workbook with, supports ADF Desktop Integration by carrying out the
procedure described in Section C.1, "Verifying That Your Fusion Web Application
Supports ADF Desktop Integration.” You may also want to test the view instances of
the ADF application module before you test the Fusion web application. For more
information about testing ADF application module, see the "Using the Oracle ADF
Model Tester for Testing and Debugging" section of Fusion Developer’s Guide for Oracle
Application Development Framework.

If the integrated Excel workbooks are not saved in Application Sources directory of the
Fusion web application, then before you run the Fusion web application in JDeveloper,
ensure that all integrated Excel workbooks and the Excel application are closed. The
application deployment may fail if it encounters locked files as Excel locks the files
that it opens.

Tip: If you plan to test integrated Excel workbooks that you
downloaded from web pages of the Fusion web application, you
should republish them before redeploying the application.
Republishing the workbooks ensures that you have their latest
versions.

If you make changes to the Fusion web application to resolve problems identified by
testing the application, you need to:

» Close Excel and all integrated Excel workbooks. The application deployment may
fail if it encounters locked files, as Excel locks the files that it opens.

= Rebuild the JDeveloper project where you develop the Fusion web application.
= Run the Fusion web application.

= Reload the page definition files that are associated with the integrated Excel
workbook. Click the Refresh Bindings button in Oracle ADF tab of the integrated
Excel workbook to reload the page definition files.

These steps make sure that the changes in the Fusion web application are available to
the integrated Excel workbook. For information about how to reload a page definition
file, see Section 4.2.3, "How to Reload a Page Definition File in an Excel Workbook."

14-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Validating the Integrated Excel Workbook Configuration

14.3 Validating the Integrated Excel Workbook Configuration

ADF Desktop Integration provides a set of validation rules for the integrated Excel
workbook configuration. After creating your integrated Excel workbook, you may
validate the workbook before you proceed for testing or deployment.

14.3.1 How to Validate the Integrated Excel Workbook Configuration

You should validate the integrated Excel workbook configuration before testing or
deploying the workbook.

To validate the integrated Excel workbook configuration:
1. Open the integrated Excel workbook.

2. Inyour integrated Excel workbook, click the Oracle ADF tab.
3. In the Test group, click Validate.
The Configuration Validation dialog appears listing all your warnings and errors.

4. If any warning or error is displayed, click to select it. A description of the warning
or error message is displayed in the dialog.

For example, Figure 14-2 illustrates a validation failure message of an invalid EL
expression.

Figure 14-2 Invalid EL Expression Resulting in a Validation Failure

#{ ADFDire}#{ ADFDires[COMPQ_* #{bindings.Cust #{bindin_ #{bindings.Custom_#{bindina #{bindi_#{bindings. #{bindings.C #{bind
. L_ENENTS TABLE STAY #{bindings.Custol™ omers.hints.C™ qs.Cus ™ ers.hints.Address ¥ |s.Custc ™ ngs.C."/ Customer ™| ustomers.l ™ .Custo
#irow bindings Mame.i #{row bindingz.Cr #{row bind #{row bindings Addre #{row bind #{row bi #{row bindin - #{row binding #{row b
' Configuration Validation EI@
Workshest Componert Property Description
T2 e p——
Property: RowLimit.MaxRows -
Value: TEN
Component Location: B3 -
Total validation faiures: 1

If no warning or error appears, click Close to close the dialog.

Note: You may continue to keep the Configuration Validation dialog
open while you resolve the validation failures. To verify whether you
have resolved an error or a warning, click Revalidate to run the
validation rules again.

14.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration

When you validate the workbook at design time, ADF Desktop Integration validates
all workbook configuration properties, including worksheet and worksheet
component properties, against defined validation rules. Any and all validation failures
(errors and warnings) are listed in the Configuration Validation dialog. Each
validation failure, when selected, provides contextual information about the failure,
and provides enough detail to locate and fix each validation failure.

Testing Your Integrated Excel Workbook 14-3

Validating the Integrated Excel Workbook Configuration

The Configuration Validation dialog provides the following information for each
validation failure:

= Severity type (error or warning)

= Name of the worksheet. The word Workbook is displayed if the validation failure
does not correspond to a particular worksheet.

s Worksheet component ID ("Workbook" or "Worksheet" if the validation failure
does not correspond to a particular worksheet component)

= Property containing the validation failure
s Description of the validation failure (error or warning)

When you select a specific failure entry in the dialog, the dialog displays additional
details about the failure including:

s Full property context path
= Property value

Certain validation rules may result in multiple distinct failures. For example, when an
expression is being validated, different validation failures occur based on expression
type, expression syntax, or the location in which the property is exposed in the
workbook configuration.

For example, consider the following expression value:
#{bindings.EmpViewl.hints.Empno.label}

The expression value is legal when used within a column header label inside of a table
component, but the same expression value is illegal when specified as part of the
Worksheet.Title expression.

Note: If Enabled is set to False for a group of workbook
configuration properties, validation of other property values within
the same group is skipped.

14.3.3 How to Fix Validation Failures

When you validate your workbook, you might get validation failures or warning
messages, which you can fix easily by following these steps:

1. Identify the component that gave the error or warning message.

In Figure 14-2, note the component location and other details (for example,
property name) that the Configuration Validation dialog provides.

2. Open the property editor of the component.
3. Navigate to the invalid property value identified by the full property context path.
4. Edit the property value to resolve the validation failure.

Figure 14-3 illustrates the property editor for the ADF Table component with a
valid value for the RowLimit .MaxRows property.

14-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Testing Your Integrated Excel Workbook

Figure 14-3 Resolving Validation Failure

fimages/oracle_logo_sm.png

#{res['excel.customers.title']}

w{_ADFDIrel#{_i
|§L'QQME- ~ INEN

Edit Component: ADF Table

Edit the properties and press OK to save your changes.

B2]
4 Appearance
ResizeColumnsMode
4 Behavior
> BatchOptions
DisplaylploadOptions
> RowAgtions
4 Rowlimit
Enabled Tue
T 10
WamingMessage
4 Data
MaxRows
The maximum number of rows downloaded.

AutoFitAllWithHeader

False

()]

bindings. #{bindings,
ustomers.|
#{re iny

<k M| Customers

#2

5. Revalidate the workbook to verify whether the validation failure has been
resolved. Click Revalidate to run the validation rules again.

6. After fixing all validation failures, click Close to close the Configuration Validation

dialog.

Figure 144 illustrates the Configuration Validation dialog with no warnings or

error messages.

Figure 14-4 Configuration Validation Dialog with No Validation Failure Messages

& Configuration Validation

o D e |

Workshest Component Property

Description

Total validation faiures: 0

[Revalidate] [Close] |

14.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at

Runtime

By default, there is no runtime validation of integrated Excel workbook configuration.
However, you may log validation failures at runtime by setting the client log level to
Verbose. For more information about enabling client-side logging, see Section C.4.3,

"About Client-Side Logging."

14.4 Testing Your Integrated Excel Workbook

As you configure your Excel workbook to integrate with a Fusion web application,
you can switch to test mode from design mode to test the functionality that you add to
the workbook. You use the Oracle ADF tab to switch to test mode from design mode

and from design mode to test mode.

Testing Your Integrated Excel Workbook 14-5

Testing Your Integrated Excel Workbook

Test mode enables you to test the functionality of your integrated Excel workbook as
you configure it incrementally. It also enables you to view the integrated Excel
workbook from the end user's perspective, as test mode corresponds to what end users
see when they view and run the published integrated Excel workbook. The difference
between an integrated Excel workbook in test mode and a published integrated Excel
workbook is that the ADF Desktop Integration task pane is not available to users of
the published integrated Excel workbook.

For more information about test mode and design mode, see Section 5.1, "About
Development Tools."

There are some differences between the test mode and the runtime mode when you
run the integrated Excel workbook. Table 14-1 lists these differences.

Table 14—-1 Differences between Test mode and Runtime mode

Test mode Runtime mode

Does not perform tamper check Performs tamper check, if enabled by the
server

Does not display the connection confirmation Displays the connection confirmation dialog

dialog
Displays the Oracle ADF ribbon tab Does not display Oracle ADF tab
Allows you to switch back to design mode Does not allow you to switch back to design

mode

ADF Desktop Integration can generate log files that capture information based on
events triggered by an integrated Excel workbook. For more information about these
log files, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

Note: Before you start testing the integrated Excel workbook, ensure
that:

s The Fusion web application is running.

= The ping to server is successful, and the server is configured for
ADF Desktop Integration.

s The ADF Desktop Integration version of the server and the client
are the same.

To run an integrated Excel workbook in test mode:

= To test and run an integrated Excel workbook, click the Run button on the Oracle
ADF tab.

The integrated Excel workbook switches to test mode from design mode. Before
starting the test mode, ADF Desktop Integration clears all design time component
placeholders.

To stop test mode and return the integrated Excel workbook to design mode:

s In the integrated Excel workbook that you are testing, click the Stop button on the
Oracle ADF tab.

The integrated Excel workbook switches to design mode from test mode. Before
switching back to design mode, ADF Desktop Integration removes all visible and
cached data from all parts of the workbook, and then redraws the design time
component placeholders.

14-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

15

Deploying Your Integrated Excel Workbook

This chapter describes how to publish and deploy a workbook integrated with a
Fusion web application to end users, how to pass parameters from the Fusion web
application to the integrated Excel workbook, and how to integrate the ADF
Workbook Composer into your Fusion web application.

This chapter includes the following sections:

= About Deploying Your Integrated Excel Workbook

= Making ADF Desktop Integration Available to End Users

= Publishing Your Integrated Excel Workbook

= Deploying a Published Workbook with Your Fusion Web Application

» Passing Parameter Values from a Fusion Web Application Page to a Workbook
s Customizing Workbook Integration Metadata at Runtime

= Integrating ADF Workbook Composer into Your Fusion Web Application

15.1 About Deploying Your Integrated Excel Workbook

After you finish development of your integrated Excel workbook, you make the final
integrated Excel workbook available to end users by deploying the resulting Fusion
web application to an application server. Before you deploy a finalized Excel
workbook that integrates with the Fusion web application, you must publish it as
described in Section 15.3, "Publishing Your Integrated Excel Workbook." After you
have published the Excel workbook, you can deploy it using one of the methods
outlined in the "Deploying Fusion Web Applications" chapter of Fusion Developer’s
Guide for Oracle Application Development Framework.

You should make ADF Desktop Integration's adfdi-excel-addin-installer.exe
available to end users so that they can install the ADF Desktop Integration add-in. For
more information, see Section 15.2, "Making ADF Desktop Integration Available to
End Users."

The end users that you deploy an integrated Excel workbook to must do the following:

= Install the ADF Desktop Integration add-in for Excel on their Windows-based
computers.

s Configure the security settings for their Excel application, as described in
Section 3.3, "Configuring Excel to work with ADF Desktop Integration."

Deploying Your Integrated Excel Workbook 15-1

About Deploying Your Integrated Excel Workbook

15.1.1 Integrated Excel Workbook Deployment Use Cases and Examples

You use the Publish button of the Oracle ADF tab to save a published copy of the
workbook. Figure 15-1 shows the Publish button and the Publish Workbook dialog
that opens when you click the Publish button to save a copy of the integrated Excel
workbook ready to be published and deployed with the Fusion web application.

Figure 15-1 Publish Workbook Dialog

me Insert Page Layout Formulas Data Review View Add-Ins Oracle ADF Acrobat
3k Properties |i| Export Insert Component = Eﬂ Refresh Bindings @ D D E [BA set Output Level @
et Properties | Import || @ Edit Properties % Add Log Output File
WValidate Run Stop Console : Publish
x Delete E]lﬂ Refresh Config
Vorkbook Fi ADF Components Ta Test Logging Publish
L - |
B C D E F G H 1 1] K

igesforacle_logc#{res['excel.customers.title']}

\DFDIr #{ ADFDIr #{ ADFDires['COMP #{bindings.Customers.hi #{bindings.C #{bindings.Cus #{bindings.Custome #{bindings.C #{b #{bindings
JOMP es['COMP ONENTS TABLE S nts.Name.label} ustomers.hin temers.hints.P rs.hints.Address.lab ustomers.hi ind .Customer

A gy binclinge Do ine i 3o bindlinge 3o bindinge D 8 bindinge Sckdeae 2l bindinge 3T S bindir

[Publish Workbaok . |-
. | . =« summitdi » excel » published - |+ Pl
i P +

Organize + MNew folder SEE i@]

0 : * Name Date modified
- Favorites

Ml Desktop
4. Downloads
E Oracle Content Servers

=] Recent Places

Mo iterns match your search.

Bl Desktop
. Libraries
3 Documents
rj‘? Music
(=] Pictures = (P m v

File name: -

Save as type: | Excel Workbook (*.xlsx) -

4 Hide Folders Save] [Cancel

15.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook

After you have published and deployed your integrated Excel workbook, you may
find that you need to add additional functionality for your workbook. The following
sections describe other functionality that you can use:

= Passing Parameters: You can configure a page in your Fusion web application to
pass parameter values to an integrated Excel workbook when the end user
downloads the workbook from the page. For more information, see Section 15.5,
"Passing Parameter Values from a Fusion Web Application Page to a Workbook."

15-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Publishing Your Integrated Excel Workbook

15.2 Making ADF Desktop Integration Available to End Users

End users who want to use the functionality that you configure in an integrated Excel
workbook must install ADF Desktop Integration, as described in Section H.1.1, "How
to Install ADF Desktop Integration on Your System."

For information about how to make the installer available to end users, see the "How
to Install the ADF Desktop Integration Add-in From a Web Server" section in
Administrator’s Guide for Oracle Application Development Framework.

The installation program (adfdi-excel-addin-installer.exe) is available in the
following directory:

MwW_HOME\oracle_common\modules\oracle.adf.desktopintegration 11.1.1

where Mii_HOME is the Middleware Home directory.

15.3 Publishing Your Integrated Excel Workbook

After you finish configuring the Excel workbook with Oracle ADF functionality, you
must publish it. Publishing a workbook prepares the integrated Excel workbook for
use by end users at runtime.

ADF Desktop Integration provides you with two methods to publish your workbook.
You can publish your integrated Excel workbook directly from Excel, or you can use
the publish tool available in JDeveloper to publish the workbook from the command
line. The command-line publish tool enables you to use scripts, such as an Ant script,
to publish an integrated Excel workbook from your Fusion web application.

Notes:

= After publishing one or more workbooks, you should restart the
Fusion web application in order for those workbooks to be
downloaded and opened successfully in Microsoft Excel. If the
web application is not restarted, you might get errors, such as the
following:

TampercheckErrorException: ADFDI-05537: The integrity of
the workbook integration could not be determined.

s Customization-enabled workbooks can only be published to a
target location that is under the public_html directory (or its
sub-directories) of the associated project.

15.3.1 How to Publish an Integrated Excel Workbook from Excel

You publish a workbook by clicking a button on the Oracle ADF tab and specifying
values in the dialogs that appear.

Before you begin:

It may be helpful to have an understanding about how to publish your integrated
Excel workbook. For more information, see Section 15.3, "Publishing Your Integrated
Excel Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 15.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

Deploying Your Integrated Excel Workbook 15-3

Publishing Your Integrated Excel Workbook

To publish a workbook from Excel:
1. Open the integrated Excel workbook.

2. Ensure that the ApplicationHomeFolder and WebPagesFolder properties in the
Edit Workbook Properties dialog are correct. If these properties are not set, ADF
Desktop Integration prompts to set them when you publish the integrated Excel
workbook.

For more information, see Section 4.3.2, "How to Configure a New Integrated
Excel Workbook."

3. In the Oracle ADF tab, click the Publish button.

4. Specify the directory and file name for the published workbook in the Publish
Workbook dialog that appears, as shown in Figure 15-1. The directory and file
name that you specify for the published workbook must be different from the
directory and file name for the design time workbook.

5. Click Save to save changes.

15.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish

Tool

The publish tool is run from the command line, and is available in the 1w_
HOME\jdeveloper\adfdi\bin\excel\tools\publish directory as
publish-workbook.exe. Before you run the publish tool, open the source integrated
Excel workbook and ensure that the ApplicationHomeFolder and WebPagesFolder
properties in the Edit Workbook Properties dialog are correct.

Note: You cannot publish a workbook that is already published, or is
in runtime mode.

Before you begin:

It may be helpful to have an understanding about how to publish your integrated
Excel workbook. For more information, see Section 15.3, "Publishing Your Integrated
Excel Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 15.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

Now, navigate to Mw_HOME\ jdeveloper\adfdi\bin\excel\tools\publish directory
and run the publish tool using the following syntax:

publish-workbook -workbook (-w) <source-workbook-path> -out (-0)
<destination-workbook-path>

where source-workbook-path is the full path of the source workbook, and
destination-workbook-path is the full path where the published workbook is saved.

For example:

publish-workbook -workbook
D:\Applicationl\Projectl\ViewController\src\oracle\sampledemo\excel\workbo
0k-DT.x1sx -out D:\Applicationl\Projectl\ViewController\public_
html\excel\published\workbook.xlsx

15-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Publishing Your Integrated Excel Workbook

Tip: For more information about the arguments required by the
publish tool, run the following command:

publish-workbook -help (-h)

Notes:

= Always specify the absolute paths of the source and destination
workbooks. The publish tool does not support relative paths of
the workbooks.

s The destination workbook cannot have the same name as the
source, even if the workbook paths are different.

After publishing the integrated Excel workbook successfully, the publish tool displays
a success message. If there is any error while publishing the workbook, the publish
tool aborts the process and the error messages are displayed on the command line
console.

Using the Publish Tool with ANT

You can create ANT scripts to run the publish tool from JDeveloper when you build
your Fusion web application. You can use either of the following methods to run the
utility using ANT:

= Generate an ANT build script for the project and add a target to run the workbook
command line publish tool

= Generate or create a separate ANT build script for running the workbook
command line publish tool

A sample ANT build script (publish-workbook.xml) to run the publish tool is
available in the Mw_HOME\jdeveloper\adfdi\bin\excel\samples directory. The sample
ANT script demonstrates the invocation of the command-line workbook publishing
tool.

15.3.3 What Happens When You Publish an Integrated Excel Workbook

When you click the Publish button in design mode, ADF Desktop Integration
performs the following actions:

1. Validates the mandatory workbook settings.

2. Updates the client registry. For more information, see Section 12.3, "Checking the
Integrity of an Integrated Excel Workbook's Metadata."

3. Creates the published workbook with the specified file name in the specified
directory.

Publish also exports the workbook definition. The published workbook definition
XML file is saved at the same location as the design-time copy of the workbook.
For more information about workbook definition, see Section 5.15, "Exporting and
Importing Excel Workbook Integration Metadata."

4. C(lears the ApplicationHomeFolder, WebAppRoot, and WebPagesFolder properties
from the workbook settings of the published workbook.

5. Clears all design time component placeholders.

6. Changes the mode of the workbook to runtime mode.

Deploying Your Integrated Excel Workbook 15-5

Deploying a Published Workbook with Your Fusion Web Application

15.4 Deploy

7. Inserts a Publishing Timestamp property into the workbook. This property is
visible in the Properties tab of About dialog.

ing a Published Workbook with Your Fusion Web Application

If you published your integrated Excel workbook, as described in Section 15.3,
"Publishing Your Integrated Excel Workbook," your Fusion web application
automatically includes the published integrated Excel workbook when you build and
deploy the web application. Otherwise, add the integrated Excel workbook to the
JDeveloper project for your Fusion web application if it is not packaged with the other
files that constitute your JDeveloper project. This makes sure that the Excel workbooks
you integrate with your Fusion web application get deployed when you deploy your
finalized Fusion web application. For example, the Summit sample application for
ADF Desktop Integration stores the deployed Excel workbooks that it integrates at the
following location:

<Summit_HOME>\ViewController\public_html\excel

where Summit_HOME is the installation directory for the Summit sample application for
ADF Desktop Integration.

After you decide on a location to store your integrated Excel workbooks, you can
configure web pages in your Fusion web application allowing end users to access the
integrated Excel workbooks. For example, Figure 15-2 shows Internet Explorer's File
Download dialog, which was invoked by clicking the Download Workbook button for
the Edit Customers Sample workbook on the MainPage.jsf page of the Summit
sample application for ADF Desktop Integration.

Figure 15-2 Invoking an Integrated Excel Workbook from a Fusion Web Application

ORACLE

Demo Workbooks

Edit Customers Sample

Edit Warehouse Inventory Sample

Edit All Inventory Sample

Search Customers Sample

" Summit Sample Application for ADF Desktop Integration
Edit Customers Sample Download Workbook
) ORACLET B * : Internet Explorer @
)| gt Fapged e Crod g
i s What do you want to do with EditCustomers.xlsx?
From: 127.001

< Open

Thefile won't be saved automatically.

< Save

< Save as

0] Duntomers 5

This sample illustrates the most commonly us) and commit
data. It also demonstrates multiple ways to ch Cancel

To enable the functionality illustrated in Figure 15-2, the HTTP filter parameters for
your Fusion web application must be configured to recognize Excel workbooks.
JDeveloper automatically configures these parameters for you when ADF Desktop
Integration is enabled in the Fusion web application. If you want to manually
configure the HTTP filter parameters, see Appendix D, "ADF Desktop Integration
Settings in the Web Application Deployment Descriptor."

15-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Deploying a Published Workbook with Your Fusion Web Application

After you have configured the HTTP filter for your Fusion web application, you
configure the web pages that the Fusion web application displays to end users to allow
them to invoke Excel workbooks. A basic method of invoking an Excel workbook that
you have integrated with a Fusion web application is to provide a hyperlink that
invokes the workbook. For example, you could write the following ADF code in a web

page:
<af:goLink text="Editable Table Sample"
destination="/excel/EditCustomers.xlsx"/>

where excel is a subdirectory of the directory specified by the WebPagesFolder
workbook property and EditCustomers.x1sx is the Excel workbook that the end user
invokes.

You can provide functionality that allows end users to invoke Excel workbooks from
buttons, lists, and ribbon commands. The following list provides some examples:

s Button

Display a button on the web page that, when clicked, invokes the integrated Excel
workbook. For example, the Download Workbook button in Figure 15-2 is a
button component that the MainPage.jsf page exposes.

m Selection list

Use the ADF Faces selectOneChoice component with a button to invoke an
integrated Excel workbook.

= Menu
Use the ADF Faces goMenuItem component.

For more information about creating web pages for a Fusion web application, see Web
User Interface Developer’s Guide for Oracle Application Development Framework.

15.4.1 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion
Web Application from JDeveloper

When you deploy the ADF Desktop Integration-enabled Fusion web application from
JDeveloper, references to the ADF Desktop Integration shared libraries are added to
the appropriate descriptor files. For any Fusion web application that contains one or
more projects referencing the ADF Desktop Integration Model API library or the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Model API shared library is added during deployment.

For any web application module (WAR) project that contains a reference to the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Runtime shared library is added during deployment.

15.4.1.1 Fusion Web Application is Deployed on Oracle WebLogic Server

When you deploy the Fusion web application on Oracle WebLogic Server, the
following happens:

s The META-INF/weblogic-application.xml file of the deployed application EAR
file contains a library reference to oracle.adf.desktopintegration.model.

For example:

<library-ref>
<library-name>oracle.adf.desktopintegration.model</library-name>
</library-ref>

Deploying Your Integrated Excel Workbook 15-7

Deploying a Published Workbook with Your Fusion Web Application

The shared library is delivered in Mw_HOME/oracle_
common/modules/oracle.adf.desktopintegration.model_11.1.1,in the
oracle.adf.desktopintegration.model.ear file.

s The WEB-INF/weblogic.xml file of the deployed web application WAR file contains
a library reference to oracle.adf.desktopintegration.

For example:

<library-ref>
<library-name>oracle.adf.desktopintegration</library-name>
</library-ref>

The shared library is delivered in Mw_HOME/oracle_
common/modules/oracle.adf.desktopintegration_11.1.1, in the
oracle.adf.desktopintegration.war file.

Note: For more information about system administration tasks and
the specifics about shared libraries for these platforms, refer to the
Oracle WebLogic Server and IBM WebSphere Application Server
documentation.

15.4.1.2 Web Application is Deployed on IBM WebSphere Application Server

When you deploy the web application on IBM WebSphere Application Server, the
following happens:

= For applications requiring the ADF Desktop Integration Model API library or the
ADF Desktop Integration Runtime library, the deployment procedure inserts a
reference to the com/oracle/adfdimodel extension into the META-INF/MANIFEST .MF
file of the application EAR file.

For example:

Manifest-Version: 1.0

Extension-List: adfm adfdimodel
adfm-Extension-Name: com/oracle/adfm
adfm-Specification-Version: 1.0

adfdimodel -Extension-Name: com/oracle/adfdimodel
adfdimodel-Specification-Version: 1.0
UseWSFEP61ScanPolicy: false

s The deployment .xml file for web applications with projects that refer to the ADF
Desktop Integration Runtime library contains a library reference inserted during
deployment.

For example:

<libraries xmi:id="LibraryRef 1274886542330 _oracle.adf.desktopintegration_1.0_
n.n.n.n.n" libraryName="oracle.adf.desktopintegration 1.0_n.n.n.n.n"
sharedClassloader="true"/>

where n.n.n.n.nrepresents the Oracle Fusion Middleware release.

15.4.2 What Happens at Runtime: End User Requests a Published Workbook

When web.xml is configured for a Fusion web application that uses ADF Desktop
Integration,

The following events occur when you configure a Fusion web application to use ADF
Desktop Integration:

15-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

s The DIExcelDownloadFilter filter is defined.
s Filter mappings are defined for *.x1sx and *.x1sm files.

At runtime, when the end user makes an http request for a workbook (for example,
user clicks a link in a web page from the application), the DIExcelDownloadFilter
filter embeds the WebAppRoot property into the workbook as it gets streamed back as
the http response. The WebAppRoot property is later used by the ADF Desktop
Integration client to connect to the Fusion web application, establish a user session,
and send data back and forth. Parameter values can also be passed from the web
application to the workbook, as described in Section 15.5, "Passing Parameter Values
from a Fusion Web Application Page to a Workbook."

The DIExcelDownloadFilter filter constructs the WebAppRoot value from the current
HttpServletRequest object that is passed in to the doFilter () entry point. The filter
code calls HttpServletRequest.getRequestURL () and gets the "root" portion of the full
URL by removing everything after the context path portion (uses
HttpServletRequest.getContextPath ()).

