
1

Oracle® Enterprise Data Quality
Architecture Guide

Release 11g R1 (11.1.1.9)

E55995-01

April 2015

This document describes the Enterprise Data Quality (EDQ) architecture.

1 Software Components
EDQ is a client-server application comprised of several Graphical User Interfaces
(GUIs), a data repository, and a business layer. The following sections detail the
operation of these components and their data storage, data access, and I/O
requirements.

1.1 Graphical User Interfaces
EDQ provides a number of GUIs that are used to configure and operate the system.
Most are Java Web Start applications, and the remainder are simple web pages. The
following table lists all the GUIs:

GUI Name Technology Purpose

Director Web Start Design and test data quality
processing

Server Console Web Start Operate and monitor jobs

Match Review Web Start Review match results and
make manual match decisions

Dashboard Browser Monitor DQ KPIs and trends

Case Management Web Start Perform detailed
investigations into data issues
through configurable
workflows

Case Management
Administration

Web Start Configure workflows and
permissions for Case
Management

Web Service Tester Browser Test EDQ Web Services

Configuration Analysis Web Start Report on configuration and
perform Diffs between
versions of configuration

Issue Manager Web Start Manage a list of DQ issues

Administration Browser Administer the EDQ server
(users, groups, extensions,
launchpad configuration)

Change Password Browser Change password

2

The GUIs can be accessed from the EDQ Launchpad on the EDQ server. When a client
launches one of the Java Web Start applications, such as Director, the application is
downloaded, installed, and run on the client machine(s). The application
communicates with the server to instantiate changes and receive messages from the
server, such as information about tasks that are running and changes made by other
users.

As EDQ is an extensible system, it can be extended to add further user applications
when installed to work for a particular use case. For example, Oracle Watchlist
Screening extends EDQ to add its own user application for screening data against
watchlists.

1.1.1 Data Storage
The client computer only stores user preferences for the presentation of GUIs, such as
Director. All other information is stored on the EDQ server.

1.1.2 Network Communications
The GUIs and the business layer communicate over either an HTTP or HTTPS
connection, as determined by the GUI configuration on start-up. For simplicity, this
connection is referred to as 'the HTTP connection' in the remainder of this document.

1.2 SQL RDBMS Data Storage
EDQ uses a repository that contains two database schemas: the Config schema and the
Results schema.

1.2.1 Config Schema
The Config schema stores configuration data for EDQ. It is generally used in the
typical transactional manner common to many web applications: queries are run to
access small numbers of records, which are then updated as required.

Data Storage
Normally, only a small amount of data is held in this schema. In simple
implementations, it is likely to be in the order of several megabytes. In the case of an
exceptionally large EDQ system, especially where Case Management is heavily used,
the storage requirements could reach 10 GB.

Configuration Analysis Web Start Analyze project
configurations, and report on
differences'.

Note: Many of the GUIs are available either separately (for dedicated
use) or within another GUI. For example, the Configuration Analysis,
Match Review and Issue Manager GUIs are also available in Director.

Note: Each EDQ server must have its own Config and Results
schemas. If multiple servers are deployed in a High Availability
architecture, configuration cannot be shared by pointing both servers
to the same schemas.

GUI Name Technology Purpose

3

Data Access
Access to the data held in the Config schema is typical of configuration data in other
RDBMS applications. Most database access is in the form of read requests, with
relatively few data update and insert requests.

1.2.2 Results Schema
The Results schema stores snapshot, staged, and results data. It is highly dynamic,
with tables being created and dropped as required to store the data handled by
processors running on the server. Temporary working tables are also created and
dropped during process execution to store any working data that cannot be held in the
available memory.

Data Storage
The amount of data held in the Results schema will be vary significantly over time,
and data capture and processing can involve gigabytes of data. Data may also be
stored in the Results database on a temporary basis while a process or a job runs. In
the case of a job, several versions of the data may be written to the database during
processing.

Data Access
The Results schema shows a very different data access profile to the Config schema,
and is extremely atypical of a conventional web-based database application. Typically,
tables in the Results schema are:

■ Created on demand

■ Populated with data using bulk JDBC APIs

■ Queried using full table scans to support process execution

■ Indexed

■ Queried using complex SQL statements in response to user interactions with the
GUI

■ Dropped when the process or snapshot they are associated with is run again

The dynamic nature of this schema means that it must be handled carefully. For
example, it is often advisable to mount redo log files on a separate disk.

