

[1] Oracle Fusion Middleware
Developer's Guide for Oracle Event Processing

11g Release 1 (11.1.1.9)

E14301-11

February 2015

Documentation for developers that describes how to build
Oracle Event Processing scalable applications to process
streaming events.

Oracle Fusion Middleware Developer's Guide for Oracle Event Processing 11g Release 1 (11.1.1.9)

E14301-11

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. li

Audience.. li
Documentation Accessibility .. li
Related Documents .. li
Conventions ... lii

What's New in This Guide ... liii

Part I Getting Started with Creating Oracle Event Processing Applications

1 Overview of Creating Oracle Event Processing Applications

Oracle Event Processing Application Programming Model .. 1-1
Key Concepts Underlying Oracle Event Processing Applications ... 1-2
Component Roles in an Event Processing Network ... 1-2
Tools and Supporting Technologies for Developing Applications .. 1-3

How an Oracle Event Processing Application Works... 1-4
Overview of Events, Streams and Relations ... 1-8
Overview of Application Configuration ... 1-9

Overview of EPN Assembly Files... 1-10
Nesting Stages in an EPN Assembly File ... 1-11
Referencing Foreign Stages in an EPN Assembly File ... 1-12

Overview of Component Configuration Files .. 1-12
Accessing Component and Server Configuration Using the
ConfigurationPropertyPlaceholderConfigurer Class 1-13

Configuring Oracle Event Processing Resource Access .. 1-14
Static Resource Injection ... 1-15

Static Resource Names ... 1-15
Dynamic Resource Names... 1-16

Dynamic Resource Injection... 1-16
Dynamic Resource Lookup Using JNDI... 1-17
Understanding Resource Name Resolution... 1-17

Oracle Event Processing APIs ... 1-18
Packaging an Application.. 1-20
Oracle Event Processing Application Lifecycle... 1-20

iv

2 Oracle Event Processing Samples

Overview of the Samples Provided in the Distribution Kit .. 2-1
Ready-to-Run Samples .. 2-2
Sample Source... 2-2

Installing the Default ocep_domain and Samples .. 2-3
Using Oracle Event Processing Visualizer With the Samples... 2-3
Increasing the Performance of the Samples.. 2-4
HelloWorld Example ... 2-4

Running the HelloWorld Example from the helloworld Domain .. 2-5
Building and Deploying the HelloWorld Example from the Source Directory........................ 2-6
Description of the Ant Targets to Build Hello World... 2-6
Implementation of the HelloWorld Example... 2-7

Oracle Continuous Query Language (Oracle CQL) Example .. 2-8
Running the CQL Example... 2-9
Building and Deploying the CQL Example .. 2-11
Description of the Ant Targets to Build the CQL Example .. 2-11
Implementation of the CQL Example .. 2-12

Creating the Missing Event Query .. 2-12
Creating the Moving Average Query ... 2-36

Oracle Spatial Example .. 2-71
Running the Oracle Spatial Example ... 2-72
Building and Deploying the Oracle Spatial Example .. 2-76
Description of the Ant Targets to Build the Oracle Spatial Example 2-77
Implementation of the Oracle Spatial Example .. 2-77

Foreign Exchange (FX) Example ... 2-78
Running the Foreign Exchange Example .. 2-79
Building and Deploying the Foreign Exchange Example from the Source Directory 2-81
Description of the Ant Targets to Build FX ... 2-82
Implementation of the FX Example.. 2-82

Signal Generation Example... 2-83
Running the Signal Generation Example .. 2-84
Building and Deploying the Signal Generation Example from the Source Directory 2-87
Description of the Ant Targets to Build Signal Generation .. 2-87
Implementation of the Signal Generation Example... 2-88

Event Record and Playback Example .. 2-89
Running the Event Record/Playback Example.. 2-90
Building and Deploying the Event Record/Playback Example from the Source Directory 2-96
Description of the Ant Targets to Build the Record and Playback Example.......................... 2-97
Implementation of the Record and Playback Example ... 2-98

3 Getting Started with Developing Oracle Event Processing Applications

Creating an Oracle Event Processing Application ... 3-1
Setting Your Development Environment .. 3-3

How to Set Your Development Environment on Windows .. 3-4
How to Set Your Development Environment on UNIX... 3-5

Using an IDE to Develop Applications.. 3-6
Testing Applications.. 3-6

v

Part II Oracle Event Processing IDE for Eclipse

4 Overview of the Oracle Event Processing IDE for Eclipse

Overview of Oracle Event Processing IDE for Eclipse ... 4-1
Features.. 4-1
JDK Requirements.. 4-2
Default Oracle Event Processing Domain ocep_domain and Development 4-2

Installing the Latest Oracle Event Processing IDE for Eclipse.. 4-2
Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event
Processing .. 4-7
Configuring Eclipse .. 4-11

5 Oracle Event Processing IDE for Eclipse Projects

Oracle Event Processing Project Overview ... 5-1
Creating Oracle Event Processing Projects.. 5-2

How to Create an Oracle Event Processing Project... 5-3
Creating EPN Assembly Files .. 5-6

How to Create a New EPN Assembly File Using Oracle Event Processing IDE for Eclipse .. 5-7
Creating Component Configuration Files ... 5-8

How to Create a New Component Configuration File Using Oracle Event Processing IDE for
Eclipse 5-9

Exporting Oracle Event Processing Projects .. 5-10
How to Export an Oracle Event Processing Project ... 5-11

Upgrading Projects.. 5-13
How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3 5-13
How to Upgrade Projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)....... 5-18

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects 5-25
How to Add a Standard JAR File to an Oracle Event Processing Project............................... 5-26
How to Add an OSGi Bundle to an Oracle Event Processing Project 5-31
How to Add a Property File to an Oracle Event Processing Project.. 5-32
How to Export a Package... 5-34
How to Import a Package .. 5-36

Configuring Oracle Event Processing IDE for Eclipse Preferences .. 5-39
How to Configure Application Library Path Preferences... 5-39
How to Configure Problem Severity Preferences... 5-39

6 Oracle Event Processing IDE for Eclipse and Oracle Event Processing
Servers

Oracle Event Processing Server Overview .. 6-1
Creating Oracle Event Processing Servers... 6-3

How to Create a Local Oracle Event Processing Server and Server Runtime........................... 6-3
How to Create a Remote Oracle Event Processing Server and Server Runtime.................... 6-10
How to Create an Oracle Event Processing Server Runtime.. 6-17

Managing Oracle Event Processing Servers... 6-20
How to Start a Local Oracle Event Processing Server ... 6-20
How to Stop a Local Oracle Event Processing Server.. 6-21

vi

How to Attach to an Existing Local Oracle Event Processing Server Instance...................... 6-22
How to Attach to an Existing Remote Oracle Event Processing Server Instance.................. 6-22
How to Detach From an Existing Oracle Event Processing Server Instance.......................... 6-23
How to Deploy an Application to an Oracle Event Processing Server 6-24
How to Configure Connection and Control Settings for Oracle Event Processing Server .. 6-27
How to Configure Domain (Runtime) Settings for Oracle Event Processing Server............ 6-29
How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for
Eclipse 6-31

Debugging an Oracle Event Processing Application Running on an Oracle Event Processing
Server ... 6-33

How to Debug an Oracle Event Processing Application Running on an Oracle Event
Processing Server 6-34

7 Oracle Event Processing IDE for Eclipse and the Event Processing Network

Opening the EPN Editor ... 7-1
How to Open the EPN Editor from a Project Folder .. 7-1
How to Open the EPN Editor from a Context or Configuration File... 7-3

EPN Editor Overview .. 7-4
Flow Representation .. 7-4
Filtering.. 7-5
Zooming .. 7-6
 Layout ... 7-6
Showing and Hiding Unconnected Beans.. 7-6
Printing and Exporting to an Image.. 7-7
Configuration Badging.. 7-7
Link Specification Location Indicator ... 7-8
Nested Stages.. 7-9
Event Type Repository Editor ... 7-10

Navigating the EPN Editor .. 7-11
Moving the Canvas ... 7-11
Shortcuts to Component Configuration and EPN Assembly Files.. 7-11
Hyperlinking.. 7-12

Hyperlinking in Component Configuration and EPN Assembly Files 7-12
Hyperlinking in Oracle CQL Statements.. 7-13

Context Menus... 7-14
Browsing Oracle Event Processing Types ... 7-15

How to Browse Oracle Event Processing Types .. 7-15
Using the EPN Editor.. 7-18

Creating Nodes.. 7-18
How to Create a Basic Node... 7-19
How to Create an Adapter Node... 7-21
How to Create a Processor Node... 7-26

Connecting Nodes... 7-28
How to Connect Nodes... 7-28

Laying Out Nodes... 7-30
Renaming Nodes ... 7-30
Deleting Nodes .. 7-30

vii

Part III Developing Oracle Event Processing Applications

8 Walkthrough: Assembling a Simple Application

Introduction to the Simple Application Walkthrough ... 8-1
Key Concepts in this Walkthrough ... 8-2
Before You Get Started .. 8-2

Create the Workspace and Project... 8-2
Create an Event Type to Carry Event Data .. 8-7
Add an Input Adapter to Receive Event Data ... 8-11
Add a Channel to Convey Events... 8-13
Create a Listener to Receive and Report Events .. 8-15
Set Up the Load Generator and Test.. 8-19
Add an Oracle CQL Processor to Filter Events .. 8-22
Summary: Simple Application Walkthrough.. 8-27

9 Defining and Using Event Types

Overview of Oracle Event Processing Event Types... 9-1
Where Event Type Instances are Used.. 9-2
High-Level Process for Creating Event Types ... 9-2

Designing Event Types ... 9-2
Identifying the Structure of Event Data.. 9-3
Choosing a Data Type for an Event Type... 9-4
Constraints on Design of Event Types.. 9-5

Constraints on Event Types for Use With the csvgen Adapter ... 9-5
Constraints on Event Types for Use With a Database Table Source 9-5

Mixing Use of Event Type Data Types ... 9-7
Creating Event Types... 9-7

Creating an Oracle Event Processing Event Type as a JavaBean.. 9-7
How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type
Repository Editor 9-8
How to Create an Oracle Event Processing Event Type as a JavaBean Manually 9-10
Using JavaBean Event Type Instances in Java Code... 9-12
Using JavaBean Event Type Instances in Oracle CQL Code ... 9-12
Controlling Event Type Instantiation with an Event Type Builder Class 9-13

Implementing an Event Type Builder Class ... 9-13
Configuring an Event Type that Uses an Event Type Builder................................... 9-14

Creating an Oracle Event Processing Event Type as a Tuple... 9-14
Types for Properties in Tuple-Based Event Types.. 9-15
How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type
Repository Editor 9-15
How to Create an Oracle Event Processing Event Type as a Tuple Manually 9-17
Using a Tuple Event Type Instance in Java Code ... 9-17
Using a Tuple Event Type Instance in Oracle CQL Code.. 9-18

Creating an Oracle Event Processing Event Type as a java.util.Map...................................... 9-18
Types for Properties in java.util.Map-Based Event Types... 9-18
How to Create an Oracle Event Processing Event Type as a java.util.Map 9-19

viii

Using a Map Event Type Instance in Java Code ... 9-20
Using a Map Event Type Instance in Oracle CQL Code.. 9-20

Accessing the Event Type Repository ... 9-20
Using the EPN Assembly File ... 9-20
Using the Spring-DM @ServiceReference Annotation .. 9-21
Using the Oracle Event Processing @Service Annotation... 9-21

Sharing Event Types Between Application Bundles ... 9-22

10 Connecting EPN Stages Using Channels

Overview of Channel Configuration... 10-1
When to Use a Channel .. 10-2
Channels Representing Streams and Relations .. 10-3

Channels as Streams .. 10-3
Channels as Relations.. 10-3

System-Timestamped Channels.. 10-4
Application-Timestamped Channels ... 10-4
Controlling Which Queries Output to a Downstream Channel: selector 10-4
Batch Processing Channels .. 10-6
EventPartitioner Channels ... 10-6
Handling Faults in Channels... 10-6

Configuring a Channel... 10-7
How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for
Eclipse 10-7
How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE
for Eclipse 10-11
How to Create a Channel Component Configuration File Manually 10-14

Example Channel Configuration Files .. 10-17
Channel Component Configuration File ... 10-17
Channel EPN Assembly File.. 10-18

11 Integrating the Java Message Service

Overview of JMS Adapter Configuration .. 11-1
JMS Service Providers... 11-1
Inbound JMS Adapter .. 11-2

Conversion Between JMS Messages and Event Types ... 11-2
Single and Multi-threaded Inbound JMS Adapters.. 11-3
Configuring a JMS Adapter for Durable Subscriptions ... 11-3

Outbound JMS Adapter ... 11-4
Configuring a JMS Adapter for a JMS Service Provider ... 11-4

How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse 11-5
How to Configure a JMS Adapter Manually .. 11-5
How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually 11-7
How to Configure a JMS Adapter for Tibco EMS JMS Manually.. 11-10

Creating a Custom Converter Between JMS Messages and Event Types 11-13
How to Create a Custom Converter for the Inbound JMS Adapter 11-13
How to Create a Custom Converter for the Outbound JMS Adapter................................... 11-14

Encrypting Passwords in the JMS Adapter Component Configuration File 11-15

ix

How to Encrypt Passwords in the JMS Adapter Component Configuration File............... 11-16
Configuring the JMS Adapter EPN Assembly File .. 11-17

JMS Inbound Adapter EPN Assembly File Configuration ... 11-17
JMS Outbound Adapter EPN Assembly File Configuration .. 11-18

Configuring the JMS Adapter Component Configuration File ... 11-19
JMS Inbound Adapter Component Configuration .. 11-19
JMS Outbound Adapter Component Configuration ... 11-22

12 Integrating an HTTP Publish-Subscribe Server

Overview of HTTP Publish-Subscribe Server Adapter Configuration...................................... 12-1
Overview of the Built-In Pub-Sub Adapter for Publishing .. 12-2

Local Publishing... 12-2
Remote Publishing... 12-3

Overview of the Built-In Pub-Sub Adapter for Subscribing... 12-4
Converting Between JSON Messages and Event Types.. 12-5

Configuring an HTTP Pub-Sub Adapter.. 12-5
How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for
Eclipse 12-5
How to Configure an HTTP Pub-Sub Adapter Manually .. 12-6

Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types 12-9
Configuring the HTTP Pub-Sub Adapter EPN Assembly File .. 12-10

HTTP Pub-Sub Adapter for Publishing EPN Assembly File Configuration........................ 12-10
HTTP Pub-Sub Adapter for Subscribing EPN Assembly File Configuration 12-12

Configuring the HTTP Pub-Sub Adapter Component Configuration File 12-13
HTTP Pub-Sub Adapter for Publishing Component Configuration..................................... 12-13
HTTP Pub-Sub Adapter for Subscribing Component Configuration 12-15

13 Integrating a Cache

Overview of Integrating a Cache.. 13-1
Caching Implementations Supported by Oracle Event Processing... 13-2
Overview of Cache Configuration.. 13-3
Caching Use Cases .. 13-4
Caching APIs ... 13-6

Configuring an Oracle Coherence Caching System and Cache ... 13-6
Configuring the Oracle Coherence Caching System and Caches .. 13-7

The coherence-cache-config.xml File .. 13-8
The tangosol-coherence-override.xml File ... 13-10

Configuring a Shared Oracle Coherence Cache ... 13-10
Configuring an Oracle Event Processing Local Caching System and Cache........................... 13-11

Configuring an Oracle Event Processing Caching System ... 13-11
Configuring a Third-Party Caching System and Cache .. 13-14
Adding Caching to an Event Processing Network.. 13-16

Adding the Caching System and Caches to an EPN.. 13-16
Configuring a Cache for Reuse Among Applications ... 13-17
Configuring a Cache as an Event Listener .. 13-17

Specifying the Key Used to Index a Cache... 13-17

x

Specifying a Key Property in EPN Assembly File ... 13-18
Using a Metadata Annotation to Specify a Key ... 13-18
Specifying a Composite Key .. 13-19

Configuring a Cache as an Event Source... 13-19
Exchanging Data Between a Cache and Another Data Source .. 13-20

Loading Cache Data from a Read-Only Data Source ... 13-20
Exchanging Data with a Read-Write Data Source .. 13-21

Accessing a Cache from Application Code .. 13-23
Accessing a Cache from an Oracle CQL Statement ... 13-23

How to Access a Cache from an Oracle CQL Statement.. 13-24
Accessing a Cache From an EPL Statement .. 13-26

How To Access a Cache from an EPL Statement .. 13-26
Accessing a Cache from an Adapter .. 13-27
Accessing a Cache From a Business POJO .. 13-28
Accessing a Cache From an Oracle CQL User-Defined Function.. 13-29
Accessing a Cache From an EPL User-Defined Function ... 13-30
Accessing a Cache Using JMX... 13-31

How to Access a Cache With JMX Using Oracle Event Processing Visualizer 13-31
How to Access a Cache With JMX Using Java... 13-31

14 Integrating Web Services

Understanding Oracle Event Processing and Web Services ... 14-1
How to Invoke a Web Service From an Oracle Event Processing Application 14-1
How to Expose an Oracle Event Processing Application as a Web Service............................... 14-2

15 Integrating an External Component Using a Custom Adapter

Overview of Custom Adapters ... 15-1
Implementing a Custom Adapter... 15-2

Example: Input Adapter Implementation ... 15-3
Implementing Support for Thread and Work Management .. 15-7

Improving Scalability with Multi-Threaded Adapters.. 15-7
Suspending and Resuming Adapter Event Processing ... 15-8

Passing Login Credentials from an Adapter to a Data Feed Provider .. 15-8
How to Pass Static Login Credentials to the Data Feed Provider.. 15-9
How to Pass Dynamic Login Credentials to the Data Feed Provider 15-10
How to Access Login Credentials From an Adapter at Runtime .. 15-11

Configuring a Custom Adapter .. 15-12
Configuring a Custom Adapter in an EPN Assembly File ... 15-13
Configuring a Custom Adapter in a Component Configuration File 15-13

Creating a Custom Adapter Factory... 15-14

16 Handling Events with Java

Roles for Java Code in an Event Processing Network.. 16-1
Handling Events with Sources and Sinks .. 16-2

Implementing an Event Sink ... 16-4
Implementing StreamSink or BatchStreamSink .. 16-4

xi

Implementing RelationSink or BatchRelationSink.. 16-5
Implementing an Event Source ... 16-6

Implementing StreamSource.. 16-7
Implementing RelationSource.. 16-8

Configuring Java Classes as Beans .. 16-9
Configuring a Java Class as an Event Bean... 16-10

Configuring an Event Bean in an EPN Assembly File ... 16-10
Configuring an Event Bean in a Component Configuration File 16-11
Creating an Event Bean Factory... 16-12

Configuring a Java Class as a Spring Bean.. 16-13
Supporting Spring Bean Characteristics... 16-13

17 Querying an Event Stream with Oracle CQL

Overview of Oracle CQL Processor Configuration .. 17-1
Controlling Which Queries Output to a Downstream Channel .. 17-3

Configuring an Oracle CQL Processor.. 17-3
How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse
17-3
How to Create an Oracle CQL Processor Component Configuration File Manually........... 17-4

Configuring an Oracle CQL Processor Table Source ... 17-7
How to Configure an Oracle CQL Processor Table Source Using Oracle Event Processing IDE
for Eclipse 17-8

Configuring an Oracle CQL Processor Cache Source .. 17-11
Configuring an Oracle CQL Processor for Parallel Query Execution 17-11

Setting Up Parallel Query Execution Support .. 17-11
Using the ordering-constraint Attribute ... 17-12
Using partition-order-capacity with Partitioning Queries.. 17-13
Limitations ... 17-14

Handling Faults ... 17-14
Implementing a Fault Handler Class ... 17-15
Registering a Fault Handler... 17-17

Example Oracle CQL Processor Configuration Files ... 17-17
Oracle CQL Processor Component Configuration File ... 17-17
Oracle CQL Processor EPN Assembly File ... 17-18

18 Configuring Applications With Data Cartridges

Understanding Data Cartridge Application Context ... 18-1
How to Configure Oracle Spatial Application Context ... 18-1
How to Configure Oracle JDBC Data Cartridge Application Context 18-3

19 Querying an Event Stream with Oracle EPL

Overview of EPL Processor Component Configuration .. 19-1
Configuring an EPL Processor .. 19-3

How to Configure an EPL Processor Manually.. 19-3
Configuring an EPL Processor Cache Source... 19-6
Example EPL Processor Configuration Files.. 19-6

xii

EPL Processor Component Configuration File... 19-6
EPL Processor EPN Assembly File ... 19-6

20 Configuring Event Record and Playback

Overview of Configuring Event Record and Playback.. 20-1
Storing Events in the Persistent Event Store ... 20-2

Default Persistent Event Store.. 20-2
Custom Persistent Event Store... 20-2
Persistent Event Store Schema ... 20-2

Recording Events .. 20-3
Playing Back Events.. 20-3
Querying Stored Events ... 20-3
Record and Playback Example.. 20-4

Configuring Event Record and Playback in Your Application .. 20-4
Configuring an Event Store for Oracle Event Processing Server ... 20-4
Configuring a Component to Record Events.. 20-5
Configuring a Component to Playback Events .. 20-8
Starting and Stopping the Record and Playback of Events .. 20-10
Description of the Berkeley Database Schema.. 20-11

Creating a Custom Event Store Provider .. 20-12

21 Testing Applications With the Load Generator and csvgen Adapter

Overview of Testing Applications With the Load Generator and csvgen Adapter 21-1
Configuring and Running the Load Generator Utility.. 21-1
Creating a Load Generator Property File .. 21-2
Creating a Data Feed File ... 21-3
Configuring the csvgen Adapter in Your Application... 21-4

22 Testing Applications With the Event Inspector

Overview of Testing Applications With the Event Inspector .. 22-1
Tracing Events ... 22-1
Injecting Events ... 22-2
Event Inspector Event Types ... 22-2
Event Inspector HTTP Publish-Subscribe Channel and Server ... 22-3
Event Inspector Clients .. 22-4

Oracle Event Processing Visualizer... 22-4
Configuring the Event Inspector HTTP Pub-Sub Server .. 22-4

How to Configure a Local Event Inspector HTTP Pub-Sub Server ... 22-5
How to Configure a Remote Event Inspector HTTP Pub-Sub Server 22-5

Injecting Events ... 22-6
Tracing Events.. 22-7

Part IV Completing and Refining Oracle Event Processing Applications

23 Assembling and Deploying Oracle Event Processing Applications

Overview of Application Assembly and Deployment .. 23-1

xiii

Applications ... 23-2
Application Dependencies... 23-2

Private Application Dependencies .. 23-2
Shared Application Dependencies .. 23-3
Native Code Dependencies .. 23-3

Application Libraries .. 23-3
Library Directory ... 23-4
Library Extensions Directory ... 23-4
Creating Application Libraries .. 23-5

Deployment and Deployment Order ... 23-5
Configuration History Management.. 23-6

Assembling an Oracle Event Processing Application.. 23-6
Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for
Eclipse 23-7
Assembling an Oracle Event Processing Application Manually ... 23-7

Creating the MANIFEST.MF File .. 23-8
Accessing Third-Party JAR Files.. 23-10

Accessing Third-Party JAR Files Using Bundle-Classpath 23-10
Accessing Third-Party JAR Files Using -Xbootclasspath.. 23-10

Assembling Applications With Foreign Stages .. 23-11
Assembling a Custom Adapter or Event Bean in Its Own Bundle.. 23-12

How to Assemble a Custom Adapter in its Own Bundle .. 23-12
How to Assemble an Event Bean in its Own Bundle ... 23-13

Managing Application Libraries .. 23-14
How to Define the Application Library Directory Using Oracle Event Processing IDE for
Eclipse 23-14

How to Configure an Absolute Path... 23-15
How to Extend a Path Variable.. 23-16

How to Create an Application Library Using bundler.sh... 23-18
How to Create an Application Library Using Oracle Event Processing IDE for Eclipse ... 23-21
How to Update an Application Library Using Oracle Event Processing IDE for Eclipse.. 23-30
How to View an Application Library Using the Oracle Event Processing Visualizer........ 23-31

Managing Log Message Catalogs... 23-32
Using Message Catalogs With Oracle Event Processing Server... 23-32

Message Catalog Hierarchy.. 23-33
Guidelines for Naming Message Catalogs... 23-33
Using Message Arguments... 23-34
Message Catalog Formats ... 23-35

Log Message Catalog ... 23-35
Simple Text Catalog.. 23-35
Locale-Specific Catalog .. 23-36

Message Catalog Localization.. 23-36
How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for
Localization 23-37

Deploying Oracle Event Processing Applications.. 23-38
How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for
Eclipse 23-39

xiv

How to Deploy an Oracle Event Processing Application Using Oracle Event Processing
Visualizer 23-39
How to Deploy an Oracle Event Processing Application Using the Deployer Utility 23-40

24 Developing Applications for High Availability

Understanding High Availability .. 24-1
High Availability Architecture.. 24-1

High Availability Lifecycle and Failover.. 24-2
Secondary Failure ... 24-3
Primary Failure and Failover .. 24-3
Rejoining the High Availability Multi-Server Domain ... 24-3

Deployment Group and Notification Group ... 24-4
High Availability Components.. 24-4

High Availability Input Adapter.. 24-6
Buffering Output Adapter... 24-6
Broadcast Output Adapter .. 24-6
Correlating Output Adapter ... 24-7
ActiveActiveGroupBean.. 24-7

High Availability and Scalability .. 24-7
High Availability and Oracle Coherence ... 24-8

Choosing a Quality of Service ... 24-9
Simple Failover... 24-9
Simple Failover with Buffering.. 24-10
Light-Weight Queue Trimming... 24-10
Precise Recovery with JMS ... 24-11

Designing an Oracle Event Processing Application for High Availability 24-12
Primary Oracle Event Processing High Availability Use Case 24-12
High Availability Design Patterns .. 24-13

Select the Minimum High Availability Your Application can Tolerate 24-13
Use Oracle Event Processing High Availability Components at All Ingress and Egress
Points 24-13
Only Preserve What You Need... 24-13
Limit Oracle Event Processing Application State .. 24-14
Choose an Adequate warm-up-window-length Time .. 24-14
Type 1 Applications.. 24-14
Type 2 Applications.. 24-15
Ensure Applications are Idempotent ... 24-15
Source Event Identity Externally.. 24-15
Understand the Importance of Event Ordering .. 24-16
Prefer Deterministic Behavior... 24-16
Avoid Multithreading .. 24-16
Prefer Monotonic Event Identifiers.. 24-17
Write Oracle CQL Queries with High Availability in Mind 24-17
Avoid Coupling Servers .. 24-17
Plan for Server Recovery ... 24-17

Oracle CQL Query Restrictions .. 24-17
Range-Based Windows .. 24-18

xv

Tuple-Based Windows... 24-18
Partitioned Windows ... 24-18
Sliding Windows... 24-18
DURATION Clause and Non-Event Detection.. 24-18
Prefer Application Time ... 24-18

Configuring High Availability ... 24-19
Configuring High Availability Quality of Service ... 24-19

How to Configure Simple Failover ... 24-20
How to Configure Simple Failover With Buffering.. 24-23
How to Configure Light-Weight Queue Trimming.. 24-27
How to Configure Precise Recovery With JMS ... 24-35

Configuring High Availability Adapters .. 24-43
How to Configure the High Availability Input Adapter ... 24-44

High Availability Input Adapter EPN Assembly File Configuration 24-44
High Availability Input Adapter Component Configuration File Configuration 24-45

How to Configure the Buffering Output Adapter .. 24-46
Buffering Output Adapter EPN Assembly File Configuration................................ 24-46
Buffering Output Adapter Component Configuration File Configuration 24-47

How to Configure the Broadcast Output Adapter ... 24-47
Broadcast Output Adapter EPN Assembly File Configuration............................... 24-47
Broadcast Output Adapter Component Configuration File Configuration........... 24-48

How to Configure the Correlating Output Adapter... 24-49
Correlating Output Adapter EPN Assembly File Configuration 24-49
Correlating Output Adapter Component Configuration File Configuration........ 24-50

25 Developing Scalable Applications

Understanding Scalability... 25-1
Scalability Options .. 25-1

Scalability and High Availability .. 25-1
Scalability Components.. 25-2

EventPartitioner ... 25-2
EventPartitioner Implementation... 25-2
EventPartitioner Initialization .. 25-3
EventPartitioner Threading... 25-3
EventPartitioner Restrictions .. 25-3

ActiveActiveGroupBean ... 25-3
Scalability in an Oracle Event Processing Application Using the
ActiveActiveGroupBean Without High Availability 25-4
Scalability in an Oracle Event Processing Application Using the
ActiveActiveGroupBean With High Availability 25-6

Configuring Scalability.. 25-7
Configuring Scalability With a Channel EventPartitioner.. 25-7

How to Configure Scalability With the Default Channel EventPartitioner 25-8
How to Configure Scalability With a Custom Channel EventPartitioner 25-10

Configuring Scalability With the ActiveActiveGroupBean.. 25-14
How to Configure Scalability in a JMS Application Without Oracle Event Processing High
Availability 25-15

xvi

How to Configure Scalability in a JMS Application With Oracle Event Processing High
Availability 25-17
How to Configure the ActiveActiveGroupBean Group Pattern Match......................... 25-23

26 Extending Component Configuration

Overview of Extending Component Configuration ... 26-1
Extending Component Configuration Using Annotations ... 26-2
Extending Component Configuration Using an XSD.. 26-2

Extending Component Configuration... 26-2
How to Extend Component Configuration Using Annotations .. 26-2
How to Extend Component Configuration Using an XSD ... 26-4

Creating the XSD Schema File.. 26-6
Complete Example of an Extended XSD Schema File... 26-8

Programming Access to the Configuration of a Custom Adapter or Event Bean 26-9
How to Access Component Configuration Using Resource Injection 26-9
How to Access Component Configuration Using Lifecycle Callbacks 26-10

Lifecycle Callback Annotations ... 26-11
Lifecycle... 26-11

27 Performance Tuning

EPN Performance Tuning .. 27-1
Event Partitioner Channel.. 27-1
Batching Channel .. 27-1
Scalability Using the ActiveActiveGroupBean... 27-1

High Availability Performance Tuning .. 27-2
Host Configuration ... 27-2
High Availability Input Adapter and Quality of Service.. 27-2
High Availability Input Adapter Configuration .. 27-2
Broadcast Output Adapter Configuration .. 27-2
Oracle Coherence Performance Tuning Options.. 27-3

Oracle Coherence Heartbeat Frequency... 27-3
Oracle Coherence Serialization .. 27-3

Part V Appendices

A Additional Information about Spring and OSGi

B Oracle Event Processing Schemas

EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd... B-1
Example EPN Assembly File ... B-1

Component Configuration Schema wlevs_application_config.xsd .. B-2
Example Component Configuration File... B-2

Deployment Schema deployment.xsd... B-3
Example Deployment XML File.. B-3

Server Configuration Schema wlevs_server_config.xsd ... B-3
Example Server Configuration XML File .. B-4

xvii

C Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd

Overview of the Oracle Event Processing Application Assembly Elements C-2
Element Hierarchy .. C-2
Example of an EPN Assembly File That Uses Oracle Event Processing Elements C-3

wlevs:adapter ... C-3
Child Elements .. C-3
Attributes.. C-3
Example .. C-5

wlevs:application-timestamped ... C-5
Child Elements .. C-5
Attributes.. C-5
Example .. C-6

wlevs:cache ... C-6
Child Elements .. C-6
Attributes.. C-7
Example .. C-7

wlevs:cache-listener .. C-8
Attributes.. C-8
Example .. C-8

wlevs:cache-loader .. C-8
Attributes.. C-8
Example .. C-9

wlevs:cache-source .. C-9
Attributes.. C-9
Example .. C-9

wlevs:cache-store ... C-10
Attributes.. C-10
Example .. C-10

wlevs:caching-system ... C-10
Child Elements .. C-10
Attributes.. C-10
Example .. C-11

wlevs:channel... C-11
Child Elements .. C-12
Attributes.. C-12
Example .. C-13

wlevs:class... C-13
Example .. C-13

wlevs:event-bean ... C-14
Child Elements .. C-14
Attributes.. C-14
Example .. C-15

wlevs:event-type .. C-16
Child Elements .. C-16
Attributes.. C-16
Example .. C-16

wlevs:event-type-repository .. C-17

xviii

Child Elements .. C-17
Example .. C-17

wlevs:expression.. C-17
Example .. C-18

wlevs:factory... C-18
Attributes.. C-18
Example .. C-18

wlevs:function.. C-18
Attributes.. C-19
Example .. C-20

Single-Row User-Defined Function on an Oracle CQL Processor.................................... C-20
Single-Row User-Defined Function on an EPL Processor ... C-21
Aggregate User-Defined Function on an Oracle CQL Processor...................................... C-21
Aggregate User-Defined Function on an EPL Processor ... C-23
Specifying the Implementation Class: Nested Bean or Reference C-24

wlevs:instance-property ... C-25
Child Elements .. C-25
Attributes.. C-26
Example .. C-26

wlevs:listener ... C-26
Attributes.. C-27
Example .. C-27

wlevs:metadata... C-27
Child Elements .. C-27
Attributes.. C-27
Example .. C-28

wlevs:processor .. C-28
Child Elements .. C-28
Attributes.. C-28
Example .. C-29

wlevs:properties... C-29
Child Elements .. C-29
Attributes.. C-29
Example .. C-30

wlevs:property ... C-30
Attributes.. C-30
Example .. C-31

wlevs:property ... C-31
Child Elements .. C-31
Attributes.. C-32
Example .. C-32

wlevs:source ... C-32
Attributes.. C-32
Example .. C-33

wlevs:table .. C-33
Attributes.. C-33
Example .. C-33

xix

wlevs:table-source ... C-34
Attributes.. C-34
Example .. C-34

D Schema Reference: Component Configuration wlevs_application_config.xsd

Overview of the Oracle Event Processing Component Configuration Elements D-4
Element Hierarchy .. D-4
Example of an Oracle Event Processing Component Configuration File D-13

accept-backlog.. D-14
Child Elements .. D-14
Attributes.. D-14
Example .. D-14

active .. D-14
Child Elements .. D-15
Attributes.. D-15
Example .. D-15

adapter ... D-15
Child Elements .. D-15
Attributes.. D-15
Example .. D-15

amount ... D-16
Child Elements .. D-16
Attributes.. D-16
Example .. D-16

application .. D-17
Child Elements .. D-17
Attributes.. D-17
Example .. D-17

average-interval ... D-17
Child Elements .. D-18
Attributes.. D-18
Example .. D-18

average-latency .. D-18
Child Elements .. D-18
Attributes.. D-19
Example .. D-19

batch-size .. D-19
Child Elements .. D-19
Attributes.. D-19
Example .. D-19

batch-time-out .. D-20
Child Elements .. D-20
Attributes.. D-20
Example .. D-20

binding .. D-20
Child Elements .. D-20
Attributes.. D-20

xx

Example .. D-21
bindings (jms-adapter) ... D-21

Child Elements .. D-21
Attributes.. D-21
Example .. D-22

bindings (processor) ... D-22
Child Elements .. D-22
Attributes.. D-22
Example .. D-23

buffer-size ... D-23
Child Elements .. D-23
Attributes.. D-23
Example .. D-23

buffer-write-attempts ... D-24
Child Elements .. D-24
Attributes.. D-24
Example .. D-24

buffer-write-timeout ... D-24
Child Elements .. D-25
Attributes.. D-25
Example .. D-25

cache ... D-25
Child Elements .. D-25
Attributes.. D-26
Example .. D-26

caching-system ... D-26
Child Elements .. D-26
Attributes.. D-26
Example .. D-27

channel .. D-27
Child Elements .. D-27
Attributes.. D-27
Example .. D-27

channel (http-pub-sub-adapter Child Element) .. D-28
Child Elements .. D-28
Attributes.. D-28
Example .. D-28

channel-name ... D-28
Child Elements .. D-28
Attributes.. D-29
Example .. D-29

coherence-cache-config .. D-29
Child Elements .. D-29
Attributes.. D-29
Example .. D-29

coherence-caching-system ... D-29
Child Elements .. D-30

xxi

Attributes.. D-30
Example .. D-30

coherence-cluster-config .. D-30
Child Elements .. D-30
Attributes.. D-30
Example .. D-30

collect-interval.. D-31
Child Elements .. D-31
Attributes.. D-31
Example .. D-31

concurrent-consumers .. D-31
Child Elements .. D-32
Attributes.. D-32
Example .. D-32

connection-jndi-name... D-32
Child Elements .. D-32
Attributes.. D-32
Example .. D-32

connection-encrypted-password .. D-33
Child Elements .. D-33
Attributes.. D-33
Example .. D-33

connection-password .. D-33
Child Elements .. D-34
Attributes.. D-34
Example .. D-34

connection-user.. D-34
Child Elements .. D-34
Attributes.. D-34
Example .. D-34

database ... D-35
Child Elements .. D-35
Attributes.. D-35
Example .. D-35

dataset-name... D-35
Child Elements .. D-35
Attributes.. D-36
Example .. D-36

delivery-mode .. D-36
Child Elements .. D-36
Attributes.. D-36
Example .. D-36

destination-jndi-name .. D-36
Child Elements .. D-36
Attributes.. D-37
Example .. D-37

destination-name ... D-37

xxii

Child Elements .. D-37
Attributes.. D-37
Example .. D-37

destination-type ... D-37
Child Elements .. D-37
Attributes.. D-38
Example .. D-38

diagnostic-profiles .. D-38
Child Elements .. D-38
Attributes.. D-38
Example .. D-38

direction .. D-39
Child Elements .. D-39
Attributes.. D-39
Example .. D-39

durable-subscription .. D-39
Child Elements .. D-40
Attributes.. D-40
Example .. D-40

durable-subscription-name ... D-40
Child Elements .. D-40
Attributes.. D-40
Example .. D-40

duration ... D-41
Child Elements .. D-41
Attributes.. D-41
Example .. D-41

enabled .. D-41
Child Elements .. D-41
Attributes.. D-42
Example .. D-42

encrypted-password .. D-42
Child Elements .. D-42
Attributes.. D-42
Example .. D-43

end .. D-43
Child Elements .. D-43
Attributes.. D-43
Example .. D-43

end-location .. D-44
Child Elements .. D-44
Attributes.. D-44
Example .. D-44

event-bean... D-44
Child Elements .. D-45
Attributes.. D-45
Example .. D-45

xxiii

event-type.. D-45
Child Elements .. D-46
Attributes.. D-46
Example .. D-46

event-type-list .. D-46
Child Elements .. D-46
Attributes.. D-46
Example .. D-46

eviction-policy.. D-46
Child Elements .. D-47
Attributes.. D-47
Example .. D-47

fail-when-rejected ... D-47
Child Elements .. D-47
Attributes.. D-47
Example .. D-47

group-binding .. D-48
Child Elements .. D-48
Attributes.. D-48
Example .. D-48

heartbeat.. D-49
Child Elements .. D-49
Attributes.. D-49
Example .. D-49

http-pub-sub-adapter.. D-49
Child Elements .. D-49
Attributes.. D-50
Example .. D-50

idle-time .. D-50
Child Elements .. D-50
Attributes.. D-50
Example .. D-51

inject-parameters ... D-51
Child Elements .. D-51
Attributes.. D-51
Example .. D-51

jms-adapter ... D-52
Child Elements .. D-52
Attributes.. D-52
Example .. D-52

jndi-factory ... D-53
Child Elements .. D-53
Attributes.. D-53
Example .. D-53

jndi-provider-url.. D-53
Child Elements .. D-53
Attributes.. D-53

xxiv

Example .. D-53
listeners ... D-54

Child Elements .. D-54
Attributes.. D-54
Example .. D-54

location .. D-55
Child Elements .. D-55
Attributes.. D-55
Example .. D-55

max-latency ... D-55
Child Elements .. D-56
Attributes.. D-56
Example .. D-56

max-size ... D-56
Child Elements .. D-56
Attributes.. D-56
Example .. D-57

max-threads .. D-57
Child Elements .. D-57
Attributes.. D-57
Example .. D-57

message-selector .. D-57
Child Elements .. D-58
Attributes.. D-58
Example .. D-58

name ... D-58
Child Elements .. D-58
Attributes.. D-58
Example .. D-58

netio.. D-59
Child Elements .. D-59
Attributes.. D-59
Example .. D-59

num-threads.. D-59
Child Elements .. D-59
Attributes.. D-59
Example .. D-59

offer-timeout .. D-59
Child Elements .. D-60
Attributes.. D-60
Example .. D-60

param ... D-60
Child Elements .. D-60
Attributes.. D-60
Example .. D-60

parameter .. D-61
Child Elements .. D-61

xxv

Attributes.. D-61
Example .. D-61

params.. D-62
Child Elements .. D-62
Attributes.. D-62
Example .. D-62

partition-order-capacity.. D-63
Child Elements .. D-63
Attributes.. D-63
Example .. D-63

password ... D-63
Child Elements .. D-63
Attributes.. D-64
Example .. D-64

playback-parameters... D-64
Child Elements .. D-64
Attributes.. D-64
Example .. D-64

playback-speed .. D-65
Child Elements .. D-65
Attributes.. D-65
Example .. D-65

processor (EPL)... D-65
Child Elements .. D-65
Attributes.. D-66
Example .. D-66

processor (Oracle CQL) .. D-66
Child Elements .. D-66
Attributes.. D-67
Example .. D-67

profile .. D-68
Child Elements .. D-68
Attributes.. D-68
Example .. D-68

provider-name.. D-69
Child Elements .. D-69
Attributes.. D-69
Example .. D-69

query .. D-69
Child Elements .. D-70
Attributes.. D-70
Example .. D-70

record-parameters.. D-71
Child Elements .. D-71
Attributes.. D-71
Example .. D-71

repeat.. D-72

xxvi

Child Elements .. D-72
Attributes.. D-72
Example .. D-72

rule.. D-72
Child Elements .. D-72
Attributes.. D-72
Example .. D-73

rules.. D-73
Child Elements .. D-73
Attributes.. D-74
Example .. D-74

schedule-time-range.. D-74
Child Elements .. D-74
Attributes.. D-74
Example .. D-75

schedule-time-range-offset.. D-75
Child Elements .. D-75
Attributes.. D-75
Example .. D-75

selector ... D-76
Child Elements .. D-77
Attributes.. D-77
Example .. D-77

server-context-path.. D-77
Child Elements .. D-78
Attributes.. D-78
Example .. D-78

server-url ... D-78
Child Elements .. D-78
Attributes.. D-78
Example .. D-78

session-ack-mode-name ... D-79
Child Elements .. D-79
Attributes.. D-79
Example .. D-79

session-transacted.. D-79
Child Elements .. D-79
Attributes.. D-80
Example .. D-80

stage.. D-80
Child Elements .. D-80
Attributes.. D-80
Example .. D-80

start ... D-81
Child Elements .. D-81
Attributes.. D-81
Example .. D-81

xxvii

start-location ... D-81
Child Elements .. D-82
Attributes.. D-82
Example .. D-82

start-stage .. D-82
Child Elements .. D-83
Attributes.. D-83
Example .. D-83

store-policy-parameters.. D-83
Child Elements .. D-83
Attributes.. D-83
Example .. D-83

stream... D-84
Child Elements .. D-84
Attributes.. D-84
Example .. D-84

symbol ... D-84
Child Elements .. D-84
Attributes.. D-85
Example .. D-85

symbols.. D-85
Child Elements .. D-85
Attributes.. D-85
Example .. D-85

threshold ... D-85
Child Elements .. D-86
Attributes.. D-86
Example .. D-86

throughput .. D-86
Child Elements .. D-86
Attributes.. D-87
Example .. D-87

throughput-interval .. D-87
Child Elements .. D-87
Attributes.. D-87
Example .. D-87

time-range ... D-88
Child Elements .. D-88
Attributes.. D-88
Example .. D-88

time-range-offset ... D-89
Child Elements .. D-89
Attributes.. D-89
Example .. D-89

time-to-live.. D-89
Child Elements .. D-90
Attributes.. D-90

xxviii

Example .. D-90
trace-parameters... D-90

Child Elements .. D-90
Attributes.. D-90
Example .. D-90

unit ... D-91
Child Elements .. D-91
Attributes.. D-91
Example .. D-91

user ... D-92
Child Elements .. D-92
Attributes.. D-92
Example .. D-92

value ... D-92
Child Elements .. D-92
Attributes.. D-92
Example .. D-92

view .. D-93
Child Elements .. D-93
Attributes.. D-93
Example .. D-94

work-manager .. D-94
Child Elements .. D-94
Attributes.. D-94
Example .. D-94

work-manager-name ... D-95
Child Elements .. D-95
Attributes.. D-95
Example .. D-95

write-behind ... D-95
Child Elements .. D-95
Attributes.. D-96
Example .. D-96

write-none ... D-96
Child Elements .. D-96
Attributes.. D-96
Example .. D-96

write-through ... D-97
Child Elements .. D-97
Attributes.. D-97
Example .. D-97

E Schema Reference: Deployment deployment.xsd

Overview of the Oracle Event Processing Deployment Elements... E-1
Element Hierarchy .. E-1
Example of an Oracle Event Processing Deployment Configuration File E-1

wlevs:deployment ... E-2

xxix

Child Elements .. E-2
Attributes.. E-2
Example .. E-2

F Schema Reference: Server Configuration wlevs_server_config.xsd

Overview of the Oracle Event Processing Server Configuration Elements................................. F-2
Element Hierarchy .. F-2
Example of an Oracle Event Processing Server Configuration File... F-3

auth-constraint ... F-5
Child Elements .. F-5
Attributes.. F-6
Example .. F-6

bdb-config... F-6
Child Elements .. F-6
Attributes.. F-7
Example .. F-7

channels... F-7
Child Elements .. F-7
Attributes.. F-7
Example .. F-7

channel-constraints ... F-8
Child Elements .. F-8
Attributes.. F-8
Example .. F-8

channel-resource-collection... F-9
Child Elements .. F-9
Attributes.. F-9
Example .. F-9

cluster... F-10
Child Elements .. F-10
Attributes.. F-11
Example .. F-12

connection-pool-params... F-12
Child Elements .. F-12
Attributes.. F-14
Example .. F-14

cql ... F-15
Child Elements .. F-15
Attributes.. F-15
Example .. F-15

data-source .. F-15
Child Elements .. F-15
Attributes.. F-15
Example .. F-16

data-source-params ... F-16
Child Elements .. F-16
Attributes.. F-17

xxx

Example .. F-17
driver-params ... F-18

Child Elements .. F-18
Attributes.. F-18
Example .. F-19

domain ... F-19
Child Elements .. F-19
Attributes.. F-19
Example .. F-19

debug ... F-20
Child Elements .. F-20
Attributes.. F-20
Example .. F-20

event-store... F-20
Child Elements .. F-20
Attributes.. F-21
Example .. F-21

exported-jndi-context.. F-21
Child Elements .. F-21
Attributes.. F-21
Example .. F-22

http-pubsub .. F-22
Child Elements .. F-22
Attributes.. F-22
Example .. F-22

jetty... F-23
Child Elements .. F-23
Attributes.. F-23
Example .. F-23

jetty-web-app ... F-24
Child Elements .. F-24
Attributes.. F-24
Example .. F-24

jmx .. F-24
Child Elements .. F-25
Attributes.. F-25
Example .. F-25

jndi-context ... F-25
Child Elements .. F-25
Attributes.. F-25
Example .. F-26

log-file.. F-26
Child Elements .. F-26
Attributes.. F-27
Example .. F-27

log-stdout .. F-27
Child Elements .. F-27

xxxi

Attributes.. F-28
Example .. F-28

logging-service ... F-28
Child Elements .. F-28
Attributes.. F-29
Example .. F-29

message-filters ... F-29
Child Elements .. F-29
Attributes.. F-30
Example .. F-30

name ... F-30
Child Elements .. F-30
Attributes.. F-30
Example .. F-30

netio.. F-30
Child Elements .. F-31
Attributes.. F-31
Example .. F-31

netio-client .. F-31
Child Elements .. F-31
Attributes.. F-32
Example .. F-32

partition-order-capacity.. F-32
Child Elements .. F-32
Attributes.. F-32
Example .. F-32

path... F-33
Child Elements .. F-33
Attributes.. F-33
Example .. F-33

pubsub-bean... F-33
Child Elements .. F-33
Attributes.. F-34
Example .. F-34

rdbms-event-store-provider .. F-34
Child Elements .. F-34
Attributes.. F-35
Example .. F-35

rmi .. F-35
Child Elements .. F-35
Attributes.. F-36
Example .. F-36

scheduler ... F-36
Child Elements .. F-36
Attributes.. F-37
Example .. F-37

server-config ... F-37

xxxii

Child Elements .. F-37
Attributes.. F-38
Example .. F-38

services .. F-39
Child Elements .. F-39
Attributes.. F-39
Example .. F-39

show-detail-error-message .. F-40
Child Elements .. F-40
Attributes.. F-40
Example .. F-40

ssl .. F-41
Child Elements .. F-41
Attributes.. F-42
Example .. F-42

timeout-seconds ... F-42
Child Elements .. F-42
Attributes.. F-42
Example .. F-42

transaction-manager.. F-43
Child Elements .. F-43
Attributes.. F-45
Example .. F-45

use-secure-connections... F-45
Child Elements .. F-46
Attributes.. F-46
Example .. F-46

weblogic-instances .. F-46
Child Elements .. F-46
Attributes.. F-46
Example .. F-47

weblogic-jta-gateway.. F-47
Child Elements .. F-47
Attributes.. F-47
Example .. F-47

weblogic-rmi-client ... F-48
Child Elements .. F-48
Attributes.. F-48
Example .. F-48

work-manager .. F-48
Child Elements .. F-48
Attributes.. F-49
Example .. F-49

xa-params .. F-49
Child Elements .. F-49
Attributes.. F-51
Example .. F-51

xxxiii

G Schema Reference: Message Catalog msgcat.dtd

Overview of the Message Catalog Elements.. G-1
Element Hierarchy .. G-1
Examples .. G-2

message_catalog... G-3
Child Elements .. G-3
Attributes.. G-3
Example .. G-4

logmessage.. G-5
Child Elements .. G-5
Attributes.. G-5
Example .. G-7

message.. G-7
Child Elements .. G-7
Attributes.. G-7
Example .. G-8

messagebody .. G-9
Child Elements .. G-9
Attributes.. G-9
Example .. G-9

messagedetail ... G-10
Child Elements .. G-10
Attributes.. G-10
Example .. G-10

cause ... G-10
Child Elements .. G-11
Attributes.. G-11
Example .. G-11

action.. G-11
Child Elements .. G-11
Attributes.. G-12
Example .. G-12

H Schema Reference: Locale Message Catalog l10n_msgcat.dtd

Overview of the Locale Message Catalog Elements ... H-1
Element Hierarchy .. H-1
Examples .. H-2

locale_message_catalog .. H-3
Child Elements .. H-3
Attributes.. H-3
Example .. H-3

logmessage.. H-4
Child Elements .. H-4
Attributes.. H-4
Example .. H-4

message.. H-5

xxxiv

Child Elements .. H-5
Attributes.. H-5
Example .. H-5

messagebody .. H-6
Child Elements .. H-6
Attributes.. H-6
Example .. H-6

messagedetail ... H-6
Child Elements .. H-6
Attributes.. H-6
Example .. H-7

cause ... H-7
Child Elements .. H-7
Attributes.. H-7
Example .. H-7

action.. H-8
Child Elements .. H-8
Attributes.. H-8
Example .. H-8

I Oracle Event Processing Metadata Annotation Reference

Overview of Oracle Event Processing Metadata Annotations ... I-1
Adapter Lifecycle Annotations ... I-1
OSGi Service Reference Annotations ... I-2
Resource Access Annotations.. I-2

com.bea.wlevs.configuration.Activate .. I-2
Example .. I-2

com.bea.wlevs.configuration.Prepare ... I-4
Example .. I-4

com.bea.wlevs.configuration.Rollback ... I-5
Example .. I-5

com.bea.wlevs.util.Service .. I-6
Attributes.. I-6
Example .. I-7

xxxv

xxxvi

List of Tables

1–1 Resource Name Resolution.. 1-17
2–1 Valid Order Workflow ... 2-12
2–2 Invalid Order Workflow .. 2-12
2–3 MATCH_RECOGNIZE Pattern Quantifiers ... 2-21
2–4 Condition Definitions... 2-22
4–1 New Update Site Dialog Attributes .. 4-4
4–2 Oracle Event Processing IDE for Eclipse Plug-Ins .. 4-7
4–3 Oracle Event Processing IDE for Eclipse Plug-Ins ... 4-11
5–1 Oracle Event Processing Project Artifacts .. 5-2
5–2 Create an Oracle Event Processing Application Dialog... 5-4
5–3 Oracle Event Processing Application Content Dialog.. 5-5
5–4 New OEP Assembly File Dialog .. 5-8
5–5 New OEP Configuration File Dialog.. 5-10
5–6 Oracle Event Processing Application Content Dialog... 5-12
5–7 Oracle Event Processing Problem Severities... 5-41
6–1 Eclipse and Oracle Event Processing Server Concepts... 6-1
6–2 New Server: Define New Server Dialog (No Installed Runtimes) Attributes 6-5
6–3 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes.................... 6-6
6–4 New Server: Define New Server (Installed Runtimes) Dialog Attributes 6-7
6–5 New Server: New Oracle Event Processing v11 Server Dialog Attributes for a Local Server

6-9
6–6 New Server: Define New Server Dialog (No Installed Runtimes) Attributes 6-12
6–7 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes................. 6-13
6–8 New Server: Define New Server (Installed Runtimes) Dialog Attributes 6-14
6–9 New Server: Oracle Event Processing v11 Server Dialog Attributes for a Local Server

6-16
6–10 New Server Runtime Dialog Attributes .. 6-18
6–11 New Server Runtime Dialog Attributes .. 6-19
6–12 Add and Remove Dialog Attributes .. 6-25
6–13 Server Overview Editor Attributes .. 6-28
7–1 Oracle Event Processing Type Dialog.. 7-16
7–2 EPN Editor Icons... 7-18
7–3 New Adapter Wizard - Page 1 .. 7-22
7–4 New Processor Dialog .. 7-27
9–1 Data Types for Event Types ... 9-4
9–2 csvgen Adapter Types... 9-5
9–3 EPN Assembly File event-type Element Property Attributes ... 9-5
9–4 SQL Column Types and Oracle Event Processing Type Equivalents 9-6
11–1 jms-adapter Inbound Child Elements.. 11-20
11–2 jms-adapter Outbound Component Configuration Child Elements............................. 11-22
12–1 http-pub-sub-adapter for Publishing Component Configuration Child Elements..... 12-14
12–2 http-pub-sub-adapter for Subscribing Component Configuration Child Elements... 12-15
14–1 bea-jaxws.xml File Attributes.. 14-3
15–1 Interfaces to Support Suspending and Resuming an Adapter... 15-8
16–1 Interfaces for Implementing an Event Source .. 16-7
16–2 Interfaces Implemented by Sender Classes... 16-7
16–3 Comparison of Event Beans and Spring Beans .. 16-10
17–1 EPN Assembly File table Element Attributes ... 17-9
18–1 spatial:context Element Attributes ... 18-2
20–1 Child Elements of bdb-config.. 20-5
20–2 Child Elements of record-parameters .. 20-6
20–3 Child Elements of playback-parameters ... 20-9
21–1 Load Generator Properties .. 21-3

xxxvii

22–1 Event Inspector JSON Event Required Attributes ... 22-3
23–1 Oracle Event Processing Application LIbrary Path ... 23-15
23–2 Oracle Event Processing Application LIbrary Path Variable ... 23-16
23–3 bundler.sh Command Line Options .. 23-19
23–4 Factory Class and Service Interfaces .. 23-20
23–5 New Java Class Parameters ... 23-22
23–6 weblogic.i18ngen Utility Options... 23-37
24–1 Oracle Event Processing High Availability Quality of Service .. 24-9
24–2 Oracle Event Processing High Availability Application Types 24-14
24–3 Child Elements of wlevs:adapter for the High Availability Input Adapter................. 24-45
24–4 High Availability Input Adapter Instance Properties ... 24-45
24–5 Child Elements of ha-inbound-adapter for the High Availability Input Adapter...... 24-46
24–6 Child Elements of wlevs:adapter for the Buffering Output Adapter............................ 24-46
24–7 Buffering Output Adapter Instance Properties .. 24-47
24–8 Child Elements of ha-buffering-adapter for the Buffering Output Adapter 24-47
24–9 Child Elements of wlevs:adapter for the Broadcast Output Adapter........................... 24-48
24–10 Broadcast Output Adapter Instance Properties ... 24-48
24–11 Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter 24-49
24–12 Child Elements of wlevs:adapter for the Correlating Output Adapter 24-50
24–13 Correlating Output Adapter Instance Properties... 24-50
24–14 Child Elements of ha-correlating-adapter for the Correlating Output Adapter 24-50
25–1 Event Partitioner Channel Threading Options... 25-3
25–2 New Java Class Options for EventPartitioner .. 25-11
25–3 Oracle Event Processing Server Configuration File groups Element Configuration.. 25-15
25–4 Oracle Event Processing Server Configuration File groups Element Configuration.. 25-20
C–1 Attributes of the wlevs:adapter Application Assembly Element C-4
C–2 Attributes of the wlevs:application-timestamped Application Assembly Element C-6
C–3 Attributes of the wlevs:cache Application Assembly Element .. C-7
C–4 Attributes of the wlevs:cache-listener Application Assembly Element............................ C-8
C–5 Attributes of the wlevs:cache-loader Application Assembly Element C-8
C–6 Attributes of the wlevs:cache-source Application Assembly Element C-9
C–7 Attributes of the wlevs:cache-store Application Assembly Element C-10
C–8 Attributes of the wlevs:caching-system Application Assembly Element....................... C-11
C–9 Attributes of the wlevs:channel Application Assembly Element C-12
C–10 Attributes of the wlevs:event-bean Application Assembly Element C-14
C–11 Attributes of the wlevs:event-type Application Assembly Element C-16
C–12 Attributes of the wlevs:factory Application Assembly Element C-18
C–13 Attributes of the wlevs:function Application Assembly Element C-19
C–14 Attributes of the wlevs:instance-property Application Assembly Element C-26
C–15 Attributes of the wlevs:listener Application Assembly Element..................................... C-27
C–16 Attributes of the wlevs:metadata Application Assembly Element C-28
C–17 Attributes of the wlevs:processor Application Assembly Element................................. C-28
C–18 Attributes of the wlevs:properties Application Assembly Element................................ C-29
C–19 Attributes of the wlevs:property Application Assembly Element C-30
C–20 Attributes of the wlevs:property Application Assembly Element C-32
C–21 Attributes of the wlevs:source Application Assembly Element C-33
C–22 Attributes of the wlevs:table Application Assembly Element ... C-33
C–23 Attributes of the wlevs:table-source Application Assembly Element C-34
D–1 Attributes of the binding Component Configuration Element.. D-21
D–2 Attributes of the database Component Configuration Element D-35
D–3 Attributes of the group-binding Component Configuration Element............................ D-48
D–4 Attributes of the listeners Component Configuration Element D-54
D–5 Attributes of the param Component Configuration Element .. D-60
D–6 Attributes of the params Component Configuration Element... D-62
D–7 Attributes of the query Component Configuration Element ... D-70

xxxviii

D–8 Attributes of the rule Component Configuration Element... D-73
D–9 Attributes of the view Component Configuration Element ... D-93
E–1 Attributes of the wlevs:deployment Deployment Element .. E-2
F–1 Child Elements of: auth-constraint... F-5
F–2 Child Elements of: bdb-config... F-6
F–3 Child Elements of: channel-resource-collection ... F-9
F–4 Child Elements of: cluster.. F-10
F–5 Child Elements of: connection-pool-params... F-12
F–6 Child Elements of: data-source-params... F-16
F–7 Child Elements of: driver-params .. F-18
F–8 Child Elements of: debug... F-20
F–9 Child Elements of: event-store .. F-20
F–10 Child Elements of: exported-jndi-context ... F-21
F–11 Child Elements of: jetty .. F-23
F–12 Child Elements of: jetty-web-app ... F-24
F–13 Child Elements of: jmx ... F-25
F–14 Child Elements of: jndi-context... F-25
F–15 Child Elements of: log-file ... F-26
F–16 Child Elements of: log-stdout ... F-27
F–17 Child Elements of: logging-service... F-28
F–18 Child Elements of: netio... F-31
F–19 Child Elements of: netio-client.. F-31
F–20 Child Elements of: rdbms-event-store-provider .. F-34
F–21 Child Elements of: rmi ... F-35
F–22 Child Elements of: scheduler .. F-36
F–23 Child Elements of: server-config .. F-37
F–24 Child Elements of: services.. F-39
F–25 Child Elements of: show-detail-error-message .. F-40
F–26 Child Elements of: ssl ... F-41
F–27 Child Elements of: transaction-manager ... F-43
F–28 Child Elements of: use-secure-connections... F-46
F–29 Child Elements of: weblogic-instances .. F-46
F–30 Child Elements of: weblogic-rmi-client ... F-48
F–31 Child Elements of: work-manager ... F-49
F–32 Child Elements of: xa-params ... F-49
G–1 Attributes of the message_catalog Element .. G-3
G–2 Attributes of the logmessage Element ... G-5
G–3 Attributes of the message Element... G-7
H–1 Attributes of the locale_message_catalog Element .. H-3
H–2 Attributes of the logmessage Element ... H-4
H–3 Attributes of the message Element... H-5
I–1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag I-6

xxxix

xl

List of Examples

1–1 EPN Assembly File With Nested Bean ... 1-11
1–2 EPN Assembly File With all Nodes Nested ... 1-11
1–3 Application 1 Referencing Foreign Stage in Application 2.. 1-12
1–4 Foreign Stage in Application 2... 1-12
1–5 Adding a ConfigurationPropertyPlaceholderConfigurer.. 1-13
1–6 Sample Resource: Data Source StockDS ... 1-14
1–7 Static Resource Injection Using Static Resource Names: Annotations............................. 1-15
1–8 Static Resource Injection Using Static Resource Names: XML.. 1-15
1–9 Static Resource Injection Using Static Resource Names: Annotations............................. 1-15
1–10 Static Resource Injection Using Static Resource Names: XML.. 1-16
1–11 Custom Component Configuration .. 1-16
1–12 Static Resource Injection Using Dynamic Resource Names: Annotations 1-16
1–13 Static Resource Injection Using Dynamic Resource Names: XML 1-16
1–14 Dynamic Resource Injection: Annotations ... 1-16
1–15 Dynamic Resource Lookup Using JNDI... 1-17
2–1 recplay Application Configuration File config.xml: adapter Element............................. 2-93
4–1 Default eclipse.ini File ... 4-11
4–2 Memory Resources .. 4-11
4–3 Virtual Machine Path... 4-12
5–1 Accessing a Properties File ... 5-33
7–1 Assembly Source for EPN With Nested Bean... 7-9
7–2 Assembly Source for EPN With all Nodes Nested ... 7-10
8–1 GetHighVolume Query Element with CQL Code .. 8-23
9–1 Event Type Repository... 9-7
9–2 MarketEvent Class .. 9-8
9–3 MarketEvent Class ... 9-11
9–4 EPN Assembly File event-type-repository... 9-12
9–5 Programmatically Registering an Event... 9-12
9–6 Specifying com.bea.welvs.ede.api.Type Data Types for Tuple Event Type Properties 9-15
9–7 EPN Assembly File event-type-repository... 9-17
9–8 Specifying Java Data Types for java.util.Map Event Type Properties 9-19
9–9 EPN Assembly File event-type-repository... 9-19
9–10 Programmatically Registering an Event... 9-20
9–11 EPN Assembly File With OSGi Reference to EventTypeRepository................................ 9-21
9–12 Accessing the EventTypeRepository in the MyBean Implementation............................. 9-21
9–13 Java Source File Using the @ServiceReference Annotation ... 9-21
9–14 Java Source File Using the @Service Annotation .. 9-21
10–1 EPN Assembly File Channel Id: priceStream .. 10-1
10–2 Component Configuration File Channel Name: priceStream ... 10-1
10–3 Channel as Relation: primary-key Attribute.. 10-3
10–4 PriceEvent ... 10-4
10–5 filterFanoutProcessor Oracle CQL Queries.. 10-5
10–6 Using selector to Control Which Query Results are Output ... 10-5
10–7 Batch Processing Channel... 10-6
10–8 Component Configuration File Header and config Element .. 10-8
10–9 Component Configuration File Channel Element .. 10-8
10–10 EPN Assembly File Channel Id: priceStream .. 10-9
10–11 Component Configuration File Channel Name: priceStream ... 10-9
10–12 Component Configuration File Header and config Element .. 10-12
10–13 Component Configuration File Channel Element .. 10-12
10–14 EPN Assembly File Channel Id: priceStream .. 10-13
10–15 Component Configuration File Channel Name: priceStream ... 10-13
10–16 Sample Channel Component Configuration File .. 10-17
10–17 Channel EPN Assembly File .. 10-18

xli

11–1 wlevs:adapter Element for Inbound Adapter.. 11-5
11–2 jms-adapter Element for Inbound Adapter.. 11-6
11–3 jms-adapter Element With Tibco EMS JMS Configuration.. 11-6
11–4 wlevs:adapter Element for Inbound Adapter.. 11-8
11–5 jms-adapter Element for Inbound Adapter.. 11-8
11–6 jms-adapter Elements for an Oracle WebLogic Server JMS Provider 11-9
11–7 wlevs:adapter Element for Inbound Adapter.. 11-11
11–8 jms-adapter Element for Inbound Adapter.. 11-11
11–9 jms-adapter Element With Tibco EMS JMS Configuration.. 11-11
11–10 Custom Converter for an Inbound JMS Adapter .. 11-13
11–11 Specifying a Converter Class for an Inbound JMS Adapter in the EPN Assembly File...........

11-14
11–12 Custom Converter for an Outbound JMS Adapter... 11-15
11–13 Specifying a Converter Class for an Outbound JMS Adapter in the EPN Assembly File

11-15
13–1 Component Configuration File Name Values ... 13-4
13–2 EPN Assembly File ID and Ref Values ... 13-4
13–3 Component Configuration File: Coherence Cache ... 13-8
13–4 Oracle Coherence Cache LocalListener Implementation... 13-19
13–5 Oracle Coherence Cache EPN Assembly File for a Cache Loader.................................. 13-21
13–6 Oracle Coherence Cache LocalLoader Implementation... 13-21
13–7 Oracle Coherence Cache EPN Assembly File for a Cache Store 13-22
13–8 Oracle Coherence Cache LocalStore Implementation .. 13-22
13–9 Valid Oracle CQL Query Against a Cache... 13-23
14–1 bea-jaxws.xml File.. 14-3
15–1 High-Level View of Input Adapter Class... 15-4
16–1 Implementing the StreamSink Interface ... 16-5
16–2 Implementing the RelationSink Interface... 16-6
16–3 Implementing the RelationSource Interface... 16-8
17–1 EPN Assembly File Oracle CQL Processor Id: proc ... 17-2
17–2 Component Configuration File Oracle CQL Processor Name: proc 17-2
17–3 Default Processor Component Configuration ... 17-4
17–4 Table Create SQL Statement... 17-7
17–5 Oracle CQL Query on Relational Database Table Stock .. 17-8
17–6 Oracle Event Processing Server config.xml File With Data Source StockDS 17-8
17–7 EPN Assembly File table Element ... 17-9
17–8 EPN Assembly File table-source Element .. 17-10
17–9 EPN Assembly File event-type element for a Table ... 17-10
17–10 Oracle CQL Query Using Table Event Type StockEvent... 17-10
17–11 Query Configured to Allow Parallel Execution .. 17-12
17–12 Query Configured to Allow Parallel Execution Across Partitions 17-12
17–13 Fault Handler Class ... 17-16
17–14 Code to Register a Fault Handler with an EPN Stage .. 17-17
18–1 EPN Assembly File: Oracle Spatial Namespace and Schema Location 18-2
18–2 spatial:context Element in EPN Assembly File.. 18-2
18–3 spatial:context Element in EPN Assembly File.. 18-3
18–4 Referencing spatial:context in an Oracle CQL Query... 18-3
18–5 EPN Assembly File: Oracle JDBC Data Cartridge Namespace and Schema Location .. 18-4
18–6 jdbc:jdbc-context Element in EPN Assembly File: id.. 18-4
18–7 Component Configuration File: Oracle JDBC Data Cartridge Namespace..................... 18-5
18–8 jc:jdbc-ctx Element in Component Configuration File ... 18-5
18–9 jc:jdbc-ctx Element in Component Configuration File: name.. 18-5
18–10 jc:jdbc-ctx Element in Component Configuration File: data-source................................. 18-5
18–11 jc:jdbc-ctx Element in Component Configuration File: function 18-5
18–12 Referencing JDBC Application Context in an Oracle CQL Query.................................... 18-6

xlii

19–1 EPN Assembly File EPL Processor Id: proc ... 19-2
19–2 Component Configuration File EPL Processor Name: proc.. 19-2
20–1 bdb-config Element.. 20-5
20–2 Default bdb-config Element ... 20-11
21–1 EmployeeEvent Event Type ... 21-3
21–2 Data Feed File for EmployeeEvent Event Type... 21-3
22–1 Event Inspector JSON Event... 22-3
22–2 Event Inspector Service Local HTTP Pub-Sub Server .. 22-5
22–3 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub Element 22-5
22–4 Event Inspector Service Remote HTTP Pub-Sub Server .. 22-6
22–5 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub Element 22-6
22–6 Event Injection Component Configuration Settings... 22-7
22–7 Event Tracing Component Configuration Settings... 22-8
23–1 bundler.sh Command Line Options ... 23-19
23–2 Using the Bundler Utility.. 23-20
23–3 Bundle JAR Contents... 23-20
23–4 Service Registration Log Messages ... 23-20
23–5 MyActivator Class Implementation .. 23-22
23–6 Un-JAR the Database Driver .. 23-28
23–7 Adding Export-Package to the Manifest Editor .. 23-28
23–8 Adding a Bundle-Activator Element to the Manifest Editor... 23-29
23–9 Adding a DynamicImport-Package Element to the Manifest Editor 23-29
23–10 Message Arguments .. 23-34
23–11 Log Message Catalog... 23-35
23–12 Simple Text Catalog... 23-35
23–13 Locale-Specific Catalog ... 23-36
24–1 Simple Failover EPN Assembly File ... 24-20
24–2 Simple Failover Component Configuration Assembly File... 24-20
24–3 Simple Failover EPN Assembly File: Buffering Output Adapter 24-21
24–4 Application Timestamp Configuration .. 24-22
24–5 Configuring windowLength in the Buffering Output Adapter...................................... 24-22
24–6 Simple Failover Component Configuration File With High Availability Adapters 24-23
24–7 Simple Failover With Buffering EPN Assembly File .. 24-23
24–8 Simple Failover With Buffering Component Configuration Assembly File 24-24
24–9 Simple Failover EPN Assembly File: Buffering Output Adapter 24-25
24–10 Application Timestamp Configuration .. 24-26
24–11 Configuring windowLength in the Buffering Output Adapter...................................... 24-26
24–12 Simple Failover With Buffering Component Configuration File.................................... 24-26
24–13 Light-Weight Queue Trimming EPN Assembly File.. 24-27
24–14 Light-Weight Queue Trimming Component Configuration Assembly File 24-28
24–15 Light-Weight Queue Trimming EPN Assembly File: High Availability Input Adapter

24-28
24–16 Light-Weight Queue Trimming EPN Assembly File: Broadcast Output Adapter....... 24-29
24–17 High Availability Input Adapter: Default Configuration.. 24-30
24–18 High Availability Input Adapter: Tuple Events.. 24-30
24–19 High Availability Input Adapter: Key of One Event Property 24-31
24–20 High Availability Input Adapter: Key of Multiple Event Properties............................. 24-31
24–21 MyCompoundKeyClass Implementation .. 24-31
24–22 Application Timestamp Configuration .. 24-32
24–23 Broadcast Output Adapter: Default Configuration .. 24-32
24–24 Broadcast Output Adapter: Key of One Event Property ... 24-32
24–25 Broadcast Output Adapter: Key of Multiple Event Properties 24-33
24–26 MyCompoundKeyClass Implementation .. 24-33
24–27 Light-Weight Queue Trimming Component Configuration File 24-34
24–28 Precise Recovery With JMS EPN Assembly File ... 24-35

xliii

24–29 Precise Recovery With JMS Component Configuration Assembly File 24-36
24–30 Precise Recovery With JMS EPN Assembly File: High Availability Input Adapter.... 24-37
24–31 Precise Recovery With JMS EPN Assembly File: Correlating Output Adapter 24-37
24–32 High Availability Input Adapter: Default Configuration.. 24-38
24–33 High Availability Input Adapter: Tuple Events.. 24-39
24–34 High Availability Input Adapter: Key of One Event Property 24-39
24–35 High Availability Input Adapter: Key of Multiple Event Properties............................. 24-39
24–36 MyCompoundKeyClass Implementation .. 24-39
24–37 Application Timestamp Configuration .. 24-40
24–38 Correlating Output Adapter Configuration: failOverDelay ... 24-40
24–39 Inbound JMS Adapter Assembly File ... 24-41
24–40 Inbound JMS Adapter Component Configuration File.. 24-41
24–41 Creating the Correlated Source.. 24-41
24–42 Correlating Output Adapter: correlatedSource... 24-42
24–43 Inbound and Outbound JMS Adapter Component Configuration File 24-42
24–44 High Availability Input and Output Adapter Component Configuration File............ 24-43
24–45 High Availability Input Adapter EPN Assembly File.. 24-44
24–46 High Availability Input Adapter Component Configuration File 24-45
24–47 Buffering Output Adapter EPN Assembly File... 24-46
24–48 Buffering Output Adapter Component Configuration File .. 24-47
24–49 Broadcast Output Adapter EPN Assembly File .. 24-48
24–50 Broadcast Output Adapter Component Configuration File.. 24-49
24–51 Correlating Output Adapter EPN Assembly File ... 24-49
24–52 Correlating Output Adapter Component Configuration File ... 24-50
25–1 ActiveActiveGroupBean bean Element .. 25-4
25–2 Common jms-adapter Selector Definitions .. 25-5
25–3 Definition of Event Type PriceEvent... 25-7
25–4 EventPartitioner Class... 25-11
25–5 EventPartitioner Class Implementation ... 25-12
25–6 ActiveActiveGroupBean bean Element .. 25-16
25–7 jms-adapter Selector Definition for ocep-server-1 .. 25-16
25–8 Precise Recovery With JMS EPN Assembly File ... 25-17
25–9 Precise Recovery With JMS Component Configuration Assembly File 25-18
25–10 ActiveActiveGroupBean bean Element .. 25-21
25–11 jms-adapter Element for Inbound JMS Adapters.. 25-21
25–12 jms-adapter Selector Definition for ocep-server-1 .. 25-21
25–13 jms-adapter Element for Outbound JMS Adapters... 25-22
25–14 ActiveActiveGroupBean bean Element With groupPattern Attribute 25-23
26–1 Annotated Custom Adapter Implementation ... 26-3
26–2 Extended Component Configuration: Annotations.. 26-4
26–3 Extended Component Configuration File: XSD .. 26-6
26–4 Custom Adapter Implementation ... 26-9
26–5 Extended Component Configuration.. 26-10
C–1 Single-Row User Defined Function Implementation Class ... C-20
C–2 Single-Row User Defined Function for an Oracle CQL Processor C-20
C–3 Invoking the Single-Row User-Defined Function on an Oracle CQL Processor C-20
C–4 Single-Row User Defined Function Implementation Class ... C-21
C–5 Single-Row User Defined Function for an EPL Processor ... C-21
C–6 Invoking the Single-Row User-Defined Function on an EPL Processor.......................... C-21
C–7 Aggregate User Defined Function Implementation Class ... C-21
C–8 Aggregate User Defined Function for an Oracle CQL Processor C-23
C–9 Invoking the Aggregate User-Defined Function on an Oracle CQL Processor C-23
C–10 Aggregate User Defined Function Implementation Class ... C-23
C–11 Aggregate User Defined Function for an EPL Processor ... C-24
C–12 Invoking the Aggregate User-Defined Function on an EPL Processor............................ C-24

xliv

C–13 User Defined Function Using Nested Bean Element.. C-25
C–14 User Defined Function Using Reference .. C-25
D–1 adapter Element Hierarchy .. D-5
D–2 http-pub-sub-adapter Element Hierarchy.. D-5
D–3 jms-adapter Element Hierarchy... D-6
D–4 processor (EPL) Element Hierarchy .. D-8
D–5 processor (Oracle CQL) Element Hierarchy .. D-9
D–6 stream Element Hierarchy.. D-10
D–7 channel Element Hierarchy .. D-10
D–8 event-bean Element Hierarchy .. D-11
D–9 caching-system Element Hierarchy... D-12
D–10 coherence-caching-system Element Hierarchy.. D-13
D–11 diagnostic-profiles Element Hierarchy... D-13
D–12 filterFanoutProcessor Oracle CQL Queries.. D-76
D–13 Using selector to Control Which Query Results are Output ... D-76
G–1 Log Message Catalog Hierarchy.. G-1
G–2 Simple Text Catalog Hierarchy.. G-2
G–3 Log Message Catalog... G-2
G–4 Simple Text Catalog... G-2
H–1 Locale-Specific Log Message Catalog Hierarchy .. H-1
H–2 Locale-Specific Simple Text Catalog Hierarchy .. H-2
H–3 Locale-Specific Log Message Catalog ... H-2
H–4 Locale-Specific Simple Text Catalog ... H-2
I–1 @Activate Annotation ... I-2
I–2 HelloWorldAdapterConfig... I-3
I–3 @Prepare Annotation .. I-4
I–4 @Rollback Annotation... I-5
I–5 @Service Annotation.. I-7

xlv

List of Figures

1–1 Oracle Event Processing Application Lifecycle State Diagram... 1-21
2–1 The HelloWorld Example Event Processing Network .. 2-4
2–2 The CQL Example Event Processing Network... 2-8
2–3 Oracle Event Processing Visualizer Logon Screen.. 2-13
2–4 Oracle Event Processing Visualizer Dashboard .. 2-14
2–5 CQL Application Screen: General Tab.. 2-15
2–6 CQL Application: Event Processing Network Tab ... 2-16
2–7 Oracle CQL Processor: General Tab.. 2-17
2–8 Oracle CQL Processor: Query Wizard Tab .. 2-18
2–9 Template Tab .. 2-19
2–10 SSource Configuration Dialog.. 2-20
2–11 Pattern Configuration Dialog: Pattern Tab .. 2-21
2–12 Pattern Configuration Dialog: Define Tab ... 2-22
2–13 Expression Builder: CustOrder .. 2-23
2–14 Pattern Configuration Dialog: Define Tab With CustOrder Condition........................... 2-24
2–15 Expression Builder: NoApproval .. 2-25
2–16 Expression Builder: Shipment.. 2-26
2–17 Pattern Configuration Dialog: Define Tab Complete ... 2-27
2–18 Measure Tab ... 2-28
2–19 Expression Builder: orderid.. 2-29
2–20 Expression Builder: amount ... 2-30
2–21 Measure Tab: Complete .. 2-31
2–22 Select Configuration Dialog: Project Tab.. 2-32
2–23 Select Configuration Dialog: Project Tab Complete ... 2-33
2–24 Output Configuration Dialog... 2-34
2–25 Inject Rule Confirmation Dialog.. 2-34
2–26 CQL Rules Tab With Tracking Query... 2-35
2–27 Stream Visualizer: Showing Missing Events ... 2-36
2–28 Oracle Event Processing Visualizer Logon Screen.. 2-37
2–29 Oracle Event Processing Visualizer Dashboard .. 2-38
2–30 CQL Application Screen: General Tab.. 2-39
2–31 CQL Application: Event Processing Network Tab ... 2-39
2–32 Oracle CQL Processor: General Tab.. 2-40
2–33 Oracle CQL Processor: Query Wizard Tab .. 2-40
2–34 Query Wizard: SSource ... 2-41
2–35 SSource Configuration Dialog.. 2-42
2–36 Query Wizard: Filter.. 2-43
2–37 Connecting the SSource and Filter Icons .. 2-43
2–38 Filter Configuration Dialog .. 2-44
2–39 Filter Expression Builder... 2-45
2–40 Filter Configuration Dialog: After Adding the Filter ... 2-46
2–41 Query Wizard: Select... 2-47
2–42 Select Configuration Dialog: Properties Selected.. 2-48
2–43 Query Wizard: Output .. 2-49
2–44 Output Configuration Dialog... 2-50
2–45 Inject Rule Confirmation Dialog.. 2-50
2–46 CQL Rules Tab With View StockVolGt1000 .. 2-51
2–47 Oracle Event Processing Visualizer Logon Screen.. 2-52
2–48 Oracle Event Processing Visualizer Dashboard .. 2-53
2–49 CQL Application Screen: General Tab.. 2-54
2–50 CQL Application: Event Processing Network Tab ... 2-54
2–51 Oracle CQL Processor: General Tab.. 2-55
2–52 Oracle CQL Processor: Query Wizard Tab .. 2-55
2–53 Query Wizard: SSource for Moving Average Query.. 2-56

xlvi

2–54 SSource Configuration Dialog: Moving Average Query ... 2-57
2–55 Query Wizard: Window for Moving Average Query .. 2-58
2–56 Window Configuration Dialog: After Adding Window.. 2-59
2–57 Query Wizard: Select for Moving Average Query.. 2-60
2–58 Select Configuration Dialog: Source Property symbol Selected 2-61
2–59 Select Configuration Dialog: Source Property symbol Mapped to Output Event Property....

2-62
2–60 Select Configuration Dialog: Source Property price Selected ... 2-63
2–61 Expression Builder: Applying the AVG Function... 2-64
2–62 Select Configuration Dialog: With Expression .. 2-65
2–63 Select Configuration Dialog: Source Property price Mapped to Output Event Property........

2-66
2–64 Validation Error: GROUP BY... 2-66
2–65 Group Tab: With symbol Grouping Property ... 2-67
2–66 Query Wizard: Output .. 2-68
2–67 Output Configuration Dialog... 2-69
2–68 Inject Rule Confirmation Dialog.. 2-69
2–69 CQL Rules Tab With View MovingAverage ... 2-70
2–70 Stream Visualizer: Showing Moving Average Query Output .. 2-71
2–71 Oracle Spatial Example Event Processing Network ... 2-72
2–72 Oracle Spatial Web Page ... 2-74
2–73 Oracle Spatial Web Page: Bus Stop Arrivals Tab .. 2-75
2–74 Oracle Spatial Web Page: Bus Tracking.. 2-76
2–75 FX Example Event Processing Network ... 2-79
2–76 The Signal Generation Example Event Processing Network .. 2-84
2–77 Signal Generation Dashboard .. 2-86
2–78 The Event Record and Playback Example Event Processing Network............................ 2-89
2–79 Oracle Event Processing Visualizer Logon Screen.. 2-91
2–80 Oracle Event Processing Visualizer Dashboard .. 2-92
2–81 Event Record Tab ... 2-93
2–82 Start Recording Alert Dialog .. 2-94
2–83 Event Playback Tab.. 2-94
2–84 Start Playback Alert Dialog .. 2-95
2–85 Stream Visualizer ... 2-96
4–1 Install Dialog.. 4-3
4–2 Add Site Dialog ... 4-3
4–3 Install Dialog - Site Selected .. 4-4
4–4 Install Dialog - Install Details .. 4-5
4–5 About Eclipse... 4-5
4–6 About Eclipse Features Dialog.. 4-6
4–7 Feature Plug-ins Dialog.. 4-6
4–8 Install Dialog.. 4-8
4–9 Add Site Dialog ... 4-8
4–10 Select Local Site Archive Dialog ... 4-9
4–11 About Eclipse... 4-9
4–12 About Eclipse Features Dialog... 4-10
4–13 Feature Plug-ins Dialog... 4-10
4–14 Configuration Details for Java 6 .. 4-13
5–1 Oracle Event Processing Project Structure .. 5-2
5–2 New Project - Select a Wizard Dialog .. 5-3
5–3 New Oracle Event Processing Application Project Wizard: Create an Oracle Event

Processing Application 5-4
5–4 New Oracle Event Processing Application Project Wizard: Oracle Event Processing

Application Content 5-5
5–5 New Oracle Event Processing Application Project Wizard: Template Dialog 5-6

xlvii

5–6 New Dialog .. 5-7
5–7 New OEP Assembly File Dialog ... 5-8
5–8 New Dialog .. 5-9
5–9 New OEP Application Configuration File Dialog... 5-10
5–10 Oracle Event Processing Project build.properties File.. 5-11
5–11 Oracle Event Processing Applications Export: Select Project Dialog............................... 5-12
5–12 Project Properties Dialog: Project Facets .. 5-14
5–13 Modify Faceted Project.. 5-15
5–14 Preferences Dialog ... 5-16
5–15 Project Properties Dialog: Targeted Runtimes... 5-17
5–16 Builder Error ... 5-18
5–17 Import Projects Dialog .. 5-19
5–18 Project Properties Dialog: Project Facets .. 5-20
5–19 Modify Faceted Project.. 5-20
5–20 Preferences Dialog ... 5-21
5–21 Project Properties Dialog: Targeted Runtimes... 5-22
5–22 Builder Error ... 5-23
5–23 Preferences Dialog ... 5-24
5–24 Oracle Event Processing IDE for Eclipse lib Directory... 5-26
5–25 Manifest Editor: Build Tab.. 5-27
5–26 Manifest Editor - Runtime Tab .. 5-28
5–27 JAR Selection Dialog.. 5-28
5–28 Manifest Editor Runtime tab After Adding a JAR to the Classpath 5-29
5–29 Manifest Editor MANIFEST.MF Tab .. 5-30
5–30 Package Explorer.. 5-30
5–31 Manifest Editor: Dependencies Tab .. 5-31
5–32 Plug-in Selection Dialog.. 5-32
5–33 Manifest Editor: Build Tab.. 5-33
5–34 Oracle Event Processing IDE for Eclipse lib Directory... 5-34
5–35 Manifest Editor: Runtime tab ... 5-35
5–36 Package Selection Dialog .. 5-35
5–37 Manifest Editor Runtime tab After Exporting a Package .. 5-36
5–38 Oracle Event Processing IDE for Eclipse lib Directory... 5-37
5–39 Manifest Editor: Dependencies tab ... 5-37
5–40 Package Selection Dialog .. 5-38
5–41 Manifest Editor Dependencies tab After Importing a Package... 5-38
5–42 Oracle Event Processing Problem Severities Dialog: Workspace 5-40
6–1 Oracle Event Processing IDE for Eclipse Server View .. 6-4
6–2 New Server: Define New Server Dialog (No Installed Runtimes) 6-5
6–3 New Server: New Oracle Event Processing v11.1 Runtime Dialog..................................... 6-6
6–4 New Server: Define New Server (Installed Runtimes) Dialog ... 6-7
6–5 New Server: New Oracle Event Processing v11.1 Server.. 6-8
6–6 New Server: New Oracle Event Processing v11 Server Dialog for a Local Server............ 6-9
6–7 Oracle Event Processing IDE for Eclipse Server View ... 6-11
6–8 New Server: Define New Server Dialog (No Installed Runtimes) 6-12
6–9 New Server: New Oracle Event Processing v11.1 Runtime Dialog.................................. 6-13
6–10 New Server: Define New Server (Installed Runtimes) Dialog .. 6-14
6–11 New Server: New Oracle Event Processing v11.1 Server... 6-15
6–12 New Server: New Oracle Event Processing v11 Server Dialog for a Remote Server..... 6-16
6–13 Preferences - Server - Installed Runtimes... 6-17
6–14 New Server Runtime Environment Dialog .. 6-18
6–15 New Server Runtime Environment: New Oracle Event Processing v11.1 Runtime Dialog

6-19
6–16 Starting an Oracle Event Processing Server ... 6-21
6–17 Stopping an Oracle Event Processing Server... 6-21

xlviii

6–18 Attaching to an Existing Local Oracle Event Processing Server Instance 6-22
6–19 Attaching to an Existing Remote Oracle Event Processing Server Instance 6-23
6–20 Stopping an Oracle Event Processing Server... 6-24
6–21 Adding a Project to an Oracle Event Processing Server... 6-25
6–22 Add and Remove Dialog .. 6-25
6–23 Server View After Adding a Project.. 6-26
6–24 Select Cluster Deployment Group Name Dialog .. 6-26
6–25 Server View After Deploying (Publishing) a Project .. 6-27
6–26 Server Overview Editor .. 6-27
6–27 Editing the Domain Configuration File .. 6-31
6–28 Oracle Event Processing Domain Configuration File config.xml 6-31
6–29 Opening the Oracle Event Processing Visualizer.. 6-32
6–30 Oracle Event Processing Visualizer... 6-33
6–31 Setting a Breakpoint... 6-34
6–32 Starting the Oracle Event Processing Server in Debug Mode ... 6-34
7–1 Opening the EPN Editor from a Project .. 7-2
7–2 EPN Editor ... 7-2
7–3 Opening the EPN Editor from a Context or Configuration File .. 7-3
7–4 EPN Editor ... 7-4
7–5 EPN Flow Representation.. 7-5
7–6 Filtering the EPN by Assembly File ... 7-5
7–7 Zoom Level .. 7-6
7–8 Optimize Layout ... 7-6
7–9 Show/Hide Unconnected Beans .. 7-7
7–10 Exporting the EPN as an Image File... 7-7
7–11 Printing the EPN ... 7-7
7–12 Configuration Badging... 7-8
7–13 Link Source .. 7-8
7–14 Link Source Assembly File .. 7-8
7–15 Link Listener .. 7-8
7–16 Link Listener Assembly File .. 7-9
7–17 EPN With Nested Bean .. 7-9
7–18 EPN With all Nodes Nested ... 7-10
7–19 Event Type Repository Editor.. 7-10
7–20 Node with Configuration Badge ... 7-11
7–21 Component Configuration File: Hyperlinking to EPN Assembly File 7-12
7–22 EPN Assembly File: Hyperlinking to Component Configuration File 7-13
7–23 Oracle CQL Statement: Event Schema.. 7-13
7–24 Corresponding Event Definition in EPN Assembly File.. 7-14
7–25 Example Oracle Event Processing EPN.. 7-15
7–26 Oracle Event Processing Type Browser.. 7-16
7–27 Opening the FilterAsia EPN Assembly File ... 7-17
7–28 Opening the FilterAsia Component Configuration File... 7-17
7–29 Creating a Basic Node ... 7-20
7–30 New Basic Node... 7-20
7–31 Creating an Adapter Node ... 7-21
7–32 New Adapter Wizard .. 7-21
7–33 New Adapter Wizard - jms-inbound .. 7-23
7–34 New Adapter Wizard - jms-outbound.. 7-24
7–35 New Adapter Wizard - httppub .. 7-24
7–36 New Adapter Wizard - httpsub... 7-25
7–37 New Adapter Node ... 7-25
7–38 Creating a Processor Node ... 7-26
7–39 New Processor Dialog ... 7-27
7–40 New Processor Node ... 7-27

xlix

7–41 Connecting Nodes: Connection Allowed... 7-28
7–42 Connecting Nodes: Connection Forbidden.. 7-29
7–43 Valid Connections.. 7-29
7–44 EPN Assembly File: Before Connection.. 7-29
7–45 EPN Assembly File: After Connection.. 7-30
7–46 Laying Out Nodes.. 7-30
7–47 Renaming Nodes.. 7-30
7–48 Deleting Nodes... 7-31
7–49 EPN Before Deleting a Channel Node .. 7-31
7–50 Assembly File Before Deleting a Channel Node ... 7-31
7–51 EPN After Deleting a Channel Node .. 7-32
7–52 Assembly File After Deleting a Channel Node ... 7-32
9–1 Event Type Repository Editor - JavaBean Event ... 9-10
9–2 Event Type Repository Editor - Tuple Event... 9-16
10–1 EPN With Oracle CQL Processor and Down-Stream Channel ... 10-5
10–2 Channel With Configuration Badge.. 10-10
10–3 Channel With Configuration Badge.. 10-14
10–4 EPN with Two Channels... 10-17
12–1 Built-In Pub-Sub Adapter For Local Publishing ... 12-3
12–2 Built-In Pub-Sub Adapter For Remote Publishing ... 12-3
12–3 Built-In Pub-Sub Adapter For Subscribing .. 12-4
13–1 Cache as Processor Source.. 13-25
13–2 Cache as Processor Sink .. 13-25
20–1 Configuring Record and Playback in an EPN ... 20-1
23–1 Foreign Stage Dependency Graph... 23-11
23–2 Preferences Dialog: Application Library Path ... 23-15
23–3 Select Path Variable Dialog .. 23-16
23–4 New Variable Dialog ... 23-16
23–5 Select Path Variable: With Variable... 23-17
23–6 Variable Extension Dialog .. 23-17
23–7 Preferences Dialog: Application Library Path With Path Variable 23-18
23–8 Oracle Event Processing IDE for Eclipse lib Directory... 23-21
23–9 New Java Class Dialog .. 23-22
23–10 Manifest Editor: Overview Tab.. 23-24
23–11 Manifest Editor: Runtime Tab.. 23-25
23–12 JAR Selection Dialog.. 23-25
23–13 Manifest Editor: Dependencies Tab .. 23-26
23–14 Package Selection Dialog .. 23-27
23–15 Manifest Editor... 23-28
24–1 Oracle Event Processing High Availability: Primary and Secondary Servers................ 24-2
24–2 Oracle Event Processing High Availability Lifecycle State Diagram............................... 24-2
24–3 Secondary Failure .. 24-3
24–4 Primary Failure and Failover ... 24-3
24–5 High Availability Adapters in the EPN.. 24-5
24–6 High Availability and Scalability .. 24-8
24–7 Precise Recovery with JMS ... 24-11
24–8 Event Order... 24-16
24–9 Simple Failover EPN.. 24-20
24–10 Simple Failover With Buffering EPN.. 24-23
24–11 Light-Weight Queue Trimming EPN.. 24-27
24–12 Precise Recovery With JMS EPN ... 24-35
25–1 Event Partitioner EPN ... 25-2
25–2 Oracle Event Processing ActiveActiveGroupBean Without High Availability.............. 25-5
25–3 Oracle Event Processing ActiveActiveGroupBean With High Availability 25-6
25–4 EventPartitioner EPN .. 25-7

l

25–5 New Java Class Dialog .. 25-11
25–6 Precise Recovery With JMS EPN ... 25-17
25–7 Oracle Event Processing ActiveActiveGroupBean With High Availability.................. 25-19
D–1 EPN With Oracle CQL Processor and Down-Stream Channel ... D-76

li

Preface

This document describes how to create, deploy, and debug Oracle Event Processing
applications.

Oracle Event Processing (formerly known as the WebLogic Event Server) is a Java
server for the development of high-performance event driven applications. It is a
lightweight Java application container based on Equinox OSGi, with shared services,
including the Oracle Event Processing Service Engine, which provides a rich,
declarative environment based on Oracle Continuous Query Language (Oracle CQL) -
a query language based on SQL with added constructs that support streaming data - to
improve the efficiency and effectiveness of managing business operations. Oracle
Event Processing supports ultra-high throughput and microsecond latency using
JRockit Real Time and provides Oracle Event Processing Visualizer and Oracle Event
Processing IDE for Eclipse developer tooling for a complete real time end-to-end Java
Event-Driven Architecture (EDA) development platform.

Audience
This document is intended for programmers creating Oracle Event Processing
applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following:

■ Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

■ Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

■ Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

lii

■ Oracle Fusion Middleware Java API Reference for Oracle Event Processing

■ Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

■ Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

■ Oracle Database SQL Language Reference at
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm

■ SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

■ Oracle Event Processing Forum:
http://forums.oracle.com/forums/forum.jspa?forumID=820

■ Oracle Event Processing Samples:
http://www.oracle.com/technologies/soa/complex-event-processing.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

liii

What's New in This Guide

For this release, this guide has been updated in several ways. The following table lists
the sections that have been added or changed. If a feature was not available in the first
release of 11.1.1.7.x, the last columns denote which documentation release contains the
update.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA
Products and Oracle AIA Foundation Pack" at
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesind
ex-364630.html.

Sections Changes Made
February
2013

Entire Guide Product renamed to Oracle Event
Processing

X

Chapter 1 Overview of Creating
Oracle Event Processing Applications

Section , "Key Concepts Underlying
Oracle Event Processing Applications"

Section added to describe key concepts in
the Oracle Event Processing
programming model.

X

Section , "How an Oracle Event
Processing Application Works"

Section added to provide an overview of
how the components and technologies of
an application work together.

X

Section , "Overview of Events, Streams
and Relations"

Section added to introduce events,
streams and relations.

X

Chapter 2 Oracle Event Processing
Samples

Chapter 2, "Oracle Event Processing
Samples"

Chapter moved from Oracle Fusion
Middleware Getting Started Guide for Oracle
Event Processing

X

Section , "Signal Generation Example" Corrected sample description. X

Chapter 3 Getting Started with
Developing Oracle Event Processing
Applications

Chapter 3, "Getting Started with
Developing Oracle Event Processing
Applications"

Chapter created from content formerly in
an overview chapter.

X

Chapter 8 Walkthrough: Assembling
a Simple Application

liv

Chapter 8, "Walkthrough: Assembling
a Simple Application"

Chapter added. This is a developer’s
step-by-step introduction to building an
Oracle Event Processing application.

X

Chapter 9 Defining and Using Event
Types

Chapter 9, "Defining and Using Event
Types"

Chapter updated with introductory
information. Content on creating event
types from non-JavaBean classes
removed.

X

Chapter 9 Defining and Using Event
Types

Section , "Handling Faults in
Channels"

Added a summary on how you can
handle Oracle CQL faults in channels by
writing a fault handling class.

X

Chapter 11 Integrating the Java
Message Service

Section , "JMS Inbound Adapter
Component Configuration"

Updated the session-ack-mode-name
AUTO_ACKNOWLEDGE description.

X

Chapter 13 Integrating a Cache

Chapter 13, "Integrating a Cache" Chapter updated with introductory
information and restructured for clarity.

X

Chapter 16 Handling Events with
Java

Chapter 16, "Handling Events with
Java"

Chapter added. Chapter presents
information about implementing event
sources and sinks in event beans and
Spring beans.

X

Chapter 17 Querying an Event Stream
with Oracle CQL

Section , "Handling Faults" Section added to describe how to handle
faults that occur in CQL code.

X

Chapter 22 Testing Applications with
Event Inspector

Chapter , "Injecting Events" and
Chapter , "Tracing Events"

Sections updated with information
describing how to configure event
injection and tracing in component
configuration files.

X

Appendix D Schema Reference:
Component Configuration wlevs_
application_config.xsd

Section , "heartbeat" Added content describing the heartbeat
child element, which specifies a new
heartbeat timeout for a
system-timestamped channel.

X

Sections Changes Made
February
2013

Part I
Part I Getting Started with Creating Oracle Event

Processing Applications

Part I contains the following chapters:

■ Chapter 1, "Overview of Creating Oracle Event Processing Applications"

■ Chapter 2, "Oracle Event Processing Samples"

■ Chapter 3, "Getting Started with Developing Oracle Event Processing
Applications"

1

Overview of Creating Oracle Event Processing Applications 1-1

1Overview of Creating Oracle Event Processing
Applications

[2] This chapter introduces the tools, technologies, and processes through which you can
build Oracle Event Processing applications, including the programming model, how
applications work, and key concepts and technologies.

This chapter includes the following sections:

■ Oracle Event Processing Application Programming Model

■ How an Oracle Event Processing Application Works

■ Overview of Events, Streams and Relations

■ Overview of Application Configuration

■ Oracle Event Processing APIs

■ Packaging an Application

■ Oracle Event Processing Application Lifecycle

Oracle Event Processing Application Programming Model
This section provides an overview of the concepts, technologies, and tools that are part
of building Oracle Event Processing applications.

An Oracle Event Processing application receives and processes data streaming from an
event source. That data might be coming from one of a wide variety of places,
including a monitoring device, a financial services company, or a motor vehicle. Using
the data, the application might identify and respond to patterns, look for extraordinary
events and alert other applications, or do some other work that requires immediate
action based on quickly changing data.

When developing an Oracle Event Processing application, you assemble a network of
components that each have a role in processing the data. This event processing
network is essentially linear, with events passing through it from one end to the other.
Along the way, components execute queries in a language specifically designed for
streaming data, execute logic in Java, and create connections with other external
components.

Section , "Key Concepts Underlying Oracle Event Processing Applications"

Section , "Component Roles in an Event Processing Network"

Section , "Tools and Supporting Technologies for Developing Applications"

Oracle Event Processing Application Programming Model

1-2 Developer's Guide for Oracle Event Processing

Key Concepts Underlying Oracle Event Processing Applications
Applications you build with Oracle Event Processing are based on concepts and
technologies that are a mix of the familiar and (if you’re new to event-based
applications) unfamiliar. The following list briefly describes the key concepts and
technologies that underlie how event processing networks work.

■ Applications leverage the database programming model. Some of the
programming model in Oracle Event Processing applications is conceptually an
extension of what you find in database programming. Events are similar to
database rows in that they are tuples against which you can execute queries (with
a language that is an extension of SQL). In other words, if you know relational
databases, much of this will seem familiar.

For a closer look at the similarity between database programming and Oracle
Event Processing applications, see Section , "Overview of Events, Streams and
Relations".

■ Stages represent discrete functional roles. The staged structure of an event
processing network (EPN) provides a means for you to execute different kinds of
logic against events flowing through the network. This includes query logic with
Oracle Continuous Query Language (Oracle CQL) as well as logic in Java. It also
provides a way to capture multiple processing paths with a network that branches
into multiple downstream directions based on discoveries your code makes.

For a list of roles stages play in an EPN, see Section , "Component Roles in an
Event Processing Network". For a closer look at the pieces of an EPN, see Section ,
"How an Oracle Event Processing Application Works".

■ Stages transmit events through an EPN by acting as event sinks and event
sources. The stages in an EPN are able to receive events (as event sinks) and/or
send events (as event sources). This includes stage components that come with
Oracle Event Processing as well as components you build, such as your own
adapters and beans.

For more about implementing your own event sinks and sources, see Chapter 16,
"Handling Events with Java"

■ Events are handled either as streams or relations. The concept of a stream, unique
to streaming event-based applications, captures the fact that events arrive at your
application sequentially by timestamp. Contrast this with rows in a database,
where the table rows have no inherent relationship to one another aside from
schema. However, many queries of events in stream result in a relation, in which
events could be related in a way other than their relative sequence in time (similar
to database query results).

For more on streams and relations, see Section , "Overview of Events, Streams and
Relations".

Component Roles in an Event Processing Network
The core of Oracle Event Processing applications you build is an event processing
network (EPN). You build an EPN by connecting components (also known as stages)
that each have a role in processing events that pass through the network. When
developing an Oracle Event Processing application, you identify which kinds of
components will be needed. As you add components to the EPN, you configure each
as well as their connections with one another. As you use the IDE to build the EPN,
you arrange and connect components in a roughly linear shape in which events will
enter from the left end, move through the EPN and exit or terminate at the right end.

Oracle Event Processing Application Programming Model

Overview of Creating Oracle Event Processing Applications 1-3

For a high-level overview of an EPN using an application example, including fuller
descriptions of the technologies involved, see Section , "How an Oracle Event
Processing Application Works".

The EPN components you use provide ways to:

■ Exchange event data with external sources. Through adapters and other stages,
you can connect external components to the EPN of your application to add ways
for data, including event data, to pass into or out of the EPN.

These external components include those in the following list (you can also build
your own).

■ Relational databases. You can access a database table from within Oracle CQL
code, querying the database as you would with SQL.

■ Caches. By adding a cache stage to an EPN, you can exchange data with the
cache.

■ Java Message Service (JMS). With the JMS adapter, you can exchange
messages with a JMS destination without writing the Java code typically
needed for it.

■ HTTP publish-subscribe server. The HTTP pub-sub adapter simplifies
exchanging messages with an HTTP publish-subscribe server.

■ Model event data so that it can be handled by application code. You implement
or define event types that model event data so that application code can work with
it. For more information, see Chapter 9, "Defining and Using Event Types".

■ Query and filter events. The Oracle Continuous Query Language (Oracle CQL) is
an extension of the SQL language through which you can query events as you
would data in a database. Oracle CQL includes features specifically intended for
querying streaming data. You add Oracle CQL code to an event processing
network by adding a processor. For more information, see Chapter 17, "Querying
an Event Stream with Oracle CQL".

■ Execute Java logic to handle events. To an EPN you can add Java classes that
receive and send events just as other EPN stages do. Logic in these classes can
retrieve values from events, create new events, and more. For more information,
see Chapter 16, "Handling Events with Java".

For IDE reference information on creating event processing networks, see Section ,
"Using the EPN Editor".

Tools and Supporting Technologies for Developing Applications
Included with Oracle Event Processing is a set of tools and supporting technologies
you can use to develop applications. These include tools for building and debugging
applications, testing applications in a lightweight way, accessing underlying
functionality with Java, and designing Oracle CQL queries.

The following lists some of these tools and technologies:

■ The Oracle Event Processing IDE for Eclipse provides features specifically
designed to make developing Oracle Event Processing easier, including an EPN
Editor for graphically designing an event processing network. For more
information, see Chapter 4, "Overview of the Oracle Event Processing IDE for
Eclipse".

For a step-by-step introduction to using the IDE to build a simple application, see
Chapter 8, "Walkthrough: Assembling a Simple Application".

How an Oracle Event Processing Application Works

1-4 Developer's Guide for Oracle Event Processing

■ By using the load generator with the csvgen adapter, you can more easily debug
an application in the early stages of development. The load generator is a tool that
reads data from a comma-separated text file and feeds the data to your EPN as
event data. For more information, see Chapter 21, "Testing Applications With the
Load Generator and csvgen Adapter".

■ The Oracle Event Processing Java API includes classes for work such as
implementing stages in the event processing network, extending included
functionality, managing the server, and so on. For more information, see Section ,
"Oracle Event Processing APIs".

■ Oracle Event Processing Visualizer is a web-based user interface through which
you can design Oracle CQL queries and configure Oracle Event Processing
applications on the server. For more information, see "Overview of Using Oracle
Event Processing Visualizer" in the Oracle Fusion Middleware Visualizer User's Guide
for Oracle Event Processing

■ You connect and configure components through standard XML configuration
files. Much of the work of writing these files is done for you when you use the
IDE to assemble the event processing network. Yet there are many settings you
might need to make by editing the files directly. For more on configuration files,
see Section , "Overview of Application Configuration".

■ You can improve scalability and promote high availability by using certain
application design patterns, server resources, and configuration conventions. For
more information, see Chapter 25, "Developing Scalable Applications" and
Chapter 24, "Developing Applications for High Availability".

How an Oracle Event Processing Application Works
As with many enterprise-scale applications, an Oracle Event Processing application is
full of "connected-to" relationships. For example, an adapter might be connected to a
processor, which might be connected to an event bean, which might be connected to a
external data source, and so on. The connections aren't necessarily in that order, but
you get the idea.

Events arrive from an outside source, then move through the application's event
processing network (EPN). Along the way they might be filtered, queried, and
otherwise processed as needed by EPN components that you put in place.

For example, take a look at a simple TradeReport application you can build using the
topics described in Chapter 8, "Walkthrough: Assembling a Simple Application".

The following sections describe the role of each component in the application.

How an Oracle Event Processing Application Works

Overview of Creating Oracle Event Processing Applications 1-5

Event Information is Received in Its Raw Form
In the TradeReport example, the event data source is simply a text file with rows of
comma-separated values. To try things out, you can use such a file in combination
with the load generator included with Oracle Event Processing.

An event data source is outside the application, yet connected though an adapter that
knows how to retrieve its data. The event source could be something physically near
(such as another application in the organization) or it could be quite far away (perhaps
a temperature sensor in a server room in another city).

For information on event data and creating event types, see Chapter 9, "Defining and
Using Event Types".

For step-by-step content on capturing event data in the TradeReport application, see
Section , "Create an Event Type to Carry Event Data".

Adapters Connect External Components to the EPN
In the TradeReport example, the event data source is connected to the event processing
network through an adapter that knows how to receive event data sent from the CSV
file. The adapter converts the incoming data into instances of an event type that the
EPN can work with.

You can use an adapter to either receive incoming or send outgoing data. Adapters
provided with Oracle Event Processing give you access to CSV files and also to
systems such as the Java Message Service or an HTTP Publish-Subscribe server. You
can also develop your own adapters for integrating systems that aren't supported by
default.

When configuring an input adapter, you specify how the event data should be bound
to an instance of an event type that you've defined in the EPN.

For more information, see the following:

Chapter 11, "Integrating the Java Message Service"

Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

Chapter 13, "Integrating a Cache"

Chapter 15, "Integrating an External Component Using a Custom Adapter"

Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

For step-by-step content on adding a csvgen adapter to receive CSV content in the
TradeReport application, see Section , "Add an Input Adapter to Receive Event Data".

Event Types Provide Useful Structure for Event Data
In the TradeReport application, the input adapter converts the incoming event data
from a set of comma-separated values into property values of an event type instance
that's defined as a Java class.

An event type provides a predictable structure for event data that other code in your
application can use. Examples of that code include an Oracle CQL query that filters the
events to discover those to act on, Java code in a bean that creates new kinds of events
based on what your application received, and code to retrieve values and merge them
with values from another data source.

Event types define properties that provide access to event data. Adapters receive
incoming events from different event sources, such as the Java Messaging System
(JMS) or financial market data feeds. You must define an Oracle Event Processing
event type for these events before code is able to work with them.

How an Oracle Event Processing Application Works

1-6 Developer's Guide for Oracle Event Processing

You specify event types when you're configuring the EPN. With the structure of the
raw event data in hand, you can define an event type that best suits your application's
needs. The general best practice for defining an event type is to write a JavaBean class
whose properties map to the event data that your application will use. You can also
define event types as simple tuples and Java Map instances.

For more information, see Chapter 9, "Defining and Using Event Types"

For step-by-step content on defining an event type for the TradeReport application, see
Section , "Create an Event Type to Carry Event Data".

Channels Transfer Events from Stage to Stage
In the TradeReport application, the input adapter transmits events to an Oracle CQL
processor by sending the events through a channel.

Channels connect stages in an event processing network. Between most components
you will add a channel that listens for events coming from one stage and sends those
events to another stage.

For more information on adding channels, see Chapter 10, "Connecting EPN Stages
Using Channels".

For step-by-step content on adding a channel to the TradeReport application, see
Section , "Add a Channel to Convey Events".

Processors Contain Query Code to Examine Events
The TradeReport application includes a processor that contains a simple Oracle
Continuous Query Language (Oracle CQL) query to filter the stream of received
events down to only those that meet certain criteria. As events flow through the
processor, the Oracle CQL code executes, acting as a filter to determine which events
get passed to the next stage.

The logic of the application relies on the specific qualities of events flowing through it.
In this application, a processor stage is a place to discover those qualities by using
Oracle CQL code to look for occurrences of particular data or trends.

Because it is a great deal like the SQL language used to query more static, relational
data sources, the Oracle CQL language is a powerful tool to discover information
about data represented by events. For example, Oracle CQL contains a wide
assortment of functions ranging from simple count() and sum() functions to
sophisticated statistics functions.

Oracle CQL is like SQL, but also includes functionality intended specifically for
writing queries that account for a characteristic typically not as important when
querying static databases: the passage of time. Through these time-related features,
you can, for example, write code that defines specific windows, such as from the
present to the preceding 5 milliseconds. Your queries can execute to isolate this
window as events pass through.

You can also use the code in Oracle CQL processor to collect and combine data from a
variety of sources, including a cache and a relational database. Using a cache, for
example, gives you a place to put frequently-retrieved data where performance will be
faster.

The Oracle CQL engine is also extensible with cartridges that make additional
functionality available to your Oracle CQL code.

For more information on Oracle CQL, see Chapter 17, "Querying an Event Stream with
Oracle CQL".

How an Oracle Event Processing Application Works

Overview of Creating Oracle Event Processing Applications 1-7

For step-by-step information on defining an Oracle CQL query in the TradeReport
application, see Section , "Add an Oracle CQL Processor to Filter Events".

Beans Provide a Place for Java Logic
Once the TradeReport application has processed events with Oracle CQL, it passes the
resulting events to an event bean that receives the events and prints to the console data
contained in each event type instance.

In an EPN, a bean provides a place for you to execute Java code over events that are
passing through. A bean can receive and sent events. For example, a bean might
receive events of one type, then retrieve their data to perform some calculation or
lookup using the data. The bean could then create new events from the newly
generated data before passing the new events along to another stage.

You can write and configure beans as either Spring beans or event beans. Spring beans
are managed by the Spring framework, and are a good choice if you want to integrate
your bean to an existing Spring deployment. Event beans, on the other hand, use
Oracle Event Processing conventions for configuring beans so that they're managed by
the Oracle Event Processing server. With an event bean, for example, you get the
support of Oracle Event Processing server features such as monitoring and event
recording and playback (useful for debugging an application).

For more information on writing and using Java classes that handle events, see
Chapter 16, "Handling Events with Java".

For step-by-step content on adding an event bean to the TradeReport application, see
Section , "Create a Listener to Receive and Report Events".

Configuration Files Define an EPN and Its Components
The EPN presence of and connections between TradeReport application stages is
configured in an EPN assembly XML file. There is also a component configuration file
which, though it isn’t used in this case, could define runtime configuration for the
components.

The EPN assembly file is what you are writing as you assemble an event processing
network using the IDE (the EPN editor is essentially a user interface for designing
EPN assembly files). What's in the EPN assembly file declares the stages and
determines how they interact, including which direction events flow when moving
from one stage to another. The EPN assembly file also sets default values for
component settings, or values that you won't need to change at runtime.

With a component configuration file, on the other hand, you can specify configuration
data that an administrator can later change while the application is running. The
component configuration file is where Oracle CQL code is typically written (as
configuration for a processor component).

For more information on configuration files, see Section , "Overview of Application
Configuration".

Design and Configuration Conventions Scalability and High Availability
While the simple TradeReport application doesn't demonstrate them, there are design
patterns that you can use to ensure that your application remains available and scales
well.

When ensuring that your application remains highly available, you integrate
application design patterns, server resources, and configuration conventions so that
your deployed application continues to fulfill its role even in the event of software or
hardware failures.

Overview of Events, Streams and Relations

1-8 Developer's Guide for Oracle Event Processing

A scalable Oracle Event Processing application incorporates design patterns with
implementation and configuration conventions to ensure that the application functions
well as the event load increases.

For more information, see the following:

Chapter 24, "Developing Applications for High Availability"

Chapter 25, "Developing Scalable Applications"

Overview of Events, Streams and Relations
An Oracle Event Processing application handles events that arrive in a stream as raw
event data, are converted to event type instances inside the application, and move
from one application stage to another in an event processing network. Along the way,
the events might be filtered with Oracle CQL queries, handled by Java code, stored in
a cache, forwarded to other applications, and so on.

But what is an event? With the emphasis on the streaming aspect of event data, it can
be easy to forget how much events are like rows in a database. In application terms, an
event is a tuple, or set of values. Like a relational database row, an event has a schema
in which each value has specific constraints, such as a particular data type. An event’s
schema defines its set of properties (where values will go) and their types.

Where events are unlike database rows is in the importance of time. In a stream of
events, when an event arrives, including which event arrives before or after another
event, can make all the difference. As a result, your application needs to be able to
account for time and sequence.

For example, in an application that processes stock trades, event tuples made up of
stock symbol, price, last price, percentage change, and volume would likely arrive one
after the other in the order in which each trade was executed. Your application’s logic
might look for trades of one stock that occurred immediately after trades of another.

In other words, in an event processing application the sequence in which events occur
in a stream is as important as the data types and values of each event property. As a
result, conventions of the Oracle Event Processing programming model reflect the
importance of time and sequence. Your code should be able to discover which events
are related to one another based on certain criteria (such as a shared stock symbol). But
it also needs to be able to discover sequence patterns (such as trades within fifteen
seconds of one another). And it should be able to discover these things with very low
latency as the events arrive at your application.

To account for both the sequential and relational aspects of event data, Oracle Event
Processing uses the concepts of streams and relations.

■ A stream is a potentially infinite sequence of events. Like rows in a database, the
events are tuples, yet each has its own timestamp. In a stream, the events must be
ordered by time, one after the other, so that timestamps do not decrease from one
event to the next (although there might be events in a stream that have the same
timestamp).

■ In a relation, sequence might be unimportant (as with the results of a database
query). Instead, events in a relation are typically related because they met certain
criteria. For example, events in a relation might be the result of a query executed
against a stream of stock trades, where the query was looking for trade volumes
above a particular level.

Consider that stream of stock trade events. The events are arriving in sequence, each
with its own timestamp (perhaps the time when the trade occurred). To isolate the

Overview of Application Configuration

Overview of Creating Oracle Event Processing Applications 1-9

share price for trades that occurred within 5 seconds of one another, you query the
stream (received from StockTradeChannel) with the following Oracle CQL code:

select price from StockTradeChannel [range 5 seconds]

Because it uses a window -- [range 5 seconds] -- to isolate the events, this query’s
output is a relation. Though the events returned from the query have timestamps, they
are unordered in the relation. Because the incoming events are in a stream, the query
will execute continuously against every 5 seconds’ worth of events as they pass into
the query processor. As new events come along, those meeting the query terms are
inserted into the relation, while those leaving (pushed out, actually) are deleted from
the relation.

Why does this matter? A stream’s integrity as a stream is important. Technically, a
stream is a continuously moving -- well, streaming -- and ordered set of tuples. In a
stream, every event can be said to be "inserted," having been put into the stream by its
source, one after the other. When you get a subset of the stream with a query, you no
longer have something that is ordered. And once you have the subset in hand, you
might want to further isolate events by executing Oracle CQL code that queries the
relations that result from queries of streams.

For this reason, examples in the Oracle CQL reference show the output of a query as
events that are, as a result of the query and at that particular place in time, either
inserted or deleted.

Before passing a relation along to the next stage in the EPN, you can convert it back
into a stream by using an operator such as IStream.

For more information, see:

■ Section , "Channels Representing Streams and Relations"

■ "Streams and Relations" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

Overview of Application Configuration
You configure Oracle Event Processing applications through XML files that are based
on standard schemas. When you install Oracle Event Processing, XSD files for these
schemas are included in the directory MIDDLEWARE_HOME\ocep_11.1\xsd.

As you assemble an event processing network (EPN), even if you are using the IDE,
you are creating an EPN assembly XML file. An entry for a stage in this file adds that
stage to the EPN and defines its connections with other stages. For more on this file,
see Section , "Overview of EPN Assembly Files".

Each component in your event processing network (adapter, processor, channel, or
event bean) can have associated configuration XML. By providing this configuration,
you provide a way for the component’s configuration to be edited at runtime. (Only
processors are required to have a configuration file.) Configuration XML for
components can be grouped into a single component configuration file or divided
among multiple files, depending on the needs of your development process. For more
on component configuration files, see Section , "Overview of Component
Configuration Files".

Other aspects of an Oracle Event Processing application might require their own
configuration files. These include caching provided by Oracle Coherence. For
information about other configuration, see documentation sections related to those
technologies.

Overview of Application Configuration

1-10 Developer's Guide for Oracle Event Processing

Overview of EPN Assembly Files
When you are assembling an event processing network (EPN) using the IDE, you are
defining the EPN in an assembly file. The EPN assembly file is an XML file whose
shape is based on the Spring framework XML configuration file. The EPN assembly
file schema extends the Spring configuration schema.

The spring-wlevs-v11_1_1_6.xsd schema file describes the structure of EPN
assembly files. When you install Oracle Event Processing, XSD files such as this one
are included in the directory MIDDLEWARE_HOME\ocep_11.1\xsd..

The structure of EPN assembly files is as follows. There is a top-level root element
named beans that contains a sequence of sub-elements. Each individual sub-element
contains the configuration data for an Oracle Event Processing component. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel"
event-type="HelloWorldEvent" advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

</beans>

For some Oracle Event Processing features, you specify some configuration in the EPN
assembly file and some in the component configuration file.

For more information, see:

■ Section , "Creating EPN Assembly Files"

■ Section , "Overview of Component Configuration Files"

Overview of Application Configuration

Overview of Creating Oracle Event Processing Applications 1-11

■ Appendix , "EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd"

Nesting Stages in an EPN Assembly File
When you define a child stage within a parent stage in an EPN, the child stage is said
to be nested. Only the parent stage can specify the child stage as a listener.

Example 1–1 shows the EPN assembly source in which HelloWorldBean is nested
within the helloworldOutputChannel. Only the parent helloworldOutputChannel
may specify the nested bean as a listener.

Example 1–1 EPN Assembly File With Nested Bean

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >

<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutput" event-type="HelloWorldEvent" advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

Alternatively, you can define this EPN so that all nodes are nested as Example 1–2
shows. The helloworldAdapter, the outermost parent stage, is the only stage
accessible to other stages in the EPN.

Example 1–2 EPN Assembly File With all Nodes Nested

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >

<wlevs:instance-property name="message"
value="HelloWorld - the current time is:"/>

<wlevs:listener>
<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >

<wlevs:listener>
<wlevs:processor id="helloworldProcessor">

<wlevs:listener>
<wlevs:channel id="helloworldOutputChannel"

event-type="HelloWorldEvent">
<wlevs:listener>

<bean
class="com.bea.wlevs.example.helloworld.HelloW

orldBean"/>
</wlevs:listener>

</wlevs:channel>
</wlevs:listener>

</wlevs:processor>
</wlevs:listener>

</wlevs:channel>
</wlevs:listener>

</wlevs:adapter>

Overview of Application Configuration

1-12 Developer's Guide for Oracle Event Processing

For more information, see Section , "Nested Stages".

Referencing Foreign Stages in an EPN Assembly File
You can refer to a stage that is in another Oracle Event Processing application. A stage
from another application is considered a foreign stage. You do this by id attribute when
you define both the source and target stage in the same application.

To refer to a stage you define in a different application, you use the following syntax:

FOREIGN-APPLICATION-NAME:FOREIGN-STAGE-ID

Where FOREIGN-APPLICATION-NAME is the name of the application in which you
defined the foreign stage and FOREIGN-STAGE-ID is the id attribute of the foreign stage.

Example 1–3 shows how the reference in application1 to the foreign stage
HelloWorldBeanSource that you define in application application2.

Example 1–3 Application 1 Referencing Foreign Stage in Application 2

<wlevs:stream id="helloworldInstream" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="application2:HelloWorldBeanSource"/>

</wlevs:stream>

Example 1–4 Foreign Stage in Application 2

<wlevs:event-bean id="HelloWorldBeanSource"
class="com.bea.wlevs.example.helloworld.HelloWorldBeanSource"
advertise="true"/>

The following stages cannot be foreign stages:

■ Cache

When creating Oracle Event Processing applications with foreign stages, you must
consider foreign stage dependencies when assembling, deploying, and redeploying
your application. For more information, see Section , "Assembling Applications With
Foreign Stages".

Overview of Component Configuration Files
Each component in your event processing network (adapter, processor, channel, or
event bean) can have an associated configuration file, although only processors are
required to have a configuration file. The caching system also uses a configuration file,
regardless of whether it is a stage in the event processing network. Component
configuration files in Oracle Event Processing are XML documents whose structure is
defined using standard XML Schema. You create a single file that contains
configuration for all components in your application, or you can create separate files
for each component; the choice depends on which is easier for you to manage.

The wlevs_application_config.xsd schema file describes the structure of component
configuration files. When you install Oracle Event Processing, XSD files such as this
one are included in the directory MIDDLEWARE_HOME\ocep_11.1\xsd..

This XSD schema imports the following schemas:

Note: You can’t connect a processor stage to a channel that is a
foreign stage.

Overview of Application Configuration

Overview of Creating Oracle Event Processing Applications 1-13

■ wlevs_base_config.xsd: Defines common elements that are shared between
application configuration files and the server configuration file

■ wlevs_eventstore_config.xsd: Defines event store-specific elements.

■ wlevs_diagnostic_config.xsd: Defines diagnostic elements.

The structure of application configuration files is as follows. There is a top-level root
element named config that contains a sequence of sub-elements. Each individual
sub-element contains the configuration data for an Oracle Event Processing
component (processor, channel, or adapter). For example:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>
<channel>

<name>helloworldInputChannel</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>

</channel>
<channel>

<name>helloworldOutputChannel</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>

</channel>
</n1:config>

For more information, see:

■ Section , "Accessing Component and Server Configuration Using the
ConfigurationPropertyPlaceholderConfigurer Class"

■ Section , "Creating Component Configuration Files"

■ Appendix , "Component Configuration Schema wlevs_application_config.xsd"

Accessing Component and Server Configuration Using the
ConfigurationPropertyPlaceholderConfigurer Class
Using the ConfigurationPropertyPlaceholderConfigurer class, you can reference
existing configuration file properties, in both component configuration and server
configuration files, using a symbolic placeholder. This allows you to define a value in
one place and refer to that one definition rather than hard-coding the same value in
many places.

To use this feature, insert a ConfigurationPropertyPlaceholderConfigurer bean in
the application context configuration file of your application bundle as Example 1–5
shows.

Example 1–5 Adding a ConfigurationPropertyPlaceholderConfigurer

 <bean class="com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderConfigurer"/>

Overview of Application Configuration

1-14 Developer's Guide for Oracle Event Processing

For complete details, see the
com.bea.wlevs.spring.support.ConfigurationPropertyPlaceholderConfigurer
class in the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

For more information on accessing property files, see Section , "How to Add a
Property File to an Oracle Event Processing Project".

Configuring Oracle Event Processing Resource Access
Because Oracle Event Processing applications are low latency high-performance
event-driven applications, they run on a lightweight container and are developed
using a POJO-based programming model. In POJO (Plain Old Java Object)
programming, business logic is implemented in the form of POJOs, and then injected
with the services they need. This is popularly called dependency injection. The injected
services can range from those provided by Oracle Event Processing services, such as
configuration management, to those provided by another Oracle product such as
Oracle Kodo, to those provided by a third party.

By using Oracle Event Processing and standard Java annotations and deployment
XML, you can configure the Oracle Event Processing Spring container to inject
resources (such as data sources or persistence managers, and so on) into your Oracle
Event Processing application components.

The Spring container typically injects resources during component initialization.
However, it can also inject and re-inject resources at runtime and supports the use of
JNDI lookups at runtime.

Oracle Event Processing supports the following types of resource access:

■ Section , "Static Resource Injection"

■ Section , "Dynamic Resource Injection"

■ Section , "Dynamic Resource Lookup Using JNDI"

See Section , "Understanding Resource Name Resolution" for information on resource
name resolution.

See Appendix I, "Oracle Event Processing Metadata Annotation Reference" for
complete details of all Oracle Event Processing annotations.

In the following sections, consider the example resource that Example 1–6 shows. This
is a data source resource named StockDS that you specify in the Oracle Event
Processing server config.xml file.

Example 1–6 Sample Resource: Data Source StockDS

<config ...>
<data-source>

<name>StockDs</name>
...
<driver-params>

<url>jdbc:derby:</url>
...

<driver-params>
</data-source>

...
</config>

Overview of Application Configuration

Overview of Creating Oracle Event Processing Applications 1-15

Static Resource Injection
Static resource injection refers to the injection of resources during the initialization
phase of the component lifecycle. Once injected, resources are fixed, or static, while the
component is active or running.

You can configure static resource injection using:

■ Section , "Static Resource Names"

■ Section , "Dynamic Resource Names"

Static Resource Names When you configure static resource injection using static
resource names, the resource name you use in the @Resource annotation or Oracle
Event Processing assembly XML file must exactly match the name of the resource as
you defined it. The resource name is static in the sense that you cannot change it
without recompiling.

To configure static resource injection using static resource names at design time, you
use the standard javax.annotation.Resource annotation as Example 1–7 shows.

To override design time configuration at deploy time, you use Oracle Event Processing
assembly file XML as Example 1–8 shows.

In Example 1–7 and Example 1–8, the resource name StockDs exactly matches the
name of the data source in the Oracle Event Processing server config.xml file as
Example 1–6 shows.

Example 1–7 Static Resource Injection Using Static Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...

@Resource (name="StockDs")
public void setDataSource (DataSource dataSource){

this.dataSource = dataSource;
}

}

Example 1–8 Static Resource Injection Using Static Resource Names: XML

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
<wlevs:resource property="dataSource" name="StockDs"/>

</wlevs:event-bean>

If the name of the EventBean set method matches the name of the resource, then the
@Resource annotation name attribute is not needed as Example 1–9 shows. Similarly, in
this case, the wlevs:resource element name attribute is not needed as Example 1–10.

Example 1–9 Static Resource Injection Using Static Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...

@Resource ()
public void setStockDs (DataSource dataSource){

this.dataSource = dataSource;
}

}

Overview of Application Configuration

1-16 Developer's Guide for Oracle Event Processing

Example 1–10 Static Resource Injection Using Static Resource Names: XML

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
<wlevs:resource property="dataSource"/>

</wlevs:event-bean>

Dynamic Resource Names A dynamic resource name is one that is specified as part of the
dynamic or external configuration of an application. Using a dynamic resource name,
the deployer or administrator can change the resource name without requiring that the
application developer modify the application code or the Spring application context.