15.5 Passing Parameter Values from a Fusion Web Application Page to a

Workbook

A Fusion web application page can be configured to pass parameter values to an
integrated Excel workbook when the end user downloads the workbook from the
page. Workbook parameters can be used to pass context from the user's web page to
the integrated workbook. The passed context may be sent back to the web application
from the integrated workbook to affect application state (for example, what data
renders in the workbook). The Summit sample application, for example, displays a list
of warehouses to the end user, as shown in Figure 15-3. When an end user clicks a
Download Workbook button, the Summit sample application passes the value of the
WarehouseID parameter to the workbook to download. The passed WarehouseID
parameter controls which warehouse's data renders in the worksheet for editing.

Deploying Your Integrated Excel Workbook 15-9

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Figure 15-3 Downloading Workbooks According to Parameter Value

ORACLE Summit Sample Application for ADF Desktop Integration

Demo Workbooks Edit Warehouse Inventory Sample

Edit Customers Sample = = 7 g E B O [g H
,[pracLe Vo o e
Edit Warehouse Inventory Sample 3| Warshouss
. [———
. U e S
Edit All Inventory Sample . o g oty ha
. e
Search Customers Sample ey ™
Inventory
| cowore v P Amowic Sk Roowdoc Pt N0 Stk Ontof Swch Enplonnion Besch D ey
; . n -
" P
S e = = = =
Ak W Warshoue Iventory 7 T T

This sample illustrates how to use ADF Desktop Integration Form components with a detail table. You can download and update data in
a master form and its detail table. This sample also demonstrates how to use workbook parameters to control the workbook

initialization.
Warehouses
201 38 Via Centrale Download Workbook
Sao Paulo, Brazil
112 2350 N Main Download Workbook
Roswell, USA
111 7120 N Academy Blvd Download Workbook
Colorado Springs, USA
110 1105 E Boxelder Road

Download Workbook
Gillette, USA

To pass parameters from the Fusion web application page to the integrated Excel
workbook, follow these steps:

1. Verify that the HTTP filter is configured to allow end users to download integrated
Excel workbooks from the Fusion web application. By default, J]Developer
configures the HTTP filter with appropriate values when you enable ADF Desktop
Integration in a project. To verify the parameter values of the HTTP filter, see
Section D.2, "Configuring the ADF Desktop Integration Excel Download Filter."

2. Use Name/Value pairs as URL arguments in the web page of the Fusion web
application that allows end user to download the workbook. For more
information, see Section 15.5.1, "How to Configure the Fusion Web Application's
Page to Pass Parameters."

15-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

3.

Note: The runtime URL-encoded value of the entire query string to
the right of ? must be less than 2048 bytes. If the runtime value
exceeds 2048 bytes, the integrated Excel workbook will contain only
the URL arguments that fit in 2048 bytes. Subsequent URL arguments
do not get included with the integrated Excel workbook. Instead, the
Fusion web application writes log entries for these URL arguments
identifying them as having not been included.

For example, the total size of the string result to the right of » when
the following EL expression is evaluated and then URL-encoded must
be less than 2048 bytes.

"/excel /EditWarehouseInventory.xlsx?WarehouseId=#{item.bindi
ngs.Id.inputvalue}"

If you need to pass information that exceeds this limit, consider
storing it temporarily in a (custom) database table and only pass a
unique token to look up that information later. This technique also
protects the context information from undesirable exposure.

Define the parameter name in the Edit Workbook Properties dialog and in the Edit
Worksheet Properties dialog. For more information, see Section 15.5.2, "How to
Configure Parameters Properties in the Integrated Excel Workbook."

Configure the page definition file associated with the worksheet in the integrated
Excel workbook by adding <parameter> elements. For more information, see
Section 15.5.3, "How to Configure the Page Definition File for the Worksheet to
Receive Parameters."

Figure 154 Illustrates the steps implemented in the Summit sample application to
pass a parameter from the web application to the EditWarehouseInventory-DT.xlsx
workbook. For more information about the Summit sample application, see Chapter 2,
"Introduction to the ADF Desktop Integration Sample Application."

Deploying Your Integrated Excel Workbook 15-11

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Figure 15-4 Configuring Workbook and Fusion Web Application to Pass Parameters

|§| MainPage. jsf
Qe Find E Ak B @-
id="gc3i">
= gaf:commandButton text="Download Workbook™ id="bZ"
| destinati ="fE:LCEl.fE:IitWarEhcuseInveutcry.xlsx.?=#{item.bir1:i1ngs .Id.inputValuel™/&

Warehouses
201 65 Via Centrale Download Workbook
Sao Paulo, Brazil
i) r
Edit Workbook Properties @ Edit Worksheet Properties |£|
Edit the properties and press OK to save your changes. Edit the properties and press OK to save your changes.
B2 |]
> Behavior . Behavi
4 Data 4 Data
; gran:l\:tg\tems ‘B‘:a'\dnglle::s) CustomitributePropertiesEnabled Falzse
arameters \ archouse! Page Definition ExcelWarehouselnventory
< [, . Warshouseld 4 Parameters WarehouseldParam
rmnoiat W d 4 [0 Warshouse|dParam
Annotation
RemoteServietPath fadfdiRemoteServiet Parameter WarehouseldParam
> Resources res
Wal #{workbook Warehouseld
WebAppRlot hitp-//127.0.0.1:7101/cummit/ , o — t porams !
> Design
2 > Servel Parameter
> Security Setup| @
Title Select an item:
> Desig
Reset \Workbook|D Warehouse|dParam (parameter
Parameter
The name of the workbook parameter.
OK Cancel Paramety
—ram— == Parames
@ Start Page E ExcelWarehouselnventory.xml EI MainPage.jsf BM&'P&QEP&
Q- (| Aa «n I!! * = IEI & @
Package="cracle.summitdi.view.pageDefs™>
= <parameters>

<pEheiicinc i = "HarehouseIdParam™ value="value"/>
</parameters:>
=] <executables>

<methodAction id="FilterW 1="true" Action="invckeMethod"”

jectMethod="false"

rehouseMasterByld” RequiresUpda

FilterWarsehouseMasterById™ IsVi

urmi tAppModuleDataControl™

="data.SurmitAppModuleDataControl.dataProvider™s

arehcuseld” NDValue="§(bindings .| raunarEitte]
NDType="J&va.lang.String"/>

</methodAction>

15.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters

A component, such as <af : commandButton>, can be used to allow end users to
download a published copy of an integrated workbook. The component's destination
URL references the integrated workbook, and in its query portion, the URL parameter
names and values correspond to the workbook's parameter names and values. You
also specify the commands on the page that, when invoked, require the Fusion web
application to refresh the values referenced by the component and its property values.

For more information about downloading files using action components, see the "How
to Use an Action Component to Download Files" section in Web User Interface
Developer’s Guide for Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how to pass parameter values from the
Fusion web application to the integrated Excel workbook. For more information, see
Section 15.5, "Passing Parameter Values from a Fusion Web Application Page to a

15-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 15.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

To configure the page in the Fusion web application:

1. In]Developer, insert the component or tag (such as af: commandButton) into the
page from which the end user downloads the integrated Excel workbook.

2. In the Structure window, right-click the component and choose Go to Properties.
3. Expand the Common section and set values for the properties.

Table 15-1 describes the properties of af : commandButton component.

Table 15-1 Properties for af:commandButton Tag

Property Value

Text Write the text that appears to end users at runtime.

For example, write text such as the following to appear at
runtime:

Download Workbook

Destination Invoke the expression builder to write an EL expression that
specifies the integrated Excel workbook and the values to
download as a URL argument:

For example, write an EL expression such as the following:

destination="/excel/EditWarehouseInventory.xlsx?Warehou
seld=#{item.bindings.Id.inputValue}"

4. (Optional) Expand the Behavior section and specify component IDs for the
partialTriggers property that, when invoked, update the values of the
af:commandButton tag and its Destination property.

For example, if you have navigation buttons with the IDs NextButton,
PreviousButton, FirstButton, and LastButton, specify them as follows:

:NextButton :PreviousButton :FirstButton :LastButton
5. Save the page.

The following example shows the entries that JDeveloper generates in a JSF page
using the required examples in this procedure:

<af:commandButton text="Download Workbook" id="b2"
destination="/excel/EditWarehouseInventory.xlsx
?WarehouseId=#{item.bindings.Id.inputvValue}"/>

15.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook

You configure the workbook Parameters property and the worksheet Parameters
property so that the integrated Excel workbook that the end user downloads from the
Fusion web application receives parameter values included in the query string of the
workbook download URL.

Deploying Your Integrated Excel Workbook 15-13

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Before you begin:

It may be helpful to have an understanding of how to pass parameter values from the
Fusion web application to the integrated Excel workbook. For more information, see
Section 15.5, "Passing Parameter Values from a Fusion Web Application Page to a
Workbook."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 15.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

To configure the workbook Parameters property:
1. Open the integrated Excel workbook.

2, In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. Click the browse (...) icon beside the input field for Parameters to invoke the Edit
Parameters dialog.

4. Click Add to add a new workbook parameter and configure its properties as
follows:

s In the Parameter field, define the parameter name that you plan to use as a
URL argument for the af : commandButton tag's Destination property and later
bind to a page definition parameter, as described in Section 15.5.1, "How to
Configure the Fusion Web Application's Page to Pass Parameters."

For example, the EditWarehouseInventory-DT.x1sx workbook defines the
WarehouseID parameter value, as illustrated in Figure 15-5.

Tip: Make sure that the value you define will be valid for use in a
standard URL query string. The parameter name you use should be a
simple identifier so that it functions properly when referenced in EL
expressions.

Figure 15-5 Workbook Parameters

Edit Workbook Properties @
Edit the properties and press OK to save your changes.
=44 |
> Behavior -
4 Data
> Brandingltems Brandingltems (5)
4 Parameters Warehouseld
[N Warshoused s
Annotation 3
Parameter Warehouseld
RemoteServietPath fadfdiRemoteServiet
> Resources res
\webAppRoot hitp-//127.0.0.1:7101/summil
> Design -
Reset Workbook!D
10]
e

= (Optional) In the Annotation field, enter a description of the workbook
parameter.

5. Repeat Step 4 as necessary to add other workbook parameters.

6. Click OK.

15-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

For more information about the workbook Parameters property, see Table A-20.

To configure the worksheet Parameters property:

1.
2
3.

Open the integrated Excel workbook.
In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

Click the browse (...) icon beside the input field for Parameters to invoke the Edit
Parameters dialog.

Click Add to add a new worksheet parameter and configure it, as illustrated in
Figure 15-6 from the EditWarehouseInventory-DT.x1sx workbook:

In the Parameter field, specify a parameter element that you added to the page
definition file associated with the worksheet, as described in Section 15.5.3,
"How to Configure the Page Definition File for the Worksheet to Receive
Parameters."

In the Value field, write an EL expression that references the value of the
Parameter property you specified for the workbook parameter (workbook
Parameters array). Use the following syntax when writing the EL expression:

#{workbook.params.parameter}

where parameter references the value of the Parameter property you specified
for the workbook parameter.

(Optional) In the Annotation field, enter a description of the worksheet
parameter.

Figure 15-6 Worksheet Parameters

Edit Worksheet Properties @

Edit the properties and press OK to save your changes

CustomAttributeProperties Enabled False
Page Definition ExcelWarehouselnventory
Parameters WarehouseldParam
4 [0] WarehouseldParam
Annotation
Parameter WarehouseldParam
Value #H{workbook params Warehouseld}
> RowData
> ServerContext
SetupdictionlD FilterWarehouseMasterByld

> Design

Data

#ires['excel warehouses _cheet title']}

Cancel
5. Repeat Step 4 as necessary to add other workbook parameters.
6. Click OK.

For more information about the worksheet Parameters property, see Table A-21.

For use cases where the workbook parameter values are necessary to set up the initial
server state on each new user session, set the SendParameters property to True.
Additionally, you should specify a method action binding to invoke for the
worksheet's SetupActionID that initializes the server state using the workbook
parameter values.

Deploying Your Integrated Excel Workbook 15-15

Passing Parameter Values from a Fusion Web Application Page to a Workbook

To configure the worksheet SendParameters and SetupActionID properties:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, set the values of SendParameters and
SetupActionID as shown in the Table 15-2 and Figure 15-7:

Table 15-2 SendParameters and SetupActionID Properties

Set this property to... This value...

SendParameters True to make sure that the worksheet parameters are set in the
binding container for the worksheet. When set to True,
parameters are sent every time when the metadata is requested
and the first time when data is requested, during each user
session. When set to False (the default value), the explicit
sending of worksheet parameters does not take place.

SetupActionID Specify a method action binding to invoke that initializes the
server state using the workbook parameter values.

For more information, see Section 16.5, "Using Explicit
Worksheet Setup Action."

Figure 15-7 SendParameters and SetupActionID Properties

Edit Worksheet Properties @
Edit the properties and press OK to save your changes
=0
Annotation
CustomAttributeProperties Enabled False
» Ewvents Startup
Page Definition ExcelWarehouseInventory
4 Parameters WarehouseldParam
4 [0] WarehouseldParam
Annotation
Parameter WarehouseldParam
Value #H{workbook params Warehouseld}
> Protection
> Ribbon Commands Ribbon Commands (2)

> RowData
4 ServerContext
CacheDataContexts

IDAtributel D
True
SetupdctionlD FilterWarehouseMasterByld
Title #{res['excel warehouses sheet title T}
SendParameters

Indicates whether the worksheet parameters will be set when re-establishing context
across multiple sessions.

o

4. Click OK.

When entering the Test mode, the Workbook Parameter dialog prompts you to enter
test parameter values. Figure 15-8 shows the Workbook Parameters dialog that accepts
test values for the workbook.

Figure 15-8 Workbook Parameters dialog

& Workbook Parameters [==]
Enter test values for workbook parameters

Warehoussld

Clear Cancel

15-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

While testing, the values entered here are used for the workbook parameter values. If
you have bound the workbook parameters to page definition parameters in the
worksheet, the values you enter here will be sent to the binding container. You are not
required to enter values for any, or all, parameters. If you enter test parameter values,
they are not cleared when you exit the test mode and return to design mode. When
you run the integrated Excel workbook again, the workbook parameter values are
displayed in the Workbook Parameters dialog from the cache.

The provided test values are stored in the workbook in the same way as the ADF
Desktop Integration Excel download filter stores the parameter values. When you
publish the workbook, the test parameter values are cleared before the workbook is
published.

Note: In the above example from the
EditWarehouseInventory-DT.x1lsx workbook, the
FilterWarehouseMasterById method action can be used as the
worksheet's setup action (SetupActionID). This causes the method to
be called automatically when the worksheet is initialized at runtime
(or whenever a new instance of the worksheet's binding container is
created). For more information about SetupActionID, see Section 16.5,
"Using Explicit Worksheet Setup Action."

The same method action could also be configured as a part of an
action set, such as one for a ribbon command or Startup event,
depending on the use case. In the case of a ribbon command, its
execution will be triggered by the end user. For more information
about ribbon commands and Startup event, see Section 9.3.2, "How to
Configure a Worksheet Ribbon Command for the Runtime Ribbon
Tab" and Section 9.2.4, "How to Invoke an Action Set from a
Worksheet Event."

Workbook parameter values can be used as arguments for any method
exposed by the page definition.

15.5.3 How to Configure the Page Definition File for the Worksheet to Receive
Parameters

The page definition file associated with the worksheet in the integrated Excel
workbook can be configured as follows:

= Add one or more parameter elements that initialize the worksheet's binding
container. The values for these parameters will be supplied from URL arguments,
as specified in Section 15.5.1, "How to Configure the Fusion Web Application's
Page to Pass Parameters."

The following example shows the WarehouseIdParam parameter defined in the
ExcelWarehouseInventory.xml page definition file that is associated with the
EditWarehouseInventory-DT.x1sx workbook:

<parameters>
<parameter id="WarehouseIdParam" value="value"/>
</parameters>

= Add a method action binding that invokes an application module method. The
following example shows an implementation in the
ExcelWarehouseInventory.xml page definition file that is associated with the
EditWarehouseInventory-DT.x1lsx workbook.

Deploying Your Integrated Excel Workbook 15-17

Customizing Workbook Integration Metadata at Runtime

<methodAction id="FilterWarehouseMasterById" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="FilterWarehouseMasterById"
IsViewObjectMethod="false" DataControl="SummitAppModuleDataControl"
InstanceName="data.SummitAppModuleDataControl.dataProvider">
<NamedData NDName="warehouseId" NDValue="${bindings.WarehouseIdParam}"
NDType="java.lang.String"/>
</methodAction>

For more information about configuring a page definition file, see Section 4.2,
"Working with Page Definition Files for an Integrated Excel Workbook" and the
"Working with Page Definition Files" section in Fusion Developer’s Guide for Oracle
Application Development Framework.

15.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web
Application to the Integrated Excel Workbook

When the end user downloads the integrated Excel workbook from the Fusion web
application, the component tag that triggered the download (such as
af:commandButton tag) is evaluated, the current parameter value (for example,
warehouseID) is captured and included on the URL. The adfdiExcelDownload filter
embeds the names and values of all the parameters from the URL into the downloaded
integrated Excel workbook.

The parameters are set into BindingContainer DCParameters before the binding
container is refreshed. For more information about how worksheet parameters are
mapped to binding containers, see Section 15.5.3, "How to Configure the Page
Definition File for the Worksheet to Receive Parameters."

For use cases where workbook parameter values are necessary to set up the initial
server state on each new user session, set the

Worksheet . ServerContext.SendParameters property to True. Additionally, you
should specify a method action binding to invoke for the worksheet's SetupActionID
that initializes the server state using the workbook parameter values. For more
information about the worksheet SetupActionID property, see Section 16.5, "Using
Explicit Worksheet Setup Action."

In the EditWarehouseInventory.xlsx workbook, the FilterWarehouseMasterById
method is invoked on each user session to set up the correct server state using the
workbook WarehouseId parameter value stored in the downloaded workbook.

To reset the initialization state for all worksheets in the workbook, invoke the
ClearAllData action. For more information about the ClearAllData action, see
Table A-19.

15.6 Customizing Workbook Integration Metadata at Runtime

ADF Desktop Integration also supports Oracle Metadata Services (MDS) based
runtime customization. For more information about MDS, see the "Customizing
Applications with MDS" chapter in Fusion Developer’s Guide for Oracle Application
Development Framework.

Workbook integration metadata defines how ADF Desktop Integration components
appear and behave in the workbook, and how the workbook is integrated with its
Fusion web application. When the workbook is published, its workbook integration
metadata XML file is saved at the same location as the design-time copy of the
workbook. For more information about publishing a customization-enabled
workbook, see Section 15.3, "Publishing Your Integrated Excel Workbook."

15-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Customizing Workbook Integration Metadata at Runtime

The workbook integration metadata files for customization-enabled workbooks need
to be deployed to MDS metadata repositories so that they can be managed by MDS.
For more information about Metadata Repository, see the "Managing the Metadata
Repository" chapter in Administrator’s Guide.

15.6.1 How to Enable Workbook Customization at Runtime

To enable customization of workbook integration metadata, open the Workbook
Properties dialog, and set CustomizationEnabled to True.

Before you begin:

It may be helpful to have an understanding of customizing workbook integration
metadata. For more information, see Section 15.6, "Customizing Workbook Integration
Metadata at Runtime."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 15.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

To enable runtime customization for a workbook:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.
3. Set CustomizationEnabled to True.

4. Click OK.
5

Publish the customization-enabled workbook.

15.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized

A customization-enabled workbook obtains its metadata from the server when the
workbook is initialized.

The integration metadata is managed by MDS on the server end and can be accessed
by the application through MDS APIs. At runtime, the application can provide means
for users to customize the workbook integration metadata. When a
customization-enabled workbook is being initialized, it requests the server for
workbook integration metadata. MDS applies all the customizations based on current
customization context and returns the customized metadata to the workbook for its
initialization.

An application developer might include seeded customizations with the application
and/or integrate the ADF Workbook Composer, as described in Section 15.7,
"Integrating ADF Workbook Composer into Your Fusion Web Application." For
example, an application can provide a web page where users can customize the
columns of a table in a customization-enabled workbook. Users can remove certain
columns from the table on the web page and then download the
customization-enabled workbook and see changes takes effect in the workbook.

15.6.3 What You May Need to Know About Customizing Workbook Integration Metadata

Customization-enabled workbooks can only be published to a directory under the
public_html directory of the associated project. When you deploy your application,
make sure that the corresponding workbook integration metadata file can be found by
MDS using the metadata path generated when the workbook is published.

Deploying Your Integrated Excel Workbook 15-19

Integrating ADF Workbook Composer into Your Fusion Web Application

Each customization-enabled workbook has its own workbook integration metadata
file. When the workbook is published, its workbook integration metadata XML file is
saved at the same location as the design-time copy of the workbook. This workbook
integration metadata file should be deployed to MDS metadata repositories so that it
can be managed by MDS at runtime. In MDS terms, a workbook integration metadata
file is a base document and is referenced by MDS using a metadata path. The metadata
path is determined when the customization-enabled workbook is published.

For example, if a design-time customization-enabled workbook is published to
<PROJECT_HOME>/public_html/myCompany/myPackage/myWorkbook.x1lsx and its
workbook integration metadata file name is
myWorkbook-DT . x1sx-workbook-definition.xml, then the metadata path for this
workbook is /myCompany/myPackage/myWorkbook-DT.x1sx-workbook-defintion.xml.
At runtime, MDS looks for the workbook integration metadata using this metadata
path in the repositories configured with the application. The metadata path must be
unique across the application.

By default, if no MDS repository is configured for the workbook integration metadata
files, MDS will look up the metadata files on the classpath using the metadata path
mentioned. To avoid configuring MDS, you may host the workbook integration
metadata files on the classpath of the Fusion web application.

15.7 Integrating ADF Workbook Composer into Your Fusion Web

Application

The ADF Workbook Composer is an ADF Task Flow that enables an authorized user to
customize an integrated Excel workbook from the runtime web user interface of the
Fusion web application.

To use the ADF Workbook Composer, you must have a customization-enabled
workbook integrated into your Fusion web application and have its metadata
managed by MDS. For more information about customization-enabled workbook, see
Section 15.6, "Customizing Workbook Integration Metadata at Runtime."

Using the ADF Workbook Composer, the end user may perform the following actions
at runtime:

= Edit or delete ADF components of the integrated Excel workbook
= Reposition components in the worksheet
» Edit tooltips, labels, and source of ADF components

s Delete worksheets

15.7.1 How to Integrate ADF Workbook Composer into Your Fusion Web Application

The ADF Workbook Composer task flow is available in the
adf-workbook-composer. jar file as an ADF Library. The jar file is available in the
MWHOME/oracle_common/modules/oracle.adf.desktopintegration directory.

To integrate ADF Workbook Composer in your Fusion web application:
1. Open your Fusion web application in JDeveloper.

2. Add the adf-workbook-composer. jar file as an ADF Library jar to your Fusion
web application.

a. Inthe Application Navigator, select and right-click the project
(ViewController, for example) and choose Project Properties.

15-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Integrating ADF Workbook Composer into Your Fusion Web Application

b. In the Project Properties dialog, select Libraries and Classpath.
c. In the Libraries and Classpath page, click Add Library.
d. Inthe Add Library dialog, click New.

e. Inthe Create Library dialog, enter ADF Workbook Composer Runtime as
Library Name.

f. Click Add Entry.

g. Navigate to the MWHOME/oracle_
common/modules/oracle.adf.desktopintegration_11.1.1 directory, select
the adf-workbook-composer. jar file, and click Open.

Note: Make sure to clear the Deployed by Default checkbox to
avoid duplicate copies of the adf-workbook-composer. jar file
appearing on the class path at runtime. The
oracle.adf.desktopintegration shared library includes the
adf-workbook-composer. jar file, as described in Section 15.7.2, "What
Happens at Runtime: ADF Workbook Composer is Invoked."

Select and expand the ADF Workbook Composer Runtime Library in the
Application Navigator.

If libraries are not visible, select View > Application Projects > Show Libraries.

Locate the workbook-customization-task-flow.xml file under
WEB-INF\oracle\adf\workbookcomposer\view\taskflows and drag-and-drop the
file to import the task flow within the host page.

If necessary, set up the desired customization context.

Configure the MDS repository in adf-config.xml and make sure that workbook
metadata files are accessible on the metadata path.

Provide the required workbook metadata path and workbook name parameters
for the task flow.

If the Fusion web application is authorization-enabled, you would need to
configure security policies to grant resource access to users for the following task
flows available in the /WEB-INF/oracle/adf/workbookcomposer/view/taskflows/
directory of the workbook composer jar file.

m button-customization-task-flow.xml

s form-component-customization-task-flow.xml
m image-customization-task-flow.xml

m not-supported-task-flow.xml

m read-only-table-customization-task-flow.xml
s ribbon-command-customization-task-flow.xml
m table-customization-task-flow.xml

s workbook-customization-task-flow.xml

Run the host web page to make sure that the workbook composer renders
correctly.

Deploying Your Integrated Excel Workbook 15-21

Integrating ADF Workbook Composer into Your Fusion Web Application

15.7.2 What Happens at Runtime: ADF Workbook Composer is Invoked

The ADF Workbook Composer task flow is available in the
adf-workbook-composer.jar as an ADF Library jar file. This jar is included in the
oracle.adf.desktopintegration shared library. The
oracle.adf.desktopintegration shared library is installed as part of the Application
Development Runtime installation process and is included in the JRF domain
extension template. If you have installed the Application Development Runtime, the
ADF Workbook Composer task flow will be available at runtime when the Fusion web
application runs on WebLogic Server. For information about the installation of the
Application Development Runtime, see the "Deploying ADF Applications" chapter in
Administrator’s Guide for Oracle Application Development Framework.

At runtime, the customization made from the ADF Workbook Composer takes effect
immediately without restarting the Fusion web application. End users that match the
customization context associated with the workbook customization will see the
customization after they download and open a new copy of the integrated Excel
workbook, or invoke the ClearAllData workbook action on an initialized workbook
and then log in.