1.3 The Business Layer
The business layer fulfills three main functions:

■ Provides the API that the GUI uses to interact with the rest of the system.

■ Notifies the GUI of server events that may require GUI updates.

■ Runs the processes that capture and process data.

1.3.1 Data Storage
The business layer stores configuration data in the Config schema, and working data
and results in the Results schema.

1.3.2 Network Communications and CPU Load
When passing data to and from the GUI, the business layer behaves in a manner
common to most traditional Java Web Applications. The business layer makes small

4

database transactions and sends small volumes of information to the front-end using
the HTTP connection. This is somewhat unusual in that the application front-ends are
mostly rich GUIs rather than browsers. Therefore the data sent to the GUI consists
mostly of serialized Java objects rather than the more traditional HTML.

However, when running processes and creating snapshots, the business layer behaves
more like a traditional batch application. In its default configuration, it spawns
multiple threads and database connections in order to handle potentially very large
volumes of data, and uses all available CPU cores and database I/O capacity.

It is possible to configure EDQ to limit its use of available resources, but this has clear
performance implications. For further information, see the EDQ Installation Guide and
EDQ Performance Tuning Guide.

2 Product Concepts
The most important elements of EDQ are:

For more details of these and other concepts, see the Concepts section of the EDQ
Online Help.

3 Major Operations
This section describes some of the most significant and resource-intensive operations
performed by EDQ; data capture, general data processing, match processing, and
real-time data processing.

Element Description

snapshot A snapshot is a captured copy of external data stored within the EDQ
repository.

processor A processor is a logical element that performs some operation on the data.
Processors can perform statistical analysis, audit checks, transformations,
matching, or other operations. Processors are chained together to form
processes.

process A process specifies a set of actions to be performed on some specified data. It
comprises a series of processors, each specifying how data is to be handled
and the rules that should be applied to it. A process may produce:

■ Staged data: data or metrics produced by processing the input data and
choosing to write output data to the results database.

■ Results data: metric information summarizing the results of the process.
For example, a simple validation process may record the number of
records that failed and the number of records that passed validation.

job A job is a configured and ordered set of tasks that may be instigated either by
EDQ or externally. Examples of tasks include executions of file downloads,
snapshots, processes, and exports.

reference data Reference data consists of lists and maps that can be used by a processor to
perform checking, matching, transformations and so on. Reference data can
be supplied as part of EDQ or by a third party, or can be defined by the user.

staged data Staged data consists of data snapshots and data written by processes and is
stored within the Results schema.

5

3.1 Data Capture
The data capture process begins with retrieving the data to be captured from an
external data source. Data can be captured from databases, text files, XML files and so
on. For a comprehensive list of possible types of data source, refer to the Data Stores
topic in the Concepts section of the Online Help. Depending on the type of data
source, data capture may involve:

■ Running a single SQL query on the source system.

■ Sequentially processing a delimited or fixed format file.

■ Processing an XML file to produce a stream of data.

As the data is retrieved, it is processed by a single thread. This involves:

■ Assigning an internal sequence number to each input record. This is usually a
monotonically increasing number for each row.

■ Batching the rows into work units. Once a work unit is filled, it is passed into the
results database work queue.

The database work queue is made up of work requests — mostly data insertion or
indexing requests — to be executed on the database. The queue is processed by a pool
of threads that retrieve work units from the queue, obtain a database connection to the
appropriate database, and execute the work. In the case of snapshotting, the work will
consist of using the JDBC batch API to load groups of records into a table.

Once all the data has been inserted for a table, the snapshot process creates one or
more indexing requests and adds them to the database work queue. At least one
indexing request will be created per table to index the unique row identifier, but
depending on the volume of data in the snapshot and the configuration of the
snapshot process other columns in the captured data may also be used to generate
indexes into the snapshot data.

Figure 1 The Data Capture Process

6

3.1.1 Network Communications and CPU Load
Snapshotting is expected to generate:

■ I/O and CPU load on the machine hosting the data source while data is read

■ CPU load on the web application server caused by the snapshot process reading
data and grouping it for insertion

■ I/O and CPU load on the web application server, caused by the database work
unit executor threads

■ A significant amount of I/O on the machine hosting the EDQ Results database as
the data is inserted into a new table

■ A significant amount of I/O and some CPU load on machine hosting the Results
database as the data is indexed

For example, a default EDQ installation on a 4-core server taking a snapshot of 10,000
rows of data 10 columns wide would generate SQL of the following form:

DROP TABLE DN_1;
CREATE TABLE DN_1 (record-id, column1, column2, ..., column10);

100 bulk insert statements of the form:

INSERT INTO DN_1 (record_id, column1, column2, ..., column10) VALUES (?, ?, ...,
?)

each taking a group of 100 parameters. The bulk inserts would be executed in parallel
over four separate database connections, one per CPU core.