To add a dynamic resource name to a component, such as an adapter or POJO, you
must first specify custom configuration for your component that contains the resource
name as Example 1–11 shows.

Example 1–11 Custom Component Configuration

<simple-bean>
<name>SimpleBean</name>
<trade-datasource>StockDs</trade-datasource>

</simple-bean>

To configure static resource injection using dynamic resource names at design time,
you use the standard javax.annotation.Resource annotation as Example 1–12 shows.

To override design time configuration at deploy time, you use Oracle Event Processing
assembly file XML as Example 1–13 shows.

Example 1–12 Static Resource Injection Using Dynamic Resource Names: Annotations

import javax.annotation.Resource;

public class SimpleBean implements EventBean {
...

@Resource (name="trade-datasource")
public void setDataSource (DataSource dataSource){

this.dataSource = dataSource;
}

}

Example 1–13 Static Resource Injection Using Dynamic Resource Names: XML

< wlevs:event-bean id="simpleBean" class="...SimpleBean"/>
<wlevs:resource property="dataSource" name="trade-datasource"/>

</wlevs:event-bean>

Dynamic Resource Injection
Dynamic resource injection refers to the injection of resources dynamically while the
component is active in response to a dynamic configuration change using Spring
container method injection.

To configure dynamic resource injection at design time, you use the standard
javax.annotation.Resource annotation as Example 1–14 shows.

Example 1–14 Dynamic Resource Injection: Annotations

import javax.annotations.Resource;

public class SimpleBean implements EventBean {
...

@Resource ("trade-datasource")

Overview of Application Configuration

Overview of Creating Oracle Event Processing Applications 1-17

public abstract DataSource getDataSource ();
...

}

The component calls the getDataSource method at runtime whenever it needs to
retrieve a new instance of the resource that the resource name trade-datasource
refers to.

Typically, the component calls the getDataSource method during the @Prepare or
@Activate methods when dynamic configuration changes are handled. For more
information see:

■ Section , "com.bea.wlevs.configuration.Activate"

■ Section , "com.bea.wlevs.configuration.Prepare"

Another strategy is to always call the getDataSource prior to using the data source.
That is, the application code does not store a reference to the data source as a field in
the component.

Dynamic Resource Lookup Using JNDI
Oracle Event Processing supports the use of JNDI to look up resources dynamically as
Example 1–15.

Example 1–15 Dynamic Resource Lookup Using JNDI

import javax.naming.InitialContext;

public class SimpleBean implements EventBean {
...

public abstract void getDataSource () throws Exception {
InitialContext initialContext= new InitialContext ();
return initialContext.lookup ("StockDs”);

}
}

In Example 1–15, the JNDI name StockDs must exactly match the name of the data
source in the Oracle Event Processing server config.xml file as Example 1–6 shows.

Understanding Resource Name Resolution
Oracle Event Processing server resolves resource names by examining the naming
scopes that Table 1–1 lists.

Note: You must disable security when starting the Oracle Event
Processing server in order to use JNDI. Oracle does not recommend
the use of JNDI for this reason.

For more information, see "Configuring Security for Oracle Event
Processing" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Event Processing.

Table 1–1 Resource Name Resolution

Naming Scope Contents Resolution Behavior

Component The property names of the component’s custom configuration Mapping

Application The names of the configuration elements in the application
configuration files

Matching

Server The names of the configuration elements in the server
configuration file

Matching

Oracle Event Processing APIs

1-18 Developer's Guide for Oracle Event Processing

Each naming scope contains a set of unique names. The name resolution behavior is
specific to a naming scope. Some naming scopes resolve names by simple matching.
Other scopes resolve names by mapping the name used to do the lookup into a new
name. Once a name is mapped, lookup proceeds recursively beginning with the
current scope.

Oracle Event Processing APIs
Oracle Event Processing provides a variety of Java APIs that you use in your adapter
or event bean implementation.

This section describes the APIs in the com.bea.wlevs.ede.api package that you will
most typically use in your adapters and event beans.

■ AdapterFactory—Adapter factories must implement this interface.

For more information, see Section , "Creating a Custom Adapter Factory"

■ Component life cycle interfaces—If you want some control over the life cycle of
the component you are programming, then your component should implement
one or more of the following interfaces.

For more information about the life cycle, see Section , "Oracle Event Processing
Application Lifecycle".

– InitializingBean—Use if you require custom initialization after Oracle Event
Processing has set all the properties of the component. Implement the
afterPropertiesSet method.

– ActivatableBean—Use if you want to run some code after all dynamic
configuration has been set and the event processing network has been
activated. Implement the afterConfigurationActive method.

– RunnableBean—Use if you want the component to be run in a thread.

The Spring framework implements similar bean life cycle interfaces; however,
the equivalent Spring interfaces do not allow you to manipulate beans that
were created by factories, while the Oracle Event Processing interfaces do.

– SuspendableBean—Use if you want to suspend resources or stop processing
events when the event processing network is suspended. Implement the
suspend method.

– ResumableBean—Use if you want to perform some task, such as acquire or
configure resources, before the component resumes work.

– DisposableBean—Use if you want to release resources when the application is
undeployed. Implement the destroy method in your component code.

See also Appendix I, "Oracle Event Processing Metadata Annotation Reference" for
additional lifecycle annotations.

■ Event type instantiation interfaces—Use these interfaces for greater control over
how event types are instantiated for use in an EPN.

For more information about event types, see Chapter 1, "Overview of Creating
Oracle Event Processing Applications".

JNDI The names registered in the server's JNDI registry Matching

Table 1–1 (Cont.) Resource Name Resolution

Naming Scope Contents Resolution Behavior

Oracle Event Processing APIs

Overview of Creating Oracle Event Processing Applications 1-19

– EventBuilder—Use to control event type instantiation, such as to ensure that
the properties of a configured event are correctly bound to the properties of an
event type class, such as one you have implemented as a JavaBean.

For more information, see Section , "Controlling Event Type Instantiation with
an Event Type Builder Class".

– EventBuilder.Factory—Factory for creating EventBuilders.

■ Event source and sink interfaces—Use these to enable a class to receive and send
events as part of the event processing network.

For more information on event sources and sinks, see Section , "Handling Events
with Sources and Sinks" and

– StreamSinkand BatchStreamSink—Components that want to receive events as
an Oracle Event Processing stream must implement this interface. An Oracle
Event Processing stream has the following characteristics:

Append-only, that is, events are always appended to the end of the stream.
Unbounded and generally need a window to be defined before it can be processed.
Events have non-decreasing time-stamps.

For more implementation information, see Section , "Implementing an Event
Sink".

– StreamSource, StreamSender and BatchStreamSender—Components that
send events modeling an Oracle Event Processing stream, such as adapters,
must implement StreamSource. The interface has a setEventSender method
for setting the StreamSender or BatchStreamSender, which actually send the
event to the next component in the network.

For more implementation information, see Section , "Implementing an Event
Source".

– RelationSink and BatchRelationSink—Components that want to receive
events modeling an Oracle Event Processing relation must implement one of
these interfaces. An Oracle Event Processing relation has the following
characteristics:

Supports events that insert, delete, and update its content.
Is always known at an instant time.
Events have non-decreasing time-stamps.

For more implementation information, see Section , "Implementing an Event
Sink".

– RelationSource, RelationSender, and BatchRelationSender—Components
that send events modeling an Oracle Event Processing relation, such as
adapters, must implement this interface. The interface has a setEventSender
method for setting the RelationSender or BatchRelationSender, which
actually send the event to the next component in the network.

For more implementation information, see Section , "Implementing an Event
Source".

For more information, see:

■ For the full reference documentation for all classes and interfaces, see Oracle Fusion
Middleware Java API Reference for Oracle Event Processing.

■ For sample Java code that uses these APIs, see:

– Chapter 9, "Defining and Using Event Types"

Packaging an Application

1-20 Developer's Guide for Oracle Event Processing

– Chapter 15, "Integrating an External Component Using a Custom Adapter"

– Chapter 16, "Handling Events with Java"

– Chapter 2, "Oracle Event Processing Samples"

■ Section , "Configuring Oracle Event Processing Resource Access" for information
on using Oracle Event Processing annotations and deployment XML to configure
resource injection.

Packaging an Application
After an application is assembled, it must be packaged so that it can be deployed into
Oracle Event Processing. This is a simple process. The deployment unit of an
application is a plain JAR file, which must contain, at a minimum, the following
artifacts:

■ The compiled application Java code of the business logic POJO.

■ Component configuration files. Each processor is required to have a configuration
file, although adapters and streams do not need to have a configuration file if the
default configuration is adequate and you do not plan to monitor these
components.

■ The EPN assembly file.

■ A MANIFEST.MF file with some additional OSGi entries.

After you assemble the artifacts into a JAR file, you deploy this bundle to Oracle Event
Processing so it can immediately start receiving incoming data.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

Oracle Event Processing Application Lifecycle
Figure 1–1 shows a state diagram for the Oracle Event Processing application lifecycle.
In this diagram, the state names (STARTING, INITIALIZING, RUNNING, SUSPENDING,
SUSPENDED, and FAILED) correspond to the ApplicationRuntimeMBean method
getState return values. These states are specific to Oracle Event Processing; they are
not OSGi bundle states.

Oracle Event Processing Application Lifecycle

Overview of Creating Oracle Event Processing Applications 1-21

Figure 1–1 Oracle Event Processing Application Lifecycle State Diagram

This section describes the lifecycle of an application deployed to the Oracle Event
Processing server and the sequence of com.bea.wlevs.ede.api API callbacks.

This information explains how Oracle Event Processing manages an application's
lifecycle so that you can better use the lifecycle APIs in your application.

For a description of these lifecycle APIs (such as RunnableBean and SuspendableBean),
see:

■ Section , "Oracle Event Processing APIs"

■ Appendix I, "Oracle Event Processing Metadata Annotation Reference"

■ Oracle Fusion Middleware Java API Reference for Oracle Event Processing

The lifecycle description is broken down into actions that a user performs, including
those described in the following sections.

Installing an application or starting the server with application already deployed
Oracle Event Processing performs the following actions:

1. Oracle Event Processing installs the application as an OSGI bundle. OSGI resolves
the imports and exports, and publishes the service.

2. Oracle Event Processing creates beans (for both standard Spring beans and those
that correspond to the Oracle Event Processing tags in the EPN assembly file). For
each bean, Oracle Event Processing:

– Sets the properties on the Spring beans. The <wlevs:instance-property>
values are set on adapters and event-beans.

– Injects appropriate dependencies into services specified by @Service or
@ServiceReference annotations.

Note: For information on Oracle Event Processing server lifecycle,
see "Oracle Event Processing Server Lifecycle" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

Oracle Event Processing Application Lifecycle

1-22 Developer's Guide for Oracle Event Processing

– Injects appropriate dependencies into static configuration properties.

– Calls the InitializingBean.afterPropertiesSet method.

– Calls configuration callbacks (@Prepare,@Activate) on Spring beans as well as
factory-created stages.

For more information, see Section , "Configuring Oracle Event Processing
Resource Access".

3. Application state is now INITIALIZING.

4. Oracle Event Processing registers the MBeans.

5. Oracle Event Processing calls the ActivatableBean.afterConfigurationActive
method on all ActivatableBeans.

6. Oracle Event Processing calls the ResumableBean.beforeResume method on all
ResumableBeans.

7. For each bean that implements RunnableBean, Oracle Event Processing starts it
running in a thread.

8. Application state is now RUNNING.

Suspending the application
Oracle Event Processing performs the following actions:

1. Oracle Event Processing calls the SuspendableBean.suspend method on all
SuspendableBeans.

2. Application state is now SUSPENDED.

Resuming the application
Oracle Event Processing performs the following actions:

1. Oracle Event Processing calls the ResumableBean.beforeResume method on all
ResumableBeans

2. For each bean that implements RunnableBean, Oracle Event Processing starts it
running in a thread.

3. Application state is now RUNNING.

Uninstalling application
Oracle Event Processing performs the following actions:

1. Oracle Event Processing calls the SuspendableBean.suspend method on all
SuspendableBeans.

2. Oracle Event Processing unregisters MBeans.

3. Oracle Event Processing calls the DisposableBean.dispose method on all
DisposableBeans.

4. Oracle Event Processing uninstalls application bundle from OSGI.

Updating the application
This is equivalent to first uninstalling an application and then installing it again.

See those user actions in this list.

Oracle Event Processing Application Lifecycle

Overview of Creating Oracle Event Processing Applications 1-23

Calling methods of stream and relation sources and sinks
You may not call a method on a stream or relation source or sink from a lifecycle
callback because components may not be ready to receive events until after these
phases of the application lifecycle complete.

For example, you may not call StreamSender method sendInsertEvent from a
lifecycle callback such as such as afterConfigurationActive or beforeResume.

You can call a method on a stream or relation source or sink from the run method of
beans that implement RunnableBean.

For more information, see the description of installing an application. Also see
Section , "Handling Events with Sources and Sinks".

Oracle Event Processing Application Lifecycle

1-24 Developer's Guide for Oracle Event Processing

2

Oracle Event Processing Samples 2-1

2Oracle Event Processing Samples

[3] This chapter introduces sample code provided with Oracle Event Processing,
describing how to set up and use code ranging from simple "Hello World" to
applications of Oracle Continuous Query Language (Oracle CQL), as well as for
spatial and industry-focused scenarios.

This chapter includes the following sections:

■ Overview of the Samples Provided in the Distribution Kit

■ Installing the Default ocep_domain and Samples

■ Using Oracle Event Processing Visualizer With the Samples

■ Increasing the Performance of the Samples

■ HelloWorld Example

■ Oracle Continuous Query Language (Oracle CQL) Example

■ Oracle Spatial Example

■ Foreign Exchange (FX) Example

■ Signal Generation Example

■ Event Record and Playback Example

Overview of the Samples Provided in the Distribution Kit
Oracle Event Processing includes the following samples:

■ HelloWorld: a basic skeleton of a typical Oracle Event Processing application.

■ Oracle Continuous Query Language (CQL): an example that shows how to use the
Oracle Event Processing Visualizer Query Wizard to construct various Oracle CQL
queries to process event streams.

■ Oracle Spatial: an example that shows how to use Oracle Spatial with Oracle CQL
queries to process a stream of Global Positioning System (GPS) events to track the
GPS location of buses and generate alerts when a bus arrives at its pre-determined
bus stop positions.

■ Foreign Exchange (FX): a complete example that includes multiple components.

■ Signal Generation: an example that simulates market trading and trend detection.

■ Event record and playback: an example that shows how to configure event record
and playback using a persistent event store.

These samples are provided in two forms, as follows:

Overview of the Samples Provided in the Distribution Kit

2-2 Developer's Guide for Oracle Event Processing

■ Section , "Ready-to-Run Samples"

■ Section , "Sample Source"

The samples use Ant as their development tool; for details about Ant and installing it
on your computer, see http://ant.apache.org/.

Ready-to-Run Samples
Out-of-the-box sample domains pre-configured to deploy an assembled application;
each sample has its own domain for simplicity. Each domain is a standalone server
domain; the server files are located in the defaultserver subdirectory of the domain
directory. To deploy the application you simply start the default server in the domain.

■ The sample HelloWorld domain is located in \MIDDLEWARE_HOME\ocep_
11.1\samples\domains\helloworld_domain, where MIDDLEWARE_HOME refers to the
Middleware directory you specified when you installed Oracle Event Processing,
such as d:\Oracle\Middleware.

See Section , "Running the HelloWorld Example from the helloworld Domain" for
details.

■ The sample CQL domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\cql_domain.

See Section , "Running the CQL Example" for details.

■ The sample Oracle Spatial domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\spatial_domain.

See Section , "Running the Oracle Spatial Example" for details.

■ The sample Foreign Exchange domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\fx_domain.

See Section , "Running the Foreign Exchange Example" for details.

■ The sample Signal Generation domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\signalgeneration_domain.

See Section , "Running the Signal Generation Example" for details.

■ The sample Record and Playback domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\recplay_domain.

See Section , "Running the Event Record/Playback Example" for details.

Sample Source
The Java and configuration XML source for each sample is provided in a separate
source directory that describes a sample development environment.

■ The HelloWorld source directory is located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\helloworld, where MIDDLEWARE_HOME refers
to the Middleware directory you specified when you installed Oracle Event
Processing, such as d:\Oracle\Middleware.

See Section , "Implementation of the HelloWorld Example" for details.

■ The CQL source directory is located in MIDDLEWARE_HOME\ocep_
11.1\\samples\source\applications\cql.

See Section , "Implementation of the CQL Example" for details.

Using Oracle Event Processing Visualizer With the Samples

Oracle Event Processing Samples 2-3

■ The Oracle Spatial source directory is located in MIDDLEWARE_HOME\ocep_
11.1\\samples\source\applications\spatial.

See Section , "Implementation of the Oracle Spatial Example" for details.

■ The Foreign Exchange source directory is located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\fx.

See Section , "Implementation of the FX Example" for details.

■ The Signal Generation source directory is located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\signalgeneration.

See Section , "Implementation of the Signal Generation Example" for details.

■ The Record and Playback source directory is located in MIDDLEWARE_HOME\ocep_
11.1\\samples\source\applications\recplay.

See Section , "Implementation of the Record and Playback Example" for details.

Installing the Default ocep_domain and Samples
To install all Oracle Event Processing components including the default ocep_domain
domain (with default passwords) and the samples, you must chose the Custom option
to also install the samples. The Typical option does not include the default ocep_
domain and samples.

If you previously installed Oracle Event Processing using the Typical option, and you
now want to also install the samples, re-run the Oracle Event Processing installation
process and specify the same Oracle Event Processing home directory; a later step in
the installation process allows you to then install just the samples.

Using Oracle Event Processing Visualizer With the Samples
The Oracle Event Processing Visualizer is a Web 2.0 application that consumes data
from Oracle Event Processing, displays it in a useful and intuitive way to system
administrators and operators, and, for specified tasks, accepts data that is then passed
back to Oracle Event Processing so as to change it configuration.

Visualizer is itself an Oracle Event Processing application and is automatically
deployed in each server instance. To use it with the samples, be sure you have started
the server (instructions provided for each sample below) and then invoke the
following URL in your browser:

 http://host:9002/wlevs

where host refers to the name of the computer hosting Oracle Event Processing; if it is
the same as the computer on which the browser is running you can use localhost.

Security is disabled for the HelloWorld application, so you can click Logon at the login
screen without entering a username and password. For the FX and signal generation
samples, however, security is enabled, so use the following to logon:

 User Id: wlevs
 Password: wlevs

For more information about Oracle Event Processing Visualizer, see Oracle Fusion
Middleware Visualizer User's Guide for Oracle Event Processing.

Increasing the Performance of the Samples

2-4 Developer's Guide for Oracle Event Processing

Increasing the Performance of the Samples
To increase the throughput and latency when running the samples, and Oracle Event
Processing applications in general, Oracle recommends the following:

■ Use the JRockit JDK included in Oracle JRockit Real Time and enable the
deterministic garbage collector by passing the -dgc parameter to the command
that starts the Oracle Event Processing instance for the appropriate domain:

prompt> startwlevs.cmd -dgc

By default the deterministic garbage collector is disabled for the samples.

For more information on Oracle JRockit Real Time, see
http://www.oracle.com/technology/products/jrockit/jrrt/index.html.

■ When running Oracle Event Processing on a computer with a larger amount of
memory, you should set the load generator and server heap sizes appropriately for
the size of the computer. On computers with sufficient memory, Oracle
recommend a heap size of 1 GB for the server and between 512MB - 1GB for the
load generator.

HelloWorld Example
The first example that shows how to create an Oracle Event Processing application is
the ubiquitous HelloWorld.

Figure 2–1 shows the HelloWorld example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Figure 2–1 The HelloWorld Example Event Processing Network

The example includes the following components:

■ helloworldAdapter—Component that generates Hello World messages every
second. In a real-world scenario, this component would typically read a stream of
data from a source, such as a data feed from a financial institution, and convert it
into a stream of events that the event processor can understand. The HelloWorld
application also includes a HelloWorldAdapterFactory that creates instances of
HelloWorldAdapter.

■ helloworldInputChannel—Component that streams the events generated by the
adapter (in this case Hello World messages) to the event processor.

■ helloworldProcessor—Component that simply forwards the messages from the
helloworldAdapter component to the POJO that contains the business logic. In a
real-world scenario, this component would typically execute additional and
possibly much more processing of the events from the stream, such as selecting a

HelloWorld Example

Oracle Event Processing Samples 2-5

subset of events based on a property value, grouping events, and so on using
Oracle CQL.

■ helloworldOutputChannel—Component that streams the events processed by the
event processor to the POJO that contains the user-defined business logic.

■ helloworldBean—POJO component that simply prints out a message every time it
receives a batch of messages from the processor via the output channel. In a
real-world scenario, this component would contain the business logic of the
application, such as running reports on the set of events from the processor,
sending appropriate emails or alerts, and so on.

Running the HelloWorld Example from the helloworld Domain
The HelloWorld application is pre-deployed to the helloworld domain. To run the
application, you simply start an instance of Oracle Event Processing server.

To run the HelloWorld example from the helloworld domain:
1. Open a command window and change to the default server directory of the

helloworld domain directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\helloworld_domain\defaultserver, where MIDDLEWARE_
HOME refers to the Middleware home directory you specified when you installed
Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\helloworld_
domain\defaultserver

2. Ensure the environment is set correctly in the server startup script.

For more information, see Chapter 3, "Getting Started with Developing Oracle
Event Processing Applications"

3. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message
printed to the output about every second:

HelloWorld Example

2-6 Developer's Guide for Oracle Event Processing

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

Building and Deploying the HelloWorld Example from the Source Directory
The HelloWorld sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the HelloWorld
application. The build.xml Ant file contains targets to build and deploy the
application to the helloworld domain.

For more information, see Section , "Description of the Ant Targets to Build Hello
World".

To build and deploy the HelloWorld example from the source directory:
1. If the helloworld Oracle Event Processing instance is not already running, follow

the procedure in Section , "Running the HelloWorld Example from the helloworld
Domain" to start the server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the HelloWorld source directory,
located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\helloworld where MIDDLEWARE_HOME is the
Middleware home directory you specified when you installed Oracle Event
Processing.

For example:

prompt> cd d:\Oracle\Middleware\ocep_
11.1\samples\source\applications\helloworld

3. Set your development environment as described in Section , "Setting Your
Development Environment."

4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Daction=update deploy

You should see the following message printed to the output about every second:

 Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example has been redeployed and is
running correctly.

Description of the Ant Targets to Build Hello World
The build.xml file, located in the top level of the HelloWorld source directory,
contains the following targets to build and deploy the application:

Caution: This target overwrites the existing helloworld application
JAR file in the domain directory.

HelloWorld Example

Oracle Event Processing Samples 2-7

■ clean—This target removes the dist and output working directories under the
current directory.

■ all—This target cleans, compiles, and JARs up the application into a file called
com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the generated
JAR file into a dist directory below the current directory.

■ deploy—This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Implementation of the HelloWorld Example
The implementation of the HelloWorld example generally follows Section , "Creating
an Oracle Event Processing Application".

Refer to that section for a task-oriented procedure that describes the typical
development process.

The HelloWorld example, because it is relatively simple, does not use all the
components and configuration files described in the general procedure for creating an
Oracle Event Processing application.

All the example files are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\helloworld directory, where MIDDLEWARE_HOME
refers to the Middleware directory you specified when you installed Oracle Event
Processing c:\Oracle\Middleware. Oracle recommends that you use this example
directory setup in your own environment, although it is obviously not required.

The files used by the HelloWorld example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together. The EPN assembly file extends the
standard Spring context file. The file also registers the event types used in the
application. You are required to include this XML file in your Oracle Event
Processing application.

In the example, the file is called
com.bea.wlevs.example.helloworld-context.xml and is located in the
META-INF/spring directory.

■ Java source file for the helloworldAdapter component.

In the example, the file is called HelloWorldAdapter.java and is located in the
src/com/bea/wlevs/adapter/example/helloworld directory.

For a detailed description of this file and how to program the adapter Java files in
general, see Chapter 15, "Integrating an External Component Using a Custom
Adapter".

■ Java source file that describes the HelloWorldEvent event type.

In the example, the file is called HelloWorldEvent.java and is located in the
src/com/bea/wlevs/event/example/helloworld directory.

For a detailed description of this file, as well as general information about
programming event types, see Chapter 9, "Defining and Using Event Types".

■ An XML file that configures the helloworldProcessor and
helloworldOutputChannel components. An important part of this file is the set of
EPL rules that select the set of events that the HelloWorld application processes.

Oracle Continuous Query Language (Oracle CQL) Example

2-8 Developer's Guide for Oracle Event Processing

You are required to include a processor configuration file in your Oracle Event
Processing application, although the adapter and channel configuration is
optional.

In the example, the file is called config.xml and is located in the META-INF/wlevs
directory.

■ A Java file that implements the helloworldBean component of the application, a
POJO that contains the business logic.

In the example, the file is called HelloWorldBean.java and is located in the
src/com/bea/wlevs/example/helloworld directory.

For a detailed description of this file, as well as general information about
programming event sinks, see Chapter 16, "Handling Events with Java".

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Section ,
"Overview of Application Assembly and Deployment".

The HelloWorld example uses a build.xml Ant file to compile, assemble, and deploy
the OSGi bundle; see Section , "Building and Deploying the HelloWorld Example from
the Source Directory" for a description of this build.xml file if you also use Ant in
your development environment.

Oracle Continuous Query Language (Oracle CQL) Example
The Oracle CQL example shows how to use the Oracle Event Processing Visualizer
Query Wizard to construct various types of Oracle CQL queries.

Figure 2–2 shows the CQL example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Figure 2–2 The CQL Example Event Processing Network

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-9

The application contains three separate event paths in its EPN:

■ Missing events: this event path consists of an adapter orderCVSAdapter connected
to a channel orderChannel. The orderChannel is connected to processor
orderProcessor which is connected to channel alertChannel which is connected
to adapter alertOutput.

This event path is used to detect missing events in a customer order workflow.

For more information on how to construct the query that the cqlProc processor
executes, see Section , "Creating the Missing Event Query".

■ Moving average: this event path consists of channel stockChannel connected to
processor stockProcessor which is connected to channel movingAvgChannel
which is connected to adapter movingOutput.

This event path is used to compute a moving average on stock whose volume is
greater than 1000.

For more information on how to construct the query that the cqlProc processor
executes, see Section , "Creating the Moving Average Query".

■ Cache: this event path consists of adapter adapter connected to channel S1
connected to Oracle CQL processor cacheProcessor connected to channel S2
connected to bean Bean. There is a cache stockCache also connected to the Oracle
CQL processor cacheProcessor. There is also a bean Loader.

This event path is used to access information from a cache in an Oracle CQL query.

Running the CQL Example
For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The CQL application is pre-deployed to the cql_domain domain. To run the
application, you simply start an instance of Oracle Event Processing server.

To run the CQL example:
1. Open a command window and change to the default server directory of the CQL

domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\cql_
domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware
directory you specified when you installed Oracle Event Processing, such as
d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\cql_
domain\defaultserver

2. Set your development environment, as described in Chapter , "Setting Your
Development Environment"

3. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

Note: For more information about the various components in the
EPN, see the other samples in this book.

Oracle Continuous Query Language (Oracle CQL) Example

2-10 Developer's Guide for Oracle Event Processing

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The CQL application is now ready to receive data from the data feeds.

4. To simulate the data feed for the missing event query, open a new command
window and set your environment as described in Chapter 3, "Getting Started
with Developing Oracle Event Processing Applications"

5. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory,
where MIDDLEWARE_HOME refers to the Middleware directory you specified when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

6. Run the load generator using the orderData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd orderData.prop

b. On UNIX:

prompt> runloadgen.sh orderData.prop

7. To simulate the data feed for the moving average query, open a new command
window and set your environment as described in Chapter 3, "Getting Started
with Developing Oracle Event Processing Applications"

8. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory,
where MIDDLEWARE_HOME refers to the Middleware directory you specified
when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

9. Run the load generator using the stockData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd stockData.prop

b. On UNIX:

prompt> runloadgen.sh stockData.prop

10. To simulate the data feed for the cache query, you only need to run the example.

The load data is generated by Adaptor.java and the cache data is generated by
Loader.java. You can verify that data is flowing through by turning on statistics
in the Oracle Event Processing Visualizer Query Plan.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-11

Building and Deploying the CQL Example
The CQL sample source directory contains the Java source, along with other required
resources such as configuration XML files, that make up the CQL application. The
build.xml Ant file contains targets to build and deploy the application to the cql_
domain domain, as described in Section , "Description of the Ant Targets to Build Hello
World."

To build and deploy the CQL example from the source directory:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section , "Running the CQL Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the CQL source directory, located in
MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\cql, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\cql

3. Set your development environment, as described in Section , "Setting Your
Development Environment"

4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

6. If the load generators required by the CQL application are not running, start them
as described in Section , "Running the CQL Example."

Description of the Ant Targets to Build the CQL Example
The build.xml file, located in the top-level directory of the CQL source, contains the
following targets to build and deploy the application:

■ clean—This target removes the dist and output working directories under the
current directory.

■ all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.cql_11.1.1.4_0.jar, and places the generated JAR file
into a dist directory below the current directory.

■ deploy—This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Caution: This target overwrites the existing CQL application JAR file
in the domain directory.

Oracle Continuous Query Language (Oracle CQL) Example

2-12 Developer's Guide for Oracle Event Processing

Implementation of the CQL Example
This section describes how to create the queries that the CQL example uses, including:

■ Section , "Creating the Missing Event Query"

■ Section , "Creating the Moving Average Query"

Creating the Missing Event Query
This section describes how to use the Oracle Event Processing Visualizer Query
Wizard to create the Oracle CQL pattern matching query that the cqlProc processor
executes to detect missing events.

Consider a customer order workflow in which you have customer order workflow
events flowing into the Oracle Event Processing system.

In a valid scenario, you see events in the order that Table 2–1 lists:

However, it is an error if an order is shipped without an approval event as Table 2–2
lists:

You will create and test a query that detects the missing approval event and generates
an alert event:

■ "To create the missing event query:" on page 2-12

■ "To test the missing event query:" on page 2-35

To create the missing event query:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section , "Running the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen appears as Figure 2–3 shows.

Table 2–1 Valid Order Workflow

Event Type Description

C Customer order

A Approval

S Shipment

Table 2–2 Invalid Order Workflow

Event Type Description

C Customer order

S Shipment

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-13

Figure 2–3 Oracle Event Processing Visualizer Logon Screen

3. In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2–4 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-14 Developer's Guide for Oracle Event Processing

Figure 2–4 Oracle Event Processing Visualizer Dashboard

For more information about the Oracle Event Processing Visualizer user interface,
see "Understanding the Oracle Event Processing Visualizer User Interface" in the
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

4. In the right-hand pane, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql node.

The CQL application screen appears as Figure 2–5 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-15

Figure 2–5 CQL Application Screen: General Tab

6. Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2–6 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-16 Developer's Guide for Oracle Event Processing

Figure 2–6 CQL Application: Event Processing Network Tab

7. Double-click the orderProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2–7 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-17

Figure 2–7 Oracle CQL Processor: General Tab

8. Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2–8 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-18 Developer's Guide for Oracle Event Processing

Figure 2–8 Oracle CQL Processor: Query Wizard Tab

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from
a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL query from a template.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the
Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle
Event Processing.

9. Click the Templates tab.

The Templates tab appears as Figure 2–9 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-19

Figure 2–9 Template Tab

10. Click and drag the Pattern Match Template from the Templates palette and drop it
anywhere in the Query Wizard canvas as shown in Figure 2–9.

11. Double-click the SSource icon.

The SSource configuration screen appears as Figure 2–10 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-20 Developer's Guide for Oracle Event Processing

Figure 2–10 SSource Configuration Dialog

The source of your query will be the orderChannel stream.

12. Configure the SSource as follows:

■ Select Stream as the Type.

■ Select orderChannel from the Select a source pull-down menu.

13. Click Save.

14. Click Save Query.

15. Double-click the Pattern icon.

The Pattern configuration screen appears as Figure 2–11 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-21

Figure 2–11 Pattern Configuration Dialog: Pattern Tab

Using the Pattern tab, you will define the pattern expression that matches when
missed events occur. The expression is made in terms of named conditions that
you will specify on the Define tab in a later step.

16. Enter the following expression in the Pattern Expression field:

CustOrder NoApproval*? Shipment

This pattern uses the Oracle CQL pattern quantifiers that Table 2–3 lists. Use the
pattern quantifiers to specify the allowed range of pattern matches. The
one-character pattern quantifiers are maximal or "greedy"; they will attempt to
match the biggest quantity first. The two-character pattern quantifiers are minimal
or "reluctant"; they will attempt to match the smallest quantity first.

For more information, see:

■ "PATTERN Condition" in the Oracle Fusion Middleware CQL Language Reference
for Oracle Event Processing

■ "MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL
Language Reference for Oracle Event Processing

Table 2–3 MATCH_RECOGNIZE Pattern Quantifiers

Maximal Minimal Description

* *? 0 or more times

+ +? 1 or more times.

? ?? 0 or 1 time.

Oracle Continuous Query Language (Oracle CQL) Example

2-22 Developer's Guide for Oracle Event Processing

17. Select orderid from the Partition By pull-down menu and click the Plus Sign
button to add this property to the PARTITION BY clause.

This ensures that Oracle Event Processing evaluates the missing event query on
each order.

18. Enter Orders in the Alias field.

This assigns an alias (Orders) for the pattern to simplify its use later in the query.

19. Click the Define tab.

The Define tab appears as Figure 2–12 shows.

Figure 2–12 Pattern Configuration Dialog: Define Tab

You will now define each of the conditions named in the pattern clause as
Table 2–4 lists:

20. Enter CustOrder in the Object Name field.

21. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2–13):

■ In the Variables list, double-click eventType.

Table 2–4 Condition Definitions

Condition Name Definition

CustOrder orderChannel.eventType = ’C’

NoApproval NOT(orderChannel.eventType = ’A’)

Shipment orderChannel.eventType = ’C’

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-23

■ In the Operands list, double-click =.

■ After the = operand, enter the value ’C’.

Figure 2–13 Expression Builder: CustOrder

22. Click Save.

23. Click the Plus Sign button.

The condition definition is added to the Object List as Figure 2–14 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-24 Developer's Guide for Oracle Event Processing

Figure 2–14 Pattern Configuration Dialog: Define Tab With CustOrder Condition

24. Enter NoApproval in the Object Name field.

25. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2–15):

■ In the Variables list, double-click eventType.

■ In the Operands list, double-click =.

■ After the = operand, enter the value ’A’.

■ Place parenthesis around the expression.

■ Place the insertion bar at the beginning of the expression, outside the open
parenthesis.

■ In the Operands list, double-click NOT.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-25

Figure 2–15 Expression Builder: NoApproval

26. Click Save.

27. Click the Plus Sign button.

The condition definition is added to the Object List.

28. Enter Shipment in the Object Name field.

29. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2–16):

■ In the Variables list, double-click eventType.

■ In the Operands list, double-click =.

■ After the = operand, enter the value ’S’.

Oracle Continuous Query Language (Oracle CQL) Example

2-26 Developer's Guide for Oracle Event Processing

Figure 2–16 Expression Builder: Shipment

30. Click Save.

31. Click the Plus Sign button.

The Define tab appears as Figure 2–17 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-27

Figure 2–17 Pattern Configuration Dialog: Define Tab Complete

32. Click the Measure tab.

The Measure tab appears as Figure 2–18 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-28 Developer's Guide for Oracle Event Processing

Figure 2–18 Measure Tab

Use the Measure tab to define expressions in a MATCH_RECOGNIZE condition and to
bind stream elements that match conditions in the DEFINE clause to arguments that
you can include in the select statement of a query.

Use the Measure tab to specify the following:

■ CustOrder.orderid AS orderid

■ CustOrder.amount AS amount

For more information, see:

■ "MEASURES Clause" in the Oracle Fusion Middleware CQL Language Reference
for Oracle Event Processing

■ "MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL
Language Reference for Oracle Event Processing

33. Enter orderid in the Object Name field.

34. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2–19):

■ In the Variables list, double-click CustOrder.orderid.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-29

Figure 2–19 Expression Builder: orderid

35. Click Save.

36. Click the Plus Sign button.

37. Enter amount in the Object Name field.

38. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2–20):

■ In the Variables list, double-click CustOrder.amount.

Oracle Continuous Query Language (Oracle CQL) Example

2-30 Developer's Guide for Oracle Event Processing

Figure 2–20 Expression Builder: amount

39. Click Save.

40. Click the Plus Sign button.

The Measure tab appears as Figure 2–21 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-31

Figure 2–21 Measure Tab: Complete

41. Click Save.

42. Double-click the Select icon.

The Select configuration screen appears as Figure 2–22 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-32 Developer's Guide for Oracle Event Processing

Figure 2–22 Select Configuration Dialog: Project Tab

43. Configure the Project tab as follows:

■ Select AlertEvent from the Select or Input Event Type pull-down menu.

■ Select Orders from the Select a source pull-down menu.

44. Double-click orderid in the Properties list and select orderid from the Select or
Input Alias pull-down menu.

45. Click the Plus Sign button to add the property to the Generated CQL Statement.

46. Double-click amount in the Properties list and select amount from the Select or
Input Alias pull-down menu.

47. Click the Plus Sign button to add the property to the Generated CQL Statement.

48. Click in the Project Expression field and enter the value "Error - Missing
Approval" and select alertType from the Select or Input Alias pull-down menu.

49. Click the Plus Sign button to add the property to the Generated CQL Statement.

The Project tab appears as Figure 2–23 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-33

Figure 2–23 Select Configuration Dialog: Project Tab Complete

50. Click Save.

51. Click Save Query.

52. Double-click the Output icon.

The Output configuration screen appears as Figure 2–24 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-34 Developer's Guide for Oracle Event Processing

Figure 2–24 Output Configuration Dialog

53. Configure the Output as follows:

■ Select Query.

■ Enter Tracking as the Query Name.

54. Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2–25 shows.

Figure 2–25 Inject Rule Confirmation Dialog

55. Click OK.

The Query Wizard adds the rule to the cqlProc processor.

56. Click Save.

57. Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2–26 shows.

58. Click on the Query radio button.

Confirm that your Tracking query is present.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-35

Figure 2–26 CQL Rules Tab With Tracking Query

To test the missing event query:
1. To simulate the data feed for the missing event query, open a new command

window and set your environment as described in Chapter 3, "Getting Started
with Developing Oracle Event Processing Applications"

2. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory,
where MIDDLEWARE_HOME refers to the Middleware directory created when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

3. Run the load generator using the orderData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd orderData.prop

b. On UNIX:

prompt> runloadgen.sh orderData.prop

4. In the Oracle Event Processing Visualizer, click the ViewStream button in the top
pane.

The Stream Visualizer screen appears as Figure 2–27 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-36 Developer's Guide for Oracle Event Processing

Figure 2–27 Stream Visualizer: Showing Missing Events

5. Click Initialize Client.

6. Click the Subscribe tab.

7. Select the orderalert radio button.

8. Click Subscribe.

As missing events are detected, the Oracle Event Processing updates the Received
Messages area showing the AlertEvents generated.

Creating the Moving Average Query
This section describes how to use the Oracle Event Processing Visualizer Query
Wizard to create the Oracle CQL moving average query that the stockProc processor
executes.

You do this in two steps:

■ First, you create a view (the Oracle CQL equivalent of a subquery) that serves as
the source of the moving average query.

See "To create a view source for the moving average query:" on page 2-37.

■ Second, you create the moving average query using the source view.

See "To create the moving average query using the view source:" on page 2-51.

■ Finally, you test the moving average query.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-37

See "To test the moving average query:" on page 2-70.

To create a view source for the moving average query:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section , "Running the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen appears as Figure 2–28 shows.

Figure 2–28 Oracle Event Processing Visualizer Logon Screen

3. In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2–29 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-38 Developer's Guide for Oracle Event Processing

Figure 2–29 Oracle Event Processing Visualizer Dashboard

For more information about the Oracle Event Processing Visualizer user interface,
see "Understanding the Oracle Event Processing Visualizer User Interface" in the
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

4. In the right-hand pane, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql node.

The CQL application screen appears as Figure 2–30 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-39

Figure 2–30 CQL Application Screen: General Tab

6. Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2–31 shows.

Figure 2–31 CQL Application: Event Processing Network Tab

7. Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2–32 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-40 Developer's Guide for Oracle Event Processing

Figure 2–32 Oracle CQL Processor: General Tab

8. Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2–33 shows.

Figure 2–33 Oracle CQL Processor: Query Wizard Tab

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from
a template or from individual Oracle CQL constructs.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-41

In this procedure, you are going to create an Oracle CQL view and query from
individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the
Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle
Event Processing.

9. Click and drag an SSource icon (Stream Source) from the CQL Constructs palette
and drop it anywhere in the Query Wizard canvas as Figure 2–34 shows.

Figure 2–34 Query Wizard: SSource

10. Double-click the SSource icon.

The SSource configuration screen appears.

The source of your view will be the stockChannel stream. You want to select stock
events from this stream where the volume is greater than 1000. This will be the
source for your moving average query.

11. Configure the SSource as follows (as shown in Figure 2–35):

■ Select Stream as the Type.

The source of your view is the stockChannel stream.

■ Select stockChannel from the Select a source pull-down menu.

■ Enter the alias StockVolGt1000 in the AS field.

Oracle Continuous Query Language (Oracle CQL) Example

2-42 Developer's Guide for Oracle Event Processing

Figure 2–35 SSource Configuration Dialog

12. Click Save.

13. Click Save Query.

14. When prompted, enter StockVolGt1000 in the Query Id field.

15. Click Save.

Next, you will add an Oracle CQL filter.

16. Click and drag a Filter icon from the CQL Constructs palette and drop it anywhere
in the Query Wizard canvas as Figure 2–36 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-43

Figure 2–36 Query Wizard: Filter

17. Click on the SSource icon and drag to the Window icon to connect the Oracle CQL
constructs as Figure 2–37 shows.

Figure 2–37 Connecting the SSource and Filter Icons

18. Double-click the Filter icon.

The Filter configuration screen appears as Figure 2–38 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-44 Developer's Guide for Oracle Event Processing

Figure 2–38 Filter Configuration Dialog

19. Click the Expression Builder button.

The Expression Builder dialog appears.

20. Configure the Expression Builder as follows (as shown in Figure 2–39):

■ Select StockVolGt100 from the Select an Event Type pull-down menu to
define the variables you can use in this expression.

■ Double-click the volume variable to add it to the Expression Builder field.

■ Double-click > in the Operands list to add it to the Expression Builder field.

■ Enter the value 1000 after the > operand.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-45

Figure 2–39 Filter Expression Builder

21. Click Save.

22. Click Add Filter.

The Query Wizard adds the expression to the Generated CQL Statement as
Figure 2–40 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-46 Developer's Guide for Oracle Event Processing

Figure 2–40 Filter Configuration Dialog: After Adding the Filter

23. Click Save.

24. Click Save Query.

Next you want to add a select statement.

25. Click and drag a Select icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2–41 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-47

Figure 2–41 Query Wizard: Select

26. Click on the Filter icon and drag to the Select icon to connect the Oracle CQL
constructs.

27. Double-click the Select icon.

The Select configuration screen appears.

You want to select price, symbol, and volume from your StockVolGt1000 stream.

28. Configure the Select as follows:

■ Select StockVolGt1000 from the Select a source pull-down menu.

■ Select the price property and click the Plus Sign button.

The Query Wizard adds the property to Generated CQL Statement

■ Repeat for the symbol and volume properties.

The Select configuration dialog appears as Figure 2–42 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-48 Developer's Guide for Oracle Event Processing

Figure 2–42 Select Configuration Dialog: Properties Selected

29. Click Save.

30. Click Save Query.

Finally, you will add an Output.

31. Click and drag an Output icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2–43 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-49

Figure 2–43 Query Wizard: Output

32. Click on the Select icon and drag to the Output icon to connect the Oracle CQL
constructs.

33. Double-click the Output icon.

The Output configuration screen appears.

34. Configure the Output as follows (as shown in Figure 2–44):

■ Select View.

■ Configure View Name as StockVolGt1000.

■ Delete the contents of the View Schema field.

You can let the Oracle Event Processing server define the view schema for you.

Oracle Continuous Query Language (Oracle CQL) Example

2-50 Developer's Guide for Oracle Event Processing

Figure 2–44 Output Configuration Dialog

35. Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2–45 shows.

Figure 2–45 Inject Rule Confirmation Dialog

36. Click OK.

The Query Wizard adds the rule to the cqlProc processor.

37. Click Save.

38. Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2–46 shows.

39. Click on the View radio button.

Confirm that your StockVolGt1000 view is present.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-51

Figure 2–46 CQL Rules Tab With View StockVolGt1000

To create the moving average query using the view source:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section , "Running the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen appears as Figure 2–47 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-52 Developer's Guide for Oracle Event Processing

Figure 2–47 Oracle Event Processing Visualizer Logon Screen

3. In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2–48 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-53

Figure 2–48 Oracle Event Processing Visualizer Dashboard

For more information about the Oracle Event Processing Visualizer user interface,
see "Understanding the Oracle Event Processing Visualizer User Interface" in the
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

4. In the left-hand pane, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql node.

The CQL application screen appears as Figure 2–49 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-54 Developer's Guide for Oracle Event Processing

Figure 2–49 CQL Application Screen: General Tab

6. Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2–50 shows.

Figure 2–50 CQL Application: Event Processing Network Tab

7. Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2–51 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-55

Figure 2–51 Oracle CQL Processor: General Tab

8. Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2–52 shows. If you have been recently
creating or editing queries for this processor, you might see those queries on the
Query Wizard canvas. Otherwise, the canvas will be blank.

Figure 2–52 Oracle CQL Processor: Query Wizard Tab

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from
a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from
individual Oracle CQL constructs.

Oracle Continuous Query Language (Oracle CQL) Example

2-56 Developer's Guide for Oracle Event Processing

For more information, see "Creating a Rule in an Oracle CQL Processor Using the
Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle
Event Processing.

9. Click and drag an SSource icon (Stream Source) from the CQL Constructs palette
and drop it anywhere in the Query Wizard canvas as Figure 2–53 shows.

Figure 2–53 Query Wizard: SSource for Moving Average Query

10. Double-click the SSource icon.

The SSource configuration screen appears.

11. Configure the SSource dialog as follows (as shown in Figure 2–54):

■ Select View as the Type.

■ Select the StockVolGt1000 view from the Select a source pull-down menu.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-57

Figure 2–54 SSource Configuration Dialog: Moving Average Query

12. Click Save.

13. Click Save Query.

14. Click and drag a Window icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2–55 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-58 Developer's Guide for Oracle Event Processing

Figure 2–55 Query Wizard: Window for Moving Average Query

15. Click on the SSource icon and drag to the Window icon to connect the Oracle CQL
constructs.

16. Double-click the Window icon.

The SSource configuration screen appears.

You want to create a sliding window over the last 2 events, partitioned by symbol.

17. Configure the Window dialog as follows (as shown in Figure 2–56):

■ Select symbol in the Source Property List to add it to the Partition List.

■ Select Partition as the Type.

■ Select Row Based and enter 2 in the Row Based field.

18. Click Add Window.

The Query Wizard adds the sliding window to the Generated CQL Statement as
Figure 2–56 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-59

Figure 2–56 Window Configuration Dialog: After Adding Window

19. Click Save.

20. Click Save Query.

21. Click and drag a Select icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2–57 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-60 Developer's Guide for Oracle Event Processing

Figure 2–57 Query Wizard: Select for Moving Average Query

22. Click on the Window icon and drag to the Select icon to connect the Oracle CQL
constructs.

23. Double-click the Select icon.

The Select configuration screen appears.

24. Select StockVolGt1000 from the Select a source pull-down menu.

This is the source of moving average query: the view you created earlier (see "To
create a view source for the moving average query:" on page 2-37).

25. Select MovingAvgEvent from the Target Event Type pull-down menu.

This is the output event your moving average query will produced. You will map
properties from the source events to this output event.

26. In the Source Properties list, select symbol.

The selected source property is added to the Project Expression as Figure 2–58
shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-61

Figure 2–58 Select Configuration Dialog: Source Property symbol Selected

In this case, you just want to map the source property symbol to output event
property symbol as is.

27. Click on the pull-down menu next to the AS field and select symbol.

28. Click the Plus Sign button.

The source property is added to the project expression of the Generated CQL
Statement as Figure 2–59 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-62 Developer's Guide for Oracle Event Processing

Figure 2–59 Select Configuration Dialog: Source Property symbol Mapped to Output
Event Property

29. In the Source Properties list, select price.

The selected source property is added to the Project Expression as Figure 2–60
shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-63

Figure 2–60 Select Configuration Dialog: Source Property price Selected

In this case, you want to process the source property price before you map it to
the output event.

30. Click the Expression Builder button.

The Expression Builder dialog appears.

31. Select Aggregate Function from the Select a function type pull-down menu.

A list of the aggregate functions that Oracle CQL provides is displayed. You are
going to use the AVG function.

32. Select the StockVolGt1000.price in the Expression Builder field.

33. Double-click the AVG function.

The AVG() function is wrapped around your selection in the Expression Builder
field as Figure 2–61 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-64 Developer's Guide for Oracle Event Processing

Figure 2–61 Expression Builder: Applying the AVG Function

34. Click Save.

The expression is added to the Project Expression field as Figure 2–62 shows.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-65

Figure 2–62 Select Configuration Dialog: With Expression

35. Click on the pull-down menu next to the AS field and select movingAvgPrice.

36. Click the plus Sign button.

The source property is added to the project expression of the Generated CQL
Statement as Figure 2–63 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-66 Developer's Guide for Oracle Event Processing

Figure 2–63 Select Configuration Dialog: Source Property price Mapped to Output Event
Property

37. Click Validate.

A validation error dialog is shown as Figure 2–64 shows.

Figure 2–64 Validation Error: GROUP BY

Because you are partitioning, you must specify a GROUP BY clause.

38. Select the Group tab.

The Group tab appears.

39. Configure the Group tab as follows (as shown in Figure 2–65):

■ Select StockVolGt1000 from the Select a source pull-down menu.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-67

■ Select symbol from the Properties list.

■ Click the Plus Sign button.

The symbol property is added to GROUP BY clause as Figure 2–65 shows.

Figure 2–65 Group Tab: With symbol Grouping Property

40. Click Save.

41. Click Save Query.

Next, you want to connect the query to an output.

42. Click and drag an Output icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2–66 shows.

Oracle Continuous Query Language (Oracle CQL) Example

2-68 Developer's Guide for Oracle Event Processing

Figure 2–66 Query Wizard: Output

43. Click on the Select icon and drag to the Output icon to connect the Oracle CQL
constructs.

44. Double-click the Output icon.

The Output configuration screen appears.

45. Configure the Output as follows (as shown in Figure 2–67):

■ Select Query.

■ Enter MovingAverage as the Query Name.

Oracle Continuous Query Language (Oracle CQL) Example

Oracle Event Processing Samples 2-69

Figure 2–67 Output Configuration Dialog

46. Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2–68 shows.

Figure 2–68 Inject Rule Confirmation Dialog

47. Click OK.

The Query Wizard adds the rule to the cqlProc processor.

48. Click Save.

49. Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2–69 shows.

50. Click on the Query radio button.

Confirm that your MovingAverage query is present.

Oracle Continuous Query Language (Oracle CQL) Example

2-70 Developer's Guide for Oracle Event Processing

Figure 2–69 CQL Rules Tab With View MovingAverage

To test the moving average query:
1. To simulate the data feed for the moving average query, open a new command

window and set your environment as described in Section , "Setting Your
Development Environment."

2. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory,
where MIDDLEWARE_HOME refers to the Middleware directory you specified when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

3. Run the load generator using the stockData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd stockData.prop

b. On UNIX:

prompt> runloadgen.sh stockData.prop

4. In the Oracle Event Processing Visualizer, click the ViewStream button in the top
pane.

The Stream Visualizer screen appears as Figure 2–70 shows.

Oracle Spatial Example

Oracle Event Processing Samples 2-71

Figure 2–70 Stream Visualizer: Showing Moving Average Query Output

5. Click Initialize Client.

6. Enter /stockmoving in the Initialize client field.

7. Click Subscribe.

As the moving average query outputs events, the Oracle Event Processing updates
the Received Messages area showing the events generated.

Oracle Spatial Example
This example shows how to use Oracle Spatial with Oracle CQL queries to process a
stream of Global Positioning System (GPS) events to track the GPS location of buses
and generate alerts when a bus arrives at its pre-determined bus stop positions.

Figure 2–71 shows Oracle Spatial example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Oracle Spatial Example

2-72 Developer's Guide for Oracle Event Processing

Figure 2–71 Oracle Spatial Example Event Processing Network

The example includes the following components:

■ BusPositionGen—Component that simulates an input stream of bus position GPS
events. It uses the Oracle Event Processing loadgen utility and csvgen adapter
provider to read in comma separated values (CSV) and deliver them to the EPN as
BusPos events.

■ BusStopAdapter—Custom adapter component that generates bus stop positions
based on MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_
domain\defaultserver\applications\spatial_sample\bus_stops.csv, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle Event Processing, such as d:\Oracle\Middleware.

■ BusPosStream—Component that transmits BusPos events to the Processor as a
stream.

■ BusStopRelation—Component that transmits BusPos events to the Processor as a
relation.

■ Processor—Component that executes Oracle CQL queries on the incoming
BusPos events.

■ BusStopChannel, BusPosChannel, and BusStopArrivalChannel—Components that
each specify a different selector to transmit the results of a different query from the
Processor component to the appropriate outbound adapter or output bean.

■ BusStopPub, BusPosPub, and BusStopArrivalPub—Components that publish the
results of the Processor component’s queries.

■ BusStopArrivalOutputBean—POJO event bean component that logs a message for
each insert, delete, and update event to help visualize the relation offered by the
BusStopArrivalChannel.

Running the Oracle Spatial Example
The Oracle Spatial application is pre-deployed to the spatial_domain domain. To run
the application, you simply start an instance of Oracle Event Processing server.

Note: For more information about data cartridges, see:

■ "Introduction to Data Cartridges" in the Oracle Fusion Middleware
CQL Language Reference for Oracle Event Processing

■ "Oracle Spatial" in the Oracle Fusion Middleware CQL Language
Reference for Oracle Event Processing

Oracle Spatial Example

Oracle Event Processing Samples 2-73

To run the Oracle Spatial example from the spatial_domain domain:
1. Open a command window and change to the default server directory of the Oracle

Spatial example domain directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\spatial_domain\defaultserver, where MIDDLEWARE_HOME
refers to the Middleware directory you specified when you installed Oracle Event
Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\spatial_
domain\defaultserver

2. Ensure the environment is set correctly in the server startup script.

For more information, see Chapter 3, "Getting Started with Developing Oracle
Event Processing Applications"

3. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

Wait for the console log to show:

<Mar 4, 2010 2:13:15 PM EST> <Notice> <Spring> <BEA-2047000> <The application
context for "spatial_sample" was started successfully>
<Mar 4, 2010 2:13:15 PM EST> <Notice> <Server> <BEA-2046000> <Server STARTED>

This message indicates that the Oracle Spatial example is running correctly.

4. On the same host as the Oracle Spatial example is running, launch a browser and
navigate to http://localhost:9002/bus/main.html.

The Oracle Spatial example Web page appears as Figure 2–72 shows.

Note: You cannot run this example on one host and browse to it from
another host. This is a limitation of the Google API Key that the
example uses and is not a limitation of Oracle Event Processing.

Oracle Spatial Example

2-74 Developer's Guide for Oracle Event Processing

Figure 2–72 Oracle Spatial Web Page

Click the Bus Top Arrivals tab to view bus stop arrivals as Figure 2–73 shows.

Oracle Spatial Example

Oracle Event Processing Samples 2-75

Figure 2–73 Oracle Spatial Web Page: Bus Stop Arrivals Tab

5. Execute the Oracle Event Processing load generator to generate sample data:

a. On Windows:

* Open a command prompt and navigate to MIDDLEWARE_HOME/ocep_
11.1/utils/load-generator

* runloadgen.cmd bus_positions.prop

b. On UNIX:

* Open a terminal window and navigate to MIDDLEWARE_HOME/ocep_
11.1/utils/load-generator

* runloadgen.sh bus_positions.prop

6. Observe the bus movements and alerts in the browser as Figure 2–74 shows.

Oracle Spatial Example

2-76 Developer's Guide for Oracle Event Processing

Figure 2–74 Oracle Spatial Web Page: Bus Tracking

Building and Deploying the Oracle Spatial Example
The Oracle Spatial sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the Oracle Spatial
application. The build.xml Ant file contains targets to build and deploy the
application to the spatial_domain domain.

For more information, see Section , "Description of the Ant Targets to Build Hello
World".

To build and deploy the Oracle Spatial example from the source directory:
1. If the spatial_domain Oracle Event Processing instance is not already running,

follow the procedure in Section , "Running the Oracle Spatial Example" to start the
server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the Oracle Spatial source directory,
located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\spatial
where MIDDLEWARE_HOME is the Middleware directory you specified when you
installed Oracle Event Processing.

For example:

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\spatial

3. Set your development environment as described in Section , "Setting Your
Development Environment."

Oracle Spatial Example

Oracle Event Processing Samples 2-77

4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Daction=update deploy

Description of the Ant Targets to Build the Oracle Spatial Example
The build.xml file, located in the top level of the Oracle Spatial source directory,
contains the following targets to build and deploy the application:

■ clean—This target removes the dist and output working directories under the
current directory.

■ all—This target cleans, compiles, and JARs up the application into a file called
com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the generated
JAR file into a dist directory below the current directory.

■ deploy—This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Implementation of the Oracle Spatial Example
The implementation of the Oracle Spatial example generally follows "Creating Oracle
Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware
Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the Oracle Spatial example are located relative to the MIDDLEWARE_
HOME\ocep_11.1\samples\source\applications\spatial directory, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed
Oracle Event Processing, such as c:\Oracle\Middleware. Oracle recommends that you
use this example directory setup in your own environment, although it is obviously
not required.

The files used by the Oracle Spatial example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together. You are required to include this XML
file in your Oracle Event Processing application.

In the example, the file is called context.xml and is located in the
META-INF/spring directory.

■ A component configuration file that configures the various components on the
EPN including the processor component of the application:

In the example, this file is called config.xml and is located in the META-INF/wlevs
directory.

Caution: This target overwrites the existing Oracle Spatial
application JAR file in the domain directory.

Foreign Exchange (FX) Example

2-78 Developer's Guide for Oracle Event Processing

■ Java files that implement:

– BusStopAdapter: Custom adapter component that generates bus stop
positions based on MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_
domain\defaultserver\applications\spatial_sample\bus_stops.csv,
where MIDDLEWARE_HOME refers to the Middleware directory you specified
when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

– OutputBean: POJO event bean component that logs a message for each insert,
delete, and update event to help visualize the relation offered by the
BusStopArrivalChannel

– OrdsHelper: Helper class that provides method getOrds to return the
ordinates from a JGeometry as a List of Double values.

These Java files are located in the
source\applications\spatial\src\com\oracle\cep\sample\spatial directory.

For additional information about the Oracle Event Processing APIs referenced in
this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Event
Processing.

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Section ,
"Overview of Application Assembly and Deployment".

The Oracle Spatial example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section , "Building and Deploying the Oracle Spatial
Example" for a description of this build.xml file if you also use Ant in your
development environment.

Foreign Exchange (FX) Example
The foreign exchange example, called FX for simplicity, is a more complex example
than the HelloWorld example because it includes multiple processors that handle
information from multiple data feeds. In the example, the data feeds are simulated
using the Oracle Event Processing load generator utility.

Figure 2–75 shows the FX example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Foreign Exchange (FX) Example

Oracle Event Processing Samples 2-79

Figure 2–75 FX Example Event Processing Network

In this scenario, three data feeds, simulated using the load generator, send a constant
pair of values from different parts of the world; the value pairs consist of a currency
pair, such as USDEUR for US dollar - European euro, and an exchange rate between
the two currencies. The fxMarketAmer, fxMarketAsia, and fxMarketEuro adapters
receive the data from the feeds, convert them into events, and pass them to the
corresponding FilterAmer, FilterAsia, and FilterEuro processors. Each processor
performs an initial stale check to ensure that no event is more than 1 second old and
then a boundary check to ensure that the exchange rate between the two currencies is
within a current boundary. The processor also only selects a specific currency pair
from a particular channel; for example, the server selects USDEUR from the simulated
American data feed, but rejects all other pairs, such as USDAUD (Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a
different processor, called FindCrossRate, joins all events across all providers,
calculates the mid-point between the maximum and minimum rate, and then applies a
trader-specified spread. Finally, the processor forwards the rate to the POJO that
contains the business code; in this example, the POJO simply publishes the rate to
clients.

The Oracle Event Processing monitor is configured to watch if the event latency in the
last step exceeds some threshold, such as no updated rates in a 30 second time-span,
and if there is too much variance between two consecutive rates for the same currency
pair. Finally, the last rate of each currency pair is forwarded to the Oracle Event
Processing http pub-sub server.

Running the Foreign Exchange Example
For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The Foreign Exchange (FX) application is pre-deployed to the fx_domain domain. To
run the application, you simply start an instance of Oracle Event Processing server.

To run the foreign exchange example:
1. Open a command window and change to the default server directory of the FX

domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\fx_
domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware
directory you specified when you installed Oracle Event Processing, such as
d:\Oracle\Middleware.

Foreign Exchange (FX) Example

2-80 Developer's Guide for Oracle Event Processing

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\fx_
domain\defaultserver

2. Set your development environment, as described in Section , "Setting Your
Development Environment."

3. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The FX application is now ready to receive data from the data feeds.

4. To simulate an American data feed, open a new command window and set your
environment as described in Section 3, "Getting Started with Developing Oracle
Event Processing Applications."

5. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory,
where MIDDLEWARE_HOME refers to the Middleware directory you specified when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

6. Run the load generator using the fxAmer.prop properties file:

a. On Windows:

prompt> runloadgen.cmd fxAmer.prop

b. On UNIX:

prompt> runloadgen.sh fxAmer.prop

7. Repeat steps 4 - 6 to simulate an Asian data feed, using the fxAsia.prop properties
file:

a. On Windows:

prompt> runloadgen.cmd fxAsia.prop

b. On UNIX:

prompt> runloadgen.sh fxAsia.prop

Foreign Exchange (FX) Example

Oracle Event Processing Samples 2-81

8. Repeat steps 4 - 6 to simulate an European data feed, using the fxEuro.prop
properties file:

a. On Windows:

prompt> runloadgen.cmd fxEuro.prop

b. On UNIX:

prompt> runloadgen.sh fxEuro.prop

After the server status messages scroll by in the command window from which
you started the server, and the three load generators start, you should see
messages similar to the following being printed to the server command window
(the message will likely be on one line):

OutputBean:onEvent() +
<TupleValue>

<EventType>SpreaderOuputEvent</EventType>
<ObjectName>FindCrossRatesRule</ObjectName>
<Timestamp>1843704855846</Timestamp>
<TupleKind>null</TupleKind>
<DoubleAttribute>

<Value>90.08350000074516</Value>
</DoubleAttribute>
<CharAttribute>

<Value>USD</Value>
<Length>3</Length>

</CharAttribute>
<CharAttribute>

<Value>JPY</Value>
<Length>3</Length>

</CharAttribute>
<IsTotalOrderGuarantee>false</IsTotalOrderGuarantee>

</TupleValue>

These messages indicate that the Foreign Exchange example is running correctly.
The output shows the cross rates of US dollars to Japanese yen and US dollars to
UK pounds sterling.

Building and Deploying the Foreign Exchange Example from the Source Directory
The Foreign Exchange (FX) sample source directory contains the Java source, along
with other required resources such as configuration XML files, that make up the FX
application. The build.xml Ant file contains targets to build and deploy the
application to the fx_domain domain, as described in Section , "Description of the Ant
Targets to Build Hello World."

To build and deploy the foreign exchange example from the source directory:
1. If the FX Oracle Event Processing instance is not already running, follow the

procedure in Section , "Running the Foreign Exchange Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the FX source directory, located in
MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle Event Processing installation directory, such as
d:\Oracle\Middleware.

Foreign Exchange (FX) Example

2-82 Developer's Guide for Oracle Event Processing

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\fx

3. Set your development environment, as described in Section , "Setting Your
Development Environment."

4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

6. If the load generators required by the FX application are not running, start them as
described in Section , "Running the Foreign Exchange Example."

After server status messages scroll by, you should see the following message
printed to the output:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running
correctly.

Description of the Ant Targets to Build FX
The build.xml file, located in the top-level directory of the FX source, contains the
following targets to build and deploy the application:

■ clean—This target removes the dist and output working directories under the
current directory.

■ all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.fx_11.1.1.4_0.jar, and places the generated JAR file
into a dist directory below the current directory.

■ deploy—This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Implementation of the FX Example
The implementation of the foreign exchange (FX) example generally follows "Creating
Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware
Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the FX example are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\fx directory, where MIDDLEWARE_HOME is the

Caution: This target overwrites the existing FX application JAR file
in the domain directory.

Signal Generation Example

Oracle Event Processing Samples 2-83

Middleware home directory you specified when you installed Oracle Event Processing
c:\Oracle\Middleware. Oracle recommends that you use this example directory setup
in your own environment, although it is obviously not required.

The files used by the FX example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together. You are required to include this XML
file in your Oracle Event Processing application.

In the example, the file is called com.oracle.cep.sample.fx.context.xml and is
located in the META-INF/spring directory.

■ Two XML files that configure the processor components of the application:

The first XML file configures the filterAmer, filterAsia, filterEuro, and
FindCrossRates processors, all in a single file. This XML file includes the Oracle
CQL rules that select particular currency pairs from particular simulated market
feeds and joins together all the events that were selected by the pre-processors,
calculates an internal price for the particular currency pair, and then calculates the
cross rate. In the example, this file is called spreader.xml and is located in the
META-INF/wlevs directory.

The second XML file configures the summarizeResults processor and includes the
Oracle CQL rule that summarizes the results of the FindCrossRates processor. In
the example, this file is called SummarizeResults.xml and is located in the
META-INF/wlevs directory.

■ An XML file that configures the PublishSummaryResults http pub-sub adapter. In
the example, this file is called PubSubAdapterConfiguration.xml and is located in
the META-INF/wlevs directory.

■ A Java file that implements the OutputBean component of the application, a POJO
that contains the business logic. This POJO prints out to the screen the events that
it receives, programmed in the onEvent method. The POJO also registers into the
event type repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean.java and is located in the
src/com/oracle/cep/sample/fx directory.

For additional information about the Oracle Event Processing APIs referenced in
this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Event
Processing.

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Section ,
"Overview of Application Assembly and Deployment".

The FX example uses a build.xml Ant file to compile, assemble, and deploy the
OSGi bundle; see Section , "Building and Deploying the Foreign Exchange
Example from the Source Directory" for a description of this build.xml file if you
also use Ant in your development environment.

Signal Generation Example
The signal generation sample application receives simulated market data and verifies
if the price of a security has fluctuated more than two percent. The application also

Signal Generation Example

2-84 Developer's Guide for Oracle Event Processing

detects the pattern occurring by keeping track of successive stock prices for a
particular symbol; if more than three successive prices are larger than the one before it,
this is considered a pattern.

Figure 2–76 shows the signal generation example Event Processing Network (EPN).
The EPN contains the components that make up the application and how they fit
together.

Figure 2–76 The Signal Generation Example Event Processing Network

The application simulates a market data feed using the Oracle Event Processing load
generator utility; in this example, the load generator generates up to 10,000 messages
per second. The example includes an HTML dashboard which displays the matched
events along with the latencies; events consist of a stock symbol, a timestamp, and the
price.

The example demonstrates very low latencies, with minimum latency jitter under high
throughputs. Once the application starts running, the processor matches an average of
800 messages per second. If the application is run on the minimum configured system,
the example shows very low average latencies (30-300 microsecond, on average) with
minimal latency spikes (low milliseconds).

The example computes and displays latency values based on the difference between a
timestamp generated on the load generator and timestamp on Oracle Event
Processing. Computing valid latencies requires very tight clock synchronization, such
as 1 millisecond, between the computer running the load generator and the computer
running Oracle Event Processing. For this reason, Oracle recommends running both
the load generator and Oracle Event Processing on a single multi-CPU computer
where they will share a common clock.

The example also shows how to use the Oracle Event Processing event caching feature.
In particular the single processor in the EPN sends events to both an event bean and a
cache.

The example also demonstrates how to use Oracle CQL queries.

Running the Signal Generation Example
For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

Signal Generation Example

Oracle Event Processing Samples 2-85

The signalgeneration_domain domain contains a single application: the signal
generation sample application. To run the signal generation application, you simply
start an instance of Oracle Event Processing in that domain.

To run the signal generation example:
1. Open a command window and change to the default server directory of the

signalgeneration_domain domain directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\signalgeneration_domain\defaultserver, where
MIDDLEWARE_HOME refers to the Middleware home directory you specified when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\signalgeneration_
domain\defaultserver

2. Set your development environment, as described in Section , "Setting Your
Development Environment."

3. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

4. Wait until you see console messages like this:

<Apr 24, 2009 11:40:37 AM EDT> <Notice> <Server> <BEA-2046000> <Server STARTED>
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
...

The signal generation application is now ready to receive data from the data feeds.

Next, to simulate a data feed, you use a load generator programmed specifically
for the example.

5. 0pen a new command window.

6. Change to the MIDDLEWARE_HOME\ocep_
11.1\samples\domains\signalgeneration_domain\defaultserver\utils
directory, where MIDDLEWARE_HOME refers to the Middleware home directory you

Signal Generation Example

2-86 Developer's Guide for Oracle Event Processing

specified when you installed Oracle Event Processing, such as
d:Oracle\Middleware.

7. Run the startDataFeed command:

a. On Windows:

prompt> startDataFeed.cmd

b. On UNIX:

prompt> startDataFeed.sh

8. Invoke the example dashboard by starting a browser and opening the following
HTML page:

 http://host:9002/signalgeneration/dashboard.html

Replace host with the name of the computer on which Oracle Event Processing is
running; if it is the same computer as your browser, you can use localhost.

9. In the browser, click Start on the HTML page.

You should start seeing the events that match the Oracle CQL rules configured for
this example as Figure 2–77 shows.

Figure 2–77 Signal Generation Dashboard

Signal Generation Example

Oracle Event Processing Samples 2-87

Building and Deploying the Signal Generation Example from the Source Directory
The signal generation sample source directory contains the Java source, along with
other required resources, such as configuration XML files, EPN assembly file, and
DOJO client JavaScript libraries, that make up the signal generation application. The
build.xml Ant file contains targets to build and deploy the application to the
signalgeneration_domain domain, as described in Section , "Description of the Ant
Targets to Build Signal Generation."

To build and deploy the signal generation example from the source directory:
1. If the signal generation Oracle Event Processing instance is not already running,

follow the procedure in Section , "Running the Signal Generation Example" to start
the server. You must have a running server to successfully deploy the rebuilt
application.

2. Open a new command window and change to the signal generation source
directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\signalgeneration, where MIDDLEWARE_HOME
refers to the Middleware home directory you specified when you installed Oracle
Event Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_
11.1\samples\source\applications\signalgeneration

3. Set your development environment, as described in Section , "Setting Your
Development Environment."

4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to the
MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_
domain\defaultserver\applications\signalgeneration directory:

prompt> ant deploy

6. If the load generator required by the signal generation application is not running,
start it as described in Section , "Running the Signal Generation Example."

7. Invoke the example dashboard as described in Section , "Running the Signal
Generation Example."

Description of the Ant Targets to Build Signal Generation
The build.xml file, located in the top-level directory of the signal generation example
source, contains the following targets to build and deploy the application:

■ clean—This target removes the dist and output working directories under the
current directory.

■ all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.signalgen_11.1.1.4_0.jar, and places the generated
JAR file into a dist directory below the current directory.

Caution: This target overwrites the existing signal generation
application JAR file in the domain directory.

Signal Generation Example

2-88 Developer's Guide for Oracle Event Processing

■ deploy—This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Implementation of the Signal Generation Example
The implementation of the signal generation example generally follows "Creating
Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware
Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the signal generation are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\signalgeneration directory, where
MIDDLEWARE_HOME refers to the Middleware home directory you specified when you
installed Oracle Event Processing, such as c:\Oracle\Middleware. Oracle recommends
that you use this example directory setup in your own environment, although it is
obviously not required.

The files used by the signal generation example include:

■ A EPN assembly file that describes each component in the application and how all
the components are connected together.

In the example, the file is called epn_assembly.xml and is located in the
META-INF/spring directory.

■ An XML file that configures the processor component of the application; this file is
called config.xml and is located in the META-INF/wlevs directory

The config.xml file configures the processor1 Oracle CQL processor, in particular
the Oracle CQL rules that verify whether the price of a security has fluctuated
more than two percent and whether a trend has occurred in its price.

■ A Java file that implements the SignalgenOutputBean component of the
application, a POJO that contains the business logic. This POJO is an HttpServlet
and an EventSink. Its onEvent method consumes PercentTick and TrendTick
event instances, computes latency, and displays dashboard information.

In the example, the file is called SignalgenOutputBean.java and is located in the
src/oracle/cep/example/signalgen directory.

For general information about programming event sinks, see Section , "Handling
Events with Sources and Sinks".

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Section ,
"Overview of Application Assembly and Deployment".

■ A dashboard.html file in the main example directory; this HTML file is the
example dashboard that displays events and latencies of the running signal
generation application. The HTML file uses Dojo JavaScript libraries from
http://dojotoolkit.org/, located in the dojo directory.

Event Record and Playback Example

Oracle Event Processing Samples 2-89

For additional information about the Oracle Event Processing APIs referenced in
ForeignExchangeBuilderFactory, see Oracle Fusion Middleware Java API Reference for
Oracle Event Processing.

The signal generation example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section , "Building and Deploying the Signal Generation
Example from the Source Directory" for a description of this build.xml file if you also
use Ant in your development environment.

Event Record and Playback Example
The record and playback example shows how to configure a component to record
events to an event store and then configure another component in the network to
playback events from the store. The example uses the Oracle Event
Processing-provided default Berkeley database to store the events. The example also
shows how to configure a publishing HTTP pub-sub adapter as a node in the event
processing network.

Figure 2–78 shows the event record and playback example Event Processing Network
(EPN). The EPN contains the components that make up the application and how they
fit together.

Figure 2–78 The Event Record and Playback Example Event Processing Network

The application contains four components in its event processing network:

■ simpleEventSource: an adapter that generates simple events for purposes of the
example. This component has been configured to record events, as shown in the
graphic.

The configuration source for this adapter is:

<adapter>
<name>simpleEventSource</name>
<record-parameters>

...
</record-parameters>

</adapter>

■ eventStream: a channel that connects the simpleEventSource adapter and
recplayEventSink event bean. This component has been configured to playback
events.

The configuration source for this channel is:

<channel>
<name>eventStream</name>
<playback-parameters>

...

Event Record and Playback Example

2-90 Developer's Guide for Oracle Event Processing

</playback-parameters>
...

</channel>

■ recplayEventSink: an event bean that acts as a sink for the events generated by
the adapter.

■ playbackHttpPublisher: a publishing HTTP pub-sub adapter that listens to the
recplayEventSink event bean and publishes to a channel called
/playbackchannel of the Oracle Event Processing HTTP Pub-Sub server.

Running the Event Record/Playback Example
The recplay_domain domain contains a single application: the record and playback
sample application. To run this application, you first start an instance of Oracle Event
Processing in the domain, as described in the following procedure.

The procedure then shows you how to use Oracle Event Processing Visualizer to start
the recording and playback of events at the simpleEventSource and eventStream
components, respectively. Finally, the procedure shows you how to use Oracle Event
Processing Visualizer to view the stream of events being published to a channel by the
playbackHttpPublisher adapter.

To run the event record/playback example:
1. Open a command window and change to the default server directory of the

recplay_domain domain directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\recplay_domain\defaultserver, where MIDDLEWARE_HOME
refers to the Middleware directory you specified when you installed Oracle Event
Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\recplay_
domain\defaultserver

2. Set your development environment, as described in Section , "Setting Your
Development Environment."

3. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

Event Record and Playback Example

Oracle Event Processing Samples 2-91

After server status messages scroll by, you should see the following message
printed to the output:

 SimpleEvent created at: 14:33:40.441

This message indicates that the Oracle Event Processing server started correctly
and that the simpleEventSource component is creating events.

4. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen appears as Figure 2–79 shows.

Figure 2–79 Oracle Event Processing Visualizer Logon Screen

5. In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle Event Processing Visualizer dashboard appears as Figure 2–80 shows.

Event Record and Playback Example

2-92 Developer's Guide for Oracle Event Processing

Figure 2–80 Oracle Event Processing Visualizer Dashboard

For more information about the Oracle Event Processing Visualizer user interface,
see "Understanding the Oracle Event Processing Visualizer User Interface" in the
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

6. In the left pane, select WLEventServerDomain > NonClusteredServer >
Applications > recplay > Stages > simpleEventSource.

7. In the right pane, select the Record tab as shown in Figure 2–81.

Event Record and Playback Example

Oracle Event Processing Samples 2-93

Figure 2–81 Event Record Tab

The DataSet Name field contains the value of the record-parameters child
element dataset-name element from the simpleEventSource adapter application
configuration file MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_
domain\defaultserver\applications\recplay\config.xml as Example 2–1
shows.

Example 2–1 recplay Application Configuration File config.xml: adapter Element

<adapter>
<name>simpleEventSource</name>
<record-parameters>

<dataset-name>recplay_sample</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
</adapter>

8. At the bottom of the Record tab, click Start.

An Alert dialog appears as shown in Figure 2–82.

Event Record and Playback Example

2-94 Developer's Guide for Oracle Event Processing

Figure 2–82 Start Recording Alert Dialog

9. Click OK.

The Current Status field reads Recording....

As soon as you click OK, events start to flow out of the simpleEventSource
component and are stored in the configured database.

You can further configure when events are recorded using the Start Recording and
Stop Recording fields.

10. In the left pane, select eventStream.

11. In the right pane, select the Playback tab as shown in Figure 2–83.

Figure 2–83 Event Playback Tab

12. At the bottom of the tab, click Start.

An Alert dialog appears as shown in Figure 2–84.

Event Record and Playback Example

Oracle Event Processing Samples 2-95

Figure 2–84 Start Playback Alert Dialog

13. Click OK.

The Current Status field reads Playing....

As soon as you click OK, events that had been recorded by the
simpleEventSource component are now played back to the simpleStream
component.

You should see the following messages being printed to the command window
from which you started Oracle Event Processing server to indicate that both
original events and playback events are streaming through the EPN:

SimpleEvent created at: 14:33:11.501
Played back: Original time=14:15:23.141 Playback time=14:33:11.657

You can further configure the playback parameters, such as the recorded time
period for which you want playback events and the speed that they are played
back, by updating the appropriate field and clicking Change Parameters. You
must restart the playback after changing any playback parameters.

14. To view the events that the playbackHttpPublisher adapter is publishing to a
channel, follow these steps:

a. In the top pane, select Viewstream.

The Viewstream window appears as shown in Figure 2–85.

Event Record and Playback Example

2-96 Developer's Guide for Oracle Event Processing

Figure 2–85 Stream Visualizer

b. In the right pane, click Initialize Client.

c. In the Subscribe Channel text box, enter /playbackchannel.

d. Click Subscribe.

The Received Messages text box displays the played back event details. The
played back events show the time at which the event was created and the time at
which it was played back.

Building and Deploying the Event Record/Playback Example from the Source Directory
The record and playback sample source directory contains the Java source, along with
other required resources, such as configuration XML file and EPN assembly file that
make up the application. The build.xml Ant file contains targets to build and deploy
the application to the signalgeneration_domain domain, as described in Section ,
"Description of the Ant Targets to Build the Record and Playback Example."

Event Record and Playback Example

Oracle Event Processing Samples 2-97

To build and deploy the event record/playback example from the source
directory:
1. If the record/playback Oracle Event Processing instance is not already running,

follow the procedure in Section , "Running the Event Record/Playback Example"
to start the server. You must have a running server to successfully deploy the
rebuilt application.

2. Open a new command window and change to the record/playback source
directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\recplay, where MIDDLEWARE_HOME refers to
the Middleware home directory you specified when you installed Oracle Event
Processing, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\recplay

3. Set your development environment, as described in Section , "Setting Your
Development Environment."

4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to the
MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_
domain\defaultserver\applications\recplay directory:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

After an application redeploy message, you should see the following message
printed to the output about every second:

 SimpleEvent created at: 14:33:40.441

This message indicates that the record and playback example has been redeployed
and is running correctly.

6. Follow the instructions in Section , "Running the Event Record/Playback
Example," starting at step 4, to invoke Oracle Event Processing Visualizer and start
recording and playing back events.

Description of the Ant Targets to Build the Record and Playback Example
The build.xml file, located in the top-level directory of the record/playback source,
contains the following targets to build and deploy the application:

■ clean—This target removes the dist and output working directories under the
current directory.

■ all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.recplay_11.1.1.4_0.jar, and places the generated JAR
file into a dist directory below the current directory.

■ deploy—This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

Caution: This target overwrites the existing event record/playback
application JAR file in the domain directory.

Event Record and Playback Example

2-98 Developer's Guide for Oracle Event Processing

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Implementation of the Record and Playback Example
The implementation of the signal generation example generally follows "Creating
Oracle Event Processing Applications: Typical Steps" in the Oracle Fusion Middleware
Developer's Guide for Oracle Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the example are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\recplay directory, where MIDDLEWARE_HOME
refers to the Middleware home directory you specified when you installed Oracle
Event Processing, such as c:\Oracle\Middleware. Oracle recommends that you use
this example directory setup in your own environment, although it is obviously not
required.

The files used by the record and playback example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together as shown in Figure 2–78.

In the example, the file is called com.bea.wlevs.example.recplay-context.xml
and is located in the META-INF/spring directory.

■ Java source file for the simpleEventSource adapter.

In the example, the file is called SimpleEventSource.java and is located in the
src/com/bea/wlevs/adapter/example/recplay directory.

For a detailed description of how to program the adapter Java files in general, see
Section , "Overview of Custom Adapters".

■ Java source file that describes the PlayedBackEvent and SimpleEvent event types.
The SimpleEvent event type is the one originally generated by the adapter, but the
PlayedBackEvent event type is used for the events that are played back after
having been recorded. The PlayedBackEvents look almost exactly the same as
SimpleEvent except they have an extra field, the time the event was recorded.

In the example, the two events are called SimpleEvent.java and
PlayedBackEvent.java and are located in the
src/com/bea/wlevs/event/example/recplay directory.

For a detailed description of this file, as well as general information about
programming event types, see Section , "Overview of Oracle Event Processing
Event Types".

■ A Java file that implements the recplayEventSink event bean of the application,
which is an event sink that receives both realtime events from the
simpleEventSource adapter as well as playback events.

In the example, the file is called RecplayEventSink.java and is located in the
src/com/bea/wlevs/example/recplay directory.

For more information about event sources and sinks, see Section , "Handling
Events with Sources and Sinks".

■ An XML file that configures the simpleEventSource adapter and eventStream
channel components. The adapter includes a <record-parameters> element that
specifies that the component will record events to the event store; similarly, the

Event Record and Playback Example

Oracle Event Processing Samples 2-99

channel includes a <playback-parameters> element that specifies that it receives
playback events.

In the example, the file is called config.xml and is located in the META-INF/wlevs
directory.

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Section ,
"Overview of Application Assembly and Deployment".

The record/playback example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section , "Building and Deploying the Event
Record/Playback Example from the Source Directory" for a description of this
build.xml file if you also use Ant in your development environment.

Event Record and Playback Example

2-100 Developer's Guide for Oracle Event Processing

3

Getting Started with Developing Oracle Event Processing Applications 3-1

3Getting Started with Developing Oracle Event
Processing Applications

[4] This chapter provides suggestions for getting started in building Oracle Event
Processing applications, including suggested start-to-finish steps, setting up a
development environment, and tools for development and testing.

This chapter includes the following sections:

■ Creating an Oracle Event Processing Application

■ Setting Your Development Environment

■ Using an IDE to Develop Applications

■ Testing Applications

Creating an Oracle Event Processing Application
The following procedure shows the suggested start-to-finish steps to create an Oracle
Event Processing application. Although it is not required to program and configure the
various components in the order shown, the procedure shows a typical and logical
flow recommended by Oracle.

It is assumed in the procedure that you are using an IDE, although it is not required
and the one you use is your choice. For one targeted to Oracle Event Processing
developers, see Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse"

To create an Oracle Event Processing application:
1. Set up your environment as described in Section , "Setting Your Development

Environment."

2. Create an Oracle Event Processing project using the Oracle Event Processing IDE
for Eclipse.

For more information, see Chapter 5, "Oracle Event Processing IDE for Eclipse
Projects".

3. Design your event processing network (EPN).

Using the Oracle Event Processing IDE for Eclipse and the EPN editor, add the full
list of components that make up the application and how they are connected to
each other, as well as registering the event types used in your application.

This step combines both designing of your application, in particular determining
the components that you need to configure and code, as well as creating the actual
XML file that specifies all the components (the EPN assembly file) and the XML
file that specifies component configuration (the component configuration file). You

Creating an Oracle Event Processing Application

3-2 Developer's Guide for Oracle Event Processing

will likely be constantly updating these XML files as you implement your
application, but Oracle recommends you start with this step so you have a
high-level view of your application.

For more information, see:

■ Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing
Network"

■ Section , "Creating EPN Assembly Files."

■ Section , "Creating Component Configuration Files."

4. Determine the event types that your application is going to use, and, if creating
your own JavaBean, program the Java file.

See Chapter 9, "Defining and Using Event Types"

5. Program, and optionally configure, the adapters or event beans that act as
inbound, intermediate, or outbound components of your event processing
network. You can create your own adapters or event beans, or use the adapters
provided by Oracle Event Processing. For details, see:

■ Section , "Oracle Event Processing APIs"

■ Section , "Configuring Oracle Event Processing Resource Access"

■ Chapter 11, "Integrating the Java Message Service"

■ Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

■ Chapter 15, "Integrating an External Component Using a Custom Adapter"

■ Chapter 16, "Handling Events with Java"

6. Configure the processors by creating their component configuration XML files; the
most important part of this step is designing and declaring the initial rules that are
associated with each processor.

See:

■ Chapter 17, "Querying an Event Stream with Oracle CQL"

■ Chapter 19, "Querying an Event Stream with Oracle EPL"

7. Design the rules that the processors are going to use to select events from their
upstream channels and output events to their downstream channels.

See:

■ Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

■ Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

8. Optionally configure the channels that stream data between adapters, processors,
and the business logic POJO by creating their configuration XML files.

See Chapter 10, "Connecting EPN Stages Using Channels."

Note: Oracle CQL replaces Event Processing Language (EPL) in
Oracle Event Processing 11g Release 1 (11.1.1). Oracle Event
Processing supports EPL for backwards compatibility.

Setting Your Development Environment

Getting Started with Developing Oracle Event Processing Applications 3-3

9. Optionally configure the caching system to publish or consume events to and from
a cache to increase the availability of the events and increase the performance of
your applications.

See Chapter 13, "Integrating a Cache."

10. Optionally, use the Oracle Event Processing server log subsystem to write log
messages from your application to the Oracle Event Processing server log:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
...
Log LOG=LogFactory.getLog("LogName");
...
LOG.debug("Some debug information");
...

Using the Oracle Event Processing Visualizer, you can deploy your application,
configure the log level for your application, and view the Oracle Event Processing
server console.

For more information, see:

■ "Configuring Logging and Debugging for Oracle Event Processing" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

■ Section , "Managing Log Message Catalogs"

■ "How to Configure Component Logging" in the Oracle Fusion Middleware
Visualizer User's Guide for Oracle Event Processing

■ "How to View Console Output" in the Oracle Fusion Middleware Visualizer
User's Guide for Oracle Event Processing

Setting Your Development Environment
You must set your development environment before you can start Oracle Event
Processing instances and run the samples. In particular, you must set the PATH and
JAVA_HOME environment variables so that you are using the correct version of the
JRockit JDK.

There are two ways in which JRockit might have been installed on your computer:

■ As part of the Oracle JRockit Real Time installation. This version of the JRockit
JDK includes the deterministic garbage collector.

■ As part of the Oracle Event Processing 11g Release 1 (11.1.1) installation. This
version of the JRockit JDK does not include the deterministic garbage collector, and
is provided for testing purposes only.

Although not required, Oracle recommends that you run Oracle Event Processing
using the JRockit JDK version included in Oracle JRockit Real Time for best results;
however, the following procedures describe how to set your environment for either
case.

For more information about JRockit, see Section , "Increasing the Performance of the
Samples".

This section describes:

■ Section , "How to Set Your Development Environment on Windows"

■ Section , "How to Set Your Development Environment on UNIX"

Setting Your Development Environment

3-4 Developer's Guide for Oracle Event Processing

How to Set Your Development Environment on Windows
This procedure describes how to set your development environment on Windows.

To make it easier to reset your development environment after logging out of a
session, you can create a command file, such as setEnv.cmd, that contains the set
commands this section describes.

You can also set the required environment variables permanently on your Windows
computer by invoking the Control Panel > System window, clicking the Advanced
tab, and then clicking the Environment Variables button. You can set the environment
variables for the current user or for the entire system.

To set your development environment on Windows:
1. Update your PATH environment variable to include the bin directory of the JRockit

JDK. Also, be sure that your PATH environment variable includes the bin directory
of your Ant installation:

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the d:\jrockit directory and Ant
is installed in the d:\ant directory, set your PATH environment variable as
shown:

prompt> set PATH=d:\jrockit\[JRRT_HOME]\bin;d:\ant\bin;%PATH%

where JRRT_HOME is the JRockit Real Time directory.

b. If using the JRockit JDK installed with Oracle Event Processing:

If you installed Oracle Event Processing in the d:\Oracle\Middleware
directory and Ant is installed in the d:\ant directory, set your PATH
environment variable as shown:

prompt> set PATH=d:\Oracle\Middleware\jrockit_160_20\bin;d:\ant\bin;%PATH%

2. Ensure that the JAVA_HOME variable in the setDomainEnv.cmd script points to the
correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.cmd script is located in the defaultserver subdirectory of the
main domain directory; the defaultserver subdirectory contains the files for the
standalone server of each domain. For example, the HelloWorld domain is located
in MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain, where
MIDDLEWARE_HOME refers to the Middleware home directory you specified when
you installed Oracle Event Processing, such as d:\Oracle\Middleware.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

b. If using the JRockit JDK installed with Oracle Event Processing:

The set command should be as follows:

set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

3. Set the JAVA_HOME variable in your own development environment to point to the
JRockit JDK.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

Setting Your Development Environment

Getting Started with Developing Oracle Event Processing Applications 3-5

The set command should be as follows:

prompt> set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

b. If using the JRockit JDK installed with Oracle Event Processing:

The set command should be as follows:

prompt> set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

How to Set Your Development Environment on UNIX
This procedure describes how to set your development environment on UNIX.

To make it easier to reset your development environment after logging out of a
session, you can create a command file, such as setEnv.sh, that contains the set
commands this section describes.

To set your development environment on UNIX:
1. Update your PATH environment variable to include the bin directory of the JRockit

JDK. Also, be sure that your PATH environment variable includes the bin directory
of your Ant installation.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the /jrockit directory and Ant is
installed in the /ant directory, set your PATH environment variable as follows:

prompt> PATH=/jrockit/j[JRRT_HOME]/bin:/ant/bin:$PATH

where JRRT_HOME is the JRockit Real Time directory.

b. If using the JRockit JDK installed with Oracle Event Processing:

If you installed Oracle Event Processing in the /Oracle/Middleware directory
and Ant is installed in the /ant directory, set your PATH environment variable
as shown:

prompt> PATH=/Oracle/Middleware/jrockit_160_20/bin:/ant/bin:$PATH

2. Ensure that the JAVA_HOME variable in the setDomainEnv.sh script points to the
correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.sh script is located in the defaultserver subdirectory of the
main domain directory; the defaultserver subdirectory contains the files for the
standalone server of each domain. For example, the HelloWorld domain is located
in MIDDLEWARE_HOME/ocep_11.1/samples/domains/helloworld_domain, where
MIDDLEWARE_HOME refers to the Middleware home directory you specified when
you installed Oracle Event Processing, such as /Oracle/Middleware.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

b. If using the JRockit JDK installed with Oracle Event Processing:

The JAVA_HOME variable should be set as follows:

Using an IDE to Develop Applications

3-6 Developer's Guide for Oracle Event Processing

JAVA_HOME=/Oracle/Middleware/jrockit_160_20

3. Set the JAVA_HOME variable in your development environment to point to the
JRockit JDK.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

b. If using the JRockit JDK installed with Oracle Event Processing:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/Oracle/Middleware/jrockit_160_20

Using an IDE to Develop Applications
Oracle Event Processing includes a pluging that enhances the Eclipse IDE with
features specifically designed to ease the work of building Oracle Event Processing
applications. For more information about the IDE, see Section 4, "Overview of the
Oracle Event Processing IDE for Eclipse".

Testing Applications
You can test Oracle Event Processing applications you build by using the included
csvadapter and load generator.

The load generator is a command-line tool the reads a comma-separated values (CSV)
file and feeds the results to the csvadapter. The csvadapter, in turn, is designed to
receive values from the load generator, then bind those values to an event type that
you specify.

Using these tools is a relatively simple way to try out code in development before you
are ready for the application to receive data from the actual event data source.

For more information about testing with these tools, see Section 21, "Testing
Applications With the Load Generator and csvgen Adapter".

Part II
Part II Oracle Event Processing IDE for Eclipse

Part II contains the following chapters:

■ Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse"

■ Chapter 5, "Oracle Event Processing IDE for Eclipse Projects"

■ Chapter 6, "Oracle Event Processing IDE for Eclipse and Oracle Event Processing
Servers"

■ Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing
Network"

4

Overview of the Oracle Event Processing IDE for Eclipse 4-1

4Overview of the Oracle Event Processing IDE
for Eclipse

[5] This chapter introduces the Oracle Event Processing IDE features available for Eclipse,
providing information on how to install and configure the features.

This chapter includes the following sections:

■ Overview of Oracle Event Processing IDE for Eclipse

■ Installing the Latest Oracle Event Processing IDE for Eclipse

■ Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle
Event Processing

■ Configuring Eclipse

Overview of Oracle Event Processing IDE for Eclipse
Oracle Event Processing IDE for Eclipse is a set of plugins for the Eclipse IDE designed
to help develop, deploy, and debug applications for Oracle Event Processing.

This section describes:

■ Section , "Features"

■ Section , "JDK Requirements"

■ Section , "Default Oracle Event Processing Domain ocep_domain and
Development"

For more information about Oracle Event Processing IDE for Eclipse, see
http://www.oracle.com/technology/products/event-driven-architecture/cep-id
e/11/.

Features
The key features of the Oracle Event Processing IDE for Eclipse are as follows:

■ Project creation wizards and templates to quickly get started building event driven
applications.

■ Advanced editors for source files including Java and XML files common to Oracle
Event Processing applications.

■ Integrated server management to seamlessly start, stop, and deploy to Oracle
Event Processing server instances all from within the IDE.

■ Integrated debugging.

Installing the Latest Oracle Event Processing IDE for Eclipse

4-2 Developer's Guide for Oracle Event Processing

■ Event Processing Network (EPN) visual design views for orienting and navigating
in event processing applications and visually creating and editing EPN
components.

■ Oracle Event Processing application source file validation including Oracle
Continuous Query Language (Oracle CQL) syntax highlighting and component
configuration and assembly files.

■ Ability to build and export deployable Oracle Event Processing applications.

■ Integrated support for the Oracle Event Processing Visualizer so you can use the
Oracle Event Processing Visualizer from within the IDE.

JDK Requirements
In 11g Release 1 (11.1.1), Oracle Event Processing IDE for Eclipse requires JDK 6.0. For
more information, see:

■ Section , "Setting Your Development Environment."

■ Section , "Configuring Eclipse"

Default Oracle Event Processing Domain ocep_domain and Development
When you choose a Typical Oracle Event Processing server install, the installation
does not include the default ocep_domain domain (with default passwords) and the
product samples.

If you want to install the default ocep_domain and samples (recommended), choose the
Custom Oracle Event Processing server install option.

The Typical install is appropriate for a production environment while the Custom
install is appropriate for a development environment.

Oracle recommends that you install the default ocep_domain and samples for use with
the Oracle Event Processing IDE for Eclipse during development.

If you choose a Typical Oracle Event Processing server install, you can use the
Configuration Wizard to create an Oracle Event Processing server domain.

For more information, see:

■ "Installation Overview" in the Oracle Fusion Middleware Getting Started Guide for
Oracle Event Processing

■ "Creating an Oracle Event Processing Standalone-Server Domain" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing

■ "Creating an Oracle Event Processing Multi-Server Domain Using Oracle Event
Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide
for Oracle Event Processing

Installing the Latest Oracle Event Processing IDE for Eclipse
New versions of the IDE will be made available via the Oracle Technology Network
Web site. Oracle recommends that you install the IDE from this Eclipse update site.

To install the latest Oracle Event Processing IDE for Eclipse:
1. Obtain the required versions of Eclipse (3.7.2) and WTP (2.0). Be sure to install the

Eclipse IDE for Java EE developers. We recommend you take the entire Indigo
installation available at the following Web sites:

Installing the Latest Oracle Event Processing IDE for Eclipse

Overview of the Oracle Event Processing IDE for Eclipse 4-3

Windows:
http://www.eclipse.org/downloads/download.php?file=/technology/epp/down
loads/release/indigo/R/eclipse-jee-indigo-win32.zip

Linux:
http://www.eclipse.org/downloads/download.php?file=/technology/epp/down
loads/release/indigo/SR2/eclipse-jee-indigo-SR2-linux-gtk.tar.gz

2. Open your Eclipse IDE and select the menu item Help > Install New Software.

The Install dialog appears as Figure 4–1 shows.

Figure 4–1 Install Dialog

3. Click Add.

The Add Site dialog appears as Figure 4–2 shows.

Figure 4–2 Add Site Dialog

4. Configure this dialog as Table 4–1 describes.

Installing the Latest Oracle Event Processing IDE for Eclipse

4-4 Developer's Guide for Oracle Event Processing

5. Click OK.

6. In the Install dialog, from the Work with pull down menu, select the Oracle
Event Processing Tools Update site you just created.

It make take a few moments for Eclipse to contact the remote update site. During
this time, the "There is no site selected" entry reads "Pending".

When Eclipse has made contact with the remote update site, the Oracle Event
Processing Tools entry appears in the list of update sites as Figure 4–3 shows.

7. Check the check box next to the Oracle Event Processing Tools entry as Figure 4–3
shows.

Figure 4–3 Install Dialog - Site Selected

8. Click Next.

The Install Details dialog appears as Figure 4–4 shows.

Table 4–1 New Update Site Dialog Attributes

Attribute Description

Name The name for this remote update site. For example: Oracle Event Processing
Tools Update.

URL The URL to the remote update site. Valid value:

http://download.oracle.com/technology/software/cep-ide/11/

Installing the Latest Oracle Event Processing IDE for Eclipse

Overview of the Oracle Event Processing IDE for Eclipse 4-5

Figure 4–4 Install Dialog - Install Details

9. Click Next.

The Review Licenses dialog appears.

10. Click Finish.

11. When prompted restart, Eclipse. If you skip this, unreliable behavior can occur.

12. To confirm the installation, select Help > About Eclipse.

The About Eclipse dialog appears as Figure 4–5 shows.

Figure 4–5 About Eclipse

13. Click Oracle.

The About Eclipse Features dialog appears as Figure 4–6 shows.

Installing the Latest Oracle Event Processing IDE for Eclipse

4-6 Developer's Guide for Oracle Event Processing

Figure 4–6 About Eclipse Features Dialog

14. Click Plug-In Details.

The Feature Plug-ins dialog appears as Figure 4–7 shows.

Figure 4–7 Feature Plug-ins Dialog

15. Confirm that the plug-ins that Table 4–2 lists are shown.

Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing

Overview of the Oracle Event Processing IDE for Eclipse 4-7

16. After installing Oracle Event Processing IDE for Eclipse, consider the following
topics:

■ Section , "Default Oracle Event Processing Domain ocep_domain and
Development"

■ Section , "Configuring Eclipse"

Installing the Oracle Event Processing IDE for Eclipse Distributed With
Oracle Event Processing

A version of the Oracle Event Processing IDE for Eclipse is shipped with the Oracle
Event Processing product, although this version might be older than the one on the
Oracle Technology Network site.

To install the Oracle Event Processing IDE for Eclipse distributed with Oracle
Event Processing:
1. Obtain the required versions of Eclipse (3.7.2) and WTP (2.0). Be sure to install the

Eclipse IDE for Java EE developers. We recommend you take the entire Indigo
installation available at the following Web sites:

Windows:
http://www.eclipse.org/downloads/download.php?file=/technology/epp/down
loads/release/indigo/R/eclipse-jee-indigo-win32.zip

Linux:
http://www.eclipse.org/downloads/download.php?file=/technology/epp/down
loads/release/indigo/SR2/eclipse-jee-indigo-SR2-linux-gtk.tar.gz

2. Open your Eclipse IDE and select the menu item Help > Install New Software.

The Install dialog appears as Figure 4–1 shows.

Table 4–2 Oracle Event Processing IDE for Eclipse Plug-Ins

Provider Plug-in Name Plug-in Id

Oracle Oracle Event Processing Tools
Core

com.bea.wlevs.eclipse.tools.core

Oracle Oracle Event Processing Tools
Documentation

com.bea.wlevs.eclipse.tools.doc

Oracle Oracle Event Processing Tools UI com.bea.wlevs.eclipse.tools.ui

Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing

4-8 Developer's Guide for Oracle Event Processing

Figure 4–8 Install Dialog

3. Click Add.

The Add Site dialog appears as Figure 4–2 shows.

Figure 4–9 Add Site Dialog

4. Click Archive.

The Select Local Site Archive dialog appears as Figure 4–10 shows.

Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing

Overview of the Oracle Event Processing IDE for Eclipse 4-9

Figure 4–10 Select Local Site Archive Dialog

5. Navigate to the MIDDLEWARE_HOME/ocep_11.1/eclipse-update-site directory and
select the cep-tools-11.1.0.DATE-BUILD.zip file.

Where MIDDLEWARE_HOME refers to the directory into which you installed Oracle
Event Processing, such as c:\Oracle\Middleware, and DATE is the build date and
BUILD is the build number.

6. Click Open.

7. Complete the Update Manager, selecting to install the Oracle Event Processing
tools.

8. When prompted restart, Eclipse. If you skip this, unreliable behavior can occur.

9. To confirm the installation, select Help > About Eclipse.

The About Eclipse dialog appears as Figure 4–5 shows.

Figure 4–11 About Eclipse

10. Click Oracle.

The About Eclipse Features dialog appears as Figure 4–6 shows.

Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing

4-10 Developer's Guide for Oracle Event Processing

Figure 4–12 About Eclipse Features Dialog

11. Click Plug-In Details.

The Feature Plug-ins dialog appears as Figure 4–7 shows.

Figure 4–13 Feature Plug-ins Dialog

12. Confirm that the plug-ins that Table 4–2 lists are shown.

Configuring Eclipse

Overview of the Oracle Event Processing IDE for Eclipse 4-11

13. After installing Oracle Event Processing IDE for Eclipse, consider the following
topics:

■ Section , "Default Oracle Event Processing Domain ocep_domain and
Development"

■ Section , "Configuring Eclipse"

Configuring Eclipse
This section describes how to configure Eclipse to work with Oracle Event Processing.

To configure Eclipse:
1. Exit out of Eclipse if it is running.

2. Install a Java 6 JRE on your computer.

For example, you might have installed the JRE included with a Java Development
Kit to the following location:

C:\Java\jre6

3. Using the editor of your choice, open your eclipse.ini file located in your Eclipse
install directory, for example, C:\eclipse\ as Example 4–1 shows.

Example 4–1 Default eclipse.ini File

-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256M

4. Add the following lines to the eclipse.ini file as Example 4–2 shows.

Example 4–2 Memory Resources

-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256M

Table 4–3 Oracle Event Processing IDE for Eclipse Plug-Ins

Provider Plug-in Name Plug-in Id

Oracle Oracle Event Processing Tools
Core

com.bea.wlevs.eclipse.tools.core

Oracle Oracle Event Processing Tools
Documentation

com.bea.wlevs.eclipse.tools.doc

Oracle Oracle Event Processing Tools UI com.bea.wlevs.eclipse.tools.ui

Note: When making changes to the eclipse.ini file, add arguments
one argument per line, as http://wiki.eclipse.org/Eclipse.ini
describes.

For more information about configuring Eclipse, see
http://wiki.eclipse.org/FAQ_How_do_I_run_Eclipse.

Configuring Eclipse

4-12 Developer's Guide for Oracle Event Processing

-vmargs
-Xmx512m
-XX:MaxPermSize=256M

5. Add the following to the eclipse.ini file as Example 4–3 shows.

Example 4–3 Virtual Machine Path

-vm
PATH-TO-JRE-6.0-JAVAW

Where PATH-TO-JRE-6.0-JAVAW is the fully qualified path to your Java 6.0 JRE
javaw executable. For example:

-vm
C:\Java\jre6\bin\javaw.exe

6. Save and close the eclipse.ini file.

7. Start Eclipse.

8. Select Help > About Eclipse and click Installation Details.

9. Click the Configuration tab.

The Configuration Details tab appears as shown in Figure 4–14.

Note: Do not put both the -vm and the path on the same line. Each
must be on a separate line as Example 4–3 shows.

Configuring Eclipse

Overview of the Oracle Event Processing IDE for Eclipse 4-13

Figure 4–14 Configuration Details for Java 6

10. Confirm that the eclipse.vm property points to the Java 6.0 JRE you configured in
the eclipse.ini file.

Configuring Eclipse

4-14 Developer's Guide for Oracle Event Processing

5

Oracle Event Processing IDE for Eclipse Projects 5-1

5Oracle Event Processing IDE for Eclipse
Projects

[6] This chapter describes how to use the Oracle Event Processing IDE for Eclipse to create
projects with which to develop event processing networks (EPNs), including EPN
assembly files and component configuration files.

This chapter includes the following sections:

■ Oracle Event Processing Project Overview

■ Creating Oracle Event Processing Projects

■ Creating EPN Assembly Files

■ Creating Component Configuration Files

■ Exporting Oracle Event Processing Projects

■ Upgrading Projects

■ Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

■ Configuring Oracle Event Processing IDE for Eclipse Preferences

Oracle Event Processing Project Overview
An Oracle Event Processing application includes the following artifacts:

■ Java source files

■ XML configuration files

■ OSGi bundle Manifest file

Figure 5–1 shows the Explorer after creating a project.

Creating Oracle Event Processing Projects

5-2 Developer's Guide for Oracle Event Processing

Figure 5–1 Oracle Event Processing Project Structure

Table 5–1 summarizes the important files in an Oracle Event Processing project
including their use and location.

Creating Oracle Event Processing Projects
Development of an Oracle Event Processing application begins by creating a project to
hold all source code and related files.

Table 5–1 Oracle Event Processing Project Artifacts

File Type Location Description

Java source files Any Java source folder.

Default: src.

Events, adapters, and listeners are implemented in an
Oracle Event Processing application with Java files. All
Java files must be in a source folder in order to be
compiled.

For more information, see Chapter 1, "Overview of
Creating Oracle Event Processing Applications".

EPN assembly file META-INF/spring These are the main files used to wire-up an EPN and to
define event types. This is a Spring context file, and is
where adapters, channels, processors, and listeners are
connected.

For more information, see Chapter , "Overview of EPN
Assembly Files".

Processor
configuration file

META-INF/wlevs The processor configuration file is where the Oracle Event
Processing processor is defined. In this file you'll find
processor rules (defined in the Continuous Query
Language - CQL or the Event Processing Language--EPL)
and other component configuration settings.

For more information, see:

■ Chapter 17, "Querying an Event Stream with Oracle
CQL"

■ Chapter 19, "Querying an Event Stream with Oracle
EPL"

MANIFEST.MF file META-INF The manifest file contains metadata about your application
including its name, version, and dependencies, among
others.

For more information, see Chapter 23, "Assembling and
Deploying Oracle Event Processing Applications".

Creating Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-3

Projects correspond 1-to-1 with Oracle Event Processing applications and are the unit
of work that is associated with and deployed to a server instance. In concrete terms,
the output of a built project is a single OSGi bundle (JAR) containing the Oracle Event
Processing application.

How to Create an Oracle Event Processing Project
By default new projects are set to use Java 6.0. This section describes how to create an
Oracle Event Processing project using Java 6. For information on configuring an Oracle
Event Processing project to use Java 6, see Section , "Configuring Eclipse".

To create an Oracle Event Processing project:
1. Open the EPN Editor (see Section , "Opening the EPN Editor")

2. Select File > New Project.

The New Project - Select a Wizard dialog appears as shown in Figure 5–2.

Figure 5–2 New Project - Select a Wizard Dialog

3. Expand Oracle Event Processing and select Oracle Event Processing Application
Project.

4. Click Next.

The New Oracle Event Processing Application Project wizard appears as shown in
Figure 5–3.

Note: By default, the Overview view of the Eclipse manifest editor
provides a link to launch the OSGi framework for testing the plugin.
When you’ve created an Oracle Event Processing project using an
application template, launching the framework is not supported.

Creating Oracle Event Processing Projects

5-4 Developer's Guide for Oracle Event Processing

Figure 5–3 New Oracle Event Processing Application Project Wizard: Create an Oracle
Event Processing Application

5. Configure the Create an Oracle Event Processing Application dialog as shown in
Table 5–2.

6. Click Next.

The Oracle Event Processing Application Content dialog appears as shown in
Figure 5–4.

Table 5–2 Create an Oracle Event Processing Application Dialog

Attribute Description

Project name The name of your Oracle Event Processing project. This name
will be used as the default name of your application when it is
deployed to the Oracle Event Processing server.

Location The directory in which your project is stored.

By default your project is located inside the Eclipse workspace
directory.

To keep your workspace and source code control directories
separate, clear Use default location and click Browse to place
the project in a directory outside of your workspace.

Target Runtime The Oracle Event Processing server you will deploy your project
to.

Creating Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-5

Figure 5–4 New Oracle Event Processing Application Project Wizard: Oracle Event
Processing Application Content

7. Optionally, configure the Oracle Event Processing Application Content dialog as
shown in Table 5–3.

8. Click Next.

The Template dialog appears as shown in Figure 5–5.

Table 5–3 Oracle Event Processing Application Content Dialog

Attribute Description

Bundle ID The unique ID that distinguishes this application’s OSGi bundle from those
deployed to the target runtime.

Bundle Version The version of this instance of this OSGi bundle.

Bundle Name The name of this application’s OSGi bundle.

Bundle Provider The name of the provider for this application’s OSGi bundle (optional).

Creating EPN Assembly Files

5-6 Developer's Guide for Oracle Event Processing

Figure 5–5 New Oracle Event Processing Application Project Wizard: Template Dialog

9. Optionally, select an Oracle Event Processing application template to pre-populate
your project with the content that the template specifies.

10. Click Finish.

The Oracle Event Processing IDE for Eclipse creates the Oracle Event Processing
project.

11. Optionally, create additional EPN assembly files and component configuration
files.

By default, Oracle Event Processing IDE for Eclipse creates one EPN assembly file
and one component configuration file for your project. Optionally, you may
choose to define and configure Oracle Event Processing objects in multiple EPN
assembly and component configuration files to improve management, concurrent
development, and re-use.

For more information, see:

■ Section , "Creating EPN Assembly Files"

■ Section , "Creating Component Configuration Files"

Creating EPN Assembly Files
You use the Event Processing Network (EPN) assembly file to declare the components
that make up your Oracle Event Processing application and how they are connected to
each other. You also use the file to register event types of your application, as well as
the Java classes that implement the adapter and POJO components of your
application.

For an example of an EPN assembly file, see the Section , "Foreign Exchange (FX)
Example". For additional information about Spring and OSGi, see Appendix A,
"Additional Information about Spring and OSGi."

Creating EPN Assembly Files

Oracle Event Processing IDE for Eclipse Projects 5-7

How to Create a New EPN Assembly File Using Oracle Event Processing IDE for Eclipse
The most efficient and least error-prone way to create and edit the EPN file is using the
New File Wizard in the Oracle Event Processing IDE for Eclipse.

For more information, see:

■ Section , "EPN Editor Overview"

■ Section , "Managing Libraries and Other Non-Class Files in Oracle Event
Processing Projects"

To create a new EPN assembly file using Oracle Event Processing IDE for
Eclipse:
1. Create an Oracle Event Processing project.

See Section , "Creating Oracle Event Processing Projects".

By default, Oracle Event Processing IDE for Eclipse creates one EPN assembly file
for your project. Optionally, you may choose to define Oracle Event Processing
objects in multiple EPN assembly files to improve management, concurrent
development, and re-use.

2. To optionally create additional EPN assembly files:

a. Select File > New > Other.

The New dialog appears as Figure 5–6 shows.

Figure 5–6 New Dialog

b. Expand Oracle Event Processing and select Oracle Event Processing
Assembly File.

c. Click Next.

The New OEP Assembly File dialog appears as Figure 5–7 shows.

Creating Component Configuration Files

5-8 Developer's Guide for Oracle Event Processing

Figure 5–7 New OEP Assembly File Dialog

d. Configure the New OEP Assembly File dialog as shown in Table 5–4.

e. Click Finish.

3. Open the EPN editor.

See Section , "Opening the EPN Editor".

4. If you created multiple EPN assembly files, you can select the EPN assembly file
you want to work on using the EPN Editor Filter pull-down menu.

This lets you focus on just the subset of the EPN that the selected EPN assembly
file represents.

To see the union of all components in all EPN assembly files, select Full EPN from
the EPN Editor Filter pull-down menu.

For more information, see Section , "Filtering".

5. Create and connect nodes on the EPN.

See Section , "Using the EPN Editor".

Creating Component Configuration Files
You use a component configuration file to configure the components that make up
your Oracle Event Processing application.

Table 5–4 New OEP Assembly File Dialog

Attribute Description

Enter or select the parent
folder

Enter the fully qualified path to the folder in which Oracle Event
Processing IDE for Eclipse will create the EPN assembly file or
use the file system navigation controls to select the folder.

File name Enter the name of the new EPN assembly file.

Creating Component Configuration Files

Oracle Event Processing IDE for Eclipse Projects 5-9

For an example of a component configuration file, see the Section , "Foreign Exchange
(FX) Example".

How to Create a New Component Configuration File Using Oracle Event Processing IDE
for Eclipse

The most efficient and least error-prone way to create and edit a component
configuration file is using the New File Wizard in the Oracle Event Processing IDE for
Eclipse.

For more information, see:

■ Section , "EPN Editor Overview"

■ Section , "Managing Libraries and Other Non-Class Files in Oracle Event
Processing Projects"

To create a new component configuration file using Oracle Event Processing IDE
for Eclipse:
1. Create an Oracle Event Processing project.

See Section , "Creating Oracle Event Processing Projects".

By default, Oracle Event Processing IDE for Eclipse creates one component
configuration file for your project. Optionally, you may choose to configure Oracle
Event Processing objects in multiple component configuration files to improve
management, concurrent development, and re-use.

2. To optionally create component configuration files:

■ Select File > New > Other.

The New dialog appears as Figure 5–8 shows.

Figure 5–8 New Dialog

■ Expand Oracle Event Processing and select Oracle Event Processing
Application Configuration File.

Exporting Oracle Event Processing Projects

5-10 Developer's Guide for Oracle Event Processing

■ Click Next.

The New OEP Application Configuration File dialog appears as Figure 5–9
shows.

Figure 5–9 New OEP Application Configuration File Dialog

■ Configure the New OEP Assembly File dialog as shown in Table 5–4.

■ Click Finish.

3. Open the EPN editor.

See Section , "Opening the EPN Editor".

4. Create and connect nodes on the EPN.

See Section , "Using the EPN Editor".

Exporting Oracle Event Processing Projects
Exporting an Oracle Event Processing project builds the project into an OSGi bundle
that can be deployed to a production Oracle Event Processing server.

Table 5–5 New OEP Configuration File Dialog

Attribute Description

Enter or select the parent
folder

Enter the fully qualified path to the folder in which Oracle Event
Processing IDE for Eclipse will create the component
configuration file or use the file system navigation controls to
select the folder.

File name Enter the name of the new component configuration file.

Exporting Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-11

How to Export an Oracle Event Processing Project
This section describes how to export an Oracle Event Processing project into an OSGi
bundle.

To export an Oracle Event Processing project:
1. Start the Oracle Event Processing IDE for Eclipse and open your Oracle Event

Processing project.

2. The Oracle Event Processing IDE for Eclipse compiles and adds Java resources to
the exported JAR automatically. If your project contains other resources (such as a
manifest file or images), configure your project to export them:

a. Locate the build.properties file in the Project Explorer and double-click this
file to edit it.

The build.properties file opens as shown in Figure 5–10.

Figure 5–10 Oracle Event Processing Project build.properties File

b. In the Binary Build area, check the resources you want exported with your
application.

3. Select File > Export.

The Export dialog appears.

4. Expand the Oracle Event Processing option and select Oracle Event Processing
Applications.

5. Click Next.

The Oracle Event Processing Applications Export: Select Project dialog appears as
shown in Figure 5–11.

Exporting Oracle Event Processing Projects

5-12 Developer's Guide for Oracle Event Processing

Figure 5–11 Oracle Event Processing Applications Export: Select Project Dialog

6. Configure the Oracle Event Processing Applications Export: Select Project dialog
as shown in Table 5–6.

7. Click Finish.

Your project, its Java resources, and any binary resources you selected are
exported to the project JAR file.

8. Deploy the JAR file to your Oracle Event Processing server.

a. If your JAR is an application, see Section , "How to Deploy an Application to
an Oracle Event Processing Server".

b. If your JAR is an application library, see Section , "Application Libraries"

9. Deploy other dependent resources, if any, to your Oracle Event Processing server.

For example:

Table 5–6 Oracle Event Processing Application Content Dialog

Attribute Description

Available Projects The list of Oracle Event Processing projects available for export.

Check the project or projects you want to export.

Each project will be exported to a JAR file with the name given
in the Output File column. The name of the bundle that will be
exported conforms to the OSGi bundle naming conventions,
using the bundle ID and the bundle version in the JAR name.

Directory The directory in which Oracle Event Processing project JAR files
are exported.

Click Browse to choose this directory.

Overwrite existing files
without warning

Check this option to overwrite existing JAR files with the same
name in the selected directory.

Upgrading Projects

Oracle Event Processing IDE for Eclipse Projects 5-13

■ Other OSGi bundles your application depends on.

Deploy these bundles on the Oracle Event Processing server using the Oracle
Event Processing Visualizer or command line deployment tools.

■ Any entries in config.xml for datasources that are referenced from within the
application.

Add these entries to the target server's config.xml file.

Upgrading Projects
When upgrading Oracle Event Processing from one version to another, it may be
necessary to make changes to your existing Oracle Event Processing projects.

This section describes:

■ Section , "How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3"

■ Section , "How to Upgrade Projects from Oracle Event Processing 10.3 to 11g
Release 1 (11.1.1)"

For more information, see:

■ Section , "Configuring Eclipse"

■ Oracle Fusion Middleware Getting Started Guide for Oracle Event Processing

How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3
While project structure has stayed the same since 2.1, the data stored in Oracle Event
Processing Projects has changed significantly. It is therefore necessary to take steps to
upgrade 2.1 projects manually before continuing their development in 10.3.

The following outlines the steps necessary to upgrade 2.1 projects to 10.3

To upgrade projects from Oracle Event Processing 2.1 to 10.3:
1. Open your Oracle Event Processing 2.1 project in Oracle Event Processing IDE for

Eclipse.

2. Select File > Switch Workspace > Other.

The Workspace Launcher dialog appears.

3. Click Browse and select a new workspace directory.

Eclipse exits and restarts using the new workspace.

4. Select File > Import.

The Import Dialog appears.

5. Expand the General option and select Existing Projects into Workspace.

6. Click Next.

The Import Projects dialog appears.

7. Use the Import Projects dialog to import your 2.1 projects into the new workspace.
Optionally, choose to copy the project files into your new workspace.

Note: Do not choose to copy settings from the current workspace.

Upgrading Projects

5-14 Developer's Guide for Oracle Event Processing

8. For each project, change the project facet version as follows:

a. Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5–12.

Figure 5–12 Project Properties Dialog: Project Facets

b. Select the Project Facets option.

The Project Facet properties are displayed as Figure 5–12 shows.

c. Click Modify Project.

The Modify Faceted Project dialog appears shown in Figure 5–13.

Upgrading Projects

Oracle Event Processing IDE for Eclipse Projects 5-15

Figure 5–13 Modify Faceted Project

d. For the Oracle Event Processing facet, select 10.3 from the Version pull-down
menu.

e. Click Finish.

f. Click OK.

g. Repeat for the next project.

9. Create a new Oracle Event Processing server runtime:

a. Select Window > Preferences.

The Preferences dialog appears as shown in Figure 5–14.

Upgrading Projects

5-16 Developer's Guide for Oracle Event Processing

Figure 5–14 Preferences Dialog

b. Expand the Server option and select Installed Runtimes.

c. Add a new 10.3 Oracle Event Processing server runtime as Section , "How to
Create an Oracle Event Processing Server Runtime" describes.

d. Click OK.

10. For each project, specify the new 10.3 Oracle Event Processing server runtime you
created:

a. Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5–15.

Upgrading Projects

Oracle Event Processing IDE for Eclipse Projects 5-17

Figure 5–15 Project Properties Dialog: Targeted Runtimes

b. Select the Targeted Runtimes option.

The Targeted Runtimes properties are displayed as Figure 5–15 shows.

c. Check the new Oracle Event Processing 10.3 targeted runtime you created.

d. Click OK.

e. Repeat for the next project.

11. For each project update the project builders:

a. Right-click the project and select Open EPN Editor.

b. If the EPN diagram opens without error, proceed to step 12.

c. If the EPN diagram opens with the error shown in Figure 5–16, click the
Configure Builder button.

Upgrading Projects

5-18 Developer's Guide for Oracle Event Processing

Figure 5–16 Builder Error

The EPN diagram is displayed.

d. Repeat for the next project.

12. Validate build inclusions:

If your application bundle is using bundle localization and has substitution
variables in its MANIFEST.MF file such as:

Bundle-Name: %project.name

Then your project root directory’s build.properties file element bin.include
must contain a reference to your bundle.properties file such as:

bin.includes = META-INF/,\
bundle.properties,\
.

13. Perform source changes, if necessary.

For more information, see:

■ "Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle Event
Processing 10.3" in the Oracle Fusion Middleware Getting Started Guide for Oracle
Event Processing

■ Oracle Event Processing Release Notes for 10.3
(http://download.oracle.com/docs/cd/E13157_
01/wlevs/docs30/notes/notes.html)

After performing these steps, you should do a clean build of your project.

How to Upgrade Projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)
While project structure has stayed the same since 10.3, the data stored in Oracle Event
Processing Projects has changed significantly. It is therefore necessary to take steps to
upgrade 10.3 projects manually before continuing their development in 11g Release 1
(11.1.1).

The following outlines the steps necessary to upgrade 10.3 projects to 11g Release 1
(11.1.1)

Upgrading Projects

Oracle Event Processing IDE for Eclipse Projects 5-19

To upgrade projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)
1. Open your Oracle Event Processing 10.3 project in Oracle Event Processing IDE for

Eclipse.

2. Select File > Switch Workspace > Other.

The Workspace Launcher dialog appears.

3. Click Browse and select a new workspace directory.

Eclipse exits and restarts using the new workspace.

4. Select File > Import.

The Import Dialog appears.

5. Expand the General option and select Existing Projects into Workspace.

6. Click Next.

The Import Projects dialog appears as shown in Figure 5–17.

Figure 5–17 Import Projects Dialog

7. Use the Import Projects dialog to import your 10.3 projects into the new
workspace. Optionally, choose to copy the project files into your new workspace.

8. For each project, change the project facet version as follows:

a. Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5–12.

Note: Do not choose to copy settings from the current workspace.

Upgrading Projects

5-20 Developer's Guide for Oracle Event Processing

Figure 5–18 Project Properties Dialog: Project Facets

b. Select the Project Facets option.

The Project Facet properties are displayed as Figure 5–12 shows.

c. Click Modify Project.

The Modify Faceted Project dialog appears shown in Figure 5–13.

Figure 5–19 Modify Faceted Project

Upgrading Projects

Oracle Event Processing IDE for Eclipse Projects 5-21

d. For the Java facet, select 6.0 from the Version pull-down menu.

e. For the Oracle Event Processing facet, select 11.1 from the Version pull-down
menu.

f. Click Finish.

g. Click OK.

h. Repeat for the next project.

9. Create a new Oracle Event Processing server runtime:

a. Select Window > Preferences.

The Preferences dialog appears as shown in Figure 5–14.

Figure 5–20 Preferences Dialog

b. Expand the Server option and select Installed Runtimes.

c. Add a new 11.0 Oracle Event Processing server runtime as Section , "How to
Create an Oracle Event Processing Server Runtime" describes.

d. Click OK.

10. For each project, specify the new 11.0 Oracle Event Processing server runtime you
created:

a. Right-click your project and select Properties.

The Project Properties dialog appears as shown in Figure 5–15.

Upgrading Projects

5-22 Developer's Guide for Oracle Event Processing

Figure 5–21 Project Properties Dialog: Targeted Runtimes

b. Select the Targeted Runtimes option.

The Targeted Runtimes properties are displayed as Figure 5–15 shows.

c. Check the new Oracle Event Processing 11.0 targeted runtime you created.

d. Click OK.

e. Repeat for the next project.

11. For each project update the project builders:

a. Right-click the project and select Open EPN Editor.

b. If the EPN diagram opens without error, proceed to step 12.

c. If the EPN diagram opens with the error shown in Figure 5–16, click the
Configure Builder button.

Upgrading Projects

Oracle Event Processing IDE for Eclipse Projects 5-23

Figure 5–22 Builder Error

The EPN diagram is displayed.

d. Repeat for the next project.

12. Select Window > Preferences.

The Preferences dialog appears as shown in Figure 5–23.

Upgrading Projects

5-24 Developer's Guide for Oracle Event Processing

Figure 5–23 Preferences Dialog

13. Select the Validation option.

14. Ensure that the following validation options are checked:

■ CQL Validator

■ EPN Validator

■ XML Validator

15. Clear all other options.

16. Click OK.

17. Validate build inclusions:

If your application bundle is using bundle localization and has substitution
variables in its MANIFEST.MF file such as:

Bundle-Name: %project.name

Then your project root directory’s build.properties file element bin.include
must contain a reference to your bundle.properties file such as:

bin.includes = META-INF/,\
bundle.properties,\

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-25

.

18. Perform source changes, if necessary.

For more information, see:

■ "Upgrading an Oracle Event Processing 10.3 Application to Run on Oracle
Event Processing Release 11gR1 (11.1.1)" in the Oracle Fusion Middleware
Getting Started Guide for Oracle Event Processing

Managing Libraries and Other Non-Class Files in Oracle Event Processing
Projects

Many projects require the use of non-class files such as libraries or property files that
were obtained from a source other than the project itself, whether that be third party
libraries, internal libraries created in other projects, or otherwise.

You can add the following non-class files to an Oracle Event Processing project, each
with its own packaging and deployment characteristics:

■ Standard JAR Files: Adding a standard JAR file to a project makes for the easiest
management of the library. The library is packaged directly with the project by the
Oracle Event Processing IDE for Eclipse and you can check the library into a
source code control system as part of the project.

For more information, see:

■ Section , "How to Add a Standard JAR File to an Oracle Event Processing
Project"

■ Section , "How to Add an OSGi Bundle to an Oracle Event Processing Project"

■ Section , "How to Add a Property File to an Oracle Event Processing Project"

■ Section , "How to Export a Package"

■ Section , "How to Import a Package"

■ Section , "Accessing Third-Party JAR Files Using -Xbootclasspath"

■ OSGi Bundles: If your library is already packaged as an OSGi bundle and you
would like to deploy it to the server once (allowing multiple applications to
reference it), you can use the OSGi bundle library option. Note that this leaves
some parts of deployment to the user since the OSGi bundle is not automatically
packaged with the application. It can also make working in team environments a
little more difficult because each developer must have the bundle in the DOMAIN_
DIR/servername/modules directory of their machine, rather than have it source
controlled with the rest of the project.

The main advantage of the OSGi bundle library option is that you can use the
Oracle Event Processing server application library to manage OSGi bundle
libraries to ensure that they are deployed before any applications that depend on
them.