15.7.3 What You May Need to Know About ADF Workbook Composer

The ADF Workbook Composer task flow requires two parameters:

» WorkbookName — The name of the published workbook that the users will be
customizing at runtime. The name will be displayed in the composer.

ms WorkookMetadataPath — The path to the workbook metadata file. This is the path
used by MDS to locate the metadata file for the workbook to be customized. The
workbook metadata file is generated when the design-time workbook is
published. The metadata path is determined by the location to which the
workbook is published.

15-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

16

Using an Integrated Excel Workbook Across

Multiple Web Sessions

This chapter describes how to configure the integrated Excel workbook so that your
use cases work properly across multiple web application sessions.

This chapter includes the following sections:

= About Using an Integrated Excel Workbook Across Multiple Web Sessions
= Restore Server Data Context Between Sessions

= Caching of Static Information in an Integrated Excel Workbook

s Caching Lists of Values for Use Across Multiple Web Sessions

»s Using Explicit Worksheet Setup Action

16.1 About Using an Integrated Excel Workbook Across Multiple Web

Sessions

End users can open an integrated Excel workbook and log on to a Fusion web
application from the workbook ribbon command that you configure. The Fusion web
application assigns a session to the user. After a connection to the Fusion web
application is established and a valid session assigned, end users can download data
from the Fusion web application to the workbook. They can then log off from the
Fusion web application using the workbook ribbon command or otherwise disconnect
from the Fusion web application by, for example, disconnecting from the network that
hosts the Fusion web application.

If the user logs off from the Fusion web application using a workbook command, the
Fusion web application terminates the session immediately. If the user allows the
session to time out by leaving the workbook open and idle, the Fusion web application
terminates the session assigned to the user after session timeout expires.

Using integrated Excel workbooks disconnected from the Fusion web application, end
users can perform the following actions:

= Modify data downloaded from the Fusion web application

= Insert new data into the appropriate ADF Table component contained in the
workbook

= Save changes to data and close and reopen the workbook without having to
upload data to the Fusion web application

» Track and update changes in the ADF Table component

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-1

Restore Server Data Context Between Sessions

Test your integrated Excel workbook's behavior across multiple web application
sessions. To do this, run the integrated Excel workbook. As you go through the steps of
your use case, click the Logout workbook ribbon command at various points to end
the current web application session. Make a special point of ending the current session
between invocations of the ADF Table component's Download and Upload actions. New
web application sessions will be created as needed. If the results are not what you
expect, you may need to configure the properties described in subsequent sections of
this chapter.

16.1.1 Using an Integrated Excel Workbook Across Multiple Web Sessions Use Cases
and Examples

When end users open a published integrated Excel workbook, the workbook
downloads required data. Then, if they disconnect from the server, they can continue
to edit and update the data in the integrated Excel workbook, and save and close it.

16.1.2 Additional Functionality for Using an Integrated Excel Workbook Across Multiple
Web Sessions

After you have validated and tested your integrated Excel workbook across multiple
web sessions, you may find that you need to add additional functionality for your
workbook. The following sections describe other functionality that you can use:

= Troubleshooting integrated Excel workbook: You might encounter some
problems while developing or deploying an integrated Excel workbook. For more
information, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

s Installing ADF Desktop Integration: You must install ADF Desktop Integration
to enable end users to use ADF Desktop Integration and integrated Excel
workbooks. For more information, see Appendix H, "End User Actions."

16.2 Restore Server Data Context Between Sessions

You must configure the integrated Excel workbook and page definition file so that the
correct view object state is restored if the Fusion web application assigns the end user a
new session after one of the following events occurs:

= The end user makes changes to data in a workbook, saves and closes the
workbook, reopens the workbook at a later time, and attempts to upload the
changes he or she made before saving and closing the workbook.

s The time between invocation of an ADF Table component's Download and Upload
actions (or some other ADF Table component action that contacts the Fusion web
application) exceeds the session timeout value specified for a Fusion web
application session.

Both the scenarios described in the previous list involve two sessions. The first session
is assigned when the end user opens an integrated Excel workbook and logs on to the
Fusion web application. The Fusion web application terminates this session when the
end user logs off from the Fusion web application or when the session expires. The
Fusion web application assigns a second session when the end user reopens the
integrated Excel workbook and invokes an action that interacts with the Fusion web
application.

16-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Restore Server Data Context Between Sessions

16.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context

You specify the attribute bindings that you want to cache in an integrated Excel
workbook between sessions as values for the worksheet's ServerContext group of
properties. This group of properties also enables you to specify the action binding that
uses the cached attribute binding data to restore server-side context when a Fusion
web application assigns a new session to the integrated Excel workbook.

Before you can specify values for the ServerContext group of properties, the page
definition file that is associated with the worksheet must expose the attribute bindings
and action bindings for which you want to restore server context. For information
about adding attribute bindings and action bindings to a page definition file, see
Section 4.2, "Working with Page Definition Files for an Integrated Excel Workbook."
For information about the ServerContext group of properties, see the entry for
ServerContext in Table A-21.

Before you begin:
It may be helpful to have an understanding of how to restore server data context. For
more information, see Section 16.2, "Restore Server Data Context Between Sessions."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 16.1.2,
"Additional Functionality for Using an Integrated Excel Workbook Across Multiple
Web Sessions."

To configure an integrated Excel workbook to restore server data context:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, configure values for the ServerContext
group of properties as described by Table 16-1.

Table 16-1 ServerContext Properties to Restore Server Data Context

For this property... Enter or select this value...

CacheDataContexts Typically, you add an element to this collection to restore a
non-trivial query that you cannot configure directly in the page
definition file. Adding an element to this collection is optional if
you do not have to address this scenario. If you add an element
to the collection of CacheDataContexts, configure it as follows:

. RestoreDataContextActionID

Specify the action binding (for example, the Execute action
binding) that connects to the Fusion web application to
restore the data specified by CachedServerContexts.

u CachedServerContexts

An array that identifies the attribute binding values to cache
and set before the action binding specified by
RestoreDataContextActionID is invoked. Each element in
the array (CachedServerContext) supports the
CachedAttributeID and RestoredAttributelD properties.

For more information about the CacheDataContexts property
and its subproperties, see Section A.15, "Worksheet Actions and
Properties."

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-3

Caching of Static Information in an Integrated Excel Workbook

Table 16-1 (Cont.) ServerContext Properties to Restore Server Data Context

For this property... Enter or select this value...

IDAttributelID Specify the attribute binding that uniquely identifies the row
displayed in the current worksheet. At runtime, the value that
this property references determines if the server data context has
been correctly restored. Typically, you use this property to
handle a form. It may be optional otherwise.

For more information about this property and its subproperties,
see Section A.15, "Worksheet Actions and Properties.”

If your integrated Excel workbook uses parameters and you have deployed it by
downloading it from your Fusion web application, see Section 15.5.2, "How to
Configure Parameters Properties in the Integrated Excel Workbook."

4. C(lick OK.

Note: For integrated Excel workbooks that use Parameters and
<invokeAction> executable, you may not need to configure
RestoreDataContextActionID and CachedServerContexts, if
Parameters and <invokeAction> can restore server data context when
a new session is created.

16.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server

Data Context

During the initial session (for example, session ID 1), the worksheet caches data
using the ServerContext group of properties. In a later session with a different session
ID (for example, session ID 2), where the ADF Table component's Upload action is
invoked, the data cached in the ServerContext group of properties is sent to the
Fusion web application.

16.3 Caching of Static Information in an Integrated Excel Workbook

Certain types of relatively static data are cached in the integrated Excel workbook to
allow end users to use the workbook while disconnected from the Fusion web
application. Table 16-2 describes the types of data that an integrated Excel workbook
caches.

Invoking the ClearAllData workbook action described in Section A.14, "Workbook
Actions and Properties," refreshes all types of cached data described in Table 16-2.
Table 16-2 also describes other scenarios where an integrated Excel workbook
refreshes cached data.

Table 16-2 Types of Data an Integrated Excel Workbook Caches

This type of data... Is cached when... And refreshed when...
Page definition metadata that An integrated Excel The page definition metadata
is not expected to change worksheet bound to a page is not refreshed unless you
between user sessions such as definition file is activated and download a new copy of the
control binding types, IDs, no cache of the page integrated Excel workbook.
and labels. definition file's metadata

exists.

16-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Caching Lists of Values for Use Across Multiple Web Sessions

Table 16-2 (Cont.) Types of Data an Integrated Excel Workbook Caches

This type of data... Is cached when... And refreshed when...
ADF List of Values The ADF List of Values The values of the list items
component list items component first downloads hosted by the Fusion web
the list items from the Fusion application differ from those
web application. cached by the integrated Excel

workbook. The cached list
items are refreshed only once
per workbook session and
only if a workbook session
exists.

Resource bundle strings The integrated Excel The cache of resource bundle
workbook is first initialized. A strings is not refreshed unless
workbook is initialized when you download a new copy of
it is opened for the first time the integrated Excel
after publishing. workbook.

16.4 Caching Lists of Values for Use Across Multiple Web Sessions

ADF Desktop Integration caches the values referenced by the ADF List of Values
components that you use to create lists of values and dependent lists of values so that
these components do not send a request to the Fusion web application when the end
user selects a value at runtime.

ADF Desktop Integration caches up to two hundred and fifty values for each
component. If a component references a list of values with more than two hundred
and fifty values, ADF Desktop Integration caches the first two hundred and fifty
values and writes a warning message to the client-side log file for subsequent values.
Consider configuring your integrated Excel workbook to use a model-driven list
picker, as described in Section 8.4, "Adding a Model-Driven List Picker to an ADF
Table Component," where a list of values references more than two hundred and fifty
values. For more information about client-side log files, see Section C.4, "Generating
Log Files for an Integrated Excel Workbook."

Cached lists of values in an integrated Excel workbook get refreshed once per
workbook session. This refresh occurs after the user reestablishes a web session with
the Fusion web application and if the values referenced by the Fusion web application
have changed since the integrated Excel workbook last cached the list of values.

The upload of a selected value from a list of values causes the upload to fail if the
selected value no longer exists in the Fusion web application. This may occur if, for
example, one end user deletes the value in the Fusion web application while another
end user modifies the selected value in the cached list of values of an integrated Excel
workbook and attempts to upload the modified value to the Fusion web application.

Note that if you change the Fusion web application configuration after you have
deployed the Fusion web application and the end users have started using the
published integrated Excel workbooks, you must inform the end users to download a
fresh copy of the integrated Excel workbook, or invoke the ClearAllData workbook
action. For more information about the ClearAllData workbook action, see

Section A.14, "Workbook Actions and Properties."

The changes in your Fusion web application might include changing the definitions of
the list bindings associated with the ADF List of Values components exposed in the
worksheet. Changing list binding configuration can cause unexpected exceptions in
workbooks that have been downloaded and run prior to the change.

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-5

Using Explicit Worksheet Setup Action

Note: An integrated Excel workbook never caches the values that a
ModelDrivenColumnComponent subcomponent displays in a
model-driven list picker. For more information about model-driven
list pickers, see Section 8.4, "Adding a Model-Driven List Picker to an
ADF Table Component.”

For more information about lists of values, see Chapter 8, "Working with Lists of
Values."

16.5 Using Explicit Worksheet Setup Action

ADF Desktop Integration provides several features for configuring a worksheet after
the binding container's metadata has been obtained from the server at runtime.
However, at times, you might want to configure the data or the binding container
before the client retrieves the binding container metadata. For example, at design time,
you might want to add a table to the worksheet, but without specifying the view object
that will drive that table, until runtime. This would be desirable if the view object to be
used depends on some parameter values or settings that are not known until runtime.
In addition, you might want to configure the view object based on runtime parameter
values (such as add attributes, or indicate which attributes to display). Similarly, you
may also want to configure the binding container based on runtime parameter values.
Such use cases require performing setup tasks before the binding container metadata
is sent from the sever to the worksheet.

Using the Explicit Worksheet Setup Action feature of ADF Desktop Integration, you
can specify a setup action that is invoked before the client retrieves the binding
container metadata. The EditWarehouseInventory-DT.x1lsx workbook in the Summit
sample application demonstrates an implementation of this feature where the
Warehouse Inventory worksheet invokes a method action binding named
FilterWarehouseMasterById.

16.5.1 How to Configure Explicit Worksheet Setup Action

Using the SetupActionID property of the worksheet, you can specify a method that is
invoked before the binding container metadata is sent to the worksheet. In the method,
you can implement the logic necessary for any configuration on the data and binding
container.

Before you begin:

It may be helpful to have an understanding of the Explicit Worksheet Setup Action
feature. For more information, see Section 16.5, "Using Explicit Worksheet Setup
Action."

You may also find it helpful to understand the functionality that can be added using
other ADF Desktop Integration features. For more information, see Section 16.1.2,
"Additional Functionality for Using an Integrated Excel Workbook Across Multiple
Web Sessions."

To use the worksheet SetupActionlID property:
1. Open the worksheet in the integrated Excel workbook.

2. From the Excel Ribbon, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand Data and click the browse icon
(...) beside the input field for the SetupActionID property

16-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Explicit Worksheet Setup Action

4. In the Select Binding dialog, select the action that you want to invoke before the
binding container metadata is sent to the worksheet, and click OK.

Note: The SetupActionID property accepts ADFmAction only. A
validation error is reported if an invalid method is set for the property.

5. Click OK to close the Edit Worksheet Properties dialog.

Figure 16-1 shows the configuration in the EditWarehouseInventory-DT.x1sx
workbook.

Figure 16-1 SetupActionID Property in Edit Worksheet Properties Dialog

@ -
Edit Worksheet Properties £3 =
Edit the properties and press 0K to save your changes.
dl
4 Behavior
= > Events Startup
> Protection
— > Ribbon Commands Ribbon Commands (2] p—
+ Daia 2 Select Binding (=234
CustomAttribute Properties Enabled Fal
P:g;n[-;aﬁ:'rtin: e, ;me‘ ory Page Definition: ExcelWarehouselnventony
> Parameters WarehouseldParam - pry):
> RowData Commit (action) i
> ServerContesd Execute (action)
SetupAction|D FilterWarehouseMasterByld Filter'w/arehouseMasterByld (methodfction)
Title #Hires['excel warehouses sheet title']}
4 Design
Annotation
SetupActionlD F—
The action binding invoked prior to retrieving binding container metadata from the server Cancel
= FilterWarehouseMasterById (methodActio
#] 0K Cancel
tor|

16.5.2 What You May Need to Know About Explicit Worksheet Setup Action

After the action specified in the SetupActionID property runs, the binding container
metadata that is sent to worksheet reflects the changes configured in the method. ADF
Desktop Integration ensures that the setup action runs only once for any binding
container instance. If, for any reason, a new binding container instance becomes
associated with the worksheet, the setup action will be invoked again, to ensure it is
configured.

If any kind of failure occurs during the invoking of the setup action, ADF Desktop
Integration is automatically disabled in the worksheet. Logging out, and then logging
in, will not enable ADF Desktop Integration in the worksheet. Running Clear All Data
command from the Excel Ribbon re-enables ADF Desktop Integration in the
worksheet, the setup action runs again on subsequent requests.

Using an Integrated Excel Workbook Across Multiple Web Sessions 16-7

Using Explicit Worksheet Setup Action

16-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

A

ADF Desktop Integration Component
Properties and Actions

This appendix lists and describes the properties of ADF Desktop Integration
components. It also describes the actions that certain components expose.

This appendix includes the following sections:

» Frequently Used Properties in the ADF Desktop Integration
s ADF Input Text Component Properties

s ADF Output Text Component Properties

= ADF Label Component Properties

= ADF List of Values Component Properties

s ADF Image Component Properties

s ADF Input Date Component Properties

s ModelDrivenColumnComponent Subcomponent Properties
» TreeNodeList Subcomponent Properties

s ADF Button Component Properties

= ADF Table Component Properties and Actions

= ADF Read-only Table Component Properties and Actions

m Action Set Properties

s Workbook Actions and Properties

s Worksheet Actions and Properties

s ADF Desktop Integration Compatibility Properties

A.1 Frequently Used Properties in the ADF Desktop Integration

Table A-1 lists alphabetically properties in ADF Desktop Integration that many
components reference.

ADF Desktop Integration Component Properties and Actions A-1

Frequently Used Properties in the ADF Desktop Integration

Table A-1 Frequently Used Properties in ADF Desktop Integration

Name Type EL Description

ActionSet N For information about action sets, see Section A.13,
"Action Set Properties."

Annotation String N Use this field to enter a comment about the
component's use in the worksheet. Comments you
enter have no effect on the behavior of the
workbook. They are the equivalent of code
comments.

ComponentID String N ADF Desktop Integration generates this string to
uniquely identify each instance of an ADF
component in an integrated Excel workbook.

Label String Y Specify an EL expression that is evaluated at
runtime. For information about EL expressions in
ADF Desktop Integration, see Appendix B, "ADF
Desktop Integration EL Expressions." For
information about using labels, see Section 10.4,
"Using Labels in an Integrated Excel Workbook."

Position N This property defines the upper-left corner of the
Oracle ADF component in the integrated Excel
workbook.

ReadOnly Boolean Y Set this property to True so that ADF Desktop

Integration ignores changes a user makes to a cell
that references a component which uses this
property. The cells can also be locked if this setting is
used in combination with automatic worksheet
protection, as described in Section 10.7, "Using
Worksheet Protection.”

To avoid end user confusion, apply styles to the cells
where you set ReadOnly to True that provide a visual
clue to users that they cannot modify the cell's
contents. For information about applying styles, see
Section 10.2, "Working with Styles."

StyleName String Y Specifies the style in the current Excel workbook to
apply when the Oracle ADF component is rendered.
For more information, see Section 10.2, "Working
with Styles."

Tooltip String Y Specify the hint message about the content or
function of the ADF form component, or table
column, to appear when the mouse hovers the
component, or the column.

For more information, see Section 10.6, "Displaying
Tooltips in ADF Desktop Integration Components."

Value Varies Y This property typically references an EL binding
value expression that gets evaluated during the
invocation of the ADF Table component's Download
and RowDownSync actions or a worksheet's DownSync
action. The resulting data value gets displayed in the
worksheet at runtime.

Many label-type properties are optional and default to empty. At runtime, if the value
of such properties is empty, ADF Desktop Integration provides a default, localized
value. If you want the value of the property to appear as empty, set its value to a single
space character, or provide an EL expression that evaluates to an empty string.

A-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Label Component Properties

A.2 ADF Input Text Component Properties

Table A-2 lists alphabetically the properties of the ADF Input Text component.

Table A-2 ADF Input Text Component Properties

Name Description
Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.

InputText.DoubleClickActionSet

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Section A.13, "Action Set Properties."

InputText.ReadOnly

For information about this property, see Table A-1.

InputText.Value

For information about this property, see Table A-1.

Position For information about this property, see Table A-1.
StyleName For information about this property, see Table A-1.
Tooltip For information about this property, see Table A-1.

A.3 ADF Output Text Component Properties

Table A-3 lists alphabetically the properties of the ADF Output Text component.

Table A-3 ADF Output Text Component Properties

Name Description
Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.

OutputText.DoubleClickActionSet

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Section A.13, "Action Set Properties."

OutputText.Value

For information about this property, see Table A-1.

Position For information about this property, see Table A-1.
StyleName For information about this property, see Table A-1.
Tooltip For information about this property, see Table A-1.

A.4 ADF Label Component Properties

The ADF Label component displays a static string value at runtime. ADF Desktop
Integration generates the value when the EL expression that the Label property
references is evaluated. For information about using labels, see Section 10.4, "Using
Labels in an Integrated Excel Workbook."

Table A—4 lists alphabetically the properties that the ADF Label component references.

Table A-4 ADF Label Component Properties

Name Description

Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.
Label For information about this property, see Table A-1.

ADF Desktop Integration Component Properties and Actions A-3

ADF List of Values Component Properties

Table A-4 (Cont.) ADF Label Component Properties

Name Description

Position For information about this property, see Table A-1.
StyleName For information about this property, see Table A-1.
Tooltip For information about this property, see Table A-1.

A.5 ADF List of Values Component Properties

Table A-5 lists the properties of the ADF List of Values component. For information
about creating lists of values in your integrated Excel workbook, see Chapter 8,
"Working with Lists of Values."

Table A-5 ADF List of Values Component Properties

Name Type EL Description
Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.

ListOfValues.DependsOnListID List
binding

N Select the list binding whose value at runtime determines the
choices available in the dependent list of values at runtime.

The list binding that you select can be a model-driven list.

For more information about dependent list of values, see
Section 8.5, "Creating Dependent Lists of Values in an
Integrated Excel Workbook."

ListOfValues.ListID List
binding

N Select the list binding that defines the values available in the
list of values. The list binding that you select can be a
model-driven list.

ListOfvValues.ReadOnly Boolean

N For information about this property, see Table A-1.

Position

For information about this property, see Table A-1.

StyleName

For information about this property, see Table A-1.

Tooltip String

Y For information about this property, see Table A-1.

A.6 ADF Image Component Properties

The ADF Image component displays an image at runtime. For more information about

adding an ADF Image component, see Section 6.6, "Inserting an ADF Image

Component."

Table A-6 ADF Label Component Properties

Name Description

Source Enter the absolute, or relative, URL of the image file.

ShortDesc Enter the EL expression that resolves to the alternate text of the image component.
Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

A-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

ModelDrivenColumnComponent Subcomponent Properties

A.7 ADF Input Date Component Properties

Table A-7 lists alphabetically the properties of the ADF Input Date component. For
more information about the ADF Input Date component, see Section 6.5, "Inserting an
ADF Input Date Component."

Table A-7 ADF Input Date Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

InputDate.ReadOnly For information about this property, see Table A-1.

InputDate.Value Specify an EL expression that resolves to a date-time value at runtime. For

more information about ADF Input Date component, see Section 6.5,
"Inserting an ADF Input Date Component."

Position For information about this property, see Table A-1.
StyleName For information about this property, see Table A-1.
Tooltip For information about this property, see Table A-1.

A.8 ModelDrivenColumnComponent Subcomponent Properties

The ModelDrivenColumnComponent subcomponent does not appear in the components
palette of the ADF Desktop Integration task pane. Instead, you configure properties
for this subcomponent when you specify ModelDrivenColumnComponent as the
subcomponent to invoke for the ADF Table component's UpdateComponent or
InsertComponent table column properties described in Section A.11.2, "ADF Table
Component Column Properties."

The column subcomponent type is determined at runtime by the column's attribute
Control Type hint specified on the server. For example, if there is a model-driven list
associated with the attribute, then the column uses a dropdown list containing the
model-driven list items at runtime. For more information, see Section 7.15, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table Component."

Table A-8 describes the properties that you configure for the
ModelDrivenColumnComponent subcomponent.

ADF Desktop Integration Component Properties and Actions A-5

TreeNodeList Subcomponent Properties

Table A-8 ModelDrivenColumnComponent Subcomponent Properties

Name

Type EL Description

DoubleClickActionSet Specifies the action set invoked when a user

double-clicks the cell. For information about action sets,
see Section A.13, "Action Set Properties."

ReadOnly

Boolean Y Set the ReadOnly property to False if you do want users
to edit the values in the column, set to True otherwise.
The default value is False.

If you create the ADF Table component by
double-clicking a tree binding in the Bindings palette,
the property's value is set to an EL expression in the
following format that evaluates to True or False at
runtime:

#{bindings. {tree-id} .hints. {attr-id}.readOnly}

For example,
#{bindings.Customers.hints.Address.readOnly}

For more information about this property, see Table A-1.

Value

Varies Y For information about this property, see Table A-1.

A.9 TreeNodeList Subcomponent Properties

Note: TheModelDrivenColumnComponent subcomponent also renders
dropdown menus for tree binding attributes that have a model-driven
list. Consider using a ModelDrivenColumnComponent subcomponent
rather than a TreeNodeList subcomponent. For more information, see
Section A.8, "ModelDrivenColumnComponent Subcomponent
Properties."

The TreeNodeList is an ADF Table subcomponent that renders dropdown menus in
columns of the ADF Table component at runtime. It provides the same functionality to
end users as the ADF List of Values component. For information about creating lists of
values in your integrated Excel workbook, see Chapter 8, "Working with Lists of
Values."

The TreeNodeList subcomponent does not appear in the components palette of the
ADF Desktop Integration task pane. Instead, you configure properties for this
subcomponent when you specify TreeNodeList as the subcomponent to invoke for the
ADF Table component's UpdateComponent or InsertComponent table column
properties described in Section A.11.2, "ADF Table Component Column Properties."

Table A-9 describes the properties that you configure for the TreeNodeList
subcomponent.

A-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-9 TreeNodeList Subcomponent Properties

Name Type EL Description

DependsOnList Tree Y Specify the tree binding attribute or list binding that serves as the
binding parent list of values in a dependent list of values.
gitlggtlte Note that the tree binding attribute you specify must be associated

. with a model-driven list.
binding
For more information about dependent list of values, see
Section 8.5, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

List Tree Y Specify the tree binding attribute associated with a model-driven
binding list that defines the values available in the runtime dropdown
attribute menu to appear in the ADF Table component's column.

ReadOnly Boolean Y Always set this property's value to True because it is obsolete when

used with this subcomponent. For read-only columns, consider
using the ModelDrivenColumnComponent subcomponent or the
OutputText component.

A.10 ADF Button Component Properties

Table A-10 lists alphabetically the properties of the ADF Button component. For more
information about the ADF Button component, see Section 6.7, "Inserting an ADF

Button Component.”

Table A-10 ADF Button Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ClickActionSet Specify the action set to invoke when a user clicks the button. For information about action
sets, see Section A.13, "Action Set Properties."

ComponentID For information about this property, see Table A-1.

Label For information about this property, see Table A-1.

LowerRightCorner This property is an Excel cell reference. Used with Position, it specifies the area that the
button occupies on the Excel worksheet.

Position For information about this property, see Table A-1.

A.11 ADF Table Component Properties and Actions

The ADF Table component uses the properties and component actions listed here.

A.11.1 ADF Table Component Properties
Table A-11 lists alphabetically the properties the ADF Table component uses.

ADF Desktop Integration Component Properties and Actions A-7

ADF Table Component Properties and Actions

Table A-11 ADF Table Component Properties

Name Type

EL

Description

Annotation

For information about this property, see Table A-1.

BatchOptions

This group of properties enables you to configure
batch options for the ADF Table component. For
more information about how you use these
properties, see Section 7.11, "Batch Processing in an
ADF Table Component.”