ANALYZE TABLE DN_1 ESTIMATE STATISTICS SAMPLE 10 PERCENT

And finally, eleven CREATE INDEX... statements, indexing each of the columns in the
new table (the original ten columns, plus the record_id). The CREATE INDEX statements
would also be executed in parallel over four database connections.

3.2 General Data Processing
Once the data has been captured, it is ready for processing. The reader processor
provides the downstream processors with managed access to the data, and the
downstream processors produce results data. If any writer processors are present, they
will write the results of processing back to the staged data repository.

Running a process causes the web application server to start a number of process
execution threads. The default configuration of EDQ will start as many threads as
there are cores on the EDQ application server machine.

3.2.1 Streaming
Instead of capturing data in a snapshot and storing it in the results database (other
than temporarily during collation), it can be pulled from a source and pushed to
targets as a stream.

3.2.2 Work Sharing
Each process execution thread is assigned a subset of the data to process. When the
input data for a process is a data set of known size, such as snapshot or staged data,
each thread will execute a query to retrieve a subset of the data, identified by the
unique row IDs assigned during snapshotting. So, in the example scenario in
Section 3.1.1 describing the processing 10,000 records of data on a 4-core machine, four

7

queries will be issued against the Results schema. The queries would be of the form:

SELECT record_id, column1, column2, … , column10

FROM DN_1

WHERE record_id > 0 AND record_id <= 2500;

In the case where the process is not run against a data set of known size, such as a job
scheduled to run directly against a data source, records are shared amongst the process
execution threads by reading all records into a queue, which is then consumed by the
process execution threads.

Each process execution thread is also made aware of the sequence of processors that
comprise the process. The process execution threads pass the records through each of
the appropriate processors. As the processors work, they accumulate results that need
to be stored in the Results schema and, in the case of writer processors, they may also
accumulate data that needs to be written to staged data. All this data is accumulated
into insertion groups and added into database work units, which are processed as
described in the 4.1 Data capture section.

Once an execution thread has processed all its assigned records, it waits for all other
process execution threads to complete. The process execution threads then enter a
collation phase, during which the summary data from the multiple copies of the
process are accumulated and written to the Results database by the database work
queue.

The following behavior is expected during batch processing:

■ Read load on the Results schema as the captured data is read.

■ CPU load on the web application server as the data is processed.

■ Significant write load on the Results schema as results and staged data are written
to the schema.

■ Reduced CPU load as the collation phase is entered.

■ A small amount of further database work as any outstanding database work units
are processed and accumulated results written.

■ Further write load on the Results schema at the end of the collation phase, in the
form of requests to index the results and staged data tables, as necessary. The size
and number of the index requests will vary, depending on data volumes and
system configuration.

Processes that are heavily built around cleaning and validation operations will tend to
be bound by the I/O capacity of the database. Some processors consume significant
CPU resource, but generally the speed of operation is determined by how quickly data
can be provided from and written to the Results schema.

3.2.3 All Record Processing
There are a number of processors, such as the Record Duplication Profiler and
Duplicate Check processors, that require access to the whole record set in order to
work. If these processors only had access to a subset of the data, they would be unable
to detect duplicate records with any accuracy. These processes use multiple threads to
absorb the input records and build them into a temporary table. Once all the records
have been examined, they are re-emitted by distributing the records amongst the
various process execution threads. There is no guarantee that a record will be emitted
on the same process execution thread that absorbed it.

8

3.2.4 Run Labels
During the design phase of a project, processes and jobs are typically run interactively
using Director. When a job is run in Director, results will typically be written for
inspection by the user so that the configuration of processes and jobs can be iterated to
work optimally with the in-scope data. The amount of data to write can be controlled
in Director.

However, when a job is deployed to production such detailed results are not normally
required, and jobs are typically run with Run Labels, either from the Server Console or
from the command line. When run with a Run Label, a job will only write the staged
data and results views that the user has configured to be staged in the job, for better
performance efficiency.