For more information, see:

■ Section , "How to Add an OSGi Bundle to an Oracle Event Processing Project"

■ Section , "Application Libraries"

■ Property Files: Adding a Java property file to a project allows you to manage
properties efficiently. You can add a Java property file to an Oracle Event

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-26 Developer's Guide for Oracle Event Processing

Processing project so that the property file is deployed with your application and
is available at runtime.

For more information, see:

■ Section , "How to Add a Property File to an Oracle Event Processing Project"

■ Section , "Accessing Component and Server Configuration Using the
ConfigurationPropertyPlaceholderConfigurer Class"

How to Add a Standard JAR File to an Oracle Event Processing Project
If the library you need to use is a standard JAR file, you can add it to your Oracle
Event Processing project. Alternatively, you can add a library as an OSGi bundle (see
Section , "How to Add an OSGi Bundle to an Oracle Event Processing Project").

When you add a standard JAR file to an Oracle Event Processing project, you can
optionally expose some or all of its packages to other bundles that will depend on this
bundle.

To add a standard JAR file to an Oracle Event Processing project:
1. Create a folder in your Oracle Event Processing IDE for Eclipse project to put the

JAR file in.

Oracle recommends that you create a folder to put them in such as lib.

To create a new folder, right-click your project folder and select New > Folder.

2. Outside of the Oracle Event Processing IDE for Eclipse, copy your JAR file into the
lib folder.

3. Inside the Oracle Event Processing IDE for Eclipse, right-click the lib folder and
select Refresh.

The JAR file appears in the lib folder as Figure 5–24 shows.

Figure 5–24 Oracle Event Processing IDE for Eclipse lib Directory

4. Expand the META-INF directory and right-click the MANIFEST.MF file and select
Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5–25 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-27

Figure 5–25 Manifest Editor: Build Tab

5. Click the Build tab.

6. Add your JAR file to the binary build under the project root as follows:

■ In the Binary Build area, expand the lib directory.

■ Check the box next to your library as Figure 5–25 shows.

■ Press hit CTRL-SHIFT-S to save all files.

This edits the build.properties file in your project, and tells the Oracle Event
Processing IDE for Eclipse to add the JAR file to your bundle when you build
the bundle JAR.

7. In the Manifest Editor, click the Runtime tab.

The Runtime tab appears as Figure 5–26 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-28 Developer's Guide for Oracle Event Processing

Figure 5–26 Manifest Editor - Runtime Tab

8. Add the JAR file to your project's classpath as follows:

■ In the Manifest Editor, click the Add button.

The JAR Selection dialog appears as shown in Figure 5–27.

Figure 5–27 JAR Selection Dialog

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-29

■ Select the JAR you want to add to the bundle.

In this example, expand the lib directory and select the javax.jws_2.0.jar
file.

■ Click OK.

This adds the selected JAR to the Classpath list as Figure 5–28 shows.

Figure 5–28 Manifest Editor Runtime tab After Adding a JAR to the Classpath

■ Press hit CTRL-SHIFT-S to save all files.

This edits the MANIFEST.MF file, putting the JAR on your project classpath.

To confirm this, in the Manifest Editor, click the MANIFEST.MF tab and note
that the JAR is now listed under the Bundle-Classpath property as
Figure 5–29 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-30 Developer's Guide for Oracle Event Processing

Figure 5–29 Manifest Editor MANIFEST.MF Tab

Note also that the JAR now appears as a library at the root of the project as
Figure 5–30 shows.

Figure 5–30 Package Explorer

9. Optionally, if your bundle needs to export packages from this JAR to other
bundles that will depend on this bundle, then you can export these packages as
Section , "How to Export a Package" describes.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-31

How to Add an OSGi Bundle to an Oracle Event Processing Project
If the library you need to use is an OSGi bundle, you can add it to your Oracle Event
Processing project. Alternatively, you can add a library as a standard JAR file (see
Section , "How to Add a Standard JAR File to an Oracle Event Processing Project").

To add an OSGi bundle to an Oracle Event Processing project, you add the bundle to
that bundle's dependencies definition.

To add an OSGi bundle to an Oracle Event Processing project:
1. Place the OSGi bundle in the DOMAIN_DIR/servername/modules directory, where

DOMAIN_DIR refers to the domain directory such as /oracle_cep/user_
projects/domains/mydomain and servername refers to the server instance, such as
myserver. For example:

c:\oracle_cep\user_projects\domains\mydomain\myserver\modules

2. Start the Oracle Event Processing IDE for Eclipse.

3. Right-click the project and select Refresh Targeted Runtime.

4. Right-click the META-INF/MANIFEST.MF file and select Open With > Plug-in
Manifest Editor.

The Manifest Editor opens as Figure 5–31 shows.

Figure 5–31 Manifest Editor: Dependencies Tab

5. Click the Dependencies tab.

6. In the Required Plug-ins area, click Add.

Note: This process only makes the referenced bundle available to
your project at build time. It does not package the bundle directly
with your application when it is deployed or exported. Instead, this
bundle must be deployed to the Oracle Event Processing server
manually. For more information, see Section , "Application Libraries".

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-32 Developer's Guide for Oracle Event Processing

The Plug-in Selection dialog appears as shown in Figure 5–32.

Figure 5–32 Plug-in Selection Dialog

7. Select the bundle you added to the DOMAIN_DIR/servername/modules directory of
your Oracle Event Processing server installation directory in step 1 and click OK.

The selected bundle appears in the Require-Bundle section of the MANIFEST.MF
file.

How to Add a Property File to an Oracle Event Processing Project
You can add a Java property file to an Oracle Event Processing project so that the
property file is deployed with your application and is available at runtime.

To add a property file to an Oracle Event Processing project:
1. Create a folder in your Oracle Event Processing IDE for Eclipse project to put the

property files in.

Oracle recommends that you create a folder to put them in such as properties.

To create a new folder, tight-click your project folder and select New > Folder.

2. Outside of the Oracle Event Processing IDE for Eclipse, copy your property file
into the properties folder.

3. Inside the Oracle Event Processing IDE for Eclipse, right-click the properties
folder and select Refresh.

The property file appears in the properties folder.

4. Expand the META-INF directory and right-click the MANIFEST.MF file and select
Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5–33 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-33

Figure 5–33 Manifest Editor: Build Tab

5. Click the Build tab.

6. Add your property file to the binary build under the project root as follows:

■ In the Binary Build area, expand the properties directory.

■ Check the box next to your property file as Figure 5–33 shows.

■ Press hit CTRL-SHIFT-S to save all files.

This edits the build.properties file in your project, and tells the Oracle Event
Processing IDE for Eclipse to add the property file to your bundle when you
build the bundle JAR.

7. You can access the properties file in Java code as Example 5–1 shows:

Example 5–1 Accessing a Properties File

public void onInsertEvent(Object event) {
if (event instanceof HelloWorldEvent) {

HelloWorldEvent helloWorldEvent = (HelloWorldEvent) event;
InputStream resourceAsStream = getClass().getClassLoader().getResourceAsStream(

"properties/test.properties"
);
Properties props = new Properties();
try {

props.load(resourceAsStream);
} catch (IOException e) {

e.printStackTrace();
}
System.out.println("Message: " + props.get("test-key"));

 // Throw com.bea.wlevs.ede.api.EventRejectedException to have exceptions propagated

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-34 Developer's Guide for Oracle Event Processing

 // up to senders. Other errors will be logged and dropped.
}

}

How to Export a Package
Optionally, if your bundle needs to export a package from a JAR to other bundles that
will depend on this bundle, then you can export this package. By doing so, you update
the Package-Export MANIFEST entry to create an OSGi exporter for the package.

To export a package:
1. Inside the Oracle Event Processing IDE for Eclipse, expand the META-INF directory

as Figure 5–34 shows.

Figure 5–34 Oracle Event Processing IDE for Eclipse lib Directory

2. Right-click the MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5–35 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-35

Figure 5–35 Manifest Editor: Runtime tab

3. Click the Runtime tab.

The Runtime tab appears as Figure 5–35 shows.

4. In the Exported Packages area, click the Add button.

The Package Selection dialog appears as Figure 5–36 shows.

Figure 5–36 Package Selection Dialog

5. Select the package you want to export.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-36 Developer's Guide for Oracle Event Processing

To find a package in the list by name, type the name into the text field.

In this example, select the javax.jws.soap package.

6. Click OK.

The selected package is added to the Exported Packages area as Figure 5–37
shows.

Figure 5–37 Manifest Editor Runtime tab After Exporting a Package

7. Press CTRL-SHIFT-S to save all files.

How to Import a Package
Optionally, if your bundle needs to import a package from a JAR, then you can import
this package. By doing so, you update the Package-Import MANIFEST entry to create
an OSGi importer for the package.

To import a package:
1. Inside the Oracle Event Processing IDE for Eclipse, expand the META-INF directory

as Figure 5–38 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

Oracle Event Processing IDE for Eclipse Projects 5-37

Figure 5–38 Oracle Event Processing IDE for Eclipse lib Directory

2. Right-click the MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor opens as Figure 5–39 shows.

Figure 5–39 Manifest Editor: Dependencies tab

3. Click the Dependencies tab.

The Dependencies tab appears as Figure 5–39 shows.

4. In the Imported Packages area, click the Add button.

The Package Selection dialog appears as Figure 5–40 shows.

Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects

5-38 Developer's Guide for Oracle Event Processing

Figure 5–40 Package Selection Dialog

5. Select the package you want to import.

To find a package in the list by name, type the name into the text field.

In this example, select the javax.jws.soap package.

6. Click OK.

The selected package is added to the Import Packages area as Figure 5–41 shows.

Figure 5–41 Manifest Editor Dependencies tab After Importing a Package

7. Press CTRL-SHIFT-S to save all files.

Configuring Oracle Event Processing IDE for Eclipse Preferences

Oracle Event Processing IDE for Eclipse Projects 5-39

Configuring Oracle Event Processing IDE for Eclipse Preferences
You can configure various preferences to customize Oracle Event Processing IDE for
Eclipse to suit your needs, including:

■ Section , "How to Configure Application Library Path Preferences"

■ Section , "How to Configure Problem Severity Preferences"

How to Configure Application Library Path Preferences
You can define the path to an Oracle Event Processing server domain directory that
contains application libraries that extend the Oracle Event Processing runtime.

For more information, see Section , "How to Define the Application Library Directory
Using Oracle Event Processing IDE for Eclipse".

How to Configure Problem Severity Preferences
You can assign a severity to the various problems that Oracle Event Processing IDE for
Eclipse can detect in your Oracle Event Processing project and application.

You can configure these preferences for each project individually or you can configure
these preferences the same for all the projects in a given workspace.

To configure problem severity preferences:
1. Open the EPN Editor (see Section , "Opening the EPN Editor")

2. Select Window > Preferences.

The Preferences dialog appears.

3. Select Oracle Event Processing Problem Severities.

The Oracle Event Processing Problem Severities dialog appears as Figure 5–42
shows.

Configuring Oracle Event Processing IDE for Eclipse Preferences

5-40 Developer's Guide for Oracle Event Processing

Figure 5–42 Oracle Event Processing Problem Severities Dialog: Workspace

4. Select a severity for each type of problem. You can select one of:

■ Error: treat the problem as an error.

■ Warning: treat the problem as a warning.

■ Ignore: ignore the problem.

Table 5–7 describes each of the problem areas you can configure.

Configuring Oracle Event Processing IDE for Eclipse Preferences

Oracle Event Processing IDE for Eclipse Projects 5-41

Table 5–7 Oracle Event Processing Problem Severities

Category Problem Description

Cache Configuration Unresolved cache loaders or
resolved loaders with incorrect
interface declarations.

Ensure that the assembly file contains a bean element that identifies
the cache loader class for each wlevs:cache-loader element and
ensure that the cache loader class implements the appropriate
interfaces.

For more information, see:

■ Section , "Loading Cache Data from a Read-Only Data Source"

Unresolved cache stores or
resolved stores with incorrect
interface declarations.

Ensure that the assembly file contains a bean element that identifies
the cache store class for each wlevs:cache-store element and ensure
that the cache store class implements the appropriate interfaces.

For more information, see:

■ Section , "Exchanging Data with a Read-Write Data Source."

Event Processing
Network

Configuration objects without
a matching assembly definition

EPN configuration elements are linked to assembly definitions by
name and ID, respectively. Validate that a configuration element has
a name that exactly matches an assembly element by ID within the
same application.

Configuration objects with
duplicate name declarations.

Configuration elements in Oracle Event Processing configuration
files are identified by a name. Validate that no two configuration
elements in an application have the same name.

Unresolved event listeners or
resolved listeners with
incorrect interface declarations

An event processing network is built by defining how elements in
the network pull or push to events to other elements in the
application. Validate that the target of an event push, a listener
declaration on an EPN assembly element, implements the interfaces
required to receive pushed events.

Unresolved event sources or
resolved sources with incorrect
interface declarations

An event processing network is built by defining how elements in
the network pull or push to events to other elements in the
application. Validate that the source of an event pull, a source
declaration on an EPN assembly element, implements the interfaces
required to provide pulled events.

Unresolved query selectors
configured for channels.

Given a channel with an upstream Oracle CQL processor that
defines more than one rule, ensure that the channel component
configuration file selector element contains only rule names of the
rules defined in the upstream Oracle CQL processor.

For more information, see Section , "selector".

References to foreign stages
(stages defined in external
applications).

Ensure that references to foreign stages can be resolved.

For more information, see Section , "Referencing Foreign Stages in an
EPN Assembly File".

Channels not associated with
Oracle CQL processors missing
"event-type" declaration.

Given a channel that does not have an upstream Oracle CQL
processor, ensure that the assembly file wlevs:channel element is
configured with an event-type attribute.

For more information, see Chapter 10, "Connecting EPN Stages
Using Channels".

Deprecated EPN elements Oracle Event Processing provides backwards compatibility with
applications built for previous versions. Validate an application's use
of deprecated XML elements.

Event Type Repository Event property type values that
are not predefined types or do
not resolve to a known class.

Event types may be defined using dynamic Spring Beans through
the properties element. The property values are limited to a fixed
set of supported types. Validate that the property type is one of
these allowed types.

For more information, see Chapter 9, "Defining and Using Event
Types".

Query Validation Problems found validating
CQL Statements

Validate that the Oracle CQL statement in a processor configuration
is correct given the current application. Verify property names, event
types, syntax, and other assembly-to-Oracle CQL references.

Configuring Oracle Event Processing IDE for Eclipse Preferences

5-42 Developer's Guide for Oracle Event Processing

5. Click Apply.

6. Click OK.

Problems preventing the
validation of CQL statements

Some fundamental application errors will keep a Oracle CQL
statement from being validated. For example, a processor
configuration must have a matching processor assembly definition
before any Oracle CQL requirements can be met. Verify that the
minimum requirements are met to validate a processor's Oracle CQL
statements.

CQL statements affected
directly or indirectly by
missing binding parameters.

Parameterized queries.

CQL statements in
disconnected processors (no
upstream channels in the EPN).

Ensure that all Oracle CQL processors are connected to an upstream
stage on the EPN. Without an upstream stage, the Oracle CQL
processor’s rules have no event stream to operate on.

Table 5–7 (Cont.) Oracle Event Processing Problem Severities

Category Problem Description

6

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-1

6Oracle Event Processing IDE for Eclipse and
Oracle Event Processing Servers

[7] This chapter describes how to use the Oracle Event Processing IDE for Eclipse to create
and manage Oracle Event Processing servers to develop and debug event-driven
applications.

This chapter includes the following sections:

■ Oracle Event Processing Server Overview

■ Creating Oracle Event Processing Servers

■ Managing Oracle Event Processing Servers

■ Debugging an Oracle Event Processing Application Running on an Oracle Event
Processing Server

Oracle Event Processing Server Overview
The Oracle Event Processing IDE for Eclipse provides features that allow you to set up
and manage Oracle Event Processing servers that are used during development. These
tools help you to:

■ Configure instances of Oracle Event Processing servers

■ Attach to external Oracle Event Processing server instances

■ Manage Oracle Event Processing server lifecycle with start, stop, and debug
commands

■ Associate applications with and deploy applications to Oracle Event Processing
servers during development

Table 6–1 maps Eclipse terminology used by the Oracle Event Processing IDE for
Eclipse to Oracle Event Processing server terminology.

Table 6–1 Eclipse and Oracle Event Processing Server Concepts

Eclipse IDE
Concept

Oracle Event
Processing Server
Concept Description

Runtime Oracle Event
Processing server
installation

The Oracle Event Processing IDE for Eclipse has the concept of a
runtime. The runtime defines the location where the Oracle
Event Processing IDE for Eclipse can find the installation of a
particular Oracle Event Processing server. This information is
used to find JAR files and OSGi bundles to add to the project
classpath and to further define Servers and Server Instances.

Note that a Runtime is not itself a runnable artifact.

Oracle Event Processing Server Overview

6-2 Developer's Guide for Oracle Event Processing

Server definitions are the central concept in controlling an Oracle Event Processing
server from the Oracle Event Processing IDE for Eclipse. It is from the server definition
that you start and stop the server. After associating a project with the server, you can
publish (deploy) the application to and unpublish (undeploy) the application from the
server, all without having to leave the Oracle Event Processing IDE for Eclipse. For
more information, see Section , "Creating Oracle Event Processing Servers".

You can communicate with a running Oracle Event Processing server using Oracle
Event Processing IDE for Eclipse in the following ways:

■ Start a server from within Oracle Event Processing IDE for Eclipse.

In this case, the Oracle Event Processing server console is sent directly to the
console view in Oracle Event Processing IDE for Eclipse. All of the Oracle Event
Processing server features (such as start, stop, publish, unpublish, debug, and
launching the Oracle Event Processing Visualizer) are available. The Oracle Event
Processing server process itself is managed from within Oracle Event Processing
IDE for Eclipse. In other words, stopping the Oracle Event Processing server from
the Oracle Event Processing IDE for Eclipse will terminate the actual Oracle Event
Processing server process. Console messages from the Oracle Event Processing
server are sent to the Oracle Event Processing IDE for Eclipse Console view.

For more information, see:

– Section , "How to Start a Local Oracle Event Processing Server"

– Section , "How to Stop a Local Oracle Event Processing Server"

■ Attach to a running Oracle Event Processing server.

In this case, the user starts the Oracle Event Processing server from the command
line, then clicks the Start button for that server in Oracle Event Processing IDE for
Eclipse. A dialog is shown asking whether or not to attach and, if the user clicks
Yes, Oracle Event Processing IDE for Eclipse enters attached mode. All of the
Oracle Event Processing server features except debug are available. However, the
Oracle Event Processing server process is not managed by the Oracle Event

Server and
Server Instance

Domain The Oracle Event Processing IDE for Eclipse uses the term
Server to describe an actual runnable Oracle Event Processing
server instance. You can think of it as something that has start
scripts, for example. In Oracle Event Processing server
terminology, this equates to a Domain. When you set up a
server, you specify the domain that this instance will run.

For more information on domains, see:

■ For more information, see "Administering Oracle Event
Processing Standalone-Server Domains" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

■ For more information, see "Administering Oracle Event
Processing Standalone-Server Domains" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

Publish Deploy The Oracle Event Processing IDE for Eclipse typically uses the
term Publish to describe physically deploying an application to a
server.

Project Application or
Deployment

A project in the Oracle Event Processing IDE for Eclipse becomes
a single Oracle Event Processing application packaged as an
OSGi bundle. It is deployed to a server and shows in the Oracle
Event Processing server’s deployments.xml file.

Table 6–1 (Cont.) Eclipse and Oracle Event Processing Server Concepts

Eclipse IDE
Concept

Oracle Event
Processing Server
Concept Description

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-3

Processing IDE for Eclipse. Clicking the Stop button simply disconnects from the
attached Oracle Event Processing server; it does not terminate the actual Oracle
Event Processing server process. Console messages from the Oracle Event
Processing server are sent to the Oracle Event Processing server console (standard
output to the terminal window in which it is running). Oracle Event Processing
IDE for Eclipse only shows limited Oracle Event Processing IDE for Eclipse
operation messages in the console view.

For more information, see:

– Section , "How to Attach to an Existing Local Oracle Event Processing Server
Instance"

– Section , "How to Detach From an Existing Oracle Event Processing Server
Instance"

Creating Oracle Event Processing Servers
Creating a server allows you to start and stop the server instance from within the
Oracle Event Processing IDE for Eclipse, as well as automatically deploy your
applications to that server.

You can create a local or remote Oracle Event Processing server:

■ Local server: a local Oracle Event Processing server is one in which both the server
and server runtime are on the same host

■ Remote server: a remote Oracle Event Processing server is one in which the server
and server runtime are on different hosts. The server is on a remote host and the
server runtime is on the local host (the host on which you are executing the Oracle
Event Processing IDE for Eclipse).

This section describes:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Create a Remote Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Create an Oracle Event Processing Server Runtime"

How to Create a Local Oracle Event Processing Server and Server Runtime
This section describes how to create both a local server and server runtime. After
creating the initial server and server runtime, you can create additional server
runtimes.

A local Oracle Event Processing server is one in which both the server and server
runtime are on the same host. Alternatively, you can create a remote server and server
runtime.

Creating Oracle Event Processing Servers

6-4 Developer's Guide for Oracle Event Processing

For more information, see:

■ Section , "How to Create an Oracle Event Processing Server Runtime"

■ Section , "How to Create a Remote Oracle Event Processing Server and Server
Runtime"

To create a local Oracle Event Processing server and server runtime:
1. Select Window > Show View > Servers.

The Servers view appears as shown in Figure 6–1.

Figure 6–1 Oracle Event Processing IDE for Eclipse Server View

2. Right-click in the Servers view pane and select New > Server.

3. Consider whether or not server runtimes have been created:

a. If this is the first time you have created an Oracle Event Processing server,
there will be no installed server runtimes. Proceed to step 4.

b. If this is not the first time you have created an Oracle Event Processing server,
there will be one or more installed server runtimes. Proceed to step 5.

4. If this is the first time you have created an Oracle Event Processing server, there
will be no installed server runtimes:

In this case, the New Server: Define New Server dialog appears as Figure 6–2
shows.

Note: If the server you’re creating in Eclipse is one you created from
a domain with the Configuration Wizard, be sure to run the server
from the command line before adding the server to your Eclipse
project. Doing so will ensure that all server artifacts are created. Also,
when specifying domain configuration information in the Eclipse
New Server wizard, be sure to click the Advanced tab to specify the
user name and password used when creating the domain.

For more information on running a server from the command line, see
"Starting and Stopping an Oracle Event Processing Server in a
Standalone-Server Domain" in Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-5

Figure 6–2 New Server: Define New Server Dialog (No Installed Runtimes)

Configure the new server as follows:

a. Configure the dialog as shown in Table 6–2.

b. Click Next.

The New Server: New Oracle Event Processing v11 Runtime dialog appears as
shown in Figure Figure 6–3.

Table 6–2 New Server: Define New Server Dialog (No Installed Runtimes) Attributes

Attribute Description

Server’s host name The host name of the computer on which you installed Oracle
Event Processing server.

For development, this will typically be localhost.

Select the server type The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11

Server name The name of this Oracle Event Processing server.

Default: Oracle Event Processing v11.1 at HOSTNAME

Where HOSTNAME is the value you entered in the Server’s host
name field.

Creating Oracle Event Processing Servers

6-6 Developer's Guide for Oracle Event Processing

Figure 6–3 New Server: New Oracle Event Processing v11.1 Runtime Dialog

c. Configure the dialog as shown in Table 6–3.

Table 6–3 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes

Attribute Description

Oracle Middleware Home
Directory

The fully qualified path to the Oracle Event Processing server
installation directory. This is the same as the "Middleware
Home" that was selected when installing the server.

When selecting this directory, select the directory that contains
the Oracle Event Processing installation rather than the Oracle
Event Processing directory itself. For example, choose:

C:\OracleCEP

But do not choose:

C:\OracleCEP\ocep_11.1

The runtime wizard will use the installation to find the
appropriate Oracle Event Processing installation directory.

For more information, see "Oracle Fusion Middleware Directory
Structure and Concepts" in the Oracle Fusion Middleware Getting
Started Guide for Oracle Event Processing.

JRE The type of JRE to use.

Select the type of JRE to use from the pull-down menu or click
the Installed JRE preferences link to create a new JRE.

Be sure to choose a Java 6 JRE.

NOTE: The Oracle Event Processing server JRE is ultimately set
by the JAVA_HOME setting in setDomainEnv.cmd or
setDomainEnv.sh script in the server domain directory.

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-7

d. Proceed to step 6.

5. If this is not the first time you have created an Oracle Event Processing server,
there will be one or more installed server runtimes.

In this case, the New Server: Define New Server dialog appears as Figure 6–4
shows.

Figure 6–4 New Server: Define New Server (Installed Runtimes) Dialog

Configure the dialog as shown in Table 6–4.

6. Click Next.

The New Server: New Oracle Event Processing v11.1 Server dialog appears as
Figure 6–5 shows.

Table 6–4 New Server: Define New Server (Installed Runtimes) Dialog Attributes

Attribute Description

Server’s host name The host name of the computer on which you installed Oracle
Event Processing server.

For development, this will typically be localhost.

Select the server type The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11.

Server runtime Select the server runtime from the pull-down menu.

To create or edit server runtimes, click Installed Runtimes. For
more information, see Section , "How to Create an Oracle Event
Processing Server Runtime".

Creating Oracle Event Processing Servers

6-8 Developer's Guide for Oracle Event Processing

Figure 6–5 New Server: New Oracle Event Processing v11.1 Server

7. Select Local Server.

8. Click Next.

The New Server: New Oracle Event Processing v11 Server dialog appears as
Figure 6–6 shows.

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-9

Figure 6–6 New Server: New Oracle Event Processing v11 Server Dialog for a Local
Server

9. Click Advanced and configure the dialog as shown in Table 6–5.

Table 6–5 New Server: New Oracle Event Processing v11 Server Dialog Attributes for a
Local Server

Attribute Description

Domain Directory The fully qualified path to the directory that contains the domain for
this server.

Click Browse to choose the directory.

Default: MIDDLEWARE_HOME\user_projects\domains\ocep_
domain\defaultserver.

Start Script The script that Oracle Event Processing IDE for Eclipse uses to start
the Oracle Event Processing server.

Default on UNIX: MIDDLEWARE_HOME/user_projects/domains/ocep_
domain/defaultserver/startwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_
projects\domains\ocep_domain\defaultserver\startwlevs.cmd

Stop Script The script that Oracle Event Processing IDE for Eclipse uses to stop the
Oracle Event Processing server.

Default on UNIX: MIDDLEWARE_HOME/user_projects/domains/ocep_
domain/defaultserver/stopwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_
projects\domains\ocep_domain\defaultserver\stopwlevs.cmd

Debug Port The Oracle Event Processing server port that Oracle Event Processing
IDE for Eclipse connects to when debugging the Oracle Event
Processing server.

Default: 8453.

Creating Oracle Event Processing Servers

6-10 Developer's Guide for Oracle Event Processing

10. Click Finish.

11. If you configured Automatic Publishing to Use Workspace Default, select
Windows > Preferences.

12. Select the Server option.

13. Configure your automatic publishing options:

■ Automatically publish to local servers: enable or disable this option, as
required.

Default: enabled.

– Publishing interval: configure the frequency at which the Oracle Event
Processing IDE for Eclipse publishes changes to the server (in seconds).

Default: 60 seconds.

■ Automatically publish to remote servers: enable or disable this option, as
required.

Default: enabled.

– Publishing interval: configure the frequency at which the Oracle Event
Processing IDE for Eclipse publishes changes to the server (in seconds).

Default: 60 seconds.

14. Click OK.

How to Create a Remote Oracle Event Processing Server and Server Runtime
This section describes how to create both a remote server and server runtime. After
creating the initial server and server runtime, you can create additional server
runtimes.

A remote Oracle Event Processing server is one in which the server and server runtime
are on different hosts. The server is on a remote host and the server runtime is on the
local host (the host on which you are executing the Oracle Event Processing IDE for
Eclipse).

Alternatively, you can create a local server and server runtime.

User Name The user name Oracle Event Processing IDE for Eclipse uses when
logging into the Oracle Event Processing server.

Default: wlevs.

User Password The user password Oracle Event Processing IDE for Eclipse uses when
logging into the Oracle Event Processing server.

Default: wlevs.

Automatic Publishing By default, when you change an application, you must manually
publish the changes to the Oracle Event Processing server.

Select Use Workspace Default to configure Oracle Event Processing
IDE for Eclipse to automatically publish changes to the Oracle Event
Processing server.

Default: Disabled.

Table 6–5 (Cont.) New Server: New Oracle Event Processing v11 Server Dialog
Attributes for a Local Server

Attribute Description

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-11

For more information, see:

■ Section , "How to Create an Oracle Event Processing Server Runtime"

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

To create a remote Oracle Event Processing server and server runtime:
1. Select Window > Show View > Servers.

The Servers view appears as shown in Figure 6–1.

Figure 6–7 Oracle Event Processing IDE for Eclipse Server View

2. Right-click in the Servers view pane and select New > Server.

3. Consider whether or not server runtimes have been created:

a. If this is the first time you have created an Oracle Event Processing server,
there will be no installed server runtimes. Proceed to step 4.

b. If this is not the first time you have created an Oracle Event Processing server,
there will be one or more installed server runtimes. Proceed to step 5.

4. If this is the first time you have created an Oracle Event Processing server, there
will be no installed server runtimes:

In this case, the New Server: Define New Server dialog appears as Figure 6–2
shows.

Creating Oracle Event Processing Servers

6-12 Developer's Guide for Oracle Event Processing

Figure 6–8 New Server: Define New Server Dialog (No Installed Runtimes)

Configure the new server as follows:

a. Configure the dialog as shown in Table 6–2.

b. Click Next.

The New Server: New Oracle Event Processing v11 Runtime dialog appears as
shown in Figure Figure 6–3.

Table 6–6 New Server: Define New Server Dialog (No Installed Runtimes) Attributes

Attribute Description

Server’s host name The host name of the computer on which you installed Oracle
Event Processing server.

For development, this will typically be localhost.

Select the server type The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11

Server name The name of this Oracle Event Processing server.

Default: Oracle Event Processing v11.1 at HOSTNAME

Where HOSTNAME is the value you entered in the Server’s host
name field.

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-13

Figure 6–9 New Server: New Oracle Event Processing v11.1 Runtime Dialog

c. Configure the dialog as shown in Table 6–3.

Table 6–7 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes

Attribute Description

Oracle Middleware Home
Directory

The fully qualified path to the Oracle Event Processing server
installation directory. This is the same as the "Middleware
Home" that was selected when installing the server.

When selecting this directory, select the directory that contains
the Oracle Event Processing installation rather than the Oracle
Event Processing directory itself. For example, choose:

C:\OracleCEP

But do not choose:

C:\OracleCEP\ocep_11.1

The runtime wizard will use the installation to find the
appropriate Oracle Event Processing installation directory.

For more information, see "Oracle Fusion Middleware Directory
Structure and Concepts" in the Oracle Fusion Middleware Getting
Started Guide for Oracle Event Processing.

JRE The type of JRE to use.

Select the type of JRE to use from the pull-down menu or click
the Installed JRE preferences link to create a new JRE.

Be sure to choose a Java 6 JRE.

NOTE: The Oracle Event Processing server JRE is ultimately set
by the JAVA_HOME setting in setDomainEnv.cmd or
setDomainEnv.sh script in the server domain directory.

Creating Oracle Event Processing Servers

6-14 Developer's Guide for Oracle Event Processing

d. Proceed to step 6.

5. If this is not the first time you have created an Oracle Event Processing server,
there will be one or more installed server runtimes.

In this case, the New Server: Define New Server dialog appears as Figure 6–4
shows.

Figure 6–10 New Server: Define New Server (Installed Runtimes) Dialog

Configure the new server as follows:

6. Click Next.

The New Server: New Oracle Event Processing v11.1 Server dialog appears as
Figure 6–5 shows.

Table 6–8 New Server: Define New Server (Installed Runtimes) Dialog Attributes

Attribute Description

Server’s host name The host name of the computer on which you installed Oracle
Event Processing server.

For development, this will typically be localhost.

Select the server type The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11.

Server runtime Select the server runtime from the pull-down menu.

To create or edit server runtimes, click Installed Runtimes. For
more information, see Section , "How to Create an Oracle Event
Processing Server Runtime".

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-15

Figure 6–11 New Server: New Oracle Event Processing v11.1 Server

7. Select Remote Server.

8. Click Next.

The New Server: New Oracle Event Processing v11 Server dialog appears dialog
appears as Figure 6–12 shows.

Creating Oracle Event Processing Servers

6-16 Developer's Guide for Oracle Event Processing

Figure 6–12 New Server: New Oracle Event Processing v11 Server Dialog for a Remote
Server

9. Configure the dialog as shown in Table 6–9.

Table 6–9 New Server: Oracle Event Processing v11 Server Dialog Attributes for a Local
Server

Attribute Description

Remote Server IP Address The IP address of the remote Oracle Event Processing server.

Default: IP address of localhost.

Remote Server Port The port you specified in the remote Oracle Event Processing
server DOMAIN_DIR/config/config.xml file that describes your
Oracle Event Processing domain, where DOMAIN_DIR refers to
your domain directory.

The port number is the value of the Port child element of the
Netio element:

<Netio>
<Name>NetIO</Name>
<Port>9002</Port>

</Netio>

Default: 9002

User Name The user name that the Oracle Event Processing IDE for Eclipse
uses to log into the remote server.

Default: wlevs

User Password The password that the Oracle Event Processing IDE for Eclipse
uses to log into the remote server.

Default: wlevs

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-17

10. Click Finish.

How to Create an Oracle Event Processing Server Runtime
Before you can create a server, you must configure the Oracle Event Processing IDE for
Eclipse with the location of your Oracle Event Processing server installation by
creating a server runtime using the runtime wizard. You can access the runtime wizard
from several places including the new server wizard, the new project wizard, and the
workspace preferences dialog.

You only need to create a runtime explicitly if you have not yet created an Oracle
Event Processing server.

For more information, see:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Create a Remote Oracle Event Processing Server and Server
Runtime"

To create an Oracle Event Processing server runtime:
1. Select Windows > Preferences.

The Preferences dialog appears as Figure 6–13 shows.

Figure 6–13 Preferences - Server - Installed Runtimes

2. Expand the Server option and select Runtime Environments.

3. Click Add.

The New Server Runtime Environment dialog appears as shown in Figure 6–14.

Creating Oracle Event Processing Servers

6-18 Developer's Guide for Oracle Event Processing

Figure 6–14 New Server Runtime Environment Dialog

4. Configure the dialog as shown in Table 6–10.

5. Click Next.

The New Server Runtime Environment dialog appears as shown in Figure 6–15.

Table 6–10 New Server Runtime Dialog Attributes

Attribute Description

Select the type of runtime
environment

The type of Oracle Event Processing server.

In this example, choose Oracle Event Processing v11.1.

Create a new local server Optionally, check this to create a new local server if you have not
yet created a server. For more information, see Section , "How to
Create a Local Oracle Event Processing Server and Server
Runtime".

Creating Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-19

Figure 6–15 New Server Runtime Environment: New Oracle Event Processing v11.1
Runtime Dialog

6. Configure the dialog as shown in Table 6–11.

7. Click Finish.

Table 6–11 New Server Runtime Dialog Attributes

Attribute Description

Oracle Middleware Home
Directory

The fully qualified path to the Oracle Event Processing server
installation directory. This is the same as the "Middleware
Home" that was selected when installing the server.

When selecting this directory, select the directory that contains
the Oracle Event Processing installation rather than the Oracle
Event Processing directory itself. For example, choose:

C:\OracleCEP

But do not choose:

C:\OracleCEP\ocep_11.1

The runtime wizard will use the installation to find the
appropriate Oracle Event Processing installation directory.

For more information, see "Oracle Fusion Middleware Directory
Structure and Concepts" in the Oracle Fusion Middleware Getting
Started Guide for Oracle Event Processing.

JRE The type of JRE to use.

Select the type of JRE to use from the pull-down menu or click
the Installed JRE preferences link to create a new JRE.

Be sure to choose either JRockit Real Time or the JRockit JDK
installed with your Oracle Event Processing installation.

Managing Oracle Event Processing Servers

6-20 Developer's Guide for Oracle Event Processing

Managing Oracle Event Processing Servers
Using the Oracle Event Processing IDE for Eclipse and the Oracle Event Processing
Visualizer accessible from the Oracle Event Processing IDE for Eclipse, you can
manage many aspects of your Oracle Event Processing server during development.

This section describes the following Oracle Event Processing server management tasks
you can perform from the Oracle Event Processing IDE for Eclipse:

■ Section , "How to Start a Local Oracle Event Processing Server"

■ Section , "How to Stop a Local Oracle Event Processing Server"

■ Section , "How to Attach to an Existing Local Oracle Event Processing Server
Instance"

■ Section , "How to Attach to an Existing Remote Oracle Event Processing Server
Instance"

■ Section , "How to Detach From an Existing Oracle Event Processing Server
Instance"

■ Section , "How to Deploy an Application to an Oracle Event Processing Server"

■ Section , "How to Configure Connection and Control Settings for Oracle Event
Processing Server"

■ Section , "How to Configure Domain (Runtime) Settings for Oracle Event
Processing Server"

■ Section , "How to Start the Oracle Event Processing Visualizer from Oracle Event
Processing IDE for Eclipse"

How to Start a Local Oracle Event Processing Server
After you create a local server, you can start the Oracle Event Processing server from
the Oracle Event Processing IDE for Eclipse.

You can also start the local Oracle Event Processing server in debug mode.

Alternatively, you can start the local Oracle Event Processing server from the
command line and attach to it using Oracle Event Processing IDE for Eclipse.

For more information, see:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Debug an Oracle Event Processing Application Running on an
Oracle Event Processing Server"

■ Section , "How to Attach to an Existing Local Oracle Event Processing Server
Instance"

To start a local Oracle Event Processing server:
1. Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6–16.

Managing Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-21

Figure 6–16 Starting an Oracle Event Processing Server

2. Start the server by choosing one of the following:

a. Click the Start the Server icon in the Servers view tool bar.

b. Right-click a server in the Servers view and select Start.

After starting the server you will see log messages from the server in the Console
view.

How to Stop a Local Oracle Event Processing Server
After you start a local Oracle Event Processing server from the Oracle Event
Processing IDE for Eclipse, you can stop the Oracle Event Processing server from the
Oracle Event Processing IDE for Eclipse.

Note that stopping the Oracle Event Processing while Oracle Event Processing
Visualizer is running might produce console messages indicating that a service proxy
has been destroyed. This is generally an informational message only.

For more information, see Section , "How to Start a Local Oracle Event Processing
Server".

To stop a local Oracle Event Processing server:
1. Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6–17.

Figure 6–17 Stopping an Oracle Event Processing Server

2. Stop the server by choosing one of the following:

a. Click the Stop the Server icon in the Servers view tool bar.

b. Right-click a server in the Servers view and select Stop.

Managing Oracle Event Processing Servers

6-22 Developer's Guide for Oracle Event Processing

How to Attach to an Existing Local Oracle Event Processing Server Instance
After you create a local server, you can start the local Oracle Event Processing server
from the command line and attach Oracle Event Processing IDE for Eclipse to this
existing, already running local Oracle Event Processing server instance.

Alternatively, you can start the local Oracle Event Processing server directly from
within Oracle Event Processing IDE for Eclipse.

For more information, see:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Start a Local Oracle Event Processing Server"

To attach to an existing local Oracle Event Processing server instance:
1. Start the Oracle Event Processing server from the command line.

For more information, see "Starting and Stopping Oracle Event Processing Servers"
in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2. Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6–16.

Figure 6–18 Attaching to an Existing Local Oracle Event Processing Server Instance

3. Attach to the already running local server by choosing one of the following:

a. Click the Start the Server icon in the Servers view tool bar.

b. Right-click a server in the Servers view and select Start.

The Attach to Running OEP Server dialog appears.

4. Click Yes.

After attaching to the server you will not see log messages from the server in the
Console view.

You can view the server console using the Oracle Event Processing Visualizer. For
more information, see "How to View Console Output" in the Oracle Fusion
Middleware Visualizer User's Guide for Oracle Event Processing.

How to Attach to an Existing Remote Oracle Event Processing Server Instance
After you create a remote server, you can start the remote Oracle Event Processing
server from the command line and attach Oracle Event Processing IDE for Eclipse to
this existing, already running remote Oracle Event Processing server instance.

Managing Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-23

For more information, see Section , "How to Create a Remote Oracle Event Processing
Server and Server Runtime".

To attach to an existing remote Oracle Event Processing server instance:
1. Start the remote Oracle Event Processing server from the command line.

For more information, see "Starting and Stopping Oracle Event Processing Servers"
in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2. Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6–16.

Figure 6–19 Attaching to an Existing Remote Oracle Event Processing Server Instance

3. Attach to the already running remote server by choosing one of the following:

a. Click the Start the Server icon in the Servers view tool bar.

b. Right-click a server in the Servers view and select Start.

After attaching to the remote server, Oracle Event Processing IDE for Eclipse
writes one status message to the Console view, reading:

[3/23/10 12:32 PM] Attached to remote OEP server at address 10.11.12.13 and
port 9002

You will not see log messages from the remote server in the Console view.

You can view the server console using the Oracle Event Processing Visualizer. For
more information, see "How to View Console Output" in the Oracle Fusion
Middleware Visualizer User's Guide for Oracle Event Processing.

How to Detach From an Existing Oracle Event Processing Server Instance
After you attach to an existing, running Oracle Event Processing server instance, you
can detach from the Oracle Event Processing server and leave it running.

For more information, see:

■ Section , "How to Attach to an Existing Local Oracle Event Processing Server
Instance"

■ Section , "How to Attach to an Existing Remote Oracle Event Processing Server
Instance"

To detach from an existing Oracle Event Processing server instance:
1. Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6–17.

Managing Oracle Event Processing Servers

6-24 Developer's Guide for Oracle Event Processing

Figure 6–20 Stopping an Oracle Event Processing Server

2. Detach from the server by choosing one of the following:

a. Click the Stop the Server icon in the Servers view tool bar.

b. Right-click a server in the Servers view and select Stop.

Oracle Event Processing IDE for Eclipse detaches from the Oracle Event
Processing server instance. The Oracle Event Processing server instance continues
to run.

If you detach from a remote Oracle Event Processing server, Oracle Event
Processing IDE for Eclipse writes a log message to the Console view reading:

[3/23/10 12:47 PM] Server communication stopped

How to Deploy an Application to an Oracle Event Processing Server
A project in the Oracle Event Processing IDE for Eclipse is built as an Oracle Event
Processing application, then deployed to the server. To deploy an application, a server
must first be defined. To then deploy an application, simply add it to the server. The
application will be deployed immediately if the server is already started, or when the
server is next started if the server is stopped.

For more information, see:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Create a Remote Oracle Event Processing Server and Server
Runtime"

To deploy an application to an Oracle Event Processing server:
1. Create an Oracle Event Processing project (see Section , "Creating Oracle Event

Processing Projects").

2. Create a server (see Section , "How to Create a Local Oracle Event Processing
Server and Server Runtime").

3. Select Window > Show Views > Servers.

The Servers view opens as shown in Figure 6–21.

Managing Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-25

Figure 6–21 Adding a Project to an Oracle Event Processing Server

4. Right-click the server and select Add and Remove.

The Add and Remove dialog appears as shown in Figure 6–22.

Figure 6–22 Add and Remove Dialog

5. Configure the dialog as Table 6–12 shows.

Table 6–12 Add and Remove Dialog Attributes

Attribute Description

Available Select one or more projects from this list and click Add or Add
All to move them into the Configured list.

Managing Oracle Event Processing Servers

6-26 Developer's Guide for Oracle Event Processing

6. Click Finish.

Once an application is added, it will show as a child of the server in the Servers
view as shown in Figure 6–23.

Figure 6–23 Server View After Adding a Project

7. To deploy (publish) the application to the Oracle Event Processing server,
right-click the added application and select Force Publish.

a. If the Oracle Event Processing server is part of a standalone-server, domain the
application is deployed.

b. If the Oracle Event Processing server is part of a multi-server domain, the
Select Cluster Deployment Group Name dialog appears as Figure 6–24 shows.

Figure 6–24 Select Cluster Deployment Group Name Dialog

Select the cluster deployment group you want to deploy the application to and
click OK.

For more information on clustering, see "Introduction to Multi-Server
Domains" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing.

Configured Select one or more projects from this list and click Remove or
Remove All to move them into the Available list.

If server is started, publish
changes immediately.

Check this option to immediately publish projects that you
modify. Applicable only if the server is already running.

Table 6–12 (Cont.) Add and Remove Dialog Attributes

Attribute Description

Managing Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-27

Once an application is deployed (published), it will show as a child of the server in
the Servers view as shown in Figure 6–25.

Figure 6–25 Server View After Deploying (Publishing) a Project

How to Configure Connection and Control Settings for Oracle Event Processing Server
After you create a server, you can use the Server Overview editor to configure all the
important server connection and control settings that Oracle Event Processing IDE for
Eclipse uses to communicate with the Oracle Event Processing server.

For more information, see:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Configure Domain (Runtime) Settings for Oracle Event
Processing Server"

To configure connection and control settings for Oracle Event Processing
server:
1. Select Window > Show Views > Servers.

2. Double-click a server in the Servers view.

The Server Overview editor opens as shown in Figure 6–26.

Figure 6–26 Server Overview Editor

Managing Oracle Event Processing Servers

6-28 Developer's Guide for Oracle Event Processing

3. Configure the Server Overview editor as shown in Table 6–13.

Table 6–13 Server Overview Editor Attributes

Attribute Description

Server Name The name of this server. Only used within the Oracle Event
Processing IDE for Eclipse as a useful identifier.

For more information, see Section , "How to Create a Local
Oracle Event Processing Server and Server Runtime".

Host Name The name of the host on which this server is installed.

For more information, see Section , "How to Create a Local
Oracle Event Processing Server and Server Runtime".

Runtime Environment The current installed runtime selected for this server.

Select a new runtime from the pull down menu or click the Edit
link to modify the configuration of the selected runtime.

For more information, see Section , "How to Create a Local
Oracle Event Processing Server and Server Runtime".

Domain Directory1 The fully qualified path to the directory that contains the
domain for this server.

Click Browse to choose the directory.

Default: MIDDLEWARE_HOME\user_projects\domains\ocep_
domain\defaultserver.

Start Script1 The script that Oracle Event Processing IDE for Eclipse uses to
start the Oracle Event Processing server.

Click Browse to choose the start script.

Default on UNIX: MIDDLEWARE_HOME\user_
projects\domains\ocep_domain\defaultserver\stopwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_
projects\domains\ocep_
domain\defaultserver\stopwlevs.cmd

Stop Script1 The script that Oracle Event Processing IDE for Eclipse uses to
stop the Oracle Event Processing server.

Click Browse to choose the stop script.

Default on UNIX: MIDDLEWARE_HOME\user_
projects\domains\ocep_
domain\defaultserver\startwlevs.sh

Default on Windows: MIDDLEWARE_HOME\user_
projects\domains\ocep_
domain\defaultserver\startwlevs.cmd

Debug Port1 The Oracle Event Processing server port that Oracle Event
Processing IDE for Eclipse connects to when debugging the
Oracle Event Processing server.

Default: 8453.

Remote Server IP Address2 The IP address of the remote Oracle Event Processing server.

Default: IP address of localhost.

Managing Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-29

4. Select File > Save.

5. Close the Server Overview editor.

How to Configure Domain (Runtime) Settings for Oracle Event Processing Server
After you create a server, you can use the Oracle Event Processing IDE for Eclipse to
configure Oracle Event Processing server domain (runtime) settings in the Oracle
Event Processing server config.xml file.

Recall that a local Oracle Event Processing server is one in which both the server and
server runtime are on the same host and a remote Oracle Event Processing server is
one in which the server and server runtime are on different hosts: the server is on a

Remote Server Port2 The port you specified in the remote Oracle Event Processing
server DOMAIN_DIR/config/config.xml file that describes your
Oracle Event Processing domain, where DOMAIN_DIR refers to
your domain directory.

The port number is the value of the Port child element of the
Netio element:

<Netio>
<Name>NetIO</Name>
<Port>9002</Port>

</Netio>

Default: 9002

User Name2 The user name that the Oracle Event Processing IDE for Eclipse
uses to log into the remote server.

Default: wlevs

User Password2 The password that the Oracle Event Processing IDE for Eclipse
uses to log into the remote server.

Default: wlevs

Publishing By default, when you change an application, you must manually
publish the changes to the Oracle Event Processing server.

Select Never publish automatically to disable automatic
publishing.

Select Override default settings to override the default
automatic publishing interval. Enter a new publishing interval
(in seconds).

Default: Never publish automatically.

Timeouts Enter a positive, integer number of seconds in the Start (in
seconds) field to specify the time in which the Oracle Event
Processing server must start.

Default: 150 seconds.

Enter a positive, integer number of seconds in the Stop (in
seconds) field to specify the time in which the Oracle Event
Processing server must start.

Default: 60 seconds.
1 Click Local Server to modify. Applies to both a local server and the runtime of a remote server.
2 Click Remote Server to modify. Applies only to a remote server.

Table 6–13 (Cont.) Server Overview Editor Attributes

Attribute Description

Managing Oracle Event Processing Servers

6-30 Developer's Guide for Oracle Event Processing

remote host and the server runtime is on the local host (the host on which you are
executing the Oracle Event Processing IDE for Eclipse).

For both local and remote Oracle Event Processing servers, when you configure
domain (runtime) settings, you are modifying only the Oracle Event Processing server
config.xml on the local host.

You can also use the Oracle Event Processing IDE for Eclipse to configure all the
important server connection and control settings that Oracle Event Processing IDE for
Eclipse uses to communicate with the Oracle Event Processing server.

Any changes you make to the Oracle Event Processing server config.xml file for a
running Oracle Event Processing server are not read by the Oracle Event Processing
server until you restart it.

If you make changes to the Oracle Event Processing server config.xml file for a
running Oracle Event Processing server using the Oracle Event Processing Visualizer,
the changes apply to the running Oracle Event Processing server as soon as you save
them. The Oracle Event Processing Visualizer updates the Oracle Event Processing
server config.xml file and overwrites the current filesystem version of that file with
the current, in-memory version.

If you make changes to the Oracle Event Processing server config.xml file by
manually editing this file, and you then make further changes using the Oracle Event
Processing Visualizer, your manual edits will be overwritten by the Oracle Event
Processing Visualizer.

To avoid this, when you manually edit the Oracle Event Processing server config.xml
file, always stop and start the Oracle Event Processing server to read those changes
into the runtime configuration and then use the Oracle Event Processing Visualizer to
make further changes.

For more information, see:

■ Section , "How to Create a Local Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Create a Remote Oracle Event Processing Server and Server
Runtime"

■ Section , "How to Configure Connection and Control Settings for Oracle Event
Processing Server"

■ Section , "How to Start the Oracle Event Processing Visualizer from Oracle Event
Processing IDE for Eclipse"

■ "Understanding Oracle Event Processing Server Configuration" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing

To configure domain (runtime) settings for Oracle Event Processing server:
1. Select Window > Show Views > Servers.

2. Right-click a server in the Servers view and select Open Domain Configuration
File as shown in Figure 6–27.

Managing Oracle Event Processing Servers

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-31

Figure 6–27 Editing the Domain Configuration File

The Oracle Event Processing server domain configuration file config.xml opens as
shown in Figure 6–28.

Figure 6–28 Oracle Event Processing Domain Configuration File config.xml

3. Edit the domain configuration file as required.

4. Select File > Save.

5. Close the domain configuration file.

How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE
for Eclipse

After you create a server, you can start the Oracle Event Processing Visualizer from the
Oracle Event Processing IDE for Eclipse.

Managing Oracle Event Processing Servers

6-32 Developer's Guide for Oracle Event Processing

The Oracle Event Processing Visualizer is the administration console for a running
Oracle Event Processing server. For more information, see the Oracle Fusion
Middleware Visualizer User's Guide for Oracle Event Processing.

For more information, see Section , "How to Create a Local Oracle Event Processing
Server and Server Runtime".

To start the Oracle Event Processing Visualizer from Oracle Event Processing
IDE for Eclipse:
1. Start the server (see Section , "How to Start a Local Oracle Event Processing

Server").

Note that if you stop the server while Oracle Event Processing Visualizer is
running, you might see informational messages about the service proxy. These are
typically not errors.

2. Right-click the running server in the Servers view and select Open Oracle Event
Processing Visualizer as shown in Figure 6–29.

Figure 6–29 Opening the Oracle Event Processing Visualizer

The Oracle Event Processing Visualizer opens as shown in Figure 6–30.

Note: If you use the Oracle Event Processing Visualizer to make
changes to the Oracle Event Processing server config.xml (for
example, editing a data source), you may overwrite config.xml file
changes made manually. For more information, see Section , "How to
Configure Domain (Runtime) Settings for Oracle Event Processing
Server".

Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-33

Figure 6–30 Oracle Event Processing Visualizer

3. Use the Oracle Event Processing Visualizer as the Oracle Fusion Middleware
Visualizer User's Guide for Oracle Event Processing describes.

Debugging an Oracle Event Processing Application Running on an Oracle
Event Processing Server

Because Oracle Event Processing applications are Java applications, standard Java
debugging tools including those provided in Eclipse can be used with these
applications.

This section describes:

■ Section , "How to Debug an Oracle Event Processing Application Running on an
Oracle Event Processing Server"

You can also use the load generator and csvgen adapter to simulate data feeds for
testing. For more information, see Chapter 21, "Testing Applications With the Load
Generator and csvgen Adapter".

Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server

6-34 Developer's Guide for Oracle Event Processing

How to Debug an Oracle Event Processing Application Running on an Oracle Event
Processing Server

This section describes how to debug an Oracle Event Processing application running
on an Oracle Event Processing server.

To debug an Oracle Event Processing application running on an Oracle Event
Processing server:
1. Set a breakpoint in the Java code you wish to debug.

In this case, set the breakpoint by right-clicking in the gutter of the editor and
selecting Toggle Breakpoint as Figure 6–31 shows.

Figure 6–31 Setting a Breakpoint

2. Select Window > Show Views > Servers.

3. Start the server in debug mode by choosing one of the following as shown in
Figure 6–32:

a. Click the Start the Server in debug mode icon in the Servers view tool bar.

b. Right-click a server in the Servers view and select Debug.

Figure 6–32 Starting the Oracle Event Processing Server in Debug Mode

4. The server will start, and when it gets to your breakpoint the thread will stop.

If the Oracle Event Processing IDE for Eclipse does not automatically switch to the
Debug perspective, switch to that perspective by selecting Window > Open
Perspective > Other and selecting the Debug option from the list of perspective.

5. Debug your application using the Debug perspective.

Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server

Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers 6-35

6. When you are finished you can stop the server as usual (see Section , "How to Stop
a Local Oracle Event Processing Server").

Note: In some cases you may get a dialog box warning that it could
not install a breakpoint because of missing line number information.
This dialog comes from the core Eclipse debugger and is normally a
harmless issue with Oracle Event Processing Service Engine
applications. Simply check the Don't Tell Me Again checkbox and
continue debugging.

Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server

6-36 Developer's Guide for Oracle Event Processing

7

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-1

7Oracle Event Processing IDE for Eclipse and
the Event Processing Network

[8] This chapter describes how to use the Oracle Event Processing IDE for Eclipse to
develop event processing networks (EPNs), where application components are wired
together. The EPN Editor provides a graphical view of the EPN and offers
visualization and navigation features to help you build Oracle Event Processing
applications.

This chapter includes the following sections:

■ Opening the EPN Editor

■ EPN Editor Overview

■ Navigating the EPN Editor

■ Using the EPN Editor

Opening the EPN Editor
You can open the EPN Editor from either the project folder or a context or
configuration file of an Oracle Event Processing application.

How to Open the EPN Editor from a Project Folder
You can open the EPN Editor from the Eclipse project folder of an Oracle Event
Processing application. Alternatively, you can open the EPN Editor from a context or
configuration file (see Section , "How to Open the EPN Editor from a Context or
Configuration File").

To open the EPN Editor from a project:
1. Launch the Oracle Event Processing IDE for Eclipse.

2. Open your Oracle Event Processing project in the Project Explorer.

3. Right-click the project folder and select Open EPN Editor as Figure 7–1 shows.

Opening the EPN Editor

7-2 Developer's Guide for Oracle Event Processing

Figure 7–1 Opening the EPN Editor from a Project

The EPN Editor opens in a tab named EPN:PROJECT-NAME, where PROJECT-NAME is
the name of your Oracle Event Processing project, as Figure 7–2 shows.

Figure 7–2 EPN Editor

Opening the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-3

How to Open the EPN Editor from a Context or Configuration File
You can open the EPN Editor from a Spring context file or an Oracle Event Processing
server configuration file in an Oracle Event Processing application. Alternatively, you
can open the EPN Editor from a context or configuration file (see Section , "How to
Open the EPN Editor from a Project Folder")

To open the EPN Editor from a context or configuration file:
1. Launch the Oracle Event Processing IDE for Eclipse.

2. Open your Oracle Event Processing project in the Project Explorer.

3. Right-click a context or configuration file and select Open in EPN Editor as
Figure 7–3 shows.

Figure 7–3 Opening the EPN Editor from a Context or Configuration File

The EPN Editor opens in a tab named EPN:PROJECT-NAME, where PROJECT-NAME is
the name of your Oracle Event Processing project, as Figure 7–4 shows.

EPN Editor Overview

7-4 Developer's Guide for Oracle Event Processing

Figure 7–4 EPN Editor

EPN Editor Overview
This section describes the main controls you use to manage the EPN view and how the
EPN Editor displays Oracle Event Processing application information, including:

■ Section , "Flow Representation"

■ Section , "Filtering"

■ Section , "Zooming"

■ Section , "Layout"

■ Section , "Showing and Hiding Unconnected Beans"

■ Section , "Printing and Exporting to an Image"

■ Section , "Configuration Badging"

■ Section , "Link Specification Location Indicator"

■ Section , "Nested Stages"

■ Section , "Event Type Repository Editor"

Flow Representation
The primary display in the editor is of the flow inside the application as Figure 7–5
shows.

EPN Editor Overview

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-5

Figure 7–5 EPN Flow Representation

The EPN is composed of nodes connected by links and streams. Nodes are of various
types including adapter, processor, database table, bean, and cache. For more
information on the graphic notation the EPN Editor uses on nodes, links, and streams,
see:

■ Section , "Configuration Badging"

■ Section , "Link Specification Location Indicator"

Filtering
Although you often specify your EPN in a single assembly file, you may specify an
EPN across multiple assembly files.

By default the EPN Editor shows the EPN for a single Oracle Event Processing
application bundle with the information combined from all files.

To see the network for a single assembly file simply select that file from the Filter
pull-down menu as Figure 7–6 shows.

Figure 7–6 Filtering the EPN by Assembly File

When editing an EPN, the assembly file shown in the EPN Editor filter is the assembly
file to which new nodes will be added. If the EPN Editor filter is set to Full EPN then
the first assembly file in the filter list will be the file to which new nodes will be added.
Existing nodes will be edited in or deleted from the assembly file in which they are
defined.

If the assembly file the EPN Editor edits is open in an Eclipse source editor, then the
edits will be made to the editor for that open file. In this case, you will need to save
changes to the open editor before the changes appear in the file on disk.

EPN Editor Overview

7-6 Developer's Guide for Oracle Event Processing

If the assembly file the EPN Editor edits is not open in an Eclipse source editor, then
the edits are immediately applied to the file on disk.

For more information, see Section , "Creating EPN Assembly Files".

Zooming
You can change the zoom level of the EPN Editor by entering a percent value into the
zoom field or selecting a value from the zoom field pull-down menu as Figure 7–7
shows. To fit the EPN into the current EPN Editor window, select Fit to Window.

Figure 7–7 Zoom Level

 Layout
You can optimize and simplify the EPN layout by clicking Layout EPN as Figure 7–8
shows.

Figure 7–8 Optimize Layout

Showing and Hiding Unconnected Beans
You can also filter out <bean> elements with no references in the EPN. Clicking
Show/Hide Unconnected Beans will toggle the visibility of such beans as Figure 7–9
shows. For more information, see Section , "Laying Out Nodes".

EPN Editor Overview

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-7

Figure 7–9 Show/Hide Unconnected Beans

Printing and Exporting to an Image
You can export the EPN Editor view to an image file by clicking Export to Image as
Figure 7–10 shows. You can export the image as a .bmp, .gif, .jpg, or .png file.

Figure 7–10 Exporting the EPN as an Image File

You can print the EPN Editor view by clicking Print as Figure 7–11 shows.

Figure 7–11 Printing the EPN

Configuration Badging
Nodes that have configuration information in one of the configuration files in the
META-INF/wlevs directories are badged with an indicator on the bottom right as
Figure 7–12 shows.

EPN Editor Overview

7-8 Developer's Guide for Oracle Event Processing

Figure 7–12 Configuration Badging

Nodes with this badge will also have the Go To Configuration Source context menu
item.

Link Specification Location Indicator
When working with streams, you can specify a link in the assembly file as a:

■ source element in the downstream node.

■ listener element in the upstream node

A circle on the line indicates where a particular link is specified in the assembly file.

Figure 7–13 shows an example in which the link is specified as a source element on the
downstream node outStream so the circle is next to the outStream node. Figure 7–14
shows the corresponding assembly file.

Figure 7–13 Link Source

Figure 7–14 Link Source Assembly File

Figure 7–15 shows an example in which the link is specified as a listener element in the
upstream node algoTradingProcessor so the circle is next to the
algoTradingProcessor node. Figure 7–16 shows the corresponding assembly file.

Figure 7–15 Link Listener

EPN Editor Overview

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-9

Figure 7–16 Link Listener Assembly File

Nested Stages
When you define a child node within a parent node, the child node is said to be
nested. Only the parent node can specify the child node as a listener. You can drag
references from a nested element, but not to them. For more information, see Section ,
"Connecting Nodes".

Consider the EPN that Figure 7–17 shows. Example 7–1 shows the EPN assembly
source for this EPN. Note that the HelloWorldBean is nested within the
helloworldOutputChannel. As a result, it appears within a box in the EPN diagram.
Only the parent helloworldOutputChannel may specify the nested bean as a listener.

Figure 7–17 EPN With Nested Bean

Example 7–1 Assembly Source for EPN With Nested Bean

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >

<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

Alternatively, you can define this EPN so that all nodes are nested as Figure 7–18
shows. Example 7–2 shows the EPN assembly source for this EPN. Note that all the
nodes are nested and as a result, all nodes appear within a box in the EPN diagram.
The helloworldAdapter is the outermost parent node and does not appear within a
box in the EPN diagram.

EPN Editor Overview

7-10 Developer's Guide for Oracle Event Processing

Figure 7–18 EPN With all Nodes Nested

Example 7–2 Assembly Source for EPN With all Nodes Nested

<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
<wlevs:listener>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener>

<wlevs:processor id="helloworldProcessor">
<wlevs:listener>

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>

</wlevs:channel>
</wlevs:listener>

</wlevs:processor>
</wlevs:listener>

</wlevs:channel>
</wlevs:listener>

</wlevs:adapter>

Event Type Repository Editor
You can create and edit JavaBean and tuple event types using the event type repository
editor.

To open the event type repository editor, click on the Event Types tab in the EPN
editor as Figure 7–19 shows.

Figure 7–19 Event Type Repository Editor

For more information, see:

Navigating the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-11

■ Section , "How to Create an Oracle Event Processing Event Type as a JavaBean
Using the Event Type Repository Editor"

■ Section , "How to Create an Oracle Event Processing Event Type as a Tuple Using
the Event Type Repository Editor"

For information on the other types of events you can create, see Section , "Overview of
Oracle Event Processing Event Types".

Navigating the EPN Editor
Because the EPN Editor has a view of the whole project it is a natural place from which
to navigate to the various artifacts that make up an Oracle Event Processing
application. Oracle Event Processing IDE for Eclipse offers the following features to
help navigate the EPN Editor:

■ Section , "Moving the Canvas"

■ Section , "Shortcuts to Component Configuration and EPN Assembly Files"

■ Section , "Hyperlinking"

■ Section , "Context Menus"

■ Section , "Browsing Oracle Event Processing Types"

Moving the Canvas
To move the EPN canvas without using the horizontal and vertical scroll bars, you can
use any of the following options:

■ Position the cursor on the canvas, hold down the middle mouse button, and drag.

■ Hold down the space bar and click and drag the canvas.

■ In the Overview view, click in the highlight box and drag.

Shortcuts to Component Configuration and EPN Assembly Files
If a node has a configuration object associated with it, then double-clicking that node
will open the component configuration file where that node's behavior is defined.

Otherwise, double-clicking that node will open the EPN assembly file (the Spring
context file) where that node is defined.

A configuration badge will be shown on nodes with associated configuration objects
as shown in Figure 7–20.

Figure 7–20 Node with Configuration Badge

For more information, see:

■ Section , "Configuration Badging"

■ Section , "Hyperlinking"

Navigating the EPN Editor

7-12 Developer's Guide for Oracle Event Processing

Hyperlinking
When editing a component configuration file, EPN assembly file, or Oracle CQL
statement, hold down the Ctrl key to turn on hyperlinking. Using hyperlinking, you
can easily move between assembly and configuration files and follow reference IDs to
jump to bean implementation classes.

This section describes:

■ Section , "Hyperlinking in Component Configuration and EPN Assembly Files"

■ Section , "Hyperlinking in Oracle CQL Statements"

Hyperlinking in Component Configuration and EPN Assembly Files
Figure 7–21 shows a component configuration file with the cursor over the value of a
processor element name child element while holding down the Ctrl key. The name
value has an underline to indicate it is a hyperlink. Click this link to jump to the
corresponding element in the EPN assembly file as Figure 7–22 shows.

Figure 7–21 Component Configuration File: Hyperlinking to EPN Assembly File

Similarly, hovering over the wlevs:processor element id child element value
filterFanoutProcessor while holding down the Ctrl key allows you to hyperlink
back to the component configuration file.

Navigating the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-13

Figure 7–22 EPN Assembly File: Hyperlinking to Component Configuration File

Hyperlinking in Oracle CQL Statements
Figure 7–23 shows a component configuration file with the cursor over an event
attribute while holding down the Ctrl key. The fromRate attribute has an underline to
indicate it is a hyperlink. Click this link to jump to the corresponding event definition
in the EPN assembly file as Figure 7–24 shows.

Figure 7–23 Oracle CQL Statement: Event Schema

Note: Hyperlinking in Oracle SQL statements is designed for simple
use cases and may not work as expected in more complex
implementations.

Navigating the EPN Editor

7-14 Developer's Guide for Oracle Event Processing

Figure 7–24 Corresponding Event Definition in EPN Assembly File

Similarly, you can Ctrl-click the FxQuoteStream channel in the Oracle CQL statement
that Figure 7–23 shows to jump to the channel’s definition. This is applicable wherever
references to external objects are present in a Oracle CQL statement.

Context Menus
Each node on the EPN Editor has a group of context menu items that provide
convenient access to various node-specific functions. Right-click the node to display its
context menu.

Depending on the node type, you can use the EPN Editor context menu to select from
the following options:

■ Go to Configuration Source: opens the corresponding component configuration
file and positions the cursor in the appropriate element. You can use hyperlinking
to quickly move from this file to the corresponding EPN assembly file. For more
information, see Section , "Hyperlinking".

■ Go to Assembly Source: opens the corresponding EPN assembly file and
positions the cursor in the appropriate element. You can use hyperlinking to
quickly move from this file to the corresponding component configuration file. For
more information, see Section , "Hyperlinking"

■ Go to Java Source: opens the corresponding Java source file for this component.

■ Delete: deletes the component from both the EPN assembly file and component
configuration file (if applicable).

■ Rename: allows you to change the name of the component. The name is updated
in both the EPN assembly file and component configuration file (if applicable).

■ Help: displays context sensitive help for the component.

Note that these navigation options will become disabled when a corresponding source
artifact cannot be found. For example, if an adapter does not have a corresponding
entry in a configuration XML file, its Go to Configuration Source menu item will be
greyed out.

Navigating the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-15

Browsing Oracle Event Processing Types
A typical Oracle Event Processing project contains many instances of Oracle Event
Processing types such as adapters, channels, processors, event beans. In a large,
complex Oracle Event Processing project, it can be a challenge to locate a particular
instance. The Oracle Event Processing IDE for Eclipse provides an Oracle Event
Processing type browser that you can use to quickly locate instances of any Oracle
Event Processing type.

How to Browse Oracle Event Processing Types
You can open the Oracle Event Processing type browser using the keyboard short cut
Ctrl-Alt-T.

To browse Oracle Event Processing types:
1. Open an Oracle Event Processing project.

In the following procedure, consider the Oracle Event Processing project that
Figure 7–25 shows. This is based on the Oracle Event Processing foreign exchange
example. For more information on this example, see Section , "Foreign Exchange
(FX) Example".

Figure 7–25 Example Oracle Event Processing EPN

2. Type the keyboard short cut Ctrl-Alt-T.

The Oracle Event Processing type browser appears as Figure 7–26 shows.

Navigating the EPN Editor

7-16 Developer's Guide for Oracle Event Processing

Figure 7–26 Oracle Event Processing Type Browser

3. Configure the Oracle Event Processing Type dialog as shown in Table 7–1.

By default, the status line below the Matching items list shows the fully qualified
path to the selected item in the Select an item to open list. To toggle status line
display, click on the pull-down menu in the right hand corner and select Show
Status Line.

4. Select a type in the Matching Items list and click OK.

The type is opened in the source file in which it is defined. For example, selecting
FilterAsia from the Matching Items list and clicking OK opens the
com.oracle.cep.sample.fx.content.xml EPN assembly file in which this
processor is defined as Figure 7–27 shows.

Table 7–1 Oracle Event Processing Type Dialog

Attribute Description

Select an item to open Specify a filter to match the names of the items you wan to find.

Use the ? wildcard for any single character and the * wildcard
for any string of two or more characters.

Matching items The list of Oracle Event Processing type instances whose name
matches the filter you specified.

Navigating the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-17

Figure 7–27 Opening the FilterAsia EPN Assembly File

To navigate to the corresponding component configuration file as Figure 7–28
shows, Ctrl-click the FilterAsia id attribute value.

Figure 7–28 Opening the FilterAsia Component Configuration File

For more information on hyperlinking, see Section , "Hyperlinking".

Using the EPN Editor

7-18 Developer's Guide for Oracle Event Processing

Using the EPN Editor
The EPN Editor allows you to create and edit an application's EPN using actions on
the editor surface. Most actions in the EPN Editor result in edits to an assembly file in
that application. You can use a single EPN assembly file or multiple EPN assembly
files (for more information, see Section , "Filtering").

The following sections describe EPN Editor editing tasks, including:

■ Section , "Creating Nodes"

■ Section , "Connecting Nodes"

■ Section , "Laying Out Nodes"

■ Section , "Renaming Nodes"

■ Section , "Deleting Nodes"

For more information, see:

■ Section , "Oracle Event Processing Project Overview"

■ Section , "EPN Editor Overview"

■ Section , "Opening the EPN Editor"

■ Section , "Navigating the EPN Editor"

Creating Nodes
When adding new nodes to an EPN using the EPN editor, a new node will appear at
the location of the mouse click that was used to show the EPN Editor context menu.
You can create any of the nodes that Table 7–2 lists.

Table 7–2 EPN Editor Icons

Node Description

Adapter: a node that interfaces an event data source with the EPN or interfaces
the EPN with an event data sink.

For more information, see:

■ Section , "How to Create an Adapter Node"

■ Chapter 11, "Integrating the Java Message Service"

■ Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

■ Chapter 15, "Integrating an External Component Using a Custom Adapter"

■ Chapter 21, "Testing Applications With the Load Generator and csvgen
Adapter"

Channel: a node that conveys events between an event data source and an event
data sink.

For more information, see:

■ Section , "How to Create a Basic Node"

■ Chapter 10, "Connecting EPN Stages Using Channels"

Processor: a node that executes Oracle CQL or EPL rules on the event data
offered to it by one or more channels.

For more information, see:

■ Section , "How to Create a Processor Node"

■ Chapter 17, "Querying an Event Stream with Oracle CQL"

■ Chapter 19, "Querying an Event Stream with Oracle EPL"

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-19

The user may not reposition the nodes on the EPN Editor. To refresh the layout of the
nodes on the EPN Editor, click the Layout EPN button on the EPN Editor toolbar. For
more information, see Section , "Laying Out Nodes".

When a child node is nested within a parent node, its icon appears within a box. For
more information, see Section , "Nested Stages".

How to Create a Basic Node
Basic nodes include beans, caches, channels, event beans, and tables.

For information on how to create other nodes, see Section , "Creating Nodes".

To create a basic node:
1. Open the EPN Editor (see Section , "Opening the EPN Editor").

2. Right-click on an empty portion of the EPN Editor surface and select New from
the context menu as Figure 7–29 shows.

Event Bean: a node similar to a standard Spring bean except that it can be
managed by the Oracle Event Processing management framework and can
actively use the capabilities of the Oracle Event Processing server container.

For more information, see:

■ Section , "How to Create a Basic Node"

■ Chapter 16, "Handling Events with Java"

Spring Bean: a Plain Old Java Object (POJO) node that consumes events. A
Spring bean is managed by the Spring framework.

For more information, see:

■ Section , "How to Create a Basic Node"

■ Chapter 16, "Handling Events with Java"

Cache: a node that provides a temporary storage area for events, created
exclusively to improve the overall performance of your Oracle Event Processing
application.

For more information, see:

■ Section , "How to Create a Basic Node"

■ Chapter 13, "Integrating a Cache"

Table: a node that connects a relational database table to the EPN as an event
data source.

For more information, see:

■ Section , "How to Create a Basic Node"

■ Section , "Configuring an Oracle CQL Processor Table Source"

Table 7–2 (Cont.) EPN Editor Icons

Node Description

Using the EPN Editor

7-20 Developer's Guide for Oracle Event Processing

Figure 7–29 Creating a Basic Node

3. Select the type of node you want to create.

The EPN Editor edits the source file indicated in the EPN Editor filter and the EPN
Editor displays the new EPN node. For most nodes, a default ID is chosen and the
new node is immediately opened for rename as Figure 7–30 shows.

Figure 7–30 New Basic Node

To rename the node, see Section , "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section , "Laying
Out Nodes".

4. Optionally, configure additional node options.

See:

■ Chapter 10, "Connecting EPN Stages Using Channels"

■ Section , "Configuring an Oracle CQL Processor Table Source"

■ Chapter 13, "Integrating a Cache"

■ Chapter 15, "Integrating an External Component Using a Custom Adapter"

■ Chapter 16, "Handling Events with Java"

■ Chapter 21, "Testing Applications With the Load Generator and csvgen
Adapter"

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-21

How to Create an Adapter Node
This section describes how to create an adapter using the EPN Editor, including:

■ JMS adapters (in-bound or out-bound)

■ HTTP publish-subscribe server adapters (publishing or subscribing)

For information on how to create other nodes, see Section , "Creating Nodes".

To create an adapter node:
1. Open the EPN Editor (see Section , "Opening the EPN Editor").

2. Right-click on an empty portion of the EPN Editor surface and select New from
the context menu as Figure 7–31 shows.

Figure 7–31 Creating an Adapter Node

3. Select node type Adapter.

The New Adapter wizard appears as shown in Figure 7–32.

Figure 7–32 New Adapter Wizard

Using the EPN Editor

7-22 Developer's Guide for Oracle Event Processing

4. Configure the New Adapter Wizard - Page 1 as shown in Table 7–3.

5. Proceed depending on how you configured the adapter implementation:

a. If you selected Class, Proceed to step 8.

b. If you selected Provider, proceed to step 6.

6. Click Next.

The provider-specific New Adapter Wizard page appears.

7. Configure the provider-specific New Adapter Wizard page as the following
figures show:

■ Figure 7–33, "New Adapter Wizard - jms-inbound"

See Section , "JMS Inbound Adapter Component Configuration".

■ Figure 7–34, "New Adapter Wizard - jms-outbound"

See Section , "JMS Outbound Adapter Component Configuration".

■ Figure 7–35, "New Adapter Wizard - httppub"

See Section , "HTTP Pub-Sub Adapter for Publishing Component
Configuration".

■ Figure 7–36, "New Adapter Wizard - httpsub"

Table 7–3 New Adapter Wizard - Page 1

Attribute Description

Adapter ID Specifies the ID of the adapter EPN element and the name
of the associated adapter configuration element.

Provider Select the adapter provider type from the pull-down menu
for an adapter already defined in the Oracle Event
Processing component configuration schema.

Select one of:

■ jms-inbound: JMS in-bound adapter.

■ jms-outbound: JMS out-bound adapter.

■ httppub: HTTP publish-subscribe adapter for
publishing.

■ httpsub: HTTP publish-subscribe adapter for
subscribing.

Class Specify the fully qualified Java class name of a custom
adapter.

NOTE: If you are using a custom adapter factory, you must
add the wlevs:factory element manually. For more
information, see Chapter 15, "Integrating an External
Component Using a Custom Adapter".

Create a new file Creates the adapter component configuration in a new file.

The new file is created in the application's META-INF/wlevs
directory with the same name as the adapter ID.

Use an existing configuration file Creates the adapter component configuration in an existing
configuration file.

The new adapter configuration element is appended to the
configurations in the selected file.

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-23

See Section , "HTTP Pub-Sub Adapter for Subscribing Component
Configuration".

Figure 7–33 New Adapter Wizard - jms-inbound

Using the EPN Editor

7-24 Developer's Guide for Oracle Event Processing

Figure 7–34 New Adapter Wizard - jms-outbound

Figure 7–35 New Adapter Wizard - httppub

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-25

Figure 7–36 New Adapter Wizard - httpsub

8. Click Finish.

9. Use the new adapter node on the EPN.

The EPN Editor creates the adapter configuration in the file you specified in the
New Adapter wizard, edits the source file indicated in the EPN Editor filter, and
displays the new EPN node as Figure 7–37 shows.

Figure 7–37 New Adapter Node

To rename the node, see Section , "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section , "Laying
Out Nodes".

Using the EPN Editor

7-26 Developer's Guide for Oracle Event Processing

10. Optionally, configure additional node options.

For more information, see:

■ Chapter 11, "Integrating the Java Message Service"

■ Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

How to Create a Processor Node
This section describes how to create a processor node using the EPN Editor. For
information on creating other node types, see Section , "How to Create a Basic Node".

When deploying an Oracle Event Processing application with a wlevs:processor
node, other nodes in an EPN may reference that processor only if a processor
configuration exists for that processor. Processor configurations are defined in Oracle
Event Processing application configuration files. See Section , "Overview of
Component Configuration Files" for more information about Oracle Event Processing
configuration files.

To create a processor node:
1. Open the EPN Editor (see Section , "Opening the EPN Editor").

2. Right-click on an empty portion of the EPN Editor surface and select New from
the context menu as Figure 7–38 shows.

Figure 7–38 Creating a Processor Node

3. Select node type Processor.

The New Processor dialog appears as shown in Figure 7–39.

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-27

Figure 7–39 New Processor Dialog

4. Configure the New Processor dialog as shown in Table 7–4.

5. Click OK.

The EPN Editor creates the processor configuration in the file you specified in the
New Processor dialog, edits the source file indicated in the EPN Editor filter, and
displays the new EPN node as Figure 7–40 shows.

Figure 7–40 New Processor Node

To rename the node, see Section , "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section , "Laying
Out Nodes".

Table 7–4 New Processor Dialog

Attribute Description

Processor ID Specifies the ID of the processor EPN element and the name
of the associated processor configuration element

Create a new file Creates the processor configuration in a new file.

The new file is created in the application's META-INF/wlevs
directory with the same name as the processor ID.

Use an existing configuration file Creates the processor configuration in an existing
configuration file.

The new processor configuration element is appended to
the configurations in the selected file.

Using the EPN Editor

7-28 Developer's Guide for Oracle Event Processing

6. Optionally, configure additional processor options.

See:

■ Chapter 17, "Querying an Event Stream with Oracle CQL"

■ Chapter 19, "Querying an Event Stream with Oracle EPL"

Connecting Nodes
The nodes in the EPN represent the flow of events through an Event Processing
Network of an Oracle Event Processing application. When a node may forward events
to another node in the EPN, the EPN Editor allows you to connect that node visually
by dragging a line from the source node to the destination node.

How to Connect Nodes
This section describes how to connect nodes in the EPN Editor.

To connect nodes:
1. Open the EPN Editor (see Section , "Opening the EPN Editor").

2. Select the source of events and drag to the target of the event flow.

■ If a connection is allowed, a plug icon is shown at the target end as
Figure 7–41 shows.

Figure 7–41 Connecting Nodes: Connection Allowed

■ If the connection is not allowed, a forbidden icon is shown at the target end as
Figure 7–42 shows.

Note: In Oracle Event Processing, you must use a channel to connect
a push event source to an Oracle CQL processor and to connect an
Oracle CQL processor to an event sink. For more information, see
Section , "Channels Representing Streams and Relations".

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-29

Figure 7–42 Connecting Nodes: Connection Forbidden

Not all nodes may be a target of event flow. For example, connection is
forbidden if:

– A node does not define a valid identifier.

– A node is nested (for more information, see Section , "Nested Stages").

3. Release the mouse button to complete the connection.

When the connection is made, the EPN Editor updates the EPN assembly file. For
example:

■ When you connect an adapter to a channel or a channel to a processor or event
bean, the EPN Editor adds a wlevs:listener element to the source node with
a reference to the target node by ID.

■ When you connect a table to a processor, the EPN Editor adds a
wlevs:table-source element to the target processor node that references the
source table.

For example, suppose you connect the adapter to the channel, and the channel to
the processor shown in Figure 7–43.

Figure 7–43 Valid Connections

Figure 7–44 shows the EPN assembly file before connection.

Figure 7–44 EPN Assembly File: Before Connection

Figure 7–45 shows the EPN assembly file after connection.

Using the EPN Editor

7-30 Developer's Guide for Oracle Event Processing

Figure 7–45 EPN Assembly File: After Connection

Laying Out Nodes
Certain EPN Editor actions will use the location of the action as the location of the
rendered result. For example, when adding new nodes to an EPN using the EPN
editor, a new node will appear at the location of the mouse click that was used to show
the EPN Editor context menu. The user may not reposition the nodes on the EPN
Editor. To refresh the layout of the nodes on the EPN Editor, click the Layout EPN
button on the EPN Editor toolbar as Figure 7–46 shows.

Figure 7–46 Laying Out Nodes

For more information, see Section , "Layout".

Renaming Nodes
Most node types support a rename operation that will change all references to the
node across both assembly and configuration XML files. You can select Rename from
the node’s context menu as Figure 7–47 shows.

Figure 7–47 Renaming Nodes

Deleting Nodes
You may delete most nodes and connections visible on the EPN Editor using the
node’s context menu or the Delete key:

Using the EPN Editor

Oracle Event Processing IDE for Eclipse and the Event Processing Network 7-31

■ Using the keyboard, select the object you want to delete and then click the Delete
key.

■ Using the context menu, right-click on the object to show the context menu, then
select Delete as Figure 7–48 shows.

Figure 7–48 Deleting Nodes

When deleting a node, the incoming and outgoing connections are also deleted. For
example, Figure 7–49 shows the EPN and Figure 7–51 shows the assembly file before
deleting the channel node named stream.

Figure 7–49 EPN Before Deleting a Channel Node

Figure 7–50 Assembly File Before Deleting a Channel Node

Figure 7–51 shows the EPN and Figure 7–52 shows the assembly file after deleting this
channel node.

Using the EPN Editor

7-32 Developer's Guide for Oracle Event Processing

Figure 7–51 EPN After Deleting a Channel Node

Figure 7–52 Assembly File After Deleting a Channel Node

Note: If a bean or other anonymous element is deleted, then the
object containing that object is deleted too. For example, given a bean
within a wlevs:listener element, then deleting the bean will delete
the listener element too.

Part III
Part III Developing Oracle Event Processing

Applications

Part III contains the following chapters:

■ Chapter 8, "Walkthrough: Assembling a Simple Application"

■ Chapter 9, "Defining and Using Event Types"

■ Chapter 10, "Connecting EPN Stages Using Channels"

■ Chapter 11, "Integrating the Java Message Service"

■ Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

■ Chapter 13, "Integrating a Cache"

■ Chapter 14, "Integrating Web Services"

■ Chapter 15, "Integrating an External Component Using a Custom Adapter"

■ Chapter 16, "Handling Events with Java"

■ Chapter 17, "Querying an Event Stream with Oracle CQL"

■ Chapter 18, "Configuring Applications With Data Cartridges"

■ Chapter 19, "Querying an Event Stream with Oracle EPL"

■ Chapter 20, "Configuring Event Record and Playback"

■ Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

■ Chapter 22, "Testing Applications With the Event Inspector"

8

Walkthrough: Assembling a Simple Application 8-1

8Walkthrough: Assembling a Simple Application

[9] This chapter introduces how to build Oracle Event Processing applications through a
walkthrough in which you build a simple application. Along the way, it provides an
overview of key concepts

This chapter includes the following sections:

■ Introduction to the Simple Application Walkthrough

■ Create the Workspace and Project

■ Create an Event Type to Carry Event Data

■ Add an Input Adapter to Receive Event Data

■ Add a Channel to Convey Events

■ Create a Listener to Receive and Report Events

■ Set Up the Load Generator and Test

■ Add an Oracle CQL Processor to Filter Events

■ Summary: Simple Application Walkthrough

Introduction to the Simple Application Walkthrough
This walkthrough introduces the basics of building Oracle Event Processing
applications using the Eclipse IDE. It is intended as a survey of key Oracle Event
Processing concepts, a starting place from which you can investigate more about each.

The application you build in this walkthrough models a simple stock trade alert
system. The application receives example data about stock trades, examines the data
for certain characteristics, then prints some of the data to the console. The following
illustration shows the application’s finished EPN diagram:

This introduction includes the following sections:

■ Section , "Key Concepts in this Walkthrough"

Create the Workspace and Project

8-2 Developer's Guide for Oracle Event Processing

■ Section , "Before You Get Started"

This walkthrough starts with Section , "Create the Workspace and Project".

Key Concepts in this Walkthrough
This walkthrough introduces the following concepts that are typically part of Oracle
Event Processing applications you build:

■ IDE features designed to make building Oracle Event Processing applications
easier, including a project type, a graphical editor for designing event processing
networks, and validation support for project-specific configuration files

■ Building an application as an event processing network (EPN), the core design
construct for modeling the behavior of an application that receives streaming data
and operates on that data as it flows through the application.

■ Designing event types that model events, normalizing event data for use with
code inside the application.

■ Using adapters to manage interactions with external components, including
sources of streaming data.

■ Implementing a Java class that can receive or send events within an event
processing network.

■ Using Oracle Continuous Query Language (Oracle CQL) to filter events based on
specific properties within them.

Before You Get Started
You should have installed Oracle Event Processing and the Eclipse IDE. In addition,
you should have updated the Eclipse IDE with the plugin included with Oracle Event
Processing.

Although it introduces features specific to Oracle Event Processing, this walkthrough
assumes that you are somewhat familiar with basic Java programming.

For more information, see the following topics:

■ "Installation Overview" in the Oracle Fusion Middleware Getting Started Guide for
Oracle Event Processing

■ Section , "Overview of Oracle Event Processing IDE for Eclipse"

Create the Workspace and Project
In this first step, you'll use the IDE to create the workspace and project in which to
develop your application. To make it easier to develop Oracle Event Processing
applications, the IDE provides the Oracle Event Processing application project type.
This project type includes the artifacts and dependencies that typical Oracle Event
Processing applications need, making it easier to get into writing application-specific
code.

You should already have configured your IDE preferences to know the location of the
JRockit JRE, which is the best practice choice on which to run the Oracle Event
Processing server.

Create the Walkthrough Workspace and TradeReport Project
1. Start the Eclipse IDE.

Create the Workspace and Project

Walkthrough: Assembling a Simple Application 8-3

2. When prompted to select a workspace, create a workspace called walkthroughs.

3. From the File menu, choose New > Project to begin creating a new project.

4. In the New Project dialog, expand Oracle Event Processing, click Oracle Event
Processing Application Project, then click Next.

5. In the New Oracle Event Processing Application Project dialog, in the Project
name box, enter TradeReport.

Leave the Use default location check box selected to have the new project created
in the location of the workspace you created.

6. Under Target Runtime, if no runtime is displayed in the dropdown, do the
following:

1. Click the New button.

2. In the New Server Runtime Environment dialog, expand Oracle, then select
Oracle Event Processing v11.1 and click Next.

3. Click Next.

4. Under New Oracle Event Processing v11.1 Runtime, next to the Oracle
Middleware Home Directory box, click Browse.

5. In the Browse for Folder dialog, locate the Middleware home directory, then
click OK.

By default, the Middleware home directory will be located at ORACLE_
HOME/Middleware.

6. In the JRE dropdown, select a JRockit JRE.

The Oracle Event Processing server is optimized for use with the JRockit JRE.
If a JRockit JRE isn't available among those listed, use the following steps to
locate the JRE that is included with Oracle Event Processing.

Click the Installed JRE preferences link.
In the Preferences dialog, next to the Installed JREs list, click the Add button.
In the Add JRE dialog, under Installed JRE Types, select Standard VM, then click Next.

Create the Workspace and Project

8-4 Developer's Guide for Oracle Event Processing

Next to the JRE home box, click the Directory button to browse for the location of the JRockit
JRE.
In the Browse For Folder dialog, expand the Middleware home directory, then the jrockit_160_
29 directory, then click the JRE directory and click OK.
After the Add JRE dialog displays the JRE home directory, name, and system libraries, click the
dialog's Finish button.

In the Preference dialog, select the check box for the JRE you just added, then click OK.
In the New Server Runtime Environment dialog, from the JRE dropdown, select the JRE you
just added.

7. Click Finish.

7. In the New Oracle Event Processing Application Project dialog, with the Oracle
Event Processing v11.1 target runtime selected, click Next.

8. Under Oracle Event Processing Application Content, confirm the properties for
the project you're created.

Create the Workspace and Project

Walkthrough: Assembling a Simple Application 8-5

9. Click Finish.

After you've created your project, the IDE will display the Project Explorer, with a
hierarchical list of the artifacts in your project, along with an empty editor for the
event processing network you're about to build.

An event processing network (EPN) is a central design concept in an Oracle Event
Processing application. An EPN represents the components, known as stages, that
make up the application, as well as the path taken by events from stage to stage. As
you develop your application, the EPN editor will display the stages you add and the
connections between them. Conceptually, event data enters your application from the
left, moving toward the right from stage to stage.

The design that the EPN editor shows is actually a graphical representation of the
EPN's underlying configuration. When you add a stage or connection through the
EPN editor, the IDE writes configuration XML to an underlying assembly file (just as
editing the XML file directly will result in an updated graphical design in the EPN
editor). An EPN assembly file includes the default configuration for each of an EPN's
stages. This is a default configuration that cannot be changed on the server at runtime
without redeploying the application. For configuration that can be edited at runtime,
you can use another kind of configuration file, as described later.

Take a look at the Project Explorer. You should have a project hierarchy that's
something like what's shown in the following illustration.

Note: The EPN assembly file's XML schema is an extension of the
Spring framework configuration file. For more on Spring, see the
Spring web site.

Create the Workspace and Project

8-6 Developer's Guide for Oracle Event Processing

If you're experienced with IDEs, much of this should be familiar. In addition to the
usual places for Java source code, the JRE system library, and build output, you'll also
find the following:

■ JAR files that make up the Oracle Event Processing classpath. These provide the
functionality needed for the Oracle Event Processing server, including for stages of
an event processing network, Spring-configured components, and logging.

■ A spring directory for configuration files that conform to the Spring framework
(for more on Spring, see the Spring web site). The file you start off with is the EPN
assembly XML file that describes the contents and structure of the event
processing network you're building. As you build your EPN, adding and
connecting stages, the IDE captures your work in this file. You can also edit the file
manually. At this point, the file merely declares namespaces for the XML that will
be added to it.

■ A wlevs directory for files that describe components whose configuration should
be editable at runtime. Most components have a default configuration that you can
override within a component configuration file in the wlevs directory. The only
component whose configuration you must put in one of these files is a processor. A
processor's Oracle CQL code is editable at runtime by using the Oracle Event
Processing Visualizer.

If you're configuring multiple components, you can use one or multiple
component configuration files. For example, in the case of a team of developers,
where each is responsible for a different component, you might want to have a
configuration file per component to avoid source control conflicts.

Now that you've got a project created, in Section , "Create an Event Type to Carry
Event Data", you'll start assembling an event processing network. You'll begin by

Create an Event Type to Carry Event Data

Walkthrough: Assembling a Simple Application 8-7

creating an event type that will represent incoming event data to the application's
logic.

Create an Event Type to Carry Event Data
Oracle Event Processing applications are about receiving, processing, and sending
events. Events start as event data that can be in almost any structured form. The event
data arrives at the application in its raw form, then is bound to an event type that you
define. Using your own event type makes handling the data predictable for the rest of
your code in the application, including Oracle CQL queries, Java code, and so on. (The
conversion is done by an adapter. More about those later.)

So an early task in defining any event processing network is clarifying the structure of
the data coming from the source, then defining the form to which you'll convert that
data for use inside the EPN. In this section, you'll work from the structure of example
stock trade data to define an event type to which the data will be bound.

In the case of the application you're building here, the sample incoming event data is
arriving as rows of comma-separated values. Each row contains data about a
particular thing that happened -- here, a stock trade. The structure of the values is
consistent from row to row. Here are a few example rows:

IBM,15.5,3.333333333,3000,15
SUN,10.8,-1.818181818,5000,11
ORCL,14.1,0.714285714,6000,14
GOOG,30,-6.25,4000,32
YHOO,7.8,-2.5,1000,8

Though they aren't labeled in the CSV file, the values could be labeled as follows:

stock symbol, price, percentage change, volume of shares purchased, last
price

That's the structure of the incoming trade event data. In order to handle that data in
your application -- query it, filter it, perform calculations, and so on -- you will need to
assign that data to a new structure that supports doing those things. In particular, the
new structure should have the ability to specify properties of particular types. Having
types matched to the anticipated values makes it easier to handle the values in code.

Looking at the example data and labels, you can imagine each of the values for each
row bound to properties of the following Java types:

String, Double, Double, Integer, Double

Oracle Event Processing supports several forms on which you can base your new
event type. These include JavaBean classes, tuples, and java.util.Map instances. A
JavaBean class is the best practice type for new event types, so that's what you will use
here for trade events.

If you haven't worked with them before, you should know that JavaBeans are Java
classes that follow specific standard rules designed to make them predictable. In
general, the idea is for the class to provide variables to hold data inside it (such as the
trade event stock symbol) and methods through which the data can be retrieved or set
by code outside the class. Naming the methods with predictable names, such as
"setSymbol" and "getSymbol", gives code outside the class a predictable way to use the
data inside the class. For example, when Oracle Event Processing needs to bind
incoming event data to your event type, it will create a new instance of the event type
JavaBean and use the bean's "set" methods to set the data in the proper places inside
the class. Code later in the application, such as Java code or Oracle CQL code you will
write, will be able to call the bean's "get" methods to get the data out again.

Create an Event Type to Carry Event Data

8-8 Developer's Guide for Oracle Event Processing

In the following sections, you will create the JavaBean as code behind your event type,
then configure the event type to use the JavaBean.

Create the TradeEvent JavaBean
In this section, you will create a TradeEvent JavaBean class that will be used as an
event type for incoming trade event data.

1. In the IDE, right-click the src directory, then click New > Class.

2. In the New Java Class dialog, in the package box, enter
com.oracle.oep.example.tradereport

3. In the Name box, enter TradeEvent.

4. Click Finish.

The TradeEvent.java source code window will display with the declaration for the
TradeEvent class.

5. In the TradeEvent class, just beneath the TradeEvent class declaration, add private
variables for each of the properties you'll need as shown in the following example.

public class TradeEvent {
 // One variable for each field in the event data.

private String symbol;
 private Double price;
 private Double lastPrice;
 private Double percChange;
 private Integer volume;
}

6. Select the code for all of the variables, click the Source menu, then click Generate
Getters and Setters.

Create an Event Type to Carry Event Data

Walkthrough: Assembling a Simple Application 8-9

7. In the Generate Getters and Setters dialog, select the check box for each variable
you selected (in other words, all of them).

8. In the Insertion Point dropdown, select Last member.

9. Click OK.

Create an Event Type to Carry Event Data

8-10 Developer's Guide for Oracle Event Processing

In the TradeEvent source code window, notice that you have created pairs of
methods that simply get or set the values of the variables you added.

10. Save the TradeEvent.java file and close the code window.

And that's all there is to creating a JavaBean (at least, in this case). The next step is to
tell your application that the JavaBean should be used as an event type.

Configure the TradeEvent Event Type
In this section, you'll tell the TradeReport application that the TradeEvent JavaBean
should be used as an event type.

1. In the IDE, confirm that the empty TradeReport EPN editor is open. Its tab at the
top of the window should read EPN: TradeReport.

2. At the bottom of the designer window, click the Event Types tab.

3. Under Event Type Definitions, select TradeReport.context.xml. This is the EPN
assembly file underlying your EPN design.

This is also the file you noticed in the META-INF/spring directory of the project
explorer. You are selecting it here to ensure that the event type you are about to
configure gets defined in that file.

4. Under Event Type Definitions, click the plus sign to add a new event definition.

5. Click the newEvent entry that was created.

6. Under Event Type Details, in the Type name box, change the event type's name to
TradeEvent. (It doesn't have to be the same as the JavaBean class, but it makes
things simpler to use the same name.)

7. Select the Properties defined in Java bean option. The other option is for defining
events as tuples.

8. In the Class box, enter the name of the JavaBean class you created:
com.oracle.oep.example.tradereport.TradeEvent.

9. Save the file to have the event type name updated in the event type definitions.

If you're curious about what was added to your EPN assembly file, open the file. It's in
the Project Explorer under TradeReport > META-INF > spring >

Add an Input Adapter to Receive Event Data

Walkthrough: Assembling a Simple Application 8-11

TradeReport.context.xml. The part you added looks something like the following (you
might need to click the Source tab at the bottom of the editor window):

<wlevs:event-type-repository>
 <wlevs:event-type type-name="TradeEvent">
 <wlevs:class>com.oracle.oep.example.tradereport.TradeEvent</wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

As the code suggests, Oracle Event Processing manages event types in an event type
repository. The TradeEvent event type you defined is mapped to the TradeEvent
JavaBean class you created.

Now that you have an event type defined and configured, you need to tell the
application how to watch for incoming event data. You also need to specify that the
data should be assigned to the TradeEvent type you created. You do those things with
an adapter, which you will add in Section , "Add an Input Adapter to Receive Event
Data".

Add an Input Adapter to Receive Event Data
Before you can try out the event processing network you're building, you will need to
create a way for event data to flow into it. In Oracle Event Processing applications,
adapters manage traffic between external components and the internals of the event
processing network. Event data arriving from external sources enter the application
through an adapter, while event data leaving the application on its way to external
components or applications exits through an adapter. By default, Oracle Event
Processing includes adapters for three different kinds of external components: Java
Message Service (JMS) destinations, HTTP publish-subscribe servers, and CSV files.

The adapter for CSV files, called csvgen, is great for trying things out with code in
development. It's a lightweight alternative to the task of defining an adapter for a
more substantial, "real" event data source. In your own apps, you might find it easier
to use the csvgen adapter until you have your EPN started and some of its logic
defined.

The csvgen adapter's logic knows how to translate event data read from a CSV file into
the event type you defined. You use the csvgen adapter in conjunction with the load
generator utility included with Oracle Event Processing (more about the load
generator later in this walkthrough). The csvgen adapter's implementation code is
included by default in Oracle Event Processing, so all you need to do is add
configuration code to declare the adapter as a stage in your EPN, as well as set a few of
its properties.

Add Code to Configure a CSV Adapter
In this section, you will add configuration code that creates a place for your CSV
adapter in the event processing network. The code will also set a few adapter
properties needed to configure the adapter's runtime behavior. You add the code to the
EPN assembly file so that the adapter will be included in the EPN and appear in the
EPN designer as a stage.

1. In the IDE, locate and open the EPN assembly file. In the Project Explorer, it
should be located at TradeReport > META-INF > spring >
TradeReport.context.xml.

2. Below the event-type-repository XML stanza, add the following XML to declare
the adapter:

<wlevs:adapter id="StockTradeCSVAdapter" provider="csvgen">

Add an Input Adapter to Receive Event Data

8-12 Developer's Guide for Oracle Event Processing

 <wlevs:instance-property name="port" value="9200" />
 <wlevs:instance-property name="eventTypeName"
 value="TradeEvent" />
 <wlevs:instance-property name="eventPropertyNames"
 value="symbol,price,percChange,volume,lastPrice" />
</wlevs:adapter>

This XML stanza declares an instance of the csvgen adapter and assigns to it three
properties that configure it for use in your EPN. The adapter uses the properties to
map from incoming raw event data to the properties of the event type you defined
in Section , "Create an Event Type to Carry Event Data". The following describes
the values you're adding:

■ Adapter declaration. The id attribute value is a unique identifier for the
adapter. The provider attribute value must be "csvgen" in order to refer to the
csvgen implementation included with Oracle Event Processing.

■ The port instance property tells the adapter instance what port to listen on for
incoming event data. The value here, 9200, corresponds to the port number to
which the load generator will send event data (more on that later).

■ The eventTypeName instance property tells the instance the name of the event
type to which incoming event data should be assigned. Here, you give the
name of the TradeEvent type you defined earlier.

■ The eventPropertyNames instance property tells the instance the names of the
event type properties to which data should be assigned. Notice in this case
that the eventPropertyNames attribute value is a comma-separated list of the
same properties you defined in the JavaBean for the event type. In order for
the csvgen adapter to map from incoming values to event type properties, the
names here must be the same as your event type and must be in the same
order as corresponding values for each row of the CSV file.

3. Save and close the EPN assembly file with the adapter XML in it.

4. If it isn't open already, open the EPN editor to its Overview tab.

5. In the EPN editor, notice that it now displays an icon representing the csvgen
adapter instance you just added. The icon will be labeled with the adapter id value
you specified in configuration code.

Add a Channel to Convey Events

Walkthrough: Assembling a Simple Application 8-13

In the next step, Section , "Add a Channel to Convey Events", you will add a way to
carry events from the adapter to logic you will add in a moment.

Add a Channel to Convey Events
In this step, you will add a way to connect the adapter you added in Section , "Add an
Input Adapter to Receive Event Data" to a bit of logic you will add in the next step.
Afterward, you will test the application.

In Oracle Event Processing applications, you connect EPN stages together by using a
channel. A channel is a conduit that transfers events from one part of the EPN to
another. Though conveying events is a channel's primary purpose, channel
configuration options give you opportunities to specify other properties through
which you can tune the application. These include:

■ Whether the channel can process events asynchronously, and how big the buffer
for this can get.

■ How many threads may be used to process events in the channel (a larger number
can increase performance).

■ Whether to partition events, based on their properties, in order to have the events
dispatched to separate downstream parts of the EPN.

Those kinds of channel configuration properties have default values, so you needn't
set them for the application you're building. In this application, you'll keep channel
configuration simple.

The purpose of the channel you are about to add is to carry newly generated events
from the adapter that's receiving event data to code you will add in the next step.

Add the AdapterOutputChannel
1. In the IDE, ensure that the EPN editor is open and that the EPN you're building is

visible.

2. Right-click the EPN editor, then click New > Channel.

A channel icon should appear in the EPN editor.

3. Double-click the channel icon that appears in the editor to display the channel's
configuration XML in the EPN assembly file.

4. In the assembly XML file, locate the channel XML stanza for the channel you
added. It should look something like the following:

<wlevs:channel id="channel">
</wlevs:channel>

You might notice a warning that "channels should declare an ’event-type’ value".
You are about to fix that.

5. Edit the default XML to match the following (or simply paste the following code
over the code you have).

<wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
</wlevs:channel>

The following describes the values you're adding to configure the channel:

■ The channel element represents configuration for the channel, placing the
channel in the EPN.

Add a Channel to Convey Events

8-14 Developer's Guide for Oracle Event Processing

■ The id attribute's value is a unique identifier for the channel in this EPN. (You
will be adding another channel.)

■ The event-type attribute's value is the name of the event type that the channel
is configured to convey. In this case, you're setting it to TradeEvent, the name
of the event type you added earlier, whose implementation is the TradeEvent
JavaBean you created. Note that the value you are adding here is the same as
the type-name attribute value of the event-type element elsewhere in the
assembly file.

After you have finished editing the channel configuration XML, save the assembly
file.

6. Return to the EPN editor. You might need to click the EPN: TradeReport tab to
display the EPN editor.

7. In the EPN editor, create a connection from the input adapter to the channel you
added. To do this, click the StockTradeCSVAdapter icon and drag to the
AdapterOutputChannel icon. This will create a connecting line between the two
icons.

8. To make the EPN diagram tidy by having icons display sequentially from left to
right, click the Layout EPN icon at the top right corner of the EPN editor.

9. Double-click the StockTradeCSVAdapter icon to display the adapter's
configuration XML in the assembly file.

10. In the assembly file, notice that creating a connection between the adapter and the
channel has added a listener element to the adapter XML stanza. That element's
ref attribute value is set to the id attribute of channel element. This XML defines
the connection that is graphically displayed in the EPN editor.

The resulting EPN assembly XML should look something like the following
(aspects that connect components are shown in bold text):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xmlns:jdbc="http://www.oracle.com/ns/ocep/jdbc"
xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
xsi:schemaLocation="...">

<!-- Schema locations omitted for brevity. -->

Create a Listener to Receive and Report Events

Walkthrough: Assembling a Simple Application 8-15

<wlevs:event-type-repository>
<wlevs:event-type type-name="TradeEvent">

<wlevs:class>com.oracle.cep.example.tradereport.TradeEvent</wlevs:c
lass>

</wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="StockTradeCSVAdapter" provider="csvgen">
<wlevs:listener ref="AdapterOutputChannel" />
<wlevs:instance-property name="port" value="9200" />
<wlevs:instance-property name="eventTypeName"

value="TradeEvent" />
<wlevs:instance-property name="eventPropertyNames"

value="symbol,price,percChange,volume,lastPrice" />
</wlevs:adapter>

<wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
</wlevs:channel>

</beans>

11. Save TradeReport.context.xml and close the file.

In this step, you added a channel to convey events out of the input adapter. In the next
step, Section , "Create a Listener to Receive and Report Events", you will add a stage
for the events to go.

Create a Listener to Receive and Report Events
In this step, you will add a stage that will complete a simple event processing network
so that you can test the application with event data. The stage will be a "listener" Java
class that's designed to receive trade events passing through the EPN and report
information about the trades.

The listener you're adding is a particular kind of Java class known in Oracle Event
Processing as an event sink. An event sink is code that is able to receive events as they
pass through an EPN. By intercepting events with an event sink, you can use the
class's logic to find out what's inside the events and use that data while executing
other logic in the class. In addition to writing event sinks, you can also write event
sources, which are able to send events to stages downstream in the EPN.

So you can imagine, for example, a single Java class that intercepts events, executes
code that changes the events' contents (or creates new events from them), then sends
the resulting events along to the next stage. Such code could also initiate other
processes (potentially in other applications) based on what the events look like.

Both event sinks and event sources implement particular Oracle Event Processing Java
interfaces. For example, an event sink implements one of two interfaces, depending on
whether the events it's receiving are part of a stream or a relation:
com.bea.wlevs.ede.api.StreamSink or com.bea.wlevs.ede.api.RelationSink.

The difference between streams and relations isn't especially important in the
application you are building here (your code won't rely on the difference). Still, it's
worth a brief explanation because it's an important part of understanding how event
processing with Oracle Event Processing works.

A stream is a sequence of events that's sequential with respect to time, with events
with an earlier timestamp arriving before those with a later timestamp. In contrast, a
relation is a set of events in which events in the set were chosen because they met

Create a Listener to Receive and Report Events

8-16 Developer's Guide for Oracle Event Processing

certain criteria. Code executing on a relation can result in delete, insert, and update
events.

As an illustration, consider a metaphor for a stock trade application that's more
involved than the one you're building here. Imagine that the trade events your
application receives are flowing through a pipe that you can't see into. The events
emerge from the pipe in the order they were received -- an order that you care about
because it matters which events occurred before which other events. To catch them,
you put a bucket under the end of the pipe that's designed to catch fifteen seconds'
worth of the trades at a time so that your code can see if a trade of one specific stock
occurred within 15 seconds before a trade of another specific stock.

The pipe is a stream, where the sequence and adjacent quality are key characteristics.
The bucket is a relation, where certain shared characteristics define what's in the
bucket.

In the following sections, you'll create a Java class that implements the interface
through which it listens for events, then configure that class as an event bean, making
it part of the EPN.

Create the Listener Event Sink Class
In this section, you'll create a Java class capable of receiving events from a stream.

1. In the IDE, in the Project Explorer, right-click the src directory, then click New >
Class.

2. In the New Java Class dialog, in the Package box, enter
com.oracle.oep.example.tradereport.

3. In the Name box, enter TradeListener.

4. Next to the Interfaces box, click the Add button to select the interface your listener
will need to implement to be an event sink.

5. In the Implemented Interfaces Selection dialog, in the Choose interfaces box,
enter com.bea.wlevs.ede.api.StreamSink.

6. With StreamSink selected in the Matching items box, click OK.

7. In the New Java Class dialog, under Which method stubs would you like to
create, ensure that the Inherited abstract methods check box is selected (the others
should be cleared).

Create a Listener to Receive and Report Events

Walkthrough: Assembling a Simple Application 8-17

8. Click Finish.

The TradeListener.java source code window will open to display the declaration
for the TradeListener class. A declaration for the onInsertEvent method should
also be present in the .java file. This method is required when implementing the
StreamSink interface.

9. In the TradeListener class, edit the onInsertEvent method to match the following
code:

@Override
public void onInsertEvent(Object event) throws EventRejectedException {

 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 System.out.println(symbolProp + ":" + volumeProp);
 }
}

This is the method that Oracle Event Processing will use to pass an event into your
listener, where your code can do something with it. The changes you're making
implement the method to do the following:

■ Ensure that the incoming event is an instance of your TradeEvent JavaBean.
(Any others would be ignored.)

■ If the event is a TradeEvent, the code will simply print out the stock symbol
and trade volume it contains.

10. Save and close the TradeListener.java file.

Create a Listener to Receive and Report Events

8-18 Developer's Guide for Oracle Event Processing

Configure the Listener Class as an Event Bean
In the preceding section, you implemented an event sink to create a class to listen for
events of a particular type. In this section, you will add that listener to your EPN as an
event bean that you can connect to other parts of the EPN.

An event bean is a way to add Java code to an EPN. Another way is a Spring bean.
Though they offer differing management features, both bean models provide a means
to configure an EPN stage whose implementation is Java code that you write. An event
bean, which you're creating here, integrates more fully with Oracle Event Processing
server features. A Spring bean is a good choice when you need to integrate with an
existing Spring framework.

1. In the EPN editor, right-click an empty area, then click New > Event Bean.

2. Double-click the new eventBean icon to display its configuration code in the
assemble XML file.

3. In the TradeReport.context.xml source code, locate the event-bean element and
edit it so that it appears as follows:

 <wlevs:event-bean id="ListenerBean"
class="com.oracle.oep.example.tradereport.TradeListener" />

With this code, you're configuring the event bean with the unique identifier,
"ListenerBean", and an implementation class that's the class you created earlier.

4. Save the assembly XML file.

5. Return to the EPN editor to see that the design reflects your changes to the
underlying XML, such as the new event bean name.

6. In the EPN editor, click the AdapterOutputChannel to select it.

7. Again click the AdapterOutputChannel and drag to the ListenerBean event bean
icon. This creates a connection so that events can pass from the channel to the
event bean.

8. Tidy the diagram by clicking the Layout EPN icon.

9. Double-click the AdapterOutputChannel to display its underlying XML.

Note that the channel XML stanza now includes a listener element whose ref
attribute value is the same as the ID value for the event bean you added. (The
word "listener" in both places here is for convenience only.)

<wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
<wlevs:listener ref="ListenerBean" />

Set Up the Load Generator and Test

Walkthrough: Assembling a Simple Application 8-19

</wlevs:channel>

<wlevs:event-bean id="ListenerBean"

class="com.oracle.oep.example.tradereport.TradeListener" />

10. Save TradeReport.context.xml.

In this step, you added an event bean to listen for events traveling through the event
processing network. In the next step, Section , "Set Up the Load Generator and Test",
you will test the application you are building.

Set Up the Load Generator and Test
In this step, you will deploy your project on an instance of the Oracle Event Processing
server, then use the load generator utility included with Oracle Event Processing to
feed sample data to the application you are building.

The load generator utility installed with Oracle Event Processing provides a way for
you to easily begin testing your project. It's specifically designed to read a CSV file and
send rows in the file as event data to a port you specify in its configuration. In your
project, a CSV adapter listening on that port receives the rows and converts their data
into instances of the event type you defined for it. Through a properties file, you can
configure certain aspects of the load generator, including the CSV file and target port
to use, how long the load generator should run, how fast it sends event data, and so
on.

In the following sections, you'll create an instance of the Oracle Event Processing
server, configure it for deploying your project, then set up the load generator and test
the project.

Create a Server on Which to Run the Project
In this section, you'll add an Oracle Event Processing server instance to the
TradeReport project. Adding the server instance gives you a convenient way to use the
IDE to start and stop the server, as well as redeploy the project whenever you make
changes and want to test again.

The IDE is aware of the Oracle Event Processing server through the server runtime
environment included when you created the project. (You might have needed to add
the server runtime envirronment as a separate step.)

1. In the IDE, ensure that the Servers view is displayed. If it isn't visible, click
Window > Show View > Servers to display it.

2. In the Servers view, right-click to display the context menu, click New, then click
Server.

3. In the New Server dialog, under Select the server type, expand Oracle, then click
Oracle Event Processing v11.1.

4. Leave the host name, server name, and runtime environment as is, then click Next.

5. Under New Oracle Event Processing v11.1 Server, ensure that the Local Server
option is selected, then click Next.

6. In the next window, under New Oracle Event Processing v11.1 Server, leave the
Domain Directory as is, then click Next.

7. Under Add and Remove, in the Available box, select TradeReport, then click the
Add button between the Available and Configured boxes.

Set Up the Load Generator and Test

8-20 Developer's Guide for Oracle Event Processing

Moving the TradeReport project name into the Configured list specifies that the
TradeReport project you're building should be configured to run on the server
you're adding. This simple step makes it easy to deploy (and redeploy) the project
to the server as you're debugging.

8. Click Finish.

After you've added the server, it should be listed in the Servers view as Oracle Event
Processing v11.1 at locahost (Stopped). Expand its entry to confirm that the
TradeReport project is one of its configured projects.

Set Up the Test Data and Load Generator
You don't actually need to set up the test data and load generator -- they're set up
when you install Oracle Event Processing. But since you'll be using them to debug
your project, use the following steps to take a look at them.

1. In the text editor of your choice, open the StockData.csv file included with Oracle
Event Processing. By default, you'll find this file at the following path:

ORACLE_HOME/Middleware/ocep_11.1/utils/load-generator/StockData.csv

Notice that the contents of the file are essentially more of what you saw in the
example when you defined an event type for the data. Notice that, as with any
CSV file, the rows are uniform in terms of the order of values they contain.

2. In the text editor, open the StockData.prop file.

This is the properties file that configures the work of the load generator. Two of its
properties -- test.csvDataFile and test.port -- are required in order for the load
generator to work. The other properties are technically optional, but you'll need to
set one more in order to ensure that the load generator knows that your input is in
CSV form. To debug the TradeReport project, you should have the following
properties set:

■ test.csvDataFile -- The name of the CSV file that the load generator will
read. The value here should be StockData.csv.

Set Up the Load Generator and Test

Walkthrough: Assembling a Simple Application 8-21

■ test.port -- The port number to which the load generator will send event
data. This should be the port value you specified when you configured the
CSV adapter instance, or 9200.

■ test.packetType -- The form that the load generator will be handling. This
value should be CSV.

Debug the Project
Of course, you probably won't need to actually debug this project (you've been doing
everything exactly as described here, right?). But setting a breakpoint and running the
Oracle Event Processing server in debug mode will give you a chance to see how
things are working.

1. In the IDE, open the TradeListener.java file you created in an earlier step. In the
Project Explorer, the file should be visible by expanding TradeReport > src >
com.oracle.cep.example.tradereport.

2. In TradeListener.java, set a breakpoint at the line with the following code:

System.out.println(symbolProp + ":" + volumeProp);

3. In the Servers view, select the server you added: Oracle Event Processing v11.1 at
localhost

4. With the server selected, click the Start the server in debug mode button in the
upper right corner of the Servers view.

You will likely need to wait for a few moments while the server starts, the IDE
compiles your project, and then deploys the TradeReport project as an application
to the running server. During this time, the Console view will display status
messages related to the server's startup progress. The server is running in debug
mode when the Console view's output ends with <Server STARTED> or <The
application context for "TradeReport" was started successfully>.

5. In the Servers view, confirm that the project does not need to be republished to the
server. If the TradeReport entry shows (Republish), then right-click the
TradeReport entry and click Force Publish. After it has been successfully
deployed, the entry will show (Synchronized).

If you see errors when you attempt to republish, you might need to clean and
rebuild the project before continuing.

6. Open a command prompt and change directory to the load-generator directory
installed with Oracle Event Processing. By default, this is at the following path:

ORACLE_HOME/Middleware/ocep_11.1/utils/load-generator

7. In the command prompt, type the following, then press Enter to start sending
event data to your deployed project:

■ On Windows: runloadgen.cmd StockData.prop

■ On Linux: runloadgen.sh StockData.prop

8. Once the load generator begins sending event data, the IDE should switch to its
debugging perspective (if you have the IDE set that way) and pause execution at
the breakpoint you set in the Listener class.

9. When execution has paused at the breakpoint, look at the Variables view to
examine the contents of the event that was received by the listener. By clicking
each of the event's properties, you can view the values assigned to each from the
CSV file.

Add an Oracle CQL Processor to Filter Events

8-22 Developer's Guide for Oracle Event Processing

10. Click the Resume button repeatedly to advance execution from event to event,
noticing the values in each.

11. In the Console window, notice that the listener code is printing stock symbols and
volumes from the events it receives.

12. In the Servers view, select the Oracle Event Processing server, then click the Stop
the server button.

13. In the load generator command prompt window, press CTRL+C to stop the load
generator.

That's it! You've created and tested a simple Oracle Event Processing application. In
the last step, Section , "Add an Oracle CQL Processor to Filter Events", you'll make the
application a little more interesting by adding some Oracle CQL code.

Add an Oracle CQL Processor to Filter Events
In this step, you'll add a processor to filter events based on certain criteria. A processor
is a stage to which you add Oracle Continuous Query Language (Oracle CQL) code for
querying incoming events. Processors and Oracle CQL queries represent much of the
real power of event-oriented applications you build with Oracle Event Processing.
With Oracle CQL, you can focus the application's logic on just those events you care
about, executing sometimes complex logic as events arrive.

Add an Oracle CQL Processor to Filter Events

Walkthrough: Assembling a Simple Application 8-23

If you have used Structured Query Language (SQL), Oracle CQL will appear very
familiar. In fact, Oracle CQL is essentially like SQL -- with the same keywords and
syntax rules -- but with features added to support the unique aspects of streaming
data. (If you aren't familiar with SQL, getting acquainted with it will go a long way
toward helping you get the most out of Oracle CQL.)

Remember that event data (and the Oracle Event Processing events that result from it)
is a stream of data that the EPN receives sequentially. To continue the comparison of
SQL and Oracle CQL, an event may be said in one sense to correspond to a row in a
database. However, an important difference is that with events, one event is always
before or after another, time-wise, and the stream is potentially infinite and
ever-changing. In a relational database, rows may be said to be a finite set where data
is relatively static. With a relational database, data is waiting for your query to go and
get it; with a stream of event data, data is always flowing into the EPN, where your
query examines it as it arrives.

To make the most of the sequential, time-oriented quality of streaming data, CQL
includes the ability to:

■ Specify a window of a particular time period, or range, from which events should
be queried. This could be each five seconds worth of events, for example.

■ Specify a window of a particular number of events, called "rows," against which to
query. This might be each sequence of 10 events.

■ Specify how often the query should execute against the stream by using the slide
keyword. The query could "slide" every five seconds to a later five-second window
of events.

■ Separate, or partition, an incoming stream into multiple streams based on
particular characteristics of the events. You could have the query create new
streams for each of specified stock symbols found in incoming trade events.

In addition, CQL supports common aspects of SQL you might be familiar with,
including views and joins. For example, you can write CQL code that performs a join
involving streaming event data and data in a relational database table or cache. CQL is
extensible through cartridges, with included cartridges providing support for queries
that incorporate functionality within Java classes, for calculations specific to spatial
data, and to query JDBC data sources.

To get acquainted with processors and CQL, you'll keep the code you're adding here
simple. You'll add a query that retrieves certain events fed from the
AdapterOutputChannel. The query will be designed to retrieve only those trades
whose volume is greater than 4000. Events in the query's results will be passed along
to the listener.

The following is what the CQL code will look like:

Example 8–1 GetHighVolume Query Element with CQL Code

<query id="GetHighVolume"><![CDATA[
 select trade.symbol, trade.volume
 from AdapterOutputChannel [now] as trade
 where trade.volume > 4000
]]>
</query>

This query can be paraphrased as "for every event coming from the
AdapterOutputChannel whose trade volume is more than 4000 shares, get the symbol
and volume values." The select, from, and where statements should look familiar if
you've used SQL. The now operator represents a window of time, where the window is

Add an Oracle CQL Processor to Filter Events

8-24 Developer's Guide for Oracle Event Processing

essentially instantaneous -- it includes every event. Another window might have been
[range 5], meaning "select from all the events that arrive within each five second
period." (That might be useful if you care that certain trades have occurred within five
seconds of one another.)

The output of this query will be a relation -- or set, rather than sequence -- that
includes all of the events whose trade volume is greater than 4000. Because the
window is [now], the set will always have no more than one member. A relation from
a larger range might have multiple members in its set.

Add a GetHighVolume Processor and Query
1. In the IDE, in the EPN editor, right-click an empty area of the diagram, then click

New > Processor.

2. In the New Processor dialog, in the Processor ID box, enter
GetHighVolumeProcessor.

3. Select the Use an existing configuration file option.

Remember that you can create a different configuration file for each processor.
That might be useful if you have a different person working on each one.

4. In the dropdown, leave config.xml selected, then click OK.

5. In the EPN editor, notice that a GetHighVolumeProcessor icon has been created.

6. Right-click the connector from the AdapterOutputChannel icon to the
ListenerBean icon, then click Delete.

7. Click then AdapterOutputChannel icon, then drag from it to the
GetHighVolumeProcessor icon.

Creating this connection makes the processor aware of the channel, After
connecting the channel to the processor, you can refer to the channel by its ID
value in CQL code.

8. Double-click the GetHighVolumeProcessor icon to open its configuration code in
the config.xml file.

9. In the config.xml file, replace the query element with the following query XML:

<query id="GetHighVolume"><![CDATA[
 select trade.symbol, trade.volume
 from AdapterOutputChannel [now] as trade
 where trade.volume > 4000
]]>
</query>

The code window should look something like the following:

Add an Oracle CQL Processor to Filter Events

Walkthrough: Assembling a Simple Application 8-25

10. In the EPN editor, right-click an empty area of the diagram, then click New >
Channel.

11. Right-click the icon for the new channel, then click Rename.

12. Type ProcessorOutputChannel and press Enter to rename the channel.

13. Click the GetHighVolumeProcessor icon, then drag to the new channel icon to
connect the processor and channel.

14. Click the ProcessorOutputChannel icon, then drag to the ListenerBean icon to
connect the channel to the listener.

15. Click the Layout EPN button to tidy the diagram so that the icons are in a row
from left to right in order of sequence.

16. Double-click the ProcessorOutputChannel icon to open the channel's
configuration in the assembly XML file.

17. In TradeReport.context.xml, replace the default channel configuration with the
following XML. In particular, note that you're specifying that TradeEvent is the
event type that passes through this channel.

<wlevs:channel id="ProcessorOutputChannel" event-type="TradeEvent">
 <wlevs:listener ref="ListenerBean" />
</wlevs:channel>

18. Save all of the files in the project.

At this point, you should be ready to debug the application again.

Debug the Project
In this section, you'll debug once more to confirm that your CQL code is producing the
results you intend.

1. In the IDE, open the TradeListener.java file you created in an earlier step. In the
Project Explorer, the file should be visible by expanding TradeReport > src >
com.oracle.cep.example.tradereport.

2. In TradeListener.java, confirm that you have a breakpoint at the line with the
following code: System.out.println(symbolProp + ":" + volumeProp);

You might need to rebuild the project before you can successfully debug.

Add an Oracle CQL Processor to Filter Events

8-26 Developer's Guide for Oracle Event Processing

3. In the Servers view, select the server you added: Oracle Event Processing v11.1 at
localhost

4. With the server selected, click the Start the server in debug mode button in the
upper right corner of the Servers view.

You will likely need to wait for a few moments while the server starts, the IDE
compiles your project, and then deploys the TradeReport project as an application
to the running server. During this time, the Console view will display status
messages related to the server's startup progress. When the Console view's output
ends with <Server STARTED>, the server is running in debug mode.

5. In the Servers view, confirm that the project does not need to be republished to the
server. If the TradeReport entry shows (Republish), then right-click the
TradeReport entry and click Force Publish. After it has been successfully
deployed, the entry will show (Synchronized).

6. If you don't have one already, open a command prompt and change directory to
the load-generator directory installed with Oracle Event Processing. By default,
this is at the following path:

ORACLE_HOME/Middleware/ocep_v11.1/utils/load-generator

7. In the command prompt, type the following, then press Enter to start sending
event data to your deployed project:

■ On Windows: runloadgen.cmd StockData.prop

■ On Linux: runloadgen.sh StockData.prop

Once the load generator begins sending event data, the IDE should switch to its
debugging perspective (if you have the IDE set that way) and pause execution at
the breakpoint you set in the listener class.

8. When execution has paused at the breakpoint, look at the Variables view to
examine the contents of the event that was received by the listener.

By clicking each of the event's properties, you can view the values assigned to each
from the CSV file. Notice that the event contains only two values -- symbol and
volume. That's because your query selects only those two values from events that
pass through the processor.

9. Click the Resume button repeatedly to advance execution from event to event,
noticing the values in each.

10. In the Console window, notice that the listener code is printing stock symbols and
volumes from the events it receives.

If you have coded your query correctly, all of the volume values should be higher
than 4000.

11. In the Servers view, select the Oracle Event Processing server, then click the Stop
the server button.

12. In the load generator command prompt window, press CTRL+C to stop the load
generator.

That's it -- you've finish this application. For a list of the things covered in this
walkthrough, along with links to more information, see Section , "Summary: Simple
Application Walkthrough".

Summary: Simple Application Walkthrough

Walkthrough: Assembling a Simple Application 8-27

Summary: Simple Application Walkthrough
This section summarizes the simple application walkthrough, which begins with
Section , "Introduction to the Simple Application Walkthrough". In this walkthrough,
you built a simple Oracle Event Processing application. You assembled an event
processing network to receive events and report on those that met certain criteria.

For other introductory content, see Chapter 1, "Overview of Creating Oracle Event
Processing Applications".

This walkthrough introduced the most basic aspects of developing Oracle Event
Processing applications. Those concepts include:

■ IDE features designed to make building Oracle Event Processing applications
easier.

To start learning more about the IDE, see Section , "Overview of Oracle Event
Processing IDE for Eclipse".

■ Building an application as an event processing network (EPN).

For another introduction to EPNs, see Section , "How an Oracle Event Processing
Application Works".

■ Designing event types that model events.

For more information, see Section , "Overview of Oracle Event Processing Event
Types".

■ Using adapters to manage interactions with external components.

Oracle Event Processing includes adapters. You can also build your own. See the
following sections for more:

– Chapter 11, "Integrating the Java Message Service"

– Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

– Chapter 15, "Integrating an External Component Using a Custom Adapter"

– Chapter 21, "Testing Applications With the Load Generator and csvgen
Adapter"

■ Implementing a Java class that can receive or send events.

For more on writing event sinks and event sources, see Chapter , "Handling
Events with Sources and Sinks"

■ Event streams and relations as models for handling events as they pass through an
event processing network.

For an introduction to streams and relations, see Section , "Overview of Events,
Streams and Relations".

■ Using Oracle Continuous Query Language (Oracle CQL) to find and filter events.

For more on Oracle CQL, see Chapter 17, "Querying an Event Stream with Oracle
CQL"

Summary: Simple Application Walkthrough

8-28 Developer's Guide for Oracle Event Processing

9

Defining and Using Event Types 9-1

9Defining and Using Event Types

[10] This chapter describes how to define the Oracle Event Processing event types you will
need to carry event data through an event processing network, including how to
implement and configure event types and how to access the event type repository.

Through the event types you define, your code has access to event data. As described
in this chapter, you define event types that are based on one of several data types such
as JavaBean classes you write. You add your event types to your application by
configuring them as part of the event type repository. Although event types are
typically added to the repository through configuration XML, you can also write code
to access the repository programmatically.