BatchOptions.BatchSize Integer

Specifies how many rows to process before an
ADF Table component action (Upload or
DeleteFlaggedRows) invokes
CommitBatchActionID. Any value other than a
positive integer results in all rows being processed
in a single batch. The default value is 100 rows.

A value for this property is required.

Action
binding

BatchOptions.CommitBatchActionID

Specify an action binding to invoke when the
number of rows specified by BatchSize have been
processed. The action binding is expected to be a
commit-type action.

BatchOptions.LimitBatchSize Boolean

Set this property to True to process rows in batches
where each batch contains the number of rows
specified by BatchSize. If set to False, all rows are
processed in a single batch.

Action
binding

BatchOptions.StartBatchActionID

Specify an action binding to invoke at the
beginning of each batch. For example, this
property might be used for an operation like "start
transaction", if required by a particular database.

A value for this property is optional.

DisplayUploadOptions Boolean

Set to True to display the Upload Options dialog
when uploading data from ADF Table component.

For more information, see Section 7.8.5, "What You
May Need to Know About Upload Options."

Columns

An array of columns. For information about the
properties that each column in the array supports,
see Section A.11.2, "ADF Table Component
Column Properties.”

ComponentID

For information about this property, see Table A-1.

Position

For information about this property, see Table A-1.

ResizeColumnsMode

Controls whether and how the columns in the
entire table are resized.

For more information, see Section 7.16,
"Configuring an ADF Table Component to Resize
Columns Based on Data at Runtime."

RowActions

This group of properties allows you specify which
actions are enabled and can be invoked.

A-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-11 (Cont.) ADF Table Component Properties

Name Type

EL

Description

RowActions.AutoConvertNewRowsEnable Boolean
d

N

When True, end users can insert new data from
non-integrated Excel workbooks directly into the
row under the ADF Table component or edit the
row under the ADF Table component to convert it
to a row in the ADF Table component. For more
information, see Section H.4.1, "How to Insert or
Paste Rows in an ADF Table Component.” True is
the default value.

Set to False for ADF Table components that do not
support row inserts or that need to have a
calculated row under the table.

Action
binding

RowActions.DeleteRowActionID

Specify an action binding to invoke for each row
flagged for deletion.

A value for this property is optional.

RowActions.DeleteRowEnabled Boolean

Set to True to allow a user to delete existing rows.
False is the default value.

A value for this property is required.

Action
binding

RowActions.FailureActionID

Specify an action binding to invoke if failures
occur during the processing of rows.

A value for this property is optional.

Action
binding

RowActions.InsertAfterRowActionID

Specify an action binding to invoke for each row
inserted using the ADF Table component Upload
action. The action binding is invoked after the
attributes are set. Use of this property is suitable
with a custom action where a variable iterator is
employed along with the main iterator.

A value for this property is optional.

Action
binding

RowActions.InsertBeforeRowActionID

Specify an action binding to invoke for each row
inserted using the Upload component action. The
action binding specified is invoked before the
attributes are set.

A value for this property is optional.

RowActions.InsertRowEnabled Boolean

Set to True to allow the end user insert new rows
in the ADF Table component. False is the default
value.

If you set this property to True, you must specify a
value for RowActions. InsertBeforeRowActionID.

Typically, a Fusion web application uses the
CreateInsert action binding to create and insert a
new row. In this scenario, you specify the
CreateInsert action binding as the value for
InsertBeforeRowActionID.

For more information about inserting rows in an
ADF Table component, see Section 7.7, "Inserting
Data in an ADF Table Component.”

RowActions.InsertRowsAfterUploadEna Boolean
bled

Set to True to allow the end user to reinsert
changed rows regardless of whether they have
been previously uploaded. False is the default
value.

The property is ignored if InsertRowEnabled is set
to False.

ADF Desktop Integration Component Properties and Actions A-9

ADF Table Component Properties and Actions

Table A-11 (Cont.) ADF Table Component Properties

Name Type

EL

Description

Action
binding

RowActions.InsertTempRowActionID

N

When configured, this action is invoked to create a
temporary row during row-level action set
execution for insert rows.

For more information, see Section 9.5, "Using
Row-Level Action Sets in a Table Column."

Action
binding

RowActions.UpdateRowActionID

Specify an action binding to invoke for each row
updated.

A value for this property is optional.

RowActions.UpdateRowEnabled Boolean

Set to True to allow a user update an existing row.
True is the default value.

A value for this property is required.

RowData

Set values for the CachedAttributes property
when you want to cache data in an integrated
Excel workbook across multiple sessions with the
Fusion web application.

Set a value for the ChangeIndicatorAttributelID
property to determine whether a row has been
modified by another user since you downloaded it
from the Fusion web application.

RowData.CachedAttributes Array

Specify values for the properties in this array to
determine the attributes for which data is cached.
Each CachedTreeAttribute element in this array
supports the following properties:

n Value

Select the tree binding attribute for which data
is to be cached.

. Annotation

For more information about this property, see
Table A-1.

The table RowDownSync action caches the row
attribute values for the configured
RowData.CachedAttributes. The table
RowUpSync,Upload, and UploadAllOrNothing
actions send any cached row attribute values to the
Fusion web application.

Note: A cached attribute value will override any
edits the end user makes to the same attribute
binding exposed in a column component.
Therefore, you should not configure the same
attribute in CachedAttributes and in a table
column component.

For information about using the
RowData.CachedAttributes array to cache data in
an ADF Table component, see Section 8.4, "Adding
a Model-Driven List Picker to an ADF Table
Component” and Section 9.5.5, "How to Add a
Custom Popup Picker Dialog to an ADF Table
Column."

A-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-11 (Cont.) ADF Table Component Properties

Name Type EL Description
RowData.ChangeIndicatorAttributeID Attribute Y Specify an EL expression that evaluates to a
Binding row-specific tree attribute binding value. The

attribute value is used to determine if a row has
been modified by another user since the row was
last downloaded to your integrated Excel
workbook.

For more information, see Section 13.7, "Handling
Data Conflicts When Uploading Data from a
Workbook."

RowLimit This group of properties allows you configure the
number of rows that the ADF Table component or
ADF Read-only Table component download and
display.

For more information, see Section 7.20, "Limiting
the Number of Rows Your Table-Type Component
Downloads."

RowLimit.Enabled Boolean N Set to True to limit the number of rows
downloaded to the value specified by
RowLimit .MaxRows. True is the default value.

A value for this property is required.

RowLimit .MaxRows Integer Y Specify an EL expression that evaluates to the
maximum number of rows to download. The
component evaluates the EL expression when it
invokes its Download action. The default value is
500. If MaxRows is not a positive integer, the
component attempts to download as many rows as
possible. An invalid expression such as "ABC" is
interpreted as -1 (negative integer). As a result, the
component attempts to download as many rows as
possible.

Note that setting the value of MaxRows to 0 results
in a message where the user is asked if they want
to download the first 0 rows. To avoid this, set
MaxRows to a positive integer other than 0.

ADF Desktop Integration Component Properties and Actions A-11

ADF Table Component Properties and Actions

Table A-11 (Cont.) ADF Table Component Properties

Name

Type

EL

Description

RowLimit.WarningMessage

String

Y

(Optional) Write an EL expression to generate a
message to display to the end user if the number of
rows available to download exceeds the number
specified by RowLimit .MaxRows. This expression is
evaluated each time the Table's Download action is
invoked. The maximum number of rows that a
Excel 2007, or a higher version, worksheet can
contain is approximately 1 million. If this property
is left blank, ADF Desktop Integration displays a
message similar to "Too many rows available.
Do you want to download the first {0} rows?"
that is translated for the current culture settings.

You can specify a string key from a custom
resource bundle to use, instead of the default
value. If desired, you may supply a custom
message to replace the default one. Any custom
message must contain {0}. {0} will be replaced by
the MaxRows value.

For more information about resource bundles, see
Section 11.2, "Using Resource Bundles in an
Integrated Excel Workbook."

TreelD

Binding

N

Specify a tree binding from the current worksheet's
page definition file. You must specify a value for
this property so that row downloads and uploads
function properly. For more information about the
page definition requirements for an integrated
Excel workbook, see Table 4-1.

UniqueAttribute

Attribute
binding

Y

Specify an EL expression that evaluates to a unique
row-specific tree attribute binding value. The value
of this attribute is cached in the integrated Excel
workbook during the ADF Table component's
Download action. ADF Desktop Integration uses
this value to ensure that the tree binding's iterator
is positioned correctly before setting or getting
data for a given ADF Table component row.

Note that this value is required only when the
underlying tree binding iterator does not expose a
rowKey.

This value is optional when:

m The tree binding iterator exposes a rowKey, in
which case the rowKey value is used for
positioning OR

s The ADF Table component is configured to be
insert-only (RowActions.InsertRowEnabled is
set to True and
RowActions.UpdateRowEnabled is set False)

A.11.2 ADF Table Component Column Properties

Table A-12 describes the properties that a column in the TableColumn array can use.

A-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-12 ADF Table Component Column Properties

Name

Type

Description

Annotation

For information about this property, see Table A-1.

CellStyleName

String

Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column.

Tooltip

String

For information about this property, see Table A-1.

DynamicColumn

Boolean

Set to True to make a column dynamic. False is the default
value. For more information about dynamic columns, see
Section 7.14, "Adding a Dynamic Column to Your ADF Table
Component."

HeaderLabel

String

Write an EL expression that, when evaluated at runtime,
displays a label in the column header.

GroupedHeader

Configure the GroupHeader properties to group together
columns that render in an ADF Table component by displaying
an extra table header row above the ADF Table component's
regular table header row at runtime. For more information, see
Section 7.17, "Grouping Columns Together in an ADF Table
Component."

GroupedHeader .Boundary

String

Set to start or end to specify a column as the start or end
column in a grouped header. Write an EL expression that
evaluates to start or end if you want to create a grouped
header for dynamic columns.

GroupedHeader .Label

String

Write an EL expression that, when evaluated at runtime,
displays a label in the grouped header.

GroupedHeader . StyleName

String

Write an EL expression that resolves to an Excel style name that
is applied to each cell in the grouped header.

GroupedHeader.Tooltip

For information about the tooltip property, see Table A-1.

HeaderStyleName

String

Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column header.

ID

String

Assign a name to the column to identify it and its purpose. The
value that you assign for this property has no functional
impact. However, you must specify a value and the value that
you specify must be unique within the list of columns. It serves
to help you keep track of columns in the ADF Table component.
The following IDs are reserved to the default columns in the
ADF Table component:

n _ADF_ChangedColumn
n _ADF_FlagColumn

n _ADF_RowKeyColumn
n _ADF_StatusColumn

For more information about these columns, see Section 7.12,
"Special Columns in the ADF Table Component.”

ADF Desktop Integration Component Properties and Actions A-13

ADF Table Component Properties and Actions

Table A-12 (Cont.) ADF Table Component Column Properties

Name Type EL Description
InsertComponent ADF N Specifies the properties of the component that represents the
component binding for insert operations. This component can be one of the
following:
= ModelDrivenColumnComponent
For information about the properties that this component
supports, see Section A.8,
"ModelDrivenColumnComponent Subcomponent
Properties."
= InputDate component
For information about the properties that this component
supports, see Section A.7, "ADF Input Date Component
Properties."
s Input Text component
For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties."
= Output Text component
For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties."
When InsertUsesUpdate is set to True, the ADF Table
component ignores the value of the InsertComponent property.
Typically, you will rarely use the InsertComponent property.
InsertUsesUpdate Boolean N Set to True if insert and update operations use the same
component type. When True, the ADF Table component ignores
the values of the InsertComponent property and reads the
value of the UpdateComponent property.
The default value is True.
ResizeMode Specifies how ADF Desktop Integration changes the column

width at runtime when the ResizeColumns action is invoked.

For more information, see Section 7.16, "Configuring an ADF
Table Component to Resize Columns Based on Data at
Runtime."

A-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-12 (Cont.) ADF Table Component Column Properties

Name Type EL Description
UpdateComponent ADF N Specifies the properties of the component that represents the
component binding for update and download operations. This component

can be one of the following:
= ModelDrivenColumnComponent

For information about the properties that this component
supports, see Section A.8,
"ModelDrivenColumnComponent Subcomponent
Properties.”

= Input Date component

For information about the properties that this component
supports, see Section A.7, "ADF Input Date Component
Properties."

s Input Text component

For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties.”

= Output Text component

For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties.”

Visible Boolean Y Write an EL expression that resolves to True or False. If True,
the column appears in the ADF Table component. If False, the
column does not appear. True is the default value.

If you make a column dynamic, the ADF Table component
ignores the value of the Visible property. For more
information about dynamic columns, see Section 7.14, "Adding
a Dynamic Column to Your ADF Table Component."

Width Double Y Specify the width of the column in number of characters. You
can specify an EL expression that evaluates to a number or a
literal numerical value to determine the width of the column.
The value can be a fractional value using a decimal point. A
character is the unit of the width.The value is used when
ResizeMode is Specifiedwidth.

For more information, see Section 7.16, "Configuring an ADF
Table Component to Resize Columns Based on Data at
Runtime."

A.11.3 ADF Table Component Actions

Table A-13 describes the component actions available for use with the ADF Table
component.

ADF Desktop Integration Component Properties and Actions A-15

ADF Table Component Properties and Actions

Table A-13 ADF Table Component Actions

Component Action

Description

ClearCachedRowAttributes

Clears the values of cached attributes for the current row of the ADF Table
component. Only a DoubleClickActionSet in an ADF Table component's
column should invoke this action.

DeleteFlaggedRows

Invokes a specified action on each of a set of flagged rows in the ADF Table
component and then removes these rows from the ADF Table component.

The Actions' Options.AbortOnFailure property lets you determine if the
DeleteFlaggedRow component action continues execution after it encounters an
error.

For more information, see Section 7.10, "Deleting ADF Table Component Rows
in the Fusion Web Application."

DisplayRowErrors

Displays error details for the current row in the ADF Table component if error
details are available. This action should only be invoked from a column'’s action
set in an ADF Table component. By default, the _ADF_StatusColumn described
in Table 7.12 is configured with an action set that invokes this action.

DisplayTableErrors

Displays a list of errors that occurred during batch processing. This action is
deprecated. It is no longer necessary. All relevant error messages can be viewed
using the Status Viewer described in Section 13.2, "Using the Status Viewer to
Report Error Messages to End Users."

Download

Download the rows corresponding to the current state of TreeID. For
information about TreeID, see Section A.11.1, "ADF Table Component
Properties."

DownloadFlaggedRows

Downloads the flagged rows from the tree binding specified by TreeID. For
information about TreeID, see Table A-11.

This action applies to the downloaded rows only, and inserted rows are
ignored. For more information, see Section 13.7, "Handling Data Conflicts
When Uploading Data from a Workbook."

DownloadForInsert

This action is obsolete. For more information, see Section 7.5.3, "What You May
Need to Know About DownloadForInsert Action."

FlagAllRows

Sets the flag for all rows.

Invoke this action to set a flag character in all rows of the _ADF_FlagColumn
column. The flag character has the following properties:

Character Code 25CF, Unicode (hex)
It appears as a solid circle.

For more information about the _ADF_FlagColumn column, see Section 7.12,
"Special Columns in the ADF Table Component.”

Initialize

This action performs the following actions:
= Removes all rows of data from the ADF Table component

s Clears the values of cached attributes from rows in the ADF Table
component

s Creates the placeholder row

= Recalculates how many dynamic columns to render in the ADF Table
component

s Redraws column headers

If the ADF Table component contains pending changes that have not been
saved in the integrated Excel workbook, a dialog appears to the end user that
allows cancellation of invocation of this action.

MarkAllRowsChanged

Specify this component action to mark all rows in the table as changed in _ADF_
ChangeColumn.

A-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Read-only Table Component Properties and Actions

Table A-13 (Cont.) ADF Table Component Actions

Component Action Description

MarkAllRowsUnchanged Specify this component action to clear all flags from the _ADF_ChangedColumn
column.

ResizeColumns Resizes the table columns depending on the values of the

Table.ResizeColumnsMode and Column.ResizeMode properties.

For more information, see Section 7.16, "Configuring an ADF Table Component
to Resize Columns Based on Data at Runtime."

RowDownSync

Synchronizes data from the row in the ADF Table component's iterator in the
Fusion web application that corresponds to the current worksheet row to the
worksheet. As this action acts upon the current worksheet row, only a
DoubleClickActionSet associated with a column in the ADF Table component
should invoke this action.

The ADF Table component does not evaluate or apply the value of a column's
Visible property when invoking RowDownSync. The ADF Table component
evaluates and applies the value of a column's CellStyleName property when
invoking RowDownSync. For more information about column properties, see
Section A.11.2, "ADF Table Component Column Properties."

RowUpSync

Synchronizes any pending changes in the current worksheet row that the ADF
Table component references to the Fusion web application. RowUpSync acts upon
the current worksheet row so only a DoubleClickActionSet associated with a
column in the ADF Table component should invoke this action. The
DoubleClickActionSet that invokes RowUpSync also changes the position of the
ADF Table component's iterator on the Fusion web application to the current
worksheet row (assuming it exists in the Fusion web application).

For more information, see Section 9.5, "Using Row-Level Action Sets in a Table
Column.".

RowUpSyncNoFail

It is a variant of RowUpSync that tolerates failures. Like RowUpSync,
RowUpSyncNoFail is only intended for use in a row-level action set. For more
information, see Section 9.5.3, "How to Synchronize Changes from ADF Table
Component Using RowUpSyncNoFail."

UnflagAllRows

Removes flags from cells in the _ADF_FlagColumn column.

For more information about the _ADF_FlagColumn, see Section 7.12, "Special
Columns in the ADF Table Component."

Upload

Uploads to the Fusion web application all rows marked as changed for this
table.

For more information, see Section 7.8, "Uploading Changes from an ADF Table
Component."

For more information about resolving data conflict between the Excel
workbook and the Fusion web application, see Section 13.7, "Handling Data
Conflicts When Uploading Data from a Workbook".

UploadAllOrNothing Uploads to the Fusion web application all rows marked as changed for this

table. Commits successful rows only if none of the rows fail.

For more information about UploadAll0rNothing action, see Section 7.9,
"Uploading Changes from an ADF Table Component Using an
Upload AllOrNothing Action."

A.12 ADF Read-only Table Component Properties and Actions

The ADF Read-only Table component exposes one action, Download. This action
downloads the current rows in the table identified by the ADF Read-only Table
property, TreeID. Table A-14 describes TreeID and the other properties that the ADF
Read-only Table component supports.

ADF Desktop Integration Component Properties and Actions A-17

Action Set Properties

For more information about the ADF Read-only Table component, see Section 7.19,
"Creating an ADF Read-Only Table Component.”

Table A-14 ADF Read-only Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

Columns Array N References an array of read-only columns. For information about the properties

that a column in this array can support, see Table A-15.

ComponentID For information about this property, see Table A-1.

Position For information about this property, see Table A-1.

RowLimit For information about this group of properties, see Table A-11.

TreelID Tree N References a tree binding ID from the page definition file associated with the
binding current worksheet if the ADF Read-only Table component was created by inserting

a tree binding into the worksheet.

Table A-15 lists alphabetically the properties that a column in the ReadonlyColumn

array can use.

Table A-15 ADF Read-only Table Component Column Properties

Name Type Description

Annotation For information about this property, see Table A-1.

CellStyleName String Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column.

HeaderLabel String Write an EL expression that resolves to a label for the column header.

HeaderStyleName String Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column header.

ID String Assign a name to the column to identify it and its purpose. The value
that you assign for this property has no functional impact. However,
you must specify a value and the value that you specify must be
unique within the list of columns. It serves to help you keep track of
columns in the ADF Read-only Table component.

OutputText ADF For information about the properties that this component supports, see

Component Section A.3, "ADF Output Text Component Properties."

A.13 Action Set Properties

Table A-16 lists alphabetically the properties that you can configure for an action set.
For more information about action sets, see Section 9.2, "Using Action Sets."

A-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Action Set Properties

Table A-16 Action Set Properties

Name Type EL Description

ActionOptions This group of properties specifies options for invoking local and
remote actions.

ActionOptions.AbortOnFailure Boolean N When set to True, the remaining actions in the array are not
invoked if an action fails. If False, all actions are invoked
regardless of the success or failure of previous actions. The
default value is True.

ActionOptions.FailureActionID Action N Specify the action binding to invoke if an action set does not

binding complete successfully. For example, you could specify an action
binding that rolls back changes made during the unsuccessful
invocation of the action set.

ActionOptions.SuccessActionID Action N Specify an action binding to invoke if an action set completes

binding successfully.
A value for this property is optional.
Actions Array N Specifies an ordered array of actions. An action can be one of

the following;:
n ADFmAction

Invokes an action binding or method action binding in the
underlying page definition file. The ADFmAction.ActionID
property identifies the action binding or method action
binding to invoke. For information about page definition
files, see Section 4.2, "Working with Page Definition Files
for an Integrated Excel Workbook."

s ComponentAction

Invokes an action that a component on the worksheet
exposes. ComponentAction.ComponentID identifies the
component that exposes the action while
ComponentAction.Method identifies the action to invoke.

The ADF Table component is the only component in ADF
Desktop Integration that expose actions. For information
about these actions, see Section A.11, "ADF Table
Component Properties and Actions."” For information about
invoking component actions, see Section 9.2.2, "How to
Invoke Component Actions in an Action Set."

n WorksheetMethod

Invokes a worksheet action. For information about
worksheet actions, see Section A.15, "Worksheet Actions
and Properties.”

n Confirmation

Invokes a confirmation dialog. For more information about
the properties that this action uses, see Section A.13.1,
"Confirmation Action Properties."

n Dialog

Invokes a web page in a popup dialog or Excel's task pane.
For more information, see Section 9.4, "Displaying Web
Pages from a Fusion Web Application."

ADF Desktop Integration Component Properties and Actions A-19

Action Set Properties

Table A-16 (Cont.) Action Set Properties

Name Type EL Description

Alert This group of properties determines if and how an alert-style
dialog appears to the user to indicate that the action set is
complete. The dialog that appears contains one button that
allows the user to acknowledge the message and dismiss the
dialog. For information about how to display an alert message,
see Section 9.2.9, "How to Provide an Alert After the Invocation
of an Action Set."

Many properties in this group make use of EL expressions to
retrieve string values from resource bundles. For more
information about using EL expressions, see Section 11.2,
"Using Resource Bundles in an Integrated Excel Workbook."

Alert.Enabled Boolean N Set to True to display an alert message to end users that notifies
them when an action set operation completes successfully or
includes one or more failures.

For more information, see Section 9.2.9, "How to Provide an
Alert After the Invocation of an Action Set."

Alert.FailureMessage String Y (Optional) Specify an EL expression that evaluates to a message
to appear in the dialog if errors occur during execution of the
action set.

Alert.OKButtonLabel String Y (Optional) Specify an EL expression that evaluates to a message

to appear in the OK button of the dialog.

Alert.SuccessMessage String Y (Optional) Specify an EL expression that evaluates to a message
to appear in the dialog if no errors occur during the execution of
the action set.

Alert.Title String Y (Optional) Specify an EL expression that evaluates to a message
to appear in the title area of the dialog.

Annotation For information about Annotation, see Table A-1.

Status This group of properties determines if and how a status

message appears during the execution of an action set. For
information about how to display a status message, see
Section 9.2.5, "How to Display a Progress Bar while an Action
Set Executes."

Many properties in this group make use of EL expressions that
reference string keys defined in resource bundles. For more
information, see Section 11.2, "Using Resource Bundles in an
Integrated Excel Workbook."

Status.AllowCancel Boolean N If True, a Cancel button is displayed in the status dialog box.

For more information, see Section 9.2.5, "How to Display a
Progress Bar while an Action Set Executes."

Status.Enabled Boolean N If True (default), a status window appears during the execution
of the action set. If False, no status window appears.

Status.Message String Y Specify an EL expression to evaluate and display in the status
window while the action set runs.

Status.Title String Y Specify an EL expression to evaluate and display in the title
area of the status window while the action set runs.

Status.Mode String N Choose the visual appearance of progress bars. The valid values
are Automatic, BothBarsAlways, MainBarOnly, DetailBarOnly,
and MainMessageOnly.

Status.DetailStatusMessage String Y Specify an optional EL expression or literal value that evaluates
to a status message to appear as the associated action
progresses.

A-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Action Set Properties

A.13.1 Confirmation Action Properties

Table A-17 lists alphabetically the properties that the Confirmation action in the array
of Actions of an action set supports. For information about the other properties the
array of Actions and action sets use, see Table A-16.

For more information, see Section 9.2.12, "How to Invoke a Confirmation Action in an
Action Set."

Table A-17 Confirmation Action Properties

Name

Type EL Description

Annotation

(Optional) For information about Annotation, see Table A-1.

CancelButtonLabel String Y (Optional) An EL expression that is evaluated and displayed in the Cancel

button at runtime. By default, no value is specified.

OKButtonLabel String Y (Optional) An EL expression that is evaluated and displayed in the OK
button at runtime. By default, no value is specified.

Prompt String Y (Optional) An EL expression that is evaluated and displayed in the main area
of the confirmation dialog at runtime. By default, no value is specified.

Title String Y (Optional) An EL expression that is evaluated and displayed in the title area

of the confirmation dialog at runtime. By default, no value is specified.

A.13.2 Dialog Action Properties

Table A-18 describes the properties that the Dialog action in the array of Actions of an
action set supports. For information about the other properties the array of Actions
and action sets use, see Table A-16.

For information about how to use the properties in Table A-18 to invoke a web page
from a Fusion web application, see Section 9.4, "Displaying Web Pages from a Fusion
Web Application."

Table A-18 Dialog Action Properties

Name Type EL Description

Annotation String N For information about this property, see Table A-1.

Page String N Specify the web page that the action invokes. Relative and absolute URLs are valid
values.

ShareFrame Boolean N Set to True (default) to run the web page specified by the Dialog. Page property in
the same data control frame as the Excel worksheet. If you specify an absolute URL,
ADF Desktop Integration ignores the value of the Dialog.ShareFrame property.

Target List N Specifies how the web page the action invokes is rendered. Select:
= Popup to render the web page in a modal dialog within an embedded web

browser.

= TaskPane to render the web page in runtime task pane.