3.3 Match Processing
Oracle recommends that the reader familiarizes themselves with the material
contained in the "Advanced Features: Matching Concept Guide" in the Online Help
(http://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/index.htm).
An understanding of the concepts involved in the EDQ matching process will greatly
aid understanding of the material presented here.

EDQ match processors are handled in a significantly different way from the simpler
processors. Due to the nature of the work carried out by match processors, multiple
passes through the data are required.

A match processor is executed by treating it as a series of sub-processes. For example,
consider a process designed to match a customer data snapshot against a list of
prohibited persons. The process contains a match processor that is configured to
produce a list of customer reference numbers and related prohibited person identifiers.
Each data stream that is input to, or output from, the match processor, is considered to
be a sub-process of the match processor. Therefore, there are three sub-processes in this
example, representing the customer data input stream, the prohibited persons input
stream and the output data stream of the match processor. The match processor itself
forms a fourth sub-process, which effectively couples the data inputs to its outputs.
Each sub-process is assigned the normal quota of process execution threads, so on a
4-core machine, each sub-process would have four process execution threads.

Note: Jobs may be designed independently of any specific source or
target of data. Such jobs will normally be run with a set of command
line parameters, or a stored Run Profile that sets the same parameters,
that dynamically change key configuration points such as the physical
source of the data to read, key processing options, and the physical
source of the data to write. Such jobs need to be run with a Run Label
so that the written data and results are clearly separated from other
runs of the job on different data. Server Console allows users to
inspect results by Run Label.

9

Figure 2 Match Process Threads

When execution of the match processor begins, the input data sub-processes run first,
processing the input data. At this point, there is no work available for the match or
match output sub-processes, which remain dormant. The input data sub-processes
generate cluster values for the data streams and store the cluster values and incoming
records in the Results schema, using the normal database work units mechanism.

Once the input data sub-processes have processed all the available records, they
terminate and commence collation of their sub-process results. Meanwhile, the match
sub-process will become active. The match sub-process then works through a series of
stages, with each process execution thread waiting for all the other process execution
threads to complete each stage before they progress to the next. Each time a new stage
begins, the work will be subdivided amongst the processor executor threads in a
manner that is appropriate at that stage. The processing stages are:

Comparison phase The customer data and prohibited people data is retrieved, ordered by
cluster values. The data is gathered into groups of equal cluster values,
queued and passed to the match process threads to compare the
records. Where relationships are found between records the
relationship information is written to the Results schema.

10

This completes the match sub-process, and so the match processor execution threads
now move into their collation phase.

At this point, the sub-process associated with the output of match data becomes active.
The output data is divided amongst the process execution threads for the output
sub-process and passed to the processors down stream from the match processor.
From this point onwards, the data is processed in the normal batch processing way.

Benchmarks and production experience have shown that the comparison phase of a
match processor is one of the few EDQ operations that is likely to become CPU bound.
When anything other than very simple comparison operations are performed, the
ability of the CPU to handle the comparison load limits the process. The comparison
operations scale very well and are perfectly capable of utilizing all CPU cycles
available to the EDQ Web Application Server.

3.4 Real-Time Processing
EDQ is capable of processing messages in real time. Currently, EDQ supports
messaging using:

■ Web Services

■ JMS-enabled messaging software

When configured for real-time message processing, the server starts multiple process
execution threads to handle messages as they are received. An incoming message is
handed to a free process execution thread, or placed in a queue to await the next
process execution thread to become free. Once the message has been processed, any
staged data will be written to the Results database, and the process execution thread
will either pick up the next message from the queue, if one exists, or become available
for the next incoming message.

When processing data in real time, the process may be run in interval mode. Interval
mode allows the process to save results at set intervals so that they can be inspected by
a user and published to the EDQ Dashboard. The interval can be determined either by
the number of records processed or by time limit. When an interval limit is reached,
EDQ starts a new set of process execution threads for the process. Once all the new
process execution threads have completed any necessary initialization, any new
incoming messages are passed to the new threads. Once the old set of process
execution threads have finished processing any outstanding messages, the system
directs those threads to enter the collation phase and save any results, after which the
old process execution threads are terminated and the data is available for browsing.

Provisional
grouping phase

The relationship information detected during the comparison phase is
retrieved in chunks and provisional groups of related records are
formed. The relationship chunks are processed in parallel by the match
processor threads. These provisional groups are written back to the
Results database.

Final grouping
phase

The provisional group table is inspected by a single thread to check for
groups that have been artificially split by chunk boundaries. If any
such cross-chunk groups are found they are merged into a single
group.