This chapter includes the following sections:

■ Overview of Oracle Event Processing Event Types

■ Designing Event Types

■ Creating Event Types

■ Accessing the Event Type Repository

■ Sharing Event Types Between Application Bundles

Overview of Oracle Event Processing Event Types
An event type is how you represent event data in an Oracle Event Processing
application. An event is structured data related to something that occurred at a
particular time. For example, if your application is designed to react to changes in a
server room’s environment, event data could include snapshot information collected
by a device that monitors the environment. Or if your application pays attention to
trends and patterns related to stock market trades, event data could be values
corresponding to a trade, including what stock was traded, what the trade volume
was, what the share price was, and so on.

Event data entering your application can arrive in any of a wide variety of forms. By
creating an event type to represent the data inside the application, you create a
predictable way for your application’s logic to work with the data. Because event
types are the transport vehicles for event data, defining them is an essential part of
building an Oracle Event Processing application.

For a hands-on look at creating and using event types, take a look at Section , "Create
an Event Type to Carry Event Data".

Designing Event Types

9-2 Developer's Guide for Oracle Event Processing

Where Event Type Instances are Used
Instances of event types you create carry event data through the event processing
network (EPN) of your application. Keep in mind how you’re going to be using the
events in code to make better decisions about designing and implementing event
types.

Event type instances are used by either the Oracle Event Processing server or your
own application logic. Typically, the Oracle Event Processing server creates an instance
of the type and binds the data to it. However, for more control over how the event type
instance is created, you can create an event type builder. For more information, see
Section , "Controlling Event Type Instantiation with an Event Type Builder Class".

The following lists the primary places where an event type instance is used:

■ When incoming event data arrives from an external source, it is bound to an event
type instance.

■ When an Oracle CQL processor executes a query and outputs a result, an instance
of the event type is created for carrying result event data to a stage that is
downstream in the EPN.

■ In your application’s Java logic, such as Java code for handling events, you can
create new event type instances and send them to a stage that is downstream in
the EPN. Java code that creates events is known as an event source. For more
information about implementing event sources, see Section , "Implementing an
Event Source".

High-Level Process for Creating Event Types
At a high level, the process for creating an event type is a matter of identifying the
event data that the event type will need to carry, then implement the type as one of the
data types supported by Oracle Event Processing.

Here are high-level steps:

1. Design the event type. Essentially, this is a matter of identifying the set of event
data that’s relevant for your application, then choosing how that data should be
represented by an event type. For more information, see Section , "Designing
Event Types".

2. Create the event type. Once you know how data should be represented by the
type, you can create the type in one of three ways: by implementing it as a
JavaBean class, by configuring it as a tuple, or by configuring it as a
java.util.Map. You might also want to implement an event type builder for more
control over how the type is instantiated. For more information, see Section ,
"Creating Event Types".

Designing Event Types
When you design an event type, you map raw event data to the implementation
options that Oracle Event Processing supports.

Designing an event includes the following tasks:

■ Identify the structure of event data that the event type will represent. This could
be the structure of raw event data coming from an external source such as a
monitor in a server room. It could also be a data structure required by a
downstream stage or component to which your code will send instances of the
type. For more information, see Section , "Identifying the Structure of Event Data".

Designing Event Types

Defining and Using Event Types 9-3

■ Choose the data type that will be the basis of the event type you’re creating. Your
event type will be based on one of three data types supported by Oracle Event
Processing: a JavaBean class, a tuple, or a java.util.Map instance. For more
information, see Section , "Choosing a Data Type for an Event Type".

■ Keeping in mind the planned uses for the event type, and being aware of potential
constraints imposed by those uses. For more information, see Section ,
"Constraints on Design of Event Types".

Finally, note that when configuring event types in the application’s EPN XML file, you
can mix type usage. For more information, see Section , "Mixing Use of Event Type
Data Types".

Identifying the Structure of Event Data
An early task (though typically a simple one) in defining an event processing network
is clarifying the structure of event data, then defining the form in which that data will
be handled inside the EPN. The event type you create will include a property for each
piece of event data your application cares about. Each of those properties will have its
own data type.

Before you can create an event type, use a sample of the event data to define the type’s
properties and their data types. For an example, consider a very simple set of event
data coming from a stock trade. Represented as a row of comma-separated values, the
trade event data might look as follows:

ORCL,14.1,6000

The following table illustrates how you could separate the event data into its distinct
values, defining an event type property for each.

Regardless of how you create your event type, you’ll need to have a sense of its
properties and their data types. However, how you specify those property data types
will vary depending on the data type on which you base your event type. For
example, if you implement a JavaBean class as your event type, data types for the
three values specified in the table would likely be as follows:

The data types would be different if you were creating your event type as a tuple or
java.util.Map. For more information, see Section , "Choosing a Data Type for an Event
Type".

Sample Data Value Role Type of Data
Event Type
Property Name

ORCL stock symbol character symbol

14.1 share price number price

6000 volume of shares
traded

number volume

Event Type
Property Name Java Data Type

symbol String

price Double

volume Integer

Designing Event Types

9-4 Developer's Guide for Oracle Event Processing

Choosing a Data Type for an Event Type
Event types you create are based on one of three data types supported by Oracle Event
Processing: a JavaBean class, a tuple, or a java.util.Map.

Each data type has its own benefits and limitations, but the best practice is to create
your event type as a JavaBean class, implementing event type properties as accessor
methods. With a JavaBean, you will have greater flexibility to deal with event types as
part of your application logic, as well as simplified integration with existing systems.
With an event type implemented as a JavaBean class, you can also (if you like) closely
control event type instantiation by implementing an event type builder class.

When you create your event type as a tuple or java.util.Map, you do so by defining
the event type in the EPN assembly file, specifying its properties declaratively. Unless
you explicitly declare that a java.util.Map should be used, Oracle Event Processing
will use the tuple type as the default.

For the benefits and limitations of each supported data type, see Table 9–1, " Data
Types for Event Types":

For more detailed information on how Oracle CQL handles and supports various data
types, see:

■ "Datatypes" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event
Processing

Table 9–1 Data Types for Event Types

Data Type Description Benefits and Limitations

JavaBean A Java class written to JavaBean conventions. In
addition to being used by logic you write, the type’s
accessor ("get" and "set") methods will be used by
the Oracle Event Processing server and CQL
processor to retrieve and set event property values.

For more information, see Section , "Creating an
Oracle Event Processing Event Type as a JavaBean".

Benefits: This type is the best practice because it provides
the greatest flexibility and ease of use for application
logic that handles events. You access property values
directly through accessor methods. A JavaBean class is
more likely to be useful when integrating your Oracle
Event Processing application with other systems. For
control over how the type is instantiated, you can
implement an event type builder class.

Limitations: Requires writing a JavaBean class, rather
than simply declaring the event type in a configuration
file. Oracle CQL does not support JavaBean properties in
GROUP BY, PARTITION BY, and ORDER BY, although
you can work around this by using an Oracle CQL view.

Tuple A structure that you create and register
declaratively in the EPN assembly file.

For more information, see Section , "Creating an
Oracle Event Processing Event Type as a Tuple".

Benefits: Requires no Java programming to create the
event type. An event type is created by declaring it in the
EPN assembly file. Useful for quick prototyping.

Limitations: Using instances of this type in Java
application logic requires programmatically accessing the
event type repository to get the instance’s property
values. A tuple is also unlikely to be useful when
integrating the Oracle Event Processing with other
systems.

java.util.Map Based on an instance of java.util.Map. You don’t
implement or extend the Map interface. Rather, you
specify that the interface should be used when
configuring the event type in the EPN assembly file.
If you write Java code to access the type instance,
you treat it as a Map instance.

For more information, see Section , "Creating an
Oracle Event Processing Event Type as a
java.util.Map".

Benefits: Requires no Java programming to create the
type. An event type is created by declaring it in the EPN
assembly file. Useful for quick prototyping.

Limitations: Does not perform as well as other types.

Designing Event Types

Defining and Using Event Types 9-5

Constraints on Design of Event Types
Depending on how you plan to use an event type, you might need to keep in mind
certain constraints. For example, you might need to limit the data types of its
properties or how you set values of certain attributes when configuring the event type.

The following sections describe areas of constraints on event type design:

■ Section , "Constraints on Event Types for Use With the csvgen Adapter"

■ Section , "Constraints on Event Types for Use With a Database Table Source"

Constraints on Event Types for Use With the csvgen Adapter
When you declaratively specify the properties of an event type for use with the csvgen
adapter, you may only use the data types that Table 9–2 describes.

For more information, see:

■ Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

Constraints on Event Types for Use With a Database Table Source
You can use a relational database table as a source of event data, binding data from the
table to your event type instance at runtime. When your event data source is a
database table, you must follow the guidelines represented by the following tables.

When an event type will receive data from a database table, a property configured for
the type will each receive data from a particular column in the database. When
configuring the event type, note that its property child elements have attributes that
have particular meanings and value constraints, as described in Table 9–3, " EPN
Assembly File event-type Element Property Attributes".

When you specify the properties of an event type for use with a relational database
table, you must observe the additional JDBC type restrictions listed in Table 9–4, " SQL
Column Types and Oracle Event Processing Type Equivalents".

Table 9–2 csvgen Adapter Types

Type Usage

char Single or multiple character values. Use for both char and java.lang.String values.

Optionally, you may use the length attribute to specify the maximum length of the
char value as Example 9–6 shows for the property with name id. The default length
is 256 characters. If you need more than 256 characters you should specify an
adequate length.

int Numeric values in the range that java.lang.Integer specifies.

float Numeric values in the range that java.lang.Float specifies.

long Numeric values in the range that java.lang.Long specifies.

double Numeric values in the range that java.lang.Double specifies.

Table 9–3 EPN Assembly File event-type Element Property Attributes

Attribute Description

name The name of the table column you want to access as specified in the SQL create table
statement. You do not need to specify all columns.

type The Oracle Event Processing Java type from Table 9–4 that corresponds to the column’s SQL
data type.

length The column size as specified in the SQL create table statement.

Designing Event Types

9-6 Developer's Guide for Oracle Event Processing

For more information, see:

■ Section , "Configuring an Oracle CQL Processor Table Source"

Table 9–4 SQL Column Types and Oracle Event Processing Type Equivalents

SQL Type
Oracle Event Processing
Java Type com.bea.wlevs.ede.api.Type Description

ARRAY [Ljava.lang.Object Array, of depth 1, of java.lang.Object.

BIGINT java.math.BigInteger bigint An instance of java.math.BigInteger.

BINARY byte[] Array, of depth 1, of byte.

BIT java.lang.Boolean boolean An instance of java.lang.Boolean.

BLOB byte[] Array, of depth 1, of byte.

BOOLEAN java.lang.Boolean boolean An instance of java.lang.Boolean.

CHAR java.lang.Character char An instance of java.lang.Character.

CLOB byte[] Array, of depth 1, of byte.

DATE java.sql.Date timestamp An instance of java.sql.Date.

DECIMAL java.math.BigDecimal An instance of java.math.BigDecimal.

BINARY_DOUBLE1 or
DOUBLE2

1 Oracle SQL.
2 Non-Oracle SQL.

java.lang.Double double An instance of java.lang.Double

BINARY_FLOAT1 or
FLOAT2

java.lang.Double float An instance of java.lang.Double

INTEGER java.lang.Integer int An instance of java.lang.Integer.

JAVA_OBJECT java.lang.Object object An instance of java.lang.Object.

LONGNVARCHAR char[] char Array, of depth 1, of char.

LONGVARBINARY byte[] Array, of depth 1, of byte.

LONGVARCHAR char[] char Array, of depth 1, of char.

NCHAR char[] char Array, of depth 1, of char.

NCLOB byte[] Array, of depth 1, of byte.

NUMERIC java.math.BigDecimal An instance of java.math.BigDecimal.

NVARCHAR char[] char Array, of depth 1, of char.

OTHER java.lang.Object object An instance of java.lang.Object.

REAL java.lang.Float float An instance of java.lang.Float

SMALLINT java.lang.Integer int An instance of java.lang.Integer.

SQLXML xmltype xmltype For more information on processing XMLTYPE
data in Oracle CQL, see "SQL/XML (SQLX)"
in the Oracle Fusion Middleware CQL
Language Reference for Oracle Event
Processing.

TIME java.sql.Time An instance of java.sql.Time.

TIMESTAMP java.sql.Timestamp timestamp An instance of java.sql.Timestamp.

TINYINT java.lang.Integer int An instance of java.lang.Integer.

VARBINARY byte[] Array, of depth 1, of byte.

VARCHAR char[] char Array, of depth 1, of char.

Creating Event Types

Defining and Using Event Types 9-7

Mixing Use of Event Type Data Types
When defining an event type in the EPN assembly file, you can use a JavaBean-based
event type as another event type’s property data type.

Example 9–1 shows a tuple event type Student that defines its address property as
JavaBean event type Address.

Example 9–1 Event Type Repository

<event-type-repository>
<event-type name="Student">

<property name="name" type="char"/>
<property name="address" type="Address"/>

</event-type>

<event-type name="Address">
<class-name>test.Address</class-name>

</event-type>
<event-type-repository>

Creating Event Types
Event types define the event properties that provide access to event data within Oracle
Event Processing applications. You then use these event types in the adapter and Java
code, as well as in the Oracle CQL rules.

When you create an event type, you choose one of the three supported data types as a
base for the type you’re creating. The best practice is that you can create the type as a
JavaBean class, writing a little Java code to handle event data in properties. You can
also create the type declaratively as a tuple or java.util.Map.

Before you create types, you might want to see Section , "Designing Event Types" for
design considerations.

This section describes:

■ Section , "Creating an Oracle Event Processing Event Type as a JavaBean"

■ Section , "Creating an Oracle Event Processing Event Type as a Tuple"

■ Section , "Creating an Oracle Event Processing Event Type as a java.util.Map"

Creating an Oracle Event Processing Event Type as a JavaBean
Creating an event type as a JavaBean gives you the greatest level of flexibility when
using instances of the type in your application logic. As a result, using a JavaBean class
is the best practice for creating an event type.

Part of the flexibility in using a JavaBean event type comes from the two different
ways to have the type instantiated: by the server or by an event type builder class that
you provide. By providing an event type builder class as an instance factory, you can
create the instance yourself, controlling how they are created, including how event
data values are bound to JavaBean properties. For more information, see Section ,

Note: Oracle CQL does not support expressions in GROUP BY,
PARTITION BY, and ORDER BY. As a result, these do not support Java
properties and will fail. When those features are needed, use Oracle
CQL views as a workaround.

Creating Event Types

9-8 Developer's Guide for Oracle Event Processing

"Controlling Event Type Instantiation with an Event Type Builder Class".

When creating an event type as a JavaBean class, use the following guidelines to
ensure the best integration with the Oracle Event Processing system:

■ Create an empty-argument public constructor with which the Oracle Event
Processing server can instantiate the class.

■ For each event property, implement public accessors (get and set methods)
following JavaBean conventions. These will be used by the server to access event
property values. When you define an event type as a JavaBean, you may use any
Java type for its properties.

If you’re unfamiliar with JavaBean conventions, see the JavaBeans Tutorial at
http://docs.oracle.com/javase/tutorial/javabeans/ for additional details.

■ Implement the hashCode and equals methods. This optimizes the class for use by
the Oracle Event Processing server, which sometimes uses a hash index whose
composite key is created from the event type instance hash codes.

If you’re using the Eclipse IDE, you can easily implement hashCode and equals
methods through the Source context menu for a class after you have added its
accessors.

■ Make the class serializable if you intend to cache events in Oracle Coherence.

This topic describes:

■ Section , "How to Create an Oracle Event Processing Event Type as a JavaBean
Using the Event Type Repository Editor"

■ Section , "How to Create an Oracle Event Processing Event Type as a JavaBean
Manually"

How to Create an Oracle Event Processing Event Type as a JavaBean Using the
Event Type Repository Editor
This procedure describes how to create and register an Oracle Event Processing event
type as a JavaBean using the Oracle Event Processing IDE for Eclipse event type
repository editor. For more information about the Oracle Event Processing IDE for
Eclipse, see Example 4, "Overview of the Oracle Event Processing IDE for Eclipse".

Alternatively, you can create and register your event type as a JavaBean manually (see
Section , "How to Create an Oracle Event Processing Event Type as a JavaBean
Manually").

To create an Oracle Event Processing event type as a Java Bean using the event
type repository editor:
1. Create a JavaBean class to represent your event type.

Be sure to follow the guidelines described in Section , "Creating an Oracle Event
Processing Event Type as a JavaBean".

Example 9–2 shows the MarketEvent which is implemented by the
com.bea.wlevs.example.algotrading.event.MarketEvent class.

Example 9–2 MarketEvent Class

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {

private final Long timestamp;
private final String symbol;

Creating Event Types

Defining and Using Event Types 9-9

private final Double price;
private final Long volume;
private final Long latencyTimestamp;

public MarketEvent() {}

public Double getPrice() {

return this.price;
}
public void setPrice(Double price) {

this.price = price;
}

public String getSymbol() {

return this.symbol;
}
public void setSymbol(String symbol) {

this.symbol = symbol;
}

public Long getTimestamp() {

return this.timestamp;
}
public void setTimestamp(Long timestamp) {

this.timestamp = timestamp;
}

public Long getLatencyTimestamp() {

return this.latencyTimestamp;
}
public void setLatencyTimestamp(Long latencyTimestamp) {

this.latencyTimestamp = latencyTimestamp;
}

public Long getVolume() {

return this.volume;
}
public void setVolume(Long volume) {

this.volume = volume;
}

// Implementation for hashCode and equals methods.
}

2. Compile the JavaBean that represents your event type.

3. In the IDE, open the EPN in the EPN editor.

For more information, see Section , "Opening the EPN Editor".

4. Click the Event Types tab.

5. Click Add Event Type (green plus sign).

A new event is added to the Event Type Definitions list with default name
newEvent as Figure 9–1 shows.

Creating Event Types

9-10 Developer's Guide for Oracle Event Processing

Figure 9–1 Event Type Repository Editor - JavaBean Event

6. In the Event Type Definitions list, select newEvent.

The properties of this event appear in the Event Type Details area as Figure 9–1
shows.

7. Enter a name for this event in the Type name field.

8. Click Properties defined in Java bean.

9. Enter the fully qualified class name of your JavaBean class in the Class field.

For example com.bea.wlevs.example.algotrading.event.MarketEvent.

10. Click the Save button in the tool bar (or type CTRL-S).

The event is now in the event type repository.

You can use the event type repository editor:

a. To view the corresponding event type definition in the EPN assembly file,
double-click the event type in the Event Type Definitions area.

b. To delete this event, select the event type in the Event Type Definitions area
and click Delete Event Type (red x).

How to Create an Oracle Event Processing Event Type as a JavaBean Manually
This procedure describes how to create and register an Oracle Event Processing event
type as a JavaBean manually.

Alternatively, you can create and register your event type as a JavaBean using the
Oracle Event Processing IDE for Eclipse event type repository editor (see Section ,
"How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event
Type Repository Editor").

To create an Oracle Event Processing event type as a Java bean manually:
1. Create a JavaBean class to represent your event type.

Follow standard JavaBean programming guidelines. See the JavaBeans Tutorial at
http://java.sun.com/docs/books/tutorial/javabeans/ for additional details.

Creating Event Types

Defining and Using Event Types 9-11

When you design your event, you must restrict your design to the even data types
that Section , "Mixing Use of Event Type Data Types" describes.

Example 9–3 shows the MarketEvent which is implemented by the
com.bea.wlevs.example.algotrading.event.MarketEvent class.

Example 9–3 MarketEvent Class

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {

private final Long timestamp;
private final String symbol;
private final Double price;
private final Long volume;
private final Long latencyTimestamp;

public MarketEvent() {}

public Double getPrice() {

return this.price;
}
public void setPrice(Double price) {

this.price = price;
}

public String getSymbol() {

return this.symbol;
}
public void setSymbol(String symbol) {

this.symbol = symbol;
}

public Long getTimestamp() {

return this.timestamp;
}
public void setTimestamp(Long timestamp) {

this.timestamp = timestamp;
}

public Long getLatencyTimestamp() {

return this.latencyTimestamp;
}
public void setLatencyTimestamp(Long latencyTimestamp) {

this.latencyTimestamp = latencyTimestamp;
}

public Long getVolume() {

return this.volume;
}
public void setVolume(Long volume) {

this.volume = volume;
}

// Implementation for hashCode and equals methods.
}

2. Compile the JavaBean that represents your event type.

3. Register your JavaBean event type in the Oracle Event Processing event type
repository:

a. To register declaratively, edit the EPN assembly file using the
wlevs:event-type-repository element wlevs:event-type child element as
Example 9–4 shows.

Creating Event Types

9-12 Developer's Guide for Oracle Event Processing

Example 9–4 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
<wlevs:event-type type-name="MarketEvent">
<wlevs:class>

com.bea.wlevs.example.algotrading.event.MarketEvent
</wlevs:class>

</wlevs:event-type>
</wlevs:event-type-repository>

b. To register programmatically, use the EventTypeRepository class as
Example 9–5 shows.

Example 9–5 Programmatically Registering an Event

EventTypeRepository rep = getEventTypeRepository();
rep.registerEventType(

"MarketEvent",
com.bea.wlevs.example.algotrading.event.MarketEvent.getClass()

);

For more information, see Section , "Accessing the Event Type Repository".

Using JavaBean Event Type Instances in Java Code
Reference the event types as standard JavaBeans in the Java code of the adapters and
business logic in your application.

The following code implements the onEvent method from an event sink class. For
more information on event sinks, see Section , "Implementing an Event Sink".

public void onInsertEvent(Object event)
throws EventRejectedException {

if (event instanceof MarketEvent){
MarketEvent marketEvent = (MarketEvent) event;
System.out.println("Price: " + marketEvent.getPrice());

}
}

Using JavaBean Event Type Instances in Oracle CQL Code
The following Oracle CQL rule shows how you can reference the MarketEvent in a
SELECT statement. It assumes an upstream channel called marketEventChannel whose
event type is MarketEvent.

<query id="helloworldRule">
<![CDATA[SELECT MarketEvent.price FROM marketEventChannel [NOW]]]>

</query>

Also, with property data types implemented as JavaBeans, Oracle CQL code can get
values within those properties by using standard JavaBean-style property access.

For example, the following configuration snippet declares a StudentType event type
that is implemented as a JavaBean class. The school.Student class is a JavaBean with an
address property that is itself an Address JavaBean class. The following query suggests
how you might access values of the Address object underlying the address property.
This query selects student addresses whose postal code begins with "97".

<query id="studentAddresses">
SELECT

student.address
FROM

StudentType as student
WHERE

student.address.postalCode LIKE ’^97’

Creating Event Types

Defining and Using Event Types 9-13

</query>

Controlling Event Type Instantiation with an Event Type Builder Class
You can create an event type builder to have more control over how event type
instances are created. For example, using an event type builder you can ensure that the
properties of a configured event are correctly bound to the properties of an event type
class, such as one you have implemented as a JavaBean. You would need an event type
builder in a case, for example, where event property names assumed in CQL code are
different from the names of properties declared in the class.

For example, assume the event type has a firstname property, but the CQL rule that
executes on the event type assumes the property is called fname. Assume also that you
cannot change either the event type class (because you are using a shared event class
from another bundle, for example) or the CQL rule to make them compatible with
each other. In this case you can use an event type builder factory to change the way the
event type instance is created so that the property is named fname rather than
firstname.

At runtime, an event type builder class receives property values from the Oracle Event
Processing server and uses those values to create an instance of the event type class
you created. Your event type builder then returns the instance to the server. In this
way, your builder class is in effect an intermediary, instantiating event types in cases
where the server is unable to determine how to map configured properties to event
type properties.

Creating and using an event type builder involves implementing the builder class and
configuring a JavaBean event type to use the builder, as described in the following
sections:

■ Section , "Implementing an Event Type Builder Class"

■ Section , "Configuring an Event Type that Uses an Event Type Builder"

Implementing an Event Type Builder Class When you program the event type builder
factory, you must implement the EventBuilder.Factory inner interface of the
com.bea.wlevs.ede.api.EventBuilder interface; see the Oracle Fusion Middleware Java
API Reference for Oracle Event Processing for details about the methods you must
implement, such as createBuilder and createEvent.

The following example of an event type builder factory class is taken from the FX
sample:

package com.bea.wlevs.example.fx;

import java.util.HashMap;
import java.util.Map;
import com.bea.wlevs.ede.api.EventBuilder;
import com.bea.wlevs.example.fx.OutputBean.ForeignExchangeEvent;

public class ForeignExchangeBuilderFactory implements EventBuilder.Factory {

// Called by the server to get an instance of this builder.
public EventBuilder createBuilder() {

return new ForeignExchangeBuilder();
}

// Inner interface implementation that is the builder.
static class ForeignExchangeBuilder implements EventBuilder {

// A Map instance to hold properties until the event type is instantiated.

Creating Event Types

9-14 Developer's Guide for Oracle Event Processing

private Map<String,Object> values = new HashMap<String,Object>(10);

// Called by the server to put an event type property. Values from the map
// will be used to instantiate the event type.
public void put(String property, Object value) throws IllegalStateException {

values.put(property, value);
}

// Called by the server to create the event type instance once property
// values have been received.
public Object createEvent() {

return new ForeignExchangeEvent(
(String) values.get("symbol"),
(Double) values.get("price"),
(String) values.get("fromRate"),
(String) values.get("toRate"));

}
}

}

Configuring an Event Type that Uses an Event Type Builder When you register the event type
in the EPN assembly file, use the <wlevs:property name="builderFactory"> child
element of the wlevs:event-type element to specify the name of the event type
builder class. The hard-coded builderFactory value of the name attribute alerts Oracle
Event Processing that it should use the specified factory class, rather than its own
default factory, when creating instances of this event. For example, in the FX example,
the builder factory is registered as shown in bold:

<wlevs:event-type-repository>
<wlevs:event-type type-name="ForeignExchangeEvent">
<wlevs:class>com.bea.wlevs.example.fx.OutputBean$ForeignExchangeEvent</wlevs:class>
<wlevs:property name="builderFactory">
<bean id="builderFactory"

class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
</wlevs:property>

</wlevs:event-type>
</wlevs:event-type-repository>

Creating an Oracle Event Processing Event Type as a Tuple
You can create an Oracle Event Processing event type as a tuple simply by adding the
type’s configuration XML to the EPN XML file. As a result, a tuple is the easiest way to
create an event type, and so can be useful for quick prototyping. However, both the
tuple and java.util.Map data types provide less flexibility than creating an event type
as a JavaBean class.

With a tuple-based event type, your Java code using instances of the type must always
set and get its property values using EventTypeRepository APIs.

When you design your event, you must restrict design of the type’s properties to the
data types described in Section , "Types for Properties in Tuple-Based Event Types".

Before you get started, consider reading the event type design recommendations in
Section , "Designing Event Types".

This topic describes:

■ Section , "How to Create an Oracle Event Processing Event Type as a Tuple Using
the Event Type Repository Editor"

■ Section , "How to Create an Oracle Event Processing Event Type as a Tuple
Manually"

Creating Event Types

Defining and Using Event Types 9-15

Types for Properties in Tuple-Based Event Types
When you specify the properties of the event type declaratively in the EPN assembly
file as a tuple, you may use any of the types specified in
com.bea.wlevs.ede.api.Type.

For more information on supported property types, see Section , "wlevs:property".

Example 9–6 shows the use of different types:

Example 9–6 Specifying com.bea.welvs.ede.api.Type Data Types for Tuple Event Type
Properties

<wlevs:event-type-repository>
<wlevs:event-type type-name="SimpleEvent">

<wlevs:properties>
<wlevs:property name="id" type="char" length="1000" />
<wlevs:property name="msg" type="char" />
<wlevs:property name="count" type="double" />
<wlevs:property name="time_stamp" type="timestamp" />

</wlevs:properties>
</wlevs:event-type>

...
</wlevs:event-type-repository>

For more information, see Section , "Creating an Oracle Event Processing Event Type
as a Tuple".

How to Create an Oracle Event Processing Event Type as a Tuple Using the Event
Type Repository Editor
This procedure describes how to create and register an Oracle Event Processing event
type as a tuple using the Oracle Event Processing IDE for Eclipse event type repository
editor. For more information about the Oracle Event Processing IDE for Eclipse, see
Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse".

You can instead create and register your event type as a tuple manually (see Section ,
"How to Create an Oracle Event Processing Event Type as a Tuple Manually").

To create an Oracle Event Processing event type as a tuple using the event type
repository editor:
1. Decide on the properties your event type requires.

When you design your event, you must restrict your design to the even data types
that Section , "Types for Properties in Tuple-Based Event Types" describes.

2. In the IDE, open the EPN in the EPN editor.

For more information, see Section , "Opening the EPN Editor".

3. Click the Event Type tab.

4. Click Add Event Type (green plus sign).

A new event is added to the Event Type Definitions list with default name
newEvent as Figure 9–2 shows.

Creating Event Types

9-16 Developer's Guide for Oracle Event Processing

Figure 9–2 Event Type Repository Editor - Tuple Event

5. In the Event Type Definitions list, select newEvent.

The properties of this event appear in the Event Type Details area as Figure 9–2
shows.

6. Enter a name for this event in the Type name field.

7. Click Properties defined declaratively.

8. Add one or more event properties:

■ Click Add Event Property (green plus sign).

A new row is added to the Event Type Details table.

■ Click in the Name column of this row and enter a property name.

■ Click in the Type column of this row and select a data type from the pull
down menu.

When you design your event, you must restrict your design to the even data
types that Section , "Types for Properties in Tuple-Based Event Types"
describes.

■ For char data type properties only, click in the ’char’ Length column of this
row and enter a value for the maximum length of this char property.

Optionally, you may used the length attribute to specify the maximum length
of the char value. The default length is 256 characters. The maximum length is
java.lang.Integer.MAX_VALUE. If you need more than 256 characters you
should specify an adequate length.

9. Click the Save button in the tool bar (or type CTRL-S).

The event is now in the event type repository.

You can use the event type repository editor:

a. To view the corresponding event type definition in the EPN assembly file,
double-click the event type in the Event Type Definitions area.

b. To delete this event, select the event type in the Event Type Definitions area
and click Delete Event Type (red x).

Creating Event Types

Defining and Using Event Types 9-17

How to Create an Oracle Event Processing Event Type as a Tuple Manually
This procedure describes how to create and register an Oracle Event Processing event
type declaratively in the EPN assembly file as a tuple.

Note, however, that the best practice for creating event types is to create them as
JavaBean classes. For more information, see Section , "Creating an Oracle Event
Processing Event Type as a JavaBean".

For more information on valid data types, see Section , "Types for Properties in
Tuple-Based Event Types".

To create an Oracle Event Processing event type as a tuple:
1. Decide on the properties your event type requires.

When you design your event, you must restrict your design to the data types that
Section , "Types for Properties in Tuple-Based Event Types" describes.

2. Register your event type declaratively in the Oracle Event Processing event type
repository:

To register declaratively, edit the EPN assembly file using the
wlevs:event-type-repository element wlevs:event-type child element as
Example 9–7 shows.

Example 9–7 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
<wlevs:event-type type-name="CrossRateEvent">

<wlevs:properties>
<wlevs:property name="price" type="double"/>
<wlevs:property name="fromRate" type="char"/>
<wlevs:property name="toRate" type="char"/>

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of CrossRateEvent
for you. The CrossRateEvent has three properties: price, fromRate, and toRate.

For more information on the valid values of the type attribute, see Section , "Types
for Properties in Tuple-Based Event Types".

For reference information on the configuration XML, see Section ,
"wlevs:event-type", Section , "wlevs:properties", and Section , "wlevs:property"

Using a Tuple Event Type Instance in Java Code
When using a tuple-based event type in Java code, you must use a
com.bea.wlevs.ede.api.EventTypeRepository instance to get the names of the type’s
properties before getting their values. (For information on getting an
EventTypeRepository instance, see Section , "Accessing the Event Type Repository".)

The following example uses the repository in a class acting as an event sink.

@Service
public void setEventTypeRepository(EventTypeRepository etr) {

etr_ = etr;
}
...
// Called by the server to pass in the event type instance.
public void onInsertEvent(Object event) throws EventRejectedException {

// Get the event type for the current event instance

Creating Event Types

9-18 Developer's Guide for Oracle Event Processing

EventType eventType = etr_.getEventType(event);

// Get the event type name
String eventTypeName = eventType.getTypeName();

// Get the event property names
String[] propNames = eventType.getPropertyNames();

// See if property you’re looking for is present
if(eventType.isProperty("fromRate")) {

// Get property value
Object propValue =

 eventType.getProperty("fromRate").getValue(event);
}
// Throw com.bea.wlevs.ede.api.EventRejectedException to have an
// exception propagated up to senders. Other errors will be
// logged and dropped.

}

Using a Tuple Event Type Instance in Oracle CQL Code
The following Oracle CQL rule shows how you can reference the CrossRateEvent in a
SELECT statement:

<query id="FindCrossRatesRule"><![CDATA[
select ((a.price * b.price) + 0.05) as internalPrice,

a.fromRate as crossRate1,
b.toRate as crossRate2

from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
where

NOT (a.price IS NULL)
and

NOT (b.price IS NULL)
and

a.toRate = b.fromRate
]]></query>

Creating an Oracle Event Processing Event Type as a java.util.Map
You can create and register an Oracle Event Processing event type as a java.util.Map.

You can create an Oracle Event Processing event type as a java.util.Map simply by
adding the type’s configuration XML to the EPN XML file. As a result, this is an easy
way to create an event type. However, both the tuple and java.util.Map data types
provide less flexibility than creating an event type as a JavaBean class.

Creating and using an event type as a Map is something of a hybrid of the processes
for the tuple type and a JavaBean class. As with a tuple-based event type, you create
the Map-based type declaratively, by configuring it in the EPN XML file. And as with a
JavaBean-based event type, you needn’t use
com.bea.wlevs.ede.api.EventTypeRepository APIs to access instance property
values.

This topic describes:

■ Section , "How to Create an Oracle Event Processing Event Type as a
java.util.Map"

Types for Properties in java.util.Map-Based Event Types
When you specify the event type properties declaratively in the EPN assembly file as a
java.util.Map, you may use any Java type for its properties. However, you specify
the "type" of the event properties as either:

Creating Event Types

Defining and Using Event Types 9-19

■ The fully qualified name of a Java class that must conform to the same rules as
Class.forName() and must be available in the application's class loader.

■ A Java primitive (for example, int or float).

You may specify an array by appending the characters [] to the event type name.

Example 9–8 shows how to use these types:

Example 9–8 Specifying Java Data Types for java.util.Map Event Type Properties

<wlevs:event-type-repository>
<wlevs:event-type type-name="AnotherEvent">

 <wlevs:properties type="map">
<wlevs:property>

<entry key="name" value="java.lang.String"/>
<entry key="employeeId" value="java.lang.Integer[]"/>
<entry key="salary" value="float"/>
<entry key="projectIds" value="short[]"/>

</wlevs:property>
 <wlevs:properties>

</wlevs:event-type>
</wlevs:event-type-repository>

For more information, see Section , "How to Create an Oracle Event Processing Event
Type as a java.util.Map".

How to Create an Oracle Event Processing Event Type as a java.util.Map
This procedure describes how to create and register an Oracle Event Processing event
type as a java.util.Map. Oracle recommends that you create an Oracle Event
Processing event type as a JavaBean (see Section , "How to Create an Oracle Event
Processing Event Type as a JavaBean Manually").

For more information on valid event type data types, see Section , "Types for
Properties in java.util.Map-Based Event Types".

To create an Oracle Event Processing event type as a java.util.Map:
1. Decide on the properties your event type requires.

2. Register your event type in the Oracle Event Processing event type repository:

a. To register declaratively, edit the EPN assembly file using the
wlevs:event-type-repository element wlevs:event-type child element as
Example 9–9 shows.

Example 9–9 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">
 <wlevs:property name="name" value="java.lang.String"/>
 <wlevs:property name="age" value="java.lang.Integer"/>
 <wlevs:property name="address" value="java.lang.String"/>
 </wlevs:properties >
 </wlevs:event-type>
</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of
AnotherEvent for you. The AnotherEvent has three properties: name, age, and
address.

Accessing the Event Type Repository

9-20 Developer's Guide for Oracle Event Processing

b. To register programmatically, use the EventTypeRepository class as
Example 9–10 shows.

Example 9–10 Programmatically Registering an Event

EventTypeRepository rep = getEventTypeRepository();
java.util.Map map = new Map({name, java.lang.String},

{age, java.lang.Integer}, {address, java.lang.String});
rep.registerEventType("AnotherEvent", map);

For more information, see Section , "Accessing the Event Type Repository".

Using a Map Event Type Instance in Java Code
When using a Map-based event type instance in Java code, you access its properties as
you would with any java.util.Map instance.

public void onInsertEvent(Object event)
throws EventRejectedException {

java.util.Map anEvent = (java.util.Map) event;
System.out.println("Age: " + anEvent.get("age"));

}

Using a Map Event Type Instance in Oracle CQL Code
Access the event types from Oracle CQL and EPL rules:

The following Oracle CQL rule shows how you can reference the MarketEvent in a
SELECT statement:

<query id="helloworldRule">
<![CDATA[select age from eventChannel [now]]]>

</query>

Accessing the Event Type Repository
The Oracle Event Processing event type repository keeps track of the event types
defined for your application. When you create an event type, you make it available for
use in the application by configuring it in the event type repository. In some cases, you
might need to write code that explicitly accesses the repository.

For example, when your event type is created as a tuple, Java logic that accesses
instance of the type will need to first retrieve the type definition using the repository
API, then use the API to access the instance property values.

The EventTypeRepository is a singleton OSGi service. Because it is a singleton, you
only need to specify its interface name to identify it. You can get a service from OSGi
in any of the following ways:

■ Section , "Using the EPN Assembly File"

■ Section , "Using the Spring-DM @ServiceReference Annotation"

■ Section , "Using the Oracle Event Processing @Service Annotation"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Event
Processing.

Using the EPN Assembly File
You can access the EventTypeRepository by specifying an osgi:reference in the EPN
assembly file as Example 9–11 shows.

Accessing the Event Type Repository

Defining and Using Event Types 9-21

Example 9–11 EPN Assembly File With OSGi Reference to EventTypeRepository

<osgi:reference id="etr" interface="com.bea.wlevs.ede.api.EventTypeRepository" />
<bean id="outputBean" class="com.acme.MyBean" >

<property name="eventTypeRepository" ref="etr" />
</bean>

Then, in the MyBean class, you can access the EventTypeRepository using the
eventTypeRepository property initialized by Spring as Example 9–12 shows.

Example 9–12 Accessing the EventTypeRepository in the MyBean Implementation

package com.acme;

import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.EventType;

public class MyBean {
private EventTypeRepository eventTypeRepository;

public void setEventTypeRepository(EventTypeRepository eventTypeRepository) {
this.eventTypeRepository = eventTypeRepository;

}

public void onInsertEvent(Object event) throws EventRejectedException {
// get the event type for the current event instance
EventType eventType = eventTypeRepository.getEventType(event);

 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.

}
}

Using the Spring-DM @ServiceReference Annotation
You can access the EventTypeRepository by using the Spring-DM @ServiceReference
annotation to initialize a property in your Java source as Example 9–13 shows.

Example 9–13 Java Source File Using the @ServiceReference Annotation

import org.springframework.osgi.extensions.annotation.ServiceReference;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@ServiceReference
setEventTypeRepository(EventTypeRepository etr) {

...
}

Using the Oracle Event Processing @Service Annotation
You can access the EventTypeRepository by using the Oracle Event Processing
@Service annotation to initialize a property in your Java source as Example 9–14
shows.

Example 9–14 Java Source File Using the @Service Annotation

import com.bea.wlevs.util.Service;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@Service
setEventTypeRepository(EventTypeRepository etr) {
 ...

Sharing Event Types Between Application Bundles

9-22 Developer's Guide for Oracle Event Processing

}

For more information, see Section , "com.bea.wlevs.util.Service".

Sharing Event Types Between Application Bundles
Each Oracle Event Processing application gets its own Java classloader and loads
application classes using that classloader. This means that, by default, one application
cannot access the classes in another application. However, because the event type
repository is a singleton service, you can configure the repository in one bundle and
then explicitly export the event type classes so that applications in separate bundles
(deployed to the same Oracle Event Processing server) can use these shared event
types.

The event type names in this case are scoped to the entire Oracle Event Processing
server instance. This means that you will get an exception if you try to create an event
type that has the same name as an event type that has been shared from another
bundle, but the event type classes are different.

To share event type classes, add their package name to the Export-Package header of
the MANIFEST.MF file of the bundle that contains the event type repository you want to
share.

Be sure you deploy the bundle that contains the event type repository before all
bundles that contain applications that use the shared event types, or you will get a
deployment exception.

For more information, see:

■ Section , "Mixing Use of Event Type Data Types"

■ Section , "Assembling Applications With Foreign Stages"

■ "Oracle Java Data Cartridge" in the Oracle Fusion Middleware CQL Language
Reference for Oracle Event Processing

10

Connecting EPN Stages Using Channels 10-1

10Connecting EPN Stages Using Channels

[11] This chapter describes how to configure Oracle Event Processing channels, event
conduits through an event processing network.

This chapter includes the following sections:

■ Overview of Channel Configuration

■ Configuring a Channel

■ Example Channel Configuration Files

Overview of Channel Configuration
An Oracle Event Processing application contains one or more channel components. A
channel represents the physical conduit through which events flow between other
types of components, such as between adapters and processors, and between
processors and event beans (business logic POJOs).

You may use a channel with both streams and relations. For more information, see
Section , "Channels Representing Streams and Relations".

When you create a channel in your Event Processing Network (EPN), it has a default
configuration. For complete details, see Section , "wlevs:channel".

The default channel configuration is typically adequate for most applications.

However, if you want to change this configuration, you must create a channel element
in a component configuration file. In this channel element, you can specify channel
configuration that overrides the defaults.

The component configuration file channel element’s name element must match the
EPN assembly file channel element’s id attribute. For example, given the EPN
assembly file channel element shown in Example 10–1, the corresponding component
configuration file channel element is shown in Example 10–2.

Example 10–1 EPN Assembly File Channel Id: priceStream

<wlevs:channel id="priceStream" event-type="PriceEvent">
<wlevs:listener ref="filterFanoutProcessor" />
<wlevs:source ref="PriceAdapter" />

</wlevs:channel>

Example 10–2 Component Configuration File Channel Name: priceStream

<channel>
<name>priceStream</name>

Overview of Channel Configuration

10-2 Developer's Guide for Oracle Event Processing

<max-size>10000</max-size>
<max-threads>4</max-threads>

</channel>

You can create a channel element in any of the following component configuration
files:

■ The default Oracle Event Processing application configuration file (by default,
META-INF/wlevs/config.xml).

■ A separate configuration file.

If your application has more than one channel, you can create a channel element for
each of them in the default config.xml file, you can create separate XML files in
META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains
the configuration for all channels, or even all components of your application
(adapters, processors, and channels). Choose the method that best suits your
development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component
configuration file and one EPN assembly file.

Component configuration files are deployed as part of the Oracle Event Processing
application bundle. You can later update this configuration at runtime using Oracle
Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate
JMX Mbeans directly.

This section describes:

■ Section , "When to Use a Channel"

■ Section , "Channels Representing Streams and Relations"

■ Section , "System-Timestamped Channels"

■ Section , "Application-Timestamped Channels"

■ Section , "Controlling Which Queries Output to a Downstream Channel: selector"

■ Section , "Batch Processing Channels"

■ Section , "EventPartitioner Channels"

For more information, see:

■ Section , "Overview of Component Configuration Files"

■ Section , "Creating EPN Assembly Files"

■ Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

■ "wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

■ "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

When to Use a Channel
When constructing your EPN, consider the following rules:

■ A channel is mandatory when connecting an Oracle CQL processor to a
down-stream stage.

■ A channel is mandatory when connecting a push source stream or relation to a
processor.

Overview of Channel Configuration

Connecting EPN Stages Using Channels 10-3

A channel is mandatory for a push source because in that case, the Oracle CQL
processor does need to be aware of its shape (that is, DDL is required) and so does
need the channel to act as intermediary.

■ A channel is optional when connecting an external relation, or pull source, such as
a cache or table source, to a processor.

A channel is not needed between a pull source, such as a cache or table, and a
processor because the pull source represent an external relation. For an external
relation, the only valid operation is a join between a stream and a NOW window
operator and hence it is considered a pull source. In other words, the join actually
happens outside of the Oracle CQL processor. Because it is a pull, the Oracle CQL
processor does not need to be aware of its shape (that is, no DDL is required) and
so does not need the channel to act as intermediary.

In general, use a channel between components when:

■ Buffering is needed between the emitting component and the receiver.

■ Queuing or concurrency is needed for the receiving component.

■ If a custom adapter is used and thread control is necessary.

It is a good design practice to include channels in your EPN to provide the flexibility
of performance tuning (using buffering, queuing, and concurrency options) later in the
design lifecycle. Setting the channel attribute max-threads to 0 puts a channel in
pass-through mode and incurs no performance penalty.

For more information, see:

■ Section , "EventPartitioner Channels"

■ Table C–9, " Attributes of the wlevs:channel Application Assembly Element"

Channels Representing Streams and Relations
A channel can represent either a stream or a relation.

For more information, see:

■ Section , "Implementing RelationSource"

■ Section , "Overview of Channel Configuration"

■ Section , "Overview of Events, Streams and Relations"

Channels as Streams
A stream supports appends only. You specify a channel as a stream by setting EPN
assembly element wlevs:channel attribute is-relation to false (the default).

Channels as Relations
A relation supports inserts, deletes, and updates. You specify a channel as a relation by
setting EPN assembly element wlevs:channel attribute is-relation to true.

When a channel is a relation, you must specify one or more event properties that
define event identity using the wlevs:channel attribute primary-key as Example 10–3
shows.

Example 10–3 Channel as Relation: primary-key Attribute

...
<wlevs:channel id="priceStream" event-type="PriceEvent" primary-key="stock,broker">

<wlevs:listener ref="filterFanoutProcessor" />

Overview of Channel Configuration

10-4 Developer's Guide for Oracle Event Processing

<wlevs:source ref="PriceAdapter" />
</wlevs:channel>
...

Example 10–4 PriceEvent

<wlevs:event-type-repository>
<wlevs:event-type type-name="PriceEvent">

<wlevs:property>
<entry key="stock" value="java.lang.String"/>
<entry key="broker" value="java.lang.String"/>
<entry key="high" value="float"/>
<entry key="low" value="float"/>

</wlevs:property>
</wlevs:event-type>

</wlevs:event-type-repository>

For more information, see primary-key in Table C–9, " Attributes of the wlevs:channel
Application Assembly Element".

System-Timestamped Channels
By default, channels are system-timestamped. In this case, Oracle Event Processing
will assign a new time from the CPU clock under two conditions: when a new event
arrives, and when the configurable heartbeat timeout expires.

For more information, see:

■ Section , "How to Configure a System-Timestamped Channel Using Oracle Event
Processing IDE for Eclipse"

■ Section , "heartbeat"

Application-Timestamped Channels
Optionally, you can configure a channel to be application-timestamped. In this case,
the time-stamp of an event is determined by the configurable wlevs:expression
element. A common example of an expression is a reference to a property on the event.
If no expression is specified, then the time-stamp may be propagated from a prior
event. For example, this is the case when you have a system-timestamped channel
from one Oracle CQL processor feeding events into an application-timestamped
channel of another downstream Oracle CQL processor.

In addition, an application can use the StreamSender.sendHeartbeat method to send
an event of type heart-beat downstream to StreamSink listeners in the EPN.

For more information, see:

■ Section , "How to Configure an Application-Timestamped Channel Using Oracle
Event Processing IDE for Eclipse"

■ Section , "wlevs:application-timestamped"

■ Section , "wlevs:expression"

Controlling Which Queries Output to a Downstream Channel: selector
If you configure an Oracle CQL processor with more than one query, by default, all
queries output their results to the downstream channel.

You can control which queries may output their results to a downstream channel using
the channel selector child element. Note that you must use a selector when you have
multiple channels connected on the downstream side of a processor. This is because

Overview of Channel Configuration

Connecting EPN Stages Using Channels 10-5

the output of a query in the processor has a particular type; selecting for a specific
query ensures that the query output is accepted by the channel.

Figure 10–1 shows an EPN with channel filteredStream connected to up-stream
Oracle CQL processor filteredFanoutProcessor.

Figure 10–1 EPN With Oracle CQL Processor and Down-Stream Channel

Example 10–5 shows the queries configured for the Oracle CQL processor.

Example 10–5 filterFanoutProcessor Oracle CQL Queries

<processor>
<name>filterFanoutProcessor</name>
<rules>

<query id="Yr3Sector"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="3_YEAR"

]]></query>
<query id="Yr2Sector"><![CDATA[

select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="2_YEAR"

]]></query>
<query id="Yr1Sector"><![CDATA[

select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="1_YEAR"

]]></query>
</rules>

</processor>

If you specify more than one query for an Oracle CQL processor as Example 10–5
shows, then, by default, all query results are output to the processor’s out-bound
channel (filteredStream in Figure 10–1). Optionally, in the component configuration
source, you can use the channel element selector child element to specify a
space-delimited list of one or more Oracle CQL query names that may output their
results to the channel as Example 10–6 shows. In this example, query results for query
Yr3Sector and Yr2Sector are output to filteredStream but not query results for
query Yr1Sector.

Example 10–6 Using selector to Control Which Query Results are Output

<channel>
<name>filteredStream</name>
<selector>Yr3Sector Yr2Sector</selector>

</channel>

You may configure a channel element with a selector before creating the queries in
the upstream processor. In this case, you must specify query names that match the
names in the selector.

For more information, see Appendix , "selector".

Note: The selector child element is only applicable if the up-stream
node is an Oracle CQL processor. For more information, see
Chapter 17, "Querying an Event Stream with Oracle CQL".

Overview of Channel Configuration

10-6 Developer's Guide for Oracle Event Processing

Batch Processing Channels
By default, a channel processes events as they arrive. Alternatively, you can configure
a channel to batch events together that have the same timestamp and were output
from the same query by setting the wlevs:channel attribute batching to true as
Example 10–7 shows.

Example 10–7 Batch Processing Channel

...
<wlevs:channel id="priceStream" event-type="PriceEvent" batching="true">

<wlevs:listener ref="filterFanoutProcessor" />
<wlevs:source ref="PriceAdapter" />

</wlevs:channel>
...

For more information, see:

■ Section , "Implementing RelationSource"

■ batching in Table C–9, " Attributes of the wlevs:channel Application Assembly
Element"

EventPartitioner Channels
By default, a channel broadcasts each event to every listener.

When you configure a channel to use an EventPartitioner, each time an incoming
event arrives, the channel selects a listener and dispatches the event to that listener
instead of broadcasting each event to every listener.

You can use an EventPartitioner on a channel to improve scalability.

For more information, see Section , "EventPartitioner".

Handling Faults in Channels
You can write code to handle exceptions that occur in stages that are downstream of a
channel, then thrown to the channel. By default, the fault-handling behavior for a
channel is as follows:

■ If the channel’s max-threads setting is 0 (also known as a pass-through channel),
then the exception is re-thrown to the next upstream stage in the EPN.

■ If the channel’s max-threads setting is greater than 0, then the exception is logged
and dropped, along with any events associated with the fault.

You can write a fault handling class and associate the handler with channels whose
max-threads values are greater than 0. With a fault handler associated with the
channel, exceptions thrown to the channel are received by the handler, where your
code can handle the fault or re-throw it. Keep in mind that if your fault handling code
re-throws the exception, the exception is logged but events related to the exception are
lost. If you want to keep track of events involved in these exceptions, you must persist
them with your code, such as by writing the event data to a data source connected to
your EPN.

For information on writing fault handlers, see Section , "Handling Faults".

Configuring a Channel

Connecting EPN Stages Using Channels 10-7

Configuring a Channel
You can configure a channel manually or by using the Oracle Event Processing IDE for
Eclipse.

See Section , "Component Configuration Schema wlevs_application_config.xsd" for the
complete XSD Schema that describes the channel component configuration file.

See Section , "Example Channel Configuration Files" for a complete example of a
channel configuration file.

This section describes the following topics:

■ Section , "How to Configure a System-Timestamped Channel Using Oracle Event
Processing IDE for Eclipse"

■ Section , "How to Configure an Application-Timestamped Channel Using Oracle
Event Processing IDE for Eclipse"

■ Section , "How to Create a Channel Component Configuration File Manually"

How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE
for Eclipse

This section describes how to create a system-timestamped channel.

The most efficient and least error-prone way to create and edit a channel configuration
in the default component configuration file is to use the Oracle Event Processing IDE
for Eclipse. Optionally, you can create a channel configuration file manually (see
Section , "How to Create a Channel Component Configuration File Manually").

For more information, see:

■ Section , "System-Timestamped Channels"

■ Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing
Network"

To configure a channel using Oracle Event Processing IDE for Eclipse:
1. Use Oracle Event Processing IDE for Eclipse to create a channel.

See Section , "How to Create a Basic Node".

2. Optionally, override the default channel assembly file configuration by adding
additional wlevs:channel attributes and child elements:

a. Right-click the channel node and select Go To Assembly Source.

b. Add the appropriate wlevs:channel attributes.

Required attributes include:

– id

– event-type

In particular, specify whether this channel is a stream or relation by
configuring attribute is-relation:

– To specify this channel as stream, set is-relation to false (default).

– To specify this channel as a relation, set is-relation to true.

If you specify this channel as a relation, you must also configure the chan-
nel attribute primary-key.

Configuring a Channel

10-8 Developer's Guide for Oracle Event Processing

See Table C–9, " Attributes of the wlevs:channel Application Assembly
Element".

c. Add the appropriate wlevs:channel child elements.

– Appendix , "wlevs:instance-property"

– Appendix , "wlevs:listener"

– Appendix , "wlevs:property"

– Appendix , "wlevs:source"

3. In the Project Explorer, expand your META-INF/wlevs directory.

4. Choose the component configuration file you want to use:

a. To use the default component configuration file, right-click the
META-INF/wlevs/config.xml file and select Open With > XML Editor.

The file opens in an XML Editor.

b. To create a new component configuration file:

– Right-click the wlevs directory and select New > File.

The New File dialog appears.

– Enter a file name.

You can name the file anything you want but the name of the file must
end in .xml.

– Click Finish.

Oracle Event Processing IDE for Eclipse adds the component configura-
tion file to the wlevs directory.

5. Right-click the component configuration file you chose to use and select Open
With > XML Editor.

The file opens in an XML Editor.

6. If you created a new component configuration file, add the header and config
element shown in Example 10–8. Otherwise, proceed to step 7.

Example 10–8 Component Configuration File Header and config Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

</config>

7. Add a channel element for the channel as Example 10–9 shows.

Example 10–9 Component Configuration File Channel Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<processor>
...

Configuring a Channel

Connecting EPN Stages Using Channels 10-9

</processor>
...
<channel>
</channel>

</config>

8. Add a name child element to the channel element.

The name element value must match the corresponding EPN assembly file channel
element’s id attribute.

For example, given the EPN assembly file channel element shown in
Example 10–10, the corresponding configuration file channel element is shown in
Example 10–11.

Example 10–10 EPN Assembly File Channel Id: priceStream

<wlevs:channel id="priceStream" event-type="PriceEvent">
<wlevs:listener ref="filterFanoutProcessor" />
<wlevs:source ref="PriceAdapter" />

</wlevs:channel>

Example 10–11 Component Configuration File Channel Name: priceStream

<channel>
<name>priceStream</name>

</channel>

9. Optionally, override the default channel configuration by adding additional
channel child elements:

■ Add a max-threads child element to specify the maximum number of threads
that Oracle Event Processing server uses to process events for this channel.

Setting this value has no effect when max-size is 0. The default value is 0.

<channel>
<name>priceStream</name>
<max-threads>2</size>

</channel>

When set to 0, the channel acts as a pass-through. When max-threads > 0, the
channel acts as classic blocking queue, where upstream components are
producers of events and the downstream components are the consumers of
events. The queue size is defined by the configuration max-size. There will be
up to max-threads number of threads consuming events from the queue.

With multiple threads enabled,
com.bea.wlevs.ede.api.EventRejectedException instances thrown from
downstream components in the EPN won’t be propagated up to an adapter
from which the channel is receiving events unless the channel has an
associated fault handler. For more information, see Section , "Handling Faults
in Channels".

■ Add a max-size child element to specify the maximum size of the channel.

Caution: Identifiers and names in XML files are case sensitive. Be
sure to specify the same case when referencing the component's
identifier in the EPN assembly file.

Configuring a Channel

10-10 Developer's Guide for Oracle Event Processing

Zero-size channels synchronously pass-through events.

Non-zero size channels process events asynchronously, buffering events by the
requested size. The default value is 0.

<channel>
<name>priceStream</name>
<max-size>10000</size>

</channel>

Note that when a queued channel becomes full, the default behavior is to
discard events that could not be inserted into the queue because the queue is
full. You can configure the channel so that it will instead raise an
EventProcessingException to its upstream stage. The exception contains the
events that could not be inserted into the queue. To support this behavior, set
the fail-when-rejected setting to true. You can also specify a timeout value
after which events are dropped or an exception is raised. For configuration
reference information, see , "fail-when-rejected" and , "offer-timeout".

■ Add a heartbeat child element to specify the number of nanoseconds a
channel can be idle before Oracle Event Processing generates a heartbeat event
to advance time. The default is 100,000,000 nanoseconds.

The heartbeat child element applies to system-timestamped relations or
streams only when no events arrive in the event channels that are feeding the
processors and the processor has been configured with a statement that
includes some temporal operator, such as a time-based window or a pattern
matching with duration.

<channel>
<name>MatchOutputChannel</name>
<heartbeat>10000</heartbeat>

</channel>

■ Add a selector child element to specify which up-stream Oracle CQL
processor queries are permitted to output their results to the channel.

You may configure a channel element with a selector before creating the
queries in the upstream processor. In this case, you must specify query names
that match the names in the selector.

For more information, Section , "Controlling Which Queries Output to a
Downstream Channel: selector".

10. Select File > Save.

The EPN Editor adds a configuration badge to the channel as Figure 10–2 shows.
For more information, see Section , "Configuration Badging".

Figure 10–2 Channel With Configuration Badge

Note: The selector attribute is only applicable if the up-stream
node is an Oracle CQL processor. For more information, see
Chapter 17, "Querying an Event Stream with Oracle CQL".

Configuring a Channel

Connecting EPN Stages Using Channels 10-11

How to Configure an Application-Timestamped Channel Using Oracle Event Processing
IDE for Eclipse

This section describes how to create an application-timestamped channel.

The most efficient and least error-prone way to create and edit a channel configuration
in the default component configuration file is to use the Oracle Event Processing IDE
for Eclipse. Optionally, you can create a channel configuration file manually (see
Section , "How to Create a Channel Component Configuration File Manually").

For more information, see:

■ Section , "Application-Timestamped Channels"

■ Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing
Network"

To configure a channel using Oracle Event Processing IDE for Eclipse:
1. Use Oracle Event Processing IDE for Eclipse to create a channel.

See Section , "How to Create a Basic Node".

2. Optionally, override the default channel assembly file configuration by adding
additional wlevs:channel attributes and child elements:

a. Right-click the channel node and select Go To Assembly Source.

b. Add the appropriate wlevs:channel attributes.

In particular, specify whether this channel is a stream or relation by
configuring attribute is-relation:

– To specify this channel as stream, set is-relation to false (default).

– To specify this channel as a relation, set is-relation to true.

See Table C–9, " Attributes of the wlevs:channel Application Assembly
Element".

c. Add a wlevs:application-timestamped child element.

Use this element to specify a wlevs:expression child element that Oracle
Event Processing uses to generate timestamp values.

Optionally, configure the wlevs:application-timestamped attributes:

– is-total-order: specifies if the application time published is always
strictly greater than the last value used.

Valid values are true or false. Default: false.

For more information, see Appendix , "wlevs:application-timestamped".

d. Add other appropriate wlevs:channel child elements.

– Appendix , "wlevs:instance-property"

– Appendix , "wlevs:listener"

– Appendix , "wlevs:property"

– Appendix , "wlevs:source"

3. In the Project Explorer, expand your META-INF/wlevs directory.

4. Choose the component configuration file you want to use:

Configuring a Channel

10-12 Developer's Guide for Oracle Event Processing

a. To use the default component configuration file, right-click the
META-INF/wlevs/config.xml file and select Open With > XML Editor.

The file opens in an XML Editor.

b. To create a new component configuration file:

– Right-click the wlevs directory and select New > File.

The New File dialog appears.

– Enter a file name.

You can name the file anything you want but the name of the file must
end in .xml.

– Click Finish.

Oracle Event Processing IDE for Eclipse adds the component configura-
tion file to the wlevs directory.

5. Right-click the component configuration file you chose to use and select Open
With > XML Editor.

The file opens in an XML Editor.

6. If you created a new component configuration file, add the header and config
element shown in Example 10–8. Otherwise, proceed to step 7.

Example 10–12 Component Configuration File Header and config Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

</config>

7. Add a channel element for the channel as Example 10–9 shows.

Example 10–13 Component Configuration File Channel Element

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<processor>
...

</processor>
...
<channel>
</channel>

</config>

8. Add a name child element to the channel element.

The name element value must match the corresponding EPN assembly file channel
element’s id attribute.

For example, given the EPN assembly file channel element shown in
Example 10–10, the corresponding configuration file channel element is shown in
Example 10–11.

Configuring a Channel

Connecting EPN Stages Using Channels 10-13

Example 10–14 EPN Assembly File Channel Id: priceStream

<wlevs:channel id="priceStream" event-type="PriceEvent">
<wlevs:listener ref="filterFanoutProcessor" />
<wlevs:source ref="PriceAdapter" />

</wlevs:channel>

Example 10–15 Component Configuration File Channel Name: priceStream

<channel>
<name>priceStream</name>

</channel>

9. Optionally, override the default channel configuration by adding additional
channel child elements:

■ Add a max-threads child element to specify the maximum number of threads
that Oracle Event Processing server uses to process events for this channel.

Setting this value has no effect when max-size is 0. The default value is 0.

<channel>
<name>priceStream</name>
<max-threads>2</size>

</channel>

When set to 0, the channel acts as a pass-through. When max-threads > 0, the
channel acts as classic blocking queue, where upstream components are
producers of events and the downstream components are the consumers of
events. The queue size is defined by the configuration max-size. There will be
up to max-threads number of threads consuming events from the queue.

Note that with multiple threads enabled,
com.bea.wlevs.ede.api.EventRejectedException instances thrown from
downstream components in the EPN won’t be propagated up to an adapter
from which the channel is receiving events.

■ Add a max-size child element to specify the maximum size of the channel.

Zero-size channels synchronously pass-through events.

Non-zero size channels process events asynchronously, buffering events by the
requested size. The default value is 0.

<channel>
<name>priceStream</name>
<max-size>10000</size>

</channel>

Note that when a queued channel becomes full, the default behavior is to
discard events that could not be inserted into the queue because the queue is
full. You can configure the channel so that it will instead raise an
EventProcessingException to its upstream stage. The exception contains the
events that could not be inserted into the queue. To support this behavior, set
the fail-when-rejected setting to true. You can also specify a timeout value
after which events are dropped or an exception is raised. For configuration
reference information, see , "fail-when-rejected" and , "offer-timeout".

Caution: Identifiers and names in XML files are case sensitive. Be
sure to specify the same case when referencing the component's
identifier in the EPN assembly file.

Configuring a Channel

10-14 Developer's Guide for Oracle Event Processing

■ Add a selector child element to specify which up-stream Oracle CQL
processor queries are permitted to output their results to the channel.

You may configure a channel element with a selector before creating the
queries in the upstream processor. In this case, you must specify query names
that match the names in the selector.

For more information, Section , "Controlling Which Queries Output to a
Downstream Channel: selector".

For more information, Section , "selector".

10. Select File > Save.

The EPN Editor adds a configuration badge to the channel as Figure 10–3 shows.
For more information, see Section , "Configuration Badging".

Figure 10–3 Channel With Configuration Badge

How to Create a Channel Component Configuration File Manually
Although the Oracle Event Processing IDE for Eclipse is the most efficient and least
error-prone way to create and a channel configuration file (see Section , "How to
Configure a System-Timestamped Channel Using Oracle Event Processing IDE for
Eclipse"), alternatively, you can also create and maintain a channel configuration file
manually.

For simplicity, the following procedure assumes that you are going to configure all
components of an application in a single XML file.

To create a channel component configuration file manually:
1. Create an EPN assembly file and add a wlevs:channel element for each channel in

your application.

Uniquely identify each wlevs:channel with the id attribute.

See Section , "Creating EPN Assembly Files" for details.

2. Optionally, override the default channel assembly file configuration by adding
additional wlevs:channel attributes and child elements:

a. Add the appropriate wlevs:channel attributes.

See Table C–9, " Attributes of the wlevs:channel Application Assembly
Element".

b. Add the appropriate wlevs:channel child elements.

– Appendix , "wlevs:application-timestamped"

– Appendix , "wlevs:instance-property"

Note: The selector attribute is only applicable if the up-stream
node is an Oracle CQL processor. For more information, see
Chapter 17, "Querying an Event Stream with Oracle CQL".

Configuring a Channel

Connecting EPN Stages Using Channels 10-15

– Appendix , "wlevs:listener"

– Appendix , "wlevs:property"

– Appendix , "wlevs:source"

3. Create an XML file using your favorite XML editor.

You can name this XML file anything you want, provided it ends with the .xml
extension.

The root element of the configuration file is config, with namespace definitions
shown in the next step.

4. For each channel in your application, add a channel child element of config.

Uniquely identify each channel with the name child element. This name must be
the same as the value of the id attribute in the channel element of the EPN
assembly file that defines the event processing network of your application. This is
how Oracle Event Processing knows to which particular channel component in the
EPN assembly file this channel configuration applies. See Section , "Creating EPN
Assembly Files" for details.

For example, if your application has two streams, the configuration file might
initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<helloworld:config
xmlns:helloworld="http://www.bea.com/xml/ns/wlevs/example/helloworld">
<processor>
 ...
</processor>
<channel>
<name>firstStream</name>
...

</channel>
<channel>
<name>secondStream</name>
...

</channel>
</helloworld:config>

In the example, the configuration file includes two channels called firstStream
and secondStream. This means that the EPN assembly file must include at least
two channel registrations with the same identifiers:

<wlevs:channel id="firstStream" ...>
...

</wlevs:channel>
<wlevs:channel id="secondStream" ...>
...

</wlevs:channel>

Caution: Identifiers and names in XML files are case sensitive, so be
sure you specify the same case when referencing the component's
identifier in the EPN assembly file.

Configuring a Channel

10-16 Developer's Guide for Oracle Event Processing

5. Optionally, override the default channel configuration by adding additional
channel child elements:

■ Add a max-threads child element to specify the maximum number of threads
that Oracle Event Processing server uses to process events for this channel.

Setting this value has no effect when max-size is 0. The default value is 0.

<channel>
<name>priceStream</name>
<max-threads>2</size>

</channel>

When set to 0, the channel acts as a pass-through. When max-threads > 0, the
channel acts as classic blocking queue, where upstream components are
producers of events and the downstream components are the consumers of
events. The queue size is defined by the configuration max-size. There will be
up to max-threads number of threads consuming events from the queue.

Note that with multiple threads enabled,
com.bea.wlevs.ede.api.EventRejectedException instances thrown from
downstream components in the EPN won’t be propagated up to an adapter
from which the channel is receiving events.

■ Add a max-size child element to specify the maximum size of the channel.

Zero-size channels synchronously pass-through events.

Non-zero size channels process events asynchronously, buffering events by the
requested size. The default value is 0.

<channel>
<name>priceStream</name>
<max-size>10000</size>

</channel>

Note that when a queued channel becomes full, the default behavior is to
discard events that could not be inserted into the queue because the queue is
full. You can configure the channel so that it will instead raise an
EventProcessingException to its upstream stage. The exception contains the
events that could not be inserted into the queue. To support this behavior, set
the fail-when-rejected setting to true. You can also specify a timeout value
after which events are dropped or an exception is raised. For configuration
reference information, see , "fail-when-rejected" and , "offer-timeout".

■ Add a heartbeat child element to specify a new number of nanoseconds a
channel can be idle before Oracle Event Processing generates a heartbeat event
to advance time. The default is 100,000,000 nanoseconds.

The heartbeat child element applies to system-timestamped relations or
streams only when no events arrive in the event channels that are feeding the
processors and the processor has been configured with a statement that
includes some temporal operator, such as a time-based window or a pattern
matching with duration.

<channel>
<name>MatchOutputChannel</name>
<heartbeat>10000</heartbeat>

</channel>

■ Add a selector child element to specify which up-stream Oracle CQL
processor queries are permitted to output their results to the channel.

Example Channel Configuration Files

Connecting EPN Stages Using Channels 10-17

You may configure a channel element with a selector before creating the
queries in the upstream processor. In this case, you must specify query names
that match the names in the selector.

For more information, Section , "Controlling Which Queries Output to a
Downstream Channel: selector".

For more information, Section , "selector".

6. Save and close the configuration file.

Example Channel Configuration Files
Figure 10–4 shows part of an EPN that contains two channels: priceStream and
filteredStream. The priceStream channel is an in-bound channel that connects the
PriceAdapter event source and its PriceEvent events to an Oracle CQL processor
filterFanoutProcessor. The filteredStream channel is an out-bound channel that
connects the Oracle CQL processor’s query results (FilteredPriceEvent events) to
down-stream components (not shown in Figure 10–4).

Figure 10–4 EPN with Two Channels

This section provides example channel configuration files, including:

■ Section , "Channel Component Configuration File"

■ Section , "Channel EPN Assembly File"

Channel Component Configuration File
Example 10–16 shows a sample component configuration file that configures the two
channels shown in Figure 10–4.

Example 10–16 Sample Channel Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>filterFanoutProcessor</name>
<rules>

<query id="Yr3Sector"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="3_YEAR"

]]></query>
</rules>

</processor>
<channel>

<name>priceStream</name>

Note: The selector attribute is only applicable if the up-stream
node is an Oracle CQL processor. For more information, see
Chapter 17, "Querying an Event Stream with Oracle CQL".

Example Channel Configuration Files

10-18 Developer's Guide for Oracle Event Processing

<max-size>10000</max-size>
<max-threads>4</max-threads>

</channel>
<channel>

<name>filteredStream</name>
<max-size>5000</max-size>
<max-threads>2</max-threads>

</channel>
</n1:config>

Channel EPN Assembly File
Example 10–17 shows a EPN assembly file that configures the two channels shown in
Figure 10–4.

Example 10–17 Channel EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xmlns:cqlx="http://www.oracle.com/schema/cqlx"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

<wlevs:event-type-repository>

<wlevs:event-type type-name="PriceEvent">
<wlevs:properties>

<wlevs:property name="cusip" type="java.lang.String" />
<wlevs:property name="bid" type="java.lang.Double" />
<wlevs:property name="srcId" type="java.lang.String" />
<wlevs:property name="bidQty" type="java.lang.Integer" />
<wlevs:property name="ask" type="java.lang.Double" />
<wlevs:property name="askQty" type="java.lang.Integer" />
<wlevs:property name="seq" type="java.lang.Long" />
<wlevs:property name="sector" type="java.lang.String" />

</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="FilteredPriceEvent">

<wlevs:properties>
<wlevs:property name="cusip" type="java.lang.String" />
<wlevs:property name="bid" type="java.lang.Double" />
<wlevs:property name="srcId" type="java.lang.String" />
<wlevs:property name="bidQty" type="java.lang.Integer" />
<wlevs:property name="ask" type="java.lang.Double" />
<wlevs:property name="askQty" type="java.lang.Integer" />
<wlevs:property name="seq" type="java.lang.Long" />

</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="BidAskEvent">

<wlevs:properties>
<wlevs:property name="cusip" type="java.lang.String" />
<wlevs:property name="bidseq" type="java.lang.Long" />
<wlevs:property name="bidSrcId" type="java.lang.String" />
<wlevs:property name="bid" type="java.lang.Double" />
<wlevs:property name="askseq" type="java.lang.Long" />
<wlevs:property name="askSrcId" type="java.lang.String" />
<wlevs:property name="ask" type="java.lang.Double" />

Example Channel Configuration Files

Connecting EPN Stages Using Channels 10-19

<wlevs:property name="bidQty" type="java.lang.Integer" />
<wlevs:property name="askQty" type="java.lang.Integer" />
<wlevs:property name="intermediateStrategy" type="java.lang.String" />
<wlevs:property name="correlationId" type="java.lang.Long" />
<wlevs:property name="priority" type="java.lang.Integer" />

</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="FinalOrderEvent">

<wlevs:properties>
<wlevs:property name="cusip" type="java.lang.String" />
<wlevs:property name="bidseq" type="java.lang.Long" />
<wlevs:property name="bidSrcId" type="java.lang.String" />
<wlevs:property name="bid" type="java.lang.Double" />
<wlevs:property name="bidQty" type="java.lang.Integer" />
<wlevs:property name="bidSourceStrategy" type="java.lang.String" />
<wlevs:property name="askseq" type="java.lang.Long" />
<wlevs:property name="askSrcId" type="java.lang.String" />
<wlevs:property name="ask" type="java.lang.Double" />
<wlevs:property name="askQty" type="java.lang.Integer" />
<wlevs:property name="askSourceStrategy" type="java.lang.String" />
<wlevs:property name="correlationId" type="java.lang.Long" />

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

<!-- Assemble EPN (event processing network) -->
<wlevs:adapter advertise="true" id="PriceAdapter"

provider="csvgen">
<wlevs:instance-property name="port" value="9008" />
<wlevs:instance-property name="eventTypeName"

value="PriceEvent" />
<wlevs:instance-property name="eventPropertyNames"

value="srcId,sector,cusip,bid,ask,bidQty,askQty,seq" />
</wlevs:adapter>

<wlevs:channel id="priceStream" event-type="PriceEvent">

<wlevs:listener ref="filterFanoutProcessor" />
<wlevs:source ref="PriceAdapter" />

</wlevs:channel>

<!-- By default, CQL is used for OCEP 11.0 -->
<wlevs:processor id="filterFanoutProcessor" >
</wlevs:processor>

<wlevs:channel id="filteredStream"

event-type="FilteredPriceEvent">
<wlevs:listener ref="bbaProcessor" />
<wlevs:listener ref="analyticsProcessor" />
<wlevs:source ref="filterFanoutProcessor" />

</wlevs:channel>

<!-- Explicitly specify provider CQL -->
<wlevs:processor id="bbaProcessor" provider="cql">

<wlevs:listener ref="bidAskBBAStream" />
</wlevs:processor>

<wlevs:processor id="analyticsProcessor">

<wlevs:listener ref="bidAskAnalyticsStream" />
</wlevs:processor>

<wlevs:channel id="bidAskBBAStream" event-type="BidAskEvent">

<wlevs:listener ref="selectorProcessor" />
</wlevs:channel>

<wlevs:channel id="bidAskAnalyticsStream" event-type="BidAskEvent">
<wlevs:listener ref="selectorProcessor" />

Example Channel Configuration Files

10-20 Developer's Guide for Oracle Event Processing

</wlevs:channel>

<wlevs:processor id="selectorProcessor">
<wlevs:listener ref="citipocOut" />

</wlevs:processor>

<wlevs:channel id="citipocOut" event-type="FinalOrderEvent" advertise="true">
<wlevs:listener>

<!-- Create business object -->
<bean id="outputBean"

class="com.bea.wlevs.POC.citi.OutputBean"
autowire="byName" />

</wlevs:listener>
</wlevs:channel>

</beans>

11

Integrating the Java Message Service 11-1

11Integrating the Java Message Service

[12] This chapter describes how to use JMS adapters to connect the Java Message Service
with an Oracle Event Processing event processing network to receive and send JMS
messages.

This chapter includes the following sections:

■ Overview of JMS Adapter Configuration

■ Configuring a JMS Adapter for a JMS Service Provider

■ Creating a Custom Converter Between JMS Messages and Event Types

■ Encrypting Passwords in the JMS Adapter Component Configuration File

■ Configuring the JMS Adapter EPN Assembly File

■ Configuring the JMS Adapter Component Configuration File

Overview of JMS Adapter Configuration
The Oracle Event Processing JMS adapters support any Java EE compliant JMS service
provider that provides a Java client. For more information, see Section , "JMS Service
Providers".

Oracle Event Processing provides the following Java Message Service (JMS) adapters
that you can use in your event applications to send and receive messages to and from a
JMS destination, respectively, without writing any Java code:

■ Section , "Inbound JMS Adapter"

■ Section , "Outbound JMS Adapter"

For general information about JMS, see Java Message Service on the Sun Developer
Network at http://java.sun.com/products/jms/.

JMS Service Providers
The Oracle Event Processing JMS adapters support any Java EE compliant JMS service
provider that provides a Java client.

This chapter describes how to configure the Oracle Event Processing JMS inbound and
outbound adapters for use with the following JMS service providers:

■ Section , "How to Configure a JMS Adapter for Oracle WebLogic Server JMS
Manually"

■ Section , "How to Configure a JMS Adapter for Tibco EMS JMS Manually"

Overview of JMS Adapter Configuration

11-2 Developer's Guide for Oracle Event Processing

If your JMS service provider is not in this list, you can still configure Oracle Event
Processing JMS adapters for use with your JMS service provider. Review the
procedure in Section , "How to Configure a JMS Adapter for Tibco EMS JMS
Manually" as a configuration model, consult your JMS service provider
documentation, and adapt this procedure to suit your JMS service provider.

For more information, see Section , "Configuring a JMS Adapter for a JMS Service
Provider".

Inbound JMS Adapter
The inbound JMS adapter receives messages from a JMS destination and converts
them into events.

You specify an inbound JMS adapter in the EPN assembly file as follows:

...
<wlevs:adapter id="myJmsInbound" provider="jms-inbound">

...
</wlevs:adapter>

...

You configure an inbound JMS adapter in its component configuration file as follows:

...
<jms-adapter>

<name>myJmsInbound</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Queue1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>
...

This section describes:

■ Section , "Conversion Between JMS Messages and Event Types"

■ Section , "Single and Multi-threaded Inbound JMS Adapters"

■ Section , "Configuring a JMS Adapter for Durable Subscriptions"

For more information, see:

■ Section , "JMS Inbound Adapter EPN Assembly File Configuration"

■ Section , "JMS Inbound Adapter Component Configuration"

Conversion Between JMS Messages and Event Types
By default, the inbound JMS adapter automatically converts JMS messages into events
by matching property names with a specified event type if the following is true:

■ You must specify an event type using the jms-adapter element event-type child
element in the JMS adapter component configuration file.

The JMS adapter converts incoming JMS messages into the Oracle Event
Processing event type this element specifies.

■ JMS messages must be of type MapMessage.

Overview of JMS Adapter Configuration

Integrating the Java Message Service 11-3

For each incoming message, an event of the specified event type is created. For
each map element in the incoming message, the adapter looks for a property on
the event type and if found, sets the corresponding value.

Optionally, you may customize JMS message to event type conversion by writing your
own Java class to specify exactly how you want the incoming JMS messages to be
converted into one or more event types. In this case, you do not specify an event type
using the jms-adapter element event-type child element in the JMS adapter
component configuration file.

For more information, see Section , "Creating a Custom Converter Between JMS
Messages and Event Types".

Single and Multi-threaded Inbound JMS Adapters
By default, an inbound JMS adapter is single-threaded. That is, the inbound JMS
adapter uses a single thread to read messages from the JMS destination.

When the inbound JMS adapter is single-threaded, event order is guaranteed.

To improve scalability, you can configure an inbound JMS adapter to use multiple
threads to read messages from the JMS destination. The simplest way to do this is to
configure the adapter with a work manager. You can specify a dedicated work
manager used only by the adapter or you can share a work manager amongst several
components such as other adapters and Jetty.

When the inbound JMS adapter is multi-threaded, event order is not guaranteed.

For more information, see:

■ work-manager and concurrent-consumers in Table 11–1, " jms-adapter Inbound
Child Elements"

■ Section , "EventPartitioner"

Configuring a JMS Adapter for Durable Subscriptions
You can configure an inbound JMS adapter to be a client in a durable subscription to a
JMS topic. A durable subscription ensures that the adapter receives published
messages even if the adapter becomes inactive. When the inbound adapter connects to
the JMS server it will register the durable subscription, and subsequent messages sent
to the topic will be retained during periods when the subscriber is disconnected
(unless they expire) and delivered when it reconnects.

A durable subscription assumes that the publisher that is publishing JMS messages to
the topic is using the persistent delivery mode. Note that publisher might be the
Oracle Event Processing outbound JMS adapter (in other words, its delivery-mode
value must be persistent, the default value).

To create a durable subscription in the adapter you do the following:

■ Ensure that the JMS message publisher is delivering messages in persistent mode.

■ Specify a client ID for the connection factory. On Oracle WebLogic Server, the
client ID can be set on the connection factory administratively using the console.
Note that this implies that you should have a dedicated connection factory
configured for each adapter instance that is using durable subscribers.

■ Set three jms-adapter properties:

– destination-type must be set to TOPIC.

– durable-subscription must be set to true.

Configuring a JMS Adapter for a JMS Service Provider

11-4 Developer's Guide for Oracle Event Processing

– durable-subscription-name is set to a unique identifier for the subscription.

For more information about these properties, see Section , "JMS Inbound Adapter
Component Configuration".

Outbound JMS Adapter
The outbound JMS adapter sends events to a JMS destination, automatically
converting the event into a JMS map message by matching property names with the
event type.

Typically, you also customize this conversion by writing your own Java class to specify
exactly how you want the event types to be converted into outgoing JMS messages.

If you do not provide your own converter class, and instead let Oracle Event
Processing take care of the conversion between messages and event types, the
following is true:

■ You must specify an event type using the jms-adapter element event-type child
element in the JMS adapter component configuration file.

The JMS adapter converts incoming JMS messages into the Oracle Event
Processing event type this element specifies.

■ By default, the outbound JMS adapter default converter creates JMS messages of
type MapMessage. For each property of the event, a corresponding element is
created in the output MapMessage.

You specify an outbound JMS adapter in the EPN assembly file as follows:

...
<wlevs:adapter id="myJmsOutbound" provider="jms-outbound">

...
</wlevs:adapter>

...

You configure an outbound JMS adapter in its component configuration file as follows:

...
<jms-adapter>

<name>myJmsOutbound</name>
<event-type>JMSEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Topic1</destination-jndi-name>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>
...

For more information, see:

■ Section , "JMS Outbound Adapter EPN Assembly File Configuration"

■ Section , "JMS Outbound Adapter Component Configuration"

■ Section , "Creating a Custom Converter Between JMS Messages and Event Types."

Configuring a JMS Adapter for a JMS Service Provider
This section describes how to configure the Oracle Event Processing JMS inbound and
outbound adapters:

■ Section , "How to Configure a JMS Adapter Using the Oracle Event Processing IDE
for Eclipse"

■ Section , "How to Configure a JMS Adapter Manually"

Configuring a JMS Adapter for a JMS Service Provider

Integrating the Java Message Service 11-5

This section provides examples specific to the following JMS service providers:

■ Section , "How to Configure a JMS Adapter for Oracle WebLogic Server JMS
Manually"

■ Section , "How to Configure a JMS Adapter for Tibco EMS JMS Manually"

If your JMS service provider is not in this list, and your JMS service provider offers a
Java client, then you can still configure Oracle Event Processing JMS adapters for use
with your JMS service provider. Review the procedure in Section , "How to Configure
a JMS Adapter for Tibco EMS JMS Manually" as a configuration model, consult your
JMS service provider documentation, and adapt this procedure to suit your JMS
service provider.

For more information, see Section , "JMS Service Providers".

How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse
The simplest way to create and configure a JMS adapter is using the Oracle Event
Processing IDE for Eclipse adapter wizard.

For more information, see Section , "How to Create an Adapter Node".

After using the adapter wizard to create and specify the basic JMS adapter
configuration, review Section , "How to Configure a JMS Adapter Manually" to
complete the configuration.

How to Configure a JMS Adapter Manually
This section describes how to create and configure a JMS adapter manually. It
describes the detailed steps that you may require depending on your JMS adapter
application and service provider.

The simplest way to create and configure a JMS adapter is using the Oracle Event
Processing IDE for Eclipse adapter wizard as Section , "How to Configure a JMS
Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the
adapter wizard to create and specify the basic JMS adapter configuration, review this
procedure to complete the configuration.

To configure a JMS adapter manually:
1. In the EPN assembly file of the application, add a wlevs:adapter element for each

inbound and outbound JMS adapter you want to use in your application.

Example 11–1 shows the wlevs:adapter element for a JMS inbound adapter.

Example 11–1 wlevs:adapter Element for Inbound Adapter

<wlevs:adapter id="inboundJmsAdapter1" provider="jms-inbound">
...
</wlevs:adapter>

See:

■ Section , "JMS Inbound Adapter EPN Assembly File Configuration"

■ Section , "JMS Outbound Adapter EPN Assembly File Configuration"

2. In the component configuration file of the application, add a jms-adapter element
for each inbound and outbound JMS adapter you want to use in your application.

Example 11–2 shows the jms-adapter element for the JMS inbound adapter in
Example 11–1.

Configuring a JMS Adapter for a JMS Service Provider

11-6 Developer's Guide for Oracle Event Processing

Example 11–2 jms-adapter Element for Inbound Adapter

<jms-adapter>
<name>inboundJmsAdapter1</name>

...
</jms-adapter>

For each jms-adapter element, the name child element must be set to the
corresponding wlevs:adapter element id child element.

See:

■ Section , "JMS Inbound Adapter Component Configuration"

■ Section , "JMS Outbound Adapter Component Configuration"

3. Decide how you want to convert between JMS messages and Oracle Event
Processing event types:

a. If you want the JMS adapters to perform automatic conversion, specify an
event type using the jms-adapter element event-type child element in the
JMS adapter component configuration file.

See:

– Section , "JMS Inbound Adapter Component Configuration"

– Section , "JMS Outbound Adapter Component Configuration"

b. If you want the JMS adapters to perform custom conversion, create a custom
converter Java class and register it in the EPN assembly file.

See Section , "Creating a Custom Converter Between JMS Messages and Event
Types".

4. Configure the jms-adapter elements for your JMS provider as Example 11–3
shows:

Example 11–3 jms-adapter Element With Tibco EMS JMS Configuration

<jms-adapter>
<name>inboundJmsAdapter1</name>
...
<jndi-provider-url> ... </jndi-provider-url>
<jndi-factory> ... </jndi-factory>
<connection-jndi-name> ... </connection-jndi-name>
<destination-jndi-name> ... </destination-jndi-name>
...

</jms-adapter>

For all options that the Oracle Event Processing JMS adapters support, see:

– Section , "JMS Inbound Adapter Component Configuration"

– Section , "JMS Outbound Adapter Component Configuration"

For specific JMS provider examples, see:

■ Section , "How to Configure a JMS Adapter for Oracle WebLogic Server JMS
Manually"

■ Section , "How to Configure a JMS Adapter for Tibco EMS JMS Manually"

For more information, see your JMS service provider documentation.

5. If you specify JMS provider client passwords in the component configuration file,
consider encrypting them.

Configuring a JMS Adapter for a JMS Service Provider

Integrating the Java Message Service 11-7

See Section , "Encrypting Passwords in the JMS Adapter Component
Configuration File".

6. Create a JMS client application library that contains the following:

■ The JMS client JAR files your JMS service provider documentation specifies.

■ If you are using Java Object messages, the Java classes used for messaging
need to be packaged in a library bundle.

You may include these Java classes in this JMS client JAR application library.

For more information, see Section , "Creating Application Libraries".

For a specific JMS provider example, see Section , "How to Configure a JMS
Adapter for Tibco EMS JMS Manually".

7. Copy the JMS client JAR application library to the appropriate Oracle Event
Processing server application library directory:

a. If your bundle is a driver, you must put it in the library extensions directory.

See Section , "Library Extensions Directory".

b. If your bundle is not a driver, you may put it in the library directory.

See Section , "Library Directory"

For more information, see Section , "How to Update an Application Library Using
Oracle Event Processing IDE for Eclipse".

8. If you created a custom converter class in step 3, update the MANIFEST.MF file of
your application to add the following packages to the Import-Package header:

Import-Package: javax.jms,javax.naming, ...
...

See Section , "How to Import a Package".

How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually
Oracle Event Processing includes a WebLogic JMS client.

When connecting to Oracle WebLogic server, Oracle Event Processing uses the T3
client by default.

You can use the IIOP WebLogic client by starting Oracle WebLogic Server with the
-useIIOP command-line argument. This is a server-wide setting that is independent of
the JMS code being used (whether it is one of the provided adapters or custom JMS
code).

Note: This JMS client JAR application library must:

■ Export all provider-specific packages.

■ Export the Java classes used for messaging, if applicable.

■ Import javax.jms and javax.naming.

The application bundle does not need to export the provider-specific
packages.

The application bundle must import Java classes used for messaging,
if applicable.

Configuring a JMS Adapter for a JMS Service Provider

11-8 Developer's Guide for Oracle Event Processing

It is not possible to mix T3 and IIOP usage within a running Oracle Event Processing
server.

For more information, see Section , "Configuring a JMS Adapter for a JMS Service
Provider".

You can manually configure the built-in JMS inbound and outbound adapter to use the
Oracle WebLogic Server JMS provider.

The simplest way to create and configure a JMS adapter is using the Oracle Event
Processing IDE for Eclipse adapter wizard as Section , "How to Configure a JMS
Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the
adapter wizard to create and specify the basic JMS adapter configuration, review this
procedure to complete the configuration.

To configure JMS adapters for Oracle WebLogic Server JMS manually:
1. Update the EPN assembly file of the application by adding a wlevs:adapter

element for each inbound and outbound JMS adapter you want to use in your
application.

Example 11–4 shows the wlevs:adapter element for a JMS inbound adapter.

Example 11–4 wlevs:adapter Element for Inbound Adapter

<wlevs:adapter id="inboundJmsAdapter1" provider="jms-inbound">
...
</wlevs:adapter>

See:

■ Section , "JMS Inbound Adapter EPN Assembly File Configuration"

■ Section , "JMS Outbound Adapter EPN Assembly File Configuration"

2. Update the component configuration file of the application by adding a
jms-adapter element for each inbound and outbound JMS adapter you want to
use in your application.

Example 11–5 shows the jms-adapter element for the JMS inbound adapter in
Example 11–4.

Example 11–5 jms-adapter Element for Inbound Adapter

<jms-adapter>
<name>inboundJmsAdapter1</name>

...
</jms-adapter>

For each jms-adapter element, the name child element must be set to the
corresponding wlevs:adapter element id child element.

See:

■ Section , "JMS Inbound Adapter Component Configuration"

■ Section , "JMS Outbound Adapter Component Configuration"

3. Decide how you want to convert between JMS messages and Oracle Event
Processing event types:

a. If you want the JMS adapters to perform automatic conversion, specify an
event type using the jms-adapter element event-type child element in the
JMS adapter component configuration file.

Configuring a JMS Adapter for a JMS Service Provider

Integrating the Java Message Service 11-9

See:

– Section , "JMS Inbound Adapter Component Configuration"

– Section , "JMS Outbound Adapter Component Configuration"

b. If you want the JMS adapters to perform custom conversion, create a custom
converter Java class and register it in the EPN assembly file.

See Section , "Creating a Custom Converter Between JMS Messages and Event
Types".

4. Configure the jms-adapter elements for your Oracle WebLogic Server JMS
provider.

Example 11–6 shows the jms-adapter elements for a JMS inbound and JMS
outbound adapter.

Example 11–6 jms-adapter Elements for an Oracle WebLogic Server JMS Provider

...
<jms-adapter>

<name>JmsInbound</name>
<event-type>SimpleMapEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>QueueIn</destination-jndi-name>
<user>weblogic</user>
<password>welcome1</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>

<jms-adapter>
<name>JmsOutbound</name>
<event-type>SimpleMapEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>QueueIn</destination-jndi-name>
<user>weblogic</user>
<password>welcome1</password>
<message-selector></message-selector>
<session-transacted>false</session-transacted>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>
...

See:

– Section , "JMS Inbound Adapter Component Configuration"

– Section , "JMS Outbound Adapter Component Configuration"

5. If you specify JMS provider client passwords in the component configuration file,
consider encrypting them.

See Section , "Encrypting Passwords in the JMS Adapter Component
Configuration File".

6. If you are using Java Object messages, you must create a JMS client application
library that contains the Java classes used for messaging need to be packaged in a
library bundle.

For more information, see Section , "Creating Application Libraries".

Configuring a JMS Adapter for a JMS Service Provider

11-10 Developer's Guide for Oracle Event Processing

7. If you are using Java Object messages, copy the Java classes for messaging
application library to the appropriate Oracle Event Processing server application
library directory:

a. If your bundle is a driver, you must put it in the library extensions directory.

See Section , "Library Extensions Directory".

b. If your bundle is not a driver, you may put it in the library directory.

See Section , "Library Directory"

For more information, see Section , "How to Update an Application Library Using
Oracle Event Processing IDE for Eclipse".

8. If you created a custom converter class in step 3, update the MANIFEST.MF file of
your application to add the following packages to the Import-Package header:

Import-Package: javax.jms,javax.naming, ...
...

See Section , "How to Import a Package".

How to Configure a JMS Adapter for Tibco EMS JMS Manually
Oracle Event Processing supports TIBCO Enterprise Message Service (EMS) version
4.2.0 or higher.

To use the Tibco EMS JMS provider, you must add the following Tibco EMS client JAR
files to the Oracle Event Processing server library directory:

■ tibjms.jar

For more information, see:

■ Section , "Configuring a JMS Adapter for a JMS Service Provider"

■ Section , "Library Directory"

You can manually configure the built-in JMS inbound and outbound adapter to use the
Tibco EMS JMS provider.

The simplest way to create and configure a JMS adapter is using the Oracle Event
Processing IDE for Eclipse adapter wizard as Section , "How to Configure a JMS
Adapter Using the Oracle Event Processing IDE for Eclipse" describes. After using the
adapter wizard to create and specify the basic JMS adapter configuration, review this
procedure to complete the configuration.

To configure a JMS adapter for Tibco EMS JMS manually:
1. In the EPN assembly file of the application, add a wlevs:adapter element for each

inbound and outbound JMS adapter you want to use in your application.

Note: This JMS client JAR application library must:

■ Export the Java classes used for messaging.

■ Import javax.jms and javax.naming.

The application bundle does not need to export provider-specific
packages.

The application bundle must import Java classes used for messaging,
if applicable.

Configuring a JMS Adapter for a JMS Service Provider

Integrating the Java Message Service 11-11

Example 11–7 shows the wlevs:adapter element for a JMS inbound adapter.

Example 11–7 wlevs:adapter Element for Inbound Adapter

<wlevs:adapter id="inboundJmsAdapter1" provider="jms-inbound">
...
</wlevs:adapter>

See:

■ Section , "JMS Inbound Adapter EPN Assembly File Configuration"

■ Section , "JMS Outbound Adapter EPN Assembly File Configuration"

2. In the component configuration file of the application, add a jms-adapter element
for each inbound and outbound JMS adapter you want to use in your application.

Example 11–8 shows the jms-adapter element for the JMS inbound adapter in
Example 11–7.

Example 11–8 jms-adapter Element for Inbound Adapter

<jms-adapter>
<name>inboundJmsAdapter1</name>

...
</jms-adapter>

For each jms-adapter element, the name child element must be set to the
corresponding wlevs:adapter element id child element.

See:

■ Section , "JMS Inbound Adapter Component Configuration"

■ Section , "JMS Outbound Adapter Component Configuration"

3. Decide how you want to convert between JMS messages and Oracle Event
Processing event types:

a. If you want the JMS adapters to perform automatic conversion, specify an
event type using the jms-adapter element event-type child element in the
JMS adapter component configuration file.

See:

– Section , "JMS Inbound Adapter Component Configuration"

– Section , "JMS Outbound Adapter Component Configuration"

b. If you want the JMS adapters to perform custom conversion, create a custom
converter Java class and register it in the EPN assembly file.

See Section , "Creating a Custom Converter Between JMS Messages and Event
Types".

4. Configure the jms-adapter elements for your Tibco EMS JMS provider as
Example 11–9 shows:

Example 11–9 jms-adapter Element With Tibco EMS JMS Configuration

<jms-adapter>
<name>inboundJmsAdapter1</name>
...
<jndi-provider-url>tcp://TIBCOHOST:PORT</jndi-provider-url>
<jndi-factory>com.tibco.tibjms.naming.TibjmsInitialContextFactory</jndi-factory>
<connection-jndi-name>CONNECTION_NAME</connection-jndi-name>
<destination-jndi-name>DESTINATION_NAME</destination-jndi-name>

Configuring a JMS Adapter for a JMS Service Provider

11-12 Developer's Guide for Oracle Event Processing

...
</jms-adapter>

Where:

■ TIBCOHOST: the hostname of the Tibco EMS JMS provider host.

■ PORT: the Tibco EMS JMS provider port.

■ DESTINATION_NAME: the destination JNDI name of the Tibco EMS JMS
destination, such as TibcoRequestQueue1.

■ CONNECTION_NAME: the connection JNDI name of the Tibco EMS JMS connection
factory you defined in the Tibco EMS JMS server, such as
TibcoQueueConnectionFactory.

See:

– Section , "JMS Inbound Adapter Component Configuration"

– Section , "JMS Outbound Adapter Component Configuration"

5. If you specify JMS provider client passwords in the component configuration file,
consider encrypting them.

See Section , "Encrypting Passwords in the JMS Adapter Component
Configuration File".

6. Create a JMS client application library that contains the following:

■ tibjms.jar

■ If you are using Java Object messages, the Java classes used for messaging
need to be packaged in a library bundle.

You may include these Java classes in this JMS client application library.

For more information, see Section , "Creating Application Libraries".

For a specific JMS provider example, see Section , "How to Configure a JMS
Adapter for Tibco EMS JMS Manually".

7. Copy the application library to the appropriate Oracle Event Processing server
application library directory:

a. If your bundle is a driver, you must put it in the library extensions directory.

See Section , "Library Extensions Directory".

b. If your bundle is not a driver, you may put it in the library directory.

See Section , "Library Directory"

Note: The JMS client application library must:

■ Export all provider-specific packages.

■ Export the Java classes used for messaging, if applicable.

■ Import javax.jms and javax.naming.

The application bundle does not need to export the provider-specific
packages.

The application bundle must import Java classes used for messaging,
if applicable.

Creating a Custom Converter Between JMS Messages and Event Types

Integrating the Java Message Service 11-13

For more information, see Section , "How to Update an Application Library Using
Oracle Event Processing IDE for Eclipse".

8. If you created a custom converter class in step 3, update the MANIFEST.MF file of
your application to add the following packages to the Import-Package header:

Import-Package: javax.jms,javax.naming, ...
...

See Section , "How to Import a Package".

Creating a Custom Converter Between JMS Messages and Event Types
If you want to customize the conversion between JMS messages and event types you
must create your own converter bean.

This section describes:

■ Section , "How to Create a Custom Converter for the Inbound JMS Adapter"

■ Section , "How to Create a Custom Converter for the Outbound JMS Adapter"

How to Create a Custom Converter for the Inbound JMS Adapter
The custom converter bean for an inbound JMS must implement the
com.bea.wlevs.adapters.jms.api.InboundMessageConverter interface. This interface
has a single method:

public List convert(Message message) throws MessageConverterException, JMSException;

The message parameter corresponds to the incoming JMS message and the return
value is a List of events that will be passed on to the next stage of the event
processing network.

See the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for a full
description of these APIs.

To create a custom converter for the inbound JMS adapter:
1. Using the Oracle Event Processing IDE for Eclipse (or your preferred IDE), add a

Java class to your application project.

2. Implement the com.bea.wlevs.adapters.jms.api.InboundMessageConverter
interface.

Example 11–10 shows a possible implementation.

Example 11–10 Custom Converter for an Inbound JMS Adapter

package com.customer;
import com.bea.wlevs.adapters.jms.api.InboundMessageConverter;
import com.bea.wlevs.adapters.jms.api.MessageConverterException;
import com.bea.wlevs.adapters.jms.api.OutboundMessageConverter;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import java.util.ArrayList;
import java.util.List;
public class MessageConverter implements InboundMessageConverter,

OutboundMessageConverter {
public List convert(Message message) throws MessageConverterException, JMSException {

TestEvent event = new TestEvent();
TextMessage textMessage = (TextMessage) message;

Creating a Custom Converter Between JMS Messages and Event Types

11-14 Developer's Guide for Oracle Event Processing

event.setString_1(textMessage.getText());
List events = new ArrayList(1);
events.add(event);
return events;

}
public List<Message> convert(Session session, Object inputEvent)

throws MessageConverterException, JMSException {
TestEvent event = (TestEvent) inputEvent;
TextMessage message = session.createTextMessage(

"Text message: " + event.getString_1()
);
List<Message> messages = new ArrayList<Message>();
messages.add(message);
return messages;

}
}

3. Specify the converter in your application EPN assembly file as Example 11–11
shows:

■ Register the converter class using a bean element.

■ Associate the converter class with the JMS adapter by adding a
wlevs:instance-property with name set to converterBean and ref set to the
id of bean.

Example 11–11 Specifying a Converter Class for an Inbound JMS Adapter in the EPN
Assembly File

...
<bean id="myConverter" class="com.customer.MessageConverter"/>
<wlevs:adapter id="jmsInbound" provider="jms-inbound">

<wlevs:instance-property name="converterBean" ref="myConverter"/>
<wlevs:listener ref="mySink"/>

</wlevs:adapter>
...

4. Package the Java class with your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

How to Create a Custom Converter for the Outbound JMS Adapter
The custom converter bean for an outbound JMS must implement the
com.bea.wlevs.adapters.jms.api.OutboundMessageConverter interface. This
interface has a single method:

public List<Message> convert(Session session, Object event)
throws MessageConverterException, JMSException;

The parameters correspond to an event received by the outbound JMS adapter from
the source node in the EPN and the return value is a List of JMS messages.

See the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for a full
description of these APIs.

To create a custom converter for the outbound JMS adapter:
1. Using the Oracle Event Processing IDE for Eclipse (or your preferred IDE), add a

Java class to your application project.

2. Implement the com.bea.wlevs.adapters.jms.api.OutboundMessageConverter
interface.

Encrypting Passwords in the JMS Adapter Component Configuration File

Integrating the Java Message Service 11-15

Example 11–10 shows a possible implementation.

Example 11–12 Custom Converter for an Outbound JMS Adapter

package com.customer;
import com.bea.wlevs.adapters.jms.api.InboundMessageConverter;
import com.bea.wlevs.adapters.jms.api.MessageConverterException;
import com.bea.wlevs.adapters.jms.api.OutboundMessageConverter;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;
import java.util.ArrayList;
import java.util.List;
public class MessageConverter implements InboundMessageConverter,

OutboundMessageConverter {
public List convert(Message message) throws MessageConverterException, JMSException {

TestEvent event = new TestEvent();
TextMessage textMessage = (TextMessage) message;
event.setString_1(textMessage.getText());
List events = new ArrayList(1);
events.add(event);
return events;

}
public List<Message> convert(Session session, Object inputEvent)

throws MessageConverterException, JMSException {
TestEvent event = (TestEvent) inputEvent;
TextMessage message = session.createTextMessage(

"Text message: " + event.getString_1()
);
List<Message> messages = new ArrayList<Message>();
messages.add(message);
return messages;

}
}

3. Specify the converter in your application EPN assembly file as Example 11–11
shows:

■ Register the convert class using a bean element.

■ Associate the converter class with the JMS adapter by adding a
wlevs:instance-property with name set to converterBean and ref set to the
id of bean.

Example 11–13 Specifying a Converter Class for an Outbound JMS Adapter in the EPN
Assembly File

...
<bean id="myConverter" class="com.customer.MessageConverter"/>
<wlevs:adapter id="jmsOutbound" provider="jms-outbound">

<wlevs:instance-property name="converterBean" ref="myConverter"/>
</wlevs:adapter>

...

4. Package the Java class with your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

Encrypting Passwords in the JMS Adapter Component Configuration File
You can encrypt the password in the JMS adapter configuration file.

Encrypting Passwords in the JMS Adapter Component Configuration File

11-16 Developer's Guide for Oracle Event Processing

How to Encrypt Passwords in the JMS Adapter Component Configuration File
You can encrypt the password in the JMS adapter configuration file.

To encrypt passwords in the JMS adapter component configuration file:
1. Open a command window and set your environment as described in Section ,

"Setting Your Development Environment."

2. Change to the directory that contains the configuration file for your JMS adapter.

3. Execute the following encryptMSAConfig command to encrypt the value of the
<password> element in the configuration file:

prompt> ORACLE_CEP_HOME/ocep_11.1/bin/encryptMSAConfig . config_file
aesinternal.dat_file

where ORACLE_CEP_HOME refers to the main BEA directory into which you installed
Oracle Event Processing, such as d:\oracle_cep. The second argument refers to
the directory that contains the JMS adapter configuration file; because this
procedure directs you to actually change to the directory, the example shows ".".
The config_file parameter refers to the name of your JMS adapter configuration
file. Finally, the aesinternal.dat_file parameter refers to the location of the
.aesinternal.dat file associated with your domain; by default this file is located
in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the domain
directory such as /oracle_cep/user_projects/domains/mydomain and
servername refers to the server instance.

The encryptMSAConfig command comes in two flavors: encryptMSAConfig.cmd
(Windows) and encryptMSAConfig.sh (UNIX).

After you run the command, the value of the <password> element will be
encrypted, as shown in bold in the following example:

<jms-adapter>
<name>jmsInbound</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Queue1</destination-jndi-name>
<user>weblogic</user>
<password>{Salted-3DES}B7L6nehu7dgPtJJTnTJWRA==</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

4. Using your favorite XML editor, edit the JMS adapter configuration file. Change
the <password> element (whose value is now encrypted) to
<encrypted-password>, as shown in bold in the following example:

<jms-adapter>
<name>jmsInbound</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Queue1</destination-jndi-name>
<user>weblogic</user>
<encrypted-password>{Salted-3DES}B7L6nehu7dgPtJJTnTJWRA==</encrypted-password

Note: The procedure assumes that you are currently using the
password element in the configuration file, along with a cleartext
password value, but want to start using the encrypted-password
element to encrypt the password.

Configuring the JMS Adapter EPN Assembly File

Integrating the Java Message Service 11-17

>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

Configuring the JMS Adapter EPN Assembly File
For each JMS adapter in your event processing network, you must add a
corresponding wlevs:adapter element to the EPN assembly file of your application;
use the provider attribute to specify whether the JMS adapter is inbound or outbound.

As with any other stage in the EPN, add listeners to the wlevs:adapter element to
integrate the JMS adapter into the event processing network. Typically, an inbound
JMS adapter is the first stage in an EPN (because it receives messages) and an
outbound JMS adapter would be in a later stage (because it sends messages). However,
the requirements of your own Oracle Event Processing application define where in the
network the JMS adapters fit in.

For both JMS inbound and outbound adapters, if you have created a custom converter
bean to customize the conversion between the JMS messages and event types, first use
the standard bean Spring element to declare it in the EPN assembly file. Then pass a
reference of the bean to the JMS adapter by specifying its id using the
wlevs:instance-property element, with the name attribute set to converterBean, as
shown:

<bean id="myConverter"
class="com.customer.MessageConverter"/>

<wlevs:adapter id="jmsOutbound" provider="jms-outbound">
<wlevs:instance-property name="converterBean" ref="myConverter"/>

</wlevs:adapter>

In this case, be sure you do not specify an event type in the component configuration
file because it is assumed that the custom converter bean takes care of specifying the
event type.

This section describes:

■ Section , "JMS Inbound Adapter EPN Assembly File Configuration"

■ Section , "JMS Outbound Adapter EPN Assembly File Configuration"

For more information, see:

■ Section , "Overview of Component Configuration Files."

■ Section , "Component Configuration Schema wlevs_application_config.xsd"

JMS Inbound Adapter EPN Assembly File Configuration
If you are specifying an inbound JMS adapter, set the provider attribute to
jms-inbound, as shown:

<wlevs:adapter id="jmsInbound" provider="jms-inbound"/>

The value of the id attribute, in this case jmsInbound, must match the name specified
for this JMS adapter in its configuration file. The configuration file configures the JMS
destination from which this inbound JMS adapter gets its messages.

Configuring the JMS Adapter EPN Assembly File

11-18 Developer's Guide for Oracle Event Processing

Because no converter bean is specified, Oracle Event Processing automatically converts
the inbound message to the event type specified in the component configuration file
by mapping property names.

The following sample EPN assembly file shows how to configure an inbound JMS
adapter. The network is simple: the inbound JMS adapter called jmsInbound receives
messages from the JMS destination configured in its component configuration file. The
Spring bean myConverter converts the incoming JMS messages into event types, and
then these events flow to the mySink event bean.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
<wlevs:event-type-repository>

<wlevs:event-type type-name="JMSEvent">
<wlevs:class>com.customer.JMSEvent</wlevs:class>

</wlevs:event-type>
</wlevs:event-type-repository>
<!-- Event bean that is an event sink -->
<wlevs:event-bean id="mySink"

class="com.customer.MySink"/>
<!-- Inbound JMS adapter with custom converter class; adapter sends events to mySink

event bean-->
 <bean id="myConverter" class="com.customer.MessageConverter"/>
 <wlevs:adapter id="jmsInbound" provider="jms-inbound">

 <wlevs:instance-property name="converterBean" ref="myConverter"/>
 <wlevs:listener ref="mySink"/>

</wlevs:adapter>
</beans>

JMS Outbound Adapter EPN Assembly File Configuration
If you are specifying an outbound JMS adapter, set the provider attribute to
jms-outbound, as shown:

<wlevs:adapter id="jmsOutbound" provider="jms-outbound"/>

The value of the id attribute, in this case jmsOutbound, must match the name specified
for this JMS adapter in its configuration file. The configuration file configures the JMS
destination to which this outbound JMS adapter sends messages.

Because no converter bean is specified, Oracle Event Processing automatically converts
the incoming event types to outgoing JMS messages by mapping the property names.

The following sample EPN assembly file shows how to configure an outbound JMS
adapter. The network is simple: a custom adapter called getData receives data from
some feed, converts it into an event type and passes it to myProcessor, which in turn
sends the events to the jmsOutbound JMS adapter via the streamOne channel. Oracle
Event Processing automatically converts these events to JMS messages and sends the
messages to the JMS destination configured in the component configuration file
associated with the jmsOutbound adapter.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Configuring the JMS Adapter Component Configuration File

Integrating the Java Message Service 11-19

xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
<wlevs:event-type-repository>

<wlevs:event-type type-name="JMSEvent">
<wlevs:class>com.customer.JMSEvent</wlevs:class>

</wlevs:event-type>
</wlevs:event-type-repository>
<!-- Custom adapter that gets data from somewhere and sends it to myProcessor -->
<wlevs:adapter id="getData"

class="com.customer.GetData">
<wlevs:listener ref="myProcessor"/>

</wlevs:adapter>
<wlevs:processor id="myProcessor" />
<wlevs:adapter id="jmsOutbound" provider="jms-outbound"/>
 <!-- Channel for events flowing from myProcessor to outbound JMS adapter -->
<wlevs:channel id="streamOne">
 <wlevs:listener ref="jmsOutbound"/>
 <wlevs:source ref="myProcessor"/>

</wlevs:channel>
</beans>

Configuring the JMS Adapter Component Configuration File
You configure the JMS adapters in their respective configuration files, similar to how
you configure other components in the event processing network, such as processors
or streams.

The root element for configuring a JMS adapter is jms-adapter. The name child
element for a particular adapter must match the id attribute of the corresponding
wlevs:adapter element in the EPN assembly file that declares this adapter.

This section describes:

■ Section , "JMS Inbound Adapter Component Configuration"

■ Section , "JMS Outbound Adapter Component Configuration"

For more information, see:

■ Section , "Overview of Component Configuration Files."

■ Section , "Component Configuration Schema wlevs_application_config.xsd"

JMS Inbound Adapter Component Configuration
Table 11–1 lists the jms-adapter element child elements applicable to the JMS inbound
adapter.

Configuring the JMS Adapter Component Configuration File

11-20 Developer's Guide for Oracle Event Processing

Table 11–1 jms-adapter Inbound Child Elements

Child Element Description

bindings Bindings are used to configure horizontal scale-out and are an
advanced feature. Using the
com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean,
you can partition an incoming JMS stream in Oracle Event
Processing applications by utilizing the notification groups that
the ActiveActiveGroupBean creates. Use this element to
associate a notification group with a particular
message-selector value.

For more information, see Section , "ActiveActiveGroupBean"

concurrent-consumers Number of consumers to create. Default value is 1.

If you set this value to a number greater than 1:

■ Consider the work-manager configuration.

■ Be sure that your converter bean is thread-safe because the
converter bean will be shared among the consumers. For
more information, see Section , "Creating a Custom
Converter Between JMS Messages and Event Types".

connection-jndi-name Optional. The JNDI name of the JMS connection factory. Default
value is weblogic.jms.ConnectionFactory, for Oracle Event
Processing server JMS.

connection-password

connection-encrypted-password

Optional. Either the password, or encrypted password, for
connection-user.

Note: Specify either connection-password or
connection-encrypted-password, but not both.

See Section , "Encrypting Passwords in the JMS Adapter
Component Configuration File" for details on encrypting the
password.

connection-user Optional. When Oracle Event Processing calls the
createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS
destination (JMS queue or topic), it uses the connection-user
and connection-password (or
connection-encrypted-password) settings, if configured.
Otherwise, Oracle Event Processing uses the user and password
(or encrypted-password) settings.

You can use the connection-user and connection-password (or
connection-encrypted-password) settings in applications
where one security provider is used for JNDI access and a
separate security provider is used for JMS access.

destination-jndi-name Required. The JNDI name of the JMS destination.

Note: Specify either destination-jndi-name or
destination-name, but not both.

destination-name Required. The actual name of the JMS destination.

Note: Specify either destination-jndi-name or
destination-name, but not both.

destination-type Define the JMS destination type for a JMS adapter. Valid values
are TOPIC or QUEUE. This property must be set to TOPIC
whenever the durable-subscription property is set to true.

Note: To support a durable subscription, set this to TOPIC and
use it with durable-subscription set to true; give the
subscription a unique identifier with
durable-subscription-name.

durable-subscription Specifies whether the JMS topic subscription of a JMS adapter is
durable, meaning that it can persist even if subscribers become
inactive. Valid values are true or false. This property is only
valid if destination-type is set to TOPIC.

Note: To support a durable subscription, use this with
destination-type set to TOPIC and
durable-subscription-name set to a unique identifier.

Configuring the JMS Adapter Component Configuration File

Integrating the Java Message Service 11-21

durable-subscription-name The name to uniquely identify a durable subscription of a JMS
adapter. A durable subscription can persist even if subscribers
become inactive.

Note: To support a durable subscription, use this with
durable-subscription set to true and destination-type set to
TOPIC.

event-type Event type whose property names match inbound JMS Map
Message property names. Specify this property only if you want
Oracle Event Processing to automatically perform the
conversion between JMS messages and events. If you have
created your own custom converter bean, then do not specify
this property

For more information, see Section , "Creating a Custom
Converter Between JMS Messages and Event Types".

jndi-factory Optional. The JNDI factory name. Default value is
weblogic.jndi.WLInitialContextFactory, for Oracle Event
Processing server JMS.

jndi-provider-url Required. The URL of the JNDI provider.

message-selector JMS message selector to use to filter messages. Only messages
that match the selector will produce events.

Default: there is no selector; all messages will produce events.

password

encrypted-password

Required. Either the password, or encrypted password, for user.

Note: Specify either password or encrypted-password, but not
both.

See Section , "Encrypting Passwords in the JMS Adapter
Component Configuration File" for details on encrypting the
password.

session-ack-mode-name Determines how messages are acknowledged. Once a message
is successfully acknowledged it will never be resent following a
failure.

Valid values from javax.jms.Session are:

■ AUTO_ACKNOWLEDGE: With this acknowledgment mode, the
session automatically acknowledges a client's receipt of a
message when the message has been successfully received.
Applications that require message redelivery in response to
failures during downstream message processing should
use the session-transacted property to achieve this.

■ CLIENT_ACKNOWLEDG: With this acknowledgment mode, the
client acknowledges a consumed message by calling the
message's acknowledge method.

■ DUPS_OK_ACKNOWLEDGE: This acknowledgment mode
instructs the session to lazily acknowledge the delivery of
messages.

Default: AUTO_ACKNOWLEDGE.

session-transacted Boolean value that specifies whether or not the session is
transactional.

If the session is transacted then do not specify
session-ack-mode-name.

Default: False.

user Required. When Oracle Event Processing acquires the JNDI
InitialContext, it uses the user and password (or
encrypted-password) settings.

Table 11–1 (Cont.) jms-adapter Inbound Child Elements

Child Element Description

Configuring the JMS Adapter Component Configuration File

11-22 Developer's Guide for Oracle Event Processing

The following configuration file shows a complete example of configuring an inbound
JMS adapter.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_
config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<jms-adapter>
<name>jmsInbound</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Queue1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>MyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>
<jms-adapter>

<name>jmsOutbound</name>
<event-type>JMSEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Topic1</destination-jndi-name>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>
</n1:config>

JMS Outbound Adapter Component Configuration
Table 11–2 lists the jms-adapter element child elements applicable to the JMS
outbound adapter.

work-manager Name of a work manager, configured in the Oracle Event
Processing server config.xml file. This name corresponds to the
value of the name child element of the work-manager element in
config.xml.

If concurrent-consumers is greater than 1 and you want all the
consumers to be run concurrently, then consider the
configuration of the work-manager you associate with this JMS
inbound adapter:

■ If the work-manager is shared with other components (such
as other adapters and Jetty) then set the work-manager
attribute max-threads-constraint greater than or equal to
the concurrent-consumers setting.

■ If the work-manager is not shared (that is, it is dedicated to
this inbound JMS adapter only) then set the work-manager
attribute max-threads-constraint equal to the
concurrent-consumers setting.

The default value is the work manager configured for the
application itself.

For more information, see Section , "work-manager".

Table 11–2 jms-adapter Outbound Component Configuration Child Elements

Child Element Description

connection-jndi-name Optional. The JNDI name of the JMS connection factory. Default
value is weblogic.jms.ConnectionFactory, for Oracle Event
Processing server JMS.

Table 11–1 (Cont.) jms-adapter Inbound Child Elements

Child Element Description

Configuring the JMS Adapter Component Configuration File

Integrating the Java Message Service 11-23

The following configuration file shows a complete example of configuring an
outbound JMS adapter.

<?xml version="1.0" encoding="UTF-8"?>

connection-password

connection-encrypted-password

Optional. Either the password, or encrypted password, for
connection-user.

Note: Specify either connection-password or
connection-encrypted-password, but not both.

See Section , "Encrypting Passwords in the JMS Adapter
Component Configuration File" for details on encrypting the
password.

connection-user Optional. When Oracle Event Processing calls the
createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS
destination (JMS queue or topic), it uses the connection-user
and connection-password (or
connection-encrypted-password) settings, if configured.
Otherwise, Oracle Event Processing uses the user and password
(or encrypted-password) settings.

You can use the connection-user and connection-password (or
connection-encrypted-password) settings in applications
where one security provider is used for JNDI access and a
separate security provider is used for JMS access.

delivery-mode Specifies the delivery mode: persistent (default value) or
nonpersistent.

destination-jndi-name Required. The JNDI name of the JMS destination.

Note: Specify either destination-jndi-name or
destination-name, but not both.

destination-name Required. The actual name of the JMS destination.

Note: Specify either destination-jndi-name or
destination-name, but not both.

event-type Event type whose property names match inbound JMS Map
Message property names. Specify this property only if you want
Oracle Event Processing to automatically perform the
conversion between JMS messages and events. If you have
created your own custom converter bean, then do not specify
this property

For more information, see Section , "Creating a Custom
Converter Between JMS Messages and Event Types".

jndi-factory Optional. The JNDI factory name. Default value is
weblogic.jndi.WLInitialContextFactory, for Oracle Event
Processing server JMS.

jndi-provider-url Required. The URL of the JNDI provider.

password

encrypted-password

Required. Either the password, or encrypted password, for user.

Note: Specify either password or encrypted-password, but not
both.

See Section , "Encrypting Passwords in the JMS Adapter
Component Configuration File" for details on encrypting the
password.

session-transacted Boolean value that specifies whether or not the session is
transactional.

If the session is transacted then do not specify
session-ack-mode-name.

Default: False.

user Required. When Oracle Event Processing acquires the JNDI
InitialContext, it uses the user and password (or
encrypted-password) settings.

Table 11–2 (Cont.) jms-adapter Outbound Component Configuration Child Elements

Child Element Description

Configuring the JMS Adapter Component Configuration File

11-24 Developer's Guide for Oracle Event Processing

<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_
config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<jms-adapter>
<name>jmsInbound</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Queue1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>
<jms-adapter>

<name>jmsOutbound</name>
<event-type>JMSEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Topic1</destination-jndi-name>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>
</n1:config>

12

Integrating an HTTP Publish-Subscribe Server 12-1

12Integrating an HTTP Publish-Subscribe Server

[13] This chapter describes how to use the HTTP publish-subscribe server adapter to
connect an Oracle Event Processing event processing network with an HTTP pub-sub
server.

This chapter includes the following sections:

■ Overview of HTTP Publish-Subscribe Server Adapter Configuration

■ Configuring an HTTP Pub-Sub Adapter

■ Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event
Types

■ Configuring the HTTP Pub-Sub Adapter EPN Assembly File

■ Configuring the HTTP Pub-Sub Adapter Component Configuration File

Overview of HTTP Publish-Subscribe Server Adapter Configuration
An HTTP Publish-Subscribe server (pub-sub server) is a mechanism whereby Web
clients, such as browser-based clients, subscribe to channels, receive messages as they
become available, and publish messages to these channels, all using asynchronous
messages over HTTP. A channel is similar to a JMS topic.

Every instance of Oracle Event Processing includes a pub-sub server that
programmers can use to implement HTTP publish-subscribe functionality in their
applications. The pub-sub server is configured in the config.xml file along with other
server services such as Jetty and JDBC datasources. The pub-sub server is based on the
Bayeux protocol (see http://svn.cometd.org/trunk/bayeux/bayeux.html). The
Bayeux protocol defines a contract between the client and the server for
communicating with asynchronous messages over HTTP.

In Oracle Event Processing, programmers access HTTP publish-subscribe functionality
by using the following built-in HTTP publish-subscribe adapters (pub-sub adapters):

■ Publishing to a channel: see Section , "Overview of the Built-In Pub-Sub Adapter
for Publishing"

– Local publishing to a channel: see Section , "Local Publishing".

– Remote publishing to a channel: see Section , "Remote Publishing".

■ Subscribing to a channel: see Section , "Overview of the Built-In Pub-Sub Adapter
for Subscribing".

Oracle Event Processing also provides a pub-sub API for programmers to create their
own custom pub-sub adapters for publishing and subscribing to a channel, if the
built-in pub-sub adapters are not adequate. For example, programmers might want to

Overview of HTTP Publish-Subscribe Server Adapter Configuration

12-2 Developer's Guide for Oracle Event Processing

filter incoming messages from a subscribed channel, dynamically create or destroy
local channels, and so on. The built-in pub-sub adapters do not provide this
functionality, which is why programmers must implement their own custom pub-sub
adapters in this case. For details, see Chapter 15, "Integrating an External Component
Using a Custom Adapter."

By default, Oracle Event Processing performs automatic conversion to and from
Oracle Event Processing event types. Alternatively, you can create a custom converter.
See Section , "Creating a Custom Converter Between the HTTP Pub-Sub Messages and
Event Types".

Oracle Event Processing can also automatically convert between JSON messages and
Oracle Event Processing event types. See Section , "Converting Between JSON
Messages and Event Types".

The built-in pub-sub adapters work like any other adapter: they are stages in the event
processing network, they are defined in the EPN assembly file, and they are
configured with the standard component configuration files. Typical configuration
options include specifying channels, specifying the local or remote pub-sub server, and
user authentication.

The pub-sub server can communicate with any client that can understand the Bayeux
protocol. Programmers developer their Web clients using one of the following
frameworks:

■ Dojo JavaScript library (see http://dojotoolkit.org/) that supports the Bayeux
protocol. Oracle Event Processing does not provide this library.

■ WebLogic Workshop Flex plug-in that enables development of a Flex client that
uses the Bayeux protocol to communicate with a pub-sub server.

For information on securing an HTTP pub-sub server channel, see "Configuring HTTP
Publish-Subscribe Server Channel Security" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

Overview of the Built-In Pub-Sub Adapter for Publishing
You can use the built-in pub-sub adapter for publishing events to a channel. The
built-in pub-sub adapter supports the following publishing modes:

■ Section , "Local Publishing"

■ Section , "Remote Publishing"

For more information, see Section , "Overview of HTTP Publish-Subscribe Server
Adapter Configuration".

Local Publishing
Figure 12–1 shows how the built-in pub-sub adapter for local publishing fits into a
simple event processing network. The arbitrary adapter and processor are not
required, they are just an example of possible components in your application in
addition to the pub-sub adapter.

Note: Byte arrays are not supported as property types in event types
used with the pub-sub server.

Overview of HTTP Publish-Subscribe Server Adapter Configuration

Integrating an HTTP Publish-Subscribe Server 12-3

Figure 12–1 Built-In Pub-Sub Adapter For Local Publishing

Note the following in Figure 12–1:

■ Events flow from some source into an adapter of an application running in Oracle
Event Processing. This adapter is not required, it is shown only as an example.

■ The events flow from the adapter to an arbitrary processor; again, this processor is
not required.

■ The processor sends the events to the built-in pub-sub adapter for local
publishing. The adapter in turn sends the events to the local HTTP pub-sub server
configured for the Oracle Event Processing instance on which the application is
deployed. The pub-sub adapter sends the messages to the channel for which it has
been configured.

■ The local HTTP pub-sub server configured for Oracle Event Processing then sends
the event as a message to all subscribers of the local channel.

Remote Publishing
Figure 12–2 shows how the built-in pub-sub adapter for remote publishing fits into a
simple event processing network.

Figure 12–2 Built-In Pub-Sub Adapter For Remote Publishing

Note the following in Figure 12–2:

Overview of HTTP Publish-Subscribe Server Adapter Configuration

12-4 Developer's Guide for Oracle Event Processing

■ Events flow from some source into an adapter of an application running in Oracle
Event Processing. The arbitrary adapter is not required, it is shown only as an
example.

■ The events flow from the adapter to an arbitrary processor; again, this processor is
not required.

■ The processor sends the events to the built-in pub-sub adapter for remote
publishing. The adapter in turn sends the events as messages to the remote HTTP
pub-sub server for which the adapter is configured; this HTTP pub-sub server
could be on another Oracle Event Processing instance, a WebLogic Server instance,
or any other third-party implementation. The pub-sub adapter sends the messages
to the channel for which it has been configured.

■ The remote HTTP pub-sub server then sends the message to all subscribers of the
channel.

Overview of the Built-In Pub-Sub Adapter for Subscribing
Figure 12–3 shows how the built-in pub-sub adapter for subscribing fits into a simple
event processing network. The arbitrary processor and business POJO are not
required, they are just an example of possible components in your application in
addition to the pub-sub adapter.

Figure 12–3 Built-In Pub-Sub Adapter For Subscribing

Note the following in Figure 12–3:

■ Messages are published to a remote HTTP pub-sub server, which could be another
instance of Oracle Event Processing, WebLogic Server, or a third-party
implementation. The messages are typically published by Web based clients
(shown in graphic), by the HTTP pub-sub server itself, or another server
application.

■ The built-in pub-sub adapter running in an Oracle Event Processing application
subscribes to the HTTP pub-sub server and receives messages from the specified
channel. The adapter converts the messages into the event type configured for the
adapter.

■ The pub-sub adapter sends the events to a processor. This processor is not
required, it is shown only as an example of a typical Oracle Event Processing
application.

Configuring an HTTP Pub-Sub Adapter

Integrating an HTTP Publish-Subscribe Server 12-5

■ The processor sends the events to a business POJO. Again, this business POJO is
not required.

For more information, see Section , "Overview of HTTP Publish-Subscribe Server
Adapter Configuration".

Converting Between JSON Messages and Event Types
Oracle Event Processing can automatically convert incoming JavaScript Object
Notation (JSON) messages to event types, and vice versa in the outbound case.
However, if you want to customize the way a JSON message (either inbound via a
HTTP pub-sub adapter for subscribing or outbound via an HTTP pub-sub adapter for
publishing) is converted to an event type, or vice versa, you must create your own
converter bean. See Section , "Creating a Custom Converter Between the HTTP
Pub-Sub Messages and Event Types" for details.

If you do not provide your own converter class, and instead let Oracle Event
Processing take care of the conversion between messages and event types, the
following is true:

■ You must specify an event type that Oracle Event Processing uses in its
conversion. See Section , "How to Configure an HTTP Pub-Sub Adapter Manually"
for details.