Title String Y Write an EL expression that resolves to the title of the Dialog at runtime or write a
literal string.

WindowSize Integer N Specify the initial size in pixels of the dialog that appears to the user. Valid values

range from 0 to 2147483647. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or too small. The default
value for Height is 625 and 600 for Width.

ADF Desktop Integration Component Properties and Actions A-21

Workbook Actions and Properties

A.14 Workbook Actions and Properties

Table A-19 describes the actions that a workbook can invoke. For information about
configuring ribbon commands to invoke these actions, see Section 9.3.1, "How to
Define a Workbook Ribbon Command for the Runtime Ribbon Tab."

Table A-19 Workbook Actions

Action

Description

Login

When invoked, this action creates a new session between the integrated Excel workbook
and the Fusion web application.

If invoked when a session has already been established, it first invokes the Logout action
internally to free that session. For a workbook running against a web application that is
enforcing authentication, the Login action prompts the end user to provide valid user
credentials.

For more information, see Section 12.1, "About Security In Your Integrated Excel
Workbook."

Logout

When invoked, ADF Desktop Integration sends a request to the Fusion web application to
invalidate the session between the integrated Excel workbook and the Fusion web
application. After invoking this action, the end user must be authenticated the next time the
Excel workbook accesses the Fusion web application.

ClearAllData

When invoked, this action clears all data entered by the user from cells that reference Oracle
ADF bindings. Tables, such as those created by the ADF Table component, will be truncated
so that they only display header rows with labels cleared. Values in cells that reference the
Input Text or Output Text components are cleared. Column headers and labels are cleared as
well. References to all resource bundles that the integrated Excel workbook uses are cleared.
Worksheets that do not contain bindings or reference a page definition file remain
unchanged. A dialog prompts the end user to confirm invocation of this action. Once the
end user confirms invocation, ADF Desktop Integration runs the following events after
invocation of the action:

= Invokes the integrated Excel workbook's Logout action

s Terminates the runtime session and clears all data from the integrated Excel workbook
and all caches

= Reinitializes the integrated Excel workbook and invokes the workbook's Login action

Invocation of the ClearAllData action does not change data hosted by the Fusion web
application.

A-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Workbook Actions and Properties

Table A-19 (Cont.) Workbook Actions

Action

Description

EditOptions

When invoked, this action launches a dialog that shows the current value of the WebAppRoot
property and allows the end user to enter a new value.

If the end user chooses to change the value of WebAppRoot, a confirmation dialog appears
after the end user clicks OK. Once the change is confirmed, the following events occur:

s Workbook ClearAllData action is invoked

s Workbook Logout action is invoked

s All data referenced by bindings in the workbook is removed

= References to WebAppRoot are updated in the Excel workbook's configuration

s Workbook Login action is invoked to authenticate the user with the Fusion web
application that is specified as the value for WebAppRoot

ViewAboutDialog

When invoked, this action launches a dialog called About that displays information defined
in the BrandingItems workbook property and other information such as the versions of
supporting software. The dialog also allows end users to generate a diagnostic report and, if
logged in, check for an upgrade of the ADF Desktop Integration add-in. For more
information, see Section C.2, "Generating an ADF Desktop Integration Diagnostic Report"
and Section H.1.3, "How to Upgrade ADF Desktop Integration On a Local System."

ToggleStatusViewe
r

When invoked, this action shows or hides a Status Viewer in Excel's task pane to display
status information to end users. The ribbon command that end users click to invoke this
action shows and hides the Status Viewer. For more information, see Section 13.2, "Using the
Status Viewer to Report Error Messages to End Users."

Table A-20 lists alphabetically the ADF Desktop Integration properties that an Excel
workbook can use.

ADF Desktop Integration Component Properties and Actions A-23

Workbook Actions and Properties

Table A-20 Workbook Properties

Name Type EL

Description

ApplicationHomeFolder String N

Specify the absolute path to the directory that is the root for
the JDeveloper application workspace (.jws) where you
developed the desktop integration project. The path must be
less than the Windows maximum path length of 260
characters.

For example, the value of this property in a workbook
integrated with the Summit sample application for ADF
Desktop Integration could be something similar to the
following:

D:\Oracle\Applications\Summit_ADFdi

ADF Desktop Integration may prompt you to specify a value
for this property the first time that you open an integrated
Excel workbook.

For more information, see Section 4.3.2, "How to Configure a
New Integrated Excel Workbook."

AutoDisplayStatusViewerEnabled Boolean N

Set to True to display the Status Viewer automatically if an
error occurs. Set to False to require end users to click the
Status Viewer ribbon command in the Excel ribbon to display
the Status Viewer. The default value is True.

For more information, see Section 13.2, "Using the Status
Viewer to Report Error Messages to End Users."

BrandingItems Array N

An array of name-value pairs of literal string or EL resources
expressions (for example, #{res['myAppName']}).

For information about branding your integrated Excel
workbook, see Section 10.5, "Branding Your Integrated Excel
Workbook."

Compatibility Array N

Ensures that workbooks created with a different release of
ADF Desktop Integration version that did not include a
particular feature do not change their behavior in another
release.

For more information about compatibility properties, see
Section A.16, "ADF Desktop Integration Compatibility
Properties."

CustomizationEnabled Boolean N

Specify whether the workbook is customizable. If True, the
published workbook will obtain its metadata from the server,
which can be customized at runtime.

For more information about enabling customization, see
Section 15.6, "Customizing Workbook Integration Metadata at
Runtime."

Login.WindowSize Integer N

Specify the initial size in pixels of the login dialog that appears
to the user. Valid values range from 0 to screen width or
height. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or
too small. The default value for Height is 625 and Width is
600.

A-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

Workbook Actions and Properties

Table A-20 (Cont.) Workbook Properties

Name

Type

EL Description

Parameters

Array

N

An array of workbook parameters that you configure to pass
the parameters from a page in a Fusion web application to an
integrated Excel workbook. You can define multiple
workbook parameters in the Fusion web application's page.
Each workbook parameter (parameter that matches a URL
argument) that you define in a page must be specified in a
Parameter property of this array, otherwise it is ignored.

Each element in the array supports the following properties:
s Annotation

For more information about this property, see Table A-1.
= Parameter

You specify the name of the workbook parameter you
defined in the page of the Fusion web application from
which the end user downloads the integrated Excel
workbook.

For information about using this property, see Section 15.5,
"Passing Parameter Values from a Fusion Web Application
Page to a Workbook."

Project

String

N

Specify the name of a JDeveloper project in the current
JDeveloper workspace. ADF Desktop Integration attempts to
load the . jpr file that corresponds to the project that you
specify. An error appears if the . jpr file is not available or is
not in the expected format.

When you open an integrated Excel workbook for the first
time in design mode, ADF Desktop Integration searches for a
.jpr file in the parent folder hierarchy. If it finds a . jpr file, it
sets the value of Project to the name of the project that
corresponds to the . jpr file.

ADF Desktop Integration loads the names of the available
projects from the application_name.jws file specified by
ApplicationHomeFolder.

RemoteServletPath

String

N

Specify the path to the ADF Desktop Integration remote
servlet. This path must be relative to the value specified for
llebAppRoot. Note that the value you specify for
RemoteServletPath must match the value that is specified in
the web application's deployment descriptor file (web.xml).
The default value for this property is:

/adfdiRemoteServlet

ADF Desktop Integration Component Properties and Actions A-25

Workbook Actions and Properties

Table A-20 (Cont.) Workbook Properties

Name

Type

EL Description

Resources

Array

N

Specifies an array of resource bundles to register with the
workbook. Each element in the array supports the following
properties:

. Alias

Specify a string value that is unique within
Workbook.Resources. EL expressions use this string to
reference the resource bundle.

. Annotation
For more information about this property, see Table A-1.
n Class

Specify a fully qualified class name, but do not include
the file extension. The class name that you specify is
expected to be a Java resource bundle class that the
Fusion web application you integrate your workbook
with uses.

For example, the EditCustomers-DT.x1sx workbook in
the Summit sample application for ADF Desktop
Integration references the following resource bundle:

oracle.summitdi.resources.UIStrings

For more information, see Section 11.2, "Using Resource
Bundles in an Integrated Excel Workbook."

Runtime Ribbon

Tab

This group of properties defines whether and how a ribbon
tab appears in Excel at runtime. The following entries in this
table describe the properties in the Runtime Ribbon Tab
group. For more information about the ribbon tab and its
commands, see Section 9.3, "Configuring the Runtime Ribbon
Tab."

Runtime Ribbon

Tab.Annotation

String

N

For information about this property, see Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

Runtime Ribbon

Tab.Visible

Boolean

N

If True, the ribbon tab appears at runtime. The ribbon tab does
not appear if you set Enabled to False. True is the default
value.

Runtime Ribbon

Tab.Title

String

Y

Specify an EL expression that evaluates to the title that
appears for the ribbon tab in the title area. Excel imposes a
maximum limit of 1024 characters for ribbon tab titles. Ensure
that the runtime value of the EL expression you specify does
not exceed 1024 characters as ADF Desktop Integration
truncates the value so that Excel does not generate an error
message.

If you choose to assign a key tip character using the &
character, consider avoiding the letter K for the Runtime
Ribbon Tab.Title. Excel does not allow the letter K to be
used here when the workbook is running in the ar_Sa culture.

A-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

Worksheet Actions and Properties

Table A-20 (Cont.) Workbook Properties

Name Type EL Description
Runtime Ribbon Tab.Workbook Array N Each element in this array corresponds to a workbook
Commands command at runtime. Each element in the array uses the

following properties:
s Annotation

For more information about this property, see Table A-1.
" Label

For more information about this property, see Table A-1.

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
workbook command at runtime.

n Method

Specify the workbook action that the workbook ribbon
command invokes. For more information about
workbook actions, see Table A-19.

zZ

WebAppRoot String A fully qualified URL to the Fusion web application's root.

WebPagesFolder String N Specify the path to the directory that contains the web pages
that you intend to use with your integrated Excel workbooks.
The value that you specify for the path must be relative to the
value of ApplicationHomeFolder and must be less than the
Windows maximum path length of 260 characters.

WorkbookID String N A unique identifier for the integrated Excel workbook. ADF
Desktop Integration generates the unique identifier when you
open the workbook for the first time in design mode.

The value cannot be modified. However, ADF Desktop
Integration can generate a new value if you use the Reset
WorkbookID link in the Edit Workbook Properties dialog.

The value of this property is used during tamper check, as
described in Section 12.3, "Checking the Integrity of an
Integrated Excel Workbook's Metadata."

A.15 Worksheet Actions and Properties

Action sets, as described in Section 9.2, "Using Action Sets," can invoke the following
worksheet-level actions:

s UpSync

Synchronizes any pending changes from the ADF Input Text and ADF List of
Values components in the worksheet to the Fusion web application.

= DownSync

Downloads data values from the Fusion web application to the ADF Input Text,
ADF Output Text, and ADF List of Values components in the worksheet.

s DisplayWorksheetErrors

Displays a list of error messages from the most recent action set invocation.

ADF Desktop Integration Component Properties and Actions A-27

Worksheet Actions and Properties

Table A-21

Note: This action is deprecated. It is no longer necessary. All relevant
error messages are available via the Status Viewer, as described in
Section 13.2, "Using the Status Viewer to Report Error Messages to
End Users."

When you configure a ribbon command to invoke an action binding or method action
binding, the action set to invoke when a user clicks the ribbon command at runtime is
populated as follows by default:

1. UpSync
2. Action or method action binding that you specify for the ribbon command
3. DownSync

If the first action that you invoke on a worksheet with an empty form is the UpSync
worksheet action, you may encounter errors. For this reason, ensure that the first
action invoked is the DownSync worksheet action. You can configure the ribbon
command's action set or one of the worksheet events (Startup or Activate) described
in Table A-21 to invoke the DownSync worksheet action first.

For more information about configuring ribbon commands, see Section 9.3,
"Configuring the Runtime Ribbon Tab."

Table A-21 describes the ADF Desktop Integration properties that an Excel worksheet
can use.

Worksheet Properties

Name

Type EL Description

Annotation

String N For information about this property, see Table A-1.

CustomAttributePropertiesEnabled Boolean N Specifies whether custom attribute properties defined

in a view object on the server are supported in EL
expressions.

The default value of this property is False.

For more information, see Section 10.8, "Using ADF
Desktop Integration EL-based Properties with Custom
Attribute Properties.”

Events

Array N Each element in this array specifies an action set to
invoke if the associated worksheet event occurs. For
information about action sets, see Section A.13, "Action
Set Properties." For information about worksheet
events, see the entry in this table for Events.n.Event.

The following entries in this table prefaced by Events.n
describe the properties that an element in this array
supports where n refers to a specific element in the
array.

Events.n.ActionSet ActionSe N For more information about the properties of action

t sets, see Section A.13, "Action Set Properties."

Events.n.InvokeOnceOnly Boolean N The default value of this property is False.

When set to True, the workbook stores information
about whether the worksheet invoked the action set for
this event and, if so, prevents the worksheet from
invoking the action set a second time. Note that if the
workbook is not saved, this information is lost. This
means that the worksheet can invoke the event again
the next time that the workbook opens.

A-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Worksheet Actions and Properties

Table A-21 (Cont.) Worksheet Properties

Name

Type

EL Description

Events.n.Annotation

String

N

For information about the annotation property, see
Table A-1.

Events.n.Event

List

N

The worksheet supports the following events that you
can configure to invoke an action set:

n Startup

Excel workbook opens and the worksheet is
activated for the first time.

= Shutdown

Excel workbook closes or Excel application exits.
= Activate

User navigates to the current worksheet.
= Deactivate

User navigates away from the current worksheet or
Shutdown event triggered.

Note that the worksheet events complete execution
even if the action sets that they invoke fail.

For more information about worksheet events and
action sets, see Section 9.2.4, "How to Invoke an Action
Set from a Worksheet Event."

Protection.Mode

List

N

The worksheet provides two options:
u Off

Worksheet protection is not used at runtime.
s Automatic

Worksheet protection is enabled automatically at
runtime.

The default value for this property is Off.

Protection.Password

String

N

Specify a password to prevent end-users from turning
off sheet protection at runtime. The maximum
password length allowed by Excel is 255 characters.

ADF Desktop Integration Component Properties and Actions A-29

Worksheet Actions and Properties

Table A-21 (Cont.) Worksheet Properties

Name Type

EL Description

Ribbon Commands Array

N

Specify one or more actions that appear as worksheet
ribbon commands at runtime. Each command is an
element in the WorksheetMenuItem array. Entries in this
array support the following properties:

n Annotation
. Image

Specifies the image to display as the
worksheet-level ribbon command at runtime. ADF
Desktop Integration provides the images that you
can use.

u Label
n SelectActionSet

For more information about the Annotation and Label
properties, see Table A-1. For more information about
the SelectActionSet property, see Section A.13,
"Action Set Properties."

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
worksheet command at runtime.

For more information, see Section 9.3.2, "How to
Configure a Worksheet Ribbon Command for the
Runtime Ribbon Tab."

Page Definition String

N

Specify the page definition file to associate with the
worksheet. The fully qualified path to the page
definition file must be less than the Windows maximum
path length of 260 characters. For information about
page definition files, see Section 4.2, "Working with
Page Definition Files for an Integrated Excel
Workbook."

Parameters

Array

N

An array of parameters defined in this worksheet's
page definition file and bound here to workbook
parameters. Each element in the array supports the
following properties:

. Annotation

For more information about this property, see
Table A-1.

[Parameter

Specify the ID of a parameter element that you
added to the page definition file associated with
the worksheet.

u Value

Write an EL expression that references the value of
the Parameter property you specified for the
workbook parameter (workbook
Parameters.Parameter property).

For information about using this property, see
Section 15.5, "Passing Parameter Values from a Fusion
Web Application Page to a Workbook."

A-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

Worksheet Actions and Properties

Table A-21 (Cont.) Worksheet Properties

Name Type

EL

Description

RowData

Set values for the CachedAttributes property when
you want to cache data in an integrated Excel
workbook across a multiple sessions with the Fusion
web application.

Set a value for the ChangeIndicatorAttributeID
property to determine if a row has been modified by
another user since you downloaded it from the Fusion
web application.

For more information, see Chapter 16, "Using an
Integrated Excel Workbook Across Multiple Web
Sessions."

RowData.CachedAttributes Array

Specify values for the properties in this array to
determine the attributes for which data is cached. Each
CachedAttribute element in this array supports the
following properties:

n AttributeID

This property references the attribute binding for
which data is to be cached. Do not specify an
attribute binding for AttributeID and as an
editable field in a form (for example, in an ADF
Input Text component) in the same worksheet.

= Annotation

For more information about this property, see
Table A-1.

RowData.ChangeIndicatorAttributeID Binding

Specify the row-specific attribute of the tree binding
used to determine if a row has been modified by
another user since the row was last downloaded by to
your integrated Excel workbook.

For more information, see Section 13.7, "Handling Data
Conflicts When Uploading Data from a Workbook."

ServerContext

This group of properties references the attribute
bindings that uniquely identify the row displayed in
the current worksheet so that you can reestablish server
data context across multiple sessions.

For more information, see Section 16.2, "Restore Server
Data Context Between Sessions."

ADF Desktop Integration Component Properties and Actions A-31

Worksheet Actions and Properties

Table A-21 (Cont.) Worksheet Properties

Name Type

EL Description

ServerContext.CacheDataContexts

Array N

Add elements to the CacheDataContexts array for cases
where there is more than one iterator defined in the
binding container whose server-side context must be
reestablished. The CacheDataContexts array supports
the following properties to store the worksheet's cached
data context:

[RestoreDataContextActionID
References an action binding to invoke.
u CachedServerContexts

An array that identifies the attribute binding
values to cache and set before the action binding
specified by RestoreDataContextActionID is
invoked. Each element in the
CachedServerContext array supports the
CachedAttributelID and RestoredAttributeID
properties. CachedAttributeID identifies the
attribute binding value to cache in the worksheet.
RestoredAttributelID is an optional property for
which you specify a value when the destination
attribute binding value is different from the source
attribute binding value. If you do not specify a
value for RestoredAttributelD, the value of
CachedAttributeIDis used as the destination
attribute binding value and its value is set before
invoking the action set.

. Annotation

For more information about this property, see
Section A.1, "Frequently Used Properties in the
ADF Desktop Integration.”

ServerContext.IDAttributeID Binding N

Specifies an attribute binding that uniquely identifies
the row displayed in the current worksheet. This
property is used at runtime to determine whether the
server context has been reestablished properly for
non-table type components in the worksheet.

A-32 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Desktop Integration Compatibility Properties

Table A-21 (Cont.) Worksheet Properties

Name

Type

EL

Description

ServerContext.SendParameters

Boolean

N

The default value of this property is False.

When set to True, the workbook sends initialization
parameters for this worksheet when reestablishing
context across multiple sessions.

SetupActionID

Binding N

Specify the ADFmAction binding to be invoked before
the binding container metadata is retrieved.

A value for this property is optional.

If two, or more, worksheets are using the same page
definition, the action binding specified for the last
worksheet will be invoked. Hence, create a page
definition for each worksheet and do not specify a page
definition to multiple worksheets.

For more information, see Section 16.5, "Using Explicit
Worksheet Setup Action.”

Title

String

Y

Specifies an EL expression that resolves to a string and
sets the name of the worksheet. At design time, the EL
expression can be of any length and can include the
following special characters:

L1 N/ *2

At runtime, the evaluated string can display a
maximum of 31 characters and ignores the above
special characters. If the length of the evaluated string
exceeds 31 characters, the extra characters are truncated
and are not displayed.

Note that the Title property does not support binding
parts in the EL expression. The expected usage is a
resource-type expression.

Ensure that the EL expressions you write for the Title
property generate unique values for each worksheet at
runtime and contain fewer than 31 characters.

A.16 ADF Desktop Integration Compatibility Properties

Various ADF Desktop Integration features have been added in different releases of the
product. The compatibility properties ensure that workbooks created with ADF
Desktop Integration versions that did not include a given feature do not change their

behavior.

Table A-22 lists the ADF Desktop Integration compatibility properties. Integrated
Excel workbook developers may want to review these properties and the associated
feature to determine whether to enable them. To access these properties in your
integrated Excel workbook, click Workbook Properties in the Workbook group of the
Oracle ADF tab to display the Edit Workbook Properties and expand the Behavior and
Compatibility properties.

ADF Desktop Integration Component Properties and Actions A-33

ADF Desktop Integration Compatibility Properties

Table A-22 ADF Desktop Integration Compatibility Properties

Name Type EL Description
DataEntryValidationEnabled Boolean N Specifies whether ADF Desktop Integration performs data
entry validation.
For more information, see Section 13.3, "Providing Data Entry
Validation for an Integrated Excel Workbook."
TableComponents.ModelDrivenCol Boolean N Specifies whether the date picker can be used in model-driven
umns . DatePickerEnabled columns.
For more information, see Section 6.5, "Inserting an ADF Input
Date Component" and Section 7.15, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF
Table Component.”
TableComponents.ModelDrivenCol Boolean N Specifies whether model-driven columns can leverage existing
umns . InputListOfvaluesPickerEn Model layer metadata and provide a Search and Select user
abled interface in a picker dialog.
For more information, see Section 8.4, "Adding a
Model-Driven List Picker to an ADF Table Component.”
TableComponents.RowActionSetMo Boolean N Specifies whether row-level action sets can manage the
delMgmtEnabled server-side model state.
For more information, see Section 9.5, "Using Row-Level
Action Sets in a Table Column."
TableComponents.SmartRowFailur Boolean N The default value (True) enables enhanced error reporting for

eReportingEnabled

the ADF Table component Upload and DeleteFlaggedRows
actions.

A-34 Desktop Integration Developer's Guide for Oracle Application Development Framework

B

ADF Desktop Integration EL Expressions

This appendix describes the syntax for EL expressions in ADF Desktop Integration,
provides guidelines for writing EL expressions, and how to use attribute control hints
in EL expressions.

This appendix includes the following sections:

Guidelines for Creating EL Expressions
EL Syntax for ADF Desktop Integration Components
Attribute Control Hints in ADF Desktop Integration

B.1 Guidelines for Creating EL Expressions

EL expressions that you write in your integrated Excel workbook can include:

Literal values that evaluate correctly to the type expected for the Oracle ADF
component property. The following list describes some examples:

— Boolean values true and false
- Integer values such as -1, 0, and 100
- String values such as hello world

Binding expressions to evaluate control binding values or hints. For example,
#{row.bindings.ProductId. inputValue}.

Component expressions to evaluate component properties. For example,
#{components.TAB416222534.rowCount}.

Resource bundle expressions to evaluate locale specific resources defined on the
server. For example: #{res['excel.saveButton.label']}

For more information about the supported binding, component, and resource
bundle expression syntax, see Section B.2, "EL Syntax for ADF Desktop Integration
Components."

A valid Excel formula. An Excel formula string must start with the = character. If
the literal string includes an #{. . . } expression, ADF Desktop Integration
evaluates this expression first and inserts the resulting value into the Excel
formula string. Excel then evaluates the Excel formula.

Note the following points if you write an EL expression:
— Excel formula elements must not be used inside an #{. . .} expression.

— EL expressions should not contain references to Excel cells because EL
expressions are managed within ADF configuration. Excel cannot update the

ADF Desktop Integration EL Expressions B-1

EL Syntax for ADF Desktop Integration Components

ADF configuration if the referenced cell moves. A better strategy is to define a
named cell reference or range using the Name box in the Excel Formula Bar.
You can reference the named cell reference or named cell range reference from
an EL expression. For information about defining named cell references or
ranges, see Excel's documentation.

— Excel formulas that include EL expressions

Ensure that any Excel formula that includes EL expression has no more than
255 characters. This also applies to formulas used to set conditional values to
component properties.

B.2 EL Syntax for ADF Desktop Integration Components

Table B-1 lists supported expression properties for the ADF Desktop Integration
components that support EL expressions.

The EL expressions use the following syntax to reference these properties:
#{components.componentID.property}
where componentID references the ID of the component and property references the

property (for example, rowCount).

Table B-1 Expression Properties for ADF Desktop Integration Components

Property Component Type Property Type Expected Runtime Values Value at Design Time

rowCount Table Int >=0 0
Read-only Table

currentRowIndex Table Int >= 0 AND < RowCount -1
Read-only Table (zero based index)

currentRowMode Table String "insert" "unknown"
"update”

readOnly Table.Column Boolean True False
False

Write EL expressions with the following syntax to retrieve:
= Workbook parameters
{workbook.params . parameterName}

where parameterName is the name of the workbook parameter. For information
about using these parameters, see Section 15.5, "Passing Parameter Values from a
Fusion Web Application Page to a Workbook."

= Resource bundle string key values
#{resourceBundleAlias|'resourceBundleKey']}

where resourceBundleAlias is the alias of the resource bundle and
resourceBundleKey is the string key value. For more information about resource
bundles, see Section 11.2, "Using Resource Bundles in an Integrated Excel
Workbook."

Table B-2 describes the supported syntax and properties for Oracle ADF control
bindings. For information about the attribute control hints (controlHint) that ADF
Desktop Integration supports, see Table B-3.

B-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Attribute Control Hints in ADF Desktop Integration

You can use the expression builder described in Section 5.8, "Using the Expression

Builder" to generate some of the EL expressions described in Table B-2.

Table B-2 Expression Properties and Syntax for Oracle ADF Control Bindings

Value at

Component Design
Syntax Type Object Property Time
Use the expression builder to generate EL expressions with the Attribute Attribute control "
following syntax: hint

#{bindings.attributeID}
#{bindings.attributeID.label}
#{bindings.attributeID.hints.controlHint}

You can also write the previous EL expressions in addition to the
following EL expression:

#{bindings.attributeID.inputValue}

Use the expression builder to generate EL expressions with the List Attribute control "
following syntax: hint

#{bindings.ListID}
#{bindings.ListID.label}
#{bindings.ListID.hints.controlHint}

Write EL expressions with the following syntax for a columnina Table.Colum inputValue e
table-type component n

#{row.bindings.attributeID.inputValue}

Write an EL expression with the following syntax when adding a
dynamic column to an ADF Table component as described in
Section 7.14, "Adding a Dynamic Column to Your ADF Table
Component':

#{bindings. TreeID. [TreeNodeID] .AttributeNamePrefix* .input
Value}

#{bindings. TreeID.AttributeNamePrefix*.inputValue}
#{bindings. TreeID. [TreeNodeID] .hints.AttributeNamePrefix*
.controlHint}

#{bindings. TreeID. [TreeNodeID] .hints.AttributeNamePrefix*
.label}

A value for AttributeNamePrefix and [TreeNodeID] is optional
while *is required.