Merged output
phase

Each of the match processor threads retrieves an independent subset of
the match groups and forms the merged output, merging multiple
records into the single output records.

11

4 Application Security
Application security is incorporated in many aspects of the application architecture.

4.1 Client-Server Communication
The security of communication between the web application server and the client
applications is determined by the configuration of the Java Application Server hosting
EDQ. The Java Application Server can be configured to use either HTTP or HTTPS.

4.2 Authentication
EDQ authenticates user passwords against values held in the Config database or in a
Lightweight Directory Access Protocol (LDAP) enabled user management server. The
passwords are held in a hashed form that the application cannot reverse. This
configuration is used by:

■ the client user applications

■ the EDQ web pages

The client user applications authenticate users using a proprietary protocol over HTTP
or HTTPS. Passwords are encrypted before being sent to the server.

The web pages are secured using forms-based authentication. Again this
communicates with the server over HTTP or HTTPS.

Mandatory password strength enforcement can also be configured, encompassing the
following criteria:

■ Minimum length.

■ Minimum number of non-alphabetic characters.

■ Minimum number of numeric characters.

■ Prevention of recent password re-use.

■ Prevention of using the user name in the password.

Account security encompassing the following criteria can also be configured:

■ Password expiry.

■ Application behavior following failed login attempts.

4.3 Storing Security Information
EDQ stores security information in a number of places, depending on the nature of the
information:

Connection details for databases that EDQ connects to in order to perform snapshots
and dynamic value lookups are stored in the Config schema. This includes user
names, passwords, hosts names, and port numbers for the database connections.
Passwords are stored in an encrypted form in the Config schema (or in a keystore on
WebLogic platforms) and decrypted by EDQ when it needs to log into these databases.
The decrypted password is not shown to EDQ users or administrators. The
encryption/decryption key for the passwords is generated randomly for each
installation of EDQ. On WebLogic platforms, the key is retained in the Key Store. On
other platforms, it is stored in a file in the EDQ configuration directory. This random

12

key generation on a per-installation basis ensures that encrypted passwords cannot be
copied meaningfully between systems.

In WebLogic installations, and other installations where EDQ uses Java Naming and
Directory Interface (JNDI) connections to connect to its repository databases, the
authentication details to the database are stored in the Application Server. EDQ uses
them by referencing the JNDI names in a file (director.properties) in the EDQ
configuration directory (oedq_home).

4.4 Data Segmentation
When EDQ is being used across multiple business lines, or when several businesses
are using the same system, it is important to be able to segment user access to data.
EDQ achieves this by allowing users and projects to be allocated to groups. Users can
only access a project if they are members of the same group as the project. The Director
user application only presents accessible projects to a given user; all other projects are
invisible, and all contents (including reference data, web services, and so on) are
unavailable to unauthorized users.

5 Related Documents
For more information, see the following documents in the documentation set:

■ Oracle Enterprise Data Quality Installation Guide

See the latest version of this and all documents in the Oracle Enterprise Data Quality
Documentation website at:

http://download.oracle.com/docs/cd/E48549_01/index.htm

Also, see the latest version of the EDQ Online Help, bundled with EDQ.

6 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Oracle Enterprise Data Quality Architecture Guide, Release 11g R1 (11.1.1.9)
E55995-01

Copyright © 2006, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them

Note: Since administrative users must be able to manage all the
projects in the system, any user with permission to create projects can
see all projects in the system regardless of project settings.

13

to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

14

	1 Software Components
	1.1 Graphical User Interfaces
	1.1.1 Data Storage
	1.1.2 Network Communications

	1.2 SQL RDBMS Data Storage
	1.2.1 Config Schema
	1.2.2 Results Schema

	1.3 The Business Layer
	1.3.1 Data Storage
	1.3.2 Network Communications and CPU Load

	2 Product Concepts
	3 Major Operations
	3.1 Data Capture
	3.1.1 Network Communications and CPU Load

	3.2 General Data Processing
	3.2.1 Streaming
	3.2.2 Work Sharing
	3.2.3 All Record Processing
	3.2.4 Run Labels

	3.3 Match Processing
	3.4 Real-Time Processing

	4 Application Security
	4.1 Client-Server Communication
	4.2 Authentication
	4.3 Storing Security Information
	4.4 Data Segmentation

	5 Related Documents
	6 Documentation Accessibility