■ The default converter used in the HTTP adapter for subscribing creates a new
event of the specified type for each incoming message. For each property of the
specified event type, it looks for a corresponding property name in the JSON
object that constitutes the message, and if found, sets the corresponding value.

■ The default converter used in the HTTP adapter for publishing creates a JSON
message for each event. For each property of the specified event type, a
corresponding element is created in the output JSON message.

For more information, see http://www.json.org/.

Configuring an HTTP Pub-Sub Adapter
This section describes how to configure Oracle Event Processing HTTP pub-sub
adapter for both publishing and subscribing:

■ Section , "How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event
Processing IDE for Eclipse"

■ Section , "How to Configure an HTTP Pub-Sub Adapter Manually"

How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for
Eclipse

The simplest way to create and configure an HTTP pub-sub adapter is using the
Oracle Event Processing IDE for Eclipse adapter wizard.

For more information, see Section , "How to Create an Adapter Node".

After using the adapter wizard to create and specify the basic HTTP pub-sub adapter
configuration, review Section , "How to Configure an HTTP Pub-Sub Adapter
Manually" to complete the configuration.

Configuring an HTTP Pub-Sub Adapter

12-6 Developer's Guide for Oracle Event Processing

How to Configure an HTTP Pub-Sub Adapter Manually
This section describes how to create and configure an HTTP pub-sub adapter
manually. It describes the detailed steps that you may require depending on your
application.

The simplest way to create and configure an HTTP pub-sub adapter is using the
Oracle Event Processing IDE for Eclipse adapter wizard as Section , "How to Configure
an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for Eclipse"
describes. After using the adapter wizard to create and specify the basic HTTP
pub-sub adapter configuration, review this procedure to complete the configuration.

You configure the built-in pub-sub adapters in their respective configuration files,
similar to how you configure other components in the event processing network, such
as processors or streams. For general information about these configuration files, see
Section , "Overview of Component Configuration Files."

The following procedure describes the main steps to configure the built-in pub-sub
adapters for your application. For simplicity, it is assumed in the procedure that you
are going to configure all components of an application in a single configuration XML
file and that you have already created this file for your application.

See Section , "Component Configuration Schema wlevs_application_config.xsd" for the
complete XSD Schema that describes the configuration of the built-in pub-sub
adapters.

To configure an HTTP pub-sub adapter manually:
1. Open the configuration XML file using your favorite XML editor.

2. For each built-in pub-sub adapter you want to configure, add a
http-pub-sub-adapter child element of the config root element; use the <name>
child element to uniquely identify it. This name value will be used later as the id
attribute of the wlevs:adapter element in the EPN assembly file that defines the
event processing network of your application. This is how Oracle Event Processing
knows to which particular adapter in the EPN assembly file this adapter
configuration applies.

For example, assume your configuration file already contains a processor (contents
removed for simplicity) and you want to configure instances of each of the three
built-in pub-sub adapters; then the updated file might look like the following;
details of the adapter configuration will be added in later steps:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_
application_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<processor>
...

</processor>
<http-pub-sub-adapter>

<name>remotePublisher</name>
...

</http-pub-sub-adapter>
<http-pub-sub-adapter>

<name>remoteSubscriber</name>
...

</http-pub-sub-adapter>
<http-pub-sub-adapter>

Configuring an HTTP Pub-Sub Adapter

Integrating an HTTP Publish-Subscribe Server 12-7

<name>localPublisher</name>
...

</http-pub-sub-adapter>
</n1:config>

3. For each remote pub-sub adapter (for both publishing and subscribing), add a
server-url child element of http-pub-sub-adapter to specify the URL of the
remote HTTP pub-sub server to which the Oracle Event Processing application will
publish or subscribe, respectively. The remote pub-sub server could be another
instance of Oracle Event Processing, or a WebLogic Server instance, or it could be
any third-party HTTP pub-sub server. For example:

<http-pub-sub-adapter>
<name>remotePublisher</name>

<server-url>http://myhost.com:9102/pubsub</server-url>
...

</http-pub-sub-adapter>

In the example, the URL of the remote HTTP pub-sub server to which the
remotePublisher adapter will publish events is http://myhost.com:9102/pubsub.

4. For each local pub-sub adapter for publishing, add a server-context-path
element to specify the path of the local HTTP pub-sub server associated with the
Oracle Event Processing instance hosting the current Oracle Event Processing
application.

By default, each Oracle Event Processing server is configured with an HTTP
pub-sub server with path /pubsub; if, however, you have created a new local
HTTP pub-sub server, or changed the default configuration, then specify the value
of the path child element of the http-pubsub element in the server's config.xml
file. For example:

 <http-pub-sub-adapter>
 <name>localPublisher</name>
 <server-context-path>/pubsub</server-context-path>
 ...
 </http-pub-sub-adapter>

5. For all the pub-sub adapters, whether they are local or remote or for publishing or
subscribing, add a channel child element to specify the channel that the pub-sub
adapter publishes or subscribes to, whichever is appropriate. For example:

<http-pub-sub-adapter>
<name>localPublisher</name>
<server-context-path>/pubsub</server-context-path>
<channel>/channel2</channel>

</http-pub-sub-adapter>

In the example, the localPublisher pub-sub adapter publishes to a local channel
with pattern /channel2.

6. For all pub-sub adapters for subscribing, add an event-type element that specifies
the JavaBean to which incoming messages are mapped. You are required to specify
this for all subscribing adapters. At runtime, Oracle Event Processing uses the
incoming key-value pairs in the message to map the message data to the specified
event type.

You can also optionally use the event-type element in a pub-sub adapter for
publishing if you want to limit the types of events that are published to just those
specified by the event-type elements. Otherwise, all events sent to the pub-sub
adapter are published. For example:

Configuring an HTTP Pub-Sub Adapter

12-8 Developer's Guide for Oracle Event Processing

<http-pub-sub-adapter>
<name>remoteSubscriber</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/channel3</channel>
<event-type>com.mycompany.httppubsub.PubsubEvent</event-type>

</http-pub-sub-adapter>

Be sure this event type has been registered in the EPN assembly file by specifying
it as a child element of the wlevs:event-type-repository element.

7. Finally, if the HTTP pub-sub server to which the Oracle Event Processing
application is publishing requires user authentication, add user and password (or
encrypted-password) elements to specify the username and password or
encrypted password. For example:

<http-pub-sub-adapter>
<name>remotePublisher</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/channel1</channel>
<event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>
8. Optionally create a converter Java class if you want to customize the way the

inbound or outbound messages are converted into event types. This step is
optional because you can let Oracle Event Processing make the conversion based
on mapping property names between the messages and a specified event type.

See Section , "Creating a Custom Converter Between the HTTP Pub-Sub Messages
and Event Types."

9. If you are going to use the local HTTP pub-sub server associated with the Oracle
Event Processing instance for local publishing, use Visualizer, the Oracle Event
Processing Administration Tool, to add new channels with the channel pattern
required by your application.

For details, see "How to Configure Security for an HTTP Publish-Subscribe
Channel" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

10. Update the EPN assembly file, adding declarations for each built-in pub-sub
adapter you are adding to your application.

See Section , "Configuring the HTTP Pub-Sub Adapter EPN Assembly File."

11. Update the MANIFEST.MF file of your application, adding the package
com.bea.core.encryption to the Import-Package header. For example:

Import-Package:
com.bea.core.encryption
com.bea.wlevs.adapter.defaultprovider;version="11.1.1.4_0",
...

See Section , "Creating the MANIFEST.MF File" for additional information on the
manifest file.

Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types

Integrating an HTTP Publish-Subscribe Server 12-9

Creating a Custom Converter Between the HTTP Pub-Sub Messages and
Event Types

If you want to customize the way a message (either inbound via a HTTP pub-sub
adapter for subscribing or outbound via an HTTP pub-sub adapter for publishing) is
converted to an event type, or vice versa, you must create your own converter bean.

The custom converter bean for an inbound HTTP pub-sub message must implement
the com.bea.wlevs.adapters.httppubsub.api.InboundMessageConverter interface.
This interface has a single method:

public List convert(JSONObject message) throws Exception;

The message parameter corresponds to the incoming HTTP pub-sub message and the
return value is a List of events that will be passed on to the next stage of the event
processing network. The incoming message is assumed to be the JSON format.

The custom converter bean for an outbound HTTP pub-sub message must implement
the com.bea.wlevs.adapters.httppubsub.api.OutboundMessageConverter interface.
This interface has a single method:

public List<JSONObject> convert(Object event) throws Exception;

The parameters correspond to an event received by the outbound HTTP pub-sub
adapter from the source node in the EPN and the return value is a List of JSON
messages.

See the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for a full
description of these APIs.

The following example shows the Java source of a custom converter bean that
implements both InboundMessageConverter and OutboundMessageConvert; this bean
can be used for both inbound and outbound HTTP pub-sub adapters:

package com.sample.httppubsub;
import com.bea.wlevs.adapters.httppubsub.api.InboundMessageConverter;
import com.bea.wlevs.adapters.httppubsub.api.OutboundMessageConverter;
import com.bea.httppubsub.json.JSONObject;
import java.util.List;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
public class TestConverter implements InboundMessageConverter, OutboundMessageConverter {

public List convert(JSONObject message) throws Exception {
List eventCollection = new ArrayList();
PubsubTestEvent event = new PubsubTestEvent();
event.setMessage("From TestConverter: " + message);
eventCollection.add(event);
return eventCollection;

}
public List<JSONObject> convert(Object event) throws Exception {

List<JSONObject> list = new ArrayList<JSONObject>(1);
Map map = new HashMap();
map.put("message", ((PubsubTestEvent) event).getMessage());
list.add(new JSONObject(map));
return list;

}
}

You can use the GSON Java library to help you convert Java objects to JSON format.

For more information, see:

■ http://www.json.org/

Configuring the HTTP Pub-Sub Adapter EPN Assembly File

12-10 Developer's Guide for Oracle Event Processing

■ http://code.google.com/p/google-gson

Configuring the HTTP Pub-Sub Adapter EPN Assembly File
For each HTTP pub-sub adapter in your event processing network, you must add a
corresponding wlevs:adapter element to the EPN assembly file of your application;
use the provider attribute to specify whether the HTTP pub-sub adapter is publishing
or subscribing.

As with any other stage in the EPN, add listeners to the wlevs:adapter element to
integrate the HTTP pub-sub adapter into the event processing network. The
requirements of your own Oracle Event Processing application define where in the
EPN the HTTP pub-sub adapters fit in.

This section describes:

■ Section , "HTTP Pub-Sub Adapter for Publishing EPN Assembly File
Configuration"

■ Section , "HTTP Pub-Sub Adapter for Subscribing EPN Assembly File
Configuration"

For more information, see:

■ Section , "Overview of Component Configuration Files."

■ Section , "Component Configuration Schema wlevs_application_config.xsd"

HTTP Pub-Sub Adapter for Publishing EPN Assembly File Configuration
If you are using a built-in pub-sub adapter for publishing (either locally or remotely),
set the provider attribute to httppub, as shown:

<wlevs:adapter id="remotePublisher" provider="httppub"/>

The value of the id attribute, in this case remotePublisher, must match the name
specified for this built-in pub-sub adapter in its configuration file. Note that the
declaration of the built-in adapter for publishing in the EPN assembly file does not
specify whether this adapter is local or remote; you specify this in the adapter
configuration file.

As with any other stage in the EPN, add listeners to the wlevs:adapter element to
integrate the pub-sub adapter into the event processing network. Typically, a pub-sub
adapter for subscribing is the first stage in an EPN (because it receives messages) and a
pub-sub adapter for publishing would be in a later stage (because it sends messages).
However, the requirements of your own Oracle Event Processing application define
where in the network the pub-sub adapters fit in.

Also be sure that the event types used by the pub-sub adapters have been registered in
the event type repository using the wlevs:event-type-repository element.

The following sample EPN file shows an event processing network with two built-in
pub-sub adapters for publishing both local and remote publishing); see the text after
the example for an explanation:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="

http://www.springframework.org/schema/beans

Configuring the HTTP Pub-Sub Adapter EPN Assembly File

Integrating an HTTP Publish-Subscribe Server 12-11

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">
<wlevs:event-type-repository>

<wlevs:event-type type-name="com.mycompany.httppubsub.PubsubEvent">
<wlevs:class>com.mycompany.httppubsub.PubsubEvent</wlevs:class>

</wlevs:event-type>
</wlevs:event-type-repository>
<wlevs:adapter id="receiveFromFeed"

 class="com.mycompany.httppubsub.ReceiveFromFeed">
</wlevs:adapter>
<wlevs:processor id="pubsubProcessor" />
<wlevs:adapter id="remotePublisher" provider="httppub"/>
<wlevs:adapter id="localPublisher" provider="httppub"/>
<wlevs:channel id="feed2processor">

<wlevs:source ref="receiveFromFeed"/>
<wlevs:listener ref="pubsubProcessor"/>

</wlevs:channel>
<wlevs:channel id="pubsubStream">

<wlevs:listener ref="remotePublisher"/>
<wlevs:listener ref="localPublisher"/>
<wlevs:source ref="pubsubProcessor"/>

</wlevs:channel>
</beans>

In the preceding example:

■ The receiveFromFeed adapter is a custom adapter that receives data from some
data feed; the details of this adapter are not pertinent to this topic. The
receiveFromFeed adapter then sends its events to the pubsubProcessor via the
feed2processor channel.

■ The pubsubProcessor processes the events from the receiveFromFeed adapter and
then sends them to the pubsubStream channel, which in turn sends them to the
two built-in pub-sub adapters: remotePublisher and localPublisher.

■ Based on the configuration of these two pub-sub adapters (see examples in
Section , "How to Configure an HTTP Pub-Sub Adapter Manually"),
remotePublisher publishes events only of type
com.mycompany.httppubsub.PubsubEvent and publishes them to the a channel
called /channel1 on the HTTP pub-sub server hosted remotely at
http://myhost.com:9102/pubsub.

The localPublisher pub-sub adapter publishes all events it receives to the local
HTTP pub-sub server, in other words, the one associated with the Oracle Event
Processing server on which the application is running. The local pub-sub server's
path is /pubsub and the channel to which the adapter publishes is called
/channel2.

The following sample EPN file shows an event processing network with one built-in
pub-sub adapter for subscribing; see the text after the example for an explanation:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring

Configuring the HTTP Pub-Sub Adapter EPN Assembly File

12-12 Developer's Guide for Oracle Event Processing

http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">
<wlevs:event-type-repository>

<wlevs:event-type type-name="com.mycompany.httppubsub.PubsubEvent">
<wlevs:class>com.mycompany.httppubsub.PubsubEvent</wlevs:class>

</wlevs:event-type>
</wlevs:event-type-repository>
<wlevs:adapter id="remoteSubscriber" provider="httpsub">

<wlevs:listener ref="myEventBean"/>
</wlevs:adapter>
<bean id="myEventBean"

class="com.mycompany.httppubsub.MyEventBean">
</bean>
<wlevs:channel id="pubsubStream" advertise="true">

<wlevs:listener>
<bean id="mySink"

class="com.mycompany.httppubsub.MySink"/>
</wlevs:listener>
<wlevs:source ref="myEventBean"/>

</wlevs:channel>
</beans>

In the preceding example:

■ The remoteSubscriber adapter is a built-in pub-sub adapter for subscribing.

Based on the configuration of this adapter (see examples in Section , "How to
Configure an HTTP Pub-Sub Adapter Manually"), remoteSubscriber subscribes
to a channel called /channel3 configured for the remote HTTP pub-sub server
hosted at http://myhost.com:9102/pubsub. Oracle Event Processing converts
each messages it receives from this channel to an instance of
com.mycompany.httppubsub.PubsubEvent and then sends it a Spring bean called
myEventBean.

■ The myEventBean processes the event as described by the
com.mycompany.httppubsub.MyEventBean class, and then passes it the mySink
event source via the pubsubStream channel. This section does not discuss the
details of these components because they are not pertinent to the HTTP pub-sub
adapter topic.

HTTP Pub-Sub Adapter for Subscribing EPN Assembly File Configuration
If you are using a built-in pub-sub adapter for subscribing, set the provider attribute to
httpsub, as shown:

<wlevs:adapter id="remoteSubscriber" provider="httpsub"/>

The value of the id attribute, in this case remoteSubscriber, must match the name
specified for this built-in pub-sub adapter in its configuration file.

The value of the id attribute, in this case remoteSubscriber, must match the name
specified for this HTTP pub-sub adapter in its configuration file. The configuration file
configures the HTTP pub-sub server destination to which this adapter subscribes.

The following sample EPN file shows an event processing network with one built-in
pub-sub adapter for subscribing:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Configuring the HTTP Pub-Sub Adapter Component Configuration File

Integrating an HTTP Publish-Subscribe Server 12-13

http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">
<wlevs:event-type-repository>

<wlevs:event-type type-name="com.mycompany.httppubsub.PubsubEvent">
<wlevs:class>com.mycompany.httppubsub.PubsubEvent</wlevs:class>

</wlevs:event-type>
</wlevs:event-type-repository>
<wlevs:adapter id="remoteSubscriber" provider="httpsub">

<wlevs:listener ref="myEventBean"/>
</wlevs:adapter>
<bean id="myEventBean"

class="com.mycompany.httppubsub.MyEventBean">
</bean>
<wlevs:channel id="pubsubStream" advertise="true">

<wlevs:listener>
<bean id="mySink"

class="com.mycompany.httppubsub.MySink"/>
</wlevs:listener>
<wlevs:source ref="myEventBean"/>

</wlevs:channel>
</beans>

Configuring the HTTP Pub-Sub Adapter Component Configuration File
You configure the HTTP pub-sub adapters in their respective configuration files,
similar to how you configure other components in the event processing network, such
as processors or streams.

The root element for configuring an HTTP pub-sub adapter is http-pub-sub-adapter.
The name child element for a particular adapter must match the id attribute of the
corresponding wlevs:adapter element in the EPN assembly file that declares this
adapter.

This section describes:

■ Section , "HTTP Pub-Sub Adapter for Publishing Component Configuration"

■ Section , "HTTP Pub-Sub Adapter for Subscribing Component Configuration"

For more information, see:

■ Section , "Overview of Component Configuration Files."

■ Section , "Component Configuration Schema wlevs_application_config.xsd"

HTTP Pub-Sub Adapter for Publishing Component Configuration
Table 12–1 lists the http-pub-sub-adapter element child elements applicable to an
HTTP pub-sub adapter for publishing.

Configuring the HTTP Pub-Sub Adapter Component Configuration File

12-14 Developer's Guide for Oracle Event Processing

The following configuration file shows a complete example of configuring an HTTP
pub-sub adapter for publishing: both a remote and local publisher is shown.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_

config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<http-pub-sub-adapter>

<name>remotePublisher</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/channel1</channel>
<event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>
<http-pub-sub-adapter>

Table 12–1 http-pub-sub-adapter for Publishing Component Configuration Child
Elements

Child Element Description

server-context-path Required. For each local HTTP pub-sub adapter for publishing, specify the
value of the Oracle Event Processing server config.xml file element
http-pubsub child element path of the local HTTP pub-sub server associated
with the Oracle Event Processing instance hosting the current Oracle Event
Processing application.

Default: /pubsub.

If you have created a new local HTTP pub-sub server, or changed the default
configuration, then specify the appropriate path child element value.

NOTE: Do not specify this option for a remote HTTP pub-sub adapter.

server-url Required. For each remote HTTP pub-sub adapter for publishing, specify the
URL of the remote HTTP pub-sub server to which the Oracle Event
Processing application will publish. The remote HTTP pub-sub server could
be another instance of Oracle Event Processing, or a WebLogic Server
instance, or it could be any third-party HTTP pub-sub server. For example:

http://myhost.com:9102/pubsub

NOTE: Do not specify this option for a local HTTP pub-sub adapter.

channel Required. For both local and remote HTTP pub-sub adapters for publishing,
specify the channel that the HTPP pub-sub adapter publishes to.

event-type Optional. For both local and remote HTTP pub-sub adapters for publishing,
specify the fully qualified class name of the JavaBean event to limit the types
of events that are published. Otherwise, all events sent to the HTTP pub-sub
adapter are published.

You must register this class in the EPN assembly file as a
wlevs:event-type-repository element wlevs:class child element. For more
information, see Section , "Creating an Oracle Event Processing Event Type as
a JavaBean".

user Optional. For both local and remote HTTP pub-sub adapters for publishing, if
the HTTP pub-sub server to which the Oracle Event Processing application is
publishing requires user authentication, specify a user name.

password Optional. For both local and remote HTTP pub-sub adapters for publishing, if
the HTTP pub-sub server to which the Oracle Event Processing application is
publishing requires user authentication, specify a password.

Choose either password or encrypted-password but not both.

encrypted-password Optional. For both local and remote HTTP pub-sub adapters for publishing, if
the HTTP pub-sub server to which the Oracle Event Processing application is
publishing requires user authentication and requires password encryption,
specify an encrypted password.

Choose either password or encrypted-password but not both.

Configuring the HTTP Pub-Sub Adapter Component Configuration File

Integrating an HTTP Publish-Subscribe Server 12-15

<name>localPublisher</name>
<server-context-path>/pubsub</server-context-path>
<channel>/channel2</channel>

</http-pub-sub-adapter>
<http-pub-sub-adapter>

<name>remoteSubscriber</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/channel3</channel>
<event-type>com.mycompany.httppubsub.PubsubEvent</event-type>

</http-pub-sub-adapter>
</n1:config>

HTTP Pub-Sub Adapter for Subscribing Component Configuration
Table 12–2 lists the http-pub-sub-adapter element child elements applicable to an
HTTP pub-sub adapter for subscribing.

The following configuration file shows a complete example of configuring an HTTP
pub-sub adapter for subscribing.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_

config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<http-pub-sub-adapter>

Table 12–2 http-pub-sub-adapter for Subscribing Component Configuration Child
Elements

Child Element Description

server-url Required. For each remote HTTP pub-sub adapter for subscribing, specify the
URL of the remote HTTP pub-sub server to which the Oracle Event
Processing application will publish. The remote HTTP pub-sub server could
be another instance of Oracle Event Processing, or a WebLogic Server
instance, or it could be any third-party HTTP pub-sub server

NOTE: do not specify this option for a local HTTP pub-sub adapter.

channel Required. For both local and remote HTTP pub-sub adapters for subscribing,
specify the channel that the HTPP pub-sub adapter subscribes to.

event-type Required. For both local and remote HTTP pub-sub adapters for subscribing,
specify the fully qualified class name of the JavaBean to which incoming
messages are mapped. At runtime, Oracle Event Processing uses the
incoming key-value pairs in the message to map the message data to the
specified event type.

You must register this class in the EPN assembly file as a
wlevs:event-type-repository element wlevs:class child element. For more
information, see Section , "Creating an Oracle Event Processing Event Type as
a JavaBean".

user Optional. For both local and remote HTTP pub-sub adapters for subscribing,
if the HTTP pub-sub server to which the Oracle Event Processing application
is publishing requires user authentication, specify a user name.

password Optional. For both local and remote HTTP pub-sub adapters for subscribing,
if the HTTP pub-sub server to which the Oracle Event Processing application
is publishing requires user authentication, specify a password.

Choose either password or encrypted-password but not both.

encrypted-password Optional. For both local and remote HTTP pub-sub adapters for subscribing,
if the HTTP pub-sub server to which the Oracle Event Processing application
is publishing requires user authentication and requires password encryption,
specify an encrypted password.

Choose either password or encrypted-password but not both.

Configuring the HTTP Pub-Sub Adapter Component Configuration File

12-16 Developer's Guide for Oracle Event Processing

<name>remotePublisher</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/channel1</channel>
<event-type>com.mycompany.httppubsub.PubsubEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>
<http-pub-sub-adapter>

<name>localPublisher</name>
<server-context-path>/pubsub</server-context-path>
<channel>/channel2</channel>

</http-pub-sub-adapter>
<http-pub-sub-adapter>

<name>remoteSubscriber</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/channel3</channel>
<event-type>com.mycompany.httppubsub.PubsubEvent</event-type>

</http-pub-sub-adapter>
</n1:config>

13

Integrating a Cache 13-1

13Integrating a Cache

[14] This chapter describes how to configure a caching system for use with Oracle Event
Processing event processing networks. It includes information on how to configure
caches that are based on Oracle Coherence, Oracle Event Processing, and third-party
caching providers and to access them from Oracle Continuous Query Language, Java
classes, and other code.

This chapter includes the following sections:

■ Overview of Integrating a Cache

■ Configuring an Oracle Coherence Caching System and Cache

■ Configuring an Oracle Event Processing Local Caching System and Cache

■ Configuring a Third-Party Caching System and Cache

■ Adding Caching to an Event Processing Network

■ Accessing a Cache from Application Code

Overview of Integrating a Cache
You can integrate a cache system with your Oracle Event Processing application so
that the cache is available as source or destination for data your application uses,
including event data. Integrating a cache can provide access to relatively static data at
a speed that is well suited to an application that handles streaming data.

A cache is a temporary storage area for events, created to improve the overall
performance of your Oracle Event Processing application (a cache is not necessary for
the application to function correctly). To increase the availability of the events and
increase the performance of their applications, Oracle Event Processing applications
can publish to or consume events from a cache.

A caching system refers to a configured instance of a caching implementation. A
caching system defines a named set of configured caches as well as the configuration
for remote communication if any of the caches are distributed across multiple
machines.

By integrating a cache, you can:

■ Load into the cache frequently-used data for access from application code,
improving application performance.

■ Write to the cache processed event data for use by another application.

For more complete cache integration uses case descriptions, see Section , "Caching Use
Cases".

Overview of Integrating a Cache

13-2 Developer's Guide for Oracle Event Processing

Note that a cache does not have to be an actual stage in the network; another
component or Spring bean can access a cache programmatically using the caching
APIs.

Oracle Event Processing caching includes the following features:

■ Pre-load a cache with data before an application is deployed.

■ Periodically refresh, invalidate, and flush the data in a cache. All these tasks
happen incrementally and without halting the application or causing latency
spikes.

■ Dynamically update a cache's configuration.

Although configuration steps vary for each of the caching implementations, the
high-level steps are as follows:

To integrate caching:
1. Configure the caching system and caches. How you do this will vary depending

on the caching implementation you’re using.

For more information, see Section , "Overview of Cache Configuration".

2. Declare the caching system and its caches by updating a component configuration
file.

For more information, see Section , "Overview of Cache Configuration".

3. Add the caching system and caches to the event provcessing network by editing
the EPN assembly file. Note that you can use the IDE’s EPN editor to add a cache.

For more information, see Section , "Adding Caching to an Event Processing
Network".

4. Write code to access the cache in your Oracle Event Processing application.

For more information, see Section , "Accessing a Cache from Application Code".

Caching Implementations Supported by Oracle Event Processing
Oracle Event Processing supports the following caching implementations:

■ Oracle Event Processing local cache: a local, in-memory single-JVM cache. This
implementation is best for local use (it cannot be used in a cluster). It might also be
useful for development in the early stages because it is relatively simple to set up.

■ Oracle Coherence: a JCache-compliant in-memory distributed data grid solution
for clustered applications and application servers. It coordinates updates to the
data using cluster-wide concurrency control, replicates data modifications across
the cluster using the highest performing clustered protocol available, and delivers
notifications of data modifications to any servers that request them. You take
advantage of Oracle Coherence features using the standard Java collections API to
access and modify data, and use the standard JavaBean event model to receive
data change notifications.

Overview of Integrating a Cache

Integrating a Cache 13-3

■ Third-party caches: you can create a plug-in to allow Oracle Event Processing to
work with other, third-party cache implementations.

Overview of Cache Configuration
You configure caching systems and caches before adding them to the event processing
network (EPN). How you add configuration depends on which caching
implementation you will be using.

You integrate caching systems and caches by updating the following configuration
files:

■ If you are using Oracle Coherence for caching, use a coherence-cache-config.xml
file to configure it. This is the same kind of file you use to configure Coherence in
other contexts.

For more information, see Section , "Configuring the Oracle Coherence Caching
System and Caches".

■ If you are using Oracle Coherence, you can optionally use a
tangosol-coherence-override.xml file to make global, server-wide configuration
changes if you are caching with Oracle Coherence.

For more information, see Section , "Configuring the Oracle Coherence Caching
System and Caches".

■ Use a component configuration file for basic configuration of caching systems and
caches. In this file, you essentially declare the existence of the cache and provide
configuration for it. If the cache is an Oracle Coherence cache, you can use this file
to reference Coherence-specific configuration in a coherence-cache-config.xml file.

For each caching system your application uses, you add a separate
caching-system element in a component configuration file. You also add a cache
element for each cache.

For more information, see Section , "Configuring the Oracle Coherence Caching
System and Caches" or Section , "Configuring an Oracle Event Processing Caching
System".

■ Use the application’s EPN assembly file to add configured caching systems and
caches to the event processing network, connecting the caches to other
components in the EPN.

For more information, see Section , "Adding Caching to an Event Processing
Network".

Basically, though, you create, configure, and wire caching systems and caches using
component configuration and EPN assembly files. By default, when you create a
project, the IDE creates one component configuration file and one EPN assembly file.
When you add a cache to the EPN using the IDE, it adds a cache element to the EPN

Note: Before you can use Oracle Event Processing with Oracle
Coherence, you must obtain a valid Oracle Coherence license such as a
license for Coherence Enterprise Edition, Coherence Grid Edition, or
Oracle WebLogic Application Grid. For more information on Oracle
Coherence, see
http://www.oracle.com/technology/products/coherence/index.ht
ml.

Overview of Integrating a Cache

13-4 Developer's Guide for Oracle Event Processing

assembly file. You must manually add caching-system elements to the EPN assembly
and component configuration files.

When adding configured caching systems and caches to an application’s event
processing network, you specify entries in the EPN assembly file with entries in the
component configuration file by referencing configured names.

In Example 13–1 (a component configuration file excerpt) and Example 13–2 (an EPN
assembly file excerpt), EPN id attribute values must have the same values as
configuration name attribute values:

Example 13–1 Component Configuration File Name Values

<caching-system>
<name>cacheSystem</name>
<cache>

<name>cache1</name>
...

</cache>
</caching-system>

Example 13–2 EPN Assembly File ID and Ref Values

<wlevs:caching-system id="cacheSystem">
...

</wlevs:caching-system>

<wlevs:cache id="cache1">
<wlevs:caching-system ref="cacheSystem"/>

</wlevs:cache>

If your application has more than one caching system, you can create a
caching-system element for each of them in a config.xml file. You can use one XML
file or several, putting all in the META-INF/wlevs directory. Choose the method that
best suits your development environment.

For more information, see:

■ Section , "Overview of Component Configuration Files"

■ Section , "Overview of EPN Assembly Files"

■ Section , "Creating EPN Assembly Files"

■ Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

■ "wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

■ "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

For more information on configuring caching, see:

■ Section , "Caching Use Cases"

■ Section , "Caching APIs"

Caching Use Cases
Caching technology is a great fit for streaming data use cases, where high throughput
can be particularly important. Getting data from a cache will usually be much faster
than getting the same data from a relational database.

Overview of Integrating a Cache

Integrating a Cache 13-5

The following describes common use cases for caching in Oracle Event Processing
applications.

■ Publishing events to a cache

An example of this use case is a financial application that publishes events to a
cache while the financial market is open and then processes data in the cache after
the market closes.

Publishing events to a cache makes them highly available or available to other
Oracle Event Processing applications running in the server. Publishing events to a
cache also allows for asynchronous writes to a secondary storage by the cache
implementation. You can configure any stage in an Oracle Event Processing
application that generates events (input adapter, channel, business POJO, or
processor) to publish its events to the cache.

■ Consuming data from a cache

Oracle Event Processing applications may sometimes need to access
non-streaming data in order to do its work; caching this data can increase the
performance of the application.

The standard components of an Oracle Event Processing application that are
allowed direct programming access to a cache are input- and output-adapters and
business POJOs.

Additionally, applications can access a cache from Oracle CQL or EPL, either by a
user-defined function or directly from an Oracle CQL or EPL statement.

In the case of a user-defined function, programmers use Spring to inject the cache
resource into the implementation of the function. For more information, see
Section , "Configuring Oracle Event Processing Resource Access".

Applications can also query a cache directly from anOracle CQL or EPL statement
that runs in a processor. In this case, the cache essentially functions as another type
of data source to a processor so that querying a cache is very similar to querying a
channel except that data is pulled from a cache.

An example of using Oracle CQL to query a cache is from a financial application
that publishes orders and the trades used to execute the orders to a cache. At the
end of the day when the markets are closed, the application queries the cache in
order to find all the trades related to a particular order.

■ Updating and deleting data in a cache

An Oracle Event Processing application can both update and delete data in a cache
when required.

For example, a financial application may need to update an order in the cache each
time individual trades that fulfill the order are executed, or an order may need to
be deleted if it has been cancelled. The components of an application that are
allowed to consume data from a cache are also allowed to update it.

■ Using a cache in a multi-server domain

If you build an Oracle Event Processing application that uses a cache, and you
plan to deploy that application in a multi-server domain, then you must use a
caching-system that supports a distributed cache.

In this case, you must use either Oracle Coherence or a third-party caching system
that supports a distributed cache.

For more information, see:

Configuring an Oracle Coherence Caching System and Cache

13-6 Developer's Guide for Oracle Event Processing

■ "Administering Multi-Server Domains With Oracle Event Processing Native
Clustering" in the Oracle Fusion Middleware Administrator's Guide for Oracle
Event Processing

■ Section , "Configuring an Oracle Coherence Caching System and Cache"

■ Section , "Configuring a Third-Party Caching System and Cache"

Caching APIs
Oracle Event Processing provides caching APIs that you can use in your application to
perform certain tasks. The APIs are in the com.bea.cache.jcache package, which
includes the APIs used to access a cache and create cache loader, listeners, and stores.
Also, if you intend to use that functionality, you will need to import the
com.tangosol.net and com.tangosol.net.cache packages.

You create, configure, and wire caching systems and caches using the EPN assembly
file and component configuration files. This means that you typically never explicitly
use the Cache and CachingSystem interfaces in your application; the only reason to use
them is if you have additional requirements than the standard configuration. For
example, if you want to provide integration with a third-party cache provider, then
you must use the CachingSystem interface; if you want to perform operations on a
cache that are not part of the java.util.Map interface, then you can use the Cache
interface.

If you create cache listeners, loaders, or stores for an Oracle Event Processing local
cache, then the beans you write must implement the CacheListener, CacheLoader, or
CacheStore interfaces.

If you create cache listeners, loaders, or stores for an Oracle Coherence cache, then the
beans you write must implement the appropriate Oracle Coherence interfaces.

If you create cache listeners, loaders, or stores for a third-party cache, then the beans
you write must implement the appropriate third-party cache interfaces.

For more information, see:

■ Section , "Configuring an Oracle Coherence Caching System and Cache"

■ Section , "Configuring an Oracle Event Processing Local Caching System and
Cache"

■ Section , "Configuring a Third-Party Caching System and Cache"

■ Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

Configuring an Oracle Coherence Caching System and Cache
You can configure your application to use the Oracle Coherence caching system and
cache. Use this caching system if you plan to deploy your application to a multi-server
domain.

Using Oracle Coherence, only the first caching-system can be configured in a server.
Oracle Event Processing will ignore any other caching systems you might configure.

Configuring an Oracle Coherence Caching System and Cache

Integrating a Cache 13-7

To configure an Oracle Coherence caching system and cache:
1. Decide whether or not your Oracle Coherence cache will be used exclusively by

this application or shared amongst two or more applications.

For more information, see Section , "Configuring a Shared Oracle Coherence
Cache".

2. Configure the cache and caching system using a coherence-cache-config.xml file
(and possibly a tangosol-coherence-override.xml file) and place the file in your
application’s META-INF/wlevs/coherence directory.

3. Configure the caching system and its caches by updating the caching
configuration file for the application.

See Section , "Configuring the Oracle Coherence Caching System and Caches."

4. Configure the caching system and its caches by updating the EPN assembly file
with one or more cache element child elements.

5. Before assembling and deploying the application, edit your
META-INF/MANIFEST.MF to import packages that might be required in your
implementation. If your applications implements cache listeners, loaders or stores,
your manifest should import com.tangosol.net.cache packages.

For more information, see Section , "How to Import a Package".

Configuring the Oracle Coherence Caching System and Caches
When configuring an Oracle Coherence cache for integration with an Oracle Event
Processing application, you use Coherence configuration files, then reference those
files in Oracle Event Processing component configuration.

Oracle Event Processing leverages the native configuration provided by Oracle
Coherence. You do this by packaging the following two Oracle Coherence
configuration files, using the file names indicated in the following list, in the
application bundle that uses the Oracle Coherence cache:

■ coherence-cache-config.xml—Oracle Coherence cache configuration
information. Individual caches are identified with the cache-name element; the
value of this element maps to the id attribute of the wlevs:cache element in the
EPN assembly file. See Section , "The coherence-cache-config.xml File" for
information about this file as well as an example of the mapping.

This is a per-application configuration file; put this file in the
META-INF/wlevs/coherence directory of the bundle JAR. Note that this directory is
different from the directory that stores the component configuration file for the
local in-memory Oracle Event Processing caching provider (META-INF/wlevs).

■ tangosol-coherence-override.xml—Oracle Coherence cluster configuration. See
Section , "The tangosol-coherence-override.xml File" for information about this file
as well as an example.

Note: Before you can legally use Oracle Event Processing with
Oracle Coherence, you must obtain a valid Coherence license such as a
license for Coherence Enterprise Edition, Coherence Grid Edition, or
Oracle WebLogic Application Grid. For more information on Oracle
Coherence, see
http://www.oracle.com/technology/products/coherence/index.ht
ml.

Configuring an Oracle Coherence Caching System and Cache

13-8 Developer's Guide for Oracle Event Processing

This is a global per-server file (referred to as "operational configuration" in the
Oracle Coherence documentation); put this file in the Oracle Event Processing
server config directory.

Once you have configured Oracle Coherence using the files in the preceding list,
update your component configuration file as shown in Example 13–3. Here, you
declare a Coherence caching system for use in the application by referencing the
coherence-cache-config.xml file where you configured the cache.

Example 13–3 Component Configuration File: Coherence Cache

<coherence-caching-system>
<name>caching-system-id</name>
<coherence-cache-config>

../wlevs/coherence/coherence-cache-config.xml
</coherence-cache-config>

</coherence-caching-system>

When you declare that a caching system uses the Oracle Coherence provider, be sure
that all of the caches of this caching system also map to an Oracle Coherence
configuration and not an Oracle Event Processing local configuration. Otherwise,
Oracle Event Processing will throw an exception. For reference information on this file,
see Section , "coherence-caching-system" and Section , "coherence-cache-config".

The coherence-cache-config.xml File
The coherence-cache-config.xml file is the basic Oracle Coherence configuration file
and must conform to the Oracle Coherence DTDs, as is true for any Oracle Coherence
application.

The following sample shows a simple configuration. See the explanation after the
sample for information about the sections in bold.

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config>
<caching-scheme-mapping>
<cache-mapping>
 <cache-name>myCoherenceCache</cache-name>
 <scheme-name>new-replicated</scheme-name>

 </cache-mapping>
 <cache-mapping>
 <cache-name>myLoaderCache</cache-name>
 <scheme-name>test-loader-scheme</scheme-name>

 </cache-mapping>
 <cache-mapping>
 <cache-name>myStoreCache</cache-name>
 <scheme-name>test-store-scheme</scheme-name>

 </cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<replicated-scheme>
<scheme-name>new-replicated</scheme-name>
<service-name>ReplicatedCache</service-name>
<backing-map-scheme>
<local-scheme>
<scheme-ref>my-local-scheme</scheme-ref>

</local-scheme>
</backing-map-scheme>

</replicated-scheme>
<local-scheme>
 <scheme-name>my-local-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>

Configuring an Oracle Coherence Caching System and Cache

Integrating a Cache 13-9

 <high-units>100</high-units>
 <low-units>50</low-units>

</local-scheme>
<local-scheme>
 <scheme-name>test-loader-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>
 <cachestore-scheme>

<class-scheme>
 <class-factory-name>
 com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
<method-name>getLoader</method-name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
</init-params>

</class-scheme>
 </cachestore-scheme>

</local-scheme>
<local-scheme>
<scheme-name>test-store-scheme</scheme-name>
<eviction-policy>LRU</eviction-policy>
<high-units>100</high-units>
<low-units>50</low-units>
<cachestore-scheme>
<class-scheme>
 <class-factory-name>
 com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
<method-name>getStore</method-name>
<init-params>
<init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>

</local-scheme>
</caching-schemes>

</cache-config>

In the Oracle Coherence configuration file, the cache-name element that is a child
element of cache-mapping identifies the name of the Oracle Coherence cache. The
value of this element must exactly match the value of the id attribute of the
wlevs:cache element in the EPN assembly file. For example, the following EPN
assembly file snippet refers to the myCoherenceCache cache in the Oracle Coherence
configuration file:

<wlevs:cache id="myCoherenceCache" advertise="false">
<wlevs:caching-system ref="coherence-cache"/>
<wlevs:cache-loader ref="localLoader"/>
<wlevs:cache-listener ref="localListener"/>

</wlevs:cache>

The Oracle Coherence configuration file illustrates another requirement when using
Oracle Coherence with Oracle Event Processing: an Oracle Coherence factory must be
declared when using Spring to configure a loader or store for a cache. You do this
using the cachestore-scheme element in the Oracle Coherence configuration file to
specify a factory class that allows Oracle Coherence to call into Oracle Event

Configuring an Oracle Coherence Caching System and Cache

13-10 Developer's Guide for Oracle Event Processing

Processing and retrieve a reference to the loader or store that is configured for the
cache. The only difference between configuring a loader or store is that the
method-name element has a value of getLoader when a loader is used and getStore
when a store is being used. You pass the cache name to the factory as an input
parameter.

Refer to your Oracle Coherence documentation (see
http://www.oracle.com/technology/products/coherence/index.html) for detailed
information about the coherence-cache-config.xml file.

The tangosol-coherence-override.xml File
The tangosol-coherence-override.xml file configures Oracle Coherence caching.
Include this file if you are using Oracle Coherence for caching only. Do not include this
file if you are using Oracle Coherence for clustering.

The following sample shows a simple configuration. See the explanation after the
sample for information about the sections in bold.

<?xml version='1.0'?>
<coherence xml-override="/tangosol-coherence-override.xml">
<cluster-config>
<member-identity>
<cluster-name>com.bea.wlevs.example.provider</cluster-name>

</member-identity>
...
</coherence>

This configuration file is fairly standard. The main thing to note is that you should
specify a cluster-name element to prevent Oracle Coherence from attempting to join
existing Oracle Coherence clusters when Oracle Event Processing starts up; this can
cause problems and sometimes even prevent Oracle Event Processing from starting.

Refer to your Oracle Coherence documentation (see
http://www.oracle.com/technology/products/coherence/index.html) for detailed
information about the tangosol-coherence-override.xml file.

For more information on Oracle Event Processing clusters, see "Administrating
Multi-Server Domains With Oracle Event Processing Native Clustering" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

Configuring a Shared Oracle Coherence Cache
When declaring Oracle Coherence caches in the EPN assembly files of one or more
applications deployed to the same Oracle Event Processing server, you should never
configure multiple instances of the same cache with a loader or store. You might
inadvertently do this by employing multiple applications that each configure the same
Oracle Coherence cache with a loader or store in their respective EPN assembly file. If
you do this, Oracle Event Processing throws an exception.

If multiple application bundles need to share Oracle Coherence caches, then you
should put the EPN assembly file that contains the appropriate wlevs:cache and
wlevs:caching-system in a separate bundle and set their advertise attributes to true.

To export both the caching system and the cache as an OSGi service, set the advertise
attribute to true.

<wlevs:caching-system id="caching-system-id" provider="coherence" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

Configuring an Oracle Event Processing Local Caching System and Cache

Integrating a Cache 13-11

If the cache is advertised, then a component in the EPN of an application in a separate
bundle can then reference it. The following example shows how a processor in one
bundle can use as a cache source the cache with ID cache-id located in a separate
bundle called cacheprovider:

<wlevs:processor id="myProcessor2">
<wlevs:cache-source ref="cacheprovider:cache-id"/>

</wlevs:processor>

Configuring an Oracle Event Processing Local Caching System and
Cache

You can configure your application to use the Oracle Event Processing local caching
system and cache. The Oracle Event Processing local caching system is appropriate if
you do not plan to deploy your application to a multi-server domain. If you plan to
deploy your application to a multi-server domain, consider using an Oracle Coherence
cache (see Section , "Configuring an Oracle Coherence Caching System and Cache").

To configure an Oracle Event Processing local caching system and cache:
1. Declare the caching system and caches by updating a component configuration file

by adding caching-system and cache elements.

For more information, see Section , "Configuring an Oracle Event Processing
Caching System"

2. Optionally, override the default cache configuration by updating the EPN
assembly file with one or more additional cache element child elements.

For more information, see Section , "Adding Caching to an Event Processing
Network".

3. Before assembling and deploying the application, verify that the
META-INF/MANIFEST.MF file includes the following import:

com.bea.wlevs.cache.spi; version ="11.1.0.0"

For more information, see Section , "How to Import a Package".

Configuring an Oracle Event Processing Caching System
In order to use an Oracle Event Processing caching system cache in an application, you
need to first configure the cache. Afterward, you can reference the cache in other
places, such as an event processing network. This section describes the settings you
can make in a component configuration file. For reference information on the file, see
Section , "caching-system" and Section , "cache".

In a component configuration file (such as a config.xml file), to the config root
element, add a caching-system child element; use its name child element to uniquely
identify the caching system. This name will match the EPN assembly file’s
wlevs:caching-system element id attribute. This is how Oracle Event Processing
knows to which particular caching system in the EPN assembly file this caching
configuration applies.

For example, assume your configuration file already contains a processor and an
adapter (contents removed from this example for simplicity); then the updated file
might look like the following:

<?xml version="1.0" encoding="UTF-8"?>

Configuring an Oracle Event Processing Local Caching System and Cache

13-12 Developer's Guide for Oracle Event Processing

<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<processor>
...
</processor>
<adapter>
...
</adapter
<caching-system>

<name>caching-system-id</name>
</caching-system>

</n1:config>

For each cache you want to create, update the caching-system element to add a cache
child element; use the name child element to uniquely identify each.

This name must match the wlevs:cache element id attribute you specify in the EPN
assembly file. This is how Oracle Event Processing knows to which particular cache in
the EPN assembly file this configuration applies.

For each cache, optionally add the following elements that take simple data types to
configure the cache:

■ max-size: The number of cache elements in memory after which eviction/paging
occurs. The maximum cache size is 231-1 entries; default is 64.

■ eviction-policy: The eviction policy to use when max-size is reached. Supported
values are: FIFO, LRU, LFU, and NRU; default value is LFU.

■ time-to-live: The maximum amount of time, in milliseconds, that an entry is
cached. Default value is infinite.

■ idle-time: Amount of time, in milliseconds, after which cached entries are
actively removed from the cache. Default value is infinite.

■ work-manager-name: The work manager to be used for all asynchronous
operations. The value of this element corresponds to the name child element of the
work-manager element in the server's config.xml configuration file.

For more information, see Section , "work-manager".

For example:

<caching-system>
<name>caching-system-id</name>
<cache>

<name>cache-id</name>
<max-size>100000</max-size>
<eviction-policy>LRU</eviction-policy
<time-to-live>3600</time-to-live>

</cache>
</caching-system>

Optionally add either write-through or write-behind as a child element of cache to
specify synchronous or asynchronous writes to the cache store, respectively. By
default, writes to the store are synchronous (<write-through) which means that as
soon as an entry is created or updated the write occurs.

If you specify the write-behind element, then the cache store is invoked from a
separate thread after a create or update of a cache entry. Use the following optional
child elements to further configure the asynchronous writes to the store:

Configuring an Oracle Event Processing Local Caching System and Cache

Integrating a Cache 13-13

■ work-manager-name: The work manager that handles asynchronous writes to the
cache store. If a work manager is specified for the cache itself, this value overrides
it for store operations only. The value of this element corresponds to the name child
element of the work-manager element in the server's config.xml configuration file.

For more information, see Section , "work-manager".

■ batch-size: The number of updates that are picked up from the store buffer to
write back to the backing store. Default value is 1.

■ buffer-size: The size of the internal store buffer that temporarily holds the
asynchronous updates that need to be written to the store. Default value is 100.

■ buffer-write-attempts: The number of attempts that the user thread makes to
write to the store buffer. The user thread is the thread that creates or updates a
cache entry. If all attempts by the user thread to write to the store buffer fail, it will
invoke the store synchronously. Default value is 1.

■ buffer-write-timeout: The time in milliseconds that the user thread waits before
aborting an attempt to write to the store buffer. The attempt to write to the store
buffer fails only in case the buffer is full. After the timeout, further attempts may
be made to write to the buffer based on the value of buffer-write-attempts.
Default value is 100.

For example:

<caching-system>
<name>caching-system-id</name>
<cache>

<name>cache-id</name>
<max-size>100000</max-size>
<eviction-policy>LRU</eviction-policy
<time-to-live>3600</time-to-live>
<write-behind>

<buffer-size>200</buffer-size>
<buffer-write-attempts>2</buffer-write-attempts>
<buffer-write-timeout>200</buffer-write-timeout>

</write-behind>
</cache>

</caching-system>

Optionally add a cache element listeners child element to configure the behavior of
components that listen to the cache.

Use the asynchronous Boolean attribute to specify whether listeners should be
invoked:

■ asynchronously: true.

■ synchronously: false, which means listeners are invoked synchronously (Default).

The listeners element has a single child element, work-manager-name, that specifies
the work manager to be used for asynchronously invoking listeners. This value is
ignored if synchronous invocations are enabled. If a work manager is specified for the
cache itself, this value overrides it for invoking listeners only. The value of this element
corresponds to the work-manager element name child element in the Oracle Event
Processing server config.xml configuration file.

For example:

<caching-system>
 <name>caching-system-id</name>
 <cache>

Configuring a Third-Party Caching System and Cache

13-14 Developer's Guide for Oracle Event Processing

<name>cache-id</name>
<max-size>100000</max-size>
<eviction-policy>LRU</eviction-policy
<time-to-live>3600</time-to-live>
<write-behind>

<buffer-size>200</buffer-size>
<buffer-write-attempts>2</buffer-write-attempts>
<buffer-write-timeout>200</buffer-write-timeout>

</write-behind>
<listeners asynchronous="true">

<work-manager-name>cachingWM</work-manager-name>
</listeners>

 </cache>
</caching-system>

For more information, see Section , "work-manager"

Configuring a Third-Party Caching System and Cache
You can configure your application to use a third-party caching system and cache.

To configure a third-party caching system and cache:
1. Create a plug-in to define the third-party caching system as an Oracle Event

Processing caching system provider.

This involves:

■ Implementing the com.bea.wlevs.cache.spi.CachingSystem interface

■ Creating a factory that creates caching systems of this type.

■ Registering the factory with an attribute that identifies its provider type.

2. Declare the caching system in the EPN assembly file.

Use the wlevs:caching-system element to declare a third-party implementation;
use the class or provider attribute to specify additional information.

For simplicity, you can include the third-party implementation code inside the
Oracle Event Processing application bundle itself to avoid having to import or
export packages and managing the lifecycle of a separate bundle that contains the
third-party implementation. In this case the wlevs:caching-system element
appears in the EPN assembly file as shown in the following example:

<wlevs:caching-system id="caching-system-id"
class="third-party-implementation-class"/>

The class attribute specifies a Java class that must implement the
com.bea.wlevs.cache.spi.CachingSystem interface. For details about this
interface, see the Oracle Fusion Middleware Java API Reference for Oracle Event
Processing.

Sometimes, however, you might not be able, or want, to include the third-party
caching implementation in the same bundle as the Oracle Event Processing
application that is using it. In this case, you must create a separate bundle whose
Spring application context includes the wlevs:caching-system element, with the
advertise attribute mandatory:

<wlevs:caching-system id ="caching-system-id"
class="third-party-implementation-class"
advertise="true"/>

Configuring a Third-Party Caching System and Cache

Integrating a Cache 13-15

Alternatively, if you want to decouple the implementation bundle from the bundle
that references it, or you are plugging in a caching implementation that supports
multiple caching systems per Java process, you can specify a factory as a provider:

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
<factory id="factory-id" provider-name="caching-provider">

<class>the.factory.class.name</class>
</factory>

The factory class (the.factory.class.name in the example) must implement the
com.bea.wlevs.cache.spi.CachingSystemFactory interface. This interface has a
single method, create, that returns a com.bea.wlevs.cache.spi.CachingSystem
instance.

You must deploy this bundle alongside the application bundle so that the latter
can start using it.

3. Declare one or more caches for this caching system in the EPN assembly file.

After you have declared a caching system for an application, you configure one or
more caches using the wlevs:cache element:

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The name attribute is optional; specify it only if the name of the cache in the
caching system is different from its ID. The wlevs:caching-system child element
references the already-declared caching system that contains the cache. You must
specify this child element only if the caching system is ambiguous: there is more
than one caching system declared (either implicitly or explicitly) or if the caching
system is in a different application or bundle.

You can export both the caching system and the cache as an OSGI service using the
advertise attribute.

<wlevs:caching-system id="caching-system-id" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

If the cache is advertised, then a component in the EPN of an application in a
separate bundle can then reference it. The following example shows how a
processor in one bundle can use as a cache source the cache with ID cache-id
located in a separate bundle (called cacheprovider):

<wlevs:processor id="myProcessor2">
<wlevs:cache-source ref="cacheprovider:cache-id"/>

</wlevs:processor>

The caching system is responsible for creating the cache associated with a
particular name and returning a reference to the cache. The resulting cache bean
implements the java.util.Map interface.

4. Configure the third-party caching system and its caches by updating the
third-party caching configuration file or files for the application.

Refer to your third-party cache documentation.

Adding Caching to an Event Processing Network

13-16 Developer's Guide for Oracle Event Processing

5. Optionally, override the default third-party cache configuration by updating the
appropriate configuration file with one or more additional cache element child
elements.

■ Specify that a cache is an event sink by configuring it as a listener to another
component in the event processing network.

Refer to your third-party cache documentation.

■ Specify that a cache is an event source to which another component in the
event processing network listens.

Refer to your third-party cache documentation.

■ Configure a cache loader or store.

Refer to your third-party cache documentation.

6. When you assemble your application, verify that the META-INF/MANIFEST.MF file
includes the following import:

com.bea.wlevs.cache.spi; version ="11.1.0.0"

If the MANIFEST.MF files does not include this import, update the MANIFEST.MF file
to add this import before deploying your application.

Adding Caching to an Event Processing Network
Once you have configured the caching provider your application will be using, you
can add it to the applications event processing network (EPN).

For information about adding caching to the EPN and configuring it to be reused, see
the following sections:

■ Section , "Adding the Caching System and Caches to an EPN"

■ Section , "Configuring a Cache for Reuse Among Applications"

When you add a cache to the EPN, you can specify other functionality, as described in
the following sections:

■ Section , "Configuring a Cache as an Event Listener"

■ Section , "Configuring a Cache as an Event Source"

■ Section , "Exchanging Data Between a Cache and Another Data Source"

Adding the Caching System and Caches to an EPN
To declare a caching system that uses the Oracle Coherence implementation
declaratively in the EPN assembly file, use the wlevs:caching-system element, whose
id attribute must match the name you specified for the caching system in the
application’s component configuration file.

After you have declared a caching system for an application, you configure one or
more caches using the wlevs:cache element. The element’s mandatory id attribute
maps to the name of a cache in the configuration file.

The following example illustrates a caching system and cache declared in an EPN
assembly file:

<wlevs:caching-system id="caching-system-id" provider="coherence" advertise="false"/>
...
<wlevs:cache id="myCache" advertise="false">

<wlevs:caching-system ref="caching-system-id"/>

Adding Caching to an Event Processing Network

Integrating a Cache 13-17

</wlevs:cache>

The name attribute is optional; specify it only if the name of the cache in the caching
system is different from its ID. The wlevs:caching-system child element references
the already-declared caching system that contains the cache. You must specify this
child element only if the caching system is ambiguous: there is more than one caching
system declared (either implicitly or explicitly) or if the caching system is in a different
application or bundle.

Configuring a Cache for Reuse Among Applications
You can export both the caching system and the cache as OSGI services using the
advertise attribute. If the cache is advertised, then a component in the EPN of an
application in a separate bundle can then reference it.

The following example illustrates the advertise attribute.

<wlevs:caching-system id="caching-system-id" advertise="true"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name" advertise="true" >

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The following example shows how a processor in one bundle can use as a cache source
the cache with ID cache-id located in a separate bundle (called cacheprovider):

<wlevs:processor id="myProcessor2">
<wlevs:cache-source ref="cacheprovider:cache-id"/>

</wlevs:processor>

For more information, see Section , "Configuring a Shared Oracle Coherence Cache".

Configuring a Cache as an Event Listener
You can configure a cache in an EPN to receive events as they pass through the
network.

For example, to specify that a cache listens to a channel, configure the channel with a
wlevs:listener element that has a reference to the cache, as shown in the following
example:

<wlevs:caching-system id="caching-system-id"/>

<wlevs:cache id="cache-id" name="alternative-cache-name">
<wlevs:caching-system ref="caching-system-id"/>

</wlevs:cache>

<wlevs:channel id="tradeStream">
<wlevs:listener ref="cache-id"/>

</wlevs:channel>

As the channel sends new events to the cache, they are inserted into the cache. If the
channel sends a remove event (an old event that exits the output window), then the
event is removed from the cache.

Specifying the Key Used to Index a Cache
When you configure a cache to be a listener, events are inserted into the cache. This
section describes the variety of options available to you to specify the key used to
index a cache in this instance.

Adding Caching to an Event Processing Network

13-18 Developer's Guide for Oracle Event Processing

If you do not explicitly specify a key, the event object itself serves as both the key and
value when the event is inserted into the cache. In this case, the event class must
include a valid implementation of the equals and hashcode methods that take into
account the values of the key properties.

See the following for ways to explicitly specify a key:

■ Section , "Specifying a Key Property in EPN Assembly File"

■ Section , "Using a Metadata Annotation to Specify a Key"

■ Section , "Specifying a Composite Key"

Specifying a Key Property in EPN Assembly File The first option is to specify a property
name for the key property when a cache is declared in the EPN assembly file using the
key-properties attribute, as shown in the following example:

<wlevs:cache id="myCache" key-properties="key-property-name">
<wlevs:caching-system ref="caching-system-id"/>

</wlevs:cache>

In this case, all events that are inserted into the cache are required to have a property
of this name at runtime, otherwise Oracle Event Processing throws an exception.

For example, assume the event type being inserted into the cache looks something like
the following; note the key property (only relevant Java source shown):

public class MyEvent {
private String key;
public MyEvent() {
}
public MyEvent(String key) {

this.key = key;
}
public String getKey() {

return key;
}
public void setKey(String key) {

this.key = key;
}

}

The corresponding declaration in the EPN assembly file would look like the following:

<wlevs:cache id="myCache" key-properties="key">
<wlevs:caching-system ref="caching-system-id"/>

</wlevs:cache>

Using a Metadata Annotation to Specify a Key The second option is to use the metadata
annotation com.bea.wlevs.ede.api.Key to annotate the event property in the Java
class that implements the event type. This annotation does not have any attributes.

To use a metadata annotation to specify a key:
1. Import the com.bea.wlevs.ede.api.Key package.

For more information, see Section , "How to Import a Package".

2. Apply the @Key annotation to a method.

The following example shows how to specify that the key property of the MyEvent
event type is the key; only relevant code is shown:

import com.bea.wlevs.ede.api.Key;
public class MyEvent {

private String key;

Adding Caching to an Event Processing Network

Integrating a Cache 13-19

public MyEvent() {
}
public MyEvent(String key) {

this.key = key;
}
public String getKey() {

return key;
}
@Key
public void setKey(String key) {

this.key = key;
}

}

Specifying a Composite Key The final option is to use the key-class attribute of the
wlevs:cache element to specify a composite key in which multiple properties form the
key. The value of the key-class attribute must be a JavaBean whose public fields
match the fields of the event class. The matching is done according to the field name.
For example:

<wlevs:cache id="myCache" key-class="key-class-name">
<wlevs:caching-system ref="caching-system-id"/>

</wlevs:cache>

Configuring a Cache as an Event Source
You can configure a cache as a source of events to which another component in the
event processing network listens. The listening component can be an adapter or a
bean.

A class that listens to a cache must implement an interface that provides methods for
receiving events, as follows:

■ A class that listens to a Coherence cache must implement the
com.tangosol.util.MapListener interface.

■ A class that listens to an Oracle Event Processing local cache must implement the
com.bea.cache.jcache.CacheListener interface.

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-listener ref="cache-listener-id" />

</wlevs:cache>
...
<bean id="cacheListenerId" class="wlevs.example.LocalListener"/>

In the example, the cacheListenerId Spring bean listens to events coming from the
cache. In this case, the class that implements this component,
com.bea.wlevs.example.MyCacheListener, is listening to an Oracle Coherence cache.
It must implement the appropriate Oracle Coherence-specific Java interfaces,
including com.tangosol.util.MapListener. Example 13–4 illustrates this
implementation.

Example 13–4 Oracle Coherence Cache LocalListener Implementation

package com.bea.wlevs.example.provider.coherence;

import com.tangosol.util.MapEvent;
import com.tangosol.util.MapListener;

Adding Caching to an Event Processing Network

13-20 Developer's Guide for Oracle Event Processing

public class LocalListener implements MapListener {
public static int deleted = 0;
public static int inserted = 0;
public static int updated = 0;

public void entryDeleted(MapEvent event) {
deleted++;

}
public void entryInserted(MapEvent event) {

inserted++;
}
public void entryUpdated(MapEvent event) {

updated++;
}

}

Exchanging Data Between a Cache and Another Data Source
You can have a cache in an EPN exchange data with another data source, including a
database. For example, you can load a cache with data when the application starts or
create a read/write relationship between the cache and a database.

If the cache will only be reading data, including when the backing store is read-only,
you should use a cache loader. If the cache will read and write data, use a cache store.
In both cases, creating the relationship involves specific configuration and a Java class
that knows how to communicate with the data source.

For more information, see the following topics:

■ Section , "Loading Cache Data from a Read-Only Data Source"

■ Section , "Exchanging Data with a Read-Write Data Source"

Loading Cache Data from a Read-Only Data Source
Using a cache loader, you can have a cache in your EPN load data from a read-only
data source. A cache loader is a Java class that loads cache objects into a cache. You
create a cache loader by writing a Java class that implements the appropriate interfaces
to enable the loader class to communicate with the cache. Then you configure a cache
loader by using the wlevs:cache-loader child element of the wlevs:cache element to
specify the bean that does the loading work.

If the backing store is read-write, use a cache store instead (see Section , "Exchanging
Data with a Read-Write Data Source").

When creating a cache loader, you implement interfaces as follows:

■ To load cache data into an Oracle Coherence cache, create a class that implements
the appropriate Oracle Coherence-specific Java interfaces, including
com.tangosol.net.cache.CacheLoader. See Example 13–6 for an example.

■ To load cache data into an Oracle Event Processing local cache, create a class that
implements com.bea.cache.jcache.CacheLoader interface. This interface includes
the load method to customize loading a single object into the cache; Oracle Event
Processing calls this method when the requested object is not in the cache. The
interface also includes loadAll methods that you implement to customize the
loading of the entire cache.

In Example 13–5, the localLoader bean loads events into an Oracle Coherence cache
when the backing store is read-only.

When working with a Coherence cache, note that if you specify a cache loader in your
configuration file, you must also specify the corresponding class factory method name

Adding Caching to an Event Processing Network

Integrating a Cache 13-21

in your Coherence cache configuration file. For a cache loader, you specify the
getLoader method of
com.bea.wlevs.cache.coherence.configuration.SpringFactory. For example code,
see Section , "The coherence-cache-config.xml File".

Example 13–5 Oracle Coherence Cache EPN Assembly File for a Cache Loader

<wlevs:caching-system id="caching-system-id"/>
<wlevs:cache id="myCache" advertise="false">

<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-loader ref="localLoader"/>

</wlevs:cache>
<bean id="localLoader"

class="com.bea.wlevs.example.provider.coherence.LocalLoader"/>

Example 13–6 Oracle Coherence Cache LocalLoader Implementation

package com.bea.wlevs.example.provider.coherence;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import com.bea.wlevs.example.provider.event.ProviderData;
import com.tangosol.net.cache.CacheLoader;

public class LocalLoader implements CacheLoader {
public static int loadCount = 0;
public static Set keys = new HashSet();

public LocalLoader() {
}
public Object load(Object key) {

loadCount++;
keys.add(key);
return new ProviderData((String) key);

}
public Map loadAll(Collection keys) {

Map result = new HashMap();

for (Object key : keys) {
result.put(key, load(key));

}
return result;

}
}

Exchanging Data with a Read-Write Data Source
Using a cache store, you can have a cache in your EPN exchange data with a
read-write data source. A cache store is a Java class that exchanges cache objects with a
cache. You create a cache store by writing a Java class that implements the appropriate
interfaces to enable the it to communicate with the data source. Then you add the
cache store to the EPN by using the wlevs:cache-loader child element of the
wlevs:cache element to specify the bean that communicates with the data source.

If the backing store is read-only, use a cache loader instead (see Section , "Loading
Cache Data from a Read-Only Data Source").

When creating a cache store, you implement interfaces as follows:

Adding Caching to an Event Processing Network

13-22 Developer's Guide for Oracle Event Processing

■ To exchange cache data with an Oracle Coherence cache, create a class that
implements the appropriate Oracle Coherence-specific Java interfaces, including
com.tangosol.net.cache.CacheStore. See Example 13–8 for an example.

■ To exchange cache data with an Oracle Event Processing local cache, create a class
that implements the com.bea.cache.jcache.CacheStore interface. This interface
includes the store method that stores the data in the backing store using the
passed key; Oracle Event Processing calls this method when it inserts data into the
cache. The interface also includes the storeAll method for storing a batch of data
to a backing store in the case that you have configured asynchronous writes for a
cache with the write-behind configuration element.

In Example 13–7, the localStore bean loads events into the cache when the backing
store is read-write.

Note that if you specify a cache store in your Spring configuration file, you must also
specify the corresponding class factory method name in your Coherence cache
configuration file. For a cache store, you specify the getStore method of
com.bea.wlevs.cache.coherence.configuration.SpringFactory. For example code,
see Section , "The coherence-cache-config.xml File".

Example 13–7 Oracle Coherence Cache EPN Assembly File for a Cache Store

<wlevs:caching-system id="caching-system-id"/>
<wlevs:cache id="myCache" advertise="false">

<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-store ref="localStore"/>

</wlevs:cache>
<bean id="localStore"

class="com.bea.wlevs.example.provider.coherence.LocalStore"/>

Example 13–8 Oracle Coherence Cache LocalStore Implementation

package com.bea.wlevs.example.provider.coherence;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.bea.wlevs.example.provider.event.ProviderData;
import com.tangosol.net.cache.CacheStore;

public class LocalStore implements CacheStore {

public static int eraseCount = 0;
public static int storeCount = 0;
public static int loadCount = 0;

public void erase(Object key) {
eraseCount++;

}
public void eraseAll(Collection keys) {

for (Object key : keys) {
erase(key);

}
}
public void store(Object key, Object value) {

//
// Do the store operation here.
//

}
public void storeAll(Map entries) {

for (Map.Entry entry : (Set <Map.Entry>)entries.entrySet()) {

Accessing a Cache from Application Code

Integrating a Cache 13-23

store(entry.getKey(), entry.getValue());
}

}
public Object load(Object key) {

loadCount++;
return new ProviderData((String) key);

}
public Map loadAll(Collection keys) {

Map result = new HashMap();
for (Object key : keys) {

result.put(key, load(key));
}
return result;

}
}

Accessing a Cache from Application Code
Once you have configured a cache, you can access the cache from several components
in an Oracle Event Processing application. This section describes how to do that.

For more information, see the following sections:

■ Section , "Accessing a Cache from an Oracle CQL Statement"

■ Section , "Accessing a Cache From an EPL Statement"

■ Section , "Accessing a Cache from an Adapter"

■ Section , "Accessing a Cache From a Business POJO"

■ Section , "Accessing a Cache From an Oracle CQL User-Defined Function"

■ Section , "Accessing a Cache From an EPL User-Defined Function"

■ Section , "Accessing a Cache Using JMX"

Accessing a Cache from an Oracle CQL Statement
You can reference a cache from an Oracle CQL statement in much the same way you
reference an event source such as a channel; this feature enables you to enrich standard
streaming data with data from a separate source. Example 13–9 shows a valid Oracle
CQL query that joins trade events from a standard channel named S1 with stock
symbol data from a cache named stockCache:

Example 13–9 Valid Oracle CQL Query Against a Cache

SELECT S1.symbol, S1.lastPrice, stockCache.description
FROM S1 [Now], stockCache
WHERE S1.symbol = stockCache.symbol

You must abide by these restrictions when using a cache in an Oracle CQL query:

■ Whenever you query a cache, you must join against the [Now] window.

This guarantees that the query will execute against a snapshot of the cache. If you
join against any other window type, then if the cache changes before the window
expires, the query will be incorrect.

The following example shows an invalid Oracle CQL query that joins a Range
window against a cache. If the cache changes before this window expires, the
query will be incorrect. Consequently, this query will raise Oracle Event
Processing server error "external relation must be joined with s[now]".

Accessing a Cache from Application Code

13-24 Developer's Guide for Oracle Event Processing

SELECT trade.symbol, trade.price, trade.numberOfShares, company.name
FROM TradeStream [Range 8 hours] as trade, CompanyCache as company
WHERE trade.symbol = company.id

When you use data from a cache in an Oracle CQL query, Oracle Event Processing
pulls the data rather than it being pushed, as is the case with a channel. This means
that, continuing with Example 13–9, the query executes only when a channel
pushes a trade event to the query; the stock symbol data in the cache never causes
a query to execute, it is only pulled by the query when needed.

■ You must specify the key property needed to do a lookup based on the cache key.

Consider two streams S and C with schemas (id, group, value) where the cache
key is id. A valid query is:

select count(*) as n from S [now], C
where S.id = C.id

For instructions on specifying the cache key, see:

– Section , "Specifying the Key Used to Index a Cache"

■ Joins must be executed only by referencing the cache key.

■ You cannot use a cache in a view. Instead, use a join.

■ Only a single channel source may occur in the FROM clause of an Oracle CQL
statement that joins cache data source(s).

■ If the cache is a processor source, you connect the cache directly to the processor
on the EPN as Figure 13–1 shows.

■ If the cache is a processor sink, you connect the processor to the cache using a
channel as Figure 13–2 shows.

How to Access a Cache from an Oracle CQL Statement
This section describes how to reference a cache in an Oracle CQL query statement.

This procedure assumes that you have already configured the caching system and
caches. For more information, see:

■ Section , "Configuring an Oracle Event Processing Local Caching System and
Cache"

■ Section , "Configuring an Oracle Coherence Caching System and Cache"

■ Section , "Configuring a Third-Party Caching System and Cache"

To access a cache from an Oracle CQL statement:
1. If you have not already done so, create the event type that corresponds to the

cache data and register it in the event repository.

See Section , "Creating Event Types".

2. Specify the key properties for the data in the cache.

For instructions on specifying the cache key, see:

– Section , "Specifying the Key Used to Index a Cache"

3. In the EPN assembly file, update the configuration of the cache to declare the
event type of its values; use the value-type attribute of the wlevs:cache element.
For example:

Accessing a Cache from Application Code

Integrating a Cache 13-25

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id"

name="alternative-cache-name"
value-type="CompanyEvent">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The value-type attribute specifies the type for the values contained in the cache.
This must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an Oracle CQL query.
This is because the query processor needs to know the type of events in the cache.

4. In the EPN assembly file, update the configuration of the processor that executes
the Oracle CQL query that references a cache:

a. If the cache is a processor source: you connect the cache directly to the
processor on the EPN as Figure 13–1 shows.

Figure 13–1 Cache as Processor Source

Update the wlevs:processor element a wlevs:cache-source child element
that references the cache. For example:

<wlevs:channel id="S1"/>

<wlevs:processor id="cacheProcessor">
<wlevs:source ref="S1">
<wlevs:cache-source ref="cache-id">

</wlevs:processor>

In the example, the processor will have data pushed to it from the S1 channel
as usual; however, the Oracle CQL queries that execute in the processor can
also pull data from the cache-id cache. When the query processor matches an
event type in the FROM clause to an event type supplied by a cache, such as
CompanyEvent, the processor pulls instances of that event type from the cache.

b. If the cache is a processor sink: you must connect the processor to the cache
using a channel on the EPN (that is, there must be a channel between the
processor and the cache sink) as Figure 13–2 shows.

Figure 13–2 Cache as Processor Sink

In this case, the application assembly file looks like this:

<wlevs:channel id="channel1" event-type="StockTick">
<wlevs:listener ref="processor" />

Accessing a Cache from Application Code

13-26 Developer's Guide for Oracle Event Processing

</wlevs:channel>
<wlevs:processor id="processor">

<wlevs:listener ref="channel2" />
</wlevs:processor>
<wlevs:channel id="channel2" event-type="StockTick">

<wlevs:listener ref="cache-id" />
</wlevs:channel>

Accessing a Cache From an EPL Statement
You can reference a cache from an Event Processing Language (EPL) statement in
much the same way you reference a channel; this feature enables you to enrich
standard streaming data with data from a separate source.

For example, the following EPL query joins trade events from a standard channel with
company data from a cache:

INSERT INTO EnrichedTradeEvent
SELECT trade.symbol, trade.price, trade.numberOfShares, company.name
FROM TradeEvent trade RETAIN 8 hours, Company company
WHERE trade.symbol = company.id

In the example, both TradeEvent and Company are event types registered in the
repository, but they have been configured in such a way that TradeEvents come from a
standard stream of events but Company maps to a cache in the event processing
network. This configuration happens outside of the EPL query, which means that the
source of the data is transparent in the query itself.

When you use data from a cache in an EPL query, Oracle Event Processing pulls the
data rather than it being pushed, as is the case with a channel. This means that,
continuing with the preceding sample, the query executes only when a channel pushes
a trade event to the query; the company data in the cache never causes a query to
execute, it is only pulled by the query when needed.

You must abide by these restrictions when using a cache in an EPL query:

■ You must specify the key properties for data in the cache.

For instructions on specifying the cache key, see:

– Section , "Specifying the Key Used to Index a Cache"

■ Joins must be executed only by referencing the cache key.

■ You cannot specify a RETAIN clause for data pulled from a cache. If an event type
that gets its data from a cache is included in a RETAIN clause, Oracle Event
Processing ignores it.

■ You cannot use a cache in a correlated sub-query. Instead, use a join.

■ Only a single channel source may occur in the FROM clause of an EPL statement
that joins cache data source(s). Using multiple cache sources and parameterized
SQL queries is supported.

How To Access a Cache from an EPL Statement
This section describes how to reference a cache in an EPL query statement.

Note: The EPL language is deprecated. For new development, use
Oracle CQL. For information on accessing a cache from CQL, see
Section , "Accessing a Cache from an Oracle CQL Statement".

Accessing a Cache from Application Code

Integrating a Cache 13-27

This procedure assumes that you have already configured the caching system and
caches. For more information, see:

■ Section , "Configuring an Oracle Event Processing Local Caching System and
Cache"

■ Section , "Configuring an Oracle Coherence Caching System and Cache"

■ Section , "Configuring a Third-Party Caching System and Cache"

To access a cache from an EPL statement:
1. If you have not already done so, create the event type that corresponds to the

cache data, such as Company in the preceding example, and registered it in the
event repository. See Section , "Creating Event Types".

2. Specify the key properties for the data in the cache. There are a variety of ways to
do this; see

– Section , "Specifying the Key Used to Index a Cache"

3. In the EPN assembly file, update the configuration of the cache in the EPN
assembly file to declare the event type of its values; use the value-type attribute of
the wlevs:cache element. For example:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id"

name="alternative-cache-name"
value-type="Company">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>

The value-type attribute specifies the type for the values contained in the cache.
This must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an EPL query. This is
because the query processor needs to know the type of events in the cache.

4. In the EPN assembly file, update the configuration of the processor that executes
the EPL query that references a cache, adding a wlevs:cache-source child element
that references the cache. For example:

<wlevs:channel id="stream-id"/>
<wlevs:processor id="processor-id">

<wlevs:cache-source ref="cache-id">
<wlevs:source ref="stream-id">

</wlevs:processor>

In the example, the processor will have data pushed to it from the stream-id
channel as usual; however, the EPL queries that execute in the processor can also
pull data from the cache-id cache. When the query processor matches an event
type in the FROM clause to an event type supplied by a cache, such as Company, the
processor pulls instances of that event type from the cache.

Accessing a Cache from an Adapter
An adapter can also be injected with a cache using the standard Spring mechanism for
referencing another bean. A cache bean implements the java.util.Map interface
which is what the adapter uses to access the injected cache.

First, the configuration of the adapter in the EPN assembly file must be updated with a
wlevs:instance-property child element, as shown in the following example:

Accessing a Cache from Application Code

13-28 Developer's Guide for Oracle Event Processing

<wlevs:caching-system id="caching-system-id"/>
 ...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<wlevs:adapter id="myAdapter" provider="myProvider">

<wlevs:instance-property name="map" ref="cache-id"/>
</wlevs:adapter>

In the example, the ref attribute of wlevs:instance-property references the id value
of the wlevs:cache element. Oracle Event Processing automatically injects the cache,
implemented as a java.util.Map, into the adapter.

In the adapter Java source, add a setMap (Map) method with the code that implements
whatever you want the adapter to do with the cache:

package com.bea.wlevs.example;
…
import java.util.Map;
public class MyAdapter implements Runnable, Adapter, EventSource, SuspendableBean {
...

public void setMap (Map map) {...}
}

Accessing a Cache From a Business POJO
A business POJO, configured as a standard Spring bean in the EPN assembly file, can
be injected with a cache using the standard Spring mechanism for referencing another
bean. In this way the POJO can view and manipulate the cache. A cache bean
implements the java.util.Map interface which is what the business POJO uses to
access the injected cache. A cache bean can also implement a vendor-specific
sub-interface of java.util.Map, but for portability it is recommended that you
implement Map.

First, the configuration of the business POJO in the EPN assembly file must be
updated with a property child element, as shown in the following example based on
the Output bean of the FX example (see Section , "HelloWorld Example"):

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean">

<property name="map" ref="cache-id"/>
</bean>

In the example, the ref attribute of the property element references the id value of the
wlevs:cache element. Oracle Event Processing automatically injects the cache,
implemented as a java.util.Map, into the business POJO bean.

In the business POJO bean Java source, add a setMap (Map) method with the code that
implements whatever you want the POJO to do with the cache:

package com.bea.wlevs.example.helloworld;
…
import java.util.Map;
public class HelloWorldBean implements EventSink {
...

public void setMap (Map map) {...}
}

Accessing a Cache from Application Code

Integrating a Cache 13-29

Accessing a Cache From an Oracle CQL User-Defined Function
In addition to standard event streams, Oracle CQL rules can also invoke the member
methods of a user-defined function.

These user-defined functions are implemented as standard Java classes and are
declared in the component configuration file of the Oracle CQL processor, as shown in
the following example:

<bean id="orderFunction" class="orderFunction-impl-class"/>

The processor in which the relevant Oracle CQL rule runs must then be injected with
the user-defined function using the wlevs:function child element, referencing the
Spring bean with the ref attribute:

<wlevs:processor id= "tradeProcessor">
<wlevs:function ref="orderFunction"/>

</wlevs:processor>

Alternatively, you can specify the bean class in the wlevs:function element:

<wlevs:processor id="testProcessor">
<wlevs:listener ref="providerCache"/>
<wlevs:listener ref="outputCache"/>
<wlevs:cache-source ref="testCache"/>
<wlevs:function function-name="mymod" exec-method=”execute” />

<bean class="com.bea.wlevs.example.function.MyMod"/>
</wlevs:function>

</wlevs:processor>

The following Oracle CQL rule, assumed to be configured for the tradeProcessor
processor, shows how to invoke the existsOrder method of the orderFunction
user-defined function:

INSERT INTO InstitutionalOrder
SELECT er.orderKey AS key, er.symbol AS symbol, er.shares as cumulativeShares
FROM ExecutionRequest er [Range 8 hours]
WHERE NOT orderFunction.existsOrder(er.orderKey)

You can also configure the user-defined function to access a cache by injecting the
function with a cache using the standard Spring mechanism for referencing another
bean. A cache bean implements the java.util.Map interface which is what the
user-defined function uses to access the injected cache.

First, the configuration of the user-defined function in the EPN assembly file must be
updated with a wlevs:property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
 ...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
 ...
<bean id="orderFunction" class="orderFunction-impl-class">

<wlevs:property name="cache" ref="cache-id"/>
</bean>

In the example, the ref attribute of the wlevs:property element references the id
value of the wlevs:cache element. Oracle Event Processing automatically injects the
cache, implemented as a java.util.Map, into the user-defined function.

In the user-defined function's Java source, add a setMap (Map) method with the code
that implements whatever you want the function to do with the cache:

package com.bea.wlevs.example;

Accessing a Cache from Application Code

13-30 Developer's Guide for Oracle Event Processing

…
import java.util.Map;
public class OrderFunction {
...

public void setMap (Map map) {...}
}

For more information on user-defined functions, see "Functions: User-Defined" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

Accessing a Cache From an EPL User-Defined Function
In addition to standard event streams, EPL rules can also invoke the member methods
of a user-defined function.

These user-defined functions are implemented as standard Java classes and are
declared in the EPN assembly file using the standard Spring bean tags, as shown in the
following example:

<bean id="orderFunction" class="orderFunction-impl-class"/>

The processor in which the relevant EPL rule runs must then be injected with the
user-defined function using the wlevs:function child element, referencing the Spring
with the ref attribute:

<wlevs:processor id= "tradeProcessor">
<wlevs:function ref="orderFunction"/>

</wlevs:processor>

The following EPL rule, assumed to be configured for the tradeProcessor processor,
shows how to invoke the existsOrder method of the orderFunction user-defined
function:

INSERT INTO InstitutionalOrder
SELECT er.orderKey AS key, er.symbol AS symbol, er.shares as cumulativeShares
FROM ExecutionRequest er RETAIN 8 HOURS WITH UNIQUE KEY
WHERE NOT orderFunction.existsOrder(er.orderKey)

You can also configure the user-defined function to access a cache by injecting the
function with a cache using the standard Spring mechanism for referencing another
bean. A cache bean implements the java.util.Map interface which is what the
user-defined function uses to access the injected cache.

First, the configuration of the user-defined function in the EPN assembly file must be
updated with a wlevs:property child element, as shown in the following example:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
...
<bean id="orderFunction" class="orderFunction-impl-class">

<wlevs:property name="cache" ref="cache-id"/>
</bean>

In the example, the ref attribute of the wlevs:property element references the id
value of the wlevs:cache element. Oracle Event Processing automatically injects the
cache, implemented as a java.util.Map, into the user-defined function.

In the user-defined function's Java source, add a setMap (Map) method with the code
that implements whatever you want the function to do with the cache:

package com.bea.wlevs.example;

Accessing a Cache from Application Code

Integrating a Cache 13-31

…
import java.util.Map;
public class OrderFunction {
...

public void setMap (Map map) {...}
}

For more information on user-defined functions, see "User-Defined Functions" in the
Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing.

Accessing a Cache Using JMX
At runtime, you can access a cache programatically using JMX and the MBeans that
Oracle Event Processing deploys for the caching systems and caches you define.

This section describes:

■ Section , "How to Access a Cache With JMX Using Oracle Event Processing
Visualizer"

■ Section , "How to Access a Cache With JMX Using Java"

For more information, "Configuring JMX for Oracle Event Processing" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing

How to Access a Cache With JMX Using Oracle Event Processing Visualizer
The simplest and least error-prone way to access a caching system or cache with JMX
is to use the Oracle Event Processing Visualizer.

For more information, see "Server and Domain Tasks" in the Oracle Fusion Middleware
Visualizer User's Guide for Oracle Event Processing.

How to Access a Cache With JMX Using Java
The simplest and least error-prone way to access a caching system or cache with JMX
is to use the Oracle Event Processing Visualizer (see Section , "How to Access a Cache
With JMX Using Oracle Event Processing Visualizer"). Alternatively, you can access a
caching system or cache with JMX using Java code that you write.

Oracle Event Processing creates a StageMBean for each cache that your application uses
as a stage. The Type of this MBean is Stage.

To access a cache with JMX using Java:
1. Connect to the JMX service that Oracle Event Processing server provides.

For more information, see "Configuring JMX for Oracle Event Processing" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

2. Get a list of cache StageMbean using either of:

■ CachingSystemMBean.getCacheMBeans()

■ ApplicationMBean.getStageMBeans()

3. Get the ObjectName for a given StageMBean that represents a cache in your caching
system:

ObjectName cacheName = ObjectName.getInstance (
'com.bea.wlevs:Name =

newCache,Type=Stage,CachingSystem=newCachingSystem,Application=provider'
);

Accessing a Cache from Application Code

13-32 Developer's Guide for Oracle Event Processing

4. Get a proxy instance for the StageMBean with this ObjectName:

StageMBean cache = (StageMBean) MBeanServerInvocationHandler.newProxyInstance(
server, cacheName, StageMBean.class, false

);

5. Use the methods of the StageMBean to access the cache.

14

Integrating Web Services 14-1

14Integrating Web Services

[15] This chapter describes how to configure web services for use with Oracle Event
Processing, including how to invoke services from an Oracle Event Processing
application and expose an Oracle Event Processing application as a web service.

This chapter includes the following sections:

■ Understanding Oracle Event Processing and Web Services

■ How to Invoke a Web Service From an Oracle Event Processing Application

■ How to Expose an Oracle Event Processing Application as a Web Service

Understanding Oracle Event Processing and Web Services
You can integrate an Oracle Event Processing application with other systems using
Web Services.

Oracle Event Processing supports version 2.0 of the JAX-WS API standard using the
Glassfish reference implementation of JAX-WS 2.0, including:

■ JAX-WS 2.0 (Java API for XML Web Services, defined in JSR 224)

■ WS-I Basic Profile 1.1

■ WS-I Attachments Profile 1.0 (SOAP Messages with Attachments)

■ WS-I Simple SOAP Binding Profile 1.0

■ SOAP 1.1 and 1.2 (Simple Object Access Protocol)

■ MTOM (Message Transmission Optimization Mechanism)

■ WSDL 1.1 (Web Services Definition Language)

■ JAXB 2.0 (Java API for XML Binding, references through a separate JAXB module)

■ SAAJ 1.3 (SOAP with Attachments API for Java)

How to Invoke a Web Service From an Oracle Event Processing
Application

This procedure describes how to create an Oracle Event Processing application that
invokes a Web Service. In this scenario, the Oracle Event Processing application is the
Web Service client.

To invoke a Web Service from an Oracle Event Processing application:
1. Create or obtain the WSDL for the Web Service.

How to Expose an Oracle Event Processing Application as a Web Service

14-2 Developer's Guide for Oracle Event Processing

In this example, assume the use of a WSDL named EchoService.WSDL.

2. Generate the compiled .class files you will use to invoke the Web Service (in
practice, the command should be on one line):

java -cp OCEP_HOME_DIR/modules/com.bea.core.ws.glassfish.jaxws.tools_
9.0.0.0.jar

com.sun.tools.ws.WsImport EchoService.WSDL

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle
Event Processing (such as /oracle_home).

3. Archive the generated .class files within the Oracle Event Processing application
JAR file.

For more information, see Section , "Managing Libraries and Other Non-Class
Files in Oracle Event Processing Projects".

4. Export the Web-Services Java packages for the client-code in the MANIFEST.MF file
using the Export-Package header:

Export-Package: com.oracle.ocep.sample.echoService;

For more information, see Section , "How to Export a Package".

5. Import the following packages to the Oracle Event Processing application in the
MANIFEST.MF file using the Import-Package header:

Import-Package: com.ctc.wstx.stax,
com.sun.xml.bind.v2,
com.sun.xml.messaging.saaj.soap,
com.sun.xml.messaging.saaj.soap.ver1_1,
com.sun.xml.ws,
javax.jws,
javax.xml.bind,
javax.xml.bind.annotation,
javax.xml.namespace,
javax.xml.soap,
javax.xml.transform,
javax.xml.transform.stream,
javax.xml.ws,
javax.xml.ws.spi,
org.xml.sax,
weblogic.xml.stax;

For more information, see Section , "Managing Libraries and Other Non-Class
Files in Oracle Event Processing Projects".

6. Use the client-code to invoke the Web Service as in any other Java application:

EchoService service = new EchoService();
EchoPort port = service.getEchoServicePort();
String echo = port.echo("foo");

How to Expose an Oracle Event Processing Application as a Web Service
This procedure describes how to expose an Oracle Event Processing application as a
Web Service. In this scenario, the Oracle Event Processing application is the Web
Service provider.

To expose an Oracle Event Processing application as a Web service:
1. Create or obtain the WSDL for the Web Service.

How to Expose an Oracle Event Processing Application as a Web Service

Integrating Web Services 14-3

In this example, assume the use of a WSDL named EchoService.WSDL.

2. Implement the service.

Consider using java.jws annotations @WebService and @WebMethod.

3. Add a bea-jaxws.xml file to your application bundle as Example 14–1 shows.
Table 14–1 describes the attributes in this file.

Example 14–1 bea-jaxws.xml File

<endpoints>
<endpoint>
<name>EchoService</name>
<implementation-class>
com.bea.wlevs.test.echo.impl.EchoServiceImpl

</implementation-class>
<url-pattern>/echo</url-pattern>
<wsdl-location>
/META-INF/wsdl/echo.wsdl

</wsdl-location>
<service-name>
{http://wsdl.oracle.com/examples/cep/echo}EchoService

</service-name>
<port-name>
{http://wsdl.oracle.com/examples/cep/echo}EchoServicePort

</port-name>
</endpoint>

</endpoints>

For more information, see Section , "Managing Libraries and Other Non-Class
Files in Oracle Event Processing Projects".

4. Reference the bea-jaxws.xml file in the MANIFEST.MF file using the
BEA-JAXWS-Descriptor header:

BEA-JAXWS-Descriptor: META-INF/bea-jaxws.xml;

For more information, see Section , "Managing Libraries and Other Non-Class
Files in Oracle Event Processing Projects".

5. Import the following packages to the Oracle Event Processing application in the
MANIFEST.MF file using the Import-Package header:

Import-Package: com.ctc.wstx.stax,
com.sun.xml.bind.v2,
com.sun.xml.messaging.saaj.soap,
com.sun.xml.ws,

Table 14–1 bea-jaxws.xml File Attributes

Attribute Description

name The name of the web service.

implementation-class The class that implements the service.

url-pattern The url pattern to access the web service.

wsdl-location Relative path to the wsdl in the bundle.

service-name QName of the service.

port-name QName of the port.

How to Expose an Oracle Event Processing Application as a Web Service

14-4 Developer's Guide for Oracle Event Processing

javax.jws,
javax.xml.bind,
javax.xml.bind.annotation,
javax.xml.namespace,
javax.xml.soap,
javax.xml.transform,
javax.xml.transform.stream,
javax.xml.ws,
javax.xml.ws.spi,
org.xml.sax,
weblogic.xml.stax;

For more information, see Section , "Managing Libraries and Other Non-Class
Files in Oracle Event Processing Projects".

6. Add a glassfish-ws element to the Oracle Event Processing server DOMAIN_
DIR/config/config.xml file that describes your Oracle Event Processing domain,
where DOMAIN_DIR refers to your domain directory:

<glassfish-ws>
<name>JAXWS</name>
<http-service-name>JettyServer</http-service-name>

</glassfish-ws>

15

Integrating an External Component Using a Custom Adapter 15-1

15Integrating an External Component Using a
Custom Adapter

[16] This chapter describes how to implement and configure your own Oracle Event
Processing adapters for sending and receiving event data between your application
and external components, including how to pass login credentials from an adapter.

You can develop adapters to exchange event data with external components that aren’t
supported by the adapters included with Oracle Event Processing. For more
information about included adapters, see Chapter 11, "Integrating the Java Message
Service", Chapter 12, "Integrating an HTTP Publish-Subscribe Server", and Chapter 21,
"Testing Applications With the Load Generator and csvgen Adapter".

This chapter includes the following sections:

■ Overview of Custom Adapters

■ Implementing a Custom Adapter

■ Implementing Support for Thread and Work Management

■ Passing Login Credentials from an Adapter to a Data Feed Provider

■ Configuring a Custom Adapter

■ Creating a Custom Adapter Factory

Overview of Custom Adapters
You can develop custom adapters to exchange event data with external components
that aren’t supported by adapters included with Oracle Event Processing.

You can create adapters of different types, depending on the format of incoming data
and the technology you use in the adapter code to do the conversion. The most typical
types of adapters are those that:

■ Use a data vendor API, such as Reuters, Wombat, or Bloomberg.

■ Use messaging systems, such as TIBCO Rendezvous.

■ Use a socket connection to the customer's own data protocol.

Adapters you build are likely to go at the beginning of an EPN, where they receive
data, or at the end of an EPN, where they send event data elsewhere.

With a custom adapter, you can:

■ Receive raw event data from an external component, then convert the data into
event type instances that your application can use to process the events. If

Implementing a Custom Adapter

15-2 Developer's Guide for Oracle Event Processing

necessary, your implementation can authenticate itself with the external
component.

One of the main roles of an adapter is to convert incoming data, such as a market
data feed, into Oracle Event Processing events. These events are then passed to
other components in the EPN.

■ Receive event type instances from within the event processing network, then
convert the data to a form that’s consumable by an external component. As the
exit point of an application, an adapter receives events from another stage in the
EPN, converts the event’s data into something that an external application can
read, and then sends it out.

You implement an adapter by creating an adapter class in Java. An adapter class
implements Oracle Event Processing interfaces through which it can create, send, or
receive events. For more information, see Section , "Implementing a Custom Adapter".

You add the adapter to the EPN by configuring it in the EPN assembly file. You can
further specify runtime-editable configuration settings by configuring the adapter in a
component configuration file. For more information, see Section , "Configuring a
Custom Adapter".

The samples in the following list include source and sink example code

■ The Foreign Exchange (FX) sample includes three adapters that read data from
currency data feeds and then pass the data, in the form of a specific event type, to
the processors, which are the next components in the network. For more
information, see Section , "Foreign Exchange (FX) Example".

■ The Oracle Spatial sample includes an adapter that reads data from a file and
creates event type instances from the data. For more information, see Section ,
"Oracle Spatial Example".

Implementing a Custom Adapter
You implement a custom adapter by writing Java code that can communicate with the
external component you’re integrating. An adapter class implementation also includes
code to receive or send event type instances, depending on where in an EPN the
adapter is intended to go.

The implementation will likely use several classes from the Oracle Event Processing
API. For Javadoc reference on those, see the Oracle Fusion Middleware Java API Reference
for Oracle Event Processing. For example code, see Example 15–1, "High-Level View of
Input Adapter Class".

The following lists the high-level steps you might typically take when creating a
custom adapter:

1. Implement a Java class that can communicate with the external component for
which the adapter is intended. Of course, the specifics of your code will depend
heavily on how the external component sends or receives the data your adapter is
handling.

2. If the adapter will support being suspended and resumed (for example, when it is
undeployed and deployed), you can implement interfaces to handle these events.
For more information, see Section , "Suspending and Resuming Adapter Event
Processing".

3. You might want be able to improve the application’s scalability with finer control
over adapter threading. For more information, see Section , "Improving Scalability
with Multi-Threaded Adapters".

Implementing a Custom Adapter

Integrating an External Component Using a Custom Adapter 15-3

4. In your Java code, implement the interfaces needed to support sending or
receiving event type instances.

■ If your adapter will be sending events, such as events it has created from
incoming raw event data (as an input adapter would), you will want to
implement it as an event source. For more information, see Section ,
"Implementing an Event Source."

■ If your adapter will be receiving events from some other stage in the EPN,
implement it as an event sink. For more information, see Section ,
"Implementing an Event Sink."

5. If your custom adapter must authenticate itself with a data feed provider, as it
might if it will be an input adapter, write Java logic to pass login credentials to the
component providing event data. For more information, see Section , "Passing
Login Credentials from an Adapter to a Data Feed Provider."

6. Optionally create a factory class. You need to do this only if multiple applications
are going to use instances of the custom adapter. For more information, see
Section , "Creating a Custom Adapter Factory."

If you want to bundle the custom adapter in its own JAR file so that it can be
shared among multiple applications, see Section , "How to Assemble a Custom
Adapter in its Own Bundle."

7. Add the adapter to an event processing network by configuring it in an EPN
assembly file. For more information, see Section , "Configuring a Custom
Adapter."

Example: Input Adapter Implementation
This section provides a high-level illustration of an input adapter that retrieves raw
event data from a file, converts the data into events, then sends the events to a
downstream stage in the EPN.

The code here is excerpted from the Oracle Spatial sample application. Be sure to see
its source code for the full implementation. For more information, see Section , "Oracle
Spatial Example".

Example 15–1, "High-Level View of Input Adapter Class" is not a real-world scenario,
but it does illustrate a basic flow for an input adapter. The following provides an
overview of the work done by this class:

■ Through dependency injection, this class is injected with instances of classes with
which it will do some of its work, including:

– An EventTypeRepository instance (injected with the
setEventTypeRepository method) with which to retrieve an instance of the
event type specified in the adapter’s configuration.

– A StreamSender instance (injected with the setEventSender method) with
which to send events it generates.

■ Through the setPath and setEventType methods, the class is injected with
property values specified in the adapter’s EPN assembly file configuration.

■ In implementing the RunnableBean interface, this class provides a run() method
implementation that does the adapter’s real work: retrieving raw event data,
parsing the data into event type instances, and sending the new events to a
downstream EPN stage.

Implementing a Custom Adapter

15-4 Developer's Guide for Oracle Event Processing

Example 15–1 High-Level View of Input Adapter Class

package com.oracle.cep.sample.spatial;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.bea.wlevs.ede.api.EventProperty;
import com.bea.wlevs.ede.api.EventRejectedException;
import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSink;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.util.Service;
import java.lang.RuntimeException;

public class BusStopAdapter implements RunnableBean, StreamSource, StreamSink
{

static final Log s_logger =
LogFactory.getLog("BusStopAdapter");

private String m_filePath;
private String m_eventTypeName;
private EventType m_eventType;
private StreamSender m_eventSender;
private boolean m_stopped;

private int m_repeat = 1;
private EventTypeRepository m_etr = null;

public BusStopAdapter()
 {

super();
}

/**
 * Called by the server to pass in the path
 * to the file with bus stop data.
 *
 * @param path The value specified for the path
 * property in the adapter's configuration
 * in the EPN assembly file.
 */
public void setPath(String path) throws RuntimeException
{

// Code to create a File instance from the path. This
// File object will be used to retrieve event data
// from the file.

}

/**
 * Called by the server to pass in the name of the event
 * type to which event data should be bound.
*
 * @param path The value specified for the path

Implementing a Custom Adapter

Integrating an External Component Using a Custom Adapter 15-5

 * property in the adapter's configuration
 * in the EPN assembly file.
 */
public void setEventType(String typ)
{

m_eventTypeName = typ;
}

/**
 * Called by the server to set an event type
 * repository instance that knows about event
 * types configured for this application.
 *
 * This repository instance will be used to retrieve an
 * event type instance that will be populated
 * with event data retrieved from the event data file.
 *
 * @param etr The event repository.
 */
@Service(filter = EventTypeRepository.SERVICE_FILTER)
public void setEventTypeRepository(EventTypeRepository etr)
{

m_etr = etr;
}

/**
 * Executes to retrieve raw event data and
 * create event type instances from it, then
 * sends the events to the next stage in the
 * EPN.
 *
 * This method, implemented from the RunnableBean
 * interface, executes when this adapter instance
 * is active.
 */
public void run()
{

if (m_etr == null)
{

throw new RuntimeException("EventTypeRepository is not set");
}

// Get the event type from the repository by using
// the event type name specified as a property of
// this adapter in the EPN assembly file.
m_eventType = m_etr.getEventType(m_eventTypeName);
if (m_eventType == null)
{

throw new RuntimeException("EventType(" +
m_eventType + ") is not found.");

}

BufferedReader reader = null;

System.out.println("Sending " + m_eventType +
" from " + m_filePath);

while ((m_repeat != 0) && (!m_stopped))
{

try
{

Implementing a Custom Adapter

15-6 Developer's Guide for Oracle Event Processing

reader = new BufferedReader(new FileReader(m_filePath));
} catch (Exception e)
{

m_stopped = true;
break;

}
while (!isStopped())
{

try
{

// Create an object and assign to it
// an event type instance generated
// from event data retrieved by the
// reader.
Object ev = null;
ev = readLine(reader);
if (ev == null)
{

reader.close();
break;

}

// Send the newly created event type instance
// to a downstream stage that is
// listening to this adapter.
m_eventSender.sendInsertEvent(ev);

} catch (Exception e)
{

m_stopped = true;
break;

}
}

}
}

/**
 * Called by the server to pass in a
 * sender instance that will be used to
 * send generated events to a downstream
 * stage.
 *
 * @param sender A sender instance.
 */
public void setEventSender(StreamSender sender)
{

m_eventSender = sender;
}

/**
 * Returns true if this adapter instance has
 * been suspended, such as because an exception
 * occurred.
 */
private synchronized boolean isStopped()
{
 return m_stopped;
}

Implementing Support for Thread and Work Management

Integrating an External Component Using a Custom Adapter 15-7

/**
 * Reads data from reader, creating event type
 * instances from that data. This method is
 * called from the run() method.
 *
 * @param reader Raw event data from a file.
 * @return An instance of the event type specified
 * as a property of this adapter.
 */
protected Object readLine(BufferedReader reader) throws Exception
{

// Code to read raw event data and return an event type
// instance from it.

}

/**
 * Called by the server to pass in an
 * insert event received from an
 * upstream stage in the EPN.
 */
@Override
public void onInsertEvent(Object event) throws EventRejectedException
{

// Code to begin executing the logic needed to
// convert incoming event data to event type instances.

}
}

Implementing Support for Thread and Work Management
You can improve how your adapter’s work is managed by implementing or
configuring specific threading and work characteristics.

To improve scalability, for example, you might want to configure the adapter to be
multi-threaded. To execute logic that responds well when the EPN is suspended or
resumed, you can implement interfaces available in the Oracle Event Processing API.

For more information, see the following sections:

■ Section , "Improving Scalability with Multi-Threaded Adapters"

■ Section , "Suspending and Resuming Adapter Event Processing"

Improving Scalability with Multi-Threaded Adapters
You can implement or configure an adapter to use one or more threads for reading
from its data source. For example, a multi-threaded adapter might improve
performance if its event-processing work is expensive.

Note that when an adapter is single-threaded, event order is guaranteed. Event order
is not guaranteed in a multi-threaded adapter.

The simplest way to manage threading is to configure the adapter with a work
manager. A work manager is a server feature through which your application can
prioritize the execution of its work. You can specify a dedicated work manager used
only by the adapter or you can share a work manager among several components such
as other adapters.

For more information, see:

■ Section , "work-manager"

Passing Login Credentials from an Adapter to a Data Feed Provider

15-8 Developer's Guide for Oracle Event Processing

■ Section , "EventPartitioner"

You can also create a single-threaded adapter by implementing the
com.bea.wlevs.ede.api.RunnableBean interface. In your implementation of its run()
method, you put the code that reads incoming data, converts it into Oracle Event
Processing event type instances, and then send the events to the next stage in the EPN.
For reference information on this interface, see the Oracle Fusion Middleware Java API
Reference for Oracle Event Processing.

Suspending and Resuming Adapter Event Processing
You can implement your adapter’s Java class so that the adapter supports having its
work be suspended or resumed by the server. For example, when an event processing
network that the adapter part of is suspended, you might want the adapter to stop
processing events. When the EPN’s work is resumed, other code in the adapter can
resume processing events. Supporting these cases might also mean managing
resources that the adapter acquires in order to do its work.

To support being suspended or resumed, an adapter implements interfaces in the
Oracle Event Processing API. These include the interfaces described in Table 15–1,
" Interfaces to Support Suspending and Resuming an Adapter":

For reference information on these interfaces, see the Oracle Fusion Middleware Java API
Reference for Oracle Event Processing.

Passing Login Credentials from an Adapter to a Data Feed Provider
If your adapter accesses an external data feed, the adapter might need to pass login
credentials, such as a username and password, to the data feed for user authentication.

The simplest -- and least secure -- way to do this is to hard-code the non-encrypted
login credentials in your adapter Java code. However, this method does not allow you
to encrypt the password or later change the login credentials without recompiling the
code.

The following procedures describe a different method that takes these two issues into
account. In the procedure, it is assumed that the username to access the data feed is
juliet and the password is superSecret.

You first decide whether you want the login credentials to be configured statically (in
the EPN assembly file) or dynamically (by extending the configuration of the adapter).
Configuring the credentials statically in the EPN assembly file is easier, but if the
credentials later change you must restart the application for an update to the EPN
assembly file to take place. Extending the adapter configuration allows you to change
the credentials dynamically without restarting the application, but extending the
configuration involves additional steps, such as creating an XSD file and compiling it
into a JAXB object.

Table 15–1 Interfaces to Support Suspending and Resuming an Adapter

Interface Description

com.bea.wlevs.ede.api.Su
spendableBean

Implement this to provide logic that executes when the EPN is
suspended. The interface’s suspend method, you might suspend
resources or stop processing events.

com.bea.wlevs.ede.api.Re
sumeableBean

Implement this to provide logic that executes when the EPN
resumes work. In your implementation of the beforeResume
method, you can provide code that should execute before the
adapter’s work resumes.

Passing Login Credentials from an Adapter to a Data Feed Provider

Integrating an External Component Using a Custom Adapter 15-9

This section describes:

■ Section , "How to Pass Static Login Credentials to the Data Feed Provider"

■ Section , "How to Pass Dynamic Login Credentials to the Data Feed Provider"

■ Section , "How to Access Login Credentials From an Adapter at Runtime"

For more information, see Chapter 26, "Extending Component Configuration".

How to Pass Static Login Credentials to the Data Feed Provider
This section describes how to pass login credentials that you configure statically in the
EPN assembly file.

To pass static credentials to the data feed provider
1. Open a command window and set your environment as described in Section ,

"Setting Your Development Environment."

2. Change to the directory that contains the EPN assembly file for your application.

3. Edit the EPN assembly XML file by updating the wlevs:adapter element that
declares your adapter.

In particular, add two instance properties that correspond to the username and
password of the login credentials. For now, specify the cleartext password value;
you will encrypt it in a later step. Also add a temporary password element whose
value is the cleartext password. For example:

<wlevs:adapter id="myAdapter" provider="myProvider">
<wlevs:instance-property name="user" value="juliet"/>
<wlevs:instance-property name="password" value="superSecret"/>
<password>superSecret</password>

</wlevs:adapter>

4. Save the EPN assembly file.

5. In the command prompt, use the encryptMSAConfig command to encrypt the
value of the password element in the EPN assembly file:

prompt> ORACLE_CEP_HOME/ocep_11.1/bin/encryptMSAConfig . epn_assembly_file
aesinternal.dat_file

This command includes the following parts:

■ ORACLE_CEP_HOME refers to the main directory into which you installed Oracle
Event Processing, such as d:\oracle_cep

■ The second argument refers to the directory that contains the EPN assembly
file; because this procedure directs you to change to the directory, the example
shows ".".

■ The epn_assembly_file parameter refers to the name of your EPN assembly
file.

■ Finally, the aesinternal.dat_file parameter refers to the location of the
.aesinternal.dat file associated with your domain; by default this file is
located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to
the domain directory such as /oracle_cep/user_projects/domains/mydomain
and servername refers to the server instance.

For more information, see "The encryptMSAConfig Command-Line Utility" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

Passing Login Credentials from an Adapter to a Data Feed Provider

15-10 Developer's Guide for Oracle Event Processing

After you run the command, the value of the password element of the EPN
assembly file will be encrypted.

6. Update your adapter Java code to access the login credentials properties you have
just configured and decrypt the password.

See Section , "How to Access Login Credentials From an Adapter at Runtime."

7. Edit the MANIFEST.MF file of the application and add the
com.bea.core.encryption package to the Import-Package header. See Section ,
"Creating the MANIFEST.MF File."

8. Re-assemble and deploy your application as usual. See Chapter 23, "Assembling
and Deploying Oracle Event Processing Applications."

How to Pass Dynamic Login Credentials to the Data Feed Provider
This section describes how to pass login credentials that you configure dynamically by
extending the configuration of the adapter.

To pass dynamic login credentials to the data feed provider
1. Extend the configuration of your adapter by adding two new elements: user and

password, both of type string.

For example, if you were extending the adapter in the HelloWorld example, the
XSD file might look like the following:

<xs:complexType name="HelloWorldAdapterConfig">
<xs:complexContent>

<xs:extension base="wlevs:AdapterConfig">
<xs:sequence>

<xs:element name="message" type="xs:string"/>
<xs:element name="user" type="xs:string"/>
<xs:element name="password" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

See Chapter 26, "Extending Component Configuration" for detailed instructions.

2. Open a command window and set your environment as described in Section ,
"Setting Your Development Environment."

3. Change to the directory that contains the component configuration XML file for
your adapter.

4. Update this component configuration XML file by adding the required login
credentials using the <user> and <password> elements you defined in the
configuration extension. For now, specify the cleartext password value; you will
encrypt it in a later step. For example:

<?xml version="1.0" encoding="UTF-8"?>
<myExample:config

xmlns:myExample="http://www.bea.com/xml/ns/wlevs/example/myExample">
<adapter>

<name>myAdapter</name>
<user>juliet</user>
<password>superSecret</password>

</adapter>
</myExample:config>

Passing Login Credentials from an Adapter to a Data Feed Provider

Integrating an External Component Using a Custom Adapter 15-11

5. Save the adapter configuration file.

6. Use the encryptMSAConfig command to encrypt the value of the password element
in the adapter configuration file:

prompt> ORACLE_CEP_HOME/ocep_11.1/bin/encryptMSAConfig . adapter_config_file
aesinternal.dat_file

This command includes the following parts:

■ ORACLE_CEP_HOME refers to the main directory into which you installed Oracle
Event Processing, such as d:\oracle_cep

■ The second argument refers to the directory that contains the adapter
configuration file; because this procedure directs you to change to the
directory, the example shows ".".

■ The adapter_config_file parameter refers to the name of your adapter
configuration file.

■ Finally, the aesinternal.dat_file parameter refers to the location of the
.aesinternal.dat file associated with your domain; by default this file is
located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to
the domain directory such as /oracle_cep/user_projects/domains/mydomain
and servername refers to the server instance.

For more information, see "The encryptMSAConfig Command-Line Utility" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

After you run the command, the value of the password element will be encrypted.

7. Update your adapter Java code to access the login credentials properties you have
just configured and decrypt the password.

See Section , "How to Access Login Credentials From an Adapter at Runtime."

8. Edit the MANIFEST.MF file of the application and add the
com.bea.core.encryption package to the Import-Package header. See Section ,
"Creating the MANIFEST.MF File."

9. Re-assemble and deploy your application as usual. See Chapter 23, "Assembling
and Deploying Oracle Event Processing Applications."

How to Access Login Credentials From an Adapter at Runtime
This section describes how update your custom adapter Java code to dynamically get
the user and password values from the extended adapter configuration, and then use
the com.bea.core.encryption.EncryptionService API to decrypt the encrypted
password.

To access login credential properties from an adapter at runtime:
1. Import the additional APIs that you will need to decrypt the encrypted password:

import com.bea.core.encryption.EncryptionService;
import com.bea.core.encryption.EncryptionServiceException;
import com.bea.wlevs.util.Service;

2. Use the @Service annotation to get a reference to the EncryptionService:

private EncryptionService encryptionService;

@Service
public void setEncryptionService(EncryptionService encryptionService) {

Configuring a Custom Adapter

15-12 Developer's Guide for Oracle Event Processing

this.encryptionService = encryptionService;
}

3. In the @Prepare callback method, get the values of the user and password
properties of the extended adapter configuration as usual (only code for the
password value is shown):

private String password;

public String getPassword() {
return password;

}
public void setPassword(String password) {

this.password = password;

@Prepare
public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {

if (adapterConfig.getMessage() == null
|| adapterConfig.getMessage().length() == 0) {

throw new RuntimeException("invalid message: " + message);
}
this.password= adapterConfig.getPassword();

}

See Section , "Programming Access to the Configuration of a Custom Adapter or
Event Bean" for information about accessing the extended adapter configuration.

4. Use the EncryptionService.decryptStringAsCharArray method in the @Prepare
callback method to decrypt the encrypted password:

@Prepare
public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {

if (adapterConfig.getMessage() == null
|| adapterConfig.getMessage().length() == 0) {

throw new RuntimeException("invalid message: " + message);
}
this.password = adapterConfig.getPassword();
try {

char[] decrypted =
encryptionService.decryptStringAsCharArray(password);

System.out.println("DECRYPTED PASSWORD is "+ new String(decrypted));
} catch (EncryptionServiceException e) {

throw new RuntimeException(e);
}

}

The signature of the decryptStringAsCharArray method is as follows:

char[] decryptStringAsCharArray(String encryptedString)
throws EncryptionServiceException

5. Pass these credentials to the data feed provider using the vendor API.

Configuring a Custom Adapter
When you create a custom adapter, you can add it to an EPN by configuring it in the
EPN assembly file. You can also add adapter configuration to a component
configuration file to support runtime configuration changes to certain features.

For more information, see the following sections:

Configuring a Custom Adapter

Integrating an External Component Using a Custom Adapter 15-13

■ Section , "Configuring a Custom Adapter in an EPN Assembly File"

■ Section , "Configuring a Custom Adapter in a Component Configuration File"

For a complete description of the configuration file, including registration of other
components of your application, see Section , "Creating EPN Assembly Files."

Configuring a Custom Adapter in an EPN Assembly File
In the EPN assembly file, you use the wlevs:adapter element to declare an adapter as
a component in the event processor network. Note that the configuration code will
differ for event beans created from a factory. For more information, see Section ,
"Creating a Custom Adapter Factory".

You can also use wlevs:instance-property child elements of wlevs:adapter to set
any static properties in the adapter. Static properties are those that you will not
dynamically change after the adapter is deployed.

In the following example, the BusStopAdapter class is configured as an adapter to set
properties implemented as methods in the class (setPath, setEventType, and
setBuffer):

<wlevs:adapter id="BusStopAdapter"
class="com.oracle.cep.sample.spatial.BusStopAdapter" >
<wlevs:instance-property name="path" value="bus_stops.csv"/>
<wlevs:instance-property name="eventType" value="BusStop"/>
<wlevs:instance-property name="buffer" value="30.0"/>

</wlevs:adapter>

You reference an adapter that is an event sink by using the wlevs:listener element.
In the following example, a BusPositionGen CSV adapter sends events to the
BusStopAdapter:

<wlevs:adapter id="BusPositionGen" provider="csvgen">
<!-- Code omitted -->
<wlevs:listener ref="BusStopAdapter"/>

</wlevs:adapter>

Configuring a Custom Adapter in a Component Configuration File
You can add configuration for an adapter in a component configuration file.
Configuration you add here is available to be updated at runtime. Adding
configuration in a component configuration file assumes that you have added the
adapter to the EPN by configuring it in the EPN assembly file (see Section ,
"Configuring a Custom Adapter in an EPN Assembly File" for more information).

You can also create a separate component configuration XML file as needed according
to your development environment. For example, if your application has more than one
custom event bean, you can create separate XML files for each, or create a single XML
file that contains the configuration for all custom event beans, or even all components
of your application (beans, adapters, processors, and streams).

Note: The simplest way to create a custom adapter is using the
Oracle Event Processing IDE for Eclipse adapter wizard. For more
information, see Section , "How to Create an Adapter Node".

Creating a Custom Adapter Factory

15-14 Developer's Guide for Oracle Event Processing

In the following example, a BusStopAdapter adapter is configured for event recording.
Each adapter configuration should have a separate adapter child element of the
config element.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
<adapter>

<name>BusStopAdapter</name>
<record-parameters>

<dataset-name>spatial_sample</dataset-name>
<event-type-list>

<event-type>BusPos</event-type>
<event-type>BusStop</event-type>
<event-type>BusPosEvent</event-type>
<event-type>BusStopArrivalEvent</event-type>
<event-type>BusStopPubEvent</event-type>
<event-type>BusStopPubEvent</event-type>

</event-type-list>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
</event-bean>

</wlevs:config>

Uniquely identify each adapter with the name child element. This name must be the
same as the value of the id attribute in the wlevs:adapter element of the EPN
assembly file that defines the event processing network of your application. This is
how Oracle Event Processing knows to which particular custom adapter component in
the EPN assembly file this configuration applies.

You can also extend component configuration with your own elements. For more
information, see Section 26, "Extending Component Configuration".

For more information, see:

■ Section , "Component Configuration Schema wlevs_application_config.xsd"

Creating a Custom Adapter Factory
You can use a single adapter implementation in multiple event processing networks by
implementing and configuring an adapter factory. The factory class provides adapter
instances for the applications that request one.

For detail on the APIs described here, see the Oracle Fusion Middleware Java API
Reference for Oracle Event Processing.

Creating an adapter factory involves the following steps:

1. In your adapter class, implement the com.bea.wlevs.ede.api.Adapter interface
so that the adapter can be returned by the factory. This is a marker interface, so
there are no methods to implement.

public class BusStopAdapter implements Adapter, StreamSource {
// Adapter implementation code.

}

2. Implement an adapter factory class to create and return instances of the adapter.

Creating a Custom Adapter Factory

Integrating an External Component Using a Custom Adapter 15-15

Your adapter factory class must implement the
com.bea.wlevs.ede.api.AdapterFactory interface. In your implementation of its
create method, create an instance of your adapter.

import com.oracle.cep.sample.spatial.BusStopAdapter;
import com.bea.wlevs.ede.api.AdapterFactory;

public class BusStopAdapterFactory implements AdapterFactory {
public BusStopAdapterFactory() {}
public synchronized BusStopAdapter create()

throws IllegalArgumentException {

// Your code might have a particular way to create the instance.
return new BusStopAdapter();

}
}

3. In an EPN assembly file, configure the factory class.

You register factories in the EPN assembly file using the wlevs:factory element,
as shown in the following example:

<wlevs:factory provider-name="busStopAdapterProvider"
class="com.oracle.cep.sample.spatial.BusStopAdapterFactory"/>

If you need to specify service properties, then you must also use the osgi:service
element to register the factory as an OSGI service in the EPN assembly file. The
scope of the OSGI service registry all of Oracle Event Processing. This means that
if more than one application deployed to a given server is going to use the same
adapter factory, be sure to register the factory only once as an OSGI service.

Add an entry to register the service as an implementation of the
com.bea.wlevs.ede.api.AdapterFactory interface. Provide a property, with the
key attribute equal to type, and the name by which this adapter provider will be
referenced. Finally, add a nested standard Spring bean element to register your
specific adapter class in the Spring application context.

<osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">
<osgi:service-properties>

<entry key="type" value="busStopAdapterProvider"</entry>
</osgi:service-properties>
<bean class="com.oracle.cep.sample.spatial.BusStopAdapterFactory" />

</osgi:service>

4. In applications that will use instances of the adapter, configure the adapter by
specifying the configured factory as a provider (rather than specifying the adapter
by its class name), as shown in the following example:

<wlevs:adapter id="BusStopAdapter"
provider="busStopAdapterProvider">
// ...

</wlevs:adapter>

Creating a Custom Adapter Factory

15-16 Developer's Guide for Oracle Event Processing

16

Handling Events with Java 16-1

16Handling Events with Java

[17] This chapter describes how to implement the Oracle Event Processing interfaces
needed for a Java class to act as an event sink and event source, receiving and sending
events in an event processing network (EPN). It also describes how to configure a Java
class as an Oracle Event Processing event bean or Spring bean.

Whether you are writing new logic in Java or wanting to incorporate existing Java
code, Oracle Event Processing provides several ways to add Java code to your
application. Your options include where and how the code executes, as well as how
you configure it.

This chapter includes the following sections:

■ Roles for Java Code in an Event Processing Network

■ Handling Events with Sources and Sinks

■ Configuring Java Classes as Beans

Roles for Java Code in an Event Processing Network
Whether you are writing new functionality or have existing logic in Java that you want
to incorporate into an Oracle Event Processing application, places where you code
might go depending on its role.

Note that many Oracle Event Processing applications have no need for Java code at all.
For example, an application’s logic might be captured in Oracle CQL alone.

Use the following descriptions of roles for Java code to find the best place for your
code.

■ Java classes as beans to handle events passing through an event processing
network (EPN)

You can write Java code to handle events as they flow through the EPN, receiving
events, sending them, or both. For example, you could add a class that supports
both receiving and sending events, using it as intermediate logic in the EPN.
There, it could retrieve data from events it receives, then create a new kind event
from the data for use by a particular downstream component.

For more information on implementing Java classes that receive and send events,
see Section , "Configuring Java Classes as Beans".

■ Custom adapters to integrate external components for incoming or outgoing
events

You can implement a Java class as logic in a custom adapter designed to interact
with an external component that is not supported by adapters included with

Handling Events with Sources and Sinks

16-2 Developer's Guide for Oracle Event Processing

Oracle Event Processing. For example, you could implement an adapter that is
able to receive events from an event source that isn’t supported by the included
JMS or HTTP Publish-Subscribe adapters.

The Java code in custom adapters implements the event source and event sink
functionality discussed in this chapter -- see Section , "Handling Events with
Sources and Sinks". For more information about other aspects of custom adapters,
see Chapter 15, "Integrating an External Component Using a Custom Adapter".

■ Java functions to enhance functionality in Oracle CQL code

You can call Java methods from Oracle CQL code to augment Oracle CQL with
your own logic. For example, if you have written a Java class with methods that
perform calculations on data such as that your application will receive as event
data, you might call methods of that class within Oracle CQL code as part of a
select statement.

For more information, see "User-Defined Functions" in the Oracle Fusion
Middleware CQL Language Reference for Oracle Event Processing

■ JavaBean class as an event type that represents event data

You can create an event type -- the vehicle for carrying event data through your
application -- by implementing the type as a JavaBean class. Although there are
alternatives, this is the best practice approach.

For more information, see Section , "Creating an Oracle Event Processing Event
Type as a JavaBean".

Handling Events with Sources and Sinks
When you write Java code designed to handle events, you create a class that is an
event sink or event source. An event sink is able to receive events as they flow through
an event processing network. An event source can create events and send them along
to a downstream stage in the EPN. For example, you might create a class that receive
events, does something with their data, then send them along to the next stage.

Event sinks and sources implement particular interfaces provided by the Oracle Event
Processing API. An event sink implements interfaces that include methods through
which the Oracle Event Processing server can pass into it event type instances. An
event source implements an interface that includes a method through which it receives
an object with which to send events. A single class can implement either or both kinds
of functionality, depending on its role in the event processing network (EPN).

Common places for event-handling Java code are adapters and beans. An adapter is a
part of the EPN that communicates with external components. It is designed to receive
external event data and create events from the data, or to receive internal events and
send their data along to another component outside the EPN. Writing event handling
code, as described in this chapter, is an important part of creating an adapter. For more
on creating adapters, see Chapter 15, "Integrating an External Component Using a
Custom Adapter".

Note: This section assumes that you are familiar with streams and
relations and the differing ways they represent events moving
through an event processing network. If not, be sure to read Section ,
"Overview of Events, Streams and Relations".

Handling Events with Sources and Sinks

Handling Events with Java 16-3

Like an adapter, a bean can handle events. But you typically add a bean in the midst of
an EPN so that events will pass into and out of it. For example, you might want to add
a bean whose Java code executes application logic in response to data in events
passing through it.

The following procedure describes the typical steps for creating a Java class that
receives and sends events.

1. Implement the interfaces needed to receive or send events. Your options for
developing Java logic as an EPN component are as follows:

■ To create a class that can receive events as they pass through the EPN,
implement interfaces that make the class an event sink. Those interfaces
include StreamSink or RelationSink for receiving single events, and
BatchStreamSink or BatchRelationSink for receiving batches of events. For
more information, see Section , "Implementing an Event Sink".

■ To create a class that can send events to other parts of the EPN, implement
interfaces that make the class an event source. Those interfaces include
StreamSource or RelationSource for sending single events, and
BatchStreamSource or BatchRelationSource for sending batches of events. For
more information, see Section , "Implementing an Event Source".

2. Configure the class so that you can add it to the EPN where it belongs.

■ If the class will be part of an adapter, you will want to finish the adapter
implementation, then configure it as described in Chapter 15, "Integrating an
External Component Using a Custom Adapter".

■ If the class will be added to the EPN as a bean, you will want to configure it as
described in Section , "Configuring Java Classes as Beans".

Handling Events with Sources and Sinks

16-4 Developer's Guide for Oracle Event Processing

Implementing an Event Sink
You can create a Java class that is able to receive events as they pass through an event
processing network. A component that can receive events is an event sink. You might
create an event sink, for example, to receive events in the midst of an event processing
network, with logic for responding to each event’s content.

A Java class that is an event sink implements one of the interfaces described in this
section. Each of these interfaces provides methods that the Oracle Event Processing
server uses to pass events to the class as the events exit the EPN stage connected
upstream of the class, typically a channel.

The interfaces described here are intended to provide support for events arriving
either as streams or relations. However, interfaces for relation support also support
receiving events arriving as streams. As described in the following table, the interfaces
are hierarchically related.

Implementing StreamSink or BatchStreamSink
A class that receives events as a stream will receive only events that are, from the
Oracle Event Processing standpoint, "inserted." That’s because in a stream, events are
always appended to the end of a sequence. Events in a stream are also always received

Note: This procedure assumes that the custom event bean is bundled
in the same application JAR file that contains the other components of
the EPN, such as the processor, streams, and business logic POJO. If
you want to bundle the custom event bean in its own JAR file so that it
can be shared among multiple applications, see Section , "How to
Assemble an Event Bean in its Own Bundle."

Note: For a step-by-step development example that includes creating
a simple event sink, be sure to see Chapter 8, "Walkthrough:
Assembling a Simple Application".

Interface Description

com.bea.wlevs.ede.api.StreamSink Implement this to receive events arriving
sequentially as a stream.

com.bea.wlevs.ede.api.RelationSink Implement this to receive events arriving
sequentially as a relation. Extends
StreamSink., so it also provides support for
receiving events as a stream.

com.bea.wlevs.ede.api.BatchStreamSink Implement this to support receiving batched
events arriving as a stream. Events might
arrive batched by timestamp if the channel
they are coming from is configured to allow
batching. Extends StreamSink, so it also
provides support for receiving events
unbatched.

com.bea.wlevs.ede.api.BatchRelationSink Implement this to support receiving batched
events arriving as a relation. Events might
arrive batched by timestamp if the channel
they are coming from is configured to allow
batching. Extends RelationSink, so it also
provides support for receiving events
unbatched as either streams or relations.

Handling Events with Sources and Sinks

Handling Events with Java 16-5

in ascending time order, so that their timestamps have non-decreasing values from one
event to the one that follows it. (The idea of non-decreasing timestamps allows for the
possibility that the timestamp of one event can be the same as the timestamp of the
event that precedes it, but not earlier than that preceding timestamp. It’s either the
same or later.)

As a result, the interfaces for support to receive events as a stream have one method
each for receiving events. Contrast this with the interfaces for receiving events as a
relation, which support receiving multiple kinds of events.

You implement the StreamSink interface if you expect your class to receive unbatched
events as a stream. It has a single method, onInsertEvent, which the Oracle Event
Processing server calls to pass in each event from the stream as it leaves the upstream
stage that is connected to your class.

In Example 16–1, "Implementing the StreamSink Interface", a simple StreamSink
implementation that receive stock trade events receives each event as an Object
instance, then tests to see if the event is an instance of a particular event type. If it is,
then the code retrieves values of properties known to be members of that type.

Example 16–1 Implementing the StreamSink Interface

public class TradeListener implements StreamSink {

public void onInsertEvent(Object event) throws EventRejectedException {
if (event instanceof TradeEvent){

String symbolProp = ((TradeEvent) event).getSymbol();
Integer volumeProp = ((TradeEvent) event).getVolume();
// Code to do something with the property values.

}
}

}

You implement the BatchStreamSink interface if you expect your class to receive
batched events as a stream. The interface has a single method, onInsertEvents, which
the Oracle Event Processing server calls to pass in a collection of events received from
the upstream stage. (The BatchStreamSink interface extends StreamSink, so can
receive unbatched events also.)

For more information about event batching, see Section , "Batch Processing Channels".

Implementing RelationSink or BatchRelationSink
A class that receives events as a relation can receive any of the kinds of events possible
in a relation: insert events, delete events, and update events. Unlike a stream, events in
a relation are unordered and include events that have been updated or deleted by code
that created or operated on the relation.

As a result, the interfaces for support to receive events as a relation have methods
through which your class can receive insert, delete, or update events.