B.3 Attribute Control Hints in ADF Desktop Integration

ADF Desktop Integration can read the values of the attribute control hint names
described in Table B-3. You write EL expressions that ADF Desktop Integration uses to
retrieve the value of an attribute control hint from your Fusion web application.

Table B-2 describes the EL expression syntax that retrieves the values of attribute
control hints at runtime.

You configure attribute control hints in your Fusion web application. Information
about how to add an attribute control hint to an entity object can be found in the
"Defining Attribute Control Hints for Entity Objects" section of Fusion Developer’s
Guide for Oracle Application Development Framework. Information about how to add an
attribute control hint to a view object can be found in the "Defining UI Hints for View

ADF Desktop Integration EL Expressions B-3

Attribute Control Hints in ADF Desktop Integration

Objects" section of the Fusion Developer’s Guide for Oracle Application Development
Framework.

Table B-3 Attribute Control Hints Used by ADF Desktop Integration

Attribute Control

Hint Type Value to configure in the Fusion web application

label String Returns the value of the label attribute control hint configured for an entity or
view object.

updateable Boolean Returns true if the associated attribute binding is updatable.

readOnly Boolean This attribute control hint is unique to ADF Desktop Integration. Returns true if

the associated attribute binding is not updatable.

To optimize the performance of an integrated Excel workbook when it evaluates
Excel formulas in EL expressions, you should write an EL expression with the
following syntax for a component's ReadOnly property:

#{bindings.attributeID.hints.readOnly}
rather than:
=NOT (#{bindings.attributeID.hints.updateable})

Note that the attribute control hint readonly property differs to the Readonly
property of ADF Desktop Integration components described in Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

mandatory Boolean Returns true if a value for the associated attribute binding is required.

dataType String Returns the data type of the attribute control hint. A Fusion web application can
support many data types with complex names. The dataType attribute control
hint was introduced in ADF Desktop Integration to simplify the writing of EL
expressions. It maps the data types that a Fusion web application supports to
the values supported by ADF Desktop Integration listed here:

] string
= number
s date

s boolean

n other

tooltip String Returns the message value of the Tooltip attribute control hint configured for an
entity or view object.

displayWidth String Returns the value of the width attribute control hint configured for an entity or
the view object. The value represents the width in number of characters.

The displayWidth hint can be used in a table column's Width property when
ResizeMode for that column is set to Specifiedwidth.

For more information about display width, see the "How to Set User Interface
Hints on View Criteria to Support Search Forms" section in Fusion Developer’s
Guide for Oracle Application Development Framework.

The ADF Desktop Integration attribute control hints are based on information
available in the web application's model configuration. ADF Desktop Integration
supports view object or entity object hint values, but does not support programmatic
overrides of hint values if they are calculated at a row-by-row level at runtime.

ADF Desktop Integration also supports custom attribute properties in table EL-based
properties. For more information, see Section 10.8, "Using ADF Desktop Integration
EL-based Properties with Custom Attribute Properties."

B-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

C

Troubleshooting an Integrated Excel
Workbook

This appendix describes how to troubleshoot an integrated Excel workbook and
generate log files when you encounter problems during development. It also describes
possible solutions for a number of errors and problems (such as version mismatch, 404
error, and Oracle ADF tab not visible in integrated Excel workbook) that you may
encounter.

This appendix includes the following sections:

s Verifying That Your Fusion Web Application Supports ADF Desktop Integration
= Generating an ADF Desktop Integration Diagnostic Report

s Verifying End-User Authentication for Integrated Excel Workbooks

= Generating Log Files for an Integrated Excel Workbook

s Common ADF Desktop Integration Error Messages and Problems

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector. For more
information about the property inspector, see Section 5.6, "Using the
Property Inspector.”

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop

Integration

Using a server ping test, you can verify that the Fusion web application is running the
ADF Desktop Integration remote servlet (adfdiRemote), and the version of ADF
Desktop Integration. This information can be useful if you encounter errors with an
integrated Excel workbook. For example, you can determine whether the ADF
Desktop Integration remote servlet is running when you are troubleshooting an
integrated Excel workbook.

For Fusion web applications that enforce authentication, you can use the server ping
test to confirm that the proper authentication configuration is in place for the ADF
Desktop Integration servlet URL.

ADF Desktop Integration relies on various Internet Explorer specific settings. For this
reason, please perform the verification test using Internet Explorer.

Troubleshooting an Integrated Excel Workbook C-1

Generating an ADF Desktop Integration Diagnostic Report

To verify that the ADF Desktop Integration remote servlet is running:

1. Type the concatenated values of the workbook properties WebAppRoot and
RemoteServletPath into the address bar of your web browser. This corresponds to
a URL similar to the following;:

http://hostname:7101/FusionApp/adfdiRemoteServiet

If the ADF Desktop Integration remote servlet is running, a web page returns
displaying a message similar to Figure C-1.

Figure C-1 ADF Desktop Integration Remote Serviet

Oracle ADF 11g Desktop Integration

Diagnostic Information

Status | Active

Version | 11.1.1.7.5.11593
Build |ADFDI_11.1.1.7.5_NT_141014.1623

About ADF Desktop Integration - Install ADF Desktop Integration Add-in for Excel

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.

C.2 Generating an ADF Desktop Integration Diagnostic Report

For support, troubleshooting, and during diagnostic situations, you may ask end users
to provide you the ADF Desktop Integration diagnostic report.

C.2.1 How to Generate the ADF Desktop Integration Diagnostic Report

End users can generate the report from the About dialog.

To generate the ADF Desktop Integration report:
1. Open the integrated Excel workbook.

2. If you have opened the integrated Excel workbook in the design mode, click the
About button in the Workbook group of the Oracle ADF tab.

If you have opened the integrated Excel workbook in runtime mode, click the
About button of the runtime ribbon tab.

3. Click the Diagnostic Report button of the About dialog.

4. Save the diagnostic report text file. By default, the file is saved as
adfdi-diagnostic-report.txt in the Desktop directory (for example,
C:\Users\<USER_NAME>\Desktop).

5. The Diagnostic Report dialog opens describing the location of the saved file. Click
OK to open the file in the default text editor.

C.2.2 What You May Need to Know About the ADF Desktop Integration Diagnostic
Report

The diagnostic report is a text file and includes a variety of information such as:
= ADF Desktop Integration add-in version

s Microsoft Windows version

C-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Generating Log Files for an Integrated Excel Workbook

= Microsoft Excel version

= Values of all properties from the Version tab of the About dialog

= Values of all properties listed in the Properties tab of the About dialog

s List of Excel COM add-ins

= Branding items from the About tab, if the report is generated at runtime

= ADF Desktop Integration servlet version, if the report is generated after a valid
login

You can open and edit the text file in any text editor, or Excel. Each row in the file
consists of a key-value pair separated by tabs.

Before end users send the diagnostic file to you, ask them to review the report and
remove any sensitive information that they do not want to share.

C.3 Verifying End-User Authentication for Integrated Excel Workbooks

If end users of an integrated Excel workbook do not get prompted for user credentials
when they invoke an action that interacts with the Fusion web application configured
with ADF security, it may mean that security is not configured correctly for either the
integrated Excel workbook or the Fusion web application. You can verify that your
secure Fusion web application authenticates end users and that it is security-enabled
by carrying out the following procedure.

To verify that a secure Fusion web application authenticates end users, in the web
browser's address bar, enter the URL that you used to verify whether ADF Desktop
Integration remote servlet is running. For more information, see Section C.1, "Verifying
That Your Fusion Web Application Supports ADF Desktop Integration." If the Fusion
web application is security-enabled, it will request that you enter user credentials.

For more information about securing your integrated Excel workbook, see Chapter 12,
"Securing Your Integrated Excel Workbook."

C.4 Generating Log Files for an Integrated Excel Workbook

ADF Desktop Integration can generate log files that capture information based on
events triggered by the following pieces of software within ADF Desktop Integration:

= HTTP filter and the ADF Desktop Integration remote servlet on the web server
(server-side logging)

For more information about server-side logging, see Section C.4.1, "About
Server-Side Logging."

= Excel workbook which you integrate with your Fusion web application (client-side
logging)
For more information about client-side logging, see Section C.4.3, "About
Client-Side Logging."

C.4.1 About Server-Side Logging

You configure the generation of server-side log files for ADF Desktop Integration the
same way as for other Oracle ADF modules. This involves setting values that specify
the verbosity level and output location in a configuration file named logging.xml. You
can also use Oracle Diagnostic Logging Configuration of JDeveloper to configure the
logging levels specified in the 1logging.xml file. For more information about using the

Troubleshooting an Integrated Excel Workbook C-3

Generating Log Files for an Integrated Excel Workbook

JDeveloper debugging tools and ADF Logger, see the "Using the ADF Logger" section
in the Fusion Developer’s Guide for Oracle Application Development Framework.

Table C-1 describes the package names that you supply as attribute parameters to the
<logger> elements in the logging.xml file to configure log file generation in ADF
Desktop Integration.

Table C-1 Package Names for Log File Configuration

To generate log file entries
for this component... Enter this package name...

All ADF Desktop oracle.adf.desktopintegration
Integration server logic

ADF Desktop Integration oracle.adf.desktopintegration.filter
HTTP filter

C.4.2 Using the Oracle Diagnostics Log Analyzer to Analyze ADF Desktop Integration
Servlet Requests

Using the Oracle Diagnostics Log Analyzer, you can view a hierarchical breakdown of
elapsed time spent performing each ADF Desktop Integration servlet request. The
hierarchical breakdown also includes the time spent in other ADF components, such
as the ADF Model layer. For more information about using the log analyzer for
viewing web requests, see the "How to Use the Log Analyzer to View Log Messages"
section in the Fusion Developer’s Guide for Oracle Application Development Framework.

Tip: The hierarchical breakdown can be helpful in identifying
performance bottlenecks due to unusually long execution times.

In order to log a complete hierarchy tree of ADF event messages, including ADF
Desktop Integration events, specify log level CONFIG for the oracle.adfdiagnostics
package. For more information about the oracle.adfdiagnostics logger, see the
"How to Create an Oracle ADF Debugging Configuration" section in Fusion Developer’s
Guide for Oracle Application Development Framework.

C.4.3 About Client-Side Logging

You can configure ADF Desktop Integration to create logs of activity that occur within
the ADF Desktop Integration add-in at various levels of detail. By default, no log files
are generated. For more information about how to configure ADF Desktop Integration
module to save logs, see Section C.4.3.1, "How to Configure ADF Desktop Integration
to Save Logs.".

C.4.3.1 How to Configure ADF Desktop Integration to Save Logs

ADF Desktop Integration provides logging tools to generate event logs and make
them easily accessible. The logging tools are located in the Logging group of the
Oracle ADF tab, and are available in both the design mode and the test mode.

Figure C-2 shows the logging tools in the Oracle ADF tab.

C-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Generating Log Files for an Integrated Excel Workbook

Figure C-2 Logging Tools in Oracle ADF Tab

d
- Home Insert Page Layout Formulas Data Review View Oracle ADF
[@] Workbook Properties | Export | [Insert Companent ~ (i) Refresh Bindings @ b D Set Output Level
@WorksheetProperties &Hmport @Edit Properties g{‘,Add Log Qutput File
Validate Run Stop Consale Publish
@About x Delete G@ Refresh Config
Waorkbook F ADF Components i Test Logging Publish

The Logging group provides the following buttons:
= Console

Displays the Logging Console window, which enables you to review the recent log
entries while you are developing and testing the integrated Excel workbook. The
console displays entries that are logged while the console is open. Figure C-3
illustrates the Logging Console window with error log entries.

The console is a resizable, non-modal window with a buffer size of 64,000
characters. When the buffer is full, the old entries are removed.

Figure C-3 Logging Console Window

© Legging Console: adfdi-common EI@

taForCV[0] .TableDef.RowLimit.MaxRows. Detail: Invalid expression (Expression wvalue does not parse to Integer.

node: oracle.summitdi.model.gueries.CustomersView, attr: SalesRep

< 1} 2

[Set Level...] [Clear]

The dialog has the following buttons:

- Set Level: Click to set the log output level. The button opens the Logging
Output Level dialog, where you can choose the desired log output level.

— Clear: Click to clear the log buffer.
- Close: Click to close the dialog.

Note: A common Logging Console window logs entries for all open
integrated Excel workbooks.

s Set Output Level

Prompts you to choose the log output level. Table C-2 describes the log levels that
client-side logging supports. The log levels are cumulative as you read down the
list in Table C-2. That is, the Information level includes the data logged in the
Critical, Error, and Warning levels, but not the Verbose level.

Troubleshooting an Integrated Excel Workbook C-5

Generating Log Files for an Integrated Excel Workbook

Figure C-4 Logging Output Level Dialog

Logging Output Level l&]

Set Temporary Logging Output Level:
Critical
Waming
Information
Verbose
Off

Table C-2 Client-Side Logging Levels

Level Description

Critical Captures critical information.

Error Captures information about severe errors and exceptions.

Warning Captures information about warnings.

Information Captures lifecycle and control flow events.

Verbose Captures detailed information about the execution flow of the
application.

off No logs are captured. This is the default value.

Note: The log output level applies to all listeners for a given logger.

= Add Log Output File

Creates a new temporary logging listener to direct logging output to the specified
file or format. In the Add New Temporary Logging Output File dialog, choose the
desired file output type (text or XML), and specify the path and file name of the
log output file.

Figure C-5 Add New Temporary Logging Output File Dialog

Add Mew Temporary Logging Cutput File lé]
Output Type: | Text -
Log File Path: adfdiog ot
[ok][cancel |
. J

The temporary listener directs the logging output for the current Excel session
only, and is not registered in the ADF Desktop Integration configuration file. After
you exit Excel, the temporary listener is removed.

Note: When you click the Add Log Output File button, a new
listener is created. The new listener does not replace any existing
listener defined in the ADF Desktop Integration configuration file, or
any other temporary listener.

= Refresh Config

C-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Generating Log Files for an Integrated Excel Workbook

Reloads the ADF Desktop Integration configuration file. The ADF Desktop
Integration configuration file can determine the level of information logged by the
ADF Desktop Integration add-in.

For more information about the creation and configuration of the ADF Desktop
Integration configuration file, see Section C.4.3.2, "About the ADF Desktop
Integration Configuration File."

C.4.3.2 About the ADF Desktop Integration Configuration File

The ADF Desktop Integration configuration file is saved as
adfdi-excel-addin.dll.config. To determine the correct file name and location, click
the About button in the Workbook group of the Oracle ADF tab. In the dialog that
opens, click the Properties tab, and consult the Configuration entry for file name and
location of configuration file.

For more information about elements of the configuration file, see the "Configuration
File Schema for the .NET Framework" section in Microsoft Developer Network
documentation. For more information about trace and debug settings, see the "Trace
and Debug Settings Schema" section in Microsoft Developer Network documentation.

Example C-1 shows a sample configuration file, one of many valid ways to configure
client-side logging, that generates an .xml log file. The file captures different types of
information such as ThreadId, ProcessId, and DateTime at a Verbose logging level.

Example C-1 Sample Configuration File

<?xml version="1.0"?>
<configuration>
<system.diagnostics>
<sources>
<gsource name="adfdi-common" switchValue="Verbose">
<listeners>
<add type="System.Diagnostics.XmlWriterTraceListener"
name="adfdi-common-excel.xml"
initializeData="c:\logs\adfdi-common-excel.xml"
traceOutputOptions="ThreadId, ProcessId, DateTime"/>
</listeners>
</source>
</sources>
</system.diagnostics>
</configuration>

C.4.3.3 How to Configure Logging Using User Environment Variables

Users who do not have access to the directory that stores the ADF Desktop Integration
configuration file can change the location where log files are saved, and the logging
level by setting values for user environment variables. You can add two user
environment variables to configure the logging level and location for XML log files.

To add or configure user environment variables on Windows:
1. Click the Windows Start button and then click Control Panel.

2. In the Control Panel, click System, and then Advanced System Settings.
3. Inthe Advanced tab of System Properties dialog, click Environment Variables.

4. In the Environment Variables dialog, click New under the User variables for
username input field, and add variables as described in the Table C-3.

Troubleshooting an Integrated Excel Workbook C-7

Common ADF Desktop Integration Error Messages and Problems

Table C-3 User Environment Variables to Configure Logging

Enter a variable named... With a value...

adfdi-common-file That defines the directory path and file name for the XML file
that captures logging information.

The directory that you specify here must exist before you add
the adfdi-common-file variable. The generated log file will be in
XML format.

adfdi-common-level That specifies the level of logging. Table C-2 lists valid values.

5. Click OK.

C.4.3.4 What You May Need to Know About the adfdi-common Object

The adfdi-common object is an instance of the TraceSource class from the
System.Diagnostics namespace in the Microsoft .NET Framework. This object is used
to generate log files that capture information about events triggered by the Excel
workbook that you integrate with your Fusion web application. To know the location
of the log file, check the Log Files attribute in the Properties tab of the About dialog.

For more information about the TraceSource class, see Microsoft Developer Network
documentation.

C.5 Common ADF Desktop Integration Error Messages and Problems

While using or configuring the ADF Desktop Integration enabled Fusion web
application or workbooks, you might see error messages or have some problems. The
following list describes the most common error messages, their cause, and solutions.

Error message: [ADFDI-00137] The client and server versions are not compatible.
Contact the system administrator and ensure that the client and server versions
match.

Cause: The client version of ADF Desktop Integration does not match the ADF
Desktop Integration version in the web application.

Action: Uninstall client ADF Desktop Integration, and install the web application
specific ADF Desktop Integration version. For more information about installing
ADF Desktop Integration client, see Section 3.4, "Installing ADF Desktop
Integration."

Error message: Programmatic access to Visual Basic Project is not trusted
Cause: Excel has not been configured as required by ADF Desktop Integration.

Action: Verify that the Trust access to the VBA project object model checkbox in
the Trust Center dialog is enabled. For more information, see Section 3.3,
"Configuring Excel to work with ADF Desktop Integration."

Problem: Oracle ADF tab is not visible in your integrated Excel Workbook after
installing ADF Desktop Integration

Cause: The ADF Desktop Integration add-in is not enabled in Excel.

Action: Enable the ADF Desktop Integration add-in in the Excel Options dialog.
In Excel, click the Microsoft Office button, and then click Excel Options to open
the Excel Options dialog. In the Add-Ins tab, open the Manage dropdown list,
choose COM Add-ins, and click Go. In the COM Add-ins dialog, select the Oracle
ADF Desktop Integration Add-in for Excel checkbox and click OK.

C-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Common ADF Desktop Integration Error Messages and Problems

For information about all ADF Desktop Integration error messages, see Error Messages
Reference.

If you are a system administrator, you should also see the "Common ADF Desktop
Integration Error Messages and Problems" section in Administrator’s Guide for Oracle
Application Development Framework.

Troubleshooting an Integrated Excel Workbook C-9

Common ADF Desktop Integration Error Messages and Problems

C-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

D

ADF Desktop Integration Settings in the Web
Application Deployment Descriptor

This appendix describes the values that you set for the ADF Desktop Integration
servlet (adfdiRemote) so that the Fusion web application can use it. The appendix also
describes the values in the deployment descriptor file that determine the behavior of
the HTTP filter that ADF Desktop Integration provides, and provides a code sample
from a deployment descriptor file that shows these values in use.

This appendix includes the following sections:

s Configuring the ADF Desktop Integration Servlet

» Configuring the ADF Desktop Integration Excel Download Filter
s Configuring the ADF Library Filter for ADF Desktop Integration

= Examples in a Deployment Descriptor File

D.1 Configuring the ADF Desktop Integration Servlet

A Fusion web application with integrated Excel workbooks must contain entries in its
deployment descriptor file (web.xml) to use the adfdiRemote servlet. The Excel
workbooks that you integrate with a Fusion web application call this servlet to
synchronize data with the Fusion web application. The adf-desktop-integration.jar
file that contains the servlet is in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration 11.1.1
where Mii_HOME is the Middleware Home directory.

When you add ADF Desktop Integration to your project as described in Section 4.3,
"Adding an Integrated Excel Workbook to a Fusion Web Application,” ADF Desktop
Integration automatically configures your deployment descriptor with the necessary
entries to enable the servlet (DIRemoteServlet) on your Fusion web application. If
required, then you can configure the servlet manually.

To configure the ADF Desktop Integration servlet:

1. In]JDeveloper, locate and open the deployment descriptor file (web.xml) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Servlets page, and then click the Add icon to create a row entry in the
Servlets table. The icon is in the top-right corner of the servlets table.

Enter the values as described in Table D-1 to enable the adfdiRemote servlet on
the Fusion web application.

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-1

Configuring the ADF Desktop Integration Servlet

Table D-1 Values to Enable adfdiRemote Servlet

For this property... Enter this value...

Name adfdiRemote

Type Servlet Class

Servlet Class/]SP file oracle.adf.desktopintegration.servlet.DIRemoteServlet

3. In Servlets page, click the Servlet Mappings tab, and then click the Add icon to
create a row in the Servlet Mapping table.

Enter the value as described in Table D-2 to add a URL pattern for the
adfdiRemote servlet in the Fusion web application. The value that you enter must
match the value that you specify in the integrated Excel workbook for the
RemoteServletPath workbook property. Note that values are case sensitive.

Table D-2 Values to Add A URL Pattern to adfdiRemote Servlet

For this property... Enter this value...

URL Patterns /adfdiRemoteServlet

Figure D-1 displays the Servlets page of web.xml of Summit sample application
for ADF Desktop Integration.

Figure D-1 Serviets Page of Deployment Descriptor

% web.xml 1
@ 3
Application Servlets 4 x
Servlets
Filters
Security Name Type Servlet Class f JSP File -
Pages Faces Serviet Serviet Class javax.faces.webapp.FacesServiet _
References resources Serviet Class org.apache.myfaces. trinidad. webapp.ResourceServiet @
Ser\rlet Class orade.adf. desktopintegration.serviet.DIRemoteServiet G
BIGRAPHSERVLET Serviet Class orade.adf. view.faces. bi.webapp.GraphServiet G
BIGALGESERVLET Serviet Class orace.adf. view. faces. bi. webapp. GaugeServiet 3
MapProxyServiet Serviet Class orade,adf, view, faces, bi.webapp.MapProxyServiet -
adflibResources Serviet Class orade.adf library.webapp.ResourceServiet p
General Servlet ServietMappings Initislization Parameters Security Role References
% X
URL Patterns -
jadfdiRemoteServiet

4. Click the Filters page, and verify that whether a adfBindings filter exists in the
Filters table. If an entry exists, select it and proceed to the next step. If there is no
such entry, then click the Add icon to create a row entry in the Filters table. The
icon is available in the top-right corner of the filters table.

Enter the values as described in Table D-3 to add the ADF binding filter to the
adfdiRemote servlet.

Table D-3 Values to Add Binding Filter to adfdiRemote Servlet

For this property... Enter this value...

Name adfBindings

D-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the ADF Desktop Integration Excel Download Filter

Table D-3 (Cont.) Values to Add Binding Filter to adfdiRemote Serviet

For this property... Enter this value...

Class oracle.adf.model.servlet.ADFBindingFilter

5. In Filters page, click the Filter Mappings tab, and then click the Add icon to create
a row in the Filter Mapping table.

Enter the values as described in Table D—4 to add the mapping filter to the
adfdiRemote servlet. The filter mapping must match with the Servlet name in Step
2.

Table D-4 Values to Add Mapping Filter to adfdiRemote Serviet

For this property... Enter this value...
Mapping Type Servlet
Mapping adfdiRemote

Figure D-2 displays the Filters page of web.xml of Summit sample application for
ADF Desktop Integration.

Figure D-2 Filters Page of Deployment Descriptor

% web, xml 1
@ 3
Application
= Filters 4 K
Servlets
Filters
Security Name Class -
Pages JpsFilter orade.security.jps.ee. http. JpsFilter &
References trinidad org.apache.myfaces. trinidad, webapp. TrinidadFilter ﬁ
orade.adF.modeI.ser\-‘let.ADFElindinr_JFiItEr G
adfdiExcelDownload oracle.adf.desktopintegration. filter. DIExcelDownl. .. &3
ADFLibraryFilter orade.adf library.webapp.LibraryFilter -

General Filter ~ Filter Mappings Initialization Parameters

Mapping Type Mapping Dispatcher Type -
Serviet Faces Servlet FORWARD, REQUEST
Servlet adfdiRemote

6. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

D.2 Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration includes an HTTP filter in the
adf-desktop-integration.jar stored in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_11.1.1
where Mw_HOME is the Middleware Home directory.

You configure an entry in the deployment descriptor file (web.xml) of your Fusion web
application so that the application invokes the HTTP filter to make changes in an

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-3

Configuring the ADF Desktop Integration Excel Download Filter

integrated Excel workbook before the integrated Excel workbook is downloaded by
the end user from the Fusion web application. These changes ensure that the
integrated Excel workbook functions correctly when the end user opens it. The HTTP
filter makes the following changes:

WebAppRoot

Sets the value for this property to the fully qualified URL for the Fusion web
application from which the end user downloads the integrated Excel workbook.

Workbook mode

Changes the integrated Excel workbook mode to runtime mode in case the
workbook was inadvertently left in design mode or test mode.

By default, JDeveloper adds the HTTP filter to your ADF Desktop Integration project
when ADF Desktop Integration is enabled in your project.

To configure the HTTP filter:

1.

In JDeveloper, locate and open the deployment descriptor file (web.xml) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

Click the Filters page, and verify that an adfBindings filter exists in the Filters
table. If an entry exists, select it and proceed to the next step. If there is no such
entry, then click the Add icon to create a row entry in the Filters table.

Enter the values as described in Table D-5 to create a filter, or configure the values
to modify the existing HTTP filter.

Table D-5 Properties to Configure HTTP Filter

For this property... Enter this value...

Name adfdiExcelDownload

Class oracle.adf.desktopintegration.filter.DIExcelDownloadFil
ter

Display Name (Optional) In General Filter tab, enter a display name for the
filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the filter.