You implement the RelationSink interface if you expect your class to receive
unbatched events as a relation. It has three methods (one inherited from the
StreamSink interface, which it extends), onInsertEvent, onDeleteEvent, and
onUpdateEvent. At runtime, the Oracle Event Processing server will call the
appropriate method depending on which type of event is being received from the
upstream channel connected to your class.

Handling Events with Sources and Sinks

16-6 Developer's Guide for Oracle Event Processing

Example 16–2 Implementing the RelationSink Interface

public class TradeListener implements RelationSink {

public void onInsertEvent(Object event) throws EventRejectedException {
if (event instanceof TradeEvent){

String symbolProp = ((TradeEvent) event).getSymbol();
Integer volumeProp = ((TradeEvent) event).getVolume();
// Do something with the inserted event.

}
}

@Override
public void onDeleteEvent(Object event) throws EventRejectedException {

if (event instanceof TradeEvent){
// Do something with the deleted event.

}
}

@Override
public void onUpdateEvent(Object event) throws EventRejectedException {

if (event instanceof TradeEvent){
// Do something with the updated event.

}
}

}

You implement the BatchRelationSink interface if you expect your class to receive
batched events as a relation. It has an onEvents method designed to receive all three
types of events from the batch in java.util.Collection instances:

onEvents(insertEvents, deleteEvents, updateEvents)

In addition, the interface extends the RelationSink interface to provide support for
receiving unbatched events.

At runtime, the Oracle Event Processing server calls the appropriate method to pass in
events received from the upstream stage connected to your class.

For more information about event batching, see Section , "Batch Processing Channels".

For complete API reference information about the Oracle Event Processing APIs
described in this section, see the Oracle Fusion Middleware Java API Reference for Oracle
Event Processing.

Implementing an Event Source
You can create a Java class that is able to send events to a downstream stage in an
event processing network. A component that can send events is an event source. You
might create an event source, for example, to send events your Java code has created
or altered from event data flowing through the EPN.

A Java class that is an event source implements one of the interfaces described in this
section. Each of these interfaces provides a method used by the Oracle Event
Processing server to pass into your class an instance of a sender class.

The sender instance your event source receives, in turn, implements one of the sender
interfaces described in this section. The sender interfaces provide methods your code
can call to send events as streams or relations, batched or unbatched, along to the
downstream EPN stage that follows it, such as a channel.

Handling Events with Sources and Sinks

Handling Events with Java 16-7

The interfaces described here are intended to provide support for sending events
either as streams or relations. However, interfaces for relation support also support
sending events as streams.

The interfaces listed in Table 16–2, " Interfaces Implemented by Sender Classes" are
implemented by sender classes your event source class receives from the Oracle Event
Processing server.

Implementing StreamSource
A class that is a source of events as a stream should send only events that are, from the
Oracle Event Processing standpoint, "inserted." Sending only inserted events models a
stream, rather than a relation. Events sent from a stream source should also have
non-decreasing timestamps from one event to the event that follows it. In other words,
the timestamp of an event that follows another should either be the same as or later
than the event that preceded it.

Table 16–1 Interfaces for Implementing an Event Source

Interface Description

com.bea.wlevs.ede.api.StreamSource Implement this for the ability to send events as a
stream. At runtime, the Oracle Event Processing
server will inject an instance of a stream sender
class.

com.bea.wlevs.ede.api.RelationSource Implement this for the ability to send events as a
relation or stream. At runtime, the Oracle Event
Processing server will inject an instance of a
relation sender class. Extends StreamSource., so it
also provides support as a source of stream
events.

Table 16–2 Interfaces Implemented by Sender Classes

Interface Description

com.bea.wlevs.ede.api.StreamSender Provides a method with which your code
can send events as a stream.

com.bea.wlevs.ede.api.RelationSender Provides methods with which your code
can send events as a relation. Extends
StreamSender, so it also provides support
for sending events as a stream.

com.bea.wlevs.ede.api.BatchStreamSender Provides a method with which your code
can send batched events as a stream. You
might send ev

ents batched by timestamp if the
downstream stage to which you’re sending
them is a channel configured for batched
events. Extends StreamSender, so it also
provides support for sending events
unbatched.

com.bea.wlevs.ede.api.BatchRelationSender Provides a method with which your code
can send batched events as a relation. You
might send events batched by timestamp if
the downstream stage to which you’re
sending them is a channel configured for
batched events. Extends RelationSender,
so it also provides support for sending
events unbatched.

Handling Events with Sources and Sinks

16-8 Developer's Guide for Oracle Event Processing

When you implement StreamSource, your code can send events batched or unbatched.
Your implementation of the StreamSource setEventSender method will receive a
sender instance that you can cast to one of the types described in Table 16–2,
" Interfaces Implemented by Sender Classes". Your code should use the sender instance
to send events as expected by the downstream stage to which the events will be going.

If your code is sending events to a channel that enables batching, you should use one
of the batched event senders to batch events by timestamp before sending them. For
more information, see Section , "Batch Processing Channels".

The sender instance also provides a sendHeartbeat method with which you can send a
heartbeat if the receiving channel is configured to be application timestamped.

Implementing RelationSource
A class that is a source of events as a relation can send insert, delete, and update
events as expected by the downstream stage that is receiving the events.

When you implement RelationSource, your code can send events batched or
unbatched. Your implementation of the RelationSource setEventSender method will
receive a sender instance that you can cast to one of the types described in Table 16–2,
" Interfaces Implemented by Sender Classes". Your code should use the sender instance
to send events as expected by the downstream stage.

As you implement RelationSource, keep in mind the following constraints when
using the sender instance your class receives:

■ For sendDeleteEvent, you must send an instance of the same event type as that
configured for the channel.

■ For sendInsertEvent, a unique constraint violation exception will be raised and
the input event discarded if an event with the same primary key is already in the
relation.

■ For sendUpdateEvent, an invalid update tuple exception will be raised and the
input event will be discarded if an event with the given primary key is not in the
relation.

In Example 16–3, "Implementing the RelationSource Interface", a simple
RelationSource implementation receives a StreamSender, then casts the sender to a
RelationSender in order to send events as a relation. This class creates a new
TradeEvent instance from the event type configured in the repository, but the
sendEvents method could as easily have received an instance as a parameter from
another part of the code.

Example 16–3 Implementing the RelationSource Interface

package com.oracle.cep.example.tradereport;

import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RelationSender;
import com.bea.wlevs.ede.api.RelationSource;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.util.Service;

public class TradeEventSource implements RelationSource {

// Variables for event type respository and event sender. Both
// will be set by the server.
EventTypeRepository m_repos = null;

Configuring Java Classes as Beans

Handling Events with Java 16-9

RelationSender m_sender = null;

// Called by the server to set the repository instance.
@Service
public void setEventTypeRepository(EventTypeRepository repos) {

m_repos = repos;
}

// Called by the server to set the sender instance.
@Override
public void setEventSender(StreamSender sender) {

// Cast the received StreamSender to a RelationSender
m_sender = (RelationSender)sender;

}

/**
 * Sends events to the next EPN stage using the sender
 * received from the server. This code assumes that an event
 * instance isn’t received from another part of the class,
 * instead creating a new instance from the repository.
 */
private void sendEvents(){

EventType eventType = m_repos.getEventType("TradeEvent");
TradeEvent tradeEvent = (TradeEvent)eventType.createEvent();
m_sender.sendDeleteEvent(tradeEvent);

}
}

Configuring Java Classes as Beans
When you write Java classes to handle events, you can add them to an EPN by
configuring them in the EPN assembly file. You can configure a class a either a Spring
bean or an Oracle Event Processing event bean.

Whether you configure your class as an event bean or Spring bean depends on your
deployment context and the features you want to support. Essentially, however, you
might want to configure the class as Spring bean if you’re interested in taking
advantage of an Spring features, such as when you’re already using Spring elsewhere.

Table 16–3, " Comparison of Event Beans and Spring Beans" lists the features provided
by event beans and Spring beans.

Note: You can also add a class as part of an adapter, whose code
receives or sends events when interacting with an external
component. For more about configuring a class as an adapter, see
Chapter 15, "Integrating an External Component Using a Custom
Adapter".

Configuring Java Classes as Beans

16-10 Developer's Guide for Oracle Event Processing

For more details on each of the different bean types, see the following:

■ Section , "Configuring a Java Class as an Event Bean"

■ Section , "Configuring a Java Class as a Spring Bean"

Configuring a Java Class as an Event Bean
You can configure a Java class as an Oracle Event Processing event bean in the EPN
assembly file and the componenent configuration file. Configuring it as a event bean
in the EPN assembly file will add the bean to the EPN with default settings. You can
then configure it in the component configuration file to support runtime configuration
changes to certain features.

For more information, see the following sections:

■ Section , "Configuring an Event Bean in an EPN Assembly File"

■ Section , "Configuring an Event Bean in a Component Configuration File"

For a complete description of the configuration file, including registration of other
components of your application, see Section , "Creating EPN Assembly Files."

Configuring an Event Bean in an EPN Assembly File
In an EPN assembly file, you use the wlevs:event-bean element to declare a custom
event bean as a component in the event processor network. Note that the configuration
code will differ for event beans created from a factory. For more information, see
Section , "Creating an Event Bean Factory".

In the following example, the TradeListener class is configured as an event bean
whose downstream connection is a channel with ID BeanOutputChannel:

<wlevs:event-bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
 <wlevs:listener ref="BeanOutputChannel"/>
</wlevs:event-bean>

Table 16–3 Comparison of Event Beans and Spring Beans

Bean Type Description

Event bean Useful as an EPN stage to actively use the capabilities of the Oracle Event
Processing server container. An event bean:

■ Is a type of Oracle Event Processing EPN stage.

■ Can be monitored by the Oracle Event Processing monitoring framework.

■ Can make use of the configuration metadata annotations.

■ Can be set to record and play-back events that pass through it.

■ Can participate in the Oracle Event Processing server bean lifecycle by
specifying methods in its XML declaration, rather than by implementing
Oracle Event Processing server API interfaces.

Spring bean Useful for legacy integration to Spring. A Spring bean:

■ Is useful if you have a Spring bean you want to add to an EPN.

■ Is not a type of Oracle Event Processing EPN stage.

■ Cannot be monitored by the Oracle Event Processing monitoring
framework.

■ Cannot use the configuration metadata annotations.

■ Cannot be set to record and play back events that pass through it.

Configuring Java Classes as Beans

Handling Events with Java 16-11

You can also use a wlevs:instance-property child element to set any static properties
in the bean. Static properties are those that you will not change after the bean is
deployed.

For example, if your bean class has a setThreshold method, you can pass it the port
number as shown:

<wlevs:event-bean id="TradeListenerBean"
class="com.oracle.cep.example.tradereport.TradeListener">

 <wlevs:instance-property name="threshold" value="6000" />
<wlevs:listener ref="BeanOutputChannel"/>

</wlevs:event-bean>

You reference an event bean that is an event sink by using the wlevs:listener
element. In the following example, a TradeListenerBean event bean receives events
from a channel ProcessorOutputChannel:

<wlevs:channel id="ProcessorOutputChannel" >
 <wlevs:listener ref="TradeListenerBean" />
</wlevs:channel>

Configuring an Event Bean in a Component Configuration File
You can add configuration for an event bean in a component configuration file.
Configuration you add here is available to be updated at runtime. Adding
configuration in a component configuration file assumes that you have added the
event bean to the EPN by configuring it in the EPN assembly file (see Section ,
"Configuring an Event Bean in an EPN Assembly File" for more information).

You can also create a separate component configuration XML file as needed according
to your development environment. For example, if your application has more than one
custom event bean, you can create separate XML files for each, or create a single XML
file that contains the configuration for all custom event beans, or even all components
of your application (beans, adapters, processors, and streams).

In the following example, a TradeListenerBean event bean is configured for event
recording. Each event bean configuration should have a separate event-bean child
element of the config element.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
<event-bean>

<name>TradeListenerBean</name>
<record-parameters>

<dataset-name>tradereport_sample</dataset-name>
<event-type-list>

<event-type>TradeEvent</event-type>
</event-type-list>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
</event-bean>

</wlevs:config>

Uniquely identify each event bean with the name child element. This name must be the
same as the value of the id attribute in the wlevs:event-bean element of the EPN
assembly file that defines the event processing network of your application. This is
how Oracle Event Processing knows to which particular event bean component in the
EPN assembly file this configuration applies.

Configuring Java Classes as Beans

16-12 Developer's Guide for Oracle Event Processing

You can also extend component configuration with your own elements. For more
information, see Section 26, "Extending Component Configuration".

For a reference on the component configuration XML schema, see Section ,
"Component Configuration Schema wlevs_application_config.xsd".

Creating an Event Bean Factory
You can use a single event bean implementation in multiple event processing networks
by implementing and configuring an event bean factory. The factory class provides
event bean instances for the applications that request one.

For detail on the APIs described here, see the Oracle Fusion Middleware Java API
Reference for Oracle Event Processing

Creating an event bean factory involves the following steps:

1. In your event bean class, implement the com.bea.wlevs.ede.api.EventBean
interface so that the bean can be returned by the factory. This is a marker interface,
so there are no methods to implement.

public class TradeListener implements EventBean, StreamSink {
// Bean implementation code.

}

2. Implement an event bean factory class to create and return instances of the event
bean.

Your event bean factory class must implement the
com.bea.wlevs.ede.api.EventBeanFactory interface. In your implementation of
its create method, create an instance of your event bean.

import com.oracle.cep.example.tradereport.TradeListener;
import com.bea.wlevs.ede.api.EventBeanFactory;

public class TradeListenerFactory implements EventBeanFactory {
public TradeListenerFactory() {
}
public synchronized TradeListener create()

throws IllegalArgumentException {

// Your code might have a particular way to create the instance.
return new TradeListener();

}
}

3. In an EPN assembly file, configure the factory class.

You register factories in the EPN assembly file using the wlevs:factory element,
as shown in the following example:

<wlevs:factory provider-name="tradeListenerProvider"
class="com.oracle.cep.example.tradereport.TradeListenerFactory"/>

If you need to specify service properties, then you must also use the osgi:service
element to register the factory as an OSGI service in the EPN assembly file. The
scope of the OSGI service registry is all of Oracle Event Processing. This means
that if more than one application deployed to a given server is going to use the
same even bean factory, be sure to register the factory only once as an OSGI service.

Configuring Java Classes as Beans

Handling Events with Java 16-13

Add an entry to register the service as an implementation of the
com.bea.wlevs.ede.api.EventBeanFactory interface. Provide a property, with the
key attribute equal to type, and the name by which this event bean provider will
be referenced. Finally, add a nested standard Spring bean element to register your
specific event bean class in the Spring application context

<osgi:service interface="com.bea.wlevs.ede.api.EventBeanFactory">
<osgi:service-properties>

<entry key="type" value="tradeListenerProvider"</entry>
</osgi:service-properties>
<bean class="com.oracle.cep.example.tradereport.TradeListenerFactory" />

</osgi:service>

4. In applications that will use instances of the event bean, configure the event bean
by specifying the configured event bean factory as a provider (rather than
specifying the bean by its class name), as shown in the following example:

<wlevs:event-bean id="TradeListenerBean"
 provider="tradeListenerProvider">
 ...
</wlevs:event-bean>

For more on bundling an event bean in its own bundle for reuse, see Section , "How to
Assemble an Event Bean in its Own Bundle".

Configuring a Java Class as a Spring Bean
You can configure a Java class as a Spring bean in order to include the class in an event
processing network. This is a good option if you have an existing Spring bean that you
want to incorporate into the EPN. Or you might simply want to have your Java code
make use of Spring features.

A Spring bean is a Java class managed by the Spring framework. You add a class as a
Spring bean by configuring it in the EPN assembly file using the standard bean
element.

Keep in mind that a Spring bean is not a type of Oracle Event Processing stage. In
other words, it cannot be monitored by the Oracle Event Processing monitoring
framework, cannot use the configuration metadata annotations, and cannot be set to
record and play-back events that pass through it.

In the EPN assembly file, you use the bean element to declare a custom Spring bean as
a component in the event processor network. For example:

<bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
</bean>

Supporting Spring Bean Characteristics
In a Spring bean you are planning to add to an EPN, you can implement the various
lifecycle interfaces. These include InitializingBean, DisposableBean, and the active
interfaces, such as RunnableBean. The Spring bean event source can also use
configuration metadata annotations such as @Prepare, @Rollback, and @Activate.

Configuring Java Classes as Beans

16-14 Developer's Guide for Oracle Event Processing

17

Querying an Event Stream with Oracle CQL 17-1

17Querying an Event Stream with Oracle CQL

[18] This chapter describes how to configure Oracle Continuous Query Language (Oracle
CQL) processors for Oracle Event Processing event processing networks. It includes
information on configuring the processor’s data source and optimizing performance.

This chapter includes the following sections:

■ Overview of Oracle CQL Processor Configuration

■ Configuring an Oracle CQL Processor

■ Configuring an Oracle CQL Processor Table Source

■ Configuring an Oracle CQL Processor Cache Source

■ Configuring an Oracle CQL Processor for Parallel Query Execution

■ Handling Faults

■ Example Oracle CQL Processor Configuration Files

Overview of Oracle CQL Processor Configuration
An Oracle Event Processing application contains one or more event processors, or
processors for short. Each processor takes as input events from one or more adapters;
these adapters in turn listen to data feeds that send a continuous stream of data from a
source. The source could be anything, such as a financial data feed or the Oracle Event
Processing load generator.

The main feature of an Oracle CQL processor is its associated Oracle Continuous
Query Language (Oracle CQL) rules that select a subset of the incoming events to then
pass on to the component that is listening to the processor. The listening component
could be another processor, or the business object POJO that typically defines the end
of the event processing network, and thus does something with the events, such as
publish them to a client application. For more information on Oracle CQL, see the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

For each Oracle CQL processor in your application, you must create a processor
element in a component configuration file. In this processor element you specify the
initial set of Oracle CQL rules of the processor and any optional processor
configuration.

You can configure additional optional Oracle CQL processor features in the Oracle
CQL processor EPN assembly file.

The component configuration file processor element’s name element must match the
EPN assembly file processor element’s id attribute. For example, given the EPN
assembly file processor element shown in Example 17–1, the corresponding

Overview of Oracle CQL Processor Configuration

17-2 Developer's Guide for Oracle Event Processing

component configuration file processor element is shown in Example 17–2.

Example 17–1 EPN Assembly File Oracle CQL Processor Id: proc

<wlevs:processor id="proc">
<wlevs:table-source ref="Stock" />

</wlevs:processor>

Example 17–2 Component Configuration File Oracle CQL Processor Name: proc

<processor>
<name>proc</name>
<rules>

<query id="q1"><![CDATA[
SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
FROM ExchangeStream [Now], Stock
WHERE ExchangeStream.symbol = Stock.symbol

]]></query>
</rules>

</procesor>

You can create a processor element in any of the following component configuration
files:

■ The default Oracle Event Processing application configuration file (by default,
META-INF/wlevs/config.xml).

■ A separate configuration file.

If your application has more than one processor, you can create a processor element
for each of them in the default config.xml file, you can create separate XML files in
META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains
the configuration for all processors, or even all components of your application
(adapters, processors, and channels). Choose the method that best suits your
development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component
configuration file and one EPN assembly file. When you create an Oracle CQL
processor using Oracle Event Processing IDE for Eclipse, by default, the processor
element is added to the default component configuration file
META-INF/wlevs/config.xml file. Using Oracle Event Processing IDE for Eclipse, you
can choose to create a new configuration file or use an existing configuration file at the
time you create the Oracle CQL processor.

Component configuration files are deployed as part of the Oracle Event Processing
application bundle. You can later update this configuration at runtime using Oracle
Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate
JMX Mbeans directly.

For more information, see:

■ Section , "Overview of Component Configuration Files"

■ Section , "Overview of EPN Assembly Files"

■ Section , "Creating EPN Assembly Files"

■ Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

■ "wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

Configuring an Oracle CQL Processor

Querying an Event Stream with Oracle CQL 17-3

■ "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

For more information on Oracle CQL processor configuration, see:

■ Section , "Controlling Which Queries Output to a Downstream Channel"

■ Section , "Configuring an Oracle CQL Processor"

■ Section , "Configuring an Oracle CQL Processor Table Source"

■ Section , "Configuring an Oracle CQL Processor Cache Source"

■ Section , "Example Oracle CQL Processor Configuration Files"

Controlling Which Queries Output to a Downstream Channel
If you configure an Oracle CQL processor with more than one query, by default, all
queries output their results to the downstream channel.

You can control which queries may output their results to a downstream channel using
the channel selector element to specify a space delimited list of query names that
may output their results on this channel.

You may configure a channel element with a selector before creating the queries in
the upstream processor. In this case, you must specify query names that match the
names in the selector.

For more information, see Section , "Controlling Which Queries Output to a
Downstream Channel: selector".

Configuring an Oracle CQL Processor
You can configure a processor manually or by using the Oracle Event Processing IDE
for Eclipse.

See Section , "Component Configuration Schema wlevs_application_config.xsd" for the
complete XSD Schema that describes the processor component configuration file.

See Section , "Example Oracle CQL Processor Configuration Files" for a complete
example of an Oracle CQL processor component configuration file and assembly file.

This section describes the following topics:

■ Section , "How to Configure an Oracle CQL Processor Using Oracle Event
Processing IDE for Eclipse"

■ Section , "How to Create an Oracle CQL Processor Component Configuration File
Manually"

How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for
Eclipse

The most efficient and least error-prone way to create and edit a processor is to use the
Oracle Event Processing IDE for Eclipse. Optionally, you can create and edit a
processor manually (see Section , "How to Create an Oracle CQL Processor
Component Configuration File Manually").

To configure an Oracle CQL processor using Oracle Event Processing IDE for
Eclipse:
1. Use Oracle Event Processing IDE for Eclipse to create a processor.

Configuring an Oracle CQL Processor

17-4 Developer's Guide for Oracle Event Processing

See Section , "How to Create a Processor Node".

When you use the EPN editor to create an Oracle CQL processor, Oracle Event
Processing IDE for Eclipse prompts you to choose either the default component
configuration file or a new component configuration file. For more information,
see Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing
Network".

2. Right-click the processor node and select Go to Configuration Source.

Oracle Event Processing IDE for Eclipse opens the appropriate component
configuration file. The default processor component configuration is shown in
Example 17–3.

The default processor component configuration includes a name element and rules
element.

Use the rules element to group the child elements you create to contain the Oracle
CQL statements this processor executes, including:

■ rule: contains Oracle CQL statements that register or create user-defined
windows. The rule element id attribute must match the name of the window.

■ view: contains Oracle CQL view statements (the Oracle CQL equivalent of
subqueries). The view element id attribute defines the name of the view.

■ query: contains Oracle CQL select statements. The query element id attribute
defines the name of the query.

The default processor component configuration includes a dummy query element
with id Query.

Example 17–3 Default Processor Component Configuration

<processor>
<name>proc</name>
<rules>

<query id="Query"><!-- <![CDATA[select * from MyChannel [now]]]> -->
</query>

</rules>
</processor>

3. Replace the dummy query element with the rule, view, and query elements you
create to contain the Oracle CQL statements this processor executes.

For more information, see "Introduction to Oracle CQL Queries, Views, and Joins"
in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

4. Select File > Save.

5. Optionally, configure additional Oracle CQL processor features in the assembly
file:

■ Section , "Controlling Which Queries Output to a Downstream Channel"

■ Section , "Configuring an Oracle CQL Processor Table Source"

■ Section , "Configuring an Oracle CQL Processor Cache Source"

How to Create an Oracle CQL Processor Component Configuration File Manually
Although the most efficient and least error-prone way to create and edit a processor
configuration is to use the Oracle Event Processing IDE for Eclipse (see Section , "How
to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for

Configuring an Oracle CQL Processor

Querying an Event Stream with Oracle CQL 17-5

Eclipse"), alternatively, you can also create and maintain a processor configuration file
manually.

This section describes the main steps to create the processor configuration file
manually. For simplicity, it is assumed in the procedure that you are going to configure
all processors in a single XML file, although you can also create separate files for each
processor.

To create an Oracle CQL processor component configuration file manually:
1. Design the set of Oracle CQL rules that the processor executes. These rules can be

as simple as selecting all incoming events to restricting the set based on time,
property values, and so on, as shown in the following:

SELECT *
FROM TradeStream [Now]
WHERE price > 10000

Oracle CQL is similar in many ways to Structure Query Language (SQL), the
language used to query relational database tables, although the syntax between
the two differs in many ways. The other big difference is that Oracle CQL queries
take another dimension into account (time), and the processor executes the Oracle
CQL continually, rather than SQL queries that are static.

For more information, see "Introduction to Oracle CQL Queries, Views, and Joins"
in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

2. Create the processor configuration XML file that will contain the Oracle CQL rules
you designed in the preceding step, as well as other optional features, for each
processor in your application.

You can name this XML file anything you want, provided it ends with the .xml
extension.

The root element of the processor configuration file is config, with namespace
definitions shown in the next step.

3. For each processor in your application, add a processor child element of config.

Uniquely identify each processor with the name child element. This name must be
the same as the value of the id attribute in the wlevs:processor element of the
EPN assembly file that defines the event processing network of your application.
This is how Oracle Event Processing knows to which particular processor
component in the EPN assembly file this processor configuration applies. See
Section , "Creating EPN Assembly Files" for details.

For example, if your application has two processors, the configuration file might
initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
<processor>
<name>firstProcessor</name>
 ...

</processor>
<processor>
<name>secondProcessor</name>
 ...

 </processor>
</n1:config>

Configuring an Oracle CQL Processor

17-6 Developer's Guide for Oracle Event Processing

In the example, the configuration file includes two processors called
firstProcessor and secondProcessor. This means that the EPN assembly file
must include at least two processor registrations with the same identifiers:

<wlevs:processor id="firstProcessor" ...>
 ...
</wlevs:processor>
<wlevs:processor id="secondProcessor" ...>
 ...
</wlevs:processor>

4. Add a rules child element to each processor element.

Use the rules element to group the child elements you create to contain the Oracle
CQL statements this processor executes, including:

■ rule: contains Oracle CQL statements that register or create user-defined
windows. The rule element id attribute must match the name of the window.

■ view: contains Oracle CQL view statements (the Oracle CQL equivalent of
subqueries). The view element id attribute defines the name of the view.

■ query: contains Oracle CQL select statements. The query element id attribute
defines the name of the query.

Use the required id attribute of the view and query elements to uniquely identify
each rule. Use the XML CDATA type to input the actual Oracle CQL rule. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config

xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_
application_config.xsd"

xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>proc</name>
<rules>

<view id="lastEvents" schema="cusip bid srcId bidQty"><![CDATA[
select mod(price)
from filteredStream[partition by srcId, cusip rows 1]

]]></view>
<query id="q1"><![CDATA[

SELECT *
FROM lastEvents
WHERE price > 10000

]]></query>
</rules>

</processor>
</n1:config>]]></query>

5. Save and close the file.

6. Optionally, configure additional Oracle CQL processor features in the assembly
file:

Caution: Identifiers and names in XML files are case sensitive, so be
sure you specify the same case when referencing the component's
identifier in the EPN assembly file.

Configuring an Oracle CQL Processor Table Source

Querying an Event Stream with Oracle CQL 17-7

■ Section , "Controlling Which Queries Output to a Downstream Channel"

■ Section , "Configuring an Oracle CQL Processor Table Source"

■ Section , "Configuring an Oracle CQL Processor Cache Source"

Configuring an Oracle CQL Processor Table Source
You can access a relational database table from an Oracle CQL query using:

■ table source: using a table source, you may join a stream only with a NOW window
and only to a single database table.

For more information, Section , "Configuring an Oracle CQL Processor Table
Source".

■ Oracle JDBC data cartridge: using the Oracle JDBC data cartridge, you may
integrate arbitrarily complex SQL queries and multiple tables and datasources
with your Oracle CQL queries.

For more information, see "Understanding the Oracle JDBC Data Cartridge" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

In all cases, you must define datasources in the Oracle Event Processing server
config.xml file. For more information, see "Configuring Access to a Relational
Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing.

Oracle Event Processing relational database table event sources are pull data sources:
that is, Oracle Event Processing will periodically poll the event source.

In this section, assume that you create the table you want to access using the SQL
statement that Example 17–4 shows.

Example 17–4 Table Create SQL Statement

create table Stock (symbol varchar(16), exchange varchar(16));

After configuration, you can define Oracle CQL queries that access the Stock table as if
it was just another event stream. In the following example, the query joins one event
stream ExchangeStream with the Stock table:

Note: Because changes in the table source are not coordinated in
time with stream data, you may only join the table source to an event
stream using a Now window and you may only join to a single
database table. For more information, see "S[now]" in the Oracle Fusion
Middleware CQL Language Reference for Oracle Event Processing.

To integrate arbitrarily complex SQL queries and multiple tables with
your Oracle CQL queries, consider using the Oracle JDBC data
cartridge instead.

Note: Oracle recommends that you use the Oracle JDBC data
cartridge to access relational database tables from an Oracle CQL
statement.

Configuring an Oracle CQL Processor Table Source

17-8 Developer's Guide for Oracle Event Processing

Example 17–5 Oracle CQL Query on Relational Database Table Stock

SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
FROM ExchangeStream [Now], Stock
WHERE ExchangeStream.symbol = Stock.symbol

How to Configure an Oracle CQL Processor Table Source Using Oracle Event
Processing IDE for Eclipse

The most efficient and least error-prone way to configure an Oracle CQL processor to
access a relational database table is to use the Oracle Event Processing IDE for Eclipse.

To configure an Oracle CQL processor table source using Oracle Event
Processing IDE for Eclipse:
1. Create a data source for the database that contains the table you want to use.

Example 17–6 shows an example Oracle Event Processing server config.xml file
with data source StockDS.

Example 17–6 Oracle Event Processing Server config.xml File With Data Source
StockDS

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_
config.xsd"

xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<domain>
 <name>ocep_domain</name>

</domain>

...

<data-source>
<name>StockDs</name>
<connection-pool-params>
<initial-capacity>1</initial-capacity>
<max-capacity>10</max-capacity>

</connection-pool-params>
<driver-params>
<url>jdbc:derby:</url>
<driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-name>
<properties>
<element>
<name>databaseName</name>
<value>db</value>

</element>

Note: Because changes in the table source are not coordinated in
time with stream data, you may only join the table source to an event
stream using a Now window and you may only join to a single
database table.

To integrate arbitrarily complex SQL queries and multiple tables with
your Oracle CQL queries, consider using the Oracle JDBC data
cartridge instead.

For more information, see "Understanding the Oracle JDBC Data
Cartridge" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing.

Configuring an Oracle CQL Processor Table Source

Querying an Event Stream with Oracle CQL 17-9

<element>
<name>create</name>
<value>true</value>

</element>
</properties>

</driver-params>
<data-source-params>
<jndi-names>
<element>StockDs</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

...

</n1:config>

For more information, see "Configuring Access to a Relational Database" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

2. Use Oracle Event Processing IDE for Eclipse to create a table node.

See Section , "How to Create a Basic Node".

3. Use Oracle Event Processing IDE for Eclipse to create an Oracle CQL processor.

See Section , "How to Create a Processor Node".

4. Connect the table node to the Oracle CQL processor node.

See Section , "How to Connect Nodes".

The EPN Editor adds a wlevs:table-source element to the target processor node
that references the source table.

5. Right-click the table node in your EPN and select Go to Assembly Source.

Oracle Event Processing IDE for Eclipse opens the EPN assembly file for this table
node.

6. Edit the table element as Example 17–7 shows and configure the table element
attributes as shown in Table 17–1.

Example 17–7 EPN Assembly File table Element

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

7. Right-click the Oracle CQL processor node connected to the table in your EPN and
select Go to Assembly Source.

Oracle Event Processing IDE for Eclipse opens the EPN assembly file for this
Oracle CQL processor.

8. Edit the Oracle CQL processor element’s table-source child element as
Example 17–8 shows.

Table 17–1 EPN Assembly File table Element Attributes

Attribute Description

id The name of the table source. Subsequent references to this table source use this name.

event-type The type-name you specify for the table event-type you create in step 9.

data-source The data-source name you specified in the Oracle Event Processing server config.xml
file in step 1.

Configuring an Oracle CQL Processor Table Source

17-10 Developer's Guide for Oracle Event Processing

Set the ref attribute to the id of the table element you specified in step 6.

Example 17–8 EPN Assembly File table-source Element

<wlevs:processor id="proc">
<wlevs:table-source ref="Stock" />

</wlevs:processor>

9. Edit the EPN assembly file to update the event-type-repository element with a
new event-type child element for the table as Example 17–9 shows.

Create a property child element for each column of the table you want to access
and configure the property attributes as described in in Section , "Constraints on
Event Types for Use With a Database Table Source".

Example 17–9 EPN Assembly File event-type element for a Table

<wlevs:event-type-repository>
...
<wlevs:event-type type-name="StockEvent">

<wlevs:properties>
<wlevs:property name="symbol" type="char[]" length="16" />
<wlevs:property name="exchange" type="char[]" length="16" />

</wlevs:properties>
</wlevs:event-type>
...

</wlevs:event-type-repository>

For more information on creating event types, see:

■ Chapter , "Creating Event Types"

■ Section , "Choosing a Data Type for an Event Type"

10. Right-click the Oracle CQL processor node connected to the table in your EPN and
select Go to Configuration Source.

Oracle Event Processing IDE for Eclipse opens the component configuration file
for this Oracle CQL processor.

11. Edit the component configuration file to add Oracle CQL queries that use the
table’s event-type as shown in Example 17–10.

Example 17–10 Oracle CQL Query Using Table Event Type StockEvent

<processor>
<name>proc</name>
<rules>

<query id="q1"><![CDATA[
SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
FROM ExchangeStream [Now], Stock
WHERE ExchangeStream.symbol = Stock.symbol

]]></query>
</rules>

</processor>

Note: Because changes in the table source are not coordinated in
time with stream data, you may only use a Now window. For more
information, see "S[Now]" in the Oracle Fusion Middleware CQL
Language Reference for Oracle Event Processing.

Configuring an Oracle CQL Processor for Parallel Query Execution

Querying an Event Stream with Oracle CQL 17-11

Configuring an Oracle CQL Processor Cache Source
You can configure an Oracle CQL processor to access the Oracle Event Processing
cache.

For more information, see:

■ Section , "Overview of Integrating a Cache"

■ Section , "Accessing a Cache From an Oracle CQL User-Defined Function"

■ Section , "Accessing a Cache from an Oracle CQL Statement"

Configuring an Oracle CQL Processor for Parallel Query Execution
For improved performance, you can enable a CQL query to execute in parallel rather
than serially, as it does by default. When the CQL code supports it, you can configure a
query so that it can process incoming events in parallel when multiple threads are
available to the CQL processor.

You should enable parallel query execution only in cases where the relative order of
the query output events is unimportant to the query's downstream client. For example,
event ordering probably isn't important if your query is intended primarily to filter
events, such as to deliver to clients a set of stock transactions involving a particular
company, where the transaction sequence is irrelevant.

By default (without enabling parallel execution), queries process events from a channel
serially. For events routed through a channel that uses a system timestamp, event
order is the order in which events are received; through a channel that is application
timestamped, event order is the order determined by a timestamp value included in
the event. Relaxing the total order constraint allows the configured query to not
consider event order for that query, processing events in parallel where possible.

Setting Up Parallel Query Execution Support
While specifying support for parallel query execution is at its core a simple
configuration task, be sure to follow the other steps below so that you get the most out
of the feature.

■ Use the ordering-constraint attribute to support parallel execution.

■ Make sure you have enough threads calling into the processor to meet your
performance goals. The maximum amount of parallel query execution is
constrained by the number of threads available to the CQL processor. For example,
if an adapter upstream of the processor supports the number of threads you need
and there is a channel between the adapter and the processor, try configuring the
channel with a max-threads count of 0 so that it acts as a pass-through.

If you don’t want a pass-through, be sure to configure the query's upstream
channel with a max-threads value greater than 1. (To make a max-threads value
setting useful, you'll need to also set the max-size attribute to a value greater than
0.) For more information, see Chapter 10, "Connecting EPN Stages Using
Channels".

■ Follow other guidelines related to setting the max-threads attribute value. For
example, to make a max-threads value setting useful, you'll need to also set the
max-size attribute to a value greater than 0.

■ Ensure, if necessary, that a bean receiving the query results is thread-aware, such
as by using synchronized blocks. For example, you might need to do so if the

Configuring an Oracle CQL Processor for Parallel Query Execution

17-12 Developer's Guide for Oracle Event Processing

bean's code builds a list from results received from queries executed on multiple
threads.

Using the ordering-constraint Attribute
You enable parallel query execution by relaxing the default ordering constraint that
ensures that events are processed serially. You do this by setting the
ordering-constraint attribute on a query or view element.

In Example 17–11, the ordering-constraint attribute is set to UNORDERED so that the
query will execute in parallel whenever possible:

Example 17–11 Query Configured to Allow Parallel Execution

<query id="myquery" ordering-constraint="UNORDERED">
SELECT symbol FROM S WHERE price > 10

</query>
The ordering-constraint attribute supports the following three values:

■ ORDERED means that the order of output events (as implied by the order of input
events) is important. The CQL engine will process events serially. This is the
default behavior.

■ UNORDERED means that order of the output events is not important to the consumer
of the output events. This gives the freedom to the CQLProcessor to process events
in parallel on multiple threads. When possible, the query will execute in parallel
on multiple threads to process the events.

■ PARTITION_ORDERED means that you’re specifying that order of output events
within a partition is to be preserved (as implied by the order of input events) while
order of output events across different partitions is not important to the consumer
of the output events. This relaxation provides some freedom to the CQL engine to
process events across partitions in parallel (when possible) on multiple threads.

Use the PARTITION_ORDERED value when you want to specify that events conforming to
a given partition are processed serially, but that order can be disregarded across
partitions and events belonging to different partitions may be processed in parallel.
When using the PARTITION_ORDERED value, you must also add the
partition-expression attribute to specify which expression for partitioning should
be the basis for relaxing the cross-partition ordering constraint.

In Example 17–12, the GROUP BY clause partitions the output based on symbol values.
The partition-expression attribute specifies that events in a given subset of events
corresponding to a particular symbol value should be handled serially. Across
partitions, on the other hand, order can be disregarded.

Example 17–12 Query Configured to Allow Parallel Execution Across Partitions

<query id="myquery" ordering-constraint="PARTITION_ORDERED"
partitioning-expression="symbol">
SELECT

COUNT(*) as c, symbol
FROM

S[RANGE 1 minute]
GROUP BY

symbol
</query>

Configuring an Oracle CQL Processor for Parallel Query Execution

Querying an Event Stream with Oracle CQL 17-13

Using partition-order-capacity with Partitioning Queries
In general, you'll probably see improved performance for queries by making more
threads available and setting the ordering-constraint attribute so that they're able to
execute in parallel when possible. As with most performance tuning techniques, a little
trial and error with these settings should yield a combination that gets better results.

However, in some cases where your queries use partitioning -- and you've set the
ordering-constraint attribute to PARTITION_ORDERED -- you might not see the amount
of scaling you'd expect. For example, consider a case in which running with four
threads doesn't improve performance very much over running with two threads. In
such a case, you can try using the partition-order-capacity value to get the most
out of CQL engine characteristics at work with queries that include partitions.

The partition-order-capacity value specifies the maximum amount of parallelism
that will be permitted within a given processor instance when processing a
PARTITION_ORDERED query. When available threads are handling events belonging to
different partitions, the value sets a maximum number of threads that will be allowed
to simultaneously run in the query.

As with other aspects of performance tuning, getting the most out of
partition-order-capacity may take a bit of experimentation. When tuning with
partition-order-capacity, a good starting point is to set it equal to the maximum
number of threads you expect to have active in any CQL processor instance. In some
cases (for example, at high data rates or with expensive processing downstream from
the CQL processor), it may be helpful to set the partition-order-capacity value
even higher than the available number of threads. However, you should only do this if
performance testing confirms that it's helpful for a given application and load.

The partition-order-capacity value is set from one of four places, two of which are
fallbacks when you don't explicitly set it yourself. These are, in order of precedence:

1. The partition-order-capacity element set on a channel configuration. If you
specify this on the input channel for a processor, it takes effect for any PARTITION_
ORDERED queries in that processor. For more information, see Section ,
"partition-order-capacity" in Appendix D, "Schema Reference: Component
Configuration wlevs_application_config.xsd".

2. The partition-order-capacity property in server configuration. This value will
be used for all PARTITION_ORDERED queries running on the server unless the value
is set on a channel. For more information, see Section , "partition-order-capacity" in
Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd".

3. The max-threads value set on a channel configuration. If you specify this on the
input channel for a processor, it takes effect for any PARTITION_ORDERED queries in
that processor

4. A system default value (currently set to 4) is used if you don't specify either a
partition-order-capacity value or max-threads value, or if the max-threads
value is set to 0 (meaning it's a pass-through channel).

When using partition-order-capacity, keep in mind the following:

■ The partition-order-capacity value is only useful when you're setting the
ordering-constraint attribute to PARTITION_ORDERED.

■ Increasing partition-order-capacity generally increases parallelism and scaling.
For example, if your profiling reveals lock contention bottlenecks, you might find
it helpful to increase partition-order-capacity to see if contention is reduced.

Handling Faults

17-14 Developer's Guide for Oracle Event Processing

■ Setting partition-order-capacity even higher than the number of available
threads can be helpful in some cases because of the particular way partitioning is
done in the CQL processor.

■ There is some resource cost in memory used by specifying very high values.

■ Tuning this parameter is very dependent on details of the application and the
input rate. Tuning by experimentation may be necessary to determine an optimal
value.

Limitations
Think of parallel query execution as a performance enhancement feature that you
specify support for so that the CQL processor can use it whenever possible. Not all
queries can be executed in parallel. This includes queries using certain CQL language
features.

For example, if your query uses some form of aggregation -- such as to find the
maximum value from a range of values -- the CQL processor may not be able to fully
execute the query in parallel (this is needed to guarantee the correct result considering
the ordering constraint). Some query semantics in themselves also constrain the query
to ordered processing. Such queries will be executed serially regardless of whether you
specify support for parallel execution.

Also, the IStream, RStream and DStream operators maintain the state of their operand
for processing, making it necessary for the CQL processor to synchronize threads in
order to execute the query.

Note that the CQL processor always respects the semantic intention of your query. In
cases where the ordering-constraint attribute would change this intention, the
attribute is coerced to a value that keeps the intention intact.

If you’re using the partitioning-expression attribute, keep in mind that the attribute
supports a single expression only. Entering multiple property names for the value is
not supported.

Handling Faults
You can write code to handle faults that occur in code that does not have an inherent
fault handling mechanism. This includes Oracle CQL code and multi-threaded EPN
channels. By default, the CQL language has no mechanism for handling errors that
occur, as does Java with its try/catch structure. To handle faults that occur in CQL, you
can write a fault handler, then connect the handler to the EPN stage for which it
handles faults, such as an Oracle CQL processor.

You can also associate a fault handler with a multi-threaded channel -- that is, a
channel whose max-threads setting is greater than 0. This provides fault handling in
the case of exceptions that are thrown to the channel from a stage that is downstream
of the channel. Note that channels whose max-threads setting is 0 are pass-through
channels that already re-throw exception to their upstream stages. For additional
information specific to fault handlers for channels, see Section , "Handling Faults in
Channels".

A fault handler is a Java class that implements the
com.bea.wlevs.ede.api.FaultHandler interface. You connect the class to an EPN
stage by registering your fault handler as an OSGi service and associating it with the
stage. For more information about OSGi, see Appendix A, "Additional Information
about Spring and OSGi".

Handling Faults

Querying an Event Stream with Oracle CQL 17-15

Without a custom fault handler, you get the following default fault handling behavior:

■ When an exception occurs in Oracle CQL, the CQL engine catches the exception
and stops the query processor.

■ If an exception occurs in a stage that is downstream of the processor, then that
stage will be dropped as a listener.

■ Exceptions are logged (under the CQLServer category) and the events that are part
of the exception’s cause are discarded.

■ Upstream stages are not notified of the failure.

When using custom fault handlers you write, you can:

■ Associate a fault handler with an Oracle CQL processor or multi-threaded channel
so that faults in those stages are thrown as exceptions to the handler. There, you
can handle or re-throw the exception.

■ Allow query processing to continue as your code either handles the exception or
re-throws it to the stage that is next upstream.

■ Save event data from being lost while handling a fault. For example, if you have
configured a connection to a data source, you could save event data there.

■ Log fault and event information when faults occur.

■ Use multiple fault handlers where needed in an EPN so that exceptions thrown
upstream will be handled when they reach other Oracle CQL processors and
channels.

In other words, consider associating a fault handler with a stage that does not have its
own mechanism for responding to faults, including Oracle CQL processors and
multi-threaded channels. Other stages, such as custom adapters you write in Java,
which have their own exception-handling model, would not benefit from a fault
handler.

Queries can continue as your fault handling code evaluates the fault to determine
what action should be taken, including re-throwing the fault to a stage that is
upstream of the CQL processor.

For example, the upstream stage of the CQL processor could be the JMS subscriber
adapter, which has the option of rolling back the JMS transaction (if the session is
transacted), allowing the event to be re-delivered. It can also commit the transaction if
the event has been re-delivered already and found that the problem is not solvable.

Note that even when you are using a custom fault handler, query state is reset after a
fault as if the query had been stopped and restarted. Yet contrast this with the default
behavior, where the query is stopped and all subsequent events are dropped.

Implementing a Fault Handler Class
You create a fault handler class by implementing the
com.bea.wlevs.ede.api.FaultHandler interface. After you have written the class, you
associated it with the stage for which it will handle faults by registering it as an OSGi
service. For more information, see Section , "Registering a Fault Handler".

Your implementation of the interface's one method, handleFault, receives exceptions
for the EPN stage with which the handler is associated. The exception itself is either an
instance of com.bea.wlevs.ede.api.EventProcessingException or, if there has been a
JVM error, an instance of java.lang.Error.

Handling Faults

17-16 Developer's Guide for Oracle Event Processing

The method also receives a string array containing the names of upstream stages, or
catchers, to which the exception will go if your code re-throws it. If there is more than
one catcher in the array, your re-thrown exception will go to all of them. There are two
cases when the catchers array will be empty: when the exception occurs while
executing a temporal query and if the exception is thrown to a channel’s fault handler.
In these cases, the fault handler is executed in the context of a background thread;
there is no linkage to upstream stages.

An exception that is re-thrown from a fault handler will travel back up through
upstream EPN stages until it is either caught or reaches a stage that cannot catch it
(such as a processor or multi-threaded channel that does not have an associated fault
handler). Note that if you re-throw an exception, any channels in the catchers list must
have an associated fault handler in order to catch the exception.

The EventProcessingException instance could also be one of the exception types that
extend that class, including CQLExecutionException, ArithmeticExecutionException,
and others (be sure to see the Oracle Fusion Middleware Java API Reference for Oracle
Event Processing). The EventProcessingException instance provides methods with
which your code can retrieve insert, delete, and update events that were involved in
generating the fault.

Your implementation of the method should do one of the following:

■ Consume the fault in the way that a Java try/catch statement might. If your
implementation does not re-throw the fault, then event processing will continue
with subsequent events. However, query processing continues with its state reset
as if the query had been restarted. Processing state is lost and processing begins
fresh with events that follow those that provoked the fault.

■ Re-throw the fault so that it will be received by upstream stages (or their fault
handlers). As when the fault is consumed, queries continue processing events,
although query state is reset with subsquent events. The upstream stage receiving
the fault always has the option of explicitly stopping the offending query by using
the CQL processor's MBean interface.

In Example 17–13, "Fault Handler Class", the code provides a high level illustration of
handling a fault.

Example 17–13 Fault Handler Class

package com.example.faulthandler;

import com.bea.wlevs.ede.api.FaultHandler;

public class SimpleFaultHandler implements FaultHandler
{

private String suppress;

// Called by the server to pass in fault information.
@Override
public void handleFault(Throwable fault, String[] catchers) throws Throwable
{

// Log the fault.
return;

}
}

Example Oracle CQL Processor Configuration Files

Querying an Event Stream with Oracle CQL 17-17

Registering a Fault Handler
After you have written a fault handling class, you can associate it with an EPN stage
by registering it as an OSGi service. The simplest way to do this is to register the
handler declaratively in the EPN assembly file.

In Example 17–14, "Code to Register a Fault Handler with an EPN Stage", the EPN
assembly file excerpt shows a service element stanza that registers the
SimpleFaultHandler class as the fault handler for the Oracle CQL processor whose id
is exampleProcessor.

Example 17–14 Code to Register a Fault Handler with an EPN Stage

<osgi:service interface="com.bea.wlevs.ede.api.FaultHandler">
<osgi:service-properties>

<entry key="application.identity" value="myapp"/>
<entry key="stage.identity" value="exampleProcessor"/>

</osgi:service-properties>
<bean class="com.example.faulthandler.SimpleFaultHandler"/>

</osgi:service>

<!-- A processor with a user-defined function. -->
<wlevs:processor id="exampleProcessor" >

...
</wlevs:processor>

For more on the schema for registering OSGi services, see
http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-sch
ema.html. For more on OSGi, see http://en.wikipedia.org/wiki/OSGi.

Example Oracle CQL Processor Configuration Files
This section provides example Oracle CQL processor configuration files, including:

■ Section , "Oracle CQL Processor Component Configuration File"

■ Section , "Oracle CQL Processor EPN Assembly File"

Oracle CQL Processor Component Configuration File
The following example shows a component configuration file for an Oracle CQL
processor.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config

xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_
config.xsd"

xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>proc</name>
<rules>

Note: Due to inherent OSGi behavior, runtime fault handler
registration from your configuration happens asynchronously,
meaning that a small amount of warm-up time might be required
before the handler is able to receive faults. To be sure your handler is
ready for the first events entering the network, consider adding a wait
period before the application begins receiving events.

Example Oracle CQL Processor Configuration Files

17-18 Developer's Guide for Oracle Event Processing

<view id="lastEvents"><![CDATA[
select mod(price)
from filteredStream[partition by srcId, cusip rows 1]

]]></view>
<query id="q1"><![CDATA[

SELECT *
FROM lastEvents
WHERE price > 10000

]]></query>
</rules>

</processor>
</n1:config>

In the example, the name element specifies that the processor for which the Oracle CQL
rules are being configured is called proc. This in turn implies that the EPN assembly
file that defines your application must include a corresponding wlevs:processor
element with an id attribute value of proc to link these Oracle CQL rules with an
actual proc processor instance (see Section , "Oracle CQL Processor EPN Assembly
File").

This Oracle CQL processor component configuration file also defines a view element
to specify an Oracle CQL view statement (the Oracle CQL equivalent of a subquery).
The results of the view’s select are not output to a down-stream channel.

Finally, this Oracle CQL processor component configuration file defines a query
element to specify an Oracle CQL query statement. The query statement selects from
the view. By default, the results of a query are output to a down-stream channel. You
can control this behavior in the channel configuration using a selector element. For
more information, see:

■ Section , "How to Configure a System-Timestamped Channel Using Oracle Event
Processing IDE for Eclipse"

■ Section , "How to Configure an Application-Timestamped Channel Using Oracle
Event Processing IDE for Eclipse"

Oracle CQL Processor EPN Assembly File
The following example shows an EPN assembly file for an Oracle CQL processor.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="ExchangeEvent">

<wlevs:properties>
<wlevs:property name="symbol" type="char[]" length="16" />
<wlevs:property name="price" type="java.lang.Double" />

</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="StockExchangeEvent">

<wlevs:properties>
<wlevs:property name="symbol" type="char[]" length="16" />
<wlevs:property name="price" type="java.lang.Double" />

Example Oracle CQL Processor Configuration Files

Querying an Event Stream with Oracle CQL 17-19

<wlevs:property name="exchange" type="char[]" length="16" />
</wlevs:properties>

</wlevs:event-type>
<wlevs:event-type type-name="StockEvent">

<wlevs:properties>
<wlevs:property name="symbol" type="char[]" length="16" />
<wlevs:property name="exchange" type="char[]" length="16" />

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

<!-- Assemble EPN (event processing network) -->
<wlevs:adapter id="adapter" class="com.bea.wlevs.example.db.ExchangeAdapter" >

<wlevs:listener ref="ExchangeStream"/>
</wlevs:adapter>

<wlevs:channel id="ExchangeStream" event-type="ExchangeEvent" >
<wlevs:listener ref="proc"/>

</wlevs:channel>

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc" advertise="true" >
<wlevs:table-source ref="Stock" />

</wlevs:processor>

<wlevs:channel id="OutputStream" advertise="true" event-type="StockExchangeEvent" >
<wlevs:listener ref="bean"/>
<wlevs:source ref="proc"/>

</wlevs:channel>

<osgi:reference id="ds" interface="com.bea.core.datasource.DataSourceService"
cardinality="0..1" />

<!-- Create business object -->
<bean id="bean" class="com.bea.wlevs.example.db.OutputBean">

<property name="dataSourceService" ref="ds"/>
</bean>

</beans>

Example Oracle CQL Processor Configuration Files

17-20 Developer's Guide for Oracle Event Processing

18

Configuring Applications With Data Cartridges 18-1

18Configuring Applications With Data Cartridges

[19] This chapter describes how to configure the Oracle JDBC cartridge and Oracle Spatial
cartridge, which extend Oracle Continuous Query Language (CQL), for use with
Oracle Event Processing.

This chapter includes the following sections:

■ Understanding Data Cartridge Application Context

■ How to Configure Oracle Spatial Application Context

■ How to Configure Oracle JDBC Data Cartridge Application Context

For more information on data cartridges, see "Introduction to Data Cartridges" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

Understanding Data Cartridge Application Context
Depending on the data cartridge implementation, you may be able to define an
application context that the Oracle Event Processing server propagates to an instance
of the data cartridge and the complex objects it provides.

You may configure an application context for the following data cartridges:

■ Section , "How to Configure Oracle Spatial Application Context"

■ Section , "How to Configure Oracle JDBC Data Cartridge Application Context"

For more information on data cartridges, see "Introduction to Data Cartridges" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

How to Configure Oracle Spatial Application Context
You define an application context for an instance of Oracle Spatial using element
spatial:context in your Oracle Event Processing application’s Event Processing
Network (EPN) assembly file.

All constructors and methods from com.oracle.cartridge.spatial.Geometry and
Oracle Spatial functions are aware of spatial:context. For example, the SRID is
automatically set from the value in the Oracle Spatial application context.

For more information, see:

■ "SDO_SRID" in the Oracle Spatial Developer's Guide at
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_
objrelschema.htm#SPATL492

How to Configure Oracle Spatial Application Context

18-2 Developer's Guide for Oracle Event Processing

■ "Understanding Oracle Spatial" in the Oracle Fusion Middleware CQL Language
Reference for Oracle Event Processing

To configure Oracle Spatial application context:
1. Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section , "Opening the EPN Editor".

2. Import the package com.oracle.cep.cartridge.spatial into your Oracle Event
Processing application’s MANIFEST.MF file.

For more information, see Section , "How to Import a Package".

3. Right-click any component and select Go to Assembly Source.

4. Edit the EPN file to add the required namespace and schema location entries as
Example 18–1 shows:

Example 18–1 EPN Assembly File: Oracle Spatial Namespace and Schema Location

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd"
http://www.oracle.com/ns/ocep/spatial
http://www.oracle.com/ns/ocep/spatial/ocep-spatial.xsd">

5. Edit the EPN file to add a spatial:context element as Example 18–2 shows.

Example 18–2 spatial:context Element in EPN Assembly File

<spatial:context id="SpatialGRS80" />

6. Assign a value to the id attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent
Oracle CQL queries. In Example 18–2, the id is SpatialGRS80.

7. Configure the other attributes of the spatial:context element to suit your
application requirements.

Table 18–1 lists the attributes of the spatial:context element.

Note: The id value must not equal the Oracle Spatial name spatial.
For more information, see "Data Cartridge Name" in the Oracle Fusion
Middleware CQL Language Reference for Oracle Event Processing.

Table 18–1 spatial:context Element Attributes

Attribute Description

anyinteract-tolerance The default tolerance for contain or inside operator.

Default: 0.0000005

How to Configure Oracle JDBC Data Cartridge Application Context

Configuring Applications With Data Cartridges 18-3

Example 18–3 shows how to create a spatial context named SpatialGRS80 in an
EPN assembly file using the Geodetic Reference System 1980 (GRS80) coordinate
system (srid="4269").

Example 18–3 spatial:context Element in EPN Assembly File

<spatial:context id="SpatialGRS80" srid="4269" sma="63787.0" rof="298.25722101" />

8. Create Oracle CQL queries that reference this application context by name.

Example 18–4 shows how to reference a spatial:context in an Oracle CQL query.
In this case, the query uses link name SpatialGRS80 (defined in Example 18–2) to
propagate this application context to the Oracle Spatial. The spatial:context
attribute settings of SpatialGRS80 are applied to the createPoint method call.
Because the application context defines the SRID, you do not need to pass that
argument into the createPoint method.

Example 18–4 Referencing spatial:context in an Oracle CQL Query

<view id=”createPoint”>
select com.oracle.cep.cartridge.spatial.Geometry.createPoint@SpatialGRS80(lng,

lat, 0d)
from CustomerPos[NOW]

</view>

For more information, see "Using Oracle Spatial" in the Oracle Fusion Middleware
CQL Language Reference for Oracle Event Processing.

How to Configure Oracle JDBC Data Cartridge Application Context
You define an application context for an instance of an Oracle JDBC data cartridge
using:

■ A jdbc:jdbc-context element in the EPN assembly file.

■ A jc:jdbc-ctx element in the component configuration file.

rof Defines the Reciprocal Of Flattening (ROF) parameter used for
buffering and projection.

Default: 298.257223563

sma Defines the Semi-Major Axis (SMA) parameter used for buffering
and projection.

Default: 6378137.0

srid SRID integer. Valid values are:

■ CARTESIAN: for cartesian coordinate system.

■ LAT_LNG_WGS84_SRID: for WGS84 coordinate system.

■ An integer value from the Oracle Spatial SDO_COORD_SYS
table COORD_SYS_ID column.

Default : LAT_LNG_WGS84_SRID

tolerance The minimum distance to be ignored in geometric operations
including buffering.

Default: 0.000000001

Table 18–1 (Cont.) spatial:context Element Attributes

Attribute Description

How to Configure Oracle JDBC Data Cartridge Application Context

18-4 Developer's Guide for Oracle Event Processing

The jc:jdbc-ctx element:

– references one and only one jdbc:jdbc-context

– references one and only one data-source

– defines one or more SQL functions

For more information see, "Understanding the Oracle JDBC Data Cartridge" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

To configure Oracle JDBC data cartridge application context:
1. Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section , "Opening the EPN Editor".

2. Right-click any component and select Go to Assembly Source.

3. Edit the EPN file to add the required namespace and schema location entries as
Example 18–5 shows:

Example 18–5 EPN Assembly File: Oracle JDBC Data Cartridge Namespace and Schema
Location

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xmlns:jdbc="http://www.oracle.com/ns/ocep/jdbc"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd"
http://www.oracle.com/ns/ocep/jdbc
http://www.oracle.com/ns/ocep/jdbc/ocep-jdbc.xsd">

4. Edit the EPN file to add a jdbc:jdbc-context element as Example 18–6 shows.

Example 18–6 jdbc:jdbc-context Element in EPN Assembly File: id

<jdbc:jdbc-context id="JdbcCartridgeOne"/>

5. Assign a value to the id attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent
Oracle CQL queries. In Example 18–6, the id is JdbcCartridgeOne.

6. Right-click the desired processor and select Go to Configuration Source.

Note: You must provide alias names for every SELECT list column in
the SQL function.

Note: The id value must not equal the Oracle JDBC data cartridge
name jdbc. For more information, see "Data Cartridge Name" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event
Processing.

How to Configure Oracle JDBC Data Cartridge Application Context

Configuring Applications With Data Cartridges 18-5

7. Edit the component configuration file to add the required namespace entries as
Example 18–7 shows:

Example 18–7 Component Configuration File: Oracle JDBC Data Cartridge Namespace

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc
xsi:schemaLocation="

http://www.oracle.com/ns/ocep/config/jdbc
http://www.oracle.com/ns/ocep/config/jdbc/ocep_jdbc_context.xsd">

8. Edit the component configuration file to add a jc:jdbc-ctx element as
Example 18–8 shows.

Example 18–8 jc:jdbc-ctx Element in Component Configuration File

<jc:jdbc-ctx>
</jc:jdbc-ctx>

9. Add a name child element whose value is the name of the Oracle JDBC application
context you defined in the EPN assembly file as Example 18–9 shows.

Example 18–9 jc:jdbc-ctx Element in Component Configuration File: name

<jc:jdbc-ctx>
<name>JdbcCartridgeOne</name>

</jc:jdbc-ctx>

10. Add a data-source child element whose value is the name of a datasource defined
in the Oracle Event Processing server config.xml file.

For more information, see:

■ "Configuring JDBC for Oracle Event Processing" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

■ Section , "data-source"

Example 18–10 shows how to specify the datasource named StockDS.

Example 18–10 jc:jdbc-ctx Element in Component Configuration File: data-source

<jc:jdbc-ctx>
<name>JdbcCartridgeOne</name>
<data-source>StockDS</data-source>

</jc:jdbc-ctx>

11. Create one or more SQL functions using the function child element as
Example 18–11 shows.

Example 18–11 jc:jdbc-ctx Element in Component Configuration File: function

<jc:jdbc-ctx>
<name>JdbcCartridgeOne</name>
<data-source>StockDS</data-source>
<function name="getDetailsByOrderIdName">

<param name="inpOrderId" type="int" />
<param name="inpName" type="char" />
<return-component-type>

com.oracle.cep.example.jdbc_cartridge.RetEvent
</return-component-type>

How to Configure Oracle JDBC Data Cartridge Application Context

18-6 Developer's Guide for Oracle Event Processing

<sql><![CDATA[
SELECT

Employee.empName as employeeName,
Employee.empEmail as employeeEmail,
OrderDetails.description as description

FROM
PlacedOrders, OrderDetails , Employee

WHERE
PlacedOrders.empId = Employee.empId AND
PlacedOrders.orderId = OrderDetails.orderId AND
Employee.empName = :inpName AND
PlacedOrders.orderId = :inpOrderId

]]></sql>
</function>

</jc:jdbc-ctx>

For more information, see "Defining SQL Statements" in the Oracle Fusion
Middleware CQL Language Reference for Oracle Event Processing.

12. Create Oracle CQL queries that invoke the SQL functions using the Oracle JDBC
data cartridge application context.

Example 18–12 shows how to reference a jdbc:jdbc-context in an Oracle CQL
query. In this case, the query uses link name JdbcCartridgeOne (defined in
Example 18–11) to propagate this application context to the Oracle JDBC data
cartridge. The Oracle CQL query in Example 18–12 invokes the function
getDetailsByOrderIdName defined by Oracle JDBC data cartridge context
JdbcCartridgeOne.

Example 18–12 Referencing JDBC Application Context in an Oracle CQL Query

<processor>
<name>Proc</name>
<rules>

<query id="q1"><![CDATA[
RStream(

select
currentOrder.orderId,
details.orderInfo.employeeName,
details.orderInfo.employeeemail,
details.orderInfo.description

from
OrderArrival[now] as currentOrder,
TABLE(getDetailsByOrderIdName@JdbcCartridgeOne(

currentOrder.orderId, currentOrder.empName
) as orderInfo

) as details
)

]]></query>
</rules>

</processor>

For more information see, "Defining Oracle CQL Queries With the Oracle JDBC
Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle
Event Processing.

Note: You must provide alias names for every SELECT list column in
the SQL query.

19

Querying an Event Stream with Oracle EPL 19-1

19Querying an Event Stream with Oracle EPL

[20] This chapter describes how to configure Oracle Event Processing Language (EPL)
processors for Oracle Event Processing event processing networks. EPL is deprecated;
new applications should use Oracle Continuous Query Language.

This chapter includes the following sections:

■ Overview of EPL Processor Component Configuration

■ Configuring an EPL Processor

■ Configuring an EPL Processor Cache Source

■ Example EPL Processor Configuration Files

Overview of EPL Processor Component Configuration
An Oracle Event Processing application contains one or more event processors, or
processors for short. Each processor takes as input events from one or more adapters;
these adapters in turn listen to data feeds that send a continuous stream of data from a
source. The source could be anything, from a financial data feed to the Oracle Event
Processing load generator.

The main feature of an EPL processor is its associated Event Processing Language
(EPL) rules that select a subset of the incoming events to then pass on to the
component that is listening to the processor. The listening component could be another
processor, or the business object POJO that typically defines the end of the event
processing network, and thus does something with the events, such as publish them to
a client application. For more information about EPL, see the Oracle Fusion Middleware
EPL Language Reference for Oracle Event Processing.

For each EPL processor in your application, you must create a processor element in a
component configuration file. In this processor element you specify the initial set of
EPL rules of the processor and any optional processor configuration such as:

■ JDBC datasource reference if your Oracle Event Processing application requires a
connection to a relational database.

■ Enable monitoring of the processor.

Note: Oracle CQL replaces Event Processing Language (EPL) in
Oracle Event Processing 11g Release 1 (11.1.1). Oracle Event
Processing supports EPL for backwards compatibility. For more
information, see Chapter 17, "Querying an Event Stream with Oracle
CQL".

Overview of EPL Processor Component Configuration

19-2 Developer's Guide for Oracle Event Processing

You can configure additional optional EPL processor features in the EPL processor
EPN assembly file.

The component configuration file processor element’s name element must match the
EPN assembly file processor element’s id attribute. For example, given the EPN
assembly file processor element shown in Example 19–1, the corresponding
component configuration file processor element is shown in Example 19–2.

Example 19–1 EPN Assembly File EPL Processor Id: proc

<wlevs:processor id="proc" provider="epl" >
<wlevs:table-source ref="Stock" />

</wlevs:processor>

Example 19–2 Component Configuration File EPL Processor Name: proc

<processor>
<name>proc</name>
<rules>

<rule id="myRule"><![CDATA[
SELECT symbol, AVG(price)
FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
RETAIN 100 EVENTS PARTITION BY symbol WITH LARGEST price
GROUP BY symbol
HAVING AVG(price) >= 100
ORDER BY symbol

]]></rule>

</rules>
</procesor>

You can create a processor element in any of the following component configuration
files:

■ The default Oracle Event Processing application configuration file (by default,
META-INF/wlevs/config.xml).

■ A separate configuration file.

If your application has more than one processor, you can create a processor element
for each of them in the default config.xml file, you can create separate XML files in
META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains
the configuration for all processors, or even all components of your application
(adapters, processors, and channels). Choose the method that best suits your
development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component
configuration file and one EPN assembly file. When you create an EPL processor using
Oracle Event Processing IDE for Eclipse, by default, the processor element is added to
the default component configuration file META-INF/wlevs/config.xml file.

Note: Because Oracle CQL replaces Event Processing Language
(EPL) in Oracle Event Processing 11g Release 1 (11.1.1), the default
processor provider is cql. To specify an EPL processor, in the EPN
assembly file, you must set the wlevs:processor element provider
attribute to epl as Example 19–1 shows. Oracle Event Processing
supports EPL for backwards compatibility. For more information, see
Chapter 17, "Querying an Event Stream with Oracle CQL".

Configuring an EPL Processor

Querying an Event Stream with Oracle EPL 19-3

Component configuration files are deployed as part of the Oracle Event Processing
application bundle. You can later update this configuration at runtime using Oracle
Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate
JMX MBeans directly.

For more information, see:

■ Section , "Overview of Component Configuration Files"

■ Section , "Overview of EPN Assembly Files"

■ Section , "Creating EPN Assembly Files"

■ Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

■ "wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

■ "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

For more information on EPL processor configuration, see:

■ Section , "Configuring an EPL Processor"

■ Section , "Configuring an EPL Processor Cache Source"

■ Section , "Example EPL Processor Configuration Files"

Configuring an EPL Processor
This section describes the main steps to create the processor configuration file. For
simplicity, it is assumed in the procedure that you are going to configure all processors
in a single XML file, although you can also create separate files for each processor.

See Section , "Component Configuration Schema wlevs_application_config.xsd" for the
complete XSD Schema that describes the processor configuration file.

See Section , "Example EPL Processor Configuration Files" for a complete example of a
processor configuration file.

How to Configure an EPL Processor Manually
You can configure an EPL processor manually using your preferred text editor.

To configure an EPL processor:
1. Design the set of EPL rules that the processor executes. These rules can be as

simple as selecting all incoming events to restricting the set based on time,
property values, and so on, as shown in the following two examples:

SELECT * from Withdrawal RETAIN ALL
SELECT symbol, AVG(price)
FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
RETAIN 100 EVENTS PARTITION BY symbol WITH LARGEST price
GROUP BY symbol
HAVING AVG(price) >= 100
ORDER BY symbol

EPL is similar in many ways to Structure Query Language (SQL), the language
used to query relational database tables, although the syntax between the two
differs in many ways. The other big difference is that EPL queries take another

Configuring an EPL Processor

19-4 Developer's Guide for Oracle Event Processing

dimension into account (time), and the processor executes the EPL continually,
rather than SQL queries that are static.

For additional conceptual information about EPL, and examples and reference
information to help you design and write your own EPL rules, see Oracle Fusion
Middleware EPL Language Reference for Oracle Event Processing.

2. Create the processor configuration XML file that will contain the EPL rules you
designed in the preceding step, as well as other optional features, for each
processor in your application.

You can name this XML file anything you want, provided it ends with the .xml
extension.

The root element of the processor configuration file is config, with namespace
definitions shown in the next step.

3. For each processor in your application, add a processor child element of config.

Uniquely identify each processor with the name child element. This name must be
the same as the value of the id attribute in the wlevs:processor element of the
EPN assembly file that defines the event processing network of your application.
This is how Oracle Event Processing knows to which particular processor
component in the EPN assembly file this processor configuration applies. See
Section , "Creating EPN Assembly Files" for details.

For example, if your application has two processors, the configuration file might
initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
<processor>
<name>firstProcessor</name>
 ...

</processor>
<processor>
<name>secondProcessor</name>
 ...

 </processor>
</n1:config>

In the example, the configuration file includes two processors called
firstProcessor and secondProcessor. This means that the EPN assembly file
must include at least two processor registrations with the same identifiers:

<wlevs:processor id="firstProcessor" provider="epl"...>
...

</wlevs:processor>
<wlevs:processor id="secondProcessor" provider="epl"...>
...

</wlevs:processor>

Note: Because Oracle CQL replaces Event Processing Language
(EPL) in Oracle Event Processing 11g Release 1 (11.1.1), the default
processor provider is cql. To specify an EPL processor, in the EPN
assembly file, you must set the wlevs:processor element provider
attribute to epl. Oracle Event Processing supports EPL for backwards
compatibility. For more information, see Chapter 17, "Querying an
Event Stream with Oracle CQL".

Configuring an EPL Processor

Querying an Event Stream with Oracle EPL 19-5

4. Add a rules child element to each processor to group together one or more rule
elements that correspond to the set of EPL rules you have designed for this
processor.

Use the required id attribute of the rule element to uniquely identify each rule.
Use the XML CDATA type to input the actual EPL rule. For example:

<processor>
<name>firstProcessor</name>
<rules>
<rule id="myFirstRule"><![CDATA[
SELECT * from Withdrawal RETAIN ALL
]]></rule>
<rule id="mySecondRule"><![CDATA[
SELECT * from Checking RETAIN ALL
]]></rule>

</rules>
</processor>

5. Optionally, override the default processor configuration by adding additional
processor child elements:

■ Optionally add a database child element of the processor element to define a
JDBC data source for your application. This is required if your EPL rules join a
stream of events with an actual relational database table.

Use the name child element of database to uniquely identify the datasource.

Use the data-source-name child element of database to specify the actual
name of the data source; this name corresponds to the name child element of
the data-source configuration object in the config.xml file of your domain.

For more information, see "Configuring Access to a Relational Database" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

For example:

<processor>
<name>firstProcessor</name>
<rules>
....
</rules>
<database>
<name>myDataSource</name>
<data-source-name>rdbmsDataSource</data-source-name>

</database>
</processor>

6. Save and close the file.

7. Optionally, configure additional EPL processor features in the assembly file:

■ Section , "Configuring an EPL Processor Cache Source"

Caution: Identifiers and names in XML files are case sensitive, so be
sure you specify the same case when referencing the component's
identifier in the EPN assembly file.

Configuring an EPL Processor Cache Source

19-6 Developer's Guide for Oracle Event Processing

Configuring an EPL Processor Cache Source
You can configure an EPL processor to access the Oracle Event Processing cache.

For more information, see:

■ Section , "Overview of Integrating a Cache"

■ Section , "Accessing a Cache From an EPL User-Defined Function"

■ Section , "Accessing a Cache From an EPL Statement"

Example EPL Processor Configuration Files
This section provides example Oracle CQL processor configuration files, including:

■ Section , "EPL Processor Component Configuration File"

■ Section , "EPL Processor EPN Assembly File"

EPL Processor Component Configuration File
The following example shows how to configure one of the sample EPL queries shown
in Section , "Configuring an EPL Processor" for the myProcessor EPL processor:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>myProcessor</name>
<rules>

<rule id="myRule"><![CDATA[
SELECT symbol, AVG(price)
FROM (SELECT * FROM MarketTrade WHERE blockSize > 10)
RETAIN 100 EVENTS PARTITION BY symbol WITH LARGEST price
GROUP BY symbol
HAVING AVG(price) >= 100
ORDER BY symbol

]]></rule>
</rules>

</processor>
</n1:config>

In the example, the name element specifies that the processor for which the single EPL
rule is being configured is called myProcessor. This in turn implies that the EPN
assembly file that defines your application must include a corresponding
<wlevs:processor id="myProcessor" provider="epl" /> element to link these EPL
rules with an actual myProcessor EPL processor instance (see Section , "EPL Processor
EPN Assembly File").

EPL Processor EPN Assembly File
The following example shows an EPN assembly file for an EPL processor.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd

Example EPL Processor Configuration Files

Querying an Event Stream with Oracle EPL 19-7

http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>
<wlevs:adapter

id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter">
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>
<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent">

<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>
<wlevs:processor id="helloworldProcessor" provider="epl" />
<wlevs:channel

id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>
</beans>

Example EPL Processor Configuration Files

19-8 Developer's Guide for Oracle Event Processing

20

Configuring Event Record and Playback 20-1

20Configuring Event Record and Playback

[21] This chapter describes how to configure event recording and playback for debugging
Oracle Event Processing event processing networks, including how to specify an event
persistence store and query the store.

This chapter includes the following sections:

■ Overview of Configuring Event Record and Playback

■ Configuring Event Record and Playback in Your Application

■ Creating a Custom Event Store Provider

Overview of Configuring Event Record and Playback
Oracle Event Processing event repository feature allows you to persist the events that
flow out of a component of the event processing network (EPN) to a store, such as a
database table, and then play them back at a later stage or explicitly query the events
from a component such as an event bean.

A typical use case of this feature is the ability to debug a problem with a currently
running application. If you have been recording the events at a node in the EPN when
the problem occurred, you can later playback the same list of events to recreate the
problem scenario for debugging purposes.

The following graphic shows the EPN of the Event Record and Playback example and
demonstrates at what point events are recorded and where they are played back. The
simpleEventSource adapter has been configured to record events; as indicated, the
record happens as events flow out of the adapter. The eventStream channel has been
configured to playback events; as indicated, the playback happens at the point where
events flow into the channel.

Figure 20–1 Configuring Record and Playback in an EPN

Overview of Configuring Event Record and Playback

20-2 Developer's Guide for Oracle Event Processing

This section describes:

■ Section , "Storing Events in the Persistent Event Store"

■ Section , "Recording Events"

■ Section , "Playing Back Events"

■ Section , "Querying Stored Events"

■ Section , "Record and Playback Example"

Storing Events in the Persistent Event Store
When you record events, Oracle Event Processing server stores them in a persistent
event store. You can use the persistent event store that Oracle Event Processing server
provides or define your own:

■ Section , "Default Persistent Event Store"

■ Section , "Custom Persistent Event Store"

■ Section , "Persistent Event Store Schema"

Default Persistent Event Store
By default, Oracle Event Processing uses a Berkeley DB instance bundled with the
Oracle Event Processing server to store recorded events.

Berkeley DB is a fast, scalable, transactional database engine with industrial grade
reliability and availability. For more information, see:

■ http://www.oracle.com/technology/products/berkeley-db/je/index.html

■ http://www.oracle.com/technology/documentation/berkeley-db/je/index.html

By default, Oracle Event Processing server creates the Berkeley DB instance in:

ORACLE_CEP_HOME/user_projects/domains/domainname/servername/bdb

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event
Processing (such as /oracle_home), domainname refers to the name of your domain,
and servername refers to the name of your server (For example, /oracle_cep/user_
projects/domains/mydomain/myserver).

You can change this default by configuring the bdb-config element db-env-path child
element as Section , "Configuring an Event Store for Oracle Event Processing Server"
describes.

Custom Persistent Event Store
Optionally, you can create a custom persistent event store provider to store recorded
events. For example, you could specify a Relational Database Management System
such as Oracle Database or Derby as your persistent event store.

For more information, see Section , "Creating a Custom Event Store Provider."

Persistent Event Store Schema
You do not create the actual database schema used to store the recorded events. Oracle
Event Processing server automatically does this for you after you deploy an
application that uses the record and playback feature and recording begins.

For more information, see Section , "Description of the Berkeley Database Schema".

Overview of Configuring Event Record and Playback

Configuring Event Record and Playback 20-3

Recording Events
You can configure recording for any component in the event processing network
(EPN) that produces events: processors, adapters, streams, and event beans. Processors
and streams always produce events; adapters and event beans must implement the
EventSource interface. Additionally, you can configure that events from different
components in the EPN be stored in different persistent stores, or that all events go to
the same store. Note that only events that are outputted by the component are
recorded.

You enable the recording of events for a component by updating its configuration file
and adding the record-parameters element. Using the child elements of
record-parameters, you specify the event store to which the events are recorded, an
initial time period when recording should take place, the list of event types you want
to store, and so on.

After you deploy the application and events start flowing through the network,
recording begins either automatically because you configured it to start at a certain
time or because you dynamically start it using administration tools. For each
component you have configured for recording, Oracle Event Processing stores the
events that flow out of it to the appropriate store along with a timestamp of the time it
was recorded.

Playing Back Events
You can configure playback for any component in the event processing network
(EPN): processors, adapters, streams, and event beans. Typically the playback
component is a node later in the network than the node that recorded the events.

You enable the playback of events for a component by updating its configuration file
and adding the playback-parameters element. Using the child elements of
playback-parameters, you specify the event store from which the events are played
back, the list event types you want to play back (by default all are played back), the
time range of the recorded events you want to play back, and so on. By default, Oracle
Event Processing plays back the events in a time accurate manner; however, you can
also configure that the events get played back either faster or slower than they
originally flowed out of the component from which they were recorded.

After you deploy the application and events start flowing through the network, you
must start the playback by using the administration tools (Oracle Event Processing
Visualizer or wlevs.Admin). Oracle Event Processing reads the events from the
appropriate persistent store and inserts them into the appropriate place in the EPN.

It is important to note that when a component gets a playback event, it looks exactly
like the original event. Additionally, a component later in the network has been
configured to record events, then Oracle Event Processing records the playback events
as well as the "real" events.

For more information, see:

■ "Recording and Playing Back Events Flowing Through an EPN" in the Oracle
Fusion Middleware Visualizer User's Guide for Oracle Event Processing

■ "Commands for Controlling Event Record and Playback" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing

Querying Stored Events
You can use the event store API to query a store for past events given a record time
range and the component from which the events were recorded. The actual query you

Configuring Event Record and Playback in Your Application

20-4 Developer's Guide for Oracle Event Processing

use depends on the event repository provider; for example, you would use Oracle
CQL or EPL for the default persistent event store provider included with Oracle Event
Processing. You can also use these APIs to delete old events from the event store.

Record and Playback Example
The sample code in this section is taken from the event record and playback example,
located in the ORACLE_CEP_HOME\ocep_11.1\samples\source\applications\recplay
directory, where ORACLE_CEP_HOME refers to the main Oracle Event Processing
installation directory, such as d:\oracle_cep.

For details about running and building the example, see Section , "Event Record and
Playback Example".

Configuring Event Record and Playback in Your Application
Depending on how you are going to use the event repository, there are different tasks
that you must perform, as described in the following procedure that in turn point to
sections with additional details.

To configure record and playback of events in your application:
1. Optionally configure the Berkeley database event store for your Oracle Event

Processing server instance.

You may use the default Berkeley database configuration as is. You only need to
make configuration changes to customize the location of the Berkeley database
instance or to tune performance.

See Section , "Configuring an Event Store for Oracle Event Processing Server."

2. Configure a component in your EPN to record events by updating the
component's configuration file.

The component can be a processor, adapter, channel, or event bean. Only events
flowing out of the component are recorded.

See Section , "Configuring a Component to Record Events."

3. Configure a component in your EPN to playback events by updating the
component's configuration file.

The component can be a processor, adapter, channel, or event bean. Only
components that are also event sinks can playback events; events are played to the
input side of the component.

See Section , "Configuring a Component to Playback Events."

4. Redeploy your application for the changes to take effect.

5. If you have not specified an explicit start and end time for recording events, you
must use Oracle Event Processing Visualizer or wlevs.Admin to start recording.
You must always use these administration tools to start and end the playback of
events.

See Section , "Starting and Stopping the Record and Playback of Events."

Configuring an Event Store for Oracle Event Processing Server
You may use the default Berkeley database configuration as is. You only need to make
configuration changes to customize the location of the Berkeley database instance or to
tune performance.

Configuring Event Record and Playback in Your Application

Configuring Event Record and Playback 20-5

For more information, see Section , "Creating a Custom Event Store Provider".

To configure an event store for Oracle Event Processing server:
1. Stop your Oracle Event Processing server instance, if it is running.

2. Using your favorite XML editor, open the server's config.xml file for edit.

The config.xml file is located in the DOMAIN_DIR/servername/config directory of
your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_
cep/user_projects/domains/myDomain and servername refers to the name of your
server, such as defaultserver.

3. Edit the bdb-config element to the config.xml file.

Example 20–1 shows a fully configured bdb-config element.

Example 20–1 bdb-config Element

<bdb-config>
<db-env-path>bdb</db-env-path>
<cache-size>1000</cache-size>

</bdb-config>

Table 20–1 lists the child elements of bdb-config that you can specify.

4. Restart your Oracle Event Processing server instance.

Configuring a Component to Record Events
You can configure any processor, adapter, channel, or event bean in your application to
record events. As with all other component configuration, you specify that a
component records events by updating its configuration file. For general information
about these configuration files, see Section , "Overview of Component Configuration
Files."

This section describes the main steps to configure a component to record events. For
simplicity, it is assumed in the procedure that you are configuring an adapter to record
events and that you have already created its component configuration file.

Table 20–1 Child Elements of bdb-config

Child Element Description

db-env-path Specifies the subdirectory in which Oracle Event Processing server
creates Berkeley database instances relative to the DOMAIN_
DIR/servername/config directory of your server, where DOMAIN_DIR
refers to the domain directory, such as /oracle_cep/user_
projects/domains/myDomain and servername refers to the name of your
server, such as defaultserver.

Default: bdb

cache-size Specifies the amount of memory, in bytes, available for Berkeley
database cache entries. You can adjust the cache size to tune Berkeley
database performance.

For more information, see:

■ http://www.oracle.com/technology/documentation/berkeley-db/je
/GettingStartedGuide/cachesize.html.

■ http://www.oracle.com/technology/documentation/berkeley-db/je
/java/com/sleepycat/je/EnvironmentMutableConfig.html#setCa
cheSize(long)

Default: je.maxMemoryPercent * JVM maximum memory

Configuring Event Record and Playback in Your Application

20-6 Developer's Guide for Oracle Event Processing

See Section , "Component Configuration Schema wlevs_application_config.xsd" for the
complete XSD Schema that describes the event recording configuration file elements.

Using your favorite XML editor, open the component configuration XML file and add
a record-parameters child element to the component you want to configure to record
events. For example, to configure an adapter called simpleEventSource:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<adapter>

<name>simpleEventSource</name>
<record-parameters>
...

 </record-parameters>
...

</adapter>
...

</n1:config>

Add child elements to record-parameters to specify the name of the event store
provider, the events that are stored, the start and stop time for recording, and so on.
For example:

<adapter>
<name>simpleEventSource</name>
<record-parameters>
<dataset-name>recplay_sample</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
</adapter>

Table 20–2 lists the child elements of record-parameters that you can specify. Only
dataset-name is required.

Table 20–2 Child Elements of record-parameters

Child Element Description

dataset-name Specifies the group of data that the user wants to group together.

In the case of BDB provider, the dataset name will be used as the
database environment in Berkeley database.

In the case of the Oracle RDBMS-based provider, it specifies the
database area, or schema, in which the tables that store the recorded
events are created.

When configuring the Oracle RDBMS-based provider, you are required
to specify this element.

event-type-list Specifies the event types that are recorded to the event store. If this
element is not specified, then Oracle Event Processing records all event
types that flow out of the component.

Use the event-type child component to list one or more events, such as:

<event-type-list>
<event-type>EventOne</event-type>
<event-type>EventTwo</event-type>

</event-type-list>

When configuring the Oracle RDBMS-based provider, you are required
to specify this element.

Configuring Event Record and Playback in Your Application

Configuring Event Record and Playback 20-7

time-range Specifies the time period during which recording should take place
using a start and end time.

The time period is configured by using a start child element to specify
a start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of the
form:

yyyy-mm-ddThh:mm:ss

For example, to specify that recording should start on January 20, 2010,
at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

<time-range>
<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representat
ion.

If you do not specify a time period, then no events are recorded when
the application is deployed and recording will only happen after you
explicitly start it using Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

time-range-offset Specifies the time period during which recording should take place,
using a start time and a duration.

The time period is configured by using a start child element to specify
a start time and duration child element to specify the amount of time
after the start time that recording should stop.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that recording should start on January 20, 2010,
at 5:00am and continue for 3 hours, enter the following

<time-range-offset>
<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</time-range-offset>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representat
ion.

If you do not specify a time period, then no events are recorded when
the application is deployed and recording will only happen after you
explicitly start it using Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

batch-size Specifies the number of events that Oracle Event Processing picks up in
a single batch from the event buffer to write the event store.

Default value is 1000.

batch-time-out Specifies the number of seconds that Oracle Event Processing waits for
the event buffer window to fill up with the batch-size number of
events before writing to the event store.

Default value is 60

Table 20–2 (Cont.) Child Elements of record-parameters

Child Element Description

Configuring Event Record and Playback in Your Application

20-8 Developer's Guide for Oracle Event Processing

Configuring a Component to Playback Events
You can configure any processor, adapter, channel, or event bean in your application to
playback events, although the component must be a node downstream of the
recording component so that the playback component will actually receive the events
and play them back. As with all other component configuration, you specify that a
component plays back events by updating its configuration file. For general
information about these configuration files, see Section , "Overview of Component
Configuration Files."

This section describes the main steps to configure a component to play back events.
For simplicity, it is assumed in the procedure that you are configuring a channel to
playback events from a node upstream in the EPN that has recorded events, and that
you have already created the channel's configuration file.

See for the complete XSD Schema that describes the event playback configuration file
elements.

Using your favorite XML editor, open the component configuration XML file and add
a playback-parameters child element to the component you want to configure to
playback events. For example, to configure a channel called eventStream:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<channel>
<name>eventStream</name>
<playback-parameters>
...

</playback-parameters>
</channel>
...

</n1:config>

Add child elements to playback-parameters to specify the name of the event store
provider, the events that are played back, and so on. For example:

<channel>
<name>eventStream</name>
<playback-parameters>

<dataset-name>recplay_sample</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>

</playback-parameters>
</channel>

Table 20–3 lists the child elements of playback-parameters that you can specify. Only
dataset-name is required.

max-size If specified, Oracle Event Processing uses a stream when writing to the
event store, and this element specifies the size of the stream, with
non-zero values indicating asynchronous writes.

Default value is 1024.

max-threads If specified, Oracle Event Processing uses a stream when writing to the
event store, and this element specifies the maximum number of threads
that will be used to process events for this stream. Setting this value has
no effect when max-size is 0.

The default value is 1.

Table 20–2 (Cont.) Child Elements of record-parameters

Child Element Description

Configuring Event Record and Playback in Your Application

Configuring Event Record and Playback 20-9

Table 20–3 Child Elements of playback-parameters

Child Element Description

dataset-name Specifies the group of data that the user wants to group together.

In the case of BDB provider, the dataset name will be used as the
database environment in Berkeley database.

In the case of the Oracle RDBMS-based provider, it specifies the
database area, or schema, in which the tables that store the recorded
events are queried for the playback events.

When configuring the Oracle RDBMS-based provider, you are
required to specify this element.

event-type-list Specifies the event types that are played back from the event store. If
this element is not specified, then Oracle Event Processing plays back
all event types.

Use the event-type child component to list one or more events, such
as:

<event-type-list>
<event-type>EventOne</event-type>
<event-type>EventTwo</event-type>

</event-type-list>

When configuring the Oracle RDBMS-based provider, you are
required to specify this element.

time-range Specifies the time period during which play back should take place
using a start and end time.

The time period is configured by using a start child element to
specify a start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of the
form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20,
2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the
following:

<time-range>
<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-represent
ation.

If you do not specify a time period, then no events are played back
when the application is deployed and play back will only happen after
you explicitly start it using Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

Configuring Event Record and Playback in Your Application

20-10 Developer's Guide for Oracle Event Processing

Starting and Stopping the Record and Playback of Events
After you configure the record and playback functionality for the components of an
application, and you deploy the application to Oracle Event Processing, the server
starts to record events only if you specified an explicit start/stop time in the initial
configuration.

For example, if you included the following element in a component configuration:

<time-range>
<start>2010-01-20T05:00:00</start>

time-range-offset Specifies the time period during which play back should take place,
using a start time and a duration.

The time period is configured by using a start child element to
specify a start time and duration child element to specify the amount
of time after the start time that play back should stop.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that play back should start on January 20,
2010, at 5:00am and continue for 3 hours, enter the following

<time-range-offset>
<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</time-range-offset>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-represent
ation.

If you do not specify a time period, then no events are played back
when the application is deployed and play back will only happen after
you explicitly start it using Oracle Event Processing Visualizer or
wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

playback-speed Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed. A value of
2 means that events will be played back 2 times faster than the original
record speed. Similarly, a value of 0.5 means that events will be played
back at half the speed.

repeat Specifies whether to playback events again after the playback of the
specified time interval is over.

Valid values are true and false. Default value is false. A value of
true means that the repeat of playback continues an infinite number
of times until it is deliberately stopped. False means that events will
be played back only once.

max-size If specified, Oracle Event Processing uses a stream when playing back
events from the event store, and this element specifies the size of the
stream, with non-zero values indicating asynchronous writes.

Default value is 1024.

max-threads If specified, Oracle Event Processing uses a stream when playing back
events from the event store, and this element specifies the maximum
number of threads that will be used to process events for this stream.
Setting this value has no effect when max-size is 0.

The default value is 1.

Table 20–3 (Cont.) Child Elements of playback-parameters

Child Element Description

Configuring Event Record and Playback in Your Application

Configuring Event Record and Playback 20-11

<end>2010-01-20T18:00:00</end>
</time-range>
then recording will automatically start on January 20, 2010 at 5:00 am.

The only way to start the playback of events, however, is by using Oracle Event
Processing Visualizer or wlevs.Admin. You also use these tools to dynamically start
and stop the recording of events.

For more information, see:

■ "Recording and Playing Back Events Flowing Through an EPN" in the Oracle
Fusion Middleware Visualizer User's Guide for Oracle Event Processing

■ "Commands for Controlling Event Record and Playback" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing

Visualizer and wlevs.Admin use managed beans (MBeans) to dynamically start and
stop event recording and playback, as well as manage the event store configuration. A
managed bean is a Java bean that provides a Java Management Extensions (JMX)
interface. JMX is the Java EE solution for monitoring and managing resources on a
network. You can create your own administration tool and use JMX to manage event
store functionality by using the
com.bea.wlevs.management.configuration.StageMBean.

For more information, see:

■ "Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

■ Oracle Fusion Middleware Java API Reference for Oracle Event Processing

Description of the Berkeley Database Schema
When you configure a stage for event record and playback, you specify a
dataset-name to identify the recorded data.

Oracle Event Processing server creates a subdirectory with this name below the
db-env-path you specify in your bdb-config element.

For example, consider the bdb-config element is as Example 20–2 shows.

Example 20–2 Default bdb-config Element

<bdb-config>
<db-env-path>bdb</db-env-path>

</bdb-config>

If your dataset-name is test1, then Oracle Event Processing server stores recorded
data in directory:

ORACLE_CEP_HOME/user_projects/domains/domainname/servername/bdb/test1

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event
Processing (such as /oracle_home), domainname refers to the name of your domain,
and servername refers to the name of your server (For example, /oracle_cep/user_
projects/domains/mydomain/myserver).

Within the data-set subdirectory, Oracle Event Processing creates a Berkeley database
environment that contains a separate database for each event type you record. The
database name is the same as the event type name as specified in the event type
repository.

The database key is record time plus sequence number.

Creating a Custom Event Store Provider

20-12 Developer's Guide for Oracle Event Processing

Creating a Custom Event Store Provider
Oracle Event Processing provides an event store API that you can use to create a
custom event store provider. Oracle provides an RDBMS-based implementation for
storing events in a relational database, or one that supports JDBC connections. If you
want to store events in a different kind of database, or for some reason the Oracle
RDBMS provider is not adequate for your needs, then you can create your own event
store provider using the event store API.

The event store API is in the com.bea.wlevs.eventstore package; the following list
describes the most important interfaces:

■ EventStore—Object that represents a single event store. The methods of this
interface allow you to persist events to the store and to query the contents of the
store using a provider-specific query.

■ EventStoreManager—Manages event stores. Only one instance of the
EventStoreManager ever exists on a given Oracle Event Processing server, and this
instance registers itself in the OSGi registry so that event store providers can in
turn register themselves with the event store manager. You use this interface to
find existing event stores, create new ones, get the provider for a given event store,
and register an event provider. The event store manager delegates the actual work
to the event store provider.

■ EventStoreProvider—Underlying repository that provides event store services to
clients.

For more information, see the Oracle Fusion Middleware Java API Reference for Oracle
Event Processing.

21

Testing Applications With the Load Generator and csvgen Adapter 21-1

21Testing Applications With the Load Generator
and csvgen Adapter

[22] This chapter describes how to use the included load generator and csvgen adapter to
test Oracle Event Processing applications.

This chapter includes the following sections:

■ Overview of Testing Applications With the Load Generator and csvgen Adapter

■ Configuring and Running the Load Generator Utility

■ Creating a Load Generator Property File

■ Creating a Data Feed File

■ Configuring the csvgen Adapter in Your Application

Overview of Testing Applications With the Load Generator and csvgen
Adapter

The load generator is a simple utility provided by Oracle Event Processing to simulate
a data feed. The utility is useful for testing the Oracle CQL or EPL rules in your
application without needing to connect to a real-world data feed.

The load generator reads an ASCII file that contains the sample data feed information
and sends each data item to the configured port. The load generator reads items from
the sample data file in order and inserts them into the channel, looping around to the
beginning of the data file when it reaches the end; this ensures that a continuous
stream of data is available, regardless of the number of data items in the file. You can
configure the rate of sent data, from the rate at which it starts, the final rate, and how
long it takes the load generator to ramp up to the final rate.

In your application, you must use the Oracle Event Processing-provided csvgen
adapter, rather than your own adapter, to read the incoming data; this is because the
csvgen adapter is specifically coded to decipher the data packets generated by the load
generator.

If you redeploy your application, you must also restart the load generator.

For more information on testing and debugging, see Section , "Debugging an Oracle
Event Processing Application Running on an Oracle Event Processing Server".

Configuring and Running the Load Generator Utility
This procedure describes how to configure and run the load generator utility.

Creating a Load Generator Property File

21-2 Developer's Guide for Oracle Event Processing

To configure and run the load generator utility:
1. Optionally create a property file that contains configuration properties for

particular run of the load generator; these properties specify the location of the file
that contains simulated data, the port to which the generator feeds the data, and so
on.

Oracle Event Processing provides a default property file you can use if the default
property values are adequate.

See Section , "Creating a Load Generator Property File."

2. Create a file that contains the actual data feed values.

See Section , "Creating a Data Feed File."

3. Configure the csvgen adapter so that it correctly reads the data feed generated by
the load generator. You configure the adapter in the EPN assembly file that
describes your Oracle Event Processing application.

See Section , "Configuring the csvgen Adapter in Your Application."

4. Be sure that you configure a builder factory for creating your event types.
Although specifying event type builder factories is typically an optional task, it is
required when using the load generator.

See Section , "Controlling Event Type Instantiation with an Event Type Builder
Class" for details.

5. Open a command window and set your environment as described in Section ,
"Setting Your Development Environment".

6. Change to the ORACLE_CEP_HOME\ocep_11.1\utils\load-generator directory,
where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation
directory, such as d:\oracle_cep.

7. Run the load generator specifying the properties file you created in step 1 to begin
the simulated data feed. For example, if the name of your properties file is
c:\loadgen\myDataFeed.prop, execute the following command:

prompt> runloadgen.cmd c:\loadgen\myDataFeed.prop

Creating a Load Generator Property File
The load generator uses an ASCII properties file for its configuration purposes.
Properties include the location of the file that contains the sample data feed values, the
port to which the utility should send the data feed, and so on.

Oracle Event Processing provides a default properties file called csvgen.prop, located
in the ORACLE_CEP_HOME\ocep_11.1\utils\load-generator directory, where ORACLE_
CEP_HOME refers to the main Oracle Event Processing installation directory, such as
d:\oracle_cep.

The format of the file is simple: each property-value pair is on its own line. The
following example shows the default csvgen.prop file; Oracle recommends you use
this file as a template for your own property file:

 test.csvDataFile=test.csv
 test.port=9001
 test.packetType=CSV
 test.mode=client
 test.senders=1
 test.latencyStats=false
 test.statInterval=2000

Creating a Data Feed File

Testing Applications With the Load Generator and csvgen Adapter 21-3

In the preceding sample properties file, the file that contains the sample data is called
test.csv and is located in the same directory as the properties file. The load generator
will send the data feed to port 9001.

The following table lists the additional properties you can set in your properties file.

Creating a Data Feed File
A load generator data feed file contains the sample data feed values that correspond to
the event type registered for your Oracle Event Processing application.

Example 21–1 shows an EmployeeEvent and Example 21–2 shows a load generator
data feed file corresponding to this event type.

Example 21–1 EmployeeEvent Event Type

<wlevs:event-type-repository>
<wlevs:event-type type-name="EmployeeEvent">

<wlevs:properties>
<wlevs:property name="name" type="char" />
<wlevs:property name="age" type="int" />
<wlevs:property name="birthplace" type="char" length="512" />

</wlevs:properties>
</wlevs:event-type>

...
</wlevs:event-type-repository>

Example 21–2 Data Feed File for EmployeeEvent Event Type

 Lucy,23,Madagascar
 Nick,44,Canada
 Amanda,12,Malaysia

Caution: If you create your own properties file, you must include the
test.packetType, test.mode, test.senders, test.latencyStats, and
test.statInterval properties exactly as shown above.

Table 21–1 Load Generator Properties

Property Description Data Type Required?

test.csvDataFile Specifies the file that contains the data feed values. String Yes

test.port The port number to which the load generator should
send the data feed.

Each input adapter must be associated with its own
test.port as Section , "Configuring the csvgen
Adapter in Your Application" describes.

Integer Yes

test.secs Total duration of the load generator run, in seconds.

The default value is 30.

Integer No

test.rate Final data rate, in messages per second.

The default value is 1.

Integer No

test.startRate Initial data rate, in messages per second.

The default value is 1.

Integer No

test.rampUpSecs Number of seconds to ramp up from
test.startRate to test.rate.

The default value is 0.

Integer No

Configuring the csvgen Adapter in Your Application

21-4 Developer's Guide for Oracle Event Processing

 Juliet,43,Spain
 Horatio,80,Argentina

A load generator data feed file follows a simple format:

■ Each item of a particular data feed is on its own line.

■ Separate the fields of a data feed item with commas.

■ Do not include commas as part of a string field.

■ Do not include extraneous spaces before or after the commas, unless the space is
literally part of the field value.

■ Include only string and numerical data in a data feed file such as integer, long,
double, and float.

■ By default, the maximum length of a string field is 256 characters.

To specify a longer string, set the length attribute of the char property in your
event-type as Example 21–1 shows for the birthplace property.

For more information, see Section , "Constraints on Event Types for Use With the
csvgen Adapter".

Configuring the csvgen Adapter in Your Application
When using the load generator utility, you must use the csvgen adapter in your
application because this Oracle Event Processing-provided adapter is specifically
coded to read the data packets generated by the load generator.

You register the csvgen adapter using the wlevs:adapter element in the EPN
assembly file of your application, as with all adapters. Set the provide attribute to
csvgen to specify that the provider is the csvgen adapter, rather than your own
adapter. Additionally, you must specify the following child tags:

■ wlevs:instance-property element with name attribute port and value attribute
configured_port, where configured_port corresponds to the value of the
test.port property in the load generator property file. See Section , "Creating a
Load Generator Property File."

■ wlevs:instance-property element with name attribute eventTypeName and value
attribute event_type_name, where event_type_name corresponds to the name of
the event type that represents an item from the load-generated feed.

■ wlevs:instance-property element with name attribute eventPropertyNames and
value attribute ordered_list_of_properties, where ordered_list_of_
properties lists the names of the properties in the order that the load generator
sends them, and consequently the csvgen adapter receives them.

Before showing an example of how to configure the adapter, first assume that your
application registers an event type called PersonType in the EPN assembly file using
the wlevs:metada element shown below:

<wlevs:event-type-repository>
<wlevs:event-type type-name="PersonType">

<wlevs:properties>

Note: The load generator does not fully comply with the CSV
specification
(http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm).

Configuring the csvgen Adapter in Your Application

Testing Applications With the Load Generator and csvgen Adapter 21-5

 <wlevs:property name="name" type="char"/>
 <<wlevs:property name="age" type="int"/>
 <<wlevs:property name="birthplace" type="char"/>

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

This event type corresponds to the data feed file shown in Section , "Creating a Data
Feed File."

To configure the csvgen adapter that receives this data, use the following
wlevs:adapter element:

<wlevs:adapter id="csvgenAdapter" provider="csvgen">
 <wlevs:instance-property name="port" value="9001"/>
 <wlevs:instance-property name="eventTypeName" value="PersonType"/>
 <wlevs:instance-property name="eventPropertyNames" value="name,age,birthplace"/>

</wlevs:adapter>

Note how the bold values in the adapter configuration example correspond to the
PersonType event type registration.

If you use the wlevs:class element to specify your own JavaBean when registering
the event type, then the eventPropertyNames value corresponds to the JavaBean
properties. For example, if your JavaBean has a getName method, then one of the
properties of your JavaBean is name.

For more information on event types, see Chapter 9, "Defining and Using Event
Types".

Configuring the csvgen Adapter in Your Application

21-6 Developer's Guide for Oracle Event Processing

22

Testing Applications With the Event Inspector 22-1

22Testing Applications With the Event Inspector

[23] This chapter describes how to use the Event Inspector service to trace and inject events
with any stage in an Oracle Event Processing event processing network (EPN).

This chapter includes the following sections:

■ Overview of Testing Applications With the Event Inspector

■ Configuring the Event Inspector HTTP Pub-Sub Server

■ Injecting Events

■ Tracing Events

Overview of Testing Applications With the Event Inspector
Using the Event Inspector service, you can:

■ View the events flowing out of any stage in the EPN

■ Inject events into any stage in the EPN

You can use the Event Inspector service to test and debug Oracle CQL queries during
development.

This section describes:

■ Section , "Tracing Events"

■ Section , "Injecting Events"

■ Section , "Event Inspector Event Types"

■ Section , "Event Inspector HTTP Publish-Subscribe Channel and Server"

■ Section , "Event Inspector Clients"

For more information on testing and debugging, see Section , "Debugging an Oracle
Event Processing Application Running on an Oracle Event Processing Server".

Tracing Events
Using the Event Inspector service, you can view the events leaving any stage of the
EPN.

The Event Inspector service uses a common HTTP pub-sub channel and server to trace
events.

Note: The Event Inspector service is not for use on a production
Oracle Event Processing server. It is for use only during development.

Overview of Testing Applications With the Event Inspector

22-2 Developer's Guide for Oracle Event Processing

A trace event must have its binding attribute set to outbound.

For more information, see:

■ Section , "Event Inspector Event Types"

■ Section , "Event Inspector HTTP Publish-Subscribe Channel and Server"

■ Section , "Tracing Events"

Injecting Events
Using the Event Inspector service, you can inject events into any stage of the EPN.

The Event Inspector service uses a HTTP pub-sub channel and server to inject events.

An injected event must have its binding attribute set to inbound.

Using an Event Inspector client, you can inject:

■ A single, simple event by type, such as the StockTick event.

In this case, the specific event property types that you can use depends on the
client.

■ A single event directly to the HTTP pub-sub channel as a JSON-formatted
character string.

In this case, you can use any event property that JSON can represent.

■ Multiple events using a file that contains one or more JSON-formatted character
strings.

In this case, you can use any event property that JSON can represent. The Event
Inspector service client will parse the file and inject all its JSON strings to the
HTTP pub-sub channel.

You can use the GSON Java library to help you convert Java objects to JSON
format when creating your input file.

For more information, see:

■ http://www.json.org/

■ http://code.google.com/p/google-gson

■ Section , "Event Inspector Event Types"

■ Section , "Event Inspector HTTP Publish-Subscribe Channel and Server"

■ Section , "Injecting Events"

Event Inspector Event Types
All Oracle Event Processing event types are supported: JavaBean, Map, and tuple.

The Event Inspector service converts events to the JavaScript Object Notation (JSON)
format before publishing to the trace channel and you must inject events in JSON
format.

JSON-formatted events must conform to the structure that Example 22–1 shows.
Table 22–1 lists the required attributes.

Note: Byte arrays are not supported as property types in event types
used with the event inspector.

Overview of Testing Applications With the Event Inspector

Testing Applications With the Event Inspector 22-3

Example 22–1 Event Inspector JSON Event

{
"event-type": "myEventType",
"operation": "insert",
"binding": "outbound",
"value":{

"firstname": "Jane",
"lastname": "Doe",
"phone": {

"code": 12345,
"number": "office"

},
}

}

For more information, see:

■ http://www.json.org/

■ Section , "Overview of Oracle Event Processing Event Types"

■ Section , "Tracing Events"

■ Section , "Injecting Events"

Event Inspector HTTP Publish-Subscribe Channel and Server
The Event Inspector service uses a dynamic HTTP publish-subscribe (HTTP pub-sub)
channel (not configured in config.xml) that is named:

/SERVERNAME/APPLICATIONNAME/STAGENAME/DIRECTION

Where:

■ SERVERNAME: the name of the Oracle Event Processing server on which the Oracle
Event Processing EPN stage is running.

■ APPLICATIONNAME: the name of the Oracle Event Processing application.

■ STAGENAME: the name of the EPN stage.

■ DIRECTION: one of either:

– input: for event injection.

Table 22–1 Event Inspector JSON Event Required Attributes

Attribute Description

event-type The name of the Oracle Event Processing event as you defined it in the application
assembly file’s event-type-repository.

operation Specify the type of event:

■ insert: insert event.

■ delete: delete event

■ update: update event

■ heartbeat: heartbeat event

binding One of:

■ inbound: injected event.

■ outbound: trace event.

value One or more JSON-formatted event properties as defined by the event-type.

Configuring the Event Inspector HTTP Pub-Sub Server

22-4 Developer's Guide for Oracle Event Processing

– output: for event tracing.

For example:

/server-1/myapp/MyInputAdapter/input

The Event Inspector service uses an HTTP pub-sub server. This can be any of:

■ Local: you configure your config.xml file with an event-inspector element and
configure its pubsub-server-name child element with the name of local pubsub
server running on this machine. For more information, see Section , "How to
Configure a Local Event Inspector HTTP Pub-Sub Server".

■ Remote: you configure your config.xml file with an event-inspector element
and configure its pubsub-server-url child element with a URL to an HTTP
pub-sub server running on a remote machine. For more information, see Section ,
"How to Configure a Remote Event Inspector HTTP Pub-Sub Server".

■ Default: if there is only one HTTP pub-sub server defined in your config.xml file
and you do not specify a local or remote HTTP pub-sub server, then the Event
Inspector service uses the local HTTP pub-sub server by default.

The Event Inspector service uses the same HTTP pub-sub channel and server for both
tracing and injecting events.

For more information, see:

■ Section , "Tracing Events"

■ Section , "Injecting Events"

Event Inspector Clients
The Event Inspector service supports the following clients:

■ Section , "Oracle Event Processing Visualizer"

Oracle Event Processing Visualizer
You can access the Event Inspector service using the Oracle Event Processing
Visualizer.

For more information, see "Testing Applications With the Event Inspector" in the
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

Configuring the Event Inspector HTTP Pub-Sub Server
You can configure the Event Inspector service with a local or remote HTTP pub-sub
server:

■ Section , "How to Configure a Local Event Inspector HTTP Pub-Sub Server"

■ Section , "How to Configure a Remote Event Inspector HTTP Pub-Sub Server"

You configure the Event Inspector HTTP pub-sub server in a component configuration
file. For general information about these configuration files, see Section , "Overview of
Component Configuration Files."

If there is only one HTTP pub-sub server defined in your config.xml and you do not
specify a local or remote HTTP pub-sub server, then the Event Inspector service uses
the local HTTP pub-sub server by default. For more information, see Chapter 12,
"Integrating an HTTP Publish-Subscribe Server".

Configuring the Event Inspector HTTP Pub-Sub Server

Testing Applications With the Event Inspector 22-5

How to Configure a Local Event Inspector HTTP Pub-Sub Server
You configure the Event Inspector service with a local HTTP pub-sub server in a
component configuration file. Alternatively, you can configure a remote HTTP
pub-sub server as Section , "How to Configure a Remote Event Inspector HTTP
Pub-Sub Server" describes.

To configure a local Event Inspector HTTP pub-sub server:
1. Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section , "Opening the EPN Editor".

2. Right-click any component with a configuration file associated with it and select
Go to Configuration Source.

3. Add an event-inspector element as Example 22–2 shows.

Example 22–2 Event Inspector Service Local HTTP Pub-Sub Server

<event-inspector>
<name>myEventInspectorConfig</name>
<pubsub-server-name>myPubSub</pubsub-server-name>

</event-inspector>

Where the pubsub-server-name value myPubSub is the value of the http-pubsub
element name child element as defined in the local Oracle Event Processing server
config.xml file as Example 22–3 shows.

Example 22–3 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub
Element

...
<http-pubsub>
<name>myPubSub</name>
<path>/pubsub</path>
<pub-sub-bean>
<server-config>
<supported-transport>
<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

</server-config>
<channels>

...
</channels>

</pub-sub-bean>
</http-pubsub>

...

4. Save and close the config.xml file.

How to Configure a Remote Event Inspector HTTP Pub-Sub Server
You configure the Event Inspector service with a remote HTTP pub-sub server in a
component configuration file. Alternatively, you can configure a local HTTP pub-sub
server as Section , "How to Configure a Local Event Inspector HTTP Pub-Sub Server"
describes.

Injecting Events

22-6 Developer's Guide for Oracle Event Processing

To configure a Remote Event Inspector HTTP pub-sub server:
1. Open the EPN editor in the Oracle Event Processing IDE for Eclipse.

See Section , "Opening the EPN Editor".

2. Right-click any component with a configuration file associated with it and select
Go to Configuration Source.

3. Add an event-inspector element as Example 22–4 shows.

Example 22–4 Event Inspector Service Remote HTTP Pub-Sub Server

<event-inspector>
<name>myEventInspectorTraceConfig</name>
<pubsub-server-url>http://HOST:PORT/PATH</pubsub-server-url>

</event-inspector>

Where:

■ HOST: is the host name or IP address of the remote Oracle Event Processing
server.

■ PORT: the remote Oracle Event Processing server netio port as defined in the
remote Oracle Event Processing server config.xml file. Default: 9002.

■ PATH: the value of the http-pubsub element path child element as defined in
the remote Oracle Event Processing server config.xml file.

Given the http-pubsub configuration that Example 22–3 shows, a valid
pubsub-server-url would be:

http://remotehost:9002/pubsub

Example 22–5 Oracle Event Processing Built-In HTTP Pub-Sub Server http-pubsub
Element

...
<http-pubsub>
<name>myPubSub</name>
<path>/pubsub</path>
<pub-sub-bean>
<server-config>
<supported-transport>
<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

</server-config>
<channels>

...
</channels>

</pub-sub-bean>
</http-pubsub>

...

4. Save and close the config.xml file.

Injecting Events
After you configure the Event Inspector service HTTP pub-sub server, you can use
Event Inspector clients to inject events. To configure event injection, you can use the
Oracle Event Processing Visualizer or you can edit a component configuration file in

Tracing Events

Testing Applications With the Event Inspector 22-7

your application to specify injection settings that are in place when the application is
deployed or redeployed.

Configure event injection in Oracle Event Processing Visualizer with settings that can
be discarded when the application is redeployed. For more information on using
Oracle Event Processing Visualizer to inject events, see "How to Inject a Simple Event
on an Event Inspector Service Dynamic Channel" and "How to Inject an Event as a
JSON String on an Event Inspector Service Dynamic Channel" in the Oracle Fusion
Middleware Visualizer User's Guide for Oracle Event Processing.

If you want to specify event injection configuration settings that are in place when the
application is deployed or redeployed, configure injection by editing component
configuration settings for the stage to which you want to inject.

For example, the component configuration excerpt shown in Section 22–6, "Event
Injection Component Configuration Settings" illlustrates how you might configure a
processor for event injection. The inject-parameters element’s active child element
specifies that injection is on, while the channel-name element specifies the HTTP
pub-sub channel from which injected elements should be sent.

Example 22–6 Event Injection Component Configuration Settings

<processor>
<name>FindCrossRates</name>
<inject-parameters>

<active>true</active>
<channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>

</inject-parameters>
<rules>

<!-- Query rules omitted. -->
</rules>

</processor>

For reference information about these elements, see Section , "inject-parameters".

For more information, see:

■ Section , "Configuring the Event Inspector HTTP Pub-Sub Server"

Tracing Events
After you configure the Event Inspector service HTTP pub-sub server, you can use
Event Inspector clients to trace events flowing out of any stage of your EPN. To trace
events, you can either use the Oracle Event Processing Visualizer to configure tracing
or you can edit a component configuration file in your application to specify trace
settings that are in place when the application is deployed or redeployed.

Configure event tracing in Oracle Event Processing Visualizer with settings that can be
discarded when the application is redeployed. For more information on using Oracle
Event Processing Visualizer to trace events, see "How to Trace Events on a Dynamic
Channel" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

For event tracing configuration that is in place when the application is deployed or
redeployed, configure tracing by editing component configuration settings for the
stage from which you want to trace.

For example, the component configuration excerpt shown in Section 22–7, "Event
Tracing Component Configuration Settings" illlustrates how you might configure a
processor for event tracing. The trace-parameters element’s active child element

Tracing Events

22-8 Developer's Guide for Oracle Event Processing

specifies that tracing is on, while the channel-name element specifies the HTTP
pub-sub channel to which traced elements should be sent.

Example 22–7 Event Tracing Component Configuration Settings

<processor>
<name>FindCrossRates</name>
<trace-parameters>

<active>true</active>
<channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>

</trace-parameters>
<rules>

<!-- Query rules omitted. -->
</rules>

</processor>

For reference information about these elements, see Section , "trace-parameters".

For more information, see:

■ Section , "Configuring the Event Inspector HTTP Pub-Sub Server"

Part IV
Part IV Completing and Refining Oracle Event

Processing Applications

Part IV contains the following chapters:

■ Chapter 23, "Assembling and Deploying Oracle Event Processing Applications"

■ Chapter 24, "Developing Applications for High Availability"

■ Chapter 25, "Developing Scalable Applications"

■ Chapter 26, "Extending Component Configuration"

■ Chapter 27, "Performance Tuning"

23

Assembling and Deploying Oracle Event Processing Applications 23-1

23Assembling and Deploying Oracle Event
Processing Applications

[24] This chapter describes how to assemble and deploy Oracle Event Processing
applications manually, by using the Oracle Event Processing IDE for Eclipse, and by
using Oracle Event Processing Visualizer.

This chapter includes the following sections:

■ Overview of Application Assembly and Deployment

■ Assembling an Oracle Event Processing Application

■ Managing Application Libraries

■ Managing Log Message Catalogs

■ Deploying Oracle Event Processing Applications

Overview of Application Assembly and Deployment
The term application assembly refers to the process of packaging the components of an
application, such as the Java files and XML configuration files, into an OSGI bundle
that can be deployed to Oracle Event Processing. The term application deployment refers
to the process of making an application available for processing client requests in an
Oracle Event Processing domain.

This section describes:

■ Section , "Applications"

■ Section , "Application Libraries"

■ Section , "Application Dependencies"

■ Section , "Deployment and Deployment Order"

■ Section , "Configuration History Management"

Note: Oracle Event Processing applications are built on top of the
Spring Framework and OSGi Service Platform and make extensive use
of their technologies and services. See Appendix A, "Additional
Information about Spring and OSGi," for links to reference and
conceptual information about Spring and OSGi.

Overview of Application Assembly and Deployment

23-2 Developer's Guide for Oracle Event Processing

Applications
In the context of Oracle Event Processing assembly and deployment, an application is
defined as an OSGi bundle (see
http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html) JAR file that
contains the following artifacts:

■ The compiled Java class files that implement some of the components of the
application, such as the adapters, adapter factory, and POJO that contains the
business logic.

■ One or more Oracle Event Processing configuration XML files that configure the
components of the application. The only type of component that is required to
have a configuration file is the event processor; all other components (adapters
and streams) do not require configuration files if the default configuration of the
component is adequate. You can combine all configuration files into a single file,
or separate the configuration for individual components in their own files.

The configuration files must be located in the META-INF/wlevs directory of the
OSGi bundle JAR file if you plan to dynamically deploy the bundle. If you have an
application already present in the domain directory, then the configuration files
need to be extracted in the same directory.

■ An EPN assembly file that describes all the components of the application and
how they are connected to each other.

The EPN assembly file must be located in the META-INF/spring directory of the
OSGi bundle JAR file.

■ A MANIFEST.MF file that describes the contents of the JAR.

Application Dependencies
The OSGI bundle declares dependencies by specifying imported and required
packages. It also provides functionality to other bundles by exporting packages. If a
bundle is required to provide functionality to other bundles, you must use
Export-Package to allow other bundles to reference named packages. All packages not
exported are not available outside the bundle.

You define dependencies at design time.

This section describes:

■ Section , "Private Application Dependencies"

■ Section , "Shared Application Dependencies"

■ Section , "Native Code Dependencies"

For more information, see:

■ Section , "Deployment and Deployment Order"

■ Section , "Assembling an Oracle Event Processing Application"

Private Application Dependencies
Some dependencies are satisfied by a component bundled in and deployed with an
application. For example, standard JAR files or property files.

For more information, see:

■ Section , "How to Add a Standard JAR File to an Oracle Event Processing Project"

■ Section , "How to Add an OSGi Bundle to an Oracle Event Processing Project"

Overview of Application Assembly and Deployment

Assembling and Deploying Oracle Event Processing Applications 23-3

■ Section , "How to Add a Property File to an Oracle Event Processing Project"

Shared Application Dependencies
Some dependencies are satisfied by a component deployed to the Oracle Event
Processing server application library directory. These components are not bundled in
and deployed with a specific application. Instead, they are accessible to any
application that imports one or more of the packages that the application library
exports.

For more information, see:

■ Section , "Native Code Dependencies"

■ Section , "Application Libraries"

■ Section , "How to Export a Package"

■ Section , "How to Import a Package"

Native Code Dependencies
In some cases, you may create an application library that depends on native code
libraries that you cannot or may not choose to package as application libraries.

In this case, you can put native code libraries in the operating system path
(bootclasspath) of the Oracle Event Processing server when it is started, so that the
native code libraries can be loaded by library bundles that need to call this native code.

For more information, see:

■ Section , "Shared Application Dependencies"

■ "Configuring the Oracle Event Processing Server Boot Classpath" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing

Application Libraries
The Oracle Event Processing application library gives you a convenient location to
deploy shared libraries and gives you complete control over the order in which shared
libraries are deployed at Oracle Event Processing server start up time.

An application library is an OSGi bundle that contains a Java archive (JAR) of
compiled Java classes and any other required artifacts.

You can use application libraries for a variety of purposes such as drivers or foreign
stages (partial or complete Oracle Event Processing applications that are useful to
other downstream applications).

Although you can add a library to a project as a simple embedded JAR file, there are
advantages to using an application library, including:

■ Simplifying application assembly and maintenance activities such as deploying an
updated version of the library.

■ Encouraging re-use.

■ Reducing server disk space consumption.

You deploy application libraries to either of the following Oracle Event Processing
server directories:

■ Section , "Library Directory"

■ Section , "Library Extensions Directory"

Overview of Application Assembly and Deployment

23-4 Developer's Guide for Oracle Event Processing

■ Section , "Creating Application Libraries"

For more information, see:

■ Section , "Managing Application Libraries"

■ Section , "Application Dependencies"

■ Section , "Deployment and Deployment Order"

■ Section , "Referencing Foreign Stages in an EPN Assembly File"

■ Appendix A, "Additional Information about Spring and OSGi"

Library Directory
By default, the Oracle Event Processing server library directory is:

DOMAIN_DIR/servername/modules

Where:

■ DOMAIN_DIR: is the domain directory such as /oracle_cep/user_
projects/domains/mydomain.

■ servername: is the server instance, such as myserver.

For example:

/oracle_cep/user_projects/domains/mydomain/myserver/modules

The libraries in this directory are deployed after the components in the library
extensions directory but before any Oracle Event Processing applications.

If your library is a driver (such as a JDBC driver), you must put it in the library
extensions directory as Section , "Library Extensions Directory" describes.

To configure the root of the application library directory path, see Section , "How to
Define the Application Library Directory Using Oracle Event Processing IDE for
Eclipse".

Library Extensions Directory
By default, the Oracle Event Processing server library extensions directory is:

DOMAIN_DIR/servername/modules/ext

Where:

■ DOMAIN_DIR: is the domain directory such as /oracle_cep/user_
projects/domains/mydomain.

■ servername: is the server instance, such as myserver.

For example:

/oracle_cep/user_projects/domains/mydomain/myserver/modules/ext

The libraries in this directory are deployed first along with the Oracle Event
Processing server core modules.

If your library is a driver (such as a JDBC driver), you must put it in the library
extensions directory so that it is activated in the correct order. For example, to override
an older version with a newer version or to provide access to an alternative driver. For
more information, see "Configuring Access to a Different Database Driver or Driver

Overview of Application Assembly and Deployment

Assembling and Deploying Oracle Event Processing Applications 23-5

Version" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing.

If your library is not a driver, you may put it in the library directory as Section ,
"Library Directory" describes.

To configure the root of the application library extensions directory path, see Section ,
"How to Define the Application Library Directory Using Oracle Event Processing IDE
for Eclipse".

Creating Application Libraries
Oracle Event Processing provides a bundler.sh utility you can use to create an OSGi
bundle wrapper around an arbitrary Java Archive. The resultant bundle JAR may be
deployed to an OSGi container where the Java packages/classes found within the
bundle may be imported and utilized by other deployed bundles. An example use
case is the packaging of third-party JDBC drivers.

The utility reads the specified source JAR file and creates a target JAR file that includes
the content of the source JAR and a manifest with the appropriate bundle-related
entries specified. All Java packages found in the source archive will be exported by the
target bundle.

Optionally, a bundle activator can be generated that instantiates one or more classes
found within the JAR and registers each object as an OSGi service. This feature
provides the ability for component bundles to access and manipulate multiple
versions of specific factory classes at runtime.

If you wish to manually configure the activator implementation, you can use the
Oracle Event Processing IDE for Eclipse.

For more information, see:

■ Section , "How to Create an Application Library Using bundler.sh"

■ Section , "How to Create an Application Library Using Oracle Event Processing
IDE for Eclipse"

■ "How to Access a Database Driver Using an Application Library Built With
bundler.sh" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing

Deployment and Deployment Order
After you have assembled the application, you deploy it by making it known to the
Oracle Event Processing domain using the deployment tool appropriate for your
needs. For detailed instructions, see Section , "Deploying Oracle Event Processing
Applications."

The Oracle Event Processing server deploys components in the following order at
Oracle Event Processing server start up time:

1. Deploy libraries in the library extensions directory (DOMAIN_
DIR/servername/modules/ext directory).

2. Deploy libraries in the library directory (DOMAIN_DIR/servername/modules
directory).

3. Deploy Oracle Event Processing applications.

Assembling an Oracle Event Processing Application

23-6 Developer's Guide for Oracle Event Processing

The Oracle Event Processing server deploys libraries from both the library extensions
directory and library directory based on the lexical order of the library names. Lexical
ordering includes the relative directory name plus JAR file name.

For example:

■ modules/a.jar will start before modules/b.jar

■ modules/0/my.jar will start before module/my.jar since 0/my.jar comes before
my.jar in lexical order

Using this convention, you can control the order in which Oracle Event Processing
server deploys JAR files simply by organizing JAR files into appropriately named
subdirectories of either the library extensions directory or library directory.

Once the application is deployed to Oracle Event Processing, the configured adapters
immediately start listening for events for which they are configured, such as financial
data feeds and so on.

For more information, see Section , "Application Libraries".

Configuration History Management
When you deploy an application to the Oracle Event Processing server, the Oracle
Event Processing server creates a configuration history for the application. Any
configuration changes you make to rules or Oracle Event Processing high availability
adapter configuration are recorded in this history are recorded in this history. You can
view and roll-back (undo) these changes using the Oracle Event Processing Visualizer
or wlevs.Admin tool.

For more information, see:

■ "Configuration History Management" in the Oracle Fusion Middleware Visualizer
User's Guide for Oracle Event Processing

■ "Commands for Managing Configuration History" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

Assembling an Oracle Event Processing Application
Assembling an Oracle Event Processing application refers to bundling the artifacts that
make up the application into an OSGi bundle JAR file as
http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html describes.
These artifacts include:

■ compiled Java classes

■ Oracle Event Processing component configuration files that configure application
components (such as the processors or adapters)

■ EPN assembly file

■ MANIFEST.MF file

See Appendix A, "Additional Information about Spring and OSGi," for links to
reference and conceptual information about Spring and OSGi.

This section describes:

■ Section , "Assembling an Oracle Event Processing Application Using Oracle Event
Processing IDE for Eclipse"

■ Section , "Assembling an Oracle Event Processing Application Manually"

Assembling an Oracle Event Processing Application

Assembling and Deploying Oracle Event Processing Applications 23-7

■ Section , "Assembling Applications With Foreign Stages"

■ Section , "Assembling a Custom Adapter or Event Bean in Its Own Bundle"

Assembling an Oracle Event Processing Application Using Oracle Event Processing
IDE for Eclipse

You can use Oracle Event Processing IDE for Eclipse to easily assemble your Oracle
Event Processing application.

For more information, see:

■ Section , "Exporting Oracle Event Processing Projects"

■ Section , "Upgrading Projects"

■ Section , "Managing Libraries and Other Non-Class Files in Oracle Event
Processing Projects"

If your application depends on foreign stages, see Section , "Assembling Applications
With Foreign Stages".

Assembling an Oracle Event Processing Application Manually
Optionally, you can assemble your Oracle Event Processing application manually.

For simplicity, the following procedure creates a temporary directory that contains the
required artifacts, and then jars up the contents of this temporary directory. This is just
a suggestion and you are not required, of course, to assemble the application using this
method.

To assemble an Oracle Event Processing application manually:
1. Open a command window and set your environment as described in Section ,

"Setting Your Development Environment."

2. Create an empty directory, such as output:

prompt> mkdir output

3. Compile all application Java files into the output directory.

4. Create an output/META-INF/spring directory.

5. Copy the EPN assembly file that describes the components of your application
and how they are connected into the output/META-INF/spring directory.

See Section , "Creating EPN Assembly Files" for details about this file.

6. Create an output/META-INF/wlevs directory.

7. Copy the XML files that configure the components of your application (such as the
processors or adapters) into the output/META-INF/wlevs directory.

8. Create a MANIFEST.MF file that contains descriptive information about the bundle.

Note: See the HelloWorld example source directory for a sample
build.xml Ant file that performs many of the steps described below.
The build.xml file is located in ORACLE_CEP_HOME\ocep_
11.1\samples\source\applications\helloworld, where ORACLE_
CEP_HOME refers to the main Oracle Event Processing installation
directory, such as d:\oracle_cep.

Assembling an Oracle Event Processing Application

23-8 Developer's Guide for Oracle Event Processing

See Section , "Creating the MANIFEST.MF File."

9. If you need to access third-party JAR files from your Oracle Event Processing
application, see Section , "Accessing Third-Party JAR Files."

10. Create a JAR file that contains the contents of the output directory.

Be sure you specify the MANIFEST.MF file you created in the previous step rather
than the default manifest file.

You can name the JAR file anything you want. In the Oracle Event Processing
examples, the name of the JAR file is a combination of Java package name and
version, such as:

com.bea.wlevs.example.helloworld_1.0.0.0.jar

Consider using a similar naming convention to clarify which bundles are
deployed to the server.

See the Apache Ant documentation at
http://ant.apache.org/manual/Tasks/jar.html for information on using the
jar task or the Java SE documentation at
http://download.oracle.com/javase/6/docs/technotes/tools/windows/jar.ht
ml for information on using the jar command-line tool.

11. If your application depends on foreign stages, see Section , "Assembling
Applications With Foreign Stages".

Creating the MANIFEST.MF File
The structure and contents of the MANIFEST.MF file is specified by the OSGi
Framework. Although the value of many of the headers in the file is specific to your
application or business, many of the headers are required by Oracle Event Processing.

In particular, the MANIFEST.MF file defines the following:

■ Application name—Specified with the Bundle-Name header.

■ Symbolic application name—Specified with the Bundle-SymbolicName header.

Many of the Oracle Event Processing tools, such as the wlevs.Admin utility and
JMX subsystem, use the symbolic name of the bundle when referring to the
application.

■ Application version—Specified with the Bundle-Version header.

■ Imported packages—Specified with the Import-Package header.

Oracle Event Processing requires that you import the following packages at a
minimum:

Import-Package:
 com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.springframework.beans.factory;version="2.5.6",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",

Assembling an Oracle Event Processing Application

Assembling and Deploying Oracle Event Processing Applications 23-9

 org.springframework.beans.factory;version="2.5.6",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0"

If you have extended the configuration of an adapter, then you must also import
the following packages:

 javax.xml.bind;version="2.0",
 javax.xml.bind.annotation;version=2.0,
 javax.xml.bind.annotation.adapters;version=2.0,
 javax.xml.bind.attachment;version=2.0,
 javax.xml.bind.helpers;version=2.0,
 javax.xml.bind.util;version=2.0,
 com.bea.wlevs.configuration;version="11.1.1",
 com.bea.wlevs.configuration.application;version="11.1.1",
 com.sun.xml.bind.v2;version="2.0.2"

■ Exported packages—Specified with the Export-Package header. You should
specify this header only if you need to share one or more application classes with
other deployed applications. A typical example is sharing an event type JavaBean.

If possible, you should export packages that include only the interfaces, and not
the implementation classes themselves. If other applications are using the
exported classes, you will be unable to fully undeploy the application that is
exporting the classes.

Exported packages are server-wide, so be sure their names are unique across the
server.

The following complete MANIFEST.MF file is from the HelloWorld example, which
extends the configuration of its adapter:

Manifest-Version: 1.0
Archiver-Version:
Build-Jdk: 1.6.0_06
Extension-Name: example.helloworld
Specification-Title: 1.0.0.0
Specification-Vendor: Oracle.
Implementation-Vendor: Oracle.
Implementation-Title: example.helloworld
Implementation-Version: 1.0.0.0
Bundle-Version: 11.1.1.4_0
Bundle-ManifestVersion: 1
Bundle-Vendor: Oracle.
Bundle-Copyright: Copyright (c) 2006 by Oracle.
Import-Package: com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 net.sf.cglib.proxy,
 net.sf.cglib.core,
 net.sf.cglib.reflect,
 org.aopalliance.aop,
 org.springframework.aop.framework;version="2.5.6",
 org.springframework.aop;version="2.5.6",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",

Assembling an Oracle Event Processing Application

23-10 Developer's Guide for Oracle Event Processing

 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0",
 javax.xml.bind;version="2.0",
 javax.xml.bind.annotation;version=2.0,
 javax.xml.bind.annotation.adapters;version=2.0,
 javax.xml.bind.attachment;version=2.0,
 javax.xml.bind.helpers;version=2.0,
 javax.xml.bind.util;version=2.0,
 com.bea.wlevs.configuration;version="11.1.1",
 com.bea.wlevs.configuration.application;version="11.1.1",
 com.sun.xml.bind.v2;version="2.0.2"
Bundle-Name: example.helloworld
Bundle-Description: WLEvS example helloworld
Bundle-SymbolicName: helloworld

Accessing Third-Party JAR Files
When creating your Oracle Event Processing applications, you might need to access
legacy libraries within existing third-party JAR files. You can ensure access to this
legacy code using any of the following approaches:

■ Section , "Application Libraries"

■ Section , "Accessing Third-Party JAR Files Using Bundle-Classpath"

■ Section , "Accessing Third-Party JAR Files Using -Xbootclasspath"

Accessing Third-Party JAR Files Using Bundle-Classpath The recommended approach is to
package the third-party JAR files in your Oracle Event Processing application JAR file.
You can put the JAR files anywhere you want.

However, to ensure that your Oracle Event Processing application finds the classes in
the third-party JAR file, you must update the application classpath by adding the
Bundle-Classpath header to the MANIFEST.MF file. Set Bundle-Classpath to a
comma-separate list of the JAR file path names that should be searched for classes and
resources. Use a period (.) to specify the bundle itself. For example:

Bundle-Classpath: ., commons-logging.jar, myExcitingJar.jar,
myOtherExcitingJar.jar

If you need to access native libraries, you must also package them in your JAR file and
use the Bundle-NativeCode header of the MANIFEST.MF file to specify their location in
the JAR.

For more information, see Section , "How to Add a Standard JAR File to an Oracle
Event Processing Project".

Accessing Third-Party JAR Files Using -Xbootclasspath If the JAR files include libraries used
by all applications deployed to Oracle Event Processing, such as JDBC drivers, you can
add the JAR file to the server's boot classpath by specifying the -Xbootclasspath/a
option to the java command in the scripts used to start up an instance of the server.

Note: This approach gives you little control over the order in which
JAR files are loaded and it is possible that dependency conflicts may
occur. For this reason, Oracle recommends that you use the Oracle
Event Processing server application library approach instead. For
more information, see Section , "Application Libraries".

Assembling an Oracle Event Processing Application

Assembling and Deploying Oracle Event Processing Applications 23-11

The name of the server start script is startwlevs.cmd (Windows) or startwlevs.sh
(UNIX), and the script is located in the server directory of your domain directory. The
out-of-the-box sample domains are located in ORACLE_CEP_HOME/ocep_
11.1/samples/domains, and the user domains are located in ORACLE_CEP_HOME/user_
projects/domains, where ORACLE_CEP_HOME refers to the main Oracle Event
Processing installation directory, such as d:\oracle_cep.

Update the start script by adding the -Xbootclasspath/a option to the java command
that executes the wlevs_2.0.jar file. Set the -Xbootclasspath/a option to the full
pathname of the third-party JAR files you want to access system-wide.

For example, if you want all deployed applications to be able to access a JAR file called
e:\jars\myExcitingJAR.jar, update the java command in the start script as follows.
The updated section is shown in bold (in practice, the command should be on one
line):

%JAVA_HOME%\bin\java -Dwlevs.home=%USER_INSTALL_DIR% -Dbea.home=%BEA_HOME%
-Xbootclasspath/a:e:\jars\myExcitingJAR.jar
-jar "%USER_INSTALL_DIR%\bin\wlevs_2.0.jar" -disablesecurity %1 %2 %3 %4 %5 %6

Assembling Applications With Foreign Stages
When assembling applications that depend on foreign stages, be aware of classpath
dependencies. Consider the application dependency graph that Figure 23–1 shows.

Figure 23–1 Foreign Stage Dependency Graph

In this example, Application A depends on Application B, Application B depends on
Application C, and Application C depends on Application A. Application C declares
and exports an event type class for Java Bean event type MarketEvent. Applications A
and B import the MarketEvent class that Application C provides.

Note the following:

■ When you redeploy a foreign stage, you must redeploy all foreign stages that
depend on that application or foreign stage.

For example, if you redeploy Application B, you must also redeploy Application
A.

Note: This approach gives you little control over the order in which
JAR files are loaded and it is possible that dependency conflicts may
occur. For this reason, Oracle recommends that you use the Oracle
Event Processing server application library approach instead. For
more information, see Section , "Application Libraries".

Assembling an Oracle Event Processing Application

23-12 Developer's Guide for Oracle Event Processing

■ If there is a classpath dependency between one foreign stage and another, when
you deploy the foreign stage that declares and exports the shared class, you must
redeploy all foreign stages that import the shared class.

For example, if you redeploy Application C, you must also redeploy Application
A and B because Application A and B have a classpath dependency on
Application C (MarketEvent).

For more information, see:

■ Section , "Referencing Foreign Stages in an EPN Assembly File"

■ Section , "Deploying Oracle Event Processing Applications"

Assembling a Custom Adapter or Event Bean in Its Own Bundle
Typically, custom adapters and event beans are bundled in the same application JAR
file that contains the other components of the EPN, such as the processor, streams, and
business logic POJO. However, you might sometimes want to bundle the adapter in
its own JAR file and then reference the adapter in other application bundles.

This is useful if, for example, two different applications read data coming from the
same data feed provider and both applications use the same event types. In this case, it
makes sense to share a single adapter and event type implementations rather than
duplicate the implementation in two different applications.

There is no real difference in how you configure an adapter and an application that
uses it in separate bundles; the difference lies in where you put the configuration.

This section describes:

■ Section , "How to Assemble a Custom Adapter in its Own Bundle"

■ Section , "How to Assemble an Event Bean in its Own Bundle"

How to Assemble a Custom Adapter in its Own Bundle
You can assemble a custom adapter and its dependent classes in its own bundle.

To assemble a custom adapter in its own bundle:
1. Create an OSGI bundle that contains only the custom adapter Java class, the

custom adapter factory Java class, and optionally, the event type Java class into
which the custom adapter converts incoming data.

In this procedure, this bundle is called GlobalAdapter.

2. In the EPN assembly file of the GlobalAdapter bundle:

■ Register the adapter factory as an OSGI service as Section , "Creating a Custom
Adapter Factory" describes.

■ If you are also including the event type in the bundle, register it as Section ,
"Sharing Event Types Between Application Bundles" describes.

■ Do not declare the custom adapter component using the wlevs:adapter
element.

You will use this element in the EPN assembly file of the application bundle
that actually uses the adapter.

■ If you want to further configure the custom adapter, follow the usual
procedure as Section , "Configuring a Custom Adapter in a Component
Configuration File" describes.

Assembling an Oracle Event Processing Application

Assembling and Deploying Oracle Event Processing Applications 23-13

■ If you are including the event type in the GlobalAdapter bundle, export the
JavaBean class in the MANIFEST.MF file of the GlobalAdapter bundle using the
Export-Package header as Section , "How to Export a Package" describes.

3. Assemble and deploy the GlobalAdapter bundle as Section , "Deploying Oracle
Event Processing Applications" describes.

4. In the EPN assembly file of the application that is going to use the custom adapter,
declare the custom adapter component as Section , "Configuring a Custom
Adapter in an EPN Assembly File" describes.

You still use the provider attribute to specify the OSGI-registered adapter factory,
although in this case the OSGI registration happens in a different EPN assembly
file (of the GlobalAdapter bundle) from the EPN assembly file that actually uses
the adapter.

5. If you have exported the event type in the GlobalAdapter bundle, you must
explicitly import it into the application that is going to use it.

You do this by adding the package to the Import-Package header of the
MANIFEST.MF file of the application bundle as Section , "Creating the
MANIFEST.MF File" describes.

How to Assemble an Event Bean in its Own Bundle
You can assemble a custom event bean and its dependent classes in its own bundle.

To assemble a custom event bean in its own bundle:
1. Create an OSGI bundle that contains only the custom event bean Java class and the

custom event bean factory Java class.

In this procedure, this bundle is called GlobalEventBean.

2. In the EPN assembly file of the GlobalEventBean bundle:

■ Register the custom event bean factory as an OSGI service as Section ,
"Creating an Event Bean Factory" describes.

■ Do not declare the custom event bean component using the wlevs:event-bean
element.

You will use this element in the EPN assembly file of the application bundle
that actually uses the event-bean.

3. Assemble and deploy the GlobalEventBean bundle as Section , "Deploying Oracle
Event Processing Applications" describes.

4. In the EPN assembly file of the application that is going to use the custom event
bean, declare the custom event bean component as Section , "Creating an Event
Bean Factory" describes.

You still use the provider attribute to specify the OSGI-registered custom event
bean factory, although in this case the OSGI registration happens in a different
EPN assembly file (of the GlobalEventBean bundle) from the EPN assembly file
that actually uses the adapter.

5. If you have exported the event type in the GlobalEventBean bundle, you must
explicitly import it into the application that is going to use it.

You do this by adding the package to the Import-Package header of the
MANIFEST.MF file of the application bundle as Section , "Creating the
MANIFEST.MF File" describes.

Managing Application Libraries

23-14 Developer's Guide for Oracle Event Processing

Managing Application Libraries
The Oracle Event Processing application library gives you a convenient location to
deploy shared libraries and gives you complete control over the order in which shared
libraries are deployed at Oracle Event Processing server start up time.

This section describes how to manage an Oracle Event Processing server application
library, including:

■ Section , "How to Define the Application Library Directory Using Oracle Event
Processing IDE for Eclipse"

■ Section , "How to Create an Application Library Using bundler.sh"

■ Section , "How to Create an Application Library Using Oracle Event Processing
IDE for Eclipse"

■ Section , "How to Update an Application Library Using Oracle Event Processing
IDE for Eclipse"

■ Section , "How to View an Application Library Using the Oracle Event Processing
Visualizer"

For more information, see Section , "Application Libraries".

How to Define the Application Library Directory Using Oracle Event Processing IDE for
Eclipse

Before you can use the Oracle Event Processing server application library, you must
update your Oracle Event Processing IDE for Eclipse design time configuration with
the location of the application library directory.

For information on default application library configuration, see:

■ Section , "Library Directory"

■ Section , "Library Extensions Directory"

For more information, see Section , "Managing Application Libraries".

To define an application library directory using Oracle Event Processing IDE for
Eclipse:
1. Launch the Oracle Event Processing IDE for Eclipse.

2. Right-click the project and select Properties.

The Preferences dialog appears as shown in Figure 23–2.

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-15

Figure 23–2 Preferences Dialog: Application Library Path

3. Select Oracle Oracle Event Processing Application Library Path.

4. Specify the application library path as Table 23–1 describes.

How to Configure an Absolute Path
You can specify the application library path as an absolute file path. It may be more
convenient in a team environment to specify the application library path based on a
path variable as Section , "How to Extend a Path Variable" describes.

To configure an absolute path:
1. Click the Browse button to open a file system browser.

2. Use the file system browser to choose a directory.

3. Click OK.

Table 23–1 Oracle Event Processing Application LIbrary Path

Option Description

Use an absolute path Select this option to specify an absolute file path to the application library
directory.

See Section , "How to Configure an Absolute Path".

Extend a path variable Select this option to specify an application library path based on a path variable.

See Section , "How to Extend a Path Variable".

Note: The directory must reside within an Oracle Event Processing
server domain. For more information, see Section , "Creating Oracle
Event Processing Servers".

Managing Application Libraries

23-16 Developer's Guide for Oracle Event Processing

4. Click Apply.

5. Click OK.

How to Extend a Path Variable
You can specify the application library path by extending a path variable. This is the
most flexible approach and is appropriate for team environments. Alternatively, you
can specify the application library with an absolute path as Section , "How to
Configure an Absolute Path" describes.

To extend a path variable:
1. Click the Variable button.

The Select Path Variable dialog appears as Figure 23–3 shows.

Figure 23–3 Select Path Variable Dialog

2. Click New.

The New Variable dialog appears as Figure 23–4 shows.

Figure 23–4 New Variable Dialog

3. Configure the New Variable dialog as Table 23–2 describes.

Table 23–2 Oracle Event Processing Application LIbrary Path Variable

Option Description

Name Enter a name for the variable.

Location Click the Folder button to open a file system browser and choose the root directory to use as
the application library directory.

NOTE: The directory must reside within an Oracle Event Processing server domain. For more
information, see Section , "Creating Oracle Event Processing Servers"

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-17

4. Click OK.

The new variable appears in the Select Path Variable dialog as Figure 23–5 shows.

Figure 23–5 Select Path Variable: With Variable

5. Optionally, select the variable and click Extend.

The Variable Extension dialog appears as Figure 23–6 shows. This dialog shows
any directories below the root directory you specified for this variable.

Figure 23–6 Variable Extension Dialog

6. Select a sub-directory and click OK.

The application library path is specified relative to the path variable you defined
as Figure 23–7 shows.

Managing Application Libraries

23-18 Developer's Guide for Oracle Event Processing

Figure 23–7 Preferences Dialog: Application Library Path With Path Variable

7. Click Apply.

8. Click OK.

How to Create an Application Library Using bundler.sh
This procedure describes how to create an OSGi bundle using the bundler utility.

This is the preferred method. If you wish to manually configure the activator
implementation, see Section , "How to Create an Application Library Using Oracle
Event Processing IDE for Eclipse".

If you are creating an application library for a new JDBC driver, see "How to Access a
Database Driver Using an Application Library Built With bundler.sh" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

For more information, see Section , "Creating Application Libraries".

To create an application library using bundler.sh:
1. Set up your environment as described in Section , "Setting Your Development

Environment."

2. Execute the bundler.sh script to create an OSGi bundle containing your driver.

The bundler.sh script is located in the ORACLE_CEP_HOME/ocep_11.1/bin directory,
where ORACLE_CEP_HOME is the directory in which you installed the Oracle Event
Processing server.

Example 23–1 lists the bundler.sh command line options and Table 23–3 describes
them.

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-19

Example 23–1 bundler.sh Command Line Options

bundler -source JAR -name NAME -version VERSION
[-factory CLASS+] [-service INTERFACE+] [-fragmenthost HOST]
[-stagedir PATH] [-targetdir PATH]
[+import PACKAGE|REGEX+] [-imods REGEX;MODS+] [-import PACKAGE+]
[+export PACKAGE|REGEX+] [-emods REGEX;MODS+]
[-dimport PACKAGE+] [-explode] [-verbose]

Table 23–3 bundler.sh Command Line Options

Argument Description

-source JAR The path of the source JAR file to be bundled.

-name NAME The symbolic name of the bundle. The root of the target JAR file name is
derived from the name value.

-version VERSION The bundle version number. All exported packages are qualified with a
version attribute with this value. The target JAR file name contains the
version number.

-factory CLASS+ An optional argument that specifies a space-delimited list of one or more
factory classes that are to be instantiated and registered as OSGi services.
Each service is registered with the OSGi service registry with name
(-name) and version (-version) properties.

This argument is incompatible with the -fragmenthost argument.

-service INTERFACE+ An optional argument that specifies a space-delimited list of one or more
Java interfaces that are used as the object class of each factory object
service registration. If no interface names are specified, or the number of
interfaces specified does not match the number of factory classes, then
each factory object will be registered under the factory class name.

-fragmenthost HOST An optional argument indicating that the resultant bundle is a fragment
bundle and specifies the symbolic name of the host bundle.

This argument is incompatible with the -factory argument.

-stagedir PATH An optional argument that specifies where to write temporary files when
creating the target JAR file.

Default: ./bundler.tmp

-targetdir PATH An optional argument that specifies the location of the generated bundle
JAR file.

Default: current working directory (.).

+import PACKAGE|REGEX+ A space-delimited list of one or more packages or regular expressions that
select the packages to exclude from the manifest Import-Package attribute.

By default, all dependent packages will be imported (except java.*).

-imods REGEX;MODS+ The import modifiers will be applied to the packages matching regular
expression.

-import PACKAGE Additional packages to include on the manifest Import-Package attribute.

Note that any specified import modifiers will not be applied.

+export PACKAGE|REGEX+ A space-delimited list of one or more packages or regular expressions that
select the packages to exclude from the manifest Export-Package attribute.

By default, all bundle packages will be exported.

-emods REGEX;MODS+ The export modifiers will be applied to the packages matching regular
expression.

-dimport PACKAGE+ Packages to include on the manifest DynamicImport-Package attribute.

-explode This optional flag specifies that the content of the source JAR should be
exploded into the target JAR file.

By default, the source JAR is nested within the target JAR file and the
generated bundle manifest will contain an appropriate Bundle-Classpath
attribute.

-verbose An optional flag to enable verbose output.

Managing Application Libraries

23-20 Developer's Guide for Oracle Event Processing

Example 23–2 shows how to use the bundler.sh to create an OSGi bundle for an
Oracle JDBC driver.

Example 23–2 Using the Bundler Utility

bundler.sh \
-source C:\drivers\com.oracle.ojdbc14_11.2.0.jar \
-name oracle11g \
-version 11.2.0 \
-factory oracle.jdbc.xa.client.OracleXADataSource oracle.jdbc.OracleDriver \
-service javax.sql.XADataSource java.sql.Driver \
-targetdir C:\stage

The source JAR is an Oracle driver located in directory C:\drivers. The name of
the generated bundle JAR is the concatenation of the -name and -version
arguments (oracle10g_11.2.0.jar) and is created in the C:\stage directory. The
bundle JAR contains the files that Example 23–3 shows.

Example 23–3 Bundle JAR Contents

1465 Thu Jun 29 17:54:04 EDT 2006 META-INF/MANIFEST.MF
1540457 Thu May 11 00:37:46 EDT 2006 com.oracle.ojdbc14_11.2.0.jar

1700 Thu Jun 29 17:54:04 EDT 2006 com/bea/core/tools/bundler/Activator.class

The command line options specify that there are two factory classes that will be
instantiated and registered as an OSGi service when the bundle is activated, each
under a separate object class as Table 23–4 shows.

Each service registration will be made with a name property set to oracle11g and a
version property with a value of 11.2.0. Example 23–4 shows the Oracle Event
Processing server log messages showing the registration of the services.

Example 23–4 Service Registration Log Messages

...
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=11.2.0, name=oracle11g,
objectClass=[javax.sql.XADataSource], service.id=23 }
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=11.2.0, name=oracle11g,
objectClass=[java.sql.Driver], service.id=24 }
INFO: [Jun 29, 2006 5:54:18 PM] Bundle oracle11g STARTED
...

3. Copy the application library JAR to the appropriate Oracle Event Processing
server application library directory:

a. If your bundle is a driver, you must put it in the library extensions directory.

See Section , "Library Extensions Directory".

b. If your bundle is not a driver, you may put it in the library directory.

See Section , "Library Directory"

For more information, see Section , "Application Libraries".

4. Stop and start the Oracle Event Processing server.

Table 23–4 Factory Class and Service Interfaces

Factory Class Service Interface

oracle.jdbc.xa.client.OracleXADataSource javax.sql.XADataSource

oracle.jdbc.OracleDriver java.sql.Driver

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-21

See "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

How to Create an Application Library Using Oracle Event Processing IDE for Eclipse
This procedure describes how to create an OSGi bundle for your driver using the
Oracle Event Processing IDE for Eclipse and deploy it on the Oracle Event Processing
server.

This is the preferred method. If do not wish to manually configure the activator
implementation, see Section , "How to Create an Application Library Using
bundler.sh".

If you are creating an application library for a new JDBC driver, see "How to Access a
Database Driver Using an Application Library Built With Oracle Event Processing IDE
for Eclipse" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing.

To create an application library using Oracle Event Processing IDE for Eclipse:
1. Using the Oracle Event Processing IDE for Eclipse, create a new Oracle Event

Processing project.

For more information, Section , "Creating Oracle Event Processing Projects".

2. Right-click your project folder and select New > Folder.

3. Enter lib in the Folder name field and click Finish.

4. Outside of the Oracle Event Processing IDE for Eclipse, copy your JDBC JAR file
into the lib folder.

5. Inside the Oracle Event Processing IDE for Eclipse, right-click the lib folder and
select Refresh.

The JAR file appears in the lib folder as Figure 23–8 shows.

Figure 23–8 Oracle Event Processing IDE for Eclipse lib Directory

6. Right-click the src directory and select New > Class.

The Java Class dialog appears as Figure 23–9 shows.

Managing Application Libraries

23-22 Developer's Guide for Oracle Event Processing

Figure 23–9 New Java Class Dialog

7. Configure the New Java Class dialog as Table 23–5 shows.

Leave the other parameters at their default values.

8. Click Finish.

A new Java class is added to your project.

9. Edit the Java class to implement it as Example 23–5 shows.

Be sure to set the NAME and VERSION so that they supersede the existing version of
JDBC driver. In this example, the existing version is:

■ oracle10g

■ 10.0.0

To supersede the existing version, the MyActivator class sets these values to:

■ oracle11g

■ 11.2.0

Example 23–5 MyActivator Class Implementation

package com.foo;

Table 23–5 New Java Class Parameters

Parameter Description

Package The package name. For example, com.foo.

Name The name of the class. For example, MyActivator.

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-23

import java.util.Dictionary;
import java.util.Properties;

import javax.sql.XADataSource;
import java.sql.Driver;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

public class MyActivator implements BundleActivator {

private static final String NAME="oracle11g";
private static final String VERSION="11.2.0";

private String[] factories =
{"oracle.jdbc.xa.client.OracleXADataSource","oracle.jdbc.OracleDriver"};
private String[] interfaces= {"javax.sql.XADataSource","java.sql.Driver"};
private ServiceRegistration[] serviceRegistrations = new

ServiceRegistration[factories.length];

public void start(BundleContext bc) throws Exception {
Dictionary props = new Properties();
props.put("name", NAME);
props.put("version", VERSION);
for (int i=0; i<factories.length; i++) {
Object svc = bc.getBundle().loadClass(factories[i]).newInstance();
serviceRegistrations[i] = bc.registerService(interfaces[i], svc, props);

}
}

public void stop(BundleContext bc) throws Exception {
for (int i=0; i<serviceRegistrations.length; i++) {
serviceRegistrations[i].unregister();

}
}

}

10. Right-click the META-INF/MANIFEST.MF file and select Open With > Plug-in
Manifest Editor.

The Manifest Editor appears as Figure 23–10 shows.

Managing Application Libraries

23-24 Developer's Guide for Oracle Event Processing

Figure 23–10 Manifest Editor: Overview Tab

11. Click the Runtime tab.

The Runtime tab appears as Figure 23–11 shows.

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-25

Figure 23–11 Manifest Editor: Runtime Tab

12. In the Classpath pane, click Add.

The JAR Selection dialog appears as Figure 23–12 shows.

Figure 23–12 JAR Selection Dialog

13. Expand the lib directory and select your database driver JAR file.

Managing Application Libraries

23-26 Developer's Guide for Oracle Event Processing

14. Click OK.

15. Click the Dependencies tab.

The Dependencies tab appears as Figure 23–13 shows.

Figure 23–13 Manifest Editor: Dependencies Tab

16. In the Imported Packages pane, click Add.

The Package Selection dialog appears as Figure 23–14 shows.

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-27

Figure 23–14 Package Selection Dialog

17. In the Exported Packages field, enter org.osgi.framework.

The list box shows all the packages with that prefix as Figure 23–14 shows.

18. Select org.osgi.framework in the list box and click OK.

19. Click the MANIFEST.MF tab.

The MANIFEST.MF tab appears as Figure 23–15 shows.

Managing Application Libraries

23-28 Developer's Guide for Oracle Event Processing

Figure 23–15 Manifest Editor

20. Un-JAR your JAR to a temporary directory as Example 23–6 shows.

Example 23–6 Un-JAR the Database Driver

$ pwd
/tmp
$ ls com.*
com.bea.oracle.ojdbc6_1.0.0.0_11-1-0-7.jar
$ mkdir driver
$ cd driver
$ jar -xvf ../com.bea.oracle.ojdbc6_1.0.0.0_11-1-0-7.jar
$ ls
META-INF oracle
$ cd META-INF
$ ls
MANIFEST.MF services

21. Open your JAR MANIFEST.MF file and copy its Export-Package entry and paste it
into the Manifest Editor as Example 23–7 shows.

Example 23–7 Adding Export-Package to the Manifest Editor

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-29

Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7,oracle.core.l
 vf;version=1.0.0.0_11-1-0-7,oracle.jdbc;version=1.0.0.0_11-1-0-7,orac
 le.jdbc.aq;version=1.0.0.0_11-1-0-7,oracle.jdbc.connector;version=1.0
 .0.0_11-1-0-7,oracle.jdbc.dcn;version=1.0.0.0_11-1-0-7,oracle.jdbc.dr
 iver;version=1.0.0.0_11-1-0-7,oracle.jdbc.internal;version=1.0.0.0_11
 -1-0-7,oracle.jdbc.oci;version=1.0.0.0_11-1-0-7,oracle.jdbc.oracore;v
 ersion=1.0.0.0_11-1-0-7,oracle.jdbc.pool;version=1.0.0.0_11-1-0-7,ora
 cle.jdbc.rowset;version=1.0.0.0_11-1-0-7,oracle.jdbc.util;version=1.0
 .0.0_11-1-0-7,oracle.jdbc.xa;version=1.0.0.0_11-1-0-7,oracle.jdbc.xa.
 client;version=1.0.0.0_11-1-0-7,oracle.jpub.runtime;version=1.0.0.0_1
 1-1-0-7,oracle.net.ano;version=1.0.0.0_11-1-0-7,oracle.net.aso;versio
 n=1.0.0.0_11-1-0-7,oracle.net.jndi;version=1.0.0.0_11-1-0-7,oracle.ne
 t.ns;version=1.0.0.0_11-1-0-7,oracle.net.nt;version=1.0.0.0_11-1-0-7,
 oracle.net.resolver;version=1.0.0.0_11-1-0-7,oracle.security.o3logon;
 version=1.0.0.0_11-1-0-7,oracle.security.o5logon;version=1.0.0.0_11-1
 -0-7,oracle.sql;version=1.0.0.0_11-1-0-7,oracle.sql.converter;version
 =1.0.0.0_11-1-0-7

22. Add a Bundle-Activator element to the Manifest Editor as Example 23–8 shows.

The value of the Bundle-Activator is the fully qualified class name of your
Activator class.

Example 23–8 Adding a Bundle-Activator Element to the Manifest Editor

Manifest-Version: 1.0
Bundle-Activator: com.foo.MyActivator
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7, ...
...

23. Add a DynamicImport-Package element to the Manifest Editor as Example 23–9
shows.

Example 23–9 Adding a DynamicImport-Package Element to the Manifest Editor

Manifest-Version: 1.0
Bundle-Activator: com.foo.MyActivator
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
DynamicImport-Package: *
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7, ...
...

24. Export your Oracle Event Processing application to a JAR file.

Managing Application Libraries

23-30 Developer's Guide for Oracle Event Processing

For more information, see Section , "How to Export an Oracle Event Processing
Project".

25. Copy the bundler JAR to the appropriate Oracle Event Processing server
application library directory:

a. If your bundle is a driver, you must put it in the library extensions directory.

See Section , "Library Extensions Directory".

b. If your bundle is not a driver, you may put it in the library directory.

See Section , "Library Directory"

For more information, see Section , "Application Libraries".

26. Stop and start the Oracle Event Processing server.

See "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

How to Update an Application Library Using Oracle Event Processing IDE for Eclipse
When you add, replace, or remove a JAR file in the application library extension or
application library directory or their user-defined subdirectories, you must make this
change in two places:

■ On the local Oracle Event Processing server you used to create a server runtime in
the Oracle Event Processing IDE for Eclipse.

■ On the production Oracle Event Processing server to which you deploy dependent
applications.

These changes need not be performed simultaneously: you must make the change to
the local Oracle Event Processing server before making code changes to projects that
depend on the application library change; you must make the change to the
production Oracle Event Processing server before you deploy applications that depend
on the application library change.

For more information, see Section , "Managing Application Libraries".

To update an application library using Oracle Event Processing IDE for Eclipse:
1. Add a new or revised bundle to the application library extension or application

library directory on the production Oracle Event Processing server.

This is the server to which you will deploy applications that depend on this
application library.

To control library deployment order, organize your libraries in appropriately
named subdirectories.

For more information, see:

■ Section , "Library Extensions Directory"

■ Section , "Library Directory"

■ Section , "Deployment and Deployment Order"

2. Stop and start the production Oracle Event Processing server.

The Oracle Event Processing server refreshes itself from the updated application
library extension or application library directory.

For more information, see:

Managing Application Libraries

Assembling and Deploying Oracle Event Processing Applications 23-31

■ "Starting and Stopping an Oracle Event Processing Server in a
Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's
Guide for Oracle Event Processing

■ "Starting and Stopping an Oracle Event Processing Server in a Multi-Server
Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing

3. Add the same new or revised bundle to the application library extension or
application library directory on your Oracle Event Processing IDE for Eclipse
targeted runtime Oracle Event Processing server.

4. Start the Oracle Event Processing IDE for Eclipse.

5. Right click a project and select Refresh Targeted Runtimes.

The Oracle Event Processing IDE for Eclipse refreshes this project from the
updated application library extension or application library directory on your
Oracle Event Processing IDE for Eclipse targeted runtime Oracle Event Processing
server.

6. If necessary, update your application’s dependencies.

For example, if you added a new bundle or changed the version of an existing
bundle.

For more information, see Section , "Application Dependencies".

7. Assemble and deploy your application to the production Oracle Event Processing
server.

For more information, see Section , "Deploying Oracle Event Processing
Applications".

The dependencies you defined for this application in the Oracle Event Processing
IDE for Eclipse at development time will be satisfied by the components you
installed in the application library of your production Oracle Event Processing
server at runtime.

How to View an Application Library Using the Oracle Event Processing Visualizer
Using the Oracle Event Processing Visualizer, you can view the application libraries
deployed to the Oracle Event Processing server.

You can view libraries from both the library extensions directory and libraries
directory.

For more information, see:

■ "How to View the Application Libraries Deployed to an Oracle Event Processing
Server" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing

■ Section , "Library Extensions Directory"

■ Section , "Library Directory"

Note: You cannot deploy an application library to an Oracle Event
Processing server using the Oracle Event Processing Visualizer. You
may only deploy Oracle Event Processing applications to an Oracle
Event Processing server using the Oracle Event Processing Visualizer.

Managing Log Message Catalogs

23-32 Developer's Guide for Oracle Event Processing

■ Section , "Managing Application Libraries"

Managing Log Message Catalogs
This section describes how to manage log message catalogs that you can use to localize
an Oracle Event Processing application, including:

■ Section , "Using Message Catalogs With Oracle Event Processing Server"

■ Section , "How to Parse a Message Catalog to Generate Logger and TextFormatter
Classes for Localization"

For more information, see:

■ "Configuring Logging and Debugging for Oracle Event Processing" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing

■ Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

■ Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

Using Message Catalogs With Oracle Event Processing Server
A message catalog is a single XML file that contains a collection of text messages, with
each message indexed by a unique identifier. You compile these XML files into classes
using weblogic.i18ngen during the build process. (See weblogic.i18ngen Utility for
more information). The methods of the resulting classes are the objects used to log
messages at runtime.

Message catalogs support multiple locales or languages. For a specific message catalog
there is exactly one default version, known as the top-level catalog, which contains the
English version of the messages. Then there are corresponding locale-specific catalogs,
one for each additional supported locale.

The top-level catalog (English version) includes all the information necessary to define
the message. The locale-specific catalogs contain only the message ID, the date
changed, and the translation of the message for the specific locale.

The message catalog files are defined by one of the following XML document type
definition (DTD) files:

■ msgcat.dtd - Describes the syntax of top-level, default catalogs.

■ l10n_msgcat.dtd - Describes the syntax of locale-specific catalogs.

The DTDs are stored in ORACLE_CEP_HOEM/modules/com.bea.core.i18n.generator_
1.4.0.0.jar.

You can create a single log message catalog for all logging requirements, or create
smaller catalogs based on a subsystem or Java package. Oracle recommends using
multiple subsystem catalogs so you can focus on specific portions of the log during
viewing.

For simple text catalogs, we recommend creating a single catalog for each utility being
internationalized

This section describes:

■ Section , "Message Catalog Hierarchy"

■ Section , "Guidelines for Naming Message Catalogs"

■ Section , "Using Message Arguments"

Managing Log Message Catalogs

Assembling and Deploying Oracle Event Processing Applications 23-33

■ Section , "Message Catalog Formats"

■ Section , "Message Catalog Localization"

For more information, see:

■ Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

■ Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

Message Catalog Hierarchy
All messages must be defined in the default, top-level catalog.

Catalogs that provide different localizations of the base catalogs are defined in msgcat
subdirectories named for the locale (for example, msgcat/de for Germany). You might
have a top-level catalog named mycat.xml, and a German translation of it called
..de/mycat.xml. Typically the top-level catalog is English. However, English is not
required for any catalogs.

Locale designations (for example, de) also have a hierarchy as defined in the
java.util.Locale documentation. A locale can include a language, country, and variant.
Language is the most common locale designation. Language can be extended with a
country code. For instance, en\US, indicates American English. The name of the
associated catalog is ..en\US\mycat.xml. Variants are vendor or browser-specific and
are used to introduce minor differences (for example, collation sequences) between
two or more locales defined by either language or country.

Guidelines for Naming Message Catalogs
Because the name of a message catalog file (without the .xml extension) is used to
generate runtime class and property names, you should choose the name carefully.

Follow these guidelines for naming message catalogs:

■ Do not choose a message catalog name that conflicts with the names of existing
classes in the target package for which you are creating the message catalog.

■ The message catalog name should only contain characters that are allowed in class
names.

■ Follow class naming standards.

For example, the resulting class names for a catalog named Xyz.xml are
XyzLogLocalizer and XyzLogger.

The following considerations also apply to message catalog files:

■ Message IDs are generally six-character strings with leading zeros. Some interfaces
also support integer representations.

■ Java lets you group classes into a collection called a package. Oracle recommends
that a package name be consistent with the name of the subsystem in which a
particular catalog resides. Consistent naming makes OSGi imports easier to define.

■ The log Localizer "classes" are actually ResourceBundle property files.

Note: This only applies to log message catalogs. Simple text catalogs
can have any string value.

Managing Log Message Catalogs

23-34 Developer's Guide for Oracle Event Processing

Using Message Arguments
The message body, message detail, cause, and action sections of a log message can
include message arguments, as described by java.text.MessageFormat. Make sure
your message contents conform to the patterns specified by
java.text.MessageFormat. Only the message body section in a simple text message
can include arguments. Arguments are values that can be dynamically set at runtime.
These values are passed to routines, such as printing out a message. A message can
support up to 10 arguments, numbered 0-9. You can include any subset of these
arguments in any text section of the message definition (Message Body, Message
Detail, Probable Cause), although the message body must include all of the arguments.
You insert message arguments into a message definition during development, and
these arguments are replaced by the appropriate message content at runtime when the
message is logged.

The following excerpt from an XML log message definition shows how you can use
message arguments. The argument number must correspond to one of the arguments
specified in the method attribute. Specifically, {0} with the first argument, {1} with the
second, and so on. In Example 23–10, {0} represents the file that cannot be opened,
while {1} represents the file that will be opened in its place.

Example 23–10 Message Arguments

<messagebody>Unable to open file, {0}. Opening {1}. All arguments must be in
body.</messagebody>

<messagedetail> File, {0} does not exist. The server will restore the file
contents from {1}, resulting in the use of default values for all future
requests. </messagedetail>

<cause>The file was deleted</cause>

<action>If this error repeats then investigate unauthorized access to the
file system.</action>

An example of a method attribute is as follows:

-method="logNoFile(String name, String path)"

The message example in Example 23–10 expects two arguments, {0} and {1}:

■ Both are used in the <messagebody>

■ Both are used in the <messagedetail>

■ Neither is used in <cause> or <action>

In addition, the arguments are expected to be of String type, or representable as a
String type. Numeric data is represented as {n,number}. Dates are supported as
{n,date}. You must assign a severity level for log messages. Log messages are
generated through the generated Logger methods, as defined by the method attribute.

Note: A message can support up to 10 arguments, numbered 0-9.
You can include any subset of these arguments in any text section of
the message definition (message detail, cause, action), although the
message body must include all of the arguments

Managing Log Message Catalogs

Assembling and Deploying Oracle Event Processing Applications 23-35

Message Catalog Formats
The catalog format for top-level and locale-specific catalog files is slightly different.
The top-level catalogs define the textual messages for the base locale (by default, this is
the English language). Locale-specific catalogs (for example, those translated to
Spanish) only provide translations of text defined in the top-level version. Log
message catalogs are defined differently from simple text catalogs.

Log Message Catalog Example 23–11 shows a log message catalog, MyUtilLog.xml,
containing one log message. This log message illustrates the usage of the messagebody,
messagedetail, cause, and action elements.

Example 23–11 Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100"
<log_message
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)"
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</log_message>

</message_catalog>

For more information, see Appendix G, "Schema Reference: Message Catalog
msgcat.dtd".

Simple Text Catalog Example 23–12 shows a simple text catalog, MyUtilLabels.xml, with
one simple text definition.

Example 23–12 Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"

"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"

Managing Log Message Catalogs

23-36 Developer's Guide for Oracle Event Processing

version="1.0"
<message>
messageid="FileMenuTitle"
<messagebody>
File

</messagebody>
</message>

</message_catalog>

For more information, see Appendix G, "Schema Reference: Message Catalog
msgcat.dtd".

Locale-Specific Catalog Example 23–13 shows a French translation of a message that is
available in ..\msgcat\fr\MyUtilLabels.xml.

Example 23–13 Locale-Specific Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<locale_message_catalog
l10n_package="programs.utils"
subsystem="MYUTIL"
version="1.0">
<message>
<messageid="FileMenuTitle">
<messagebody> Fichier </messagebody>

</message>
</locale_message_catalog>

When entering text in the messagebody, messagedetail, cause, and action elements,
you must use a tool that generates valid Unicode Transformation Format-8 (UTF-8)
characters, and have appropriate keyboard mappings installed. UTF-8 is an efficient
encoding of Unicode character-strings that optimizes the encoding ASCII characters.
Message catalogs always use UTF-8 encoding.

For more information, see Appendix H, "Schema Reference: Locale Message Catalog
l10n_msgcat.dtd".

Message Catalog Localization
Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes
(for example, ja for Japanese and fr for French). You can find supported language
codes in the java.util.Locale Javadoc.

Variations to language codes are achievable through the use of uppercase, two-letter
ISO 3166 country codes and variants, each of which are subordinate to the language
code. The generic syntax is lang\country\variant.

For example, zh is the language code for Chinese. CN is a country code for simplified
Chinese, whereas TW is the country code for traditional Chinese. Therefore zh\CN and
zh\TW are two distinct locales for Chinese.

Variants are of use when, for instance, there is a functional difference in platform
vendor handling of specific locales. Examples of vendor variants are WIN, MAC, and
POSIX. There may be two variants used to further qualify the locale. In this case, the
variants are separated with an underscore (for example, Traditional_Mac as opposed
to Modern_MAC).

Note: Language, country, and variants are all case sensitive.

Managing Log Message Catalogs

Assembling and Deploying Oracle Event Processing Applications 23-37

A fully-qualified locale would look like zh\TW\WIN, identifying traditional Chinese on
a Win32 platform.

Message catalogs to support the above locale would involve the following files:

■ *.xml - default catalogs

■ \zh*.xml - Chinese localizations

■ \zh\TW*.xml - Traditional Chinese localizations

■ \zh\TW\WIN*.xml - Traditional Chinese localizations for Win32 code sets

Specific localizations do not need to cover all messages defined in parent localizations.

How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for
Localization

After you create your message catalog XML file, you can use the weblogic.i18ngen
utility to create Logger and TextFormatter classes.

use the weblogic.i18ngen utility to parse message catalogs (XML files) to produce
Logger and TextFormatter classes used for localizing the text in log messages. The
utility creates or updates the i18n_user.properties properties file, which is used to
load the message ID lookup class hashtable weblogic.i18n.L10nLookup.

Any errors, warnings, or informational messages are sent to stderr.

In order for user catalogs to be recognized, the i18n_user.properties file must reside
in a directory identified in the Oracle Event Processing server classpath.

Oracle recommends that the i18n_user.properties file reside in the Oracle Event
Processing server classpath. If the i18n_user.properties file is in targetdirectory,
then targetdirectory should be in the Oracle Event Processing server classpath.

To parse a message catalog to generate Logger and TextFormatter classes:
1. Create your message catalog XML file.

See Section , "Using Message Catalogs With Oracle Event Processing Server".

2. Set up your development environment.

See Section , "Setting Your Development Environment."

3. Execute the weblogic.i18ngen utility using the following syntax:

java weblogic.i18ngen [options] [filelist]

Where:

■ options: see Table 23–6.

■ filelist: Process the files and directories in this list of files. If directories are
listed, the command processes all XML files in the listed directories. The
names of all files must include an XML suffix. All files must conform to the
msgcat.dtd syntax. weblogic.i18ngen prints the fully-qualified list of names
(Java source) to stdout for those files actually generated.

Table 23–6 weblogic.i18ngen Utility Options

Option Description

-build Generates all necessary files and compiles them.

The -build option combines the -i18n, -l10n, -keepgenerated, and -compile
options.

Deploying Oracle Event Processing Applications

23-38 Developer's Guide for Oracle Event Processing

4. Translate your log messages and generate the required localized resource bundles.

5. Ensure that the i18n_user.properties file is in the Oracle Event Processing server
classpath.

6. Import the following packages in your Oracle Event Processing application:

■ weblogic.i18n.logging

■ weblogic.logging

7. Assemble and deploy your application, including your log message resource
bundles.

Deploying Oracle Event Processing Applications
After you assemble your Oracle Event Processing application, you deploy it to an
Oracle Event Processing server domain.

This section describes:

■ Section , "How to Deploy an Oracle Event Processing Application Using Oracle
Event Processing IDE for Eclipse"

■ Section , "How to Deploy an Oracle Event Processing Application Using Oracle
Event Processing Visualizer"

■ Section , "How to Deploy an Oracle Event Processing Application Using the
Deployer Utility"

-d targetdirectory Specifies the root directory to which generated Java source files are targeted.
User catalog properties are placed in i18n_user.properties, relative to the
designated targetdirectory. Files are placed in appropriate directories based
on the i18n_package and l10n_package values in the corresponding message
catalog. The default target directory is the current directory. This directory is
created as necessary.

If this argument is omitted, all classes are generated in the current directory,
without regard to any class hierarchy described in the message catalog.

-n Parse and validate, but do not generate classes.

-keepgenerated Keep generated Java source (located in the same directory as the class files).

-ignore Ignore errors.

-i18n Generates internationalizers (for example, Loggers and TextFormatters).

-l10n Generates localizers (for example, LogLocalizers and TextLocalizers).

-compile Compiles generated Java files using the current CLASSPATH. The resulting
classes are placed in the directory identified by the -d option. The resulting
classes are placed in the same directory as the source.

Errors detected during compilation generally result in no class files or
properties file being created. i18ngen exits with a bad exit status.

-nobuild Parse and validate only.

-debug Debugging mode.

-dates Causes weblogic.i18ngen to update message timestamps in the catalog. If the
catalog is writable and timestamps have been updated, the catalog is rewritten.

Note: Utilities can be run from any directory, but if files are listed on
the command line, then their path is relative to the current directory.

Table 23–6 (Cont.) weblogic.i18ngen Utility Options

Option Description

Deploying Oracle Event Processing Applications

Assembling and Deploying Oracle Event Processing Applications 23-39

For more information, see:

■ "Deploying an Application to an Oracle Event Processing Standalone-Server
Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing

■ "Deploying an Oracle Event Processing Application to a Multi-Server Domain" in
the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

How to Deploy an Oracle Event Processing Application Using Oracle Event Processing
IDE for Eclipse

You can deploy an Oracle Event Processing application using Oracle Event Processing
IDE for Eclipse.

Using the Oracle Event Processing IDE for Eclipse, you can deploy an application to
either a stand-alone or multi-server domain.

To deploy an Oracle Event Processing application using Oracle Event
Processing IDE for Eclipse:
1. Assemble your Oracle Event Processing application.

See Section , "Assembling an Oracle Event Processing Application."

2. Use the Oracle Event Processing IDE for Eclipse to deploy your application.

See Section , "How to Deploy an Application to an Oracle Event Processing
Server".

How to Deploy an Oracle Event Processing Application Using Oracle Event Processing
Visualizer

The simplest way to deploy an Oracle Event Processing application to an Oracle Event
Processing server domain is to use the Oracle Event Processing Visualizer.

Using the Oracle Event Processing Visualizer, you can deploy an application to either
a stand-alone or multi-server domain.

To deploy an Oracle Event Processing application using Oracle Event
Processing Visualizer:
1. Assemble your Oracle Event Processing application.

See Section , "Assembling an Oracle Event Processing Application."

2. Start the Oracle Event Processing Visualizer.

See Section , "How to Start the Oracle Event Processing Visualizer from Oracle
Event Processing IDE for Eclipse".

Note: If you are using foreign stages, beware of the rules governing
deployment and redeployment of dependent stages as Section ,
"Assembling Applications With Foreign Stages" describes.

Note: If you are using foreign stages, beware of the rules governing
deployment and redeployment of dependent stages as Section ,
"Assembling Applications With Foreign Stages" describes.

Deploying Oracle Event Processing Applications

23-40 Developer's Guide for Oracle Event Processing

3. Use the Oracle Event Processing Visualizer to deploy your application.

See "Deploying an Application" in the Oracle Fusion Middleware Visualizer User's
Guide for Oracle Event Processing.

How to Deploy an Oracle Event Processing Application Using the Deployer Utility
The following procedure describes how to deploy an application to Oracle Event
Processing using the Deployer command-line utility.

Using the Deployer, you can deploy an application to either a stand-alone or
multi-server domain.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

To deploy an Oracle Event Processing application using the Deployer utility:
1. Assemble your Oracle Event Processing application.

See Section , "Assembling an Oracle Event Processing Application."

2. Open a command window and set your environment as described in Section ,
"Setting Your Development Environment."

3. Update your CLASSPATH variable to include the wlevsdeploy.jar JAR file, located
in the ORACLE_CEP_HOME/ocep_11.1/bin directory where, ORACLE_CEP_HOME refers
to the main Oracle Event Processing installation directory, such as /oracle_cep.

4. Be sure you have configured Jetty for the Oracle Event Processing instance to
which you are deploying your application.

For more information, see "Configuring Jetty for Oracle Event Processing" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

5. In the command window, run the Deployer utility using the following syntax to
install your application (in practice, the command should be on one line):

prompt> java -jar wlevsdeploy.jar -url http://host:port/wlevsdeployer
-user user -password password -install application_jar_file

where

■ host refers to the hostname of the computer on which Oracle Event Processing
is running.

■ port refers to the port number to which Oracle Event Processing listens;
default value is 9002.

This port is specified in the DOMAIN_DIR/config/config.xml file that describes
your Oracle Event Processing domain, where DOMAIN_DIR refers to your
domain directory.

Note: If you are using foreign stages, beware of the rules governing
deployment and redeployment of dependent stages as Section ,
"Assembling Applications With Foreign Stages" describes.

Note: If you are running the Deployer on a remote computer, see
"Running the Deployer Utility Remotely" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing.

Deploying Oracle Event Processing Applications

Assembling and Deploying Oracle Event Processing Applications 23-41

The port number is the value of the <Port> child element of the <Netio>
element:

<Netio>
<Name>NetIO</Name>
<Port>9002</Port>

</Netio>

■ user refers to the username of the Oracle Event Processing administrator.

■ password refers to the password of the Oracle Event Processing administrator.

■ application_jar_file refers to your application JAR file, assembled into an
OSGi bundle as described in Section , "Assembling an Oracle Event Processing
Application." This file must be located on the same computer from which you
execute the Deployer utility.

For example, if Oracle Event Processing is running on host ariel, listening on
port 9002, username and password of the administrator is wlevs/wlevs, and
your application JAR file is called myapp_1.0.0.0.jar and is located in the
/applications directory, then the command is (in practice, the command
should be on one line):

prompt> java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer
-user wlevs -password wlevs -install /applications/myapp_1.0.0.0.jar

After the application JAR file has been successfully installed and all initialization
tasks completed, Oracle Event Processing automatically starts the application and
the adapter components immediately start listening for incoming events.

The Deployer utility provides additional options to resume, suspend, update, and
uninstall an application JAR file, as well as deploy an application to a specified
group of a multi-server domain. For more information, see "Deployer
Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Event Processing.

Oracle Event Processing uses the deployments.xml file to internally maintain its
list of deployed application OSGi bundles. This file is located in the DOMAIN_
DIR/servername directory, where DOMAIN_DIR refers to the main domain directory
corresponding to the server instance to which you are deploying your application
and servername refers to the actual server. See Appendix , "Deployment Schema
deployment.xsd" for information about this file. This information is provided for
your information only; Oracle does not recommend updating the
deployments.xml file manually.

Note: You may only deploy to a group if the server is part of a
multi-server domain (that is, if clustering is enabled). You may not
deploy to a group if the server is part of a standalone-server domain
(that is, if clustering is disabled). For more information, see "Overview
of Oracle Event Processing Multi-Server Domain Administration" in
the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing.

Deploying Oracle Event Processing Applications

23-42 Developer's Guide for Oracle Event Processing

24

Developing Applications for High Availability 24-1

24Developing Applications for High Availability

[25] This chapter introduces Oracle Event Processing components and design patterns that
you can use to increase the availability of your Oracle Event Processing applications,
along with how to configure high availability for your Oracle Event Processing
application to provide the quality of service you require.

This chapter includes the following sections:

■ Understanding High Availability

■ Configuring High Availability

Understanding High Availability
This section introduces Oracle Event Processing components and design patterns that
you can use to increase the availability of your Oracle Event Processing applications.

This section includes the following sections:

■ Section , "High Availability Architecture"

■ Section , "Choosing a Quality of Service"

■ Section , "Designing an Oracle Event Processing Application for High Availability"

High Availability Architecture
Like any computing resource, Oracle Event Processing servers can be subject to both
hardware and software faults that can lead to data- or service-loss. Oracle Event
Processing high availability options seek to mitigate both the likelihood and the
impact of such faults.

Oracle Event Processing supports an active-standby high availability architecture. This
approach has the advantages of high performance, simplicity, and short failover time.

An Oracle Event Processing application that needs to be highly available is deployed
to a group of two or more Oracle Event Processing server instances running in an
Oracle Event Processing multi-server domain. Oracle Event Processing will
automatically choose one server in the group to be the active primary. The remaining
servers become active secondaries.

The primary and secondary servers are all configured to receive the same input events
and process them in parallel but only the primary server outputs events to the Oracle
Event Processing application client. Depending on the quality of service you choose,
the secondary servers buffer their output events using in-memory queues and the
primary server keeps the secondary servers up to date with which events the primary
has already output.

Understanding High Availability

24-2 Developer's Guide for Oracle Event Processing

Figure 24–1 shows a typical configuration.

Figure 24–1 Oracle Event Processing High Availability: Primary and Secondary Servers

This section describes:

■ Section , "High Availability Lifecycle and Failover"

■ Section , "Deployment Group and Notification Group"

■ Section , "High Availability Components"

■ Section , "High Availability and Scalability"

■ Section , "High Availability and Oracle Coherence"

High Availability Lifecycle and Failover
Figure 24–2 shows a state diagram for the Oracle Event Processing high availability
lifecycle. In this diagram, the state names (SECONDARY, BECOMING_PRIMARY, and
PRIMARY) correspond to the Oracle Event Processing high availability adapter
RuntimeMBean method getState return values. These states are specific to Oracle Event
Processing.

Figure 24–2 Oracle Event Processing High Availability Lifecycle State Diagram

It is not possible to specify the server that will be the initial primary. Initially, the first
server in the multi-server domain to start up becomes the primary so by starting
servers in a particular order, you can influence primary selection. There is no way to
force a particular, running server to become the primary. If a primary fails, and then
comes back up, it will not automatically become the primary again unless the current
primary fails causing a failover.

Understanding High Availability

Developing Applications for High Availability 24-3

This section describes the Oracle Event Processing high availability lifecycle in more
detail, including:

■ Section , "Secondary Failure"

■ Section , "Primary Failure and Failover"

■ Section , "Rejoining the High Availability Multi-Server Domain"

Secondary Failure In general, when a secondary server fails, there is no effect on Oracle
Event Processing application operation as Figure 24–3 shows. Regardless of the quality
of service you choose, there are no missed or duplicate events.

Figure 24–3 Secondary Failure

Primary Failure and Failover However, when a primary server fails, as Figure 24–4 shows,
Oracle Event Processing performs a failover that may cause missed or duplicate
events, depending on the quality of service you choose.

Figure 24–4 Primary Failure and Failover

During failover, Oracle Event Processing automatically selects a new primary and the
new primary transitions from the SECONDARY state to the BECOMING_PRIMARY state.
Depending on the quality of service you choose, the new primary will not transition to
PRIMARY state until a configurable readiness threshold is met. For details, see the
specific quality of service option in Section , "Choosing a Quality of Service".

Rejoining the High Availability Multi-Server Domain When a new Oracle Event Processing
server is added to an Oracle Event Processing high availability multi-server domain or
an existing failed server restarts, the server will not have fully joined the Oracle Event
Processing high availability deployment and notification groups until all applications
deployed to it have fully joined. The type of application determines when it can be
said to have fully joined.

Understanding High Availability

24-4 Developer's Guide for Oracle Event Processing

If the application must generate exactly the same sequence of output events as existing
secondaries (a Type 1 application), then it must be able to rebuild its internal state by
processing input streams for some finite period of time (the warm-up-window-length
period). This warm-up-window-length time determines the minimum time it will take
for the application to fully join the Oracle Event Processing high availability
deployment and notification groups.

If the application does not need to generate exactly the same sequence of output
events as existing secondaries (a Type 2 application), then it does not require a
warm-up-window-length time and will fully join the Oracle Event Processing high
availability deployment and notification groups as soon as it is deployed.

For more information, see Section , "Choose an Adequate warm-up-window-length
Time".

Deployment Group and Notification Group
All the servers in the multi-server domain belong to the same deployment group: this
is the group to which you deploy an application. For the purposes of Oracle Event
Processing high availability, you must deploy the same application to all the servers in
this group.

By default, all the servers in the multi-server domain also belong to the same
notification group. The servers listen to the notification group for membership
notifications that indicate when a server has failed (and exited the group) or resumed
operation (and rejoined the group), as well as for synchronization notifications from
the primary.

If you need to scale your Oracle Event Processing high availability application, you
can use the ActiveActiveGroupBean to define a notification group that allows two or
more servers to function as a primary server unit while retaining the convenience of a
single deployment group that spans all servers (primaries and secondaries).

You must use Oracle Coherence-based clustering to create the multi-server domain
deployment group. You may use either default groups or custom groups.

For more information, see:

■ Section , "High Availability and Scalability"

■ Section , "High Availability and Oracle Coherence"

■ "How to Create an Oracle Event Processing Multi-Server Domain With Default
Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's
Guide for Oracle Event Processing.

■ "How to Create an Oracle Event Processing Multi-Server Domain With Custom
Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's
Guide for Oracle Event Processing.

High Availability Components
To implement Oracle Event Processing high availability options, you configure your
Event Processing Network (EPN) with a high availability input adapter after each
input adapter and a high availability output adapter before each output adapter.

Figure 24–5 shows a typical EPN with all possible high availability adapters in place.

Understanding High Availability

Developing Applications for High Availability 24-5

Figure 24–5 High Availability Adapters in the EPN

The optional high availability input adapter in the primary communicates with the
corresponding high availability input adapters in each secondary to normalize event
timestamps.

Oracle Event Processing high availability provides one type of high availability input
adapter. See Section , "High Availability Input Adapter".

The high availability output adapter in the primary is responsible for outputting
events to the output streams that connect the Oracle Event Processing application to its
downstream client. The high availability output adapter in the primary also
communicates with the corresponding high availability output adapters in each
secondary, and, depending on the high availability quality of service you choose, may
instruct the secondary output adapters to trim their in-memory queues of output
events.

Oracle Event Processing high availability provides the following high availability
output adapters:

■ Section , "Buffering Output Adapter"

■ Section , "Broadcast Output Adapter"

■ Section , "Correlating Output Adapter"

Oracle Event Processing high availability also provides a notification groups Spring
bean to increase scalability in JMS applications. See Section ,
"ActiveActiveGroupBean".

Note: For simplicity, Figure 24–5 does not show channels and shows
only one processor. However, the EPN may be arbitrarily complex
with multiple input streams and output streams, channels, multiple
processors, event beans, and so on. The only restriction is that each
input adapter must be followed by a high availability input adapter
and each output adapter must be preceded by a high availability
output adapter. Similarly, for simplicity, a multi-server domain of only
two Oracle Event Processing servers is shown but you may have an
arbitrary number of secondary servers.

Understanding High Availability

24-6 Developer's Guide for Oracle Event Processing

Which adapter you choose is determined by the high availability quality of service you
choose. See Section , "Choosing a Quality of Service".

High Availability Input Adapter The optional Oracle Event Processing high availability
input adapter on the primary Oracle Event Processing server assigns a time (in
nanoseconds) to events as they arrive at the adapter and forwards the time values
assigned to events to all secondary servers. This ensures that all servers running the
application use a consistent time value (and generate the same results) and avoids the
need for distributed clock synchronization.

Since a time value is assigned to each event before the event reaches any downstream
channels in the EPN, downstream channels should be configured to use application
time so that they do not assign a new time value to events as they arrive at the
channel.

Input events must have a key that uniquely identifies each event in order to use this
adapter.

You can configure the Oracle Event Processing high availability input adapter to send
heartbeat events.

The Oracle Event Processing high availability input adapter is applicable to all high
availability quality of service options. However, because the high availability input
adapter increases performance overhead, it is not appropriate for some high
availability quality of service options (such as Section , "Simple Failover" and Section ,
"Simple Failover with Buffering"). For these options, you should instead consider
using application time with some incoming event property.

For more information, see:

■ Section , "Light-Weight Queue Trimming"

■ Section , "Precise Recovery with JMS"

■ Section , "How to Configure the High Availability Input Adapter".

Buffering Output Adapter The Oracle Event Processing high availability buffering output
adapter implements a buffered queue trimming strategy. The buffer is a sliding
window of output events from the stream. The size of the window is measured in
milliseconds.

The Oracle Event Processing high availability buffering output adapter is applicable to
simple failover and simple failover with buffering high availability quality of service
options.

For more information, see:

■ Section , "Simple Failover"

■ Section , "Simple Failover with Buffering"

■ Section , "How to Configure the Buffering Output Adapter".

Broadcast Output Adapter The Oracle Event Processing high availability broadcast
output adapter implements a distributed queue trimming strategy. The active primary
instance broadcasts messages to the active secondary instances in the notification
group telling them when to trim their local representation of the queue.

The Oracle Event Processing high availability broadcast output adapter is applicable to
the light-weight queue trimming high availability quality of service option.

For more information, see:

Understanding High Availability

Developing Applications for High Availability 24-7

■ Section , "Light-Weight Queue Trimming"

■ Section , "How to Configure the Broadcast Output Adapter".

Correlating Output Adapter The Oracle Event Processing high availability correlating
output adapter correlates two event streams, usually from JMS. This adapter correlates
an inbound buffer of events with a second source of the same event stream, outputting
the buffer if correlation fails after a configurable time interval. Correlated events are
trimmed from the queue. Correlated events are assumed to be in-order.

The Oracle Event Processing high availability correlating output adapter is applicable
to precise recovery with JMS high availability quality of service option.

For more information, see:

■ Section , "Precise Recovery with JMS"

■ Section , "How to Configure the Correlating Output Adapter".

ActiveActiveGroupBean The
com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean is a Spring bean that
allows you to partition an input stream from a JMS input adapter.

This component is applicable to precise recovery with JMS high availability quality of
service only. However, it can also be used without high availability to increase Oracle
Event Processing application scalability.

For more information, see:

■ Section , "High Availability and Scalability"

■ Section , "Precise Recovery with JMS"

■ Section , "ActiveActiveGroupBean"

High Availability and Scalability
If you need to scale your Oracle Event Processing high availability application, you
can use the ActiveActiveGroupBean to define a notification group that allows two or
more servers to function as a high availability unit while retaining the convenience of a
single deployment group that spans all servers (primaries and secondaries).

Figure 24–6 shows three Oracle Event Processing application scenarios progressing
from the simplest configuration, to high availability, and then to both high availability
and scalability.

Understanding High Availability

24-8 Developer's Guide for Oracle Event Processing

Figure 24–6 High Availability and Scalability

Most applications begin in a single-server domain without high availability. In this, the
simplest scenario, an Oracle Event Processing application running on one Oracle Event
Processing server processes an input event stream and produces output events.

In the high availability scenario, the Oracle Event Processing application has been
configured to use Oracle Event Processing high availability options. This application is
deployed to the deployment group of a multi-server domain composed of two servers.
In this scenario, only the primary server outputs events.

In the high availability and scalability scenario, the Oracle Event Processing high
availability application has been configured to use the ActiveActiveGroupBean to
define notification groups. Each notification group contains two or more Oracle Event
Processing servers that function as a single, high availability unit. In this scenario, only
the primary server in each notification group outputs events. Should the primary
server in a notification group go down, an Oracle Event Processing high availability
fail over occurs and a secondary server in that notification group is declared the new
primary and resumes outputting events according to the Oracle Event Processing high
availability quality of service you configure.

For more information, see:

■ Section , "ActiveActiveGroupBean"

■ Section , "How to Configure Scalability in a JMS Application With Oracle Event
Processing High Availability"

High Availability and Oracle Coherence
Oracle Event Processing high availability options depend on Oracle Coherence. You
cannot implement Oracle Event Processing high availability options without Oracle
Coherence.

When considering performance tuning, be sure to evaluate your Oracle Coherence
configuration in addition to your Oracle Event Processing application.

For more information, see:

Understanding High Availability

Developing Applications for High Availability 24-9

■ Section , "Oracle Coherence Performance Tuning Options"

■ "Configuring the Oracle Coherence Cluster" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

■ Oracle Coherence Developer's Guide at
http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/toc.htm

Choosing a Quality of Service
Using Oracle Event Processing high availability, you may choose any of the quality of
service options that Table 24–1 lists. Choose the quality of service option that suits
your application’s tolerance for missed and duplicate events as well as expected event
throughput. Note that primary and secondary server hardware requirements increase
as the quality of service becomes more precise.

Simple Failover
This high availability quality of service is characterized by the lowest performance
overhead (fastest recovery time) and the least data integrity (both missed events and
duplicate events are possible during failover).

The primary server outputs events and secondary servers simply discard their output
events; they do not buffer output events. If the current active primary fails, a new
active primary is chosen and begins sending output events once it is notified.

During failover, many events may be missed or duplicated by the new primary
depending on whether it is running ahead of or behind the old primary, respectively.

During the failover window, events may be missed. For example, if you are processing
100 events per second and failover takes 10 s then you miss 1000 events

The new primary enters the PRIMARY state immediately. There is no configurable
readiness threshold that must be met before the new primary transitions out of the
BECOMING_PRIMARY state.

When an Oracle Event Processing server rejoins the multi-server domain, it is
immediately available as a secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability buffering output adapter (with a sliding window of size zero) before
each output adapter. To reduce performance overhead, rather than use a high
availability input adapter, use application time with some incoming event property.

For more information, see Section , "How to Configure Simple Failover".

Table 24–1 Oracle Event Processing High Availability Quality of Service

High Availability Option
Missed
Events?

Duplicate
Events?

Performance
Overhead

Section , "Simple Failover" Yes (many) Yes (few) Negligible

Section , "Simple Failover with Buffering" Yes (few)1

1 If you configure a big enough buffer then there will be no missed events.

Yes (many) Low

Section , "Light-Weight Queue Trimming" No Yes (few) Low-Medium2

2 The performance overhead is tunable. You can adjust the frequency of trimming to reduce the overhead,
but incur a higher number of duplicates at failover.

Section , "Precise Recovery with JMS" No No High

Understanding High Availability

24-10 Developer's Guide for Oracle Event Processing

Simple Failover with Buffering
This high availability quality of service is characterized by a low performance
overhead (faster recovery time) and increased data integrity (no missed events but
many duplicate events are possible during failover).

The primary server outputs events and secondary servers buffer their output events. If
the current active primary fails, a new active primary is chosen and begins sending
output events once it is notified.

During the failover window, events may be missed. For example, if you are processing
100 events per second and failover takes 10 s then you miss 1000 events. If the
secondary buffers are large, a significant number of duplicates may be output. On the
other hand, a larger buffer reduces the chances of missed messages.

When an Oracle Event Processing server rejoins the multi-server domain, if your
application is an Oracle Event Processing high availability Type 1 application (the
application must generate exactly the same sequence of output events as existing
secondaries), it must wait the warm-up-window-length time you configure for the
Oracle Event Processing high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability buffering output adapter (with a sliding window of size greater than
zero) before each output adapter. To reduce performance overhead, rather than use a
high availability input adapter, use application time with some incoming event
property.

For more information, see:

■ Section , "Choose an Adequate warm-up-window-length Time"

■ Section , "How to Configure Simple Failover With Buffering"

Light-Weight Queue Trimming
This high availability quality of service is characterized by a low performance
overhead (faster recovery time) and increased data integrity (no missed events but a
few duplicate events are possible during failover).

The active primary communicates to the secondaries the events that it has actually
processed. This enables the secondaries to trim their buffer of output events so that it
contains only those events that have not been sent by the primary at a particular point
in time. Because events are only trimmed after they have been sent by the current
primary, this allows the secondary to avoid missing any output events when there is a
failover.

The frequency with which the active primary sends queue trimming messages to
active secondaries is configurable:

■ Every n events (n>0)

This limits the number of duplicate output events to at most n events at failover.

■ Every n milliseconds (n>0)

The queue trimming adapter requires a way to identify events consistently among the
active primary and secondaries. The recommended approach is to use application time
to identify events, but any key value that uniquely identifies events will do.

The advantage of queue trimming is that output events are never lost. There is a slight
performance overhead at the active primary, however, for sending the trimming

Understanding High Availability

Developing Applications for High Availability 24-11

messages that need to be communicated and this overhead increases as the frequency
of queue trimming messages increases.

During failover, the new primary enters the BECOMING_PRIMARY state and will not
transition into the PRIMARY state until its event queue (that it was accumulating as a
secondary) has been flushed. During this transition, new input events are buffered and
some duplicate events may be output.

When an Oracle Event Processing server rejoins the multi-server domain, if your
application is an Oracle Event Processing high availability Type 1 application (an
application that must generate exactly the same sequence of output events as existing
secondaries), it must wait the warm-up-window-length time you configure for the
Oracle Event Processing high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability input adapter after each input adapter and a high availability
broadcast output adapter before each output adapter.

For more information, see Section , "How to Configure Light-Weight Queue
Trimming".

Precise Recovery with JMS
This high availability quality of service is characterized by a high performance
overhead (slower recovery time) and maximum data integrity (no missed events and
no duplicate events during failover).

This high availability quality of service is compatible with only JMS input and output
adapters.

In this high availability quality of service, we are not concerned with transactional
guarantees along the event path for a single-server but in guaranteeing a single output
from a set of servers. To achieve this, secondary servers listen, over JMS, to the event
stream being published by the primary. As Figure 24–7 shows, this incoming event
stream is essentially a source of reliable queue-trimming messages that the secondaries
use to trim their output queues. If JMS is configured for reliable delivery we can be
sure that the stream of events seen by the secondary is precisely the stream of events
output by the primary and thus failover will allow the new primary to output
precisely those events not delivered by the old primary.

Figure 24–7 Precise Recovery with JMS

Understanding High Availability

24-12 Developer's Guide for Oracle Event Processing

During failover, the new primary enters the BECOMING_PRIMARY state and will not
transition into the PRIMARY state its event queue (that it was accumulating as a
secondary) has been flushed. During this transition, new input events are buffered and
no duplicate events are output.

When an Oracle Event Processing server rejoins the multi-server domain, if your
application is an Oracle Event Processing high availability Type 1 application (the
application must generate exactly the same sequence of output events as existing
secondaries), it must wait the warm-up-window-length time you configure for the
Oracle Event Processing high availability output adapter before it is available as a
secondary.

To implement this high availability quality of service, you configure your EPN with a
high availability input adapter after each input adapter and a high availability
correlating output adapter before each output adapter.

To increase scalability, you can also use the cluster groups bean with high availability
quality of service.

For more information, see:

■ Section , "How to Configure Precise Recovery With JMS"

■ Section , "Configuring Scalability With the ActiveActiveGroupBean"

Designing an Oracle Event Processing Application for High Availability
Although you can implement Oracle Event Processing high availability declaratively,
to fully benefit from the high availability quality of service you choose, you must
design your Oracle Event Processing application to take advantage of the high
availability options that Oracle Event Processing provides.

When designing your Oracle Event Processing application for high availability,
consider the following:

■ Section , "Primary Oracle Event Processing High Availability Use Case"

■ Section , "High Availability Design Patterns"

■ Section , "Oracle CQL Query Restrictions"

Primary Oracle Event Processing High Availability Use Case
You can adapt Oracle Event Processing high availability options to various Oracle
Event Processing application designs but in general, Oracle Event Processing high
availability is designed for the following use case:

■ An application receives input events from one or more external systems.

■ The external systems are publish-subscribe style systems that allow multiple
instances of the application to connect simultaneously and receive the same stream
of messages.

■ The application does not update any external systems in a way that would cause
conflicts should multiple copies of the application run concurrently.

■ The application sends output events to an external downstream system. Multiple
instances of the application can connect to the downstream system simultaneously,
although only one instance of the application is allowed to send messages at any
one time.

Within these constraints, the following different cases are of interest:

Understanding High Availability

Developing Applications for High Availability 24-13

■ The application is allowed to skip sending some output events to the downstream
system when there is a failure. Duplicates are also allowed.

For this case, the following Oracle Event Processing high availability quality of
service options are applicable:

– Section , "Simple Failover"

■ The application is allowed to send duplicate events to the downstream system, but
must not skip any events when there is a failure.

For this case, the following Oracle Event Processing high availability quality of
service options are applicable:

– Section , "Simple Failover with Buffering"

– Section , "Light-Weight Queue Trimming"

■ The application must send exactly the same stream of messages/events to the
downstream system when there is a failure, modulo a brief pause during which
events may not be sent when there is a failure.

For this case, the following Oracle Event Processing high availability quality of
service options are applicable

– Section , "Precise Recovery with JMS"

High Availability Design Patterns
When designing your Oracle Event Processing application for use with Oracle Event
Processing high availability options, observe the following design patterns:

■ Section , "Select the Minimum High Availability Your Application can Tolerate"

■ Section , "Use Oracle Event Processing High Availability Components at All
Ingress and Egress Points"

■ Section , "Only Preserve What You Need"

■ Section , "Limit Oracle Event Processing Application State"

■ Section , "Choose an Adequate warm-up-window-length Time"

■ Section , "Ensure Applications are Idempotent"

■ Section , "Source Event Identity Externally"

■ Section , "Understand the Importance of Event Ordering"

■ Section , "Write Oracle CQL Queries with High Availability in Mind"

■ Section , "Avoid Coupling Servers"

■ Section , "Plan for Server Recovery"

Select the Minimum High Availability Your Application can Tolerate Be sure that the extra cost
of precise recovery (per-node throughput decrease) is actually necessary for your
application.

Use Oracle Event Processing High Availability Components at All Ingress and Egress Points You
must use an Oracle Event Processing high availability input adapter after each regular
input adapter and you must use an Oracle Event Processing high availability output
adapter before each regular output adapter.

Only Preserve What You Need Most Oracle Event Processing systems are characterized by
a large number of raw input events being queried to generate a smaller number of

Understanding High Availability

24-14 Developer's Guide for Oracle Event Processing

“enriched” events. In general it makes sense to only try and preserve these enriched
events – both because there are fewer of them and because they are more valuable.

Limit Oracle Event Processing Application State Oracle Event Processing systems allow you
to query windows of events. It can be tempting to build systems using very large
windows, but this increases the state that needs to be rebuilt when failure occurs. In
general it is better to think of long-term state as something better kept in stable
storage, such as a distributed cache or a database – since the high availability facilities
of these technologies can be appropriately leveraged.

Choose an Adequate warm-up-window-length Time When a new Oracle Event Processing
server is added to an Oracle Event Processing high availability multi-server domain or
an existing failed server restarts, the server will not have fully joined the Oracle Event
Processing high availability deployment and notification groups until all applications
deployed to it have fully joined. The type of application determines when it can be
said to have fully joined.

Oracle Event Processing high availability applications can be described as Type 1 or
Type 2 applications as Table 24–2 shows.

For more information, see Section , "Rejoining the High Availability Multi-Server
Domain".

Type 1 Applications A Type 1 application requires the new secondary to generate exactly
the same sequence of output events as existing secondaries once it fully joins the
Oracle Event Processing high availability deployment and notification groups.

It is a requirement that a Type 1 application be able to rebuild its internal state by
processing its input streams for some finite period of time (warm-up-window-length
time), after which it generates exactly the same stream of output events as other
secondaries running the application.

The warm-up-window-length time is configured on an Oracle Event Processing high
availability output adapter. The warm-up-window-length time length is specified in
terms of seconds or minutes. For example, if the application contains Oracle CQL
queries with range-based windows of 5, 7, and 15 minutes then the minimum
warm-up-window-length time is 15 minutes (the maximum range-based window size).
Oracle recommends that the maximum window length be padded with a few minutes
time, as well, to absolutely ensure that the necessary state is available. So, in the
previous example 17 minutes or even 20 minutes would be a good length for the
warm-up-window-length time.

The Oracle Event Processing server uses system time during the
warm-up-window-length time period, so it is not directly correlated with the
application time associated with events being processed.

Type 1 applications must only be interested in events that occurred during a finite
amount of time. All range-based Oracle CQL windows must be shorter than the
warm-up-window-length time and tuple-based windows must also be qualified by

Table 24–2 Oracle Event Processing High Availability Application Types

Application
Type

Must generate exactly
the same sequence of
output events?

Must be able to
rebuild internal state
by processing input
streams within a finite
period of time?

Must wait this period
of time before it has
fully joined?

Type 1 Yes Yes Yes

Type 2 No No No

Understanding High Availability

Developing Applications for High Availability 24-15

time. For example, the application should only care about the last 10 events if they
occurred within the last five minutes. Applications that do not have this property
cannot be Type 1 applications and cannot use the warm-up-window-length period. For
example, an application that uses an tuple-based partitioned window that has no time
qualification cannot use the warm-up-window-length period, since an arbitrary amount
of time is required to rebuild the state of the window.

If a Type 1 application uses the Oracle Event Processing high availability broadcast
output adapter, it may trim events using a unique application-specific key, or a
monotonic key like application time. Trimming events using application time is
encouraged as it is more robust and less susceptible to bugs in the application that
may cause an output event to fail to be generated.

For more information, see:

■ Section , "Oracle CQL Query Restrictions"

■ Section , "Buffering Output Adapter"

■ Section , "Broadcast Output Adapter"

■ Section , "Correlating Output Adapter"

Type 2 Applications A Type 2 application does not require the new secondary to
generate exactly the same sequence of output events as existing secondaries once it
fully joins the Oracle Event Processing high availability deployment and notification
groups. It simply requires that the new cluster member generate valid output events
with respect to the point in time at which it begins processing input events.

A Type 2 application does not require a warm-up-window-length period.

Most applications will be Type 2 applications. It is common for an application to be
brought up at an arbitrary point in time (on the primary Oracle Event Processing
server), begin processing events from input streams at that point, and generate valid
output events. In other words, the input stream is not paused while the application is
started and input events are constantly being generated and arriving. It is reasonable
to assume that in many cases a secondary node that does the same thing, but at a
slightly different time, will also produce output events that are valid from the point of
view of the application, although not necessarily identical to those events produced by
the primary because of slight timing differences.For example, a financial application
that only runs while the market is open might operate as a Type 2 application as
follows: all servers can be brought up before the market opens and will begin
processing incoming events at the same point in the market data stream. Multiple
secondaries can be run to protect against failure and as long as the number of
secondaries is sufficient while the market is open, there is no need to restart any
secondaries that fail nor add additional secondaries, so no secondary needs to recover
state.

Ensure Applications are Idempotent You should be able to run two copies of an
application on different servers and they should not conflict in a shared cache or
database. If you are using an external relation (such as a cache or table), then you must
ensure that when a Oracle Event Processing server rejoins the cluster, your application
is accessing the same cache or table as before: it must be joining against the same
external relation again. The data source defined on the server must not have been
changed; must ensure you're pulling data from same data source.

Source Event Identity Externally Many high availability solutions require that events be
correlated between different servers and to do this events need to be universally
identifiable. The best way to do this is use external information – preferably a

Understanding High Availability

24-16 Developer's Guide for Oracle Event Processing

timestamp – to seed the event, rather than relying on the Oracle Event Processing
system to provide this.

For more information, see Section , "Prefer Application Time".

Understand the Importance of Event Ordering For Oracle Event Processing high availability
quality of service options that use queue trimming, not only must primary and
secondary servers generate the same output events, but they must also generate them
in exactly the same order.

Primary and secondary servers must generate the same output events and in exactly
the same order when you choose Oracle Event Processing high availability quality of
service options that use queue trimming and equality-based event identify (that is,
nonmonotonic event identifiers - event identifiers that do not increase continually). In
this case, generating output events in different orders can lead to either missed output
events or unnecessary duplicate output events when there is a failure

Consider the output event streams shown in Figure 24–8. The primary has output
events a, b, and c. After outputting event c, the primary sends the secondary a queue
trimming message.

Figure 24–8 Event Order

The secondary trims all events in its queue generated prior to event c including event
c itself. In this case, the set of events trimmed will be {a, b, e, d, c} which is wrong
because the primary has not yet output events d and e. If a failover occurs after
processing the trimming message for event c, events will be lost.

To manage event ordering, consider the following design patterns:

■ Section , "Prefer Deterministic Behavior"

■ Section , "Avoid Multithreading"

■ Section , "Prefer Monotonic Event Identifiers"

Prefer Deterministic Behavior In order for an application to generate events in the same
order when run on multiple instances, it must be deterministic. The application must
not rely on things like:

■ Random number generator that may return different results on different machines.

■ Methods like System.getTimeMillis or System.nanoTime which can return
different results on different machines because the system clocks are not
synchronized.

Avoid Multithreading Because thread scheduling algorithms are very timing dependent,
multithreading can be a source of nondeterministic behavior in applications. That is,
different threads can be scheduled at different times on different machines.

For example, avoid creating an EPN in which multiple threads send events to an
Oracle Event Processing high availability adapter in parallel. If such a channel is an
event source for an Oracle Event Processing high availability adapter, it would cause
events to be sent to the adapter in parallel by different threads and could make the
event order nondeterministic.

Understanding High Availability

Developing Applications for High Availability 24-17

For more information on channel configuration to avoid, see:

■ Section , "EventPartitioner"

■ max-threads in Table C–9, " Attributes of the wlevs:channel Application Assembly
Element"

Prefer Monotonic Event Identifiers Event identifiers may be monotonic or nonmontonic.

A monotonic identifier is one that increases continually (such as a time value).

A nonmonotonic identifier does not increase continually and may contain duplicates.

In general, you should design your Oracle Event Processing application using
monotonic event identifiers. Using a monotonic event identifier, the Oracle Event
Processing high availability adapter can handle an application that may produce
events out of order.

Write Oracle CQL Queries with High Availability in Mind Not all Oracle CQL query usage is
supported when using Oracle Event Processing high availability. You may need to
redefine your Oracle CQL queries to address these restrictions.

For more information, see Section , "Oracle CQL Query Restrictions".

Avoid Coupling Servers The most performant high availability for Oracle Event
Processing systems is when servers can run without requiring coordination between
them. Generally this can be achieved if there is no shared state and the downstream
system can tolerate duplicates. Increasing levels of high availability are targeted at
increasing the fidelity of the stream of events that the downstream system sees, but
this increasing fidelity comes with a performance penalty.

Plan for Server Recovery When a secondary server rejoins the multi-server domain, the
server must have time to rebuild the Oracle Event Processing application state to
match that of the current primary and active secondaries as Section , "Choose an
Adequate warm-up-window-length Time" describes.

The time it takes for a secondary server to become available as an active secondary
after rejoining the multi-server domain will be a factor in the number of active
secondaries you require.

If a secondary is declared to be the new primary before it is ready, the secondary will
throw an exception.

Oracle CQL Query Restrictions
When writing Oracle CQL queries in an Oracle Event Processing application that uses
Oracle Event Processing high availability options, observe the following restrictions:

■ Section , "Range-Based Windows"

■ Section , "Tuple-Based Windows"

■ Section , "Partitioned Windows"

■ Section , "Sliding Windows"

■ Section , "DURATION Clause and Non-Event Detection"

■ Section , "Prefer Application Time"

For more information on Oracle CQL, see the Oracle Fusion Middleware CQL Language
Reference for Oracle Event Processing.

Understanding High Availability

24-18 Developer's Guide for Oracle Event Processing

Range-Based Windows In a Type 1 application (where the application must generate
exactly the same sequence of output events as existing secondaries), all range-based
Oracle CQL windows must be shorter than the warm-up-window-length time. See also
Section , "Choose an Adequate warm-up-window-length Time".

Channels must use application time if Oracle CQL queries contain range-based
Windows. See also Section , "Prefer Application Time".

For more information, see "Range-Based Stream-to-Relation Window Operators" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

Tuple-Based Windows In a Type 1 application (where the application must generate
exactly the same sequence of output events as existing secondaries), all tuple-based
windows must also be qualified by time. See also Section , "Choose an Adequate
warm-up-window-length Time".

For more information, see "Tuple-Based Stream-to-Relation Window Operators" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

Partitioned Windows Consider avoiding partitioned windows: there are cases where a
partition cannot be rebuilt. If using partitioned windows, configure a
warm-up-window-length time long enough to give the Oracle Event Processing server
time to rebuild the partition. See also Section , "Choose an Adequate
warm-up-window-length Time".

For more information, see "Partitioned Stream-to-Relation Window Operators" in the
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

Sliding Windows Oracle CQL queries should not use sliding windows if new nodes that
join the multi-server domain are expected to generate exactly the same output events
as existing nodes.

For more information, see:

■ Section , "Rejoining the High Availability Multi-Server Domain"

■ "S[range T1 slide T2]" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

■ "S [rows N1 slide N2]" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

■ "S [partition by A1,..., Ak rows N range T1 slide T2]" in the Oracle Fusion
Middleware CQL Language Reference for Oracle Event Processing

DURATION Clause and Non-Event Detection You must use application time if Oracle CQL
queries contain a DURATION clause for non-event detection.

For more information, see:

■ Section , "Prefer Application Time"

■ "DURATION Clause" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

Prefer Application Time In Oracle Event Processing each event is associated with a point
in time at which the event occurred. Oracle CQL recognizes two types of time:

■ Application time: a time value assigned to each event outside of Oracle CQL by
the application before the event enters the Oracle CQL processor.

Configuring High Availability

Developing Applications for High Availability 24-19

■ System time: a time value associated with an event when it arrives at the Oracle
CQL processor, essentially by calling System.nanoTime().

Application time is generally the best approach for applications that need to be highly
available. The application time is associated with an event before the event is sent to
Oracle Event Processing, so it is consistent across active primary and secondary
instances. System time, on the other hand, can cause application instances to generate
different results since the time value associated with an event can be different on each
instance due to system clocks not being synchronized.

You can use system time for applications whose Oracle CQL queries do not use
time-based windows. Applications that use only event-based windows depend only
on the arrival order of events rather than the arrival time, so you may use system time
in this case.

If you must use system time with Oracle CQL queries that do use time-based
windows, then you must use a special Oracle Event Processing high availability input
adapter that intercepts incoming events and assigns a consistent time that spans
primary and secondary instances.

Configuring High Availability
This section describes how to configure high availability for your Oracle Event
Processing application to provide the quality of service you require, including
information on configuring failover, recovery and queue trimming, as well as
configuring high availability adapters.

This section includes the following sections:

■ Section , "Configuring High Availability Quality of Service"

■ Section , "Configuring High Availability Adapters"

Configuring High Availability Quality of Service
You configure Oracle Event Processing high availability quality of service in the EPN
assembly file and component configuration files. For general information about these
configuration files, see:

■ Section , "Overview of EPN Assembly Files"

■ Section , "Overview of Component Configuration Files"

This section describes:

■ Section , "How to Configure Simple Failover"

■ Section , "How to Configure Simple Failover With Buffering"

■ Section , "How to Configure Light-Weight Queue Trimming"

■ Section , "How to Configure Precise Recovery With JMS"

For more information on configuring an Oracle Event Processing high availability
application for scalability, see Chapter 25, "Developing Scalable Applications".

Note: After making any Oracle Event Processing high availability
configuration changes, you must redeploy your Oracle Event
Processing application. See Section , "Deploying Oracle Event
Processing Applications".

Configuring High Availability

24-20 Developer's Guide for Oracle Event Processing

How to Configure Simple Failover
You configure simple failover using the Oracle Event Processing buffering output
adapter with a sliding window size of zero (0).

This procedure starts with the example EPN that Figure 24–9 shows and adds the
required components to configure it for simple failover. Example 24–1 shows the
corresponding EPN assembly file and Example 24–2 shows the corresponding
component configuration file.

For more information about this Oracle Event Processing high availability quality of
service, see Section , "Simple Failover".

Figure 24–9 Simple Failover EPN

Example 24–1 Simple Failover EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">

<wlevs:listener>
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

</beans>

Example 24–2 Simple Failover Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>

Configuring High Availability

Developing Applications for High Availability 24-21

</rules>
</processor>

</wlevs:config>

To configure simple failover:
1. Create a multi-server domain using Oracle Coherence.

For more information, see:

■ "How to Create an Oracle Event Processing Multi-Server Domain With Default
Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

■ "How to Create an Oracle Event Processing Multi-Server Domain With
Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

2. Create an Oracle Event Processing application.

For more information, see Section , "Creating Oracle Event Processing Projects".

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

■ com.bea.wlevs.ede.api.cluster

■ com.oracle.cep.cluster.hagroups

■ com.oracle.cep.cluster.ha.adapter

■ com.oracle.cep.cluster.ha.api

For more information, see Section , "How to Add an OSGi Bundle to an Oracle
Event Processing Project".

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability buffering output adapter as
Example 24–3 shows.

■ Add a wlevs:adapter element with provider set to ha-buffering after
channel helloworldOutputChannel.

■ Update the wlevs:listener element in channel helloworldOutputChannel to
reference the ha-buffering adapter by its id.

■ Add a wlevs:listener element to the ha-buffering adapter that references
the HelloWorldBean class.

Example 24–3 Simple Failover EPN Assembly File: Buffering Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>

</wlevs:channel>

Configuring High Availability

24-22 Developer's Guide for Oracle Event Processing

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">

<wlevs:listener ref="myHaSlidingWindowAdapter"/>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>

</wlevs:adapter>

</beans>

5. Optionally, configure the channel downstream from the input adapter
(helloworldInputChannel) to configure an application timestamp based on an
appropriate event property as Example 24–4 shows.

For simple failover, you can use system timestamps because events are not
correlated between servers. However, it is possible that slightly different results
might be output from the buffer if application timestamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

Example 24–4 Application Timestamp Configuration

...
<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >

<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>arrivalTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>
...

6. Configure the Oracle Event Processing high availability buffering output adapter.

Set the instance property windowLength to zero (0) as Example 24–5 shows.

Example 24–5 Configuring windowLength in the Buffering Output Adapter

...
<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >

<wlevs:listener>
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

</wlevs:listener>
<wlevs:instance-property name="windowLength" value="0"/>

</wlevs:adapter>
...

For more information, see Section , "Buffering Output Adapter EPN Assembly File
Configuration".

7. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability buffering output adapter as Example 24–6 shows.

Configuring High Availability

Developing Applications for High Availability 24-23

Example 24–6 Simple Failover Component Configuration File With High Availability
Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>

<ha:ha-buffering-adapter >
<name>myHaSlidingWindowAdapter</name>
<window-length>0</window-length>

</ha:ha-buffering-adapter >

</wlevs:config>

For more information, see:

■ Section , "Buffering Output Adapter Component Configuration File
Configuration"

8. Deploy your application to the deployment group you created in step 1.

For more information, see Section , "Deploying Oracle Event Processing
Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

How to Configure Simple Failover With Buffering
You configure simple failover using the Oracle Event Processing buffering output
adapter with a sliding window size greater than zero (0).

This procedure starts with the example EPN that Figure 24–10 shows and adds the
required components to configure it for simple failover with buffering. Example 24–7
shows the corresponding EPN assembly file and Example 24–8 shows the
corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of
service, see Section , "Simple Failover with Buffering".

Figure 24–10 Simple Failover With Buffering EPN

Example 24–7 Simple Failover With Buffering EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

Configuring High Availability

24-24 Developer's Guide for Oracle Event Processing

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel"
event-type="HelloWorldEvent" advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

</beans>

Example 24–8 Simple Failover With Buffering Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>
</wlevs:config>

To configure simple failover with buffering:
1. Create a multi-server domain using Oracle Coherence.

For more information, see:

■ "How to Create an Oracle Event Processing Multi-Server Domain With Default
Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

■ "How to Create an Oracle Event Processing Multi-Server Domain With
Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

2. Create an Oracle Event Processing application.

For more information, see Section , "Creating Oracle Event Processing Projects".

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

■ com.bea.wlevs.ede.api.cluster

■ com.oracle.cep.cluster.hagroups

■ com.oracle.cep.cluster.ha.adapter

■ com.oracle.cep.cluster.ha.api

Configuring High Availability

Developing Applications for High Availability 24-25

For more information, see Section , "How to Add an OSGi Bundle to an Oracle
Event Processing Project".

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability buffering output adapter as
Example 24–3 shows.

■ Add a wlevs:adapter element with provider set to ha-buffering after
channel helloworldOutputChannel.

■ Update the wlevs:listener element in channel helloworldOutputChannel to
reference the ha-buffering adapter by its id.

■ Add a wlevs:listener element to the ha-buffering adapter that references
the HelloWorldBean class.

Example 24–9 Simple Failover EPN Assembly File: Buffering Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">
<wlevs:listener ref="myHaSlidingWindowAdapter"/>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>

</wlevs:adapter>

</beans>

5. Optionally, configure the channel downstream from the input adapter
(helloworldInputChannel) to configure an application timestamp based on an
appropriate event property as Example 24–10 shows.

For simple failover with buffering, you can use system timestamps because events
are not correlated between servers. However, it is possible that slightly different
results might be output from the buffer if application timestamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

Configuring High Availability

24-26 Developer's Guide for Oracle Event Processing

Example 24–10 Application Timestamp Configuration

...
<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >

<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>arrivalTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>
...

6. Configure the Oracle Event Processing high availability buffering output adapter.

Set the instance property windowLength to a value greater than zero (0) as
Example 24–11 shows.

Example 24–11 Configuring windowLength in the Buffering Output Adapter

...
<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >

<wlevs:listener>
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

</wlevs:listener>
<wlevs:instance-property name="windowLength" value="15000"/>

</wlevs:adapter>
...

For more information, see Section , "Buffering Output Adapter EPN Assembly File
Configuration".

7. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability buffering output adapter as Example 24–12 shows.

Example 24–12 Simple Failover With Buffering Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>

<ha:ha-buffering-adapter >
<name>myHaSlidingWindowAdapter</name>
<window-length>15000</window-length>

</ha:ha-buffering-adapter >

</wlevs:config>

For more information, see:

■ Section , "Buffering Output Adapter Component Configuration File
Configuration"

8. If your application is an Oracle Event Processing high availability Type 1
application (the application must generate exactly the same sequence of output
events as existing secondaries), configure the warm-up-window-length for the
buffering output adapter.

Configuring High Availability

Developing Applications for High Availability 24-27

For more information, see:

■ Section , "Choose an Adequate warm-up-window-length Time"

■ Section , "Buffering Output Adapter Component Configuration File
Configuration"

9. Deploy your application to the deployment group you created in step 1.

For more information, see Section , "Deploying Oracle Event Processing
Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

How to Configure Light-Weight Queue Trimming
You configure light-weight queue trimming using the Oracle Event Processing high
availability input adapter and the broadcast output adapter.

This procedure starts with the example EPN that Figure 24–11 shows and adds the
required components to configure it for light-weight queue trimming. Example 24–13
shows the corresponding EPN assembly file and Example 24–14 shows the
corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of
service, see Section , "Light-Weight Queue Trimming".

Figure 24–11 Light-Weight Queue Trimming EPN

Example 24–13 Light-Weight Queue Trimming EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

Configuring High Availability

24-28 Developer's Guide for Oracle Event Processing

</beans>

Example 24–14 Light-Weight Queue Trimming Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>
</wlevs:config>

To configure light-weight queue trimming:
1. Create a multi-server domain using Oracle Coherence.

For more information, see:

■ "How to Create an Oracle Event Processing Multi-Server Domain With Default
Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

■ "How to Create an Oracle Event Processing Multi-Server Domain With
Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

2. Create an Oracle Event Processing application.

For more information, see Section , "Creating Oracle Event Processing Projects".

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

■ com.bea.wlevs.ede.api.cluster

■ com.oracle.cep.cluster.hagroups

■ com.oracle.cep.cluster.ha.adapter

■ com.oracle.cep.cluster.ha.api

For more information, see Section , "How to Add an OSGi Bundle to an Oracle
Event Processing Project".

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability input adapter as Example 24–15 shows:

■ Add a wlevs:adapter element with provider set to ha-inbound after the
regular input adapter helloworldAdapter.

■ Add a wlevs:listener element to the regular input adapter
helloworldAdapter that references the ha-inbound adapter by its id.

■ Add a wlevs:source element to the helloworldInputChannel that references
the ha-inbound adapter by its id.

Example 24–15 Light-Weight Queue Trimming EPN Assembly File: High Availability
Input Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

Configuring High Availability

Developing Applications for High Availability 24-29

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
<wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="myHaInputAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

</beans>

5. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability broadcast output adapter as
Example 24–16 shows.

■ Add a wlevs:adapter element with provider set to ha-broadcast after
channel helloworldOutputChannel.

■ Update the wlevs:listener element in channel helloworldOutputChannel to
reference the ha-broadcast adapter by its id.

■ Add a wlevs:listener element to the ha-broadcast adapter that references
the HelloWorldBean class.

Example 24–16 Light-Weight Queue Trimming EPN Assembly File: Broadcast Output
Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
<wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

Configuring High Availability

24-30 Developer's Guide for Oracle Event Processing

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="myHaInputAdapter"/>

</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
advertise="true">
<wlevs:listener ref="myHaBroadcastAdapter"/>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

<wlevs:adapter id="myHaBroadcastAdapter" provider="ha-broadcast" >
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>

</wlevs:adapter>

</beans>

6. Configure the Oracle Event Processing high availability input adapter.

Consider the following example configurations:

■ Example 24–17, "High Availability Input Adapter: Default Configuration"

■ Example 24–18, "High Availability Input Adapter: Tuple Events"

■ Example 24–19, "High Availability Input Adapter: Key of One Event Property"

■ Example 24–20, "High Availability Input Adapter: Key of Multiple Event
Properties"

For more information, see Section , "High Availability Input Adapter EPN
Assembly File Configuration".

Example 24–17 High Availability Input Adapter: Default Configuration

This example shows a high availability input adapter configuration using all defaults.
The mandatory key is based on all event properties and the event property that the
high availability input adapter assigns a time value to is an event property named
arrivalTime.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
</wlevs:adapter>

...

Example 24–18 High Availability Input Adapter: Tuple Events

This example shows a high availability input adapter configuration using all defaults.
The mandatory key is based on all event properties and the event property that the
high availability input adapter assigns a time value to is an event property named
arrivalTime. Because the events are tuple-based events, you must specify the event
type (MyEventType) using the eventType property.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
<wlevs:instance-property name="eventType" value="MyEventType"/>

</wlevs:adapter>
...

Configuring High Availability

Developing Applications for High Availability 24-31

Example 24–19 High Availability Input Adapter: Key of One Event Property

This example shows a high availability input adapter configuration where the
mandatory key is based on one event property (named id) and the event property that
the high availability input adapter assigns a time value to is an event property named
arrivalTime.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="keyProperties" value="id"/>
<wlevs:instance-property name="timeProperty" value="arrivalTime"/>

</wlevs:adapter>
...

Example 24–20 High Availability Input Adapter: Key of Multiple Event Properties

This example shows a high availability input adapter configuration where the
mandatory key is based on more than one event property (properties orderID and
accountID) and the event property that the high availability input adapter assigns a
time value to is an event property named arrivalTime. A compound key Java class
(com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in
Example 24–21. The hashCode and equals methods are required. When you specify a
keyClass, the keyProperties instance property is ignored: Oracle Event Processing
assumes that the compound key is based on all the getter methods in the keyClass.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
<wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>

</wlevs:adapter>
...

Example 24–21 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
private int orderID;
private int accountID;

public MyCompoundKeyClass() {}

public int getOrderID() {
return orderID;

}
public setOrderID(int orderID) {

this.orderID = orderID;
}
public int getAccountID() {

return accountID;
}
public setOrderID(int accountID) {

this.accountID = accountID;
}

public int hashCode() {
int hash = 1;
hash = hash * 31 + orderID.hashCode();
hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
return hash;
}

public boolean equals(Object obj) {
if (obj == this) return true;
if (obj == null) return false;

Configuring High Availability

24-32 Developer's Guide for Oracle Event Processing

if (!(obj instanceof MyCompoundKeyClass)) return false;
MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
return k.accountID == accountID && k.orderID == orderID;

}
}

7. Configure the channel downstream from the high availability input adapter
(helloworldInputChannel) to configure an application timestamp based on the
high availability input adapter timeProperty setting as Example 24–22 shows.

The wlevs:expression should be set to the timeProperty value.

Example 24–22 Application Timestamp Configuration

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="keyProperties" value="id"/>
<wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
<wlevs:instance-property name="timeProperty" value="arrivalTime"/>

</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>arrivalTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>
...

8. Configure the Oracle Event Processing high availability broadcast output adapter.

Consider the following example configurations:

■ Example 24–23, "Broadcast Output Adapter: Default Configuration"

■ Example 24–24, "Broadcast Output Adapter: Key of One Event Property"

■ Example 24–25, "Broadcast Output Adapter: Key of Multiple Event Properties"

For more information, see Section , "Broadcast Output Adapter EPN Assembly File
Configuration".

Example 24–23 Broadcast Output Adapter: Default Configuration

This example shows a broadcast output adapter configuration using all defaults. The
mandatory key is based on all event properties, key values are nonmonotonic (do not
increase continually) and total order (unique).

...
<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >

<wlevs:listener>
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

</wlevs:listener>
</wlevs:adapter>

...

Example 24–24 Broadcast Output Adapter: Key of One Event Property

This example shows a broadcast output adapter configuration where the mandatory
key is based on one event property (named timeProperty), key values are monotonic
(they do increase continually) and not total order (not unique).

...
<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >

<wlevs:listener>

Configuring High Availability

Developing Applications for High Availability 24-33

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:instance-property name="keyProperties" value="timeProperty"/>
<wlevs:instance-property name="monotonic" value="true"/>
<wlevs:instance-property name="totalOrder" value="false"/>

</wlevs:adapter>
...

Example 24–25 Broadcast Output Adapter: Key of Multiple Event Properties

This example shows a broadcast output adapter configuration where the mandatory
key is based on more than one event property (properties timeProperty and
accountID), key values are monotonic (they do increase continually) and total order
(unique). A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory
and its implementation is shown in Example 24–26. The hashCode and equals methods
are required. When you specify a keyClass, the keyProperties instance property is
ignored: Oracle Event Processing assumes that the compound key is based on all the
getter methods in the keyClass.

...
<wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >

<wlevs:listener>
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

</wlevs:listener>
<wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
<wlevs:instance-property name="monotonic" value="true"/>
<wlevs:instance-property name="totalOrder" value="true"/>

</wlevs:adapter>
...

Example 24–26 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
private int timeProperty;
private int accountID;

public MyCompoundKeyClass() {}

public int getTimeProperty() {
return orderID;

}
public setTimeProperty(int timeProperty) {

this.timeProperty = timeProperty;
}
public int getAccountID() {

return accountID;
}
public setOrderID(int accountID) {

this.accountID = accountID;
}

public int hashCode() {
int hash = 1;
hash = hash * 31 + timeProperty.hashCode();
hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
return hash;
}

public boolean equals(Object obj) {
if (obj == this) return true;
if (obj == null) return false;
if (!(obj instanceof MyCompoundKeyClass)) return false;
MyCompoundKeyClass k = (MyCompoundKeyClass) obj;

Configuring High Availability

24-34 Developer's Guide for Oracle Event Processing

return k.accountID == accountID && k.orderID == orderID;
}

}

9. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability input adapter and buffering output adapter as
Example 24–27 shows.

Example 24–27 Light-Weight Queue Trimming Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>

<ha:ha-inbound-adapter>
<name>myHaInputAdapter</name>

</ha:ha-inbound-adapter>

<ha:ha-broadcast-adapter>
<name>myHaBroadcastAdapter</name>
<trimming-interval units="events">10</trimming-interval>

</ha:ha-broadcast-adapter>

</wlevs:config>

For more information, see:

■ Section , "High Availability Input Adapter Component Configuration File
Configuration"

■ Section , "Broadcast Output Adapter Component Configuration File
Configuration"

10. If your application is an Oracle Event Processing high availability Type 1
application (the application must generate exactly the same sequence of output
events as existing secondaries), configure the warm-up-window-length for the
broadcast output adapter.

For more information, see:

■ Section , "Choose an Adequate warm-up-window-length Time"

■ Section , "Broadcast Output Adapter Component Configuration File
Configuration"

11. Deploy your application to the deployment group you created in step 1.

For more information, see Section , "Deploying Oracle Event Processing
Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

Configuring High Availability

Developing Applications for High Availability 24-35

How to Configure Precise Recovery With JMS
You configure precise recovery with JMS using the Oracle Event Processing high
availability input adapter and correlating output adapter.

This procedure describes how to create the example EPN that Figure 24–12 shows.
Example 24–28 shows the corresponding EPN assembly file and Example 24–29 shows
the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of
service, see Section , "Precise Recovery with JMS".

Figure 24–12 Precise Recovery With JMS EPN

Example 24–28 Precise Recovery With JMS EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

<wlevs:event-type-repository>
<wlevs:event-type type-name="StockTick">

<wlevs:properties>
<wlevs:property name="lastPrice" type="double" />
<wlevs:property name="symbol" type="char" />

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
<wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
<wlevs:instance-property name="keyProperties" value="sequenceNo"/>
<wlevs:instance-property name="timeProperty" value="inboundTime"/>

</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
<wlevs:listener ref="processor1" />
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>inboundTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

<wlevs:processor id="processor1">
<wlevs:listener ref="channel2" />

</wlevs:processor>

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
<wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
<wlevs:instance-property name="failOverDelay" value="2000"/>
<wlevs:listener ref="JMSOutboundAdapter"/>

Note: The JMS destination used by JMS adapters for precise recovery
must be topics, rather than queues.

Configuring High Availability

24-36 Developer's Guide for Oracle Event Processing

</wlevs:adapter>

<wlevs:channel id="channel2" event-type="StockTick">
<wlevs:listener ref="myHaCorrelatingAdapter" />

</wlevs:channel>

<wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
</wlevs:adapter>

<wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
</wlevs:adapter>

<wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
<wlevs:source ref="JMSInboundAdapter2"/>

</wlevs:channel>
</beans>

Example 24–29 Precise Recovery With JMS Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>processor1</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from channel1 [Now]]]>

</query>
</rules>

</processor>
</wlevs:config>

To configure precise recovery with JMS:
1. Create a multi-server domain using Oracle Coherence.

For more information, see:

■ "How to Create an Oracle Event Processing Multi-Server Domain With Default
Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

■ "How to Create an Oracle Event Processing Multi-Server Domain With
Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

2. Create an Oracle Event Processing application.

For more information, see Section , "Creating Oracle Event Processing Projects".

3. Edit the MANIFEST.MF file to add the following Import-Package entries:

■ com.bea.wlevs.ede.api.cluster

■ com.oracle.cep.cluster.hagroups

■ com.oracle.cep.cluster.ha.adapter

■ com.oracle.cep.cluster.ha.api

For more information, see Section , "How to Add an OSGi Bundle to an Oracle
Event Processing Project".

4. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability input adapter as Example 24–30 shows:

Configuring High Availability

Developing Applications for High Availability 24-37

■ Add a wlevs:adapter element with provider set to ha-inbound after the
regular input adapter JMSInboundAdapter.

■ Add a wlevs:listener element to the regular input adapter
JMSInboundAdapter that references the ha-inbound adapter by its id.

■ Add a wlevs:source element to the channel channel1 that references the
ha-inbound adapter by its id.

Example 24–30 Precise Recovery With JMS EPN Assembly File: High Availability Input
Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="StockTick">

<wlevs:properties>
<wlevs:property name="lastPrice" type="double" />
<wlevs:property name="symbol" type="char" />

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
<wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
<wlevs:listener ref="processor1" />
<wlevs:source ref="myHaInputAdapter"/>

</wlevs:channel>

...

</beans>

5. Configure your Oracle Event Processing application EPN assembly file to add an
Oracle Event Processing high availability correlating output adapter as
Example 24–31 shows.

■ Add a wlevs:adapter element with provider set to ha-correlating after
channel channel2.

■ Update the wlevs:listener element in channel channel2 to reference the
ha-correlating adapter by its id.

■ Add a wlevs:listener element to the ha-correlating adapter that references
the regular output adapter JMSOutboundAdapter.

Example 24–31 Precise Recovery With JMS EPN Assembly File: Correlating Output
Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

<wlevs:event-type-repository>
<wlevs:event-type type-name="StockTick">

<wlevs:properties>
<wlevs:property name="lastPrice" type="double" />
<wlevs:property name="symbol" type="char" />

</wlevs:properties>

Configuring High Availability

24-38 Developer's Guide for Oracle Event Processing

</wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
<wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
<wlevs:listener ref="processor1" />
<wlevs:source ref="myHaInputAdapter"/>

</wlevs:channel>

<wlevs:processor id="processor1">
<wlevs:listener ref="channel2" />

</wlevs:processor>

<wlevs:channel id="channel2" event-type="StockTick">
<wlevs:listener ref="myHaCorrelatingAdapter" />

</wlevs:channel>

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
<wlevs:listener ref="JMSOutboundAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
</wlevs:adapter>

...

</beans>

6. Configure the Oracle Event Processing high availability input adapter.

Consider the following example configurations:

■ Example 24–32, "High Availability Input Adapter: Default Configuration"

■ Example 24–33, "High Availability Input Adapter: Tuple Events"

■ Example 24–34, "High Availability Input Adapter: Key of One Event Property"

■ Example 24–35, "High Availability Input Adapter: Key of Multiple Event
Properties"

For more information, see Section , "High Availability Input Adapter EPN
Assembly File Configuration".

Example 24–32 High Availability Input Adapter: Default Configuration

This example shows a high availability input adapter configuration using all defaults.
The mandatory key is based on all event properties and the event property that the
high availability input adapter assigns a time value to is an event property named
arrivalTime.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
</wlevs:adapter>

...

Configuring High Availability

Developing Applications for High Availability 24-39

Example 24–33 High Availability Input Adapter: Tuple Events

This example shows a high availability input adapter configuration using all defaults.
The mandatory key is based on all event properties and the event property that the
high availability input adapter assigns a time value to is an event property named
arrivalTime. Because the events are tuple-based events, you must specify the event
type (MyEventType) using the eventType property.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
<wlevs:instance-property name="eventType" value="MyEventType"/>

</wlevs:adapter>
...

Example 24–34 High Availability Input Adapter: Key of One Event Property

This example shows a high availability input adapter configuration where the
mandatory key is based on one event property (named sequenceNo) and the event
property that the high availability input adapter assigns a time value to is an event
property named inboundTime.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="keyProperties" value="sequenceNo"/>
<wlevs:instance-property name="timeProperty" value="inboundTime"/>

</wlevs:adapter>
...

Example 24–35 High Availability Input Adapter: Key of Multiple Event Properties

This example shows a high availability input adapter configuration where the
mandatory key is based on more than one event property (properties orderID and
accountID) and the event property that the high availability input adapter assigns a
time value to is an event property named arrivalTime. A compound key Java class
(com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in
Example 24–36. The hashCode and equals methods are required. When you specify a
keyClass, the keyProperties instance property is ignored: Oracle Event Processing
assumes that the compound key is based on all the getter methods in the keyClass.

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
<wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>

</wlevs:adapter>
...

Example 24–36 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
private int orderID;
private int accountID;

public MyCompoundKeyClass() {}

public int getOrderID() {
return orderID;

}
public setOrderID(int orderID) {

this.orderID = orderID;
}
public int getAccountID() {

Configuring High Availability

24-40 Developer's Guide for Oracle Event Processing

return accountID;
}
public setOrderID(int accountID) {

this.accountID = accountID;
}

public int hashCode() {
int hash = 1;
hash = hash * 31 + orderID.hashCode();
hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
return hash;
}

public boolean equals(Object obj) {
if (obj == this) return true;
if (obj == null) return false;
if (!(obj instanceof MyCompoundKeyClass)) return false;
MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
return k.accountID == accountID && k.orderID == orderID;

}
}

7. Configure the channel downstream from the high availability input adapter
(channel1) to configure an application timestamp based on the high availability
input adapter timeProperty setting as Example 24–37 shows.

The wlevs:expression should be set to the timeProperty value.

Example 24–37 Application Timestamp Configuration

...
<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >

<wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
<wlevs:instance-property name="keyProperties" value="sequenceNo"/>
<wlevs:instance-property name="timeProperty" value="inboundTime"/>

</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
<wlevs:listener ref="processor1" />
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>inboundTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>
...

8. Configure the Oracle Event Processing high availability correlating output adapter
failOverDelay.

Example 24–38 shows a correlating output adapter configuration where the
failOverDelay is 2000 milliseconds.

Example 24–38 Correlating Output Adapter Configuration: failOverDelay

...
<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >

<wlevs:listener ref="JMSOutboundAdapter"/>
<wlevs:instance-property name="failOverDelay" value="2000"/>

</wlevs:adapter>
...

For more information, see Section , "Correlating Output Adapter EPN Assembly
File Configuration".

9. Create a second regular JMS input adapter.

Configuring High Availability

Developing Applications for High Availability 24-41

Example 24–39 shows a JMS adapter named JMSInboundAdapter2.

Example 24–39 Inbound JMS Adapter Assembly File

...
<wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
</wlevs:adapter>

...

This JMS input adapter must be configured identically to the first JMS input
adapter (in this example, JMSInboundAdapter). Example 24–40 shows the
component configuration file for both the JMS input adapters. Note that both have
exactly the same configuration, including the same provider.

Example 24–40 Inbound JMS Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

...
<jms-adapter>

<name>JMSInboundAdapter</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>

</jms-adapter>

<jms-adapter>
<name>JMSInboundAdapter2</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>

</jms-adapter>
...

</wlevs:config>

10. Create a channel to function as the correlated source.

You must configure this channel with the second regular JMS input adapter as its
source.

Example 24–41 shows a correlated source named clusterCorrelatingOutstream
whose source is JMSInboundAdapter2.

Example 24–41 Creating the Correlated Source

...
<wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
</wlevs:adapter>

<wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
<wlevs:source ref="JMSInboundAdapter2"/>

</wlevs:channel>

11. Configure the Oracle Event Processing high availability correlating output adapter
with the correlatedSource.

Configuring High Availability

24-42 Developer's Guide for Oracle Event Processing

Example 24–38 shows a correlating output adapter configuration where the
correlatedSource is clusterCorrelatingOutstream.

Example 24–42 Correlating Output Adapter: correlatedSource

...
<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >

<wlevs:listener ref="JMSOutboundAdapter"/>
<wlevs:instance-property name="failOverDelay" value="2000"/>
<wlevs:instance-property name="correlatedSource"

value="clusterCorrelatingOutstream"/>
</wlevs:adapter>

...

For more information, see Section , "Correlating Output Adapter EPN Assembly
File Configuration".

12. If your application is an Oracle Event Processing high availability Type 1
application (the application must generate exactly the same sequence of output
events as existing secondaries), configure the warm-up-window-length for the
correlating output adapter.

For more information, see:

■ Section , "Choose an Adequate warm-up-window-length Time"

■ Section , "Correlating Output Adapter Component Configuration File
Configuration"

13. Configure the component configuration file to enable session-transacted for
both inbound JMS adapters and the outbound JMS adapter as Example 24–43
shows:

Example 24–43 Inbound and Outbound JMS Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

...
<jms-adapter>

<name>JMSInboundAdapter</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>true</session-transacted>

</jms-adapter>

<jms-adapter>
<name>JMSInboundAdapter2</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>true</session-transacted>

</jms-adapter>
...
<jms-adapter>

<name>JMSOutboundAdapter</name>
<event-type>JMSEvent</event-type>

Configuring High Availability

Developing Applications for High Availability 24-43

<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Topic1</destination-jndi-name>
<delivery-mode>nonpersistent</delivery-mode>
<session-transacted>true</session-transacted>

</jms-adapter>
...

</wlevs:config>

14. Optionally, configure the component configuration file to include the Oracle Event
Processing high availability input adapter and correlating output adapter as
Example 24–27 shows.

Example 24–44 High Availability Input and Output Adapter Component Configuration
File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

...
<ha:ha-inbound-adapter>

<name>myHaInputAdapter</name>
</ha:ha-inbound-adapter>
...
<ha:ha-correlating-adapter>

<name>myHaBroadcastAdapter</name>
<fail-over-delay>2000</fail-over-delay>

</ha:ha-correlating-adapter>
...

</wlevs:config>

For more information, see:

■ Section , "High Availability Input Adapter Component Configuration File
Configuration"

■ Section , "Correlating Output Adapter Component Configuration File
Configuration"

15. Optionally, add an ActiveActiveGroupBean to your EPN to improve scalability.

For more information, see Section , "Configuring Scalability With the
ActiveActiveGroupBean".

16. Deploy your application to the deployment group you created in step 1.

For more information, see Section , "Deploying Oracle Event Processing
Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing
servers as the primary.

Configuring High Availability Adapters
You configure Oracle Event Processing high availability adapters in the EPN assembly
file and component configuration files, similar to how you configure other
components in the EPN, such as channels or processors. For general information about
these configuration files, see:

■ Section , "Overview of EPN Assembly Files"

■ Section , "Overview of Component Configuration Files"

Configuring High Availability

24-44 Developer's Guide for Oracle Event Processing

This section describes the configurable options for each of the Oracle Event Processing
high availability adapters, including:

■ Section , "How to Configure the High Availability Input Adapter"

■ Section , "How to Configure the Buffering Output Adapter"

■ Section , "How to Configure the Broadcast Output Adapter"

■ Section , "How to Configure the Correlating Output Adapter"

How to Configure the High Availability Input Adapter
The Oracle Event Processing high availability broadcast input adapter is implemented
by BroadcastInputAdapter.

This section describes how to configure the Oracle Event Processing high availability
input adapter, including:

■ Section , "High Availability Input Adapter EPN Assembly File Configuration"

■ Section , "High Availability Input Adapter Component Configuration File
Configuration"

For more information, see Section , "High Availability Input Adapter".

High Availability Input Adapter EPN Assembly File Configuration The root element for
declaring an Oracle Event Processing high availability input adapter is wlevs:adapter
with provider element set to ha-inbound as Example 24–45 shows. You specify a
wlevs:listener element for the Oracle Event Processing high availability input adapter
in the actual input adapter as Example 24–45 shows.

Example 24–45 High Availability Input Adapter EPN Assembly File

<wlevs:adapter id="jmsAdapter" provider="jms-inbound"
<wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound">
<wlevs:instance-property name="keyProperties" value="id"/>
<wlevs:instance-property name="timeProperty" value="arrivalTime"/>
<wlevs:instance-property name="eventType" value="MyEventType"/>

</wlevs:adapter>

<wlevs:channel id="inputChannel" event-type="MyEventType ">
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>arrivalTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

Table 24–3 describes the additional child elements of wlevs:adapter you can configure
for an Oracle Event Processing high availability input adapter.

Note: After making any Oracle Event Processing high availability
configuration changes, you must redeploy your Oracle Event
Processing application. See Section , "Deploying Oracle Event
Processing Applications".

Configuring High Availability

Developing Applications for High Availability 24-45

Table 24–4 lists the instance properties that the Oracle Event Processing high
availability input adapter supports.

High Availability Input Adapter Component Configuration File Configuration The root element
for configuring an Oracle Event Processing high availability input adapter is
ha-inbound-adapter. The name child element for a particular adapter must match the
id attribute of the corresponding wlevs:adapter element in the EPN assembly file that
declares this adapter as Example 24–50 shows.

Example 24–46 High Availability Input Adapter Component Configuration File

<ha:ha-inbound-adapter>
<name>myHaInputAdapter</name>
<heartbeat units="millis">1000</heartbeat>
<batch-size>10</batch-size>

</ha:ha-inbound-adapter>

Table 24–5 describes the additional child elements of ha-inbound-adapter you can
configure for an Oracle Event Processing high availability input adapter.

Table 24–3 Child Elements of wlevs:adapter for the High Availability Input Adapter

Child Element Description

wlevs:instance-property Specify one or more instance-property element name and
value attributes as Table 24–4 describes.

Table 24–4 High Availability Input Adapter Instance Properties

Name Value

timeProperty Specify the name of the event property to which the high
availability input adapter assigns a time value.

This is the same property that you use in the
wlevs:application-timestamped element of the downstream
EPN component to which the high availability input adapter is
connected as Example 24–45 shows.

keyProperties Specify a space delimited list of one or more event properties
that the Oracle Event Processing high availability input adapter
uses to identify event instances.

If you specify more than one event property, you must specify a
keyClass.

Default: all event properties.

keyClass Specify the fully qualified class name of a Java class used as a
compound key.

By default, all JavaBean properties in the keyClass are assumed
to be keyProperties, unless the keyProperties setting is used.

eventType Specify the type name of the events that the Oracle Event
Processing high availability input adapter receives from the
actual input adapter. This is the same event type that you use in
the downstream EPN component to which the high availability
input adapter is connected as Example 24–45 shows.

For tuple events, this property is mandatory.

For all other Java class-based event types, this property is
optional.

For more information, see Section , "Overview of Oracle Event
Processing Event Types".

Configuring High Availability

24-46 Developer's Guide for Oracle Event Processing

How to Configure the Buffering Output Adapter
The Oracle Event Processing high availability buffering output adapter is
implemented by SlidingWindowQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability
buffering output adapter, including:

■ Section , "Buffering Output Adapter EPN Assembly File Configuration"

■ Section , "Buffering Output Adapter Component Configuration File
Configuration"

For more information, see Section , "Buffering Output Adapter".

Buffering Output Adapter EPN Assembly File Configuration The root element for declaring an
Oracle Event Processing high availability buffering output adapter is wlevs:adapter
with provider element set to ha-buffering as Example 24–47 shows.

Example 24–47 Buffering Output Adapter EPN Assembly File

<wlevs:adapter id="mySlidingWindowingAdapter" provider ="ha-buffering">
<wlevs:listener>

<bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
</wlevs:listener>
<wlevs:instance-property name="windowLength" value="15000"/>

</wlevs:adapter>

Table 24–6 describes the additional child elements of wlevs:adapter you can configure
for an Oracle Event Processing high availability buffering output adapter.

Table 24–7 lists the instance properties that the Oracle Event Processing high
availability broadcast output adapter supports.

Table 24–5 Child Elements of ha-inbound-adapter for the High Availability Input Adapter

Child Element Description

heartbeat Specify the length of time that the Oracle Event Processing high
availability input adapter can be idle before it generates a
heartbeat event to advance time as an integer number of units.

Valid values for attribute units:

■ nanos: wait the specified number of nanoseconds.

■ millis: wait the specified number of milliseconds.

■ secs: wait the specified number of seconds.

Default: Heartbeats are not sent.

batch-size Specify the number of events in each timing message that the
primary broadcasts to its secondaries. A value of n means that n
{key, time} pairs are sent in each message. You can use this
property for performance tuning (see Section , "High
Availability Input Adapter Configuration"

Default: 1 (disable batching).

Table 24–6 Child Elements of wlevs:adapter for the Buffering Output Adapter

Child Element Description

wlevs:listener Specify the regular output adapter downstream from this Oracle
Event Processing high availability buffering output adapter.

wlevs:instance-property Specify one or more instance-property element name and
value attributes as Table 24–7 describes.

Configuring High Availability

Developing Applications for High Availability 24-47

Buffering Output Adapter Component Configuration File Configuration The root element for
configuring an Oracle Event Processing high availability buffering output adapter is
ha-buffering-adapter. The name child element for a particular adapter must match
the id attribute of the corresponding wlevs:adapter element in the EPN assembly file
that declares this adapter as Example 24–48 shows.

Example 24–48 Buffering Output Adapter Component Configuration File

<ha:ha-buffering-adapter >
<name>mySlidingWindowingAdapter</name>
<window-length>15000</window-length>
<warm-up-window-length units="minutes">6</warm-up-window-length>

</ha:ha-buffering-adapter >

Table 24–8 describes the additional child elements of ha-buffering-adapter you can
configure for an Oracle Event Processing high availability buffering output adapter.

How to Configure the Broadcast Output Adapter
The Oracle Event Processing high availability broadcast output adapter is
implemented by class GroupBroadcastQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability
broadcast output adapter, including:

■ Section , "Broadcast Output Adapter EPN Assembly File Configuration"

■ Section , "Broadcast Output Adapter Component Configuration File
Configuration"

For more information, see Section , "Broadcast Output Adapter".

Broadcast Output Adapter EPN Assembly File Configuration The root element for declaring
an Oracle Event Processing high availability broadcast output adapter is
wlevs:adapter with provider element set to ha-broadcast as Example 24–49 shows.

Table 24–7 Buffering Output Adapter Instance Properties

Name Value

windowLength Specify the size of the sliding window as an integer number of
milliseconds.

Default: 15000.

Table 24–8 Child Elements of ha-buffering-adapter for the Buffering Output Adapter

Child Element Description

window-length Specify the size of the sliding window as an integer number of
milliseconds.

Default: 15000.

warm-up-window-length Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary
is added as an integer number of units.

Valid values for attribute units:

■ seconds: wait the specified number of seconds.

■ minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section , "Choose an Adequate
warm-up-window-length Time".

Configuring High Availability

24-48 Developer's Guide for Oracle Event Processing

Example 24–49 Broadcast Output Adapter EPN Assembly File

<wlevs:adapter id="myBroadcastAdapter" provider="ha-broadcast">
<wlevs:listener ref="actualAdapter"/>
<wlevs:instance-property name="keyProperties" value="time"/>
<wlevs:instance-property name="monotonic" value="true"/>

</wlevs:adapter>

Table 24–9 describes the additional child elements of wlevs:adapter you can configure
for an Oracle Event Processing high availability broadcast output adapter.

Table 24–10 lists the instance properties that the Oracle Event Processing high
availability broadcast output adapter supports.

Broadcast Output Adapter Component Configuration File Configuration The root element for
configuring an Oracle Event Processing high availability broadcast output adapter is
ha-broadcast-adapter. The name child element for a particular adapter must match
the id attribute of the corresponding wlevs:adapter element in the EPN assembly file
that declares this adapter as Example 24–50 shows.

Table 24–9 Child Elements of wlevs:adapter for the Broadcast Output Adapter

Child Element Description

wlevs:listener Specify the regular output adapter downstream from this Oracle
Event Processing high availability broadcast output adapter.

wlevs:instance-property Specify one or more instance-property element name and
value attributes as Table 24–10 describes.

Table 24–10 Broadcast Output Adapter Instance Properties

Name Value

keyProperties Specify a space delimited list of one or more event properties
that the Oracle Event Processing high availability broadcast
output adapter uses to identify event instances.

If you specify more than one event property, you must specify a
keyClass.

Default: all event properties.

keyClass Specify the fully qualified class name of a Java class used as a
compound key.

By default, all JavaBean properties in the keyClass are assumed
to be keyProperties, unless the keyProperties setting is used.

A compound key may be monotonic and may be totalOrder.

monotonic Specify whether or not the key value is constantly increasing
(like a time value).

Valid values are:

■ true: the key is constantly increasing.

■ false: the key is not constantly increasing.

Default: false.

totalOrder Specify whether or not event keys are unique. Applicable only
when instance property monotonic is set to true.

Valid values are:

■ true: event keys are unique.

■ false: event keys are not unique.

Default: true.

Configuring High Availability

Developing Applications for High Availability 24-49

Example 24–50 Broadcast Output Adapter Component Configuration File

<ha:ha-broadcast-adapter>
<name>myBroadcastAdapter</name>
<trimming-interval units="events">10</trimming-interval>
<warm-up-window-length units="minutes">6</warm-up-window-length>

</ha:ha-broadcast-adapter>

Table 24–11 describes the additional child elements of ha-broadcast-adapter you can
configure for an Oracle Event Processing high availability broadcast output adapter.

How to Configure the Correlating Output Adapter
The Oracle Event Processing high availability correlating output adapter is
implemented by class CorrelatedQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability
correlating output adapter, including:

■ Section , "Correlating Output Adapter EPN Assembly File Configuration"

■ Section , "Correlating Output Adapter Component Configuration File
Configuration"

For more information, see Section , "Correlating Output Adapter".