3. In the Filters page, click the Filter Mappings tab, and then click the Add icon to

create a row in Filter Mapping table.

Add a filter mapping for integrated Excel workbooks that use the default file
format (.x1sx) by entering values as described in Table D-6.

Table D-6 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsx

Dispatcher Type No value is required for this property.

4. Add another filter mapping for integrated Excel workbooks that use the

macro-enabled workbook format (.x1sm) by entering values as described in
Table D-7.

D-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the ADF Desktop Integration Excel Download Filter

Table D-7 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsm

Dispatcher Type No value is required for this property.

Figure D-3 displays the Filters page of web.xml of Summit sample application for
ADF Desktop Integration.

Figure D-3 Filters Page of Deployment Descriptor

% web, xml
@ 1
Application
= Filters + x
Servlets
Filters
Security Name Class -l _
Pages JpsFilter oracle.security.jps.ee. http. JpsFilter @
References trinidad org.apache.myfaces. trinidad. webapp. TrinidadFilter {}
orade.adf.model. servlet. ADFBindingFilter @
adfdiExcelDownload orade.adf.desktopintegration. filter . DIExcelDownl. .. 3

oracle.adf library.webapp.LibraryFilter

General Filter ~ Filter Mappings Initialization Parameters

Mapping Type Mapping Dispatcher Type -
URL Pattern = xlsx
URL Pattern . xlsm

5. Click the Application page, expand MIME Mappings section, and click the Add
icon.

Add a MIME type for integrated Excel workbooks that use the default file format
(xlsx) by entering values as described inTable D-8.

Table D-8 Properties to Add MIME Mappings

For this property... Enter this value...

Extension * . x1lsx

MIME Type application/vnd.openxmlformats-officedocument.spreadshe
etml.sheet

6. Add another MIME type for integrated Excel workbooks that use the
macro-enabled workbook format (.xlsm) by entering values as described in
Table D-9.

Table D-9 Properties to Add MIME Mappings

For this property... Enter this value...
Extension *.xlsm
MIME Type application/vnd.ms-excel.sheet.macroEnabled.12

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-5

Configuring the ADF Library Filter for ADF Desktop Integration

Figure D—4 displays the Application page of web.xml of Summit sample
application for ADF Desktop Integration.

Figure D-4 Application Page of Deployment Descriptor

% web,xml
@
Application
Serviets Web Application Deployment Descriptor
Filters Version:
Securi
i Display Mame: |
Pages
References Description:
[] Distributable
Session Timeout: l:l Minutes
Context Initialization Parameters a4 K
Web Application Listeners 3 X
Environment Entries GF %
[Tag Libraries 3 ¥
Locale Encoding Mapping GF %
[MIME Mappings T X
Extension MIME Type -

application fx-shockwave-flash
application fx-amf
application fvnd. openxmiformats-officedocument. spreadsheetml.sheet
application fvnd.ms-excel. sheet.macroEnabled. 12

7. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

While updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

D.3 Configuring the ADF Library Filter for ADF Desktop Integration

Using a model-driven list picker, as described in Section 8.4, "Adding a Model-Driven
List Picker to an ADF Table Component," requires you to configure the filter for ADF
Library Web Application Support (<filter-name>ADFLibraryFilter</filter-name>)
for your web application.

You configure an entry in the deployment descriptor file (web.xml) of your Fusion web
application so that the application references the ADF Library Filter.

To configure the ADF Library Web Application Support filter:

1. In]JDeveloper, locate and open the deployment descriptor file (web.xml) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Filters page and then click the Add icon to create a row entry in the
Filters table.

D-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Examples in a Deployment Descriptor File

Enter the values as described in Table D-10 to configure the ADF Library Web
Application Support filter.

Table D-10 Properties to Configure the ADF Library Web Application Support Filter

For this property... Enter this value...

Name ADFLibraryFilter

Class oracle.adf.library.webapp.LibraryFilter

Display Name (Optional) In General Filter tab, enter a display name for the

filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the filter.

3. In the Filters page, click the Filter Mappings tab, and then click the Add icon to
create a row in Filter Mapping table.

Add a filter mapping by entering values as described in Table D-11.

Table D-11 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping /*

Dispatcher Type No value is required for this property.

4. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

While updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, as demonstrated in Example D-1, so that integrated
Excel workbooks can be downloaded from the Fusion web application.

Example D-1 Entries in web.xml File for ADF Library Web Application Support

<filter>

<filter-name>adfdiExcelDownload</filter-name>
<filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-class>

</filter>

<filter>

<filter-name>ADFLibraryFilter</filter-name>
<filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>

</filter>

D.4 Examples in a Deployment Descriptor File

<filter>

The following extracts from the web.xml file of a Fusion web application with ADF
Desktop Integration shows the entries that you configure for a desktop integration
project. For more information ordering of filters, see Section 4.5.2, "What Happens
When You Add ADF Desktop Integration to Your JDeveloper Project.”

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-7

Examples in a Deployment Descriptor File

<filter-name>adfBindings</filter-name>
<filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>
<filter>
<filter-name>adfdiExcelDownload</filter-name>
<filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-class>
</filter>
<filter>
<filter-name>ADFLibraryFilter</filter-name>
<filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
<init-param>
<param-name>include-extension-list</param-name>
<param-value>png, jpg, jpeg,gif, js, css,htm, html, x1sx, xlsm</param-value>
</init-param>
</filter>

<filter-mapping>
<filter-name>adfBindings</filter-name>
<servlet-name>adfdiRemote</servlet-name>

</filter-mapping>

<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsx</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsm</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>ADFLibraryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>

<servlet>
<servlet-name>adfdiRemote</servlet-name>

<servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>adfdiRemote</servlet-name>
<url-pattern>/adfdiRemoteServlet</url-pattern>
</servlet-mapping>

<mime-mapping>
<extension>xlsx</extension>
<mime-type>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</mime-type>
</mime-mapping>
<mime-mapping>
<extension>xlsm</extension>
<mime-type>application/vnd.ms-excel.sheet.macroEnabled.12</mime-type>
</mime-mapping>

D-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

String Keys in the Overridable Resources

This appendix describes the string keys in the reserved resource bundle that you can
override.

Table E-1 lists the string keys and their current English values. If you want to provide
custom strings for one or more keys, create a resource bundle where you define the
string keys in Table E-1 and the values that you want to appear at runtime. For
information about how to override the reserved resource bundle, see Section 11.2.2,

"How to Override Resources That Are Not Configurable."

Table E-1

String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears at
runtime

String key

English value in the ADF
Desktop Integration reserved
resource bundle

Upload Options

UPLOAD_OPTIONS_TITLE

Upload Options

Upload Options

UPLOAD_OPTIONS_PROMPT

Specify options to use during the
Upload operation

Upload Options

UPLOAD_OPTIONS_CONTINUE_ON_FAIL_LABEL

On failure, continue to upload
subsequent rows

Upload Options

UPLOAD_OPTIONS_DOWNLOAD_AFTER_LABEL

Download all rows after
successful upload

Table.Download

DOWNLOAD_OVERWRITE_TITLE

Download

Table.Download

DOWNLOAD_OVERWRITE_PROMPT

Do you wish to discard the
pending changes?

Table.Download

ROWLIMIT_WARNINGS_TITLE

Row limit exceeded

Table.Initialize

INITIALIZE_OVERWRITE_TITLE

Initialize

Table.Initialize

INITIALIZE_OVERWRITE_PROMPT

Do you wish to discard the
pending changes?

Workbook.ClearAllD
ata

CLEARDATA_CONFIRM_TITLE

Clear all data

Workbook.ClearAllD
ata

CLEARDATA_CONFIRM_PROMPT

This command will log you out
of your current session and clear
all the data from all worksheets
in the workbook. Are you sure?

Workbook . Logout

LOGOUT_STATUS_TITLE

Logout

Workbook . Logout

LOGOUT_STATUS_PROMPT

You have been logged out from
your current session.

Table.Upload

COMPONENTS_TABLE_DYN_COLS_NOT_AVAIL_
TITLE

Upload

String Keys in the Overridable Resources E-1

Comments

Table E-1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears at

English value in the ADF
Desktop Integration reserved

runtime String key resource bundle Comments
Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_AVAIL_ One or more dynamic columns
PROMPT is no longer available, do you
wish to continue?
Table status UPLOAD_STATUS_NO_UPDATES No updates detected
Table status TABLE_UPLOAD_RECORD_NOT_FOUND Record not found
Table status TABLE_UPLOAD_CANNOT_INSERT_MORE_THAN_ Cannot insert record more than
ONCE once
Table status TABLE_COMMIT_FAILED_1 See Error Detail {0} {0}is a
batch
number
Table status TABLE_COMMIT_FAILURE_DETAILS_2 Error Detail {0}:{1} {0}is a
batch
number
{1} is an
error
message
Table status TABLE_UPLOAD_ROW_UPDATE_SUCCESS Row updated successfully
Table status TABLE_UPLOAD_ROW_INSERT SUCCESS Row inserted successfully
Table status TABLE_UPLOAD_ROW_UPDATE_FAILURE Update failed
Table status TABLE_UPLOAD_ROW_INSERT FAILURE Insert failed
Table status TABLE_DELETE_ROW_FAILURE Delete failed
Table status TABLE_ROW_KEY_VALUE_INVALID Key value invalid
Table status TABLE_DOWNLOAD_FAILURE Download failed
Table status TABLE_DOWNLOAD_ROW_FAILURE Row download failed
Table status TABLE_DOWNLOAD_FLAGGED_FAILURE Download flagged rows failed
Table status TABLE_DOWNLOAD_FOR_INSERT_FAILURE Download for insert failed
Table status MESSAGE_DETAILS_NONE No error.
Table status MESSAGE_DETAILS_ROW_TITLE Row Status
Table status MESSAGE_DETAILS_ROW_PROMPT Messages for this table row are
listed below
Table status MESSAGE_DETAILS_TABLE_TITLE Table Errors
Table status MESSAGE_DETAILS_TABLE_PROMPT Messages for this table are listed
below
Table status MESSAGE_DETAILS_HELP_LABEL Click on each error to reveal Appears in
additional information the error
Table errors ;
list.
Worksheet errors
Table status MESSAGE_LABEL_DEFAULT_CONTEXT Action
Table errors
Worksheet errors
Worksheet errors MESSAGE_DETAILS_WORKSHEET TITLE Worksheet Errors

E-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Table E-1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string English value in the ADF
key value appears at Desktop Integration reserved
runtime String key resource bundle Comments
Worksheet errors MESSAGE_DETAILS_WORKSHEET PROMPT Messages for this worksheet are
listed below
Worksheet errors MESSAGE_DETAILS_PARSE_FAILURE A problem has occurred while

retrieving the error details. The
information is no longer

available.

Worksheet errors MESSAGE_LABEL_FAILED_1 {0} failed {0}is a
context
label

Workbook.EditOptio SETTINGS_EDIT_TITLE Edit Options

ns

Workbook.EditOptio SETTINGS_EDIT PROMPT Enter a value for WebAppRoot.

ns For example:

http://localhost:1234/MyApp.

Workbook.EditOptio SETTINGS_CONFIRM_TITLE Web App Root

ns

Workbook.EditOptio SETTINGS_CONFIRM_PROMPT Changing the Web App Root

ns will log you out of your current

session and clear all the data
from all worksheets in the
workbook. Are you sure?

Note: The keys listed in Table E-1 cannot be used in EL expressions
of the following syntax:

#{_ADFDIres|'key']}

String Keys in the Overridable Resources E-3

E-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

F

Java Data Types Supported By ADF Desktop

Integration

This appendix lists the Java data types that an ADF Desktop Integration project

supports.

Primitive Java Types

boolean

double

float

int

long

short

Object Java Types

java.
java.
java.
java.
java.
java.
java.
java.

java.

java.
java.

java.

lang.Boolean
lang.Double
lang.Float
lang.Integer
lang.Long
lang.Short
lang.String
math.BigDecimal
sgl.Date
sqgl.Time
sql.Timestamp

util.Date

oracle.jbo.domain.Date

oracle.jbo.domain.Number

oracle.jbo.domain.RowID

oracle.jbo.domain.Timestamp

oracle.jbo.domain.TimestampLTZ

Java Data Types Supported By ADF Desktop Integration F-1

s oracle.jbo.domain.TimestampTZ

Note: Using data types not listed in this appendix will generate
errors at runtime.

F-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

G

Using the ADF Desktop Integration Model API

There may be certain use cases where you want to allow uploading ADF Table data
even when there are no rows available in a tree binding. This appendix describes how
to use the ADF Desktop Integration Model API library in custom Java code to access
the attribute values sent from the client during the upload process when there are no
actual rows available.

This appendix includes the following sections:

= About the Temporary Row Object

= About ADF Desktop Integration Model API

s ADF Desktop Integration Model API Classes and Methods

G.1 About the Temporary Row Object

Each ADF Table component is bound to a tree binding defined within a page
definition. Each tree control binding has one (or more) tree nodes defined. For
parent-child relationships, the tree binding has two nodes, one for parent table and
another for child table. At runtime, the ADF Table component displays both parent
and child attributes within each worksheet row. On upload, ADF Desktop Integration
sets attribute values to both the parent and child nodes.

In certain situations, a particular tree node may not have actual data rows available
during Table.Upload request processing. Two common scenarios where a tree node
may not have data are:

s The tree node's iterator result set does not have any data rows available. This
could be because of a query returning zero rows.

= Ina parent-child relationship, if the foreign key has not been populated in the
parent table, the link between parent and child tree node may not contain actual
rows.

There may be certain cases when, even though there is no actual row available on the
server, you still want to allow the end user to enter values in the worksheet and
upload them to the server. During upload, ADF Desktop Integration creates a
temporary row object and stores the values uploaded from the worksheet row. Using
the ADF Desktop Integration Model API, you can write custom Java code to access the
temporary row object and collect its values.

To call your custom Java code during upload, you must expose your custom Java code
through a pageDef action binding and then configure the ADF Table component's
UpdateRowActionID or InsertAfterRowActionID to point to the pageDef action
binding.

Using the ADF Desktop Integration Model APl G-1

About ADF Desktop Integration Model API

G.2 About ADF Desktop Integration Model API

While data is being uploaded, if a tree node of the ADF Table component contains no
actual rows, the ADF Desktop Integration remote servlet creates a temporary row
object to store the attribute values. If you want to access the temporary row object and
its attribute values, you must write custom Java code that uses the ADF Desktop
Integration Model API library.

Note: The ADF Desktop Integration Model API is not supported for
EJB or Toplink data controls.

For more information about the classes and methods available in the API, see
Section G.3, "ADF Desktop Integration Model API Classes and Methods."

G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper

Project

You typically add the ADF Desktop Integration Model API Library to your
application's data model project. The library is an independent library, not included
with any feature. You can add it through Project Properties dialog box.

To add ADF Desktop Integration Model API library to your project:

1. Inthe Application Navigator, right-click the data model project and choose Project
Properties.

2, In the Project Properties dialog, select Libraries and Classpath to view the list of
libraries available.

3. (Click Add Library and in the Add Library dialog, select the ADF Desktop
Integration Model API library.

Figure G-1 Add Library Dialog

= Project Properties - D:\jdevi| (=5 Add Library \EI eveloper\mywork... =]
88 (@@- L
[#- Project Source Paths
[+ ADF Model Libraries:
22:: "::l\q Flow = Project
oAt 153 User . Change. .. ‘
=[5 Extension
[#- Business Components m ADF Common Runtime
B Compiler i} ADF Common Web Runtime Add Liprary... |
- Dependencies ifl] ADF Controller Runtime —
+ Deployment - [fii] ADF Controller Schema w‘
- EJB Module ...] ADF Designtime APT
- Extnsen B Jicr oesop nteraton ocel 41
(- Javadoc - [fli] ADF Desktop Integration Runtime
++ Java EE Application 1] ADF DVT Core Runtime
- 15PTag L“Jfﬂ_“es] ADF DVT Faces Databinding MDS Runtime
-~ J5P Visual Editor - [fi] ADF DVT Faces Databinding Runtime
& Lbraries and Classpath [ifl] ADF DVT Faces Runtime
- Resource Bundie - [fli] ADF Faces Change Manager Runtime 11
-+ Run/Debug Profile - [fli] ADF Faces Databinding Runtime
- Technology Scope - [fli] ADF Faces Dynamic Components
m ADF Faces Runtime 11
e in
| New... ” Load Dir... |
Help Help | | oK | | Cancel K | | Cancel

4. Click OK. The library name adds to the Classpath Entries list.

G-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Desktop Integration Model API Classes and Methods

5. Click OK to close the Project Properties dialog box.

G.3 ADF Desktop Integration Model API Classes and Methods

The ADF Desktop Integration Model API library contains one public class that
contains APIs for retrieving temporary row objects.

G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class

The ModelHelper class is a public class that exposes Model APIs. The following
sections describe the methods available in the class.

G.3.1.1 The getAdfdiTempChildRow Method

The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular master row. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempChildRow (ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
= masterRow— master row object

s childAccessor — child attribute name

G.3.1.2 The getAdfdiTempRowForView Method

The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular view. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempRowForView(ApplicationModuleImpl
am, java.lang.String viewDefName)

Parameters
= am-—application module instance

m viewDefName — view definition name

G.3.1.3 The getChildViewDef Method

The method is used to lookup polymorphic child view definition if the view link
destination attributes specify one or more child discriminator attributes. The master
row source attributes lookup the correct polymorphic child view definition through
ViewObjectImpl. findViewDefFromDiscrValues APL If no child discriminator

Using the ADF Desktop Integration Model APl G-3

ADF Desktop Integration Model API Classes and Methods

attributes are defined, or the child view is non-polymorphic, the default child
ViewDefImpl object is returned.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet, or returns null if the object is not found.

Method Syntax

public static final ViewDefImpl getChildViewDef (ViewRowImpl
masterRow, java.lang.String childAccessor)

Parameters
= masterRow — master row object

s childAccessor — child attribute name

G-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

H

End User Actions

This appendix describes the actions end users perform while using a Fusion web
application and integrated Excel workbook, such as installing ADF Desktop
Integration, importing data from non-integrated Excel workbooks, making changes in
the workbook at runtime, and handling time zone conversion of date-time values in
the workbook.

The audience for this appendix are end users of integrated Excel workbooks at
runtime. References to "you" in this appendix are directed to these end users.

This appendix includes the following sections:

» Installing, Upgrading, and Removing ADF Desktop Integration
= Removing Personal Information

» Limitations of an Integrated Excel Workbook at Runtime

= Using an Integrated Excel Workbook

= Handling Time Zone Conversion

H.1 Installing, Upgrading, and Removing ADF Desktop Integration

You can install ADF Desktop Integration by downloading the installer file from the
Fusion web application. Your system administrator can make this installer available as
described in the "Installing and Upgrading ADF Desktop Integration" section of
Administrator’s Guide for Oracle Application Development Framework). When the installer
runs, it verifies whether the required software is installed on the your system. For
more information about the required software, see the following:

= Section 3.2, "Required Oracle ADF Modules and Third-Party Software"
= Section 3.3, "Configuring Excel to work with ADF Desktop Integration”

Note: You do not require JDeveloper to install ADF Desktop
Integration.

H.1.1 How to Install ADF Desktop Integration on Your System

You can install ADF Desktop Integration using an installer that you download from an
ADF Desktop Integration-enabled Fusion web application. If you cannot locate the
URL, ask your system administrator. The URL is similar to the following;:

To install ADF Desktop Integration:
1. After downloading the adfdi-excel-addin-installer.exe file, run it.

End User Actions H-1

Installing, Upgrading, and Removing ADF Desktop Integration

In the installation wizard, click Install.

Follow the instructions that appear in the dialog boxes to successfully install the
required components. If you encounter an error during the installation process, an
error message with a description appears, and installation is rolled back. For more
details, check the adfdi-installer-log. txt error log file in the temp directory of
the user profile.

Click Close.

Configure Excel as described in Section 3.3, "Configuring Excel to work with ADF
Desktop Integration."

H.1.2 How to Remove ADF Desktop Integration

Use the Microsoft Windows Control Panel to remove ADF Desktop Integration from
the system.

To remove the ADF Desktop Integration add-in:

1.
2.
3.

Click the Windows Start button, and then choose Control Panel.
In the Control Panel, select and open Programs and Features.

Select Oracle ADF 11g Desktop Integration Add-in for Excel in the Uninstall or
change a program window, and click Uninstall.

Note: The specific steps may vary depending on the version of
Windows used. Please refer to the Windows documentation for more
details.

H.1.3 How to Upgrade ADF Desktop Integration On a Local System

When you establish a connection with the Fusion web application from the runtime
integrated workbook, ADF Desktop Integration verifies whether the client and the
server versions are same. If the versions do not match, a message appears asking you
to upgrade to the client version that matches the server version.

You may check for a newer version of the client at any time. To do this, you establish a
session with the Fusion web application and then click the Check for updates link in
the About dialog of the integrated Excel workbook, as shown in Figure H-1. A dialog
then appears that shows you the current client and server versions. The dialog also
allows you to install a newer client version if the versions do not match.

Note: Using a client version that matches the server version is highly
recommended to avoid unexpected behavior or errors in integrated
Excel workbooks.

H-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Limitations of an Integrated Excel Workbook at Runtime

Figure H-1 Check for Updates Link

A4 LD B RRE

Login Logout Clear Edit About | Download Upload Remove Status

All Data Options Selected Viewer
Warkbook Worksheet
| B3 - fe | Changed
A B C D E F G
1 ORACLE Edit Customers Sheet
ra
, | & About sl
n About | Versions | Properties
Mame Walue |
3 Summit sample application for ADF Desktop Integration
6 Version 1.0 i
Workbook Name Edit Customers Sheet
7 Workbook Version 1.0
. Copyright () 2013, Oracle and/or its affiliates. All ights '
8 Copyright reserved. i
13

For more information about the upgrade process, see the "Verifying the Client Version
of ADF Desktop Integration" section in Administrator’s Guide for Oracle Application
Development Framework.

H.2 Removing Personal Information

If the Fusion web application that the application developer integrated an Excel
workbook with uses a security mechanism, such as single sign-on, personally
identifying information may be stored in cookies on the system where you access the
integrated Excel workbook. You can remove this information using Microsoft Internet
Explorer. You must log out and close all integrated Excel workbooks to invalidate all
active cookie-based web sessions.

For information about removing personal information, see Microsoft Internet Explorer
documentation.

H.3 Limitations of an Integrated Excel Workbook at Runtime

There are some known limitations on changing ADF Desktop Integration components
at runtime.

= Avoid this operation because using Excel cut-insert operations on worksheet
columns that render in an ADF Table component may produce unexpected results
during subsequent interaction with the component.

= Avoid moving or deleting columns that render in an ADF Table component's
group of columns as this may produce unexpected results and/or affect the
grouping of columns.

Additional known limitations:

= Excel's Conditional Formatting feature cannot be used effectively with ADF
Desktop Integration table components.

End User Actions H-3

Using an Integrated Excel Workbook

The ADF Button components are disabled when you zoom in or out on an
integrated Excel worksheet. The ADF Button components are active at 100% zoom
only.

You should not sort tables containing dependent lists of values.

You cannot use Microsoft Excel's Undo or Redo commands to undo or redo
changes made while using ADF Desktop Integration.

Excel's Track Changes and Share Workbook features are not compatible with ADF
Desktop Integration. You cannot use these Excel features with integrated Excel
workbooks.

If you see a message while viewing a web page in a popup dialog that your
session or page has timed out or expired, close the popup dialog without
completing the action and then retry the action.

H.4 Using an Integrated Excel Workbook

If you are new to the ADF Desktop Integration technology and integrated Excel
workbooks, please be aware of the following common actions:

Before uploading the changes, ensure that the Changed column of all modified
rows is marked with an upward pointing triangle. A double-click on the upward
pointing triangle character removes it, and the data of the relevant row is not
uploaded.

Do not delete, edit, or clear any cells in the Key column of the table. Any change to
these values can lead to upload failures and data corruption.

Do not change Excel's settings for Protect Sheet or Protect Workbook. These
settings are available in the Changes group of the Review tab.

To erase a value from a cell that is integrated with the web application, clear the
cell value instead of deleting the Excel cell.

If the Fusion web application is running on the https protocol and you have not
installed the security certificate on the client, the integrated Excel workbook gives
an error on login and the connection is not established. To establish a connection,
you must install the security certificate. If you cannot install the certificate from
Excel, open Internet Explorer and navigate to the same website. You will be
prompted to install the certificate.

Some ADF components may have cells that are configured to respond to a
double-click to perform some action. For example, the Status column cells of the
ADF Table component. You can also right-click in these cells and select Invoke
Action.

To have Excel retain the format of a numeric or date value in a cell formatted with
a text style while uploading data, add an apostrophe symbol (') before entering the
value. The apostrophe symbol acts as an escape character and is not displayed
with the value.

When you try to close the integrated Excel workbook, Microsoft Excel prompts
you with a dialog to save the workbook even if you have not modified it after
opening it. This behavior is expected because ADF Desktop Integration modifies
an integrated Excel workbook each time you open it.

Some common actions, such as inserting or deleting a row, and sorting data in ADF
Table, are described in the subsequent sections.

H-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using an Integrated Excel Workbook

H.4.1 How to Insert or Paste Rows in an ADF Table Component

To insert rows in the middle of an ADF Table component, insert a full row or rows in
the worksheet, and add data in all mandatory columns. For more information, see
Section 7.7, "Inserting Data in an ADF Table Component."

Data that you manage in another Excel workbook (for example, a non-integrated Excel
workbook) can also be pasted into an ADF Table component.

To paste data from another worksheet into ADF Table component rows:

1. Arrange the data in the Excel workbook from which you plan to copy the data to
match the layout of the ADF Table component in the integrated Excel workbook.

For example, if the first column in the ADF Table component where you want to
enter data is Column D, make Column D the first column where you arrange data
in the Excel workbook. Also, make sure to provide data for all mandatory columns
that the ADF Table component specifies.

2. In the Excel workbook, copy the rows of data.
3. To paste the copied rows into the middle of an ADF Table component:

1. Select the entire row above which you want to paste the data from the Excel
workbook.

2. With the row selected, right-click and choose Insert Copied Cells.
3. In the Insert Paste dialog that appears, select Shift cells down.
4. To paste the copied rows after the last row of an ADF Table component:

1. Select the entire row above which you want to paste the data from the Excel
workbook.

2. With the row selected, right-click and choose Insert Copied Cells.

To insert a row in an ADF Table component between the header and last row:

1. In the ADF Table component, select the entire row above which you want to insert
the new row.

2. With the row selected, right-click and choose Insert.

A new row is inserted above the selected row.

To insert rows in an ADF Table component after the last row:

1. Type data in an empty row immediately after the last row in the ADF Table
component.

The ADF Table component automatically converts the edited row to a row in the
ADF Table component.

End User Actions H-5

Using an Integrated Excel Workbook

Notes:

s If the ADF Table has no data rows, the first row under the column
header row acts as a placeholder data row.

= You cannot enter data directly under the table's data rows if ADF
Desktop Integration worksheet protection is enabled
(Protection.Mode property set to Automatic), as described in
Section 10.7, "Using Worksheet Protection.” You can disable this
protection for individual cells or rows by clearing the Locked
checkbox in the Protection page of Excel's Format Cells dialog that
you access from the Format Cells context menu.

H.4.2 How to Sort ADF Table Data in an Integrated Excel Workbook

To sort table data, choose Excel's Sort and Filter command.

To sort ADF Table data based on a particular column:
1. Select the header, or any cell, of the column you want to sort.

2. In the Editing group of the Home tab, click Sort and Filter. Choose the desired
sort order from the dropdown list options.

To sort table data based on multiple columns:
1. Select any cell of the table.

2. In the Editing group of the Home tab, click Sort and Filter, and choose Custom
Sort.

3. Inthe Sort dialog, add the columns, and their order preference. Ensure that the My
data has headers checkbox is enabled.

4. C(lick OK.

Note: While sorting the columns in an ADF Table component, ensure
that you always choose Expand the selection in the Sort Warning
dialog, when prompted, in order to maintain the integrity of the data
in all the table rows.

H.4.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook

Clearing the cell values of a row does not remove the row, and deleting the row from
the Excel worksheet does not delete the row from the web application.

To delete a row in an ADF Table component, flag the row by double-clicking the
respective cell of the Flagged column, and click the respective delete button. For more
information about row flagging, see Section 7.12.1, "Row Flagging in an ADF Table
Component."

Note: If your table does not contain a Flagged column, you will not
be able to delete rows from that table.

H-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Handling Time Zone Conversion

H.5 Handling Time Zone Conversion

Integrated Excel workbooks can be configured to retrieve, edit, and submit data values
that represent dates and times. As Excel does not provide native support for managing
date or time data when the system time zone changes, ADF Desktop Integration tracks
and detects the time zone changes for a workbook. It informs you about the time zone
update when the workbook is opened, and then converts the date-time data of the
workbook to the current time zone setting of the system.

For example, assume you are in Arizona (GMT -07:00) and you download data from
the server to the integrated Excel workbook, edit the date-time data in the workbook,
save the data, but do not upload it. Later, you travel to Seoul and change the time zone
preference of your computer to GMT +09:00. When you open the workbook after
changing to the Seoul time zone, you receive a message, and then all date-time data
values in the ADF components are converted from GMT -07:00 (Arizona) to GMT
+09:00 (Seoul).

End User Actions H-7

Handling Time Zone Conversion

H-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

	Contents
	Preface
	Audience
	Documentation Accessibility
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 11.1.1.9.0
	New and Changed Features for Release 11.1.1.9.0
	Other Significant Changes in this Document for Release 11.1.1.9.0

	1 Introduction to ADF Desktop Integration
	1.1 About ADF Desktop Integration
	1.2 About ADF Desktop Integration with Microsoft Excel
	1.2.1 Overview of Creating an Integrated Excel Workbook
	1.2.2 Advantages of Integrating Excel with a Fusion Web Application

	2 Introduction to the ADF Desktop Integration Sample Application
	2.1 About the Summit Sample Application for ADF Desktop Integration
	2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration
	2.2.1 How to Download the Application Resources
	2.2.2 How to Install the Summit ADF Schema
	2.2.3 How to Run the Summit Sample Application for ADF Desktop Integration

	2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.2 Downloading Integrated Excel Workbooks

	2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration
	2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
	2.4.2 Downloading Data Rows
	2.4.3 Modify Customers and Warehouses Information in the Workbooks
	2.4.4 Upload Modified Information to the Fusion Web Application

	3 Setting Up Your Development Environment
	3.1 About Setting Up Your Development Environment
	3.2 Required Oracle ADF Modules and Third-Party Software
	3.3 Configuring Excel to work with ADF Desktop Integration
	3.4 Installing ADF Desktop Integration
	3.4.1 How to Install ADF Desktop Integration

	3.5 Removing ADF Desktop Integration
	3.6 Upgrading ADF Desktop Integration

	4 Preparing Your Integrated Excel Workbook
	4.1 About Preparing Your Integrated Excel Workbooks
	4.2 Working with Page Definition Files for an Integrated Excel Workbook
	4.2.1 How to Create ADF Desktop Integration Page Definition File
	4.2.2 What Happens When You Create a Page Definition File
	4.2.3 How to Reload a Page Definition File in an Excel Workbook
	4.2.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

	4.3 Adding an Integrated Excel Workbook to a Fusion Web Application
	4.3.1 How to Add an Integrated Excel Workbook to a Fusion Web Application
	4.3.2 How to Configure a New Integrated Excel Workbook
	4.3.3 How to Add Additional Worksheets to an Integrated Excel Workbook

	4.4 Enabling ADF Desktop Integration in an Excel Workbook
	4.4.1 How to Enable ADF Desktop Integration in an Existing Workbook
	4.4.2 How to Manually Configure a New Integrated Excel Workbook

	4.5 Enabling ADF Desktop Integration Manually
	4.5.1 How to Manually Add ADF Desktop Integration In Fusion Web Application
	4.5.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project
	4.5.3 Adding ADF Library Web Application Support

	4.6 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

	5 Getting Started with the Development Tools
	5.1 About Development Tools
	5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples
	5.1.2 Additional Functionality for ADF Desktop Integration Development Tools

	5.2 Designer Ribbon Tab
	5.3 ADF Desktop Integration Designer Task Pane
	5.4 Using the Bindings Palette
	5.5 Using the Components Palette
	5.6 Using the Property Inspector
	5.7 Using the Binding ID Picker
	5.8 Using the Expression Builder
	5.9 Using the Web Page Picker
	5.10 Using the File System Folder Picker
	5.11 Using the Page Definition Picker
	5.12 Using the Collection Editors
	5.13 Using the Cell Context Menu
	5.14 Removing ADF Desktop Integration Components
	5.15 Exporting and Importing Excel Workbook Integration Metadata
	5.15.1 How to Export Workbook Integration Metadata
	5.15.2 How to Import Workbook Integration Metadata
	5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook Integration Metadata

	6 Working with ADF Desktop Integration Form-Type Components
	6.1 About ADF Desktop Integration Form-Type Components
	6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples
	6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components

	6.2 Inserting an ADF Label Component
	6.3 Inserting an ADF Input Text Component
	6.4 Inserting an ADF Output Text Component
	6.5 Inserting an ADF Input Date Component
	6.6 Inserting an ADF Image Component
	6.7 Inserting an ADF Button Component
	6.8 Displaying Output from a Managed Bean in an ADF Component
	6.8.1 How to Display Output from a Managed Bean
	6.8.2 What Happens at Runtime: How an ADF Component Displays Output from a Managed Bean

	6.9 Displaying Concatenated or Calculated Data in Components
	6.9.1 How to Configure a Component to Display Calculated Data
	6.9.2 Using Form Components and Merged Cells

	7 Working with ADF Desktop Integration Table-Type Components
	7.1 About ADF Desktop Integration Table-Type Components
	7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples
	7.1.2 Additional Functionality of Table-Type Components

	7.2 Page Definition Requirements for an ADF Table Component
	7.3 Inserting an ADF Table Component into an Excel Worksheet
	7.3.1 How to Insert an ADF Table Component
	7.3.2 How to Add a Column in an ADF Table Component

	7.4 Downloading Data to an ADF Table Component
	7.4.1 How to Download Data to an ADF Table Component
	7.4.2 What Happens at Runtime: How an ADF Table Component Downloads Data

	7.5 Downloading Pending Insert and Pending Update Rows to an ADF Table Component
	7.5.1 What Happens at Runtime: Download Action is Invoked
	7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts
	7.5.3 What You May Need to Know About DownloadForInsert Action

	7.6 Updating Existing Data in an ADF Table Component
	7.6.1 How to Configure an ADF Table Component to Update Data
	7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data

	7.7 Inserting Data in an ADF Table Component
	7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's Operations

	7.8 Uploading Changes from an ADF Table Component
	7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table Component
	7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data
	7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During Upload
	7.8.4 What Happens at Runtime: How Row Errors Are Handled During Upload
	7.8.5 What You May Need to Know About Upload Options
	7.8.6 How to Create a Custom Upload Dialog
	7.8.7 What Happens at Runtime: Custom Upload Dialog

	7.9 Uploading Changes from an ADF Table Component Using an UploadAllOrNothing Action
	7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action
	7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked
	7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With UploadAllOrNothing Action

	7.10 Deleting ADF Table Component Rows in the Fusion Web Application
	7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application
	7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web Application

	7.11 Batch Processing in an ADF Table Component
	7.11.1 How to Configure Batch Options for an ADF Table Component
	7.11.2 Troubleshooting Errors While Uploading Data

	7.12 Special Columns in the ADF Table Component
	7.12.1 Row Flagging in an ADF Table Component

	7.13 Configuring ADF Table Component Key Column
	7.13.1 How to Configure the Key Column
	7.13.2 How to Manually Add the Key Column At Design Time

	7.14 Adding a Dynamic Column to Your ADF Table Component
	7.14.1 How to Configure a Dynamic Column
	7.14.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic Column
	7.14.3 How to Specify Header Labels for Dynamic Columns
	7.14.4 How to Specify Styles for Dynamic Columns

	7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component
	7.16 Configuring an ADF Table Component to Resize Columns Based on Data at Runtime
	7.16.1 How to Configure an ADF Table Component to Resize Columns at Runtime
	7.16.2 How to Configure an Action Set to Resize Columns of an ADF Table Component at Runtime
	7.16.3 What Happens at Runtime: How the ADF Table Columns are Resized
	7.16.4 What You May Need to Know About Resizing Columns of an ADF Table Component at Runtime

	7.17 Grouping Columns Together in an ADF Table Component
	7.17.1 How to Group Columns in an ADF Table Component
	7.17.2 How to Group Columns that Render in a Dynamic Column
	7.17.3 What Happens at Runtime: How an ADF Table Component Groups Columns

	7.18 Configuring an ADF Table Component to be Read-only
	7.18.1 How to Configure an ADF Table Component to be Read-only

	7.19 Creating an ADF Read-Only Table Component
	7.19.1 How to Insert an ADF Read-only Table Component

	7.20 Limiting the Number of Rows Your Table-Type Component Downloads
	7.20.1 How to Limit the Number of Rows a Component Downloads
	7.20.2 What Happens at Runtime: How the RowLimit Property Works

	7.21 Tracking Changes in an ADF Table Component
	7.22 Evaluating EL Expressions for ReadOnly Properties
	7.22.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data
	7.22.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or Tracking Changes
	7.22.3 What You May Need to Know About Evaluating EL Expression While Uploading Data or Tracking Changes

	8 Working with Lists of Values
	8.1 About List of Values in an Integrated Excel Workbook
	8.1.1 Adding Lists of Values to Integrated Excel Workbooks Use Cases and Examples
	8.1.2 Additional Functionality for Adding List of Values to an Integrated Excel Workbook

	8.2 Creating a List of Values in an Excel Worksheet
	8.3 Creating a List of Values in an ADF Table Component Column
	8.3.1 How to Create a List of Values in an ADF Table Component Column
	8.3.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values

	8.4 Adding a Model-Driven List Picker to an ADF Table Component
	8.4.1 What You May Need to Know About Model-Driven List Pickers in ADF Table Components

	8.5 Creating Dependent Lists of Values in an Integrated Excel Workbook
	8.5.1 How to Create Dependent Lists of Values in Excel Worksheets
	8.5.2 What Happens at Runtime: How an Excel Worksheet Renders a Dependent List of Values
	8.5.3 How to Create Dependent Lists of Values in ADF Table Component Columns
	8.5.4 What Happens at Runtime: ADF Table Component Column Renders a Dependent List of Values

	9 Adding Interactivity to Your Integrated Excel Workbook
	9.1 About Adding Interactivity to an Integrated Excel Workbook
	9.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples
	9.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook

	9.2 Using Action Sets
	9.2.1 How to Invoke a Method Action Binding in an Action Set
	9.2.2 How to Invoke Component Actions in an Action Set
	9.2.3 What You May Need to Know About an Action Set Invoking a Component Action
	9.2.4 How to Invoke an Action Set from a Worksheet Event
	9.2.5 How to Display a Progress Bar while an Action Set Executes
	9.2.6 What Happens at Runtime: How the Action Set Displays a Status Message
	9.2.7 What You May Need to Know About Progress Bars
	9.2.8 What You May Need to Know About Canceling an Action
	9.2.9 How to Provide an Alert After the Invocation of an Action Set
	9.2.10 What Happens at Runtime: How the Action Set Provides an Alert
	9.2.11 How to Configure Error Handling for an Action Set
	9.2.12 How to Invoke a Confirmation Action in an Action Set
	9.2.13 What Happens at Runtime: How the Action Set Provides a Confirmation

	9.3 Configuring the Runtime Ribbon Tab
	9.3.1 How to Define a Workbook Ribbon Command for the Runtime Ribbon Tab
	9.3.2 How to Configure a Worksheet Ribbon Command for the Runtime Ribbon Tab
	9.3.3 What Happens at Runtime: Ribbon Commands in the Ribbon Tab

	9.4 Displaying Web Pages from a Fusion Web Application
	9.4.1 How to Display a Web Page in a Popup Dialog
	9.4.2 How to Display a Web Page Search Form in a Popup Dialog
	9.4.3 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
	9.4.4 What You May Need to Know About Displaying Pages from a Fusion Web Application
	9.4.4.1 Sending Data Between an Integrated Excel Worksheet and a Fusion Web Application Page
	9.4.4.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion Web Application Pages
	9.4.4.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame Sharing

	9.5 Using Row-Level Action Sets in a Table Column
	9.5.1 How to Enable Row-Level Action Set Model Management
	9.5.2 What Happens at Runtime: RowActionSetModelMgmtEnabled is Set to True
	9.5.3 How to Synchronize Changes from ADF Table Component Using RowUpSyncNoFail
	9.5.4 What Happens at Runtime: RowUpSyncNoFail Action is Invoked
	9.5.5 How to Add a Custom Popup Picker Dialog to an ADF Table Column

	9.6 Using EL Expression to Generate an Excel Formula
	9.6.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
	9.6.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression

	9.7 Using Calculated Cells in an Integrated Excel Workbook
	9.7.1 How to Calculate the Sum of a Table-Type Component Column
	9.7.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type Component Column

	9.8 Using Macros in an Integrated Excel Workbook

	10 Configuring the Appearance of Your Integrated Excel Workbook
	10.1 About Configuring the Appearance of an Integrated Excel Workbook
	10.1.1 Integrated Excel Workbook Configuration Use Cases and Examples
	10.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook

	10.2 Working with Styles
	10.2.1 Predefined Styles in ADF Desktop Integration
	10.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options
	10.2.3 How to Apply a Style to an Oracle ADF Component
	10.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component

	10.3 Applying Styles Dynamically Using EL Expressions
	10.3.1 What Happens at Runtime: How an EL Expression Is Evaluated
	10.3.2 How to Write an EL Expression That Applies a Style at Runtime
	10.3.3 What You May Need to Know About EL Expressions That Apply Styles

	10.4 Using Labels in an Integrated Excel Workbook
	10.4.1 Retrieving the Values of String Keys from a Resource Bundle
	10.4.2 Retrieving the Values of Attribute Control Hints
	10.4.3 How an Integrated Excel Workbook Evaluates a Label Property

	10.5 Branding Your Integrated Excel Workbook
	10.5.1 How to Brand an Integrated Excel Workbook
	10.5.2 What Happens at Runtime: the BrandingItems Group of Properties

	10.6 Displaying Tooltips in ADF Desktop Integration Components
	10.6.1 How to Add a Tool Tip to an ADF Table Component
	10.6.2 How to Add a Tool Tip to a Form-Type Component
	10.6.2.1 What You May Need to Know About Tooltips for Form-Type Components

	10.6.3 What You May Need to Know About Tooltips for Table Columns

	10.7 Using Worksheet Protection
	10.7.1 How to Enable Worksheet Protection
	10.7.2 What Happens at Runtime: How the Locked Property Works
	10.7.3 What You May Need to Know About Worksheet Protection

	10.8 Using ADF Desktop Integration EL-based Properties with Custom Attribute Properties
	10.8.1 How to Enable Custom Attribute Properties in Integrated Excel Workbook
	10.8.2 What Happens at Runtime: CustomAttributePropertiesEnabled is Set to True
	10.8.3 What You May Need to Know About the CustomAttributePropertiesEnabled Property

	11 Internationalizing Your Integrated Excel Workbook
	11.1 About Internationalizing Your Integrated Excel Workbook
	11.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples
	11.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook

	11.2 Using Resource Bundles in an Integrated Excel Workbook
	11.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
	11.2.2 How to Override Resources That Are Not Configurable
	11.2.3 What Happens at Runtime: Override Resources That Are Not Configurable
	11.2.4 What You May Need to Know About Resource Bundles

	11.3 Localization in ADF Desktop Integration
	11.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings
	11.3.1.1 How to Create a User Preference Handler
	11.3.1.2 How to Register the User Preference Handler

	12 Securing Your Integrated Excel Workbook
	12.1 About Security In Your Integrated Excel Workbook
	12.1.1 Integrated Excel Workbook Security Use Cases and Examples
	12.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web Application

	12.2 Authenticating the Excel Workbook User
	12.2.1 What Happens at Runtime: How the Login Method Is Invoked
	12.2.2 What Happens at Runtime: How the Web Application Session is Terminated

	12.3 Checking the Integrity of an Integrated Excel Workbook's Metadata
	12.3.1 How to Reset the Workbook ID
	12.3.2 What Happens When the Metadata Tamper-Check Is Performed

	12.4 What You May Need to Know About Securing an Integrated Excel Workbook
	12.5 Authorizing the Excel Workbook User
	12.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet

	13 Adding Validation to Your Integrated Excel Workbook
	13.1 About Adding Validation to an Integrated Excel Workbook
	13.1.1 Integrated Excel Workbook Validation Use Cases and Examples
	13.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

	13.2 Using the Status Viewer to Report Error Messages to End Users
	13.2.1 How to Manage the Automatic Display of the Status Viewer

	13.3 Providing Data Entry Validation for an Integrated Excel Workbook
	13.3.1 Providing Data Entry Validation Using ADF Desktop Integration
	13.3.1.1 How to Enable or Disable ADF Desktop Integration Data Entry Validation

	13.3.2 Providing Data Validation Using Excel

	13.4 Providing Server-Side Validation for an Integrated Excel Workbook
	13.5 Providing a Row-by-Row Status on an ADF Table Component
	13.6 Adding Detail to Error Messages in an Integrated Excel Workbook
	13.7 Handling Data Conflicts When Uploading Data from a Workbook
	13.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
	13.7.2 What Happens at Runtime: How Data Conflicts Are Handled

	14 Testing Your Integrated Excel Workbook
	14.1 About Testing Your Integrated Excel Workbook
	14.1.1 Integrated Excel Workbook Testing Use Cases and Examples
	14.1.2 Additional Functionality for Testing an Integrated Excel Workbook

	14.2 Testing Your Fusion Web Application
	14.3 Validating the Integrated Excel Workbook Configuration
	14.3.1 How to Validate the Integrated Excel Workbook Configuration
	14.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration
	14.3.3 How to Fix Validation Failures
	14.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at Runtime

	14.4 Testing Your Integrated Excel Workbook

	15 Deploying Your Integrated Excel Workbook
	15.1 About Deploying Your Integrated Excel Workbook
	15.1.1 Integrated Excel Workbook Deployment Use Cases and Examples
	15.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook

	15.2 Making ADF Desktop Integration Available to End Users
	15.3 Publishing Your Integrated Excel Workbook
	15.3.1 How to Publish an Integrated Excel Workbook from Excel
	15.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
	15.3.3 What Happens When You Publish an Integrated Excel Workbook

	15.4 Deploying a Published Workbook with Your Fusion Web Application
	15.4.1 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web Application from JDeveloper
	15.4.1.1 Fusion Web Application is Deployed on Oracle WebLogic Server
	15.4.1.2 Web Application is Deployed on IBM WebSphere Application Server

	15.4.2 What Happens at Runtime: End User Requests a Published Workbook

	15.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook
	15.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters
	15.5.2 How to Configure Parameters Properties in the Integrated Excel Workbook
	15.5.3 How to Configure the Page Definition File for the Worksheet to Receive Parameters
	15.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web Application to the Integrated Excel Workbook

	15.6 Customizing Workbook Integration Metadata at Runtime
	15.6.1 How to Enable Workbook Customization at Runtime
	15.6.2 What Happens at Runtime: Workbook Integration Metadata is Customized
	15.6.3 What You May Need to Know About Customizing Workbook Integration Metadata

	15.7 Integrating ADF Workbook Composer into Your Fusion Web Application
	15.7.1 How to Integrate ADF Workbook Composer into Your Fusion Web Application
	15.7.2 What Happens at Runtime: ADF Workbook Composer is Invoked
	15.7.3 What You May Need to Know About ADF Workbook Composer

	16 Using an Integrated Excel Workbook Across Multiple Web Sessions
	16.1 About Using an Integrated Excel Workbook Across Multiple Web Sessions
	16.1.1 Using an Integrated Excel Workbook Across Multiple Web Sessions Use Cases and Examples
	16.1.2 Additional Functionality for Using an Integrated Excel Workbook Across Multiple Web Sessions

	16.2 Restore Server Data Context Between Sessions
	16.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
	16.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data Context

	16.3 Caching of Static Information in an Integrated Excel Workbook
	16.4 Caching Lists of Values for Use Across Multiple Web Sessions
	16.5 Using Explicit Worksheet Setup Action
	16.5.1 How to Configure Explicit Worksheet Setup Action
	16.5.2 What You May Need to Know About Explicit Worksheet Setup Action

	A ADF Desktop Integration Component Properties and Actions
	A.1 Frequently Used Properties in the ADF Desktop Integration
	A.2 ADF Input Text Component Properties
	A.3 ADF Output Text Component Properties
	A.4 ADF Label Component Properties
	A.5 ADF List of Values Component Properties
	A.6 ADF Image Component Properties
	A.7 ADF Input Date Component Properties
	A.8 ModelDrivenColumnComponent Subcomponent Properties
	A.9 TreeNodeList Subcomponent Properties
	A.10 ADF Button Component Properties
	A.11 ADF Table Component Properties and Actions
	A.11.1 ADF Table Component Properties
	A.11.2 ADF Table Component Column Properties
	A.11.3 ADF Table Component Actions

	A.12 ADF Read-only Table Component Properties and Actions
	A.13 Action Set Properties
	A.13.1 Confirmation Action Properties
	A.13.2 Dialog Action Properties

	A.14 Workbook Actions and Properties
	A.15 Worksheet Actions and Properties
	A.16 ADF Desktop Integration Compatibility Properties

	B ADF Desktop Integration EL Expressions
	B.1 Guidelines for Creating EL Expressions
	B.2 EL Syntax for ADF Desktop Integration Components
	B.3 Attribute Control Hints in ADF Desktop Integration

	C Troubleshooting an Integrated Excel Workbook
	C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration
	C.2 Generating an ADF Desktop Integration Diagnostic Report
	C.2.1 How to Generate the ADF Desktop Integration Diagnostic Report
	C.2.2 What You May Need to Know About the ADF Desktop Integration Diagnostic Report

	C.3 Verifying End-User Authentication for Integrated Excel Workbooks
	C.4 Generating Log Files for an Integrated Excel Workbook
	C.4.1 About Server-Side Logging
	C.4.2 Using the Oracle Diagnostics Log Analyzer to Analyze ADF Desktop Integration Servlet Requests
	C.4.3 About Client-Side Logging
	C.4.3.1 How to Configure ADF Desktop Integration to Save Logs
	C.4.3.2 About the ADF Desktop Integration Configuration File
	C.4.3.3 How to Configure Logging Using User Environment Variables
	C.4.3.4 What You May Need to Know About the adfdi-common Object

	C.5 Common ADF Desktop Integration Error Messages and Problems

	D ADF Desktop Integration Settings in the Web Application Deployment Descriptor
	D.1 Configuring the ADF Desktop Integration Servlet
	D.2 Configuring the ADF Desktop Integration Excel Download Filter
	D.3 Configuring the ADF Library Filter for ADF Desktop Integration
	D.4 Examples in a Deployment Descriptor File

	E String Keys in the Overridable Resources
	F Java Data Types Supported By ADF Desktop Integration
	G Using the ADF Desktop Integration Model API
	G.1 About the Temporary Row Object
	G.2 About ADF Desktop Integration Model API
	G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

	G.3 ADF Desktop Integration Model API Classes and Methods
	G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
	G.3.1.1 The getAdfdiTempChildRow Method
	G.3.1.2 The getAdfdiTempRowForView Method
	G.3.1.3 The getChildViewDef Method

	H End User Actions
	H.1 Installing, Upgrading, and Removing ADF Desktop Integration
	H.1.1 How to Install ADF Desktop Integration on Your System
	H.1.2 How to Remove ADF Desktop Integration
	H.1.3 How to Upgrade ADF Desktop Integration On a Local System

	H.2 Removing Personal Information
	H.3 Limitations of an Integrated Excel Workbook at Runtime
	H.4 Using an Integrated Excel Workbook
	H.4.1 How to Insert or Paste Rows in an ADF Table Component
	H.4.2 How to Sort ADF Table Data in an Integrated Excel Workbook
	H.4.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook

	H.5 Handling Time Zone Conversion