Correlating Output Adapter EPN Assembly File Configuration The root element for declaring
an Oracle Event Processing high availability correlating output adapter is
wlevs:adapter with provider element set to ha-correlating as Example 24–51
shows.

Example 24–51 Correlating Output Adapter EPN Assembly File

<wlevs:adapter id="myCorrelatingAdapter" provider="ha-correlating">
<wlevs:listener>

<bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
</wlevs:listener>
<wlevs:instance-property name="correlatedSource" ref="clusterCorrOutstream"/>

Table 24–11 Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter

Child Element Description

trimming-interval Specify the interval at which trimming messages are broadcast
as an integer number of units. You can use this property for
performance tuning (see Section , "Broadcast Output Adapter
Configuration").

Valid values for attribute units:

■ events: broadcast trimming messages after the specified
number of milliseconds.

■ millis: broadcast trimming messages after the specified
number of events are processed.

Default: units is events.

warm-up-window-length Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary
is added as an integer number of units.

Valid values for attribute units:

■ seconds: wait the specified number of seconds.

■ minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section , "Choose an Adequate
warm-up-window-length Time".

Configuring High Availability

24-50 Developer's Guide for Oracle Event Processing

<wlevs:instance-property name="failOverDelay" value="2000"/>
</wlevs:adapter>

Table 24–12 describes the additional child elements of wlevs:adapter you can
configure for an Oracle Event Processing high availability correlating output adapter.

Table 24–13 lists the instance properties that the Oracle Event Processing high
availability correlating output adapter supports.

Correlating Output Adapter Component Configuration File Configuration The root element for
configuring an Oracle Event Processing high availability correlating output adapter is
ha-correlating-adapter. The name child element for a particular adapter must match
the id attribute of the corresponding wlevs:adapter element in the EPN assembly file
that declares this adapter as Example 24–52 shows.

Example 24–52 Correlating Output Adapter Component Configuration File

<ha:ha-correlating-adapter>
<name>myCorrelatingAdapter</name>
<window-length>15000</window-length>
<warm-up-window-length units="minutes">6</warm-up-window-length>

</ha:ha-correlating-adapter>

Table 24–14 describes the additional child elements of ha-broadcast-adapter you can
configure for an Oracle Event Processing high availability correlating output adapter.

Table 24–12 Child Elements of wlevs:adapter for the Correlating Output Adapter

Child Element Description

wlevs:listener Specify the regular output adapter downstream from this Oracle
Event Processing high availability buffering output adapter.

wlevs:instance-property Specify one or more instance-property element name and
value attributes as Table 24–13 describes.

Table 24–13 Correlating Output Adapter Instance Properties

Name Value

correlatedSource Specify the event source that will be used to correlate against.
Events seen from this source will be purged from the trimming
queue. Events still in the queue at failover will be replayed.

failOverDelay Specify the delay timeout in milliseconds that is used to decide
how soon after failover correlation should restart.

Default: 0 ms.

Table 24–14 Child Elements of ha-correlating-adapter for the Correlating Output
Adapter

Child Element Description

fail-over-delay Specify the delay timeout in milliseconds that is used to decide
how soon after failover correlation should restart.

Default: 0 ms.

Configuring High Availability

Developing Applications for High Availability 24-51

warm-up-window-length Specify the length of time it takes the application to rebuild state
after a previously failed secondary restarts or a new secondary
is added as an integer number of units.

Valid values for attribute units:

■ seconds: wait the specified number of seconds.

■ minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section , "Choose an Adequate
warm-up-window-length Time".

Table 24–14 (Cont.) Child Elements of ha-correlating-adapter for the Correlating Output
Adapter

Child Element Description

Configuring High Availability

24-52 Developer's Guide for Oracle Event Processing

25

Developing Scalable Applications 25-1

25Developing Scalable Applications

[26] This chapter introduces components and design patterns that you can use to allow
your Oracle Event Processing applications to scale with an increasing event load,
along with how to configure scalability for your application, including information on
setting up event partitioning.

This chapter includes the following sections:

■ Understanding Scalability

■ Configuring Scalability

Understanding Scalability
This section introduces components and design patterns that you can use to allow
your Oracle Event Processing applications to scale with an increasing event load.

This section includes the following sections:

■ Section , "Scalability Options"

■ Section , "Scalability Components"

Scalability Options
Oracle Event Processing provides options that you can use to allow your Oracle Event
Processing application to scale with an increasing event load.

In general, you can design your application to partition an input event stream and
process events in parallel at the point of event ingress, within the Event Processing
Network (EPN), or both.

You should plan to use scalability and parallel processing as early in the event
processing sequence as possible. For example, parallel process high-volume, low-value
events to extract the typically low-volume, high-value events your application
depends on.

Oracle Event Processing provides a variety of scalability components you can use as
Section , "Scalability Components" describes.

Scalability and High Availability
Because scalability often involves deploying an application to multiple servers, it is
advantageous to also consider high availability options when designing your Oracle
Event Processing application for scalability.

Understanding Scalability

25-2 Developer's Guide for Oracle Event Processing

Input stream partitioning and parallel processing impose important restrictions on
application design, such as preserving event order and carefully managing the use of
multi-threading.

For more information on high availability options, see:

■ Section , "High Availability Architecture"

■ Section , "Designing an Oracle Event Processing Application for High Availability"

Scalability Components
Oracle Event Processing provides the following components that you can use to
improve the scalability of your Oracle Event Processing applications:

■ Section , "EventPartitioner"

■ Section , "ActiveActiveGroupBean"

EventPartitioner
A com.bea.wlevs.channel.EventPartitioner provides a mechanism for partitioning
events on a channel across its output event sinks as Figure 25–1 shows.

Figure 25–1 Event Partitioner EPN

This section describes:

■ Section , "EventPartitioner Implementation"

■ Section , "EventPartitioner Initialization"

■ Section , "EventPartitioner Threading"

■ Section , "EventPartitioner Restrictions"

For more information, see Section , "Configuring Scalability With a Channel
EventPartitioner".

EventPartitioner Implementation Oracle Event Processing provides a default event
property-based EventPartitioner that you can configure a channel to use.

When you configure a channel to use the default EventPartitioner, you specify the
name of an event property by which the channel partitions events. The default
EventPartitioner calculates a hash key using the event property value’s
Object.hashCode() as input to an internal hash function. The hashkey %
number-of-listeners is used to calculate which listener will receive the event. This
algorithm is based on the same algorithm used by HashMap to calculate in which
bucket to place a new item. In practice, this means events with the same event
property value are sent to the same listener.

Understanding Scalability

Developing Scalable Applications 25-3

Optionally, you can create your own event partitioner instance and configure a
channel to use it instead to customize how events are dispatched to the channel’s
listeners.

For more information, see:

■ Section , "How to Configure Scalability With the Default Channel
EventPartitioner"

■ Section , "How to Configure Scalability With a Custom Channel EventPartitioner"

EventPartitioner Initialization By default, the Oracle Event Processing server initializes
each event partitioner on deployment and will re-initialize event partitioners on
re-deployment by invoking the EventPartitioner method activateConfiguration is
before ActivatableBean.afterConfigurationActive and before your
EventPartitioner class’s partition method is invoked.

EventPartitioner Threading Table 25–1 lists the threading options you can use with an
event partitioner channel.

EventPartitioner Restrictions When configuring a channel to use an event partitioner,
consider the following restrictions:

■ Batching is not supported when you configure a channel with an event partitioner.

For more information, Section , "Batch Processing Channels".

ActiveActiveGroupBean
Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can
partition an incoming JMS stream in Oracle Event Processing applications by utilizing
the notification groups that the ActiveActiveGroupBean creates.

Note: The default event property-based EventPartitioner does not
dispatch in Round Robin fashion.

Table 25–1 Event Partitioner Channel Threading Options

Threads
Allocated In Description When to Use

Channel ■ Channel max-threads set to the
number of listeners.

Usually acceptable if conversion of the external
message format into the internal event format is
inexpensive.

Lets the multithreading be controlled at the
channel granularity. Some channels may require a
higher number of threads than others due to
differences in volume.

Adapter ■ Channel max-threads set to 0.

■ Implement a multi-threaded
adapter with at least one thread
per partition listener.

Usually preferable if conversion of the external
message format into the internal event format is
expensive.

This approach is best when the adapter is
multithreaded and the inbound event rate is high
enough that the adapter becomes a bottleneck
unless multiple threads can be used to scale the
inbound processing.

Note: In either approach, event order cannot be guaranteed. This is
true whenever multiple threads are used.

Understanding Scalability

25-4 Developer's Guide for Oracle Event Processing

You add an ActiveActiveGroupBean to your EPN assembly file as Example 25–1
shows.

Example 25–1 ActiveActiveGroupBean bean Element

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

By default, the ActiveActiveGroupBean creates notification groups named:

ActiveActiveGroupBean_X

Where X is a string.

At runtime, the ActiveActiveGroupBean scans the existing groups defined on the
Oracle Event Processing server and applies a default pattern match of:

ActiveActiveGroupBean_\\w+

When it finds a match, it creates a notification group of that name.

Optionally, you can define your own cluster group pattern match as Section , "How to
Configure the ActiveActiveGroupBean Group Pattern Match" describes.

This section describes:

■ Section , "Scalability in an Oracle Event Processing Application Using the
ActiveActiveGroupBean Without High Availability"

■ Section , "Scalability in an Oracle Event Processing Application Using the
ActiveActiveGroupBean With High Availability"

For more information, see:

■ Section , "Deployment Group and Notification Group"

■ Section , "Configuring Scalability With the ActiveActiveGroupBean"

Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean Without
High Availability You can use the ActiveActiveGroupBean to partition an incoming JMS
event stream by selector in an Oracle Event Processing application that is not
configured for high availability.

Consider the multi-server domain that Figure 25–2 shows.

Understanding Scalability

Developing Scalable Applications 25-5

Figure 25–2 Oracle Event Processing ActiveActiveGroupBean Without High Availability

In this scalability scenario, you define a cluster group in the Oracle Event Processing
server config.xml on each server (ActiveActiveGroupBean_group1 on Host 1,
ActiveActiveGroupBean_group2 on Host 2, and so on) and add an instance of the
ActiveActiveGroupBean to your Oracle Event Processing application to define
notification groups based on these cluster groups.

Each notification group is bound to a different JMS selector. The component
configuration file in your Oracle Event Processing application contains the same
jms-adapter configuration as Example 25–2 shows.

Example 25–2 Common jms-adapter Selector Definitions

<jms-adapter>
<message-selector>${CONDITION}</message-selector>
<bindings>

<group-binding group-id="ActiveActiveGroupBean_group1">
<param id="CONDITION">acctid > 400</param>

</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group2">

<param id="CONDITION">acctid BETWEEN 301 AND 400</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group3">

<param id="CONDITION">acctid BETWEEN 201 AND 300</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group4">

<param id="CONDITION">acctid <= 200</param>
</group-binding>

 </bindings>
</jms-adapter>

At runtime, the ActiveActiveGroupBean instance in each Oracle Event Processing
application instance on each Oracle Event Processing server finds its
ActiveActiveGroupBean_ cluster group and creates a notification group based on it.
The Oracle Event Processing application then configures itself with the

Understanding Scalability

25-6 Developer's Guide for Oracle Event Processing

message-selector that corresponds to the group-id that matches that notification
group. This partitions the JMS topic so that each instance of App1 processes a subset of
the total number of messages in parallel.

For more information, see Section , "How to Configure Scalability in a JMS Application
Without Oracle Event Processing High Availability".

Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean With High
Availability In addition to partitioning an incoming JMS event stream by selector, you
can also use the ActiveActiveGroupBean to configure two or more Oracle Event
Processing servers to function as a single, high availability unit.

Consider the multi-server domain with an Oracle Event Processing high availability
application deployed to it that Figure 25–3 shows.

Figure 25–3 Oracle Event Processing ActiveActiveGroupBean With High Availability

In this scenario, you create the same ActiveActiveGroupBean_ cluster group on Host 1
and Host 2 (ActiveActiveGroupBean_group1) and the same ActiveActiveGroupBean_
cluster group on Host 3 and Host 4 (ActiveActiveGroupBean_group2).

At runtime, the ActiveActiveGroupBean instance in each Oracle Event Processing
application instance on each Oracle Event Processing server finds its
ActiveActiveGroupBean_ cluster group and creates a notification group based on it.
Both Host 1 and Host 2 belong to one notification group (ActiveActiveGroupBean_
group1) and both Host 3 and Host 4 belong to another notification group
(ActiveActiveGroupBean_group2).

Each Oracle Event Processing application then configures itself with the
message-selector that corresponds to the group-id that matches that notification

Note: Within each instance of App1, you could further increase
parallel processing by configuring an event partitioner channel as
Section , "EventPartitioner" describes.

Configuring Scalability

Developing Scalable Applications 25-7

group. This partitions the JMS topic so that each instance of App1 processes a subset of
the total number of messages in parallel.

When more than one Oracle Event Processing server belongs to the same notification
group, the ActiveActiveGroupBean ensures that only the primary server in each
notification group outputs events. Within a given notification group, should the
primary server go down, then an Oracle Event Processing high availability fail over
occurs and one of the secondary servers in that notification group is declared the new
primary and resumes outputting events according to the Oracle Event Processing high
availability quality of service you configure.

For more information, see Section , "How to Configure Scalability in a JMS Application
With Oracle Event Processing High Availability".

Configuring Scalability
This section describes how to configure scalability for yourOracle Event Processing
application, including information on setting up event partitioning.

This section includes the following sections:

■ Section , "Configuring Scalability With a Channel EventPartitioner"

■ Section , "Configuring Scalability With the ActiveActiveGroupBean"

Configuring Scalability With a Channel EventPartitioner
This section describes how to configure a channel with an Oracle Event Processing
event partitioner as Figure 25–4 shows, including:

■ Section , "How to Configure Scalability With the Default Channel
EventPartitioner"

■ Section , "How to Configure Scalability With a Custom Channel EventPartitioner"

Figure 25–4 EventPartitioner EPN

In this example, assume that the inbound adapter is sending events of type
PriceEvent, defined as Example 25–3 shows:

Example 25–3 Definition of Event Type PriceEvent

<wlevs:event-type-repository>

Note: Within each instance of App1, you could further increase
parallel processing by configuring an event partitioner channel as
Section , "EventPartitioner" describes.

Configuring Scalability

25-8 Developer's Guide for Oracle Event Processing

<wlevs:event-type type-name="PriceEvent">
<wlevs:properties>

<wlevs:property name="symbol" type="char" />
<wlevs:property name="price" type="long" />

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

For more information, see Section , "EventPartitioner".

How to Configure Scalability With the Default Channel EventPartitioner
You can configure a channel to use the default event property-based event partitioner.
Each time an incoming event arrives, the channel selects a listener and dispatches the
event to that listener instead of broadcasting each event to every listener.

Optionally, you can implement your own EventPartitioner class to customize how
the channel dispatches events to its listeners as Section , "How to Configure Scalability
With a Custom Channel EventPartitioner" describes.

To configure scalability with the default channel EventPartitioner:
1. Add a channel to your EPN.

In Figure 25–4, the channel is EventPartitionerChannel.

For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

2. Connect the channel to an upstream adapter.

In Figure 25–4, the upstream adapter is inbound.

For more information, see Section , "Connecting Nodes".

3. Connect the channel to two or more listeners.

In Figure 25–4, the channel is connected to Oracle CQL processors processor1,
processor2, and processor3.

For more information, see Section , "Connecting Nodes"

4. Edit the EPN assembly file to add a partitionByEventProperty instance property
to the channel element.

The value of this instance-property is the name of the event property by which
the channel partitions events.

In this example, the channel partitions events by event property symbol.

...
<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent">

<wlevs:instance-property name="partitionByEventProperty" value="symbol"
/>

<wlevs:listener ref="processor1" />
<wlevs:listener ref="processor2" />
<wlevs:listener ref="processor3" />
<wlevs:source ref="inbound" />

</wlevs:channel>
...

For more information, see Section , "EventPartitioner Implementation".

5. Decide how you want Oracle Event Processing to allocate threads as Section ,
"EventPartitioner Threading" describes:

a. If you want the channel to allocate threads:

Configuring Scalability

Developing Scalable Applications 25-9

– Edit the EPN assembly file to configure the channel to set max-threads to
the number of listeners.

...
<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent"

max-threads="3" >
<wlevs:instance-property name="eventPartitioner" value="true"

/>
<wlevs:listener ref="processor1" />
<wlevs:listener ref="processor2" />
<wlevs:listener ref="processor3" />
<wlevs:source ref="inbound" />

</wlevs:channel>
...

b. If you want the upstream adapter to allocate threads:

– Edit the EPN assembly file to configure the channel to set max-threads to
0.

...
<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent"

max-threads="0" >
<wlevs:instance-property name="eventPartitioner" value="true"

/>
<wlevs:listener ref="processor1" />
<wlevs:listener ref="processor2" />
<wlevs:listener ref="processor3" />
<wlevs:source ref="inbound" />

</wlevs:channel>
...

– Edit the Oracle Event Processing server config.xml file to add a
work-manager element.

If this work manager is shared by more than one component (such as
other adapters and Jetty), then set the min-threads-constraint and
max-threads-constraint elements each to a value greater than the num-
ber of listeners.

If this work manager is not shared by more than one component (that is, it
is dedicated to the upstream adapter in this configuration), then set the
min-threads-constraint and max-threads-constraint elements equal to
the number of listeners.

...
<work-manager>

<name>adapterWorkManager</name>
<min-threads-constraint>3</min-threads-constraint>
<max-threads-constraint>3</max-threads-constraint>

</work-manager>
...

For more information, see Section , "work-manager".

– Edit the component configuration file to configure the upstream adapter
with this work-manager.

...
<adapter>

<name>inbound</name>
<work-manager-name>adapterWorkManager</work-manager-name>

Configuring Scalability

25-10 Developer's Guide for Oracle Event Processing

...
</adapter>
...

6. Assemble and deploy your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

At runtime, the channel uses the default event property-based EventPartitioner
to determine how to dispatch each incoming event to its listeners.

How to Configure Scalability With a Custom Channel EventPartitioner
You can implement your own EventPartitioner class to customize how a channel
dispatches events to its listeners.

Optionally, you can use the default event property-based EventPartitioner as
Section , "How to Configure Scalability With the Default Channel EventPartitioner"
describes.

To configure scalability with a custom channel EventPartitioner:
1. Using the Oracle Event Processing IDE for Eclipse, open your Oracle Event

Processing project.

For more information, see Section , "Creating Oracle Event Processing Projects".

2. Edit your MANIFEST.MF to import package com.bea.wlevs.channel.

For more information, see Section , "How to Import a Package".

3. Right-click your project’s src folder and select New > Class.

The New Java Class dialog appears as Figure 25–5 shows.

Configuring Scalability

Developing Scalable Applications 25-11

Figure 25–5 New Java Class Dialog

4. Configure the New Java Class dialog as Table 25–2 describes.

5. Click Finish.

A new EventPartitioner class is created as Example 25–4 shows.

Example 25–4 EventPartitioner Class

package com.acme;

import com.bea.wlevs.channel.EventPartitioner;
import com.bea.wlevs.ede.api.EventProcessingException;
import com.bea.wlevs.ede.api.EventType;

public class MyEventPartitioner implements EventPartitioner {

@Override
public void activateConfiguration(int arg0, EventType arg1) {

// TODO Auto-generated method stub

}

Table 25–2 New Java Class Options for EventPartitioner

Option Description

Package Enter the class’s package name.

Name Enter the class’s name.

Interfaces Click Add and use the Implemented Interfaces Selection dialog to locate the
com.bea.wlevs.channel.EventPartitioner interface, select it in the Matching
Items list, and then click OK.

Configuring Scalability

25-12 Developer's Guide for Oracle Event Processing

@Override
public int partition(Object arg0) throws EventProcessingException {

// TODO Auto-generated method stub
return 0;

}

}

6. Complete the implementation of your EventPartitioner as Example 25–5 shows.

Example 25–5 EventPartitioner Class Implementation

package com.acme;

import com.bea.wlevs.channel.EventPartitioner;
import com.bea.wlevs.ede.api.EventProcessingException;
import com.bea.wlevs.ede.api.EventType;

public class MyEventPartitioner implements EventPartitioner {

private final EventType eventType;
private int numberOfPartitions;

@Override
public void activateConfiguration(int numberOfPartitions, EventType eventType) {

this.numberOfPartitions = numberOfPartitions;
this.eventType = eventType;

}

@Override
public int partition(Object event) throws EventProcessingException {

int dispatchToListener = 0;
... // Your implementation.
return dispatchToListener;

}

}

The activateConfiguration method is a callback that the Oracle Event Processing
server invokes before ActivatableBean.afterConfigurationActive and before
your EventPartitioner class’s partition method is invoked.

When you associate this EventPartitioner with a channel, the channel will
invoke your EventPartitioner class’s partition method each time the channel
receives an event.

Your partition method must return the index of the listener to which the channel
should dispatch the event. The index must be an int between 0 and
numberOfPartitions - 1.

7. Add a channel to your EPN.

In Figure 25–4, the channel is EventPartitionerChannel.

For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

8. Connect the channel to an upstream adapter.

In Figure 25–4, the upstream adapter is inbound.

For more information, see Section , "Connecting Nodes".

9. Connect the channel to two or more listeners.

Configuring Scalability

Developing Scalable Applications 25-13

In Figure 25–4, the channel is connected to Oracle CQL processors processor1,
processor2, and processor3.

If you want to the channel to perform load balancing, each listener must be
identical.

For more information, see:

■ Section , "Connecting Nodes"

10. Edit the EPN assembly file to add an eventPartitioner instance property to the
channel element.

The value of this instance-property is the fully qualified class name of the
EventPartitioner instance the channel will use to partition events.

This class must be on your Oracle Event Processing application class path.

In this example, the channel uses EventPartitioner instance
com.acme.MyEventPartitioner to partition events.

...
<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent"

max-threads="0" >
<wlevs:instance-property name="eventPartitioner"

value="com.acme.MyEventPartitioner" />
<wlevs:listener ref="filterFanoutProcessor1" />
<wlevs:listener ref="filterFanoutProcessor2" />
<wlevs:listener ref="filterFanoutProcessor3" />
<wlevs:source ref="PriceAdapter" />

</wlevs:channel>
...

11. Decide how you want Oracle Event Processing to allocate threads as Section ,
"EventPartitioner Threading" describes:

a. If you want the channel to allocate threads:

– Edit the EPN assembly file to configure the channel to set max-threads to
the number of listeners.

...
<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent"

max-threads="3" >
<wlevs:instance-property name="eventPartitioner" value="true"

/>
<wlevs:listener ref="processor1" />
<wlevs:listener ref="processor2" />
<wlevs:listener ref="processor3" />
<wlevs:source ref="inbound" />

</wlevs:channel>
...

b. If you want the upstream adapter to allocate threads:

– Edit the EPN assembly file to configure the channel to set max-threads to
0.

...
<wlevs:channel id="EventPartitionerChannel" event-type="PriceEvent"

max-threads="0" >
<wlevs:instance-property name="eventPartitioner" value="true"

/>
<wlevs:listener ref="processor1" />

Configuring Scalability

25-14 Developer's Guide for Oracle Event Processing

<wlevs:listener ref="processor2" />
<wlevs:listener ref="processor3" />
<wlevs:source ref="inbound" />

</wlevs:channel>
...

– Edit the Oracle Event Processing server config.xml file to add a
work-manager element.

If this work manager is shared by more than one component (such as
other adapters and Jetty), then set the min-threads-constraint and
max-threads-constraint elements each to a value greater than the num-
ber of listeners.

If this work manager is not shared by more than one component (that is, it
is dedicated to the upstream adapter in this configuration), then set the
min-threads-constraint and max-threads-constraint elements equal to
the number of listeners.

...
<work-manager>

<name>adapterWorkManager</name>
<min-threads-constraint>3</min-threads-constraint>
<max-threads-constraint>3</max-threads-constraint>

</work-manager>
...

For more information, see Section , "work-manager".

– Edit the component configuration file to configure the upstream adapter
with this work-manager.

...
<adapter>

<name>inbound</name>
<work-manager-name>adapterWorkManager</work-manager-name>
...

</adapter>
...

12. Assemble and deploy your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

At runtime, the channel uses your EventPartitioner to determine how to
dispatch each incoming event to its listeners.

Configuring Scalability With the ActiveActiveGroupBean
This section describes how to configure your Oracle Event Processing application to
use the ActiveActiveGroupBean to partition an incoming JMS event stream by selector,
including:

■ Section , "How to Configure Scalability in a JMS Application Without Oracle Event
Processing High Availability"

■ Section , "How to Configure Scalability in a JMS Application With Oracle Event
Processing High Availability"

■ Section , "How to Configure the ActiveActiveGroupBean Group Pattern Match"

For more information, see Section , "ActiveActiveGroupBean".

Configuring Scalability

Developing Scalable Applications 25-15

How to Configure Scalability in a JMS Application Without Oracle Event Processing
High Availability
You can use the ActiveActiveGroupBean to partition an incoming JMS event stream by
selector in a multi-server domain for an application that does not use Oracle Event
Processing high availability.

For information on how to use the ActiveActiveGroupBean in an Oracle Event
Processing high availability application, see Section , "How to Configure Scalability in
a JMS Application With Oracle Event Processing High Availability".

For more information, see Section , "Scalability in an Oracle Event Processing
Application Using the ActiveActiveGroupBean Without High Availability".

To configure scalability in a JMS application without Oracle Event Processing
high availability:
1. Create a multi-server domain.

For more information, see "Introduction to Multi-Server Domains" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

In this example, the deployment group is named MyDeploymentGroup.

2. Configure the Oracle Event Processing server configuration file on each Oracle
Event Processing server to add the appropriate ActiveActiveGroupBean
notification group to the groups child element of the cluster element.

The Oracle Event Processing server configuration file, config.xml, is located in the
DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main
domain directory and servername refers to a particular server instance.

For example, Table 25–4 shows cluster elements for Oracle Event Processing
servers ocep-server-1, ocep-server-2, ocep-server-3, and ocep-server-4. The
deployment group is MyDeploymentGroup and notification groups are defined
using default ActiveActiveGroupBean notification group naming.

Optionally, you can specify your own group naming convention as Section , "How
to Configure the ActiveActiveGroupBean Group Pattern Match" describes.

Table 25–3 Oracle Event Processing Server Configuration File groups Element
Configuration

Partition cluster Element

ocep-server-1 <cluster>
<server-name>ocep-server-1</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>

</cluster>

ocep-server-2 <cluster>
<server-name>ocep-server-2</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>

</cluster>

Configuring Scalability

25-16 Developer's Guide for Oracle Event Processing

3. Create an Oracle Event Processing application.

4. Configure the EPN assembly file to add an ActiveActiveGroupBean element as
Example 25–10 shows.

Example 25–6 ActiveActiveGroupBean bean Element

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

5. Define a parameterized message-selector in the jms-adapter element for the JMS
inbound adapters.

Edit the component configuration file to add group-binding child elements to the
jms-adapter element for the JMS inbound adapters.

Add one group-binding element for each possible JMS message-selector value as
Example 25–12 shows.

Example 25–7 jms-adapter Selector Definition for ocep-server-1

<jms-adapter>
<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic1</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>true</session-transacted>
<message-selector>${CONDITION}</message-selector>
<bindings>

<group-binding group-id="ActiveActiveGroupBean_group1">
<param id="CONDITION">acctid > 400</param>

</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group2">

<param id="CONDITION">acctid BETWEEN 301 AND 400</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group3">

<param id="CONDITION">acctid BETWEEN 201 AND 300</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group4">

<param id="CONDITION">acctid <= 200</param>
</group-binding>

ocep-server-3 <cluster>
<server-name>ocep-server-3</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group3</groups>

</cluster>

ocep-server-4 <cluster>
<server-name>ocep-server-4</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group4</groups>

</cluster>

Table 25–3 (Cont.) Oracle Event Processing Server Configuration File groups Element
Configuration

Partition cluster Element

Configuring Scalability

Developing Scalable Applications 25-17

 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event
Processing server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as
acctid > 400 and the application processes events whose acctid property is
greater than 400.

6. Deploy your application to the deployment group of your multi-server domain.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

At runtime, each Oracle Event Processing server configures its instance of the
application with the message-selector that corresponds to its
ActiveActiveGroupBean notification group. This partitions the JMS topic so that
each instance of the application processes a subset of the total number of messages
in parallel.

How to Configure Scalability in a JMS Application With Oracle Event Processing
High Availability
You can use the ActiveActiveGroupBean to partition an incoming JMS event stream in
a multi-server domain with Oracle Event Processing high availability.

This procedure uses the example application from Section , "How to Configure Precise
Recovery With JMS", including the example EPN that Figure 25–6 shows, the
corresponding EPN assembly file that Example 25–8 shows, and the corresponding
component configuration file that Example 25–9 shows.

Figure 25–6 Precise Recovery With JMS EPN

Example 25–8 Precise Recovery With JMS EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

<wlevs:event-type-repository>
<wlevs:event-type type-name="StockTick">

<wlevs:properties>
<wlevs:property name="lastPrice" type="double" />
<wlevs:property name="symbol" type="char" />

</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">

Note: Each in-bound JMS adapter must listen to a different topic.

For more information, see Chapter 11, "Integrating the Java Message
Service".

Configuring Scalability

25-18 Developer's Guide for Oracle Event Processing

<wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
<wlevs:instance-property name="keyProperties" value="sequenceNo"/>
<wlevs:instance-property name="timeProperty" value="inboundTime"/>

</wlevs:adapter>

<wlevs:channel id="channel1" event-type="StockTick">
<wlevs:listener ref="processor1" />
<wlevs:source ref="myHaInputAdapter"/>
<wlevs:application-timestamped>

<wlevs:expression>inboundTime</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

<wlevs:processor id="processor1">
<wlevs:listener ref="channel2" />

</wlevs:processor>

<wlevs:channel id="channel2" event-type="StockTick">
<wlevs:listener ref="myHaCorrelatingAdapter" />

</wlevs:channel>

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
<wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
<wlevs:instance-property name="failOverDelay" value="2000"/>
<wlevs:listener ref="JMSOutboundAdapter"/>

</wlevs:adapter>

<wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
</wlevs:adapter>

<wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
</wlevs:adapter>

<wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
<wlevs:source ref="JMSInboundAdapter2"/>

</wlevs:channel>
</beans>

Example 25–9 Precise Recovery With JMS Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

<processor>
<name>processor1</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from channel1 [Now]]]>

</query>
</rules>

</processor>
<jms-adapter>

<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<session-transacted>true</session-transacted>

...
</jms-adapter>
<jms-adapter>

<name>JMSInboundAdapter2</name>

Configuring Scalability

Developing Scalable Applications 25-19

<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic2</destination-jndi-name>
<session-transacted>true</session-transacted>

...
</jms-adapter>
<jms-adapter>

<name>JMSOutboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic2</destination-jndi-name>
<session-transacted>true</session-transacted>

...
</jms-adapter>

</wlevs:config>

This procedure will create the Oracle Event Processing high availability configuration
that Figure 25–7 shows.

Figure 25–7 Oracle Event Processing ActiveActiveGroupBean With High Availability

For more information, see Section , "Scalability in an Oracle Event Processing
Application Using the ActiveActiveGroupBean With High Availability".

To configure scalability in a JMS application with Oracle Event Processing high
availability:
1. Create a multi-server domain.

Configuring Scalability

25-20 Developer's Guide for Oracle Event Processing

For more information, see "Introduction to Multi-Server Domains" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Event Processing.

In this example, the deployment group is named MyDeploymentGroup.

2. Configure the Oracle Event Processing server configuration file on each Oracle
Event Processing server to add the appropriate ActiveActiveGroupBean
notification group to the groups child element of the cluster element.

The Oracle Event Processing server configuration file, config.xml, is located in the
DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main
domain directory and servername refers to a particular server instance.

For example, Table 25–4 shows cluster elements for Oracle Event Processing
servers ocep-server-1, ocep-server-2, ocep-server-3, and ocep-server-4. The
deployment group is MyDeploymentGroup and notification groups are defined
using default ActiveActiveGroupBean notification group names.

Note that ocep-server-1 and ocep-server-2 use the same notification group
name (ActiveActiveGroupBean_group1) and ocep-server-3 and ocep-server-4
use the same notification group name (ActiveActiveGroupBean_group2).

Optionally, you can specify your own group naming convention as Section , "How
to Configure the ActiveActiveGroupBean Group Pattern Match" describes.

3. Create an Oracle Event Processing high availability application.

For more information, see Chapter 24, "Developing Applications for High
Availability".

Table 25–4 Oracle Event Processing Server Configuration File groups Element
Configuration

Partition cluster Element

ocep-server-1 <cluster>
<server-name>ocep-server-1</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>

</cluster>

ocep-server-2 <cluster>
<server-name>ocep-server-2</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group1</groups>

</cluster>

ocep-server-3 <cluster>
<server-name>ocep-server-3</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>

</cluster>

ocep-server-4 <cluster>
<server-name>ocep-server-4</server-name>
...
<enabled>coherence</enabled>
...
<groups>MyDeploymentGroup, ActiveActiveGroupBean_group2</groups>

</cluster>

Configuring Scalability

Developing Scalable Applications 25-21

4. Configure the EPN assembly file to add an ActiveActiveGroupBean element as
Example 25–10 shows.

Example 25–10 ActiveActiveGroupBean bean Element

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
</bean>

5. Edit the component configuration file to configure a jms-adapter element for the
inbound JMS adapters as Example 25–11 shows:

■ Each in-bound JMS adapter must listen to a different topic.

■ Set session-transacted to true.

Example 25–11 jms-adapter Element for Inbound JMS Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

...
<jms-adapter>

<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<session-transacted>true</session-transacted>

... </jms-adapter>
<jms-adapter>

<name>JMSInboundAdapter2</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic2</destination-jndi-name>
<session-transacted>true</session-transacted>

... </jms-adapter>
</wlevs:config>

For more information, see Chapter 11, "Integrating the Java Message Service".

6. Define a parameterized message-selector in the jms-adapter element for each
JMS inbound adapter.

Edit the component configuration file to add group-binding child elements to the
jms-adapter element for the JMS inbound adapters.

Add one group-binding element for each possible JMS message-selector value
as Example 25–12 shows.

Example 25–12 jms-adapter Selector Definition for ocep-server-1

<jms-adapter>
<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<session-transacted>true</session-transacted>
<message-selector>${CONDITION}</message-selector>
<bindings>

<group-binding group-id="ActiveActiveGroupBean_group1">
<param id="CONDITION">acctid <= 1000</param>

</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group2">

<param id="CONDITION">acctid > 1000</param>
</group-binding>

Configuring Scalability

25-22 Developer's Guide for Oracle Event Processing

 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event
Processing server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as
acctid <= 1000 and the application processes events whose acctid property is
less than or equal to 1000. Similarly, when the application is deployed to an Oracle
Event Processing server with a cluster element groups child element that
contains ActiveActiveGroupBean_group2, then the CONDITION parameter is
defined as acctid > 1000 and the application processes events whose acctid
property is greater than 1000.

7. Edit the component configuration file to configure a jms-adapter element for the
outbound JMS adapter as Example 25–13 shows:

■ Configure the out-bound JMS adapter with the same topic as the correlating
in-bound adapter (in this example, JMSInboundAdapter2: ./Topic2).

■ Set session-transacted to true.

Example 25–13 jms-adapter Element for Outbound JMS Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config

xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">

...
<jms-adapter>

<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<session-transacted>true</session-transacted>

... </jms-adapter>
<jms-adapter>

<name>JMSInboundAdapter2</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic2</destination-jndi-name>
<session-transacted>true</session-transacted>

... </jms-adapter>
<jms-adapter>

<name>JMSOutboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic2</destination-jndi-name>
<session-transacted>true</session-transacted>

... </jms-adapter>
</wlevs:config>

For more information, see Chapter 11, "Integrating the Java Message Service".

8. Deploy your application to the deployment group of your multi-server domain.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

At runtime, each Oracle Event Processing server configures its instance of the
application with the message-selector that corresponds to its
ActiveActiveGroupBean notification group. This partitions the JMS topic so that
each instance of the application processes a subset of the total number of messages
in parallel.

Configuring Scalability

Developing Scalable Applications 25-23

If the active Oracle Event Processing server in an ActiveActiveGroupBean group
goes down, the Oracle Event Processing server performs an Oracle Event
Processing high availability failover to the standby Oracle Event Processing server
in that ActiveActiveGroupBean group.

How to Configure the ActiveActiveGroupBean Group Pattern Match
By default, the ActiveActiveGroupBean creates notification groups named:

ActiveActiveGroupBean_X

Where X is a string.

At runtime, the ActiveActiveGroupBean scans the existing groups defined on the
Oracle Event Processing server and applies a default pattern match of:

ActiveActiveGroupBean_\\w+

When it finds a match, it creates a notification group of that name.

Optionally, you can define your own group pattern to specify a different notification
group naming pattern.

How to configure the ActiveActiveGroupBean group pattern match:
1. Configure the EPN assembly file to add a groupPattern attribute to your

ActiveActiveGroupBean element as Example 25–14 shows.

Example 25–14 ActiveActiveGroupBean bean Element With groupPattern Attribute

<bean id="clusterAdapter" class="com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean">
<property name="groupPattern" value="MyNotificationGroupPattern*"/>

</bean>

2. Specify a value for the groupPattern attribute that matches the cluster group
naming convention you want to use for notification groups.

Configuring Scalability

25-24 Developer's Guide for Oracle Event Processing

26

Extending Component Configuration 26-1

26Extending Component Configuration

[27] This chapter describes how to use an XML schema to extend the default configuration
for adapters and event beans used with Oracle Event Processing, including
information on using Java annotations to generate the configuration XML.

This chapter includes the following sections:

■ Overview of Extending Component Configuration

■ Extending Component Configuration

■ Programming Access to the Configuration of a Custom Adapter or Event Bean

Overview of Extending Component Configuration
Adapters and event beans have default configuration data. This default configuration
is typically adequate for simple and basic applications.

However, you can also extend this configuration by using a XML Schema Definition
(XSD) schema to specify a new XML format of an adapter configuration file that
extends the built-in XML type provided by Oracle Event Processing. By extending the
XSD Schema, you can add as many new elements to the adapter configuration as you
want, with few restrictions other than each new element must have a name attribute.

This feature is based on standard technologies, such as XSD and Java Architecture for
XML Binding (JAXB).

You can extend component configuration by:

■ Annotating your adapter or event bean Java class with the annotations that
javax.xml.bind.annotation specifies.

See Section , "Extending Component Configuration Using Annotations".

■ Manually generating an XSD.

See Section , "Extending Component Configuration Using an XSD".

■ Manually generating a custom schema which does not extend the application
schema.

This allows you to create custom configuration in your own namespace without
having to define all the other elements. This mechanism functions like the
annotation approach after you generate the schema.

For more information, see:

■ Chapter 15, "Integrating an External Component Using a Custom Adapter"

■ Section , "Configuring a Java Class as an Event Bean"

Extending Component Configuration

26-2 Developer's Guide for Oracle Event Processing

■ Section , "Component Configuration Schema wlevs_application_config.xsd"

Extending Component Configuration Using Annotations
The simplest and most efficient way to extend component configuration is to annotate
your adapter or event bean Java class using the annotations that
javax.xml.bind.annotation specifies.

Oracle Event Processing supports the inclusion of multiple namespaces in an EPN
configuration file as well as supporting sourcing configuration information from the
providing bundle rather than the client bundle. Oracle Event Processing scans for
multiple ObjectFactories in the accessible class-space and each of these will be
initialized through createConfig.

The schema search takes into account the wlevs:factory element provider-schema
child element in adapter bundles. So if you are defining an adapter in its own bundle
you can put the schema in that bundle as long as you define the provider-bundle
property.

Oracle recommends that you use elementFormDefault="unqualified" so that locally
defined elements will not have a namespace, but global elements will leverage the
targetNamespace. This will avoid name clashes across schemas without requiring
excessive prefixing.

For more information, see http://www.xfront.com/HideVersusExpose.html.

For more information, see:

■ Section , "How to Extend Component Configuration Using Annotations"

■ http://java.sun.com/javaee/6/docs/api/javax/xml/bind/annotation/package-s
ummary.html

Extending Component Configuration Using an XSD
If you require more detailed control over your custom component configuration, you
can extend your component configuration by creating your own XSD.

For more information, see:

■ Section , "How to Extend Component Configuration Using an XSD"

■ http://jaxb.java.net/

Extending Component Configuration
You can extend component configuration in either of the following ways:

For more information, see Section , "Overview of Extending Component
Configuration".

How to Extend Component Configuration Using Annotations
The simplest and most efficient way to extend component configuration is to annotate
your adapter or event bean Java class.

Alternatively, you can extend component configuration by creating your own XSD as
Section , "How to Extend Component Configuration Using an XSD" describes.

For more information, see Section , "Extending Component Configuration Using
Annotations".

Extending Component Configuration

Extending Component Configuration 26-3

To extend component configuration using annotations:
1. Implement your custom adapter or event bean Java class.

For more information, see:

■ Section , "Implementing a Custom Adapter"

■ Chapter 16, "Handling Events with Java"

2. Annotate the attributes of your custom adapter or event bean to specify the
component configuration using the annotations that javax.xml.bind.annotation
specifies.

Important javax.xml.bind.annotation annotations include:

■ @XmlElement: property is an optional part of the component configuration.

■ @XmlElement(required=true): property is a required part of the component
configuration.

■ @XmlTransient: property is not part of the component configuration.

■ @XmlJavaTypeAdapter: property elements annotated with this can specify
custom handling to accommodate most Java data types.

Example 26–1 shows a custom adapter implementation annotated with
javax.xml.bind.annotation annotations to specify:

■ count: not part of the component configuration.

■ doit: required part of the component configuration.

■ size: required part of the component configuration; maps to instance property
howBig.

Example 26–1 Annotated Custom Adapter Implementation

@XmlType(name="SampleAdapterConfig", namespace="http://www.oracle.com/ns/cep/config/sample")
public class SampleAdapterImpl implements Adapter {

@XmlTransient
private int count;

@XmlElement(name="size")
private int howBig;

@XmlElement(required=true)
private boolean doit;

...

public void setDoit(boolean doit) {
this.doit = doit;

}

public boolean getDoit() {

Note: If you require extensive use of @XmlJavaTypeAdapter, consider
defining your own custom schema as Section , "How to Extend
Component Configuration Using an XSD" describes.

Note: A property without an annotation is assumed to be an optional
configuration property (default: @XmlElement).

Extending Component Configuration

26-4 Developer's Guide for Oracle Event Processing

return doit;
}

}

3. Within your custom adapter or event bean code, access the extended configuration
as Section , "Programming Access to the Configuration of a Custom Adapter or
Event Bean" describes.

4. Modify the component configuration XML file that describes the custom
components of your application.

For more information, see Section , "Configuring a Custom Adapter in a
Component Configuration File".

5. When you create the component configuration XML file that describes the
components of your application, be sure to use the extended XSD file as its
description. In addition, be sure you identify the namespace for this schema rather
than the default schema.

Example 26–2 shows a component configuration file for the custom adapter in
Example 26–1.

Example 26–2 Extended Component Configuration: Annotations

<?xml version="1.0" encoding="UTF-8"?>
<app:config

xmlns:app="http://www.bea.com/ns/wlevs/config/application"
xmlns:sample="http://www.oracle.com/ns/cep/config/sample"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.bea.com/ns/wlevs/config/application
http://www.bea.com/ns/wlevs/config/application/wlevs_application_config.xsd
http://www.oracle.com/ns/cep/config/sample
http://www.oracle.com/ns/cep/config/sample/ocep_sample_config.xsd">

<processor>
<name>clusterProcessor</name>
<rules>
<query id="clusterRule"><![CDATA[select * from clusterInstream [Now]]]></query>

</rules>
</processor>
<sample:adapter>

<name>myadapter</name>
<config>

<size>15</size> <!-- optional -->
<doit>true</doit> <!-- required -->

</config>
</sample:adapter>

</app:config>

6. Package and deploy your application.

For more information, see Chapter 23, "Assembling and Deploying Oracle Event
Processing Applications".

How to Extend Component Configuration Using an XSD
You can extend the component configuration of a custom adapter or event bean using
your own XSD.

Note: The extended component configuration schema requires a
nested config element as Example 26–5 shows.

Extending Component Configuration

Extending Component Configuration 26-5

Alternatively, you can extend component configuration by annotating your adapter or
event bean Java class as Section , "How to Extend Component Configuration Using
Annotations" describes.

For more information, see Section , "Extending Component Configuration Using an
XSD".

To extend component configuration using an XSD:
1. Create the new XSD Schema file that describes the extended adapter or event bean

configuration.

This XSD file must also include the description of the other components in your
application (processors and streams), although you typically use built-in XSD
types, defined by Oracle Event Processing, to describe them.

See Section , "Creating the XSD Schema File".

2. As part of your application build process, generate the Java representation of the
XSD schema types using a JAXB binding compiler, such as the
com.sun.tools.xjc.XJCTask Ant task from Sun's GlassFish reference
implementation. This Ant task is included in the Oracle Event Processing
distribution for your convenience.

The following sample build.xml file shows how to do this:

<property name="base.dir" value="." />
<property name="output.dir" value="output" />
<property name="sharedlib.dir" value="${base.dir}/../../../../../modules" />
<property name="wlrtlib.dir" value="${base.dir}/../../../../modules"/>
<path id="classpath">

<pathelement location="${output.dir}" />
<fileset dir="${sharedlib.dir}">

<include name="*.jar" />
</fileset>
<fileset dir="${wlrtlib.dir}">

 <include name="*.jar"/>
</fileset>

</path>
<taskdef name="xjc" classname="com.sun.tools.xjc.XJCTask">

<classpath refid="classpath" />
</taskdef>
<target name="generate" depends="clean, init">
 <copy file="../../../../xsd/wlevs_base_config.xsd"

 todir="src/main/resources/extension" />
 <copy file="../../../../xsd/wlevs_application_config.xsd"

todir="src/main/resources/extension" />
 <xjc extension="true" destdir="${generated.dir}">

<schema dir="src/main/resources/extension"
includes="helloworld.xsd"/>

<produces dir="${generated.dir}" includes="**/*.java" />
 </xjc>

</target>

In the example, the extended XSD file is called helloworld.xsd. The build process
copies the Oracle Event Processing XSD files (wlevs_base_config.xsd and wlevs_
application_config.xsd) to the same directory as the helloworld.xsd file
because helloworld.xsd imports the Oracle Event Processing XSD files.

For more information, see
http://jaxb.java.net/nonav/2.0.2/docs/xjcTask.html.

Extending Component Configuration

26-6 Developer's Guide for Oracle Event Processing

3. Compile these generated Java files into classes.

4. Package the compiled Java class files in your application bundle.

See Section , "Assembling an Oracle Event Processing Application".

5. Program your custom adapter or event bean.

For more information, see:

■ Section , "Implementing a Custom Adapter."

■ Chapter 16, "Handling Events with Java"

6. Within your custom adapter or event bean code, access the extended configuration
as Section , "Programming Access to the Configuration of a Custom Adapter or
Event Bean" describes.

7. When you create the component configuration XML file that describes the
components of your application, be sure to use the extended XSD file as its
description. In addition, be sure you identify the namespace for this schema rather
than the default schema.

Example 26–3 shows a component configuration file for the XSD you created in
Section , "Creating the XSD Schema File".

Example 26–3 Extended Component Configuration File: XSD

<?xml version="1.0" encoding="UTF-8"?>
<helloworld:config
xmlns:helloworld="http://www.bea.com/xml/ns/wlevs/example/helloworld">
<adapter>
<name>helloworldAdapter</name>
<message>HelloWorld - the current time is:</message>

</adapter>
</helloworld:config>

Creating the XSD Schema File
The new XSD schema file extends the wlevs_application_config.xsd XSD schema
and then adds new custom information, such as new configuration elements for an
adapter. Use standard XSD schema syntax for your custom information.

Oracle recommends that you use the XSD schema in Section , "Complete Example of
an Extended XSD Schema File" as a basic template, and modify the content to suit your
needs. In addition to adding new configuration elements, other modifications include
changing the package name of the generated Java code and the element name for the
custom adapter. You can control whether the schema allows just your custom adapter
or other components like processors.

For more information, see Section , "Component Configuration Schema wlevs_
application_config.xsd".

To create a new XSD schema file:
1. Using your favorite XML Editor, create the basic XSD file with the required

namespaces, in particular those for JAXB. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.bea.com/xml/ns/wlevs/example/helloworld"

xmlns="http://www.bea.com/xml/ns/wlevs/example/helloworld"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"

Extending Component Configuration

Extending Component Configuration 26-7

xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
jxb:extensionBindingPrefixes="xjc" jxb:version="1.0"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

...
</xs:schema>

2. Import the wlevs_application_config.xsd XSD schema:

<xs:import
 namespace="http://www.bea.com/ns/wlevs/config/application"
 schemaLocation="wlevs_application_config.xsd"/>

The wlevs_application_config.xsd in turn imports the wlevs_base_config.xsd
XSD file.

3. Use the complexType XSD element to describe the XML type of the extended
adapter configuration.

The new type must extend the AdapterConfig type, defined in wlevs_
application_config.xsd. AdapterConfig extends ConfigurationObject. You can
then add new elements or attributes to the basic adapter configuration as needed.
For example, the following type called HelloWorldAdapterConfig adds a message
element to the basic adapter configuration:

<xs:complexType name="HelloWorldAdapterConfig">
<xs:complexContent>

<xs:extension base="wlevs:AdapterConfig">
<xs:sequence>

<xs:element name="message" type="xs:string"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

4. Define a top-level element that must be named config.

In the definition of the config element, define a sequence of child elements that
correspond to the components in your application. Typically the name of the
elements should indicate what component they configure (adapter, processor,
channel) although you can name then anything you want.

Each element must extend the ConfigurationObject XML type, either explicitly
using the xs:extension element with base attribute value
base:ConfigurationObject or by specifying an XML type that itself extends
ConfigurationObject. The ConfigurationObject XML type, defined in wlevs_
base_config.xsd, defines a single attribute: name.

The type of your adapter element should be the custom one you created in a
preceding step of this procedure.

You can use the following built-in XML types that wlevs_application_
config.xsd describes, for the child elements of config that correspond to
processors or streams:

■ DefaultProcessorConfig—For a description of the default processor
configuration, see:

– Section , "Overview of Oracle CQL Processor Configuration"

– Section , "Overview of EPL Processor Component Configuration"

Extending Component Configuration

26-8 Developer's Guide for Oracle Event Processing

■ DefaultStreamConfig—For a description of the default channel configuration,
see Section , "Overview of Channel Configuration".

For example:

<xs:element name="config">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="adapter" type="HelloWorldAdapterConfig"/>
<xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>

</xs:choice>
</xs:complexType>

</xs:element>

5. Optionally use the jxb:package child element of jxb:schemaBindings to specify
the package name of the generated Java code:

<xs:annotation>
<xs:appinfo>
 <jxb:schemaBindings>

 <jxb:package name="com.bea.adapter.wlevs.example.helloworld"/>
 </jxb:schemaBindings>

</xs:appinfo>
</xs:annotation>

Complete Example of an Extended XSD Schema File Use the following extended XSD file as
a template:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.bea.com/xml/ns/wlevs/example/helloworld"

xmlns="http://www.bea.com/xml/ns/wlevs/example/helloworld"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
jxb:extensionBindingPrefixes="xjc" jxb:version="1.0"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
<xs:annotation>

<xs:appinfo>
<jxb:schemaBindings>

<jxb:package
name="com.bea.adapter.wlevs.example.helloworld"/>

</jxb:schemaBindings>
</xs:appinfo>

</xs:annotation>
<xs:import namespace="http://www.bea.com/ns/wlevs/config/application"

schemaLocation="wlevs_application_config.xsd"/>
<xs:element name="config">

<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element name="adapter" type="HelloWorldAdapterConfig"/>
<xs:element name="processor"

type="wlevs:DefaultProcessorConfig"/>
<xs:element name="channel" type="wlevs:DefaultStreamConfig"/>

 </xs:choice>
</xs:complexType>

</xs:element>
<xs:complexType name="HelloWorldAdapterConfig">

<xs:complexContent>
<xs:extension base="wlevs:AdapterConfig">

<xs:sequence>
<xs:element name="message" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>

Programming Access to the Configuration of a Custom Adapter or Event Bean

Extending Component Configuration 26-9

</xs:complexType>
</xs:schema>

Programming Access to the Configuration of a Custom Adapter or Event
Bean

This section applies to both adapters and event beans. For simplicity the text mentions
only adapters.

When you deploy your application, Oracle Event Processing maps the configuration of
each component (specified in the component configuration XML files) into Java objects
using the Java Architecture for XML Binding (JAXB) standard (for more information,
see http://jaxb.java.net/). Because there is a single XML element that contains the
configuration data for each component, JAXB in turn also produces a single Java class
that represents this configuration data. Oracle Event Processing passes an instance of
this Java class to the component (processor, channel, or adapter) at runtime when the
component is initialized, and also whenever there is a dynamic change to the
component's configuration.

You can access this component configuration at runtime in either of the following
ways:

■ Using resource injection as Section , "How to Access Component Configuration
Using Resource Injection" describes.

This is the simplest and most efficient way to access component configuration at
runtime.

■ Using callbacks as Section , "How to Access Component Configuration Using
Lifecycle Callbacks".

This is the most flexible way to access component configuration at runtime.
Consider this option if you cannot easily accomplish your intentions using
resource injection.

How to Access Component Configuration Using Resource Injection
By default, Oracle Event Processing configures adapters by direct injection of their
Java bean properties followed by the usual configuration callbacks.

Consider the annotated custom adapter implementation that Example 26–4 shows.

Example 26–4 Custom Adapter Implementation

@XmlType(name="SampleAdapterConfig", namespace="http://www.oracle.com/ns/cep/config/sample")
public class SampleAdapterImpl implements Adapter {

private boolean doit;

public void setDoit(boolean doit) {
this.doit = doit;

}

public boolean getDoit() {
return doit;

}
}

Note: Clients needing to use schema from an adapter provider must
import the appropriate package from the provider bundle so that the
provider’s ObjectFactory is visible to the client bundle.

Programming Access to the Configuration of a Custom Adapter or Event Bean

26-10 Developer's Guide for Oracle Event Processing

And consider the component configuration file for an instance of this custom adapter
that Example 26–5

Example 26–5 Extended Component Configuration

<?xml version="1.0" encoding="UTF-8"?>
<app:config

xmlns:app="http://www.bea.com/ns/wlevs/config/application"
xmlns:sample="http://www.oracle.com/ns/cep/config/sample"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.bea.com/ns/wlevs/config/application
http://www.bea.com/ns/wlevs/config/application/wlevs_application_config.xsd
http://www.oracle.com/ns/cep/config/sample
http://www.oracle.com/ns/cep/config/sample/ocep_sample_config.xsd">

<processor>
<name>clusterProcessor</name>
<rules>
<query id="clusterRule"><![CDATA[select * from clusterInstream [Now]]]></query>

</rules>
</processor>
<sample:adapter>

<name>myadapter</name>
<config>

<doit>true</doit>
</config>

</sample:adapter>
</app:config>

At runtime, by default Oracle Event Processing directly injects the value (true) of the
Java bean property doit.

For more information, see:

■ Section , "How to Access Component Configuration Using Lifecycle Callbacks"

■ Section , "Configuring Oracle Event Processing Resource Access"

How to Access Component Configuration Using Lifecycle Callbacks
In your adapter implementation, you can use metadata annotations to specify the Java
methods that are invoked by Oracle Event Processing at runtime.

Oracle Event Processing passes an instance of the configuration Java class to these
specified methods; you can then program these methods to get specific runtime
configuration information about the adapter.

The following example shows how to annotate the activateAdapter method with the
@Activate annotation to specify the method invoked when the adapter configuration
is first activated:

@Activate
public void activateAdapter(HelloWorldAdapterConfig adapterConfig) {

this.message = adapterConfig.getMessage();
}

By default, the data type of the adapter configuration Java class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig. If, however,

Note: The extended component configuration schema requires a
nested config element as Example 26–5 shows.

Programming Access to the Configuration of a Custom Adapter or Event Bean

Extending Component Configuration 26-11

you have extended the configuration of your adapter by creating your own XSD file
that describes the configuration XMLfile, then you specify the type in the XSD file. In
the preceding example, the data type of the Java configuration object is
com.bea.wlevs.example.helloworld.HelloWorldAdapterConfig.

This section describes:

■ Section , "Lifecycle Callback Annotations"

■ Section , "Lifecycle"

Lifecycle Callback Annotations
You can use the following metadata annotations to specify various lifecycle callback
methods:

■ com.bea.wlevs.management.Activate—Specifies the method invoked when the
configuration is activated.

See Section , "com.bea.wlevs.configuration.Activate" for additional details about
using this annotation in your adapter code.

■ com.bea.wlevs.management.Prepare—Specifies the method invoked when the
configuration is prepared.

See Section , "com.bea.wlevs.configuration.Prepare" for additional details about
using this annotation in your adapter code.

■ com.bea.wlevs.management.Rollback—Specifies the method invoked when the
adapter is terminated due to an exception.

See Section , "com.bea.wlevs.configuration.Rollback" for additional details about
using this annotation in your adapter code.

For more information, see Section , "Lifecycle".

Lifecycle
Oracle Event Processing follows the following lifecycle during custom adapter and
event bean instantiation:

1. Create adapter or event bean instance.

2. Inject static properties.

3. Call afterPropertiesSet.

4. Prepare phase:

a. If @Prepare with one or more configuration arguments is present, call it.

b. Otherwise, directly inject configuration properties.

See Section , "How to Access Component Configuration Using Resource
Injection".

c. If @Prepare without arguments is present, call it.

5. Activate phase:

a. If @Activate with one or more configuration arguments is present, call it.

b. If @Activate without arguments is present, call it.

6. Call afterConfigurationActive.

7. Continue with other configuration.

Programming Access to the Configuration of a Custom Adapter or Event Bean

26-12 Developer's Guide for Oracle Event Processing

27

Performance Tuning 27-1

27Performance Tuning

[28] This chapter describes techniques for improving Oracle Event Processing application
performance by using partitioning and batching, and includes information specific to
high availability performance tuning.

This chapter includes the following sections:

■ EPN Performance Tuning

■ High Availability Performance Tuning

EPN Performance Tuning
When creating your EPN, consider the following performance tuning options:

■ Section , "Event Partitioner Channel"

■ Section , "Batching Channel"

■ Section , "Scalability Using the ActiveActiveGroupBean"

For more information, see Chapter 25, "Developing Scalable Applications".

Event Partitioner Channel
You can improve scalability by configuring an event partitioner channel. When you
configure a channel to use an event partitioner, each time an incoming event arrives,
the channel selects a listener and dispatches the event to that listener instead of
broadcasting each event to every listener for partitioning events on a channel across its
output event sinks.

For more information, see Section , "EventPartitioner".

Batching Channel
By default, a channel processes events as they arrive. Alternatively, you can configure
a channel to batch events together that have the same timestamp by setting the
wlevs:channel attribute batching to true.

For more information, see Section , "Batch Processing Channels".

Scalability Using the ActiveActiveGroupBean
Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can
partition an incoming JMS stream in Oracle Event Processing applications by utilizing
the notification groups that the ActiveActiveGroupBean creates.

High Availability Performance Tuning

27-2 Developer's Guide for Oracle Event Processing

For more information, see Section , "ActiveActiveGroupBean".

High Availability Performance Tuning
When creating high-availability applications for deployment to multi-server domains,
consider the following performance tuning options:

■ Section , "Host Configuration"

■ Section , "High Availability Input Adapter and Quality of Service"

■ Section , "High Availability Input Adapter Configuration"

■ Section , "Broadcast Output Adapter Configuration"

■ Section , "Oracle Coherence Performance Tuning Options"

For more information, see Section , "Designing an Oracle Event Processing Application
for High Availability"

Host Configuration
If you only want availability and are not concerned with recovery time, then it is
possible to use smaller, less equipped hosts as secondaries. However, to maximize
high availability performance, ensure that all hosts in the multi-server domain are
identical: same number and type of processor, same quantity of memory, same number
and size of disks.

High Availability Input Adapter and Quality of Service
The Oracle Event Processing high availability input adapter is applicable to all high
availability quality of service options. However, because the high availability input
adapter increases performance overhead, it is not appropriate for some high
availability quality of service options (such as Section , "Simple Failover" and Section ,
"Simple Failover with Buffering").

If you are using application time from the event then you do not need to use the input
adapter. Application time from the event is always preferable from a performance
standpoint.

High Availability Input Adapter Configuration
Consider increasing the batch-size to reduce the amount of time the primary server
spends broadcasting event messages and to reduce the amount of time the secondary
servers spend processing these messages.

Increasing the batch-size may increase the likelihood of missed and duplicate events
if the primary fails before broadcasting an event message with a large number of
events.

For more information, see Table 24–5, " Child Elements of ha-inbound-adapter for the
High Availability Input Adapter".

Broadcast Output Adapter Configuration
Consider decreasing the trimming-interval to reduce the amount of time the primary
server spends broadcasting trimming messages and to reduce the amount of time the
secondary servers spend processing these messages.

High Availability Performance Tuning

Performance Tuning 27-3

Decreasing the trimming-interval may increase recovery time as the new primary
server’s in-memory queue will be more out of date relative to the old primary.

For more information, see Table 24–11, " Child Elements of ha-broadcast-adapter for
the Broadcast Output Adapter".

Oracle Coherence Performance Tuning Options
When configuring Oracle Coherence in a high-availability architecture, consider the
following performance tuning options:

■ Section , "Oracle Coherence Heartbeat Frequency"

■ Section , "Oracle Coherence Serialization"

For more information, see "Performance Tuning" in the Oracle Coherence Developer's
Guide at http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/tune_
perftune.htm.

Oracle Coherence Heartbeat Frequency
To reduce failover time, increase Coherence heartbeat timeout machine frequency and
reduce the number of heartbeats before failure.

Oracle Coherence Serialization
To improve messaging performance, implement the Oracle Coherence Portable Object
Format (POF) for serialization. POF is a language agnostic binary format that was
designed to be very efficient in both space and time. Using POF instead of Java
serialization can greatly improve performance.

For more information, see
http://coherence.oracle.com/display/COH35UG/The+Portable+Object+Format.

High Availability Performance Tuning

27-4 Developer's Guide for Oracle Event Processing

Part V
Part V Appendices

Part V contains the following appendices:

■ Appendix A, "Additional Information about Spring and OSGi"

■ Appendix B, "Oracle Event Processing Schemas"

■ Appendix C, "Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd"

■ Appendix D, "Schema Reference: Component Configuration wlevs_application_
config.xsd"

■ Appendix E, "Schema Reference: Deployment deployment.xsd"

■ Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd"

■ Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

■ Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

■ Appendix I, "Oracle Event Processing Metadata Annotation Reference"

A

Additional Information about Spring and OSGi A-1

AAdditional Information about Spring and OSGi

[29] This appendix lists links to more information about the Spring Framework and OSGi
Service Platform, on which Oracle Event Processing applications are built.

For additional information about Spring and OSGi, see:

■ Spring Framework API 2.5:
http://static.springframework.org/spring/docs/2.5.x/api/index.html

■ The Spring Framework - Reference Documentation 2.5:
http://static.springframework.org/spring/docs/2.5.x/reference/index.htm
l

■ Spring-OSGi Project: http://www.springframework.org/osgi

■ OSGi Release 4 Service Platform Javadoc: http://www.springframework.org/osgi

■ OSGi Release 4 Core Specification: http://www.osgi.org/osgi_
technology/download_specs.asp?section=2#Release4

A-2 Developer's Guide for Oracle Event Processing

B

Oracle Event Processing Schemas B-1

BOracle Event Processing Schemas

[30] This appendix introduces schemas behind Oracle Event Processing configuration and
deployment XML files, including brief examples of each.

This appendix includes the following sections:

■ EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd

■ Component Configuration Schema wlevs_application_config.xsd

■ Deployment Schema deployment.xsd

■ Server Configuration Schema wlevs_server_config.xsd

EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd
You use the EPN assembly file to declare the components that make up your Oracle
Event Processing application and how they are connected to each other, or in other
words, the event processing network. The EPN assembly file is an extension of the
standard Spring context file. You also use the file to register the Java classes that
implement the adapter and POJO components of your application, register the event
types that you use throughout your application and EPL rules, and reference in your
environment the Oracle Event Processing-specific services.

The spring-wlevs-v11_1_1_6.xsd file describes the structure of EPN assembly files.

This schema file is located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where
ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as
d:\oracle_cep.

For more information, see Appendix C, "Schema Reference: EPN Assembly
spring-wlevs-v11_1_1_6.xsd".

Example EPN Assembly File
The following XML file shows the EPN assembly file for the HelloWorld example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

Component Configuration Schema wlevs_application_config.xsd

B-2 Developer's Guide for Oracle Event Processing

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

<!-- Adapter can be created from a local class, without having to go through a adapter factory -->
<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >

<wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<!-- The default processor for Oracle Event Processing 11.0.0.0 is CQL -->
<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

</beans>

Component Configuration Schema wlevs_application_config.xsd
An Oracle Event Processing application contains one or more component
configuration files in its META-INF/wlevs directory. You use component configuration
files to override the default configuration for Oracle Event Processing components
such as adapters, channels, and processors.

The wlevs_application_config.xsd schema file describes the structure of component
configuration files. This XSD schema imports the following schemas:

■ wlevs_base_config.xsd

■ wlevs_eventstore_config.xsd

■ wlevs_diagnostic_config.xsd

These schema files are located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory,
where ORACLE_CEP_HOME is the main Oracle Event Processing installation directory,
such as d:\oracle_cep.

For more information, see Appendix D, "Schema Reference: Component Configuration
wlevs_application_config.xsd".

Example Component Configuration File
The following example shows the component configuration file for the HelloWorld
sample application:

<?xml version="1.0" encoding="UTF-8"?><n1:config
xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>helloworldProcessor</name>
<rules>

Server Configuration Schema wlevs_server_config.xsd

Oracle Event Processing Schemas B-3

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>
<channel>

<name>helloworldInputChannel</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>

</channel>
<channel>

<name>helloworldOutputChannel</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>

</channel>
</n1:config>

Deployment Schema deployment.xsd
The deployment file for an Oracle Event Processing instance is called deployments.xml
and is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the
main domain directory and servername refers to the name of the server instance. This
XML file lists the OSGi bundles that have been deployed to the server.

The deployment.xsd schema file describes the structure of deployment files.

This schema file is located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where
ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as
d:\oracle_cep.

For more information, see Appendix E, "Schema Reference: Deployment
deployment.xsd".

Example Deployment XML File
The following example shows the deployments.xml file for the sample FX domain:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.bea.com/ns/wlevs/deployment
http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment id="fx" state="start"
location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>

</beans>

Server Configuration Schema wlevs_server_config.xsd
The Oracle Event Processing server configuration file, config.xml, is located in the
DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main
domain directory and servername refers to a particular server instance. To change the

Server Configuration Schema wlevs_server_config.xsd

B-4 Developer's Guide for Oracle Event Processing

configuration of an Oracle Event Processing instance, you can update this file
manually and add or remove server configuration elements.

The welvs_server_config.xsd schema file describes the structure of server
configuration files.

This schema file is located in the ORACLE_CEP_HOME\ocep_11.1\xsd directory, where
ORACLE_CEP_HOME is the main Oracle Event Processing installation directory, such as
d:\oracle_cep.

For more information, see Appendix F, "Schema Reference: Server Configuration
wlevs_server_config.xsd".

Example Server Configuration XML File
The following sample config.xml, from the ORACLE_CEP_HOME/user_
projects/domains/ocep_domain/defaultserver template domain, shows how to
configure some of these services:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="

http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<netio>
<name>NetIO</name>
<port>9002</port>

</netio>
<netio>
<name>sslNetIo</name>
<ssl-config-bean-name>sslConfig</ssl-config-bean-name>
<port>9003</port>

</netio>
<work-manager>
<name>JettyWorkManager</name>
<min-threads-constraint>5</min-threads-constraint>
<max-threads-constraint>10</max-threads-constraint>

</work-manager>
<jetty>
<name>JettyServer</name>
<network-io-name>NetIO</network-io-name>
<work-manager-name>JettyWorkManager</work-manager-name>
<secure-network-io-name>sslNetIo</secure-network-io-name>

</jetty>
<rmi>
<name>RMI</name>
<http-service-name>JettyServer</http-service-name>

</rmi>
<jndi-context>
 <name>JNDI</name>
</jndi-context>
<exported-jndi-context>
<name>exportedJndi</name>
<rmi-service-name>RMI</rmi-service-name>

</exported-jndi-context>
<jmx>
<rmi-service-name>RMI</rmi-service-name>
<jndi-service-name>JNDI</jndi-service-name>

</jmx>
<ssl>
<name>sslConfig</name>

Server Configuration Schema wlevs_server_config.xsd

Oracle Event Processing Schemas B-5

<key-store>./ssl/dsidentity.jks</key-store>
<key-store-pass>

<password>changeit</password>
</key-store-pass>
<key-store-alias>ds</key-store-alias>
<key-manager-algorithm>SunX509</key-manager-algorithm>
<ssl-protocol>TLS</ssl-protocol>
<enforce-fips>false</enforce-fips>
<need-client-auth>false</need-client-auth>

</ssl>
<http-pubsub>
<name>pubsub</name>
<path>/pubsub</path>
<pub-sub-bean>
<server-config>
<name>pubsubbean</name>
<supported-transport>
<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>
<channel-pattern>/evsalert</channel-pattern>

</element>
<element>
<channel-pattern>/evsdomainchange</channel-pattern>

</element>
</channels>

</pub-sub-bean>
</http-pubsub>

</n1:config>

Server Configuration Schema wlevs_server_config.xsd

B-6 Developer's Guide for Oracle Event Processing

C

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-1

CSchema Reference: EPN Assembly
spring-wlevs-v11_1_1_6.xsd

[31] This appendix provides a reference to elements of the spring-wlevs-v11_1_1_6.xsd
schema, the schema behind assembly XML files with which you declare the
components that make up your Oracle Event Processing event processing networks
(EPNs).

This appendix includes the following sections:

■ Overview of the Oracle Event Processing Application Assembly Elements

■ wlevs:adapter

■ wlevs:application-timestamped

■ wlevs:cache

■ wlevs:cache-listener

■ wlevs:cache-loader

■ wlevs:cache-source

■ wlevs:cache-store

■ wlevs:caching-system

■ wlevs:channel

■ wlevs:class

■ wlevs:event-bean

■ wlevs:event-type

■ wlevs:event-type-repository

■ wlevs:expression

■ wlevs:factory

■ wlevs:function

■ wlevs:instance-property

■ wlevs:listener

■ wlevs:metadata

■ wlevs:processor

■ wlevs:properties

■ wlevs:property

Overview of the Oracle Event Processing Application Assembly Elements

C-2 Developer's Guide for Oracle Event Processing

■ wlevs:property

■ wlevs:source

■ wlevs:table

■ wlevs:table-source

Overview of the Oracle Event Processing Application Assembly Elements
Oracle Event Processing provides a number of application assembly elements that you
use in the EPN assembly file of your application to register event types, declare the
components of the event processing network and specify how they are linked together.
The EPN assembly file is an extension of the standard Spring context file.

Element Hierarchy
The Oracle Event Processing application assembly elements are organized into the
following hierarchy:

beans
Standard Spring and OSGi elements such as bean, osgi-service, and so on.
wlevs:event-type-repository

wlevs:event-type
wlevs:class
wlevs:metadata
wlevs:properties
wlevs:property

wlevs:adapter
wlevs:listener
wlevs:instance-property
wlevs:property

wlevs:processor
wlevs:listener
wlevs:source
wlevs:function
wlevs:instance-property
wlevs:property
wlevs:cache-source
wlevs:table-source

wlevs:channel
wlevs:listener
wlevs:source
wlevs:instance-property
wlevs:property
wlevs:application-timestamped

wlevs:expression
wlevs:event-bean

wlevs:listener
wlevs:instance-property
wlevs:property

wlevs:factory
wlevs:cache

wlevs:caching-system
wlevs:cache-loader
wlevs:cache-store
wlevs:cache-listener

wlevs:caching-system
wlevs:instance-property
wlevs:property

wlevs:adapter

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-3

wlevs:table

Example of an EPN Assembly File That Uses Oracle Event Processing Elements
The following sample EPN assembly file from the HelloWorld application shows how
to use many of the Oracle Event Processing elements:

<?xwml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message"
 value="HelloWorld - the currenttime is:"/>
 </wlevs:adapter>
 <wlevs:processor id="helloworldProcessor" />
 <wlevs:channel id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>
 <wlevs:channel id="helloworldOutstream" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>
</beans>

wlevs:adapter
Use this element to declare an adapter component to the Spring application context.

Child Elements
The wlevs:adapter application assembly element supports the following child
elements:

■ wlevs:listener

■ wlevs:instance-property

■ wlevs:property

Attributes
Table C–1 lists the attributes of the wlevs:adapter application assembly element.

wlevs:adapter

C-4 Developer's Guide for Oracle Event Processing

Table C–1 Attributes of the wlevs:adapter Application Assembly Element

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in
the XML configuration file for this adapter, if one exists.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

listeners Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the
element that declared the component.

String No.

provider Specifies the adapter service provider. Typically the
value of this attribute is a reference to the
OSGi-registered adapter factory service.

If you are using the csvgen or loadgen utilities to
simulate a data feed, use the hard-coded csvgen or
loadgen values, respectively, such as:

provider="csvgen"

If you are using one of the built-in HTTP
publish-subscribe adapters, then specify the following
hard-coded values:

■ For the built-in pub-sub adapter used for publishing,
specify the hard-coded httppub value, such as:

provider="httppub"

■ For the built-in pub-sub adapter used for
subscribing, specify the hard-coded httpsub value,
such as:

provider="httpsub"

If you are using a JMS adapter, then specify one of the
following hard-coded values:

■ For the inbound JMS adapter, specify the
jms-inbound value, such as:

provider="jms-inbound"

■ For the outbound JMS adapter, specify the
jms-outbound value, such as:

provider="jms-outbound"

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

String No.

class Specifies the Java class that implements this adapter.

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

String No

onevent-method Specifies the method of the adapter implementation that
corresponds to the lifecycle onEvent method.

Oracle Event Processing invokes this method when the
adapter receives an event.

String No

init-method Specifies the method of the adapter implementation that
corresponds to the lifecycle init method.

Oracle Event Processing invokes this method after it has
set all the supplied instance properties. This method
allows the adapter instance to perform initialization only
possible when all bean properties have been set and to
throw an exception in the event of misconfiguration.

String No

wlevs:application-timestamped

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-5

Example
The following example shows how to use the wlevs:adapter element in the EPN
assembly file:

<wlevs:adapter id="helloworldAdapter" provider="hellomsgs">
<wlevs:instance-property name="message"

value="HelloWorld - the current time is:"/>
</wlevs:adapter>

In the example, the adapter's unique identifier is helloworldAdapter. The provider is
an OSGi service, also registered in the EPN assembly file, whose reference is
hellomsgs. The adapter has a static property called message, which implies that the
adapter Java file has a setMessage method.

wlevs:application-timestamped
Use this element to specify if an wlevs:channel is application timestamped, that is, if
the application is responsible for assigning a timestamp to each event, using any time
domain.

Otherwise, wlevs:channel is system timestamped, that is, the Oracle Event Processing
server is responsible for assigning a timestamp to each event using System.nanoTime.

Child Elements
The wlevs:application-timestamped application assembly element supports the
following child elements.

■ wlevs:expression—Specifies an expression to be used as an application
timestamp for event processing.

Attributes
Table C–2 lists the attributes of the wlevs:application-timestamped application
assembly element.

activate-method Specifies the method of the adapter implementation that
corresponds to the lifecycle activate method.

Oracle Event Processing invokes this method after the
dynamic configuration of the adapter has completed.
This method allows the adapter instance to perform
initialization only possible when all dynamic bean
properties have been set and the EPN has been wired.

String No

suspend-method Specifies the method of the adapter implementation that
corresponds to the lifecycle suspend method.

Oracle Event Processing invokes this method when the
application is suspended.

String No

destroy-method Specifies the method of the adapter implementation that
corresponds to the lifecycle destroy method.

Oracle Event Processing invokes this method when the
application is stopped.

String No

Table C–1 (Cont.) Attributes of the wlevs:adapter Application Assembly Element

Attribute Description Data Type Required?

wlevs:cache

C-6 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the wlevs:application-timestamped
element in the EPN assembly file to specify an implicitly application timestamped
channel:

<wlevs:channel id="fxMarketAmerOut" >
<wlevs:application-timestamped>
</wlevs:application-timestamped>

</wlevs:channel>

In the example, the application handles event timestamps internally.

The following example shows how to use wlevs:application-timestamped element
in the EPN assembly file to specify an explicitly application timestamped channel by
specifying the wlevs:expression element.

<wlevs:channel id="fxMarketAmerOut" >
<wlevs:application-timestamped>

<wlevs:expression>mytime+10</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

In the example, the wlevs:expression element defines the arithmetic expression used
to assign a timestamp to each event.

wlevs:cache
Use this element to declare a cache to the Spring application context.

Child Elements
The wlevs:cache application assembly element supports the following child elements.

■ wlevs:caching-system—Specifies the caching system to which this cache belongs.

■ wlevs:cache-loader—Specifies the cache loader for this cache.

■ wlevs:cache-store—Specifies a cache store for this cache.

■ wlevs:cache-listener—Specifies a listener for this cache, or a component to
which the cache sends events.

Table C–2 Attributes of the wlevs:application-timestamped Application Assembly
Element

Attribute Description Data Type Required?

is-total-order Indicates if the application time published is always
strictly greater than the last value used.

Valid values are true or false. Default: false.

For more information, see "Time" in the Oracle Fusion
Middleware CQL Language Reference for Oracle Event
Processing.

Boolean No.

Note: This child element is different from the wlevs:caching-system
element used to declare a caching system. The child element of the
wlevs:cache element takes a single attribute, ref, that references the id
attribute of a declared caching system.

wlevs:cache

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-7

Attributes
Table C–3 lists the attributes of the wlevs:cache application assembly element.

Example
The following example shows how to use the wlevs:cache element in the EPN
assembly file:

<wlevs:cache id="cache-id" name="alternative-cache-name">
<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-listener ref="tradeListener" />

</wlevs:cache>

In the example, the cache's unique identifier is cache-id and its alternate name is
alternative-cache-name. The caching system to which the cache belongs has an id of
caching-system-id. The cache has a listener to which the cache sends events; the
component that listens to it has an id of tradeListener.

Table C–3 Attributes of the wlevs:cache Application Assembly Element

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in
the XML configuration file for this cache.

String Yes.

name Specifies an alternate name for this cache. If not specified,
then the name of the cache is the same as its id attribute.

String No.

key-properties Specifies a comma-separated list of names of the
properties that together form the unique key value for the
objects in the cache, or cache key. A cache key may be
composed of a single property or multiple properties.
When you configure a cache as a listener in an event
processing network, Oracle Event Processing inserts
events that reach the cache using the unique key value as a
key.

If you specify a key class using the key-class attribute,
then this attribute is optional. If you specify neither
key-properties nor key-class, then Oracle Event
Processing uses the event object itself as both the key and
value when it inserts the event object into the cache.

String No.

key-class Specifies the name of the Java class used for the cache key
when the key is a composite key.

If you do not specify the key-properties attribute, then
all properties on the key-class are assumed to be key
properties. If you specify neither key-properties nor
key-class, then Oracle Event Processing uses the event
object itself as both the key and value when it inserts the
event object into the cache

String No.

value-type Specifies the type for the values contained in the cache.
Must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in
an Oracle CQL or EPL query. This is because the query
processor needs to know the type of events in the cache.

String No.

caching-system Specifies the caching system in which this cache is
contained.

The value of this attribute corresponds to the id attribute
of the appropriate wlevs:caching-system element.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

wlevs:cache-listener

C-8 Developer's Guide for Oracle Event Processing

wlevs:cache-listener
Use this element to specify a cache as a source of events to the listening component.
The listening component must implement the com.bea.cache.jcache.CacheListener
interface.

This element is always a child of wlevs:cache.

Attributes
Table C–4 lists the attributes of the wlevs:cache-listener application assembly
element.

Example
The following example shows how to use the wlevs:cache-listener element in the
EPN assembly file:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id" name="alternative-cache-name">

<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-listener ref="cache-listener-id" />

</wlevs:cache>
...
<bean id="cache-listener-id" class="wlevs.example.MyCacheListener"/>

In the example, the cache-listener-id Spring bean listens to events coming from the
cache; the class that implements this component, wlevs.example.MyCacheListener,
must implement the com.bea.jcache.CacheListener interface. You must program the
wlevs.example.MyCacheListener class yourself.

wlevs:cache-loader
spring-wlevs-v11_1_1_6.xsdSpecifies the Spring bean that implements an object that
loads data into a cache.

This element is always a child of wlevs:cache.

Attributes
Table C–5 lists the attributes of the wlevs:cache-loader application assembly element.

Table C–4 Attributes of the wlevs:cache-listener Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the component that listens to this cache.

Set this attribute to the value of the id attribute of the listening
component. The listening component can be an adapter or a Spring
bean.

String No.

Table C–5 Attributes of the wlevs:cache-loader Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the Spring bean that implements the class that loads data
into the cache.

Set this attribute to the value of the id attribute of the Spring bean.

The Spring bean must implement the
com.bea.cache.jcache.CacheLoader interface.

String Yes.

wlevs:cache-source

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-9

Example
The following example shows how to use the wlevs:cache-loader element in the EPN
assembly file:

<wlevs:cache id="cache-id" name="alternative-cache-name">
<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-loader ref="cache-loader-id" />

</wlevs:cache>
...

 <bean id="cache-loader-id" class="wlevs.example.MyCacheLoader"/>

In the example, the cache-loader-id Spring bean, implemented with the
wlevs.example.MyCacheLoader class that in turn implements the
com.bea.cache.jcache.CacheLoader interface, is a bean that loads data into a cache.
The cache specifies this loader by pointing to it with the ref attribute of the
wlevs:cache-loader child element.

wlevs:cache-source
Specifies a cache that supplies data to this processor component. The processor
component in turn is associated with an Oracle CQL or EPL query that directly
references the cache.

Use the value-type attribute of the wlevs:cache element to declare the event type of
the data supplied by the cache.

This element is a child of only wlevs:processor element.

Attributes
Table C–6 lists the attributes of the wlevs:cache-source application assembly element.

Example
The following example shows how to use the wlevs:cache-source element in the EPN
assembly file:

<wlevs:caching-system id="caching-system-id"/>
...
<wlevs:cache id="cache-id"

 name="alternative-cache-name"
 value-type="Company">

<wlevs:caching-system ref="caching-system-id"/>
</wlevs:cache>
<wlevs:channel id="stream-id"/>
<wlevs:processor id="processor-id">
<wlevs:cache-source ref="cache-id">
<wlevs:source ref="stream-id">

</wlevs:processor>

In the example, the processor will have data pushed to it from the stream-id channel
as usual; however, the Oracle CQL or EPL queries that execute in the processor can

Table C–6 Attributes of the wlevs:cache-source Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the cache that is a source of data for the processor
component.

Set this attribute to the value of the id attribute of the cache.

String Yes.

wlevs:cache-store

C-10 Developer's Guide for Oracle Event Processing

also pull data from the cache-id cache. When the query processor matches an event
type in the FROM clause to an event type supplied by a cache, such as Company, the
processor pulls instances of that event type from the cache.

wlevs:cache-store
Specifies the Spring bean that implements a custom store that is responsible for
writing data from the cache to a backing store, such as a table in a database.

This element is always a child of wlevs:cache.

Attributes
Table C–7 lists the attributes of the wlevs:cache-store application assembly element.

Example
The following example shows how to use the wlevs:cache-store element in the EPN
assembly file:

<wlevs:cache id="cache-id" name="alternative-cache-name">
<wlevs:caching-system ref="caching-system-id"/>
<wlevs:cache-store ref="cache-store-id" />

</wlevs:cache>
...

 <bean id="cache-store-id" class="wlevs.example.MyCacheStore"/>

In the example, the cache-store-id Spring bean, implemented with the
wlevs.example.MyCacheStore class that in turn implements the
com.bea.cache.jcache.CacheStore interface, is a bean for the custom store, such as a
database. The cache specifies this store by pointing to it with the ref attribute of the
wlevs:cache-store child element.

wlevs:caching-system
Specifies the caching system used by the application.

Child Elements
The wlevs:caching-system application assembly element supports the following child
element:

■ wlevs:instance-property

■ wlevs:property

Attributes
Table C–8 lists the attributes of the wlevs:caching-system application assembly
element.

Table C–7 Attributes of the wlevs:cache-store Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the Spring bean that implements the custom store.

Set this attribute to the value of the id attribute of the Spring bean.

The Spring bean must implement the
com.bea.cache.jcache.CacheStore interface.

String Yes.

wlevs:channel

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-11

Example
The following example shows the simplest use of the wlevs:caching-system element
in the EPN assembly file:

<wlevs:caching-system id="caching-system-id"/>

The following example shows how to specify a third-party implementation that uses a
factory as a provider:

<wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
<factory id="factory-id" provider-name="caching-provider">
 <class>the.factory.class.name</class>

</factory>

In the example, the.factory.class.name is a factory for creating some third-party
caching system; the provider attribute of wlevs:caching-system in turn references it
as the caching system implementation for the application.

wlevs:channel
Use this element to declare a channel to the Spring application context.

By default, channels assume that events are system timestamped. To configure
application timestamped events, see child element wlevs:application-timestamped.

Table C–8 Attributes of the wlevs:caching-system Application Assembly Element

Attribute Description Data Type Required?

id Specifies the unique identifier for this caching system.

This identifier must correspond to the <name> element in the
XML configuration file for this caching system

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

provider Specifies the provider of the caching system if you are using a
third-party implementation, such as Oracle Coherence:

<wlevs:caching-system id="myCachingSystem"
provider=coherence" />

Typically this attribute corresponds to the provider-name
attribute of a <factory> Spring element that specifies the factory
class that creates instances of the third-party caching system.

If you do not specify the provider or class attribute, then the
default value is the Oracle Event Processing native caching
implementation for local single-JVM caches; this implementation
uses an in-memory store.

String No.

class Specifies the Java class that implements this caching system; use
this attribute to specify a third-party implementation rather than
the Oracle Event Processing native caching implementation.

If you specify this attribute, it is assumed that the third-party
implementation code resides inside the Oracle Event Processing
application bundle itself. The class file to which this attribute
points must implement the
com.bea.wlevs.cache.api.CachingSystem interface.

If you do not specify the provider or class attribute, then the
default value is the Oracle Event Processing native caching
implementation for local single-JVM caches; this implementation
uses an in-memory store.

String No

wlevs:channel

C-12 Developer's Guide for Oracle Event Processing

Child Elements
The wlevs:channel application assembly element supports the following child
elements:

■ wlevs:listener

■ wlevs:source

■ wlevs:instance-property

■ wlevs:property

■ wlevs:application-timestamped

Attributes
Table C–9 lists the attributes of the wlevs:channel application assembly element.

Table C–9 Attributes of the wlevs:channel Application Assembly Element

Attribute Description Data Type Required?

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

batching Specifies whether batching of events should be enabled for the
event channel.

Valid values are true and false. Default value is false.

For more information, see Section , "Batch Processing
Channels".

Boolean No.

event-type Specifies the type of events that are allowed to pass through
the event channel.

String Yes.

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this channel, if one exists.

String Yes.

is-relation Specifies the kind of events that are allowed to pass through
the event channel. Two kind of events are supported: streams
and relations. Streams are append-only. Relations support
insert, delete, and updates.

The default value for this attribute is false.

Boolean No.

listeners Specifies the components that listen to this component.
Separate multiple components using commas.

Set this attribute to the value of the id attribute of the element
(wlevs:adapter, wlevs:channel, or wlevs:processor) that
defines the listening component.

String No.

max-size Specifies the maximum size of the FIFO buffer for this channel
as max-size number of events.

When max-size = 0, the channel synchronously
passes-through events.

When max-size > 0, the channel processes events
asynchronously, buffering events by the requested size.

If max-threads is zero, then max-size is zero.

The default value for this attribute is 1024.

integer No.

wlevs:class

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-13

Example
The following example shows how to use the wlevs:channel element in the EPN
assembly file:

<wlevs:channel id="fxMarketAmerOut" />

The example shows how to declare a channel service with unique identifier
fxMarketAmerOut.

wlevs:class
Use this element to specify the fully-qualified name of the JavaBean class to use as an
event type implementation. This element must be a child of the wlevs:event-type
element.

Example
The following example shows how to use the wlevs:class element in the EPN
assembly file:

<wlevs:event-type-repository>
<wlevs:event-type type-name="SimpleEvent">

<wlevs:class>com.example.myapp.MyEventType</wlevs:class>

max-threads Specifies the maximum number of threads that will be used to
process events for this channel.

When max-threads = 0, the channel acts as a pass-through.
Event ordering is preserved.

When max-threads > 0, the channel acts as classic blocking
queue, where upstream components are producers of events
and the downstream components are the consumers of events.
The queue size is defined by the configuration max-size.
There will be up to max-threads number of threads
consuming events from the queue. Event ordering is
non-deterministic.

You can change max-threads from 0 to a positive integer (that
is, from a pass through to multiple threads) without
redeploying. However, if you change max-threads from a
positive integer to 0 (that is, from multiple threads to a pass
through), then you must redeploy your application.

If the max-size attribute is 0, then setting a value for
max-threads has no effect.

The default value for this attribute is 1.

integer No.

primary-key Specifies the primary key of a relation, as a list of event
property names, separated by "," or white-spaces.

For more information, see Section , "Channels as Relations".

String No.

provider Specifies the streaming provider.

Valid values are:

■ oracle.channel

Default value is oracle.channel, which is the out-of-the-box
streaming provider.

String No.

source Specifies the component from which the channel sources
events.

Set this attribute to the value of the id attribute of the element
(wlevs:adapter, wlevs:channel, or wlevs:processor) that
defines the source component.

String No.

Table C–9 (Cont.) Attributes of the wlevs:channel Application Assembly Element

Attribute Description Data Type Required?

wlevs:event-bean

C-14 Developer's Guide for Oracle Event Processing

</wlevs:event-type>
...
</wlevs:event-type-repository>

wlevs:event-bean
Use this element to declare to the Spring application context that an event bean is part
of your event processing network (EPN). Event beans are managed by the Oracle
Event Processing container, analogous to Spring beans that are managed by the Spring
framework. In many ways, event beans and Spring beans are similar so it is up to a
developer which one to use in their EPN. Use a Spring bean for legacy integration to
Spring. Use an event bean if you want to take full advantage of the additional
capabilities of Oracle Event Processing.

For example, you can monitor an event bean using the Oracle Event Processing
monitoring framework, make use of the Configuration framework metadata
annotations, and record and playback events that pass through the event bean. An
event-bean can also participate in the Oracle Event Processing bean lifecycle by
specifying methods in its EPN assembly file declaration, rather than by implementing
Oracle Event Processing API interfaces.

Child Elements
The wlevs:event-bean application assembly element supports the following child
elements:

■ wlevs:listener

■ wlevs:instance-property

■ wlevs:property

Attributes
Table C–10 lists the attributes of the wlevs:event-bean application assembly element.

Table C–10 Attributes of the wlevs:event-bean Application Assembly Element

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in
the XML configuration file for this event-bean, if one
exists.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

listeners Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the
element that declared the component.

String No.

class Specifies the Java class that implements this event bean.
The bean is not required to implement any Oracle Event
Processing interfaces.

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

provider Specifies the service provider.

In this case, an EDE factory registered with this specific
provider name must exist in the application.

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

String No.

wlevs:event-bean

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-15

Example
The following example shows how to use the wlevs:event-bean element in the EPN
assembly file:

<wlevs:event-bean id="myBean" class="com.customer.SomeEventBean" >
<wlevs:listener ref="myProcessor" />

</wlevs:event-bean>

In the example, the event bean called myBean is implemented with the class
com.customer.SomeEventBean. The component called myProcessor receives events
from the myBean event bean.

onevent-method Specifies the method of the event bean implementation
that corresponds to the lifecycle onEvent method.

Oracle Event Processing invokes this method when the
event bean receives an event.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement
an Oracle Event Processing interface.

String No

init-method Specifies the method of the event bean implementation
that corresponds to the lifecycle init method.

Oracle Event Processing invokes this method after it has
set all the supplied instance properties. This method
allows the bean instance to perform initialization only
possible when all bean properties have been set and to
throw an exception in the event of misconfiguration.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement
an Oracle Event Processing interface.

String No

activate-method Specifies the method of the event bean implementation
that corresponds to the lifecycle activate method.

Oracle Event Processing invokes this method after the
dynamic configuration of the bean has completed. This
method allows the bean instance to perform
initialization only possible when all dynamic bean
properties have been set and the EPN has been wired.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement
an Oracle Event Processing interface.

String No

suspend-method Specifies the method of the event bean implementation
that corresponds to the lifecycle suspend method.

Oracle Event Processing invokes this method when the
application is suspended.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement
an Oracle Event Processing interface.

String No

destroy-method Specifies the method of the event bean implementation
that corresponds to the lifecycle destroy method.

Oracle Event Processing invokes this method when the
application is stopped.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement
an Oracle Event Processing interface.

String No

Table C–10 (Cont.) Attributes of the wlevs:event-bean Application Assembly Element

Attribute Description Data Type Required?

wlevs:event-type

C-16 Developer's Guide for Oracle Event Processing

wlevs:event-type
Specifies the definition of an event type used in the Oracle Event Processing
application. Once you define the event types of the application, you can reference
them in the adapter and business class POJO, as well as the Oracle CQL rules.

You can define an event type in the following ways:

■ Create a JavaBean class that represents your event type and specify its fully
qualified classname using the wlevs:class child element.

■ Specify event type properties declaratively by using a wlevs:properties child
element.

You can specify one of either wlevs:class or wlevs:properties as a child of
wlevs:event-type, but not both.

The best practice is to define your event type by using the wlevs:class child element
because you can then reuse the specified JavaBean class, and you control exactly what
the event type looks like.

Child Elements
The wlevs:event-type application assembly element supports the following child
elements:

■ wlevs:class

■ wlevs:metadata (deprecated)

■ wlevs:properties

■ wlevs:property

Attributes
Table C–11 lists the attributes of the wlevs:event-type application assembly element.

Example
The following example shows how to use the wlevs:event-type element in the EPN
assembly file:

<wlevs:event-type-repository>

Table C–11 Attributes of the wlevs:event-type Application Assembly Element

Attribute Description Data Type Required?

id Specifies the unique identifier for this event type.

If you do not specify this attribute, Oracle Event Processing
automatically generates an identifier for you.

String No.

type-name Specifies the name of this event type.

This is the name you use whenever you reference the event type
in the adapter, business POJO, or Oracle CQL or EPL rules.

String Yes.

object-sup
port

Specifies if Java objects should be fully supported. Allowable
values are true, false, and object-relational; default is
object-relational.

If set to false, then the Java primitive wrappers (for example,
java.lang.Integer) and java.lang.String are treated solely as
primitive types.

If set to true, then Java primitive wrappers are treated as classes.

If set to object-relational,

String No.

wlevs:expression

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-17

<wlevs:event-type type-name="SimpleEvent">
<wlevs:properties>

<wlevs:property name="msg" type="char" />
<wlevs:property name="count" type="long" />
<wlevs:property name="time_stamp" type="timestamp" />

</wlevs:properties>
</wlevs:event-type>

...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is
determined by the wlevs:property elements. The values for the type attribute must
conform to the com.bea.wlevs.ede.api.Type class.

For more information, see Section , "Choosing a Data Type for an Event Type".

wlevs:event-type-repository
Use this element to group together one or more wlevs:event-type elements, each of
which is used to register an event type used throughout the application.

This element does not have any attributes.

Child Elements
The wlevs:event-type-repository application assembly element supports the
following child element:

■ wlevs:event-type

Example
The following example shows how to use the wlevs:event-type-repository element
in the EPN assembly file:

<wlevs:event-type-repository>
<wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>
com.bea.wlevs.event.example.helloworld.HelloWorldEvent

</wlevs:class>
</wlevs:event-type>

</wlevs:event-type-repository>

In the example, the wlevs:event-type-repository element groups a single
wlevs:event-type element to declare a single event type: HelloWorldEvent. See
Section , "wlevs:event-type" for additional details.

wlevs:expression
Use this element to specify an arithmetic expression in
wlevs:application-timestamped to be used as an application timestamp for event
processing.

For more information, see "arith_expr" in the Oracle Fusion Middleware CQL Language
Reference for Oracle Event Processing.

wlevs:factory

C-18 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use wlevs:expression element in the EPN
assembly file to specify an explicitly application timestamped channel.

<wlevs:channel id="fxMarketAmerOut" >
<wlevs:application-timestamped>

<wlevs:expression>mytime + 10</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

In the example, the wlevs:expression element defines the arithmetic expression used
to assign a timestamp to each event.

wlevs:factory
Use this element to register a factory class as a service. Use of this element decreases
the dependency of your application on Spring-OSGi interfaces.

The Java source of this factory must implement the com.bea.wlevs.ede.api.Factory
interface.

The factory element does not allow you to specify service properties. If you need to
specify service properties, then you must use the Spring- OSGi osgi:service element
instead.

This element does not have any child elements.

Attributes
Table C–12 lists the attributes of the wlevs:factory application assembly element.

Example
The following example shows how to use the wlevs:factory element in the EPN
assembly file:

<wlevs:factory provider-name="myEventSourceFactory"
class="com.customer.MyEventSourceFactory" />

In the example, the factory implemented by the com.customer.MyEventSourceFactory
goes by the provider name of myEventSourceFactory.

wlevs:function
Use this element to specify a bean that contains user-defined functions for a processor.
Oracle Event Processing supports both single-row and aggregate functions.

This element always has a standard Spring bean element either as a child or as a
reference that specifies the Spring bean that implements the user-defined function.

Table C–12 Attributes of the wlevs:factory Application Assembly Element

Attribute Description Data Type Required?

class Specifies the Java class that implements the factory. This
class must implement the
com.bea.wlevs.ede.api.Factory interface.

String Yes.

provider-name Specifies the name of this provider. Reference this name
later in the component that uses this factory.

String Yes.

wlevs:function

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-19

For a single-row function for an Oracle CQL processor, you may specify one method
on the implementing class as the function using the exec-method attribute. In this case,
the method must be public and must be uniquely identifiable by its name (that is, the
method cannot have been overridden). You may define an alias for the exec-method
name using the function-name attribute. In the Oracle CQL query, you may call only
the exec-method (either by its name or the function-name alias).

For a single-row function on an EPL processor, you may define an alias for the
implementing class name using the function-name attribute. The exec-method name is
not applicable in this case. In the EPL query, you may call any public or static method
on the implementing class using either the implementing class name or the
function-name alias.

For an aggregate function on either an Oracle CQL or EPL processor, the Spring bean
must implement the following interfaces from the com.bea.wlevs.processor package:

■ AggregationFunctionFactory

■ AggregationFunction

For an aggregate function, the exec-method attribute is not applicable on both an
Oracle CQL processor and an EPL processor.

For more information, see:

■ "User-Defined Functions" in the Oracle Fusion Middleware CQL Language Reference
for Oracle Event Processing

■ "EPL Reference: Functions" in the Oracle Fusion Middleware EPL Language Reference
for Oracle Event Processing

Attributes
Table C–13 lists the attributes of the wlevs:function application assembly element.

Table C–13 Attributes of the wlevs:function Application Assembly Element

Attribute Description Data Type Required?

exec-method For a user-defined single-row function on an Oracle CQL
processor, this element specifies the method name of the
Spring bean that implements the function. In this case, the
method must be public and must be uniquely identifiable
by its name (that is, the method cannot have been
overridden).

For a user-defined single-row or aggregate function on an
EPL processor or a user-defined aggregate function on an
Oracle CQL processor, this attribute is not applicable.

String No.

function-name For a user-defined single-row function on an Oracle CQL
processor, use this attribute to define an alias for the
exec-method name. You can then use the function-name in
your Oracle CQL query instead of the exec-name.

For a user-defined single-row function on an EPL processor,
use this attribute to define an alias for the implementing
Spring bean class name. You can then use the
function-name in your EPL query instead of the Spring
bean class name and still invoke any public or static
method that the Spring bean class implements.

For a user-defined aggregate function on an Oracle CQL or
EPL processor, use this attribute to define an alias for the
implementing Spring bean class name. You can then use the
function-name in your EPL query instead of the Spring
bean class name.

The default value is the Spring bean name.

String No.

wlevs:function

C-20 Developer's Guide for Oracle Event Processing

Example
The following examples show how to use the wlevs:function element and its
attributes on both Oracle CQL and EPL processors:

■ Section , "Single-Row User-Defined Function on an Oracle CQL Processor"

■ Section , "Single-Row User-Defined Function on an EPL Processor"

■ Section , "Aggregate User-Defined Function on an Oracle CQL Processor"

■ Section , "Aggregate User-Defined Function on an EPL Processor"

■ Section , "Specifying the Implementation Class: Nested Bean or Reference"

Single-Row User-Defined Function on an Oracle CQL Processor
Example C–1 shows how you implement a single-row user-defined the function for an
Oracle CQL processor.

Example C–1 Single-Row User Defined Function Implementation Class

package com.bea.wlevs.example.function;

public class MyMod {
public Object execute(int arg0, int arg1) {

return new Integer(arg0 % arg1);
}

}

Example C–2 shows how to use the wlevs:function to define a single-row function on
an Oracle CQL processor in the EPN assembly file.

Example C–2 Single-Row User Defined Function for an Oracle CQL Processor

<wlevs:processor id="testProcessor">
<wlevs:listener ref="providerCache"/>
<wlevs:listener ref="outputCache"/>
<wlevs:cache-source ref="testCache"/>
<wlevs:function function-name="mymod" exec-method=”execute” />

<bean class="com.bea.wlevs.example.function.MyMod"/>
</wlevs:function>

</wlevs:processor>

Example C–3 shows how you invoke the function in an Oracle CQL query.

Example C–3 Invoking the Single-Row User-Defined Function on an Oracle CQL
Processor

...
<view id="v1" schema="c1 c2 c3 c4"><![CDATA[

select
mymod(c1, 100), c2, c3, c4

from
S1

ref Specifies the Spring bean that implements the function.

Set this attribute to the value of the id attribute of the
Spring bean.

This is an alternative to making the Spring bean element a
child of the wlevs:function element.

String No.

Table C–13 (Cont.) Attributes of the wlevs:function Application Assembly Element

Attribute Description Data Type Required?

wlevs:function

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-21

]]></view>
...
<query id="q1"><![CDATA[

select * from v1 [partition by c1 rows 1] where c4 - c3 = 2.3
]]></query>
...

Single-Row User-Defined Function on an EPL Processor
Example C–4 shows how you implement a single-row user-defined the function for an
EPL processor.

Example C–4 Single-Row User Defined Function Implementation Class

package com.bea.wlevs.example.function;

public class LegacyMathBean {
public Object square(Object[] args) {
...
}
public Object cube(Object[] args) {
...
}

}

Example C–5 shows how to use the wlevs:function to define a single-row function
for an EPL processor in the EPN assembly file.

Example C–5 Single-Row User Defined Function for an EPL Processor

<wlevs:processor id="testProcessor" provider="epl">
<wlevs:listener ref="providerCache"/>
<wlevs:listener ref="outputCache"/>
<wlevs:cache-source ref="testCache"/>
<wlevs:function function-name="math" />
<bean class="com.bea.wlevs.example.function.LegacyMathBean"/>

</wlevs:function>
 </wlevs:processor>

Example C–6 shows how you invoke the function in an EPL query.

Example C–6 Invoking the Single-Row User-Defined Function on an EPL Processor

<rule><![CDATA[
select math.square(inputValue) ...

]]></rule>

Aggregate User-Defined Function on an Oracle CQL Processor
Example C–7 shows how to implement a user-defined aggregate function for an
Oracle CQL processor.

Example C–7 Aggregate User Defined Function Implementation Class

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

private int count;

wlevs:function

C-22 Developer's Guide for Oracle Event Processing

private float sum;
private float sumSquare;

public Class<?>[] getArgumentTypes() {

return new Class<?>[] {Integer.class};
}

public Class<?> getReturnType() {

return Float.class;
}

public AggregationFunction newAggregationFunction() {

return new Variance();
}

public void releaseAggregationFunction(AggregationFunction function) {
}

public Object handleMinus(Object[] params) {

if (params != null && params.length == 1) {
Integer param = (Integer) params[0];
count--;
sum -= param;
sumSquare -= (param * param);

}

if (count == 0) {
return null;

} else {
return getVariance();

}
}

public Object handlePlus(Object[] params) {

if (params != null && params.length == 1) {
Integer param = (Integer) params[0];
count++;
sum += param;
sumSquare += (param * param);

}

if (count == 0) {
return null;

} else {
return getVariance();

}
}

public Float getVariance() {

float avg = sum / (float) count;
float avgSqr = avg * avg;
float var = sumSquare / (float)count - avgSqr;
return var;

}

public void initialize() {
count = 0;
sum = 0.0F;
sumSquare = 0.0F;

}

}

Example C–8 shows how to use the wlevs:function to define an aggregate function
on an Oracle CQL processor in the EPN assembly file.

wlevs:function

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-23

Example C–8 Aggregate User Defined Function for an Oracle CQL Processor

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var">
 <bean class="com.bea.wlevs.test.functions.Variance"/>

 </wlevs:function>
 </wlevs:processor>

Example C–9 shows how you invoke the function in an Oracle CQL query.

Example C–9 Invoking the Aggregate User-Defined Function on an Oracle CQL
Processor

...
<query id="uda6"><![CDATA[

select var(c2) from S4[range 3]
]]></query>
...

Aggregate User-Defined Function on an EPL Processor
Example C–10 shows how to implement a user-defined aggregate function for an EPL
processor.

Example C–10 Aggregate User Defined Function Implementation Class

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

private int count;
private float sum;
private float sumSquare;

public Class<?>[] getArgumentTypes() {

return new Class<?>[] {Integer.class};
}

public Class<?> getReturnType() {

return Float.class;
}

public AggregationFunction newAggregationFunction() {

return new Variance();
}

public void releaseAggregationFunction(AggregationFunction function) {
}

public Object handleMinus(Object[] params) {

if (params != null && params.length == 1) {
Integer param = (Integer) params[0];
count--;
sum -= param;
sumSquare -= (param * param);

}

if (count == 0) {
return null;

wlevs:function

C-24 Developer's Guide for Oracle Event Processing

} else {
return getVariance();

}
}

public Object handlePlus(Object[] params) {

if (params != null && params.length == 1) {
Integer param = (Integer) params[0];
count++;
sum += param;
sumSquare += (param * param);

}

if (count == 0) {
return null;

} else {
return getVariance();

}
}

public Float getVariance() {

float avg = sum / (float) count;
float avgSqr = avg * avg;
float var = sumSquare / (float)count - avgSqr;
return var;

}

public void initialize() {
count = 0;
sum = 0.0F;
sumSquare = 0.0F;

}

}

Example C–11 shows how to use the wlevs:function to define an aggregate function
on an EPL processor in the EPN assembly file.

Example C–11 Aggregate User Defined Function for an EPL Processor

<wlevs:processor id="testProcessor" provider="epl">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var">
 <bean class="com.bea.wlevs.test.functions.Variance"/>

 </wlevs:function>
 </wlevs:processor>

Example C–12 shows how you invoke the function in an EPL query.

Example C–12 Invoking the Aggregate User-Defined Function on an EPL Processor

...
<rule><![CDATA[

select var(c2) from S4
]]></rule>
...

Specifying the Implementation Class: Nested Bean or Reference
Example C–13 shows how to use the wlevs:function element with a nested bean
element in the EPN assembly file.

wlevs:instance-property

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-25

Example C–13 User Defined Function Using Nested Bean Element

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="testfunction">
 <bean class="com.bea.wlevs.example.cache.function.TestFunction"/>

 </wlevs:function>
 </wlevs:processor>

Example C–14 shows how to use the wlevs:function element and its ref attribute to
reference a bean element defined outside of the wlevs:function element in the EPN
assembly file.

Example C–14 User Defined Function Using Reference

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="testfunction" ref="testFunctionID" />

 </wlevs:processor>
...
<bean id="testFunctionID" class="com.bea.wlevs.example.cache.function.TestFunction"/>

wlevs:instance-property
Specifies the properties that apply to the create stage instance of the component to
which this is a child element. This allows declarative configuration of user-defined
stage properties.

For example, when you specify an wlevs:instance-property for a wlevs:event-bean,
Oracle Event Processing will look for a corresponding setter method on the Java class
you implement, not on the com.bea.wlevs.spring.EventBeanFactoryBean that
instantiates your class. To specify a property on the factory, use wlevs:property

This element is used only as a child of wlevs:adapter, wlevs:event-bean,
wlevs:processor, wlevs:channel, or wlevs:caching-system.

The wlevs:instance-property element is defined as the Spring propertyType type;
for additional details of this Spring data type, the definition of the allowed child
elements, and so on, see the
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

Child Elements
You can specify one of the following standard Spring elements as a child element of
the wlevs:instance-property element:

■ meta

■ bean

■ ref

■ idref

■ value

■ null

■ list

wlevs:listener

C-26 Developer's Guide for Oracle Event Processing

■ set

■ map

■ props

Attributes
Table C–14 lists the attributes of the wlevs:instance-property application assembly
element.

Example
The following example shows how to use the wlevs:instance-property element in
the EPN assembly file:

<wlevs:event-bean id="pubsubCounterBeanRemote"
class="com.oracle.cep.example.httppubsub.RemoteEventCounter">
<wlevs:listener ref="pubsubRemote" />
<wlevs:instance-property name="expectedEvents" value="4000" />

</wlevs:event-bean>

In the example, the event bean
com.oracle.cep.example.httppubsub.RemoteEventCounter class provides an
appropriate setter method:

...
 private int expectedEvents;

 public void setExpectedEvents(String expectedEvents) {
 this.expectedEvents = new Integer(expectedEvents).intValue();
 }
...

Note that the instance-property is of type String. Your setter method must convert
this if necessary. In this example, the String is converted to an int value.

The name of the setter method must conform to JavaBean naming conventions. In this
example, the setter name is setExpectedEvents and this corresponds to the
wlevs:instance-property element name attribute value expectedEvents, according to
JavaBean conventions. If the name attribute value is obj and the setter method name is
setObject, Oracle Event Processing will throw an Invalid Property exception. In this
case, the setter name should be setObj.

wlevs:listener
Specifies the component that listens to the component to which this element is a child.
A listener can be an instance of any other component. You can also nest the definition
of a component within a particular wlevs:listener component to specify the
component that listens to the parent.

Table C–14 Attributes of the wlevs:instance-property Application Assembly Element

Attribute Description Data Type Required?

name Specifies the name of the property, following JavaBean naming
conventions.

String Yes.

ref A short-cut alternative to a nested <ref bean='...'/> element. String No.

value A short-cut alternative to a nested <value>...</value> element. String No.

wlevs:metadata

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-27

This element is always a child of wlevs:adapter, wlevs:processor, wlevs:channel, or
wlevs:caching-system.

Attributes
Table C–15 lists the attributes of the wlevs:listener application assembly element.

Example
The following example shows how to use the wlevs:listener element in the EPN
assembly file:

<wlevs:processor id="helloworldProcessor">
<wlevs:listener ref="helloworldOutstream"/>

</wlevs:processor>

In the example, the hellworldOutstream component listens to the
helloworldProcessor component. It is assumed that the EPN assembly file also
contains a declaration for a wlevs:adapter, wlevs:channel, or wlevs:processor
element whose unique identifier is helloworldOutstream.

wlevs:metadata
Specifies the definition of an event type by listing its fields as a group of Spring entry
elements. When you define an event type this way, Oracle Event Processing
automatically generates the Java class for you.

Use the key attribute of the entry element to specify the name of a field and the value
attribute to specify the Java class that represents the field's data type.

This element is used only as a child of wlevs:event-type.

The wlevs:metadata element is defined as the Spring mapType type; for additional
details of this Spring data type, see the
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

Child Elements
The wlevs:metadata element can have one or more standard Spring entry child
elements as defined in the
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

Attributes
Table C–16 lists the attributes of the wlevs:metadata application assembly element.

Caution: Nested definitions are not eligible for dynamic
configuration or monitoring.

Table C–15 Attributes of the wlevs:listener Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the component that listens to the parent component .

Set this attribute to the value of the id attribute of the listener
component.

You do not specify this attribute if you are nesting listeners.

String No.

wlevs:processor

C-28 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the wlevs:metadata element in the EPN
assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">
<wlevs:metadata>

<entry key="symbol" value="java.lang.String"/>
<entry key="price" value="java.lang.Double"/>
<entry key="fromRate" value="java.lang.String"/>
<entry key="toRate" value="java.lang.String"/>

</wlevs:metadata>
...

</wlevs:event-type>

In the example, the wlevs:metadata element groups together four standard Spring
entry elements that represent the four fields of the ForeignExchangeEvent: symbol,
price, fromRate, and toRate. The data types of the fields are java.lang.String,
java.lang.Double, java.lang.String, and java.lang.String, respectively.

wlevs:processor
Use this element to declare a processor to the Spring application context.

Child Elements
The wlevs:processor Spring element supports the following child elements:

■ wlevs:instance-property

■ wlevs:listener

■ wlevs:property

■ wlevs:cache-source

■ wlevs:table-source

■ wlevs:function

Attributes
Table C–17 lists the attributes of the wlevs:processor application assembly element.

Table C–16 Attributes of the wlevs:metadata Application Assembly Element

Attribute Description Data Type Required?

key-type The default fully qualified classname of a Java data type for nested
entry elements.

You use this attribute only if you have nested entry elements.

String No.

Table C–17 Attributes of the wlevs:processor Application Assembly Element

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this processor; this is how Oracle
Event Processing knows which Oracle CQL or EPL rules to
execute for which processor component in your network.

String Yes.

wlevs:properties

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-29

Example
The following example shows how to use the wlevs:processor element in the EPN
assembly file:

<wlevs:processor id="spreader" />

The example shows how to declare a processor with ID spreader. This means that in
the processor configuration file that contains the Oracle CQL rules for this processor,
the name element must contain the value spreader. This way Oracle Event Processing
knows which Oracle CQL or EPL rules it must file for this particular processor.

wlevs:properties
Defines the list of properties for an event type. Use this element when you are defining
an event type declaratively, such as for a type based on a tuple or java.util.Map. For
an event type created from a JavaBean class, allow properties to be defined by accessor
methods in the class.

Child Elements
The wlevs:properties application assembly element supports the following child
elements:

■ wlevs:property

Attributes
Table C–18 lists the attributes of the wlevs:event-type application assembly element.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

listeners Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element
that declared the component.

String No.

provider Specifies the language provider of the processor, such as the
Oracle Continuous Query Language (Oracle CQL) or Event
Processor Language (EPL).

Valid values are:

■ epl

■ cql

The default value is cql.

String No.

queryURL Specifies a URL that points to an Oracle CQL or EPL rules
definition file for this processor.

String. No.

Table C–18 Attributes of the wlevs:properties Application Assembly Element

Attribute Description Data Type Required?

type Specifies the type that this event type should be created from.
Allowable values are tuple and map; default is tuple.

If this attribute’s value is map, then Oracle Event Processing will
instantiate the event type as a java.util.Map instance.
Otherwise, the type will be instantiated as a tuple.

String No.

Table C–17 (Cont.) Attributes of the wlevs:processor Application Assembly Element

Attribute Description Data Type Required?

wlevs:property

C-30 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the wlevs:properties element in the EPN
assembly file:

<wlevs:event-type-repository>
<wlevs:event-type type-name="SimpleEvent">

<wlevs:properties>
<wlevs:property name="msg" type="char" />
<wlevs:property name="count" type="long" />
<wlevs:property name="time_stamp" type="timestamp" />

</wlevs:properties>
</wlevs:event-type>

...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is
determined by the wlevs:property elements. The values for the type attribute must
conform to the com.bea.wlevs.ede.api.Type class.

For more information, see Section , "Choosing a Data Type for an Event Type".

wlevs:property
Defines the property of an event type that you create declaratively, such as an event
type based on a tuple or java.util.Map. You use this wlevs:property element as a
child of the wlevs:properties element.

Note that this element is different from the wlevs:property element that is an
extension of the Spring beans property element. This element must always be used as
a child of the wlevs:properties element.

Attributes
Table C–19 lists the attributes of the wlevs:property application assembly element.

Table C–19 Attributes of the wlevs:property Application Assembly Element

Attribute Description Data Type Required?

name Name of the event property. String Yes.

type Type of the event property.

If this event type is defined as a tuple, then the type attribute
value must be one of the OCEP native types defined by
com.bea.wlevs.ede.api.Type. Those include bigint, boolean, byte,
char, double, float, int, interval, object, sqlxml, timestamp,
unknown, xmltype.

If this event type is defined as a map, then the type attribute
value is the fully qualified name of a Java class that must be
available in the class loader of the application that defines the
event type. The string used as the Java class name must conform
to the same rules as Class.forName(). In addition, Java primitives
can be used (e.g. int, float).

Finally, you can specify an array by appending the characters '[]'
to the Java class name

String Yes.

length If the property is of array type, this specifies the length of the
array. If the type is not an array and length is specified, it will be
ignored.

.

String No.

wlevs:property

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-31

Example
The following example shows how to use the wlevs:property element in the EPN
assembly file:

<wlevs:event-type-repository>
<wlevs:event-type type-name="SimpleEvent">

<wlevs:properties>
<wlevs:property name="msg" type="char" />
<wlevs:property name="count" type="long" />
<wlevs:property name="time_stamp" type="timestamp" />

</wlevs:properties>
</wlevs:event-type>

...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is
determined by the wlevs:property elements. The values for the type attribute must
conform to the com.bea.wlevs.ede.api.Type class.

wlevs:property
Specifies a custom property to apply to the event type.

For example, when you specify a wlevs:property for a wlevs:event-bean, Oracle
Event Processing will look for a corresponding setter method on the
com.bea.wlevs.spring.EventBeanFactoryBean that instantiates your Java class, not
on the Java class you implement. To specify a property on your Java class, use
wlevs:instance-property.

This element is used only as a child of wlevs:adapter, wlevs:event-bean,
wlevs:event-type, wlevs:processor, wlevs:channel, or wlevs:caching-system.

The wlevs:property element is defined as the Spring propertyType type; for
additional details of this Spring data type, the definition of the allowed child elements,
and so on, see the
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

Child Elements
You can specify one of the following standard Spring elements as a child element of
the wlevs:property element:

■ meta

■ bean

■ ref

■ idref

■ value

■ null

■ list

■ set

■ map

■ props

wlevs:source

C-32 Developer's Guide for Oracle Event Processing

Attributes
Table C–20 lists the attributes of the wlevs:property application assembly element.

Example
The following example shows how to use the wlevs:property element in the EPN
assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">
<wlevs:metadata>

<entry key="symbol" value="java.lang.String"/>
<entry key="price" value="java.lang.Double"/>

</wlevs:metadata>
<wlevs:property name="builderFactory">
<bean id="builderFactory"

class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
</wlevs:property>

</wlevs:event-type>

In the example, the wlevs:property element defines a custom property of the
ForeignExchangeEvent called builderFactory. The property uses the standard Spring
bean element to specify the Spring bean used as a factory to create
ForeignExchangeEvents.

wlevs:source
Specifies an event source for this component, or in other words, the component which
the events are coming from. Specifying an event source is equivalent to specifying this
component as an event listener to another component.

You can also nest the definition of a component within a particular wlevs:source
component to specify the component source.

This element is a child of wlevs:channel or wlevs:processor.

Attributes
Table C–21 lists the attributes of the wlevs:source application assembly element.

Table C–20 Attributes of the wlevs:property Application Assembly Element

Attribute Description Data Type Required?

name Specifies the name of the property, following JavaBean naming
conventions.

String Yes.

ref A short-cut alternative to a nested <ref bean='...'/> element. String No.

value A short-cut alternative to a nested <value>...</value> element. String No.

Caution: Nested definitions are not eligible for dynamic
configuration or monitoring.

wlevs:table

Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd C-33

Example
The following example shows how to use the wlevs:source element in the EPN
assembly file:

<wlevs:channel id="helloworldInstream">
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

In the example, the component with id helloworldAdapter is the source of the
helloworldInstream channel component.

wlevs:table
Specifies a relational database table that supplies data to one or more processor
components. The processor components in turn are associated with an Oracle CQL
query that directly references the table.

Attributes
Table C–22 lists the attributes of the wlevs:table application assembly element.

Example
The following example shows how to use the wlevs:table element in the EPN
assembly file:

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc">
<wlevs:table-source ref="Stock" />

</wlevs:processor>

In this example, a wlevs:processor references the table using its wlevs:table-source
element.

Table C–21 Attributes of the wlevs:source Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the source of the channel to which this element is a child.

Set this attribute to the value of the id attribute of the source
component.

You do not specify this attribute if you are nesting sources.

String No.

Table C–22 Attributes of the wlevs:table Application Assembly Element

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this table.

String Yes.

event-type The name of the event type associated with this table as
defined in the event type repository.

String Yes.

data-source The name of the relational data source defined in the Oracle
Event Processing server configuration file used to access this
database table.

String Yes.

wlevs:table-source

C-34 Developer's Guide for Oracle Event Processing

wlevs:table-source
Specifies a relational database table that supplies data to this processor component.
The processor component in turn is associated with an Oracle CQL query that directly
references the table.

This element is a child of only wlevs:processor element.

Attributes
Table C–23 lists the attributes of the wlevs:table-source application assembly
element.

Example
The following example shows how to use the wlevs:table-source element in the EPN
assembly file:

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc">
<wlevs:table-source ref="Stock" />

</wlevs:processor>

Table C–23 Attributes of the wlevs:table-source Application Assembly Element

Attribute Description Data Type Required?

ref Specifies the relational database table that is a source of data for the
processor component.

Set this attribute to the value of the id attribute of a wlevs:table
element.

String Yes.

D

Schema Reference: Component Configuration wlevs_application_config.xsd D-1

DSchema Reference: Component Configuration
wlevs_application_config.xsd

[32] This appendix provides a reference to the elements of the wlevs_application_
config.xsd schema, the schema behind XML files you use to configure Oracle Event
Processing application components such as adapters, channels, caching systems, and
event beans.

This appendix includes the following sections:

■ Overview of the Oracle Event Processing Component Configuration Elements

■ accept-backlog

■ active

■ adapter

■ amount

■ application

■ average-interval

■ average-latency

■ batch-size

■ batch-time-out

■ binding

■ bindings (jms-adapter)

■ bindings (processor)

■ buffer-size

■ buffer-write-attempts

■ buffer-write-timeout

■ cache

■ caching-system

■ channel

■ channel (http-pub-sub-adapter Child Element)

■ channel-name

■ coherence-cache-config

■ coherence-caching-system

D-2 Developer's Guide for Oracle Event Processing

■ coherence-cluster-config

■ collect-interval

■ concurrent-consumers

■ connection-jndi-name

■ connection-encrypted-password

■ connection-password

■ connection-user

■ database

■ dataset-name

■ delivery-mode

■ destination-jndi-name

■ destination-name

■ destination-type

■ diagnostic-profiles

■ direction

■ durable-subscription

■ durable-subscription-name

■ duration

■ enabled

■ encrypted-password

■ end

■ end-location

■ event-bean

■ event-type

■ event-type-list

■ eviction-policy

■ fail-when-rejected

■ group-binding

■ heartbeat

■ http-pub-sub-adapter

■ idle-time

■ inject-parameters

■ jms-adapter

■ jndi-factory

■ jndi-provider-url

■ listeners

■ location

Schema Reference: Component Configuration wlevs_application_config.xsd D-3

■ max-latency

■ max-size

■ max-threads

■ message-selector

■ name

■ netio

■ num-threads

■ offer-timeout

■ param

■ parameter

■ params

■ partition-order-capacity

■ password

■ playback-parameters

■ playback-speed

■ processor (EPL)

■ processor (Oracle CQL)

■ profile

■ provider-name

■ query

■ record-parameters

■ repeat

■ rule

■ rules

■ schedule-time-range

■ schedule-time-range-offset

■ selector

■ server-context-path

■ server-url

■ session-ack-mode-name

■ session-transacted

■ stage

■ start

■ start-location

■ start-stage

■ store-policy-parameters

■ stream

Overview of the Oracle Event Processing Component Configuration Elements

D-4 Developer's Guide for Oracle Event Processing

■ symbol

■ symbols

■ threshold

■ throughput

■ throughput-interval

■ time-range

■ time-range-offset

■ time-to-live

■ trace-parameters

■ unit

■ user

■ value

■ view

■ work-manager

■ work-manager-name

■ write-behind

■ write-none

■ write-through

Overview of the Oracle Event Processing Component Configuration
Elements

Oracle Event Processing provides a number of component configuration elements that
you use to define the characteristics of the of the components you declare in the EPN
assembly file.

Element Hierarchy
The top-level Oracle Event Processing component configuration elements are
organized into the following hierarchy:

■ config

– adapter (see Example D–1)

– http-pub-sub-adapter (see Example D–2)

– jms-adapter (see Example D–3)

– processor (see Example D–4 and Example D–5)

– stream (see Example D–6)

– channel (see Example D–7)

– event-bean (see Example D–8)

– caching-system (see Example D–9)

– coherence-caching-system (see Example D–10)

– diagnostic-profiles (see Example D–11)

Overview of the Oracle Event Processing Component Configuration Elements

Schema Reference: Component Configuration wlevs_application_config.xsd D-5

Example D–1 adapter Element Hierarchy

adapter
name
record-parameters

dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

symbols
symbol

work-manager-name
netio

provider-name
num-threads
accept-backlog

Example D–2 http-pub-sub-adapter Element Hierarchy

http-pub-sub-adapter
name
record-parameters

dataset-name
event-type-list

Overview of the Oracle Event Processing Component Configuration Elements

D-6 Developer's Guide for Oracle Event Processing

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

symbols
symbol

work-manager-name
netio

provider-name
num-threads
accept-backlog

One of:
server-context-path
server-url

channel (http-pub-sub-adapter Child Element)
event-type
user
One of:

password
encrypted-password

Example D–3 jms-adapter Element Hierarchy

jms-adapter

Overview of the Oracle Event Processing Component Configuration Elements

Schema Reference: Component Configuration wlevs_application_config.xsd D-7

name
record-parameters

dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

event-type
jndi-provider-url
jndi-factory
connection-jndi-name
One of:

destination-jndi-name
destination-name

user
One of:

password
encrypted-password

connection-user
One of:

connection-password
connection-encrypted-password

work-manager
concurrent-consumers

Overview of the Oracle Event Processing Component Configuration Elements

D-8 Developer's Guide for Oracle Event Processing

message-selector
session-ack-mode-name
session-transacted
delivery-mode
bindings (jms-adapter)

group-binding
param

destination-type
durable-subscription
durable-subscription-name

Example D–4 processor (EPL) Element Hierarchy

processor (EPL)
name
record-parameters

dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

rules
rule

Overview of the Oracle Event Processing Component Configuration Elements

Schema Reference: Component Configuration wlevs_application_config.xsd D-9

query
view

database
bindings (processor)

binding
params

Example D–5 processor (Oracle CQL) Element Hierarchy

processor (Oracle CQL)
name
record-parameters

dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

rules
rule
query
view

bindings (processor)
binding

Overview of the Oracle Event Processing Component Configuration Elements

D-10 Developer's Guide for Oracle Event Processing

params

Example D–6 stream Element Hierarchy

stream
name
record-parameters

dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

max-size
max-threads

Example D–7 channel Element Hierarchy

channel
name
record-parameters

dataset-name
event-type-list

event-type

Overview of the Oracle Event Processing Component Configuration Elements

Schema Reference: Component Configuration wlevs_application_config.xsd D-11

provider-name
store-policy-parameters

parameter
name
value

max-threads
max-size
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

inject-parameters
trace-parameters
max-size
max-threads
selector
heartbeat
partition-order-capacity
offer-timeout
fail-when-rejected

Example D–8 event-bean Element Hierarchy

event-bean
name
record-parameters

dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter

Overview of the Oracle Event Processing Component Configuration Elements

D-12 Developer's Guide for Oracle Event Processing

name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

batch-size
batch-time-out

playback-parameters
dataset-name
event-type-list

event-type
provider-name
store-policy-parameters

parameter
name
value

max-size
max-threads
time-range

start
end

time-range-offset
start
duration

schedule-time-range
start
end

schedule-time-range-offset
start
duration

Example D–9 caching-system Element Hierarchy

caching-system
name
cache

name
max-size
eviction-policy
time-to-live
idle-time
One of:

write-none
write-through
write-behind

work-manager-name
batch-size
buffer-size
buffer-write-attempts
buffer-write-timeout

work-manager-name
listeners

Overview of the Oracle Event Processing Component Configuration Elements

Schema Reference: Component Configuration wlevs_application_config.xsd D-13

Example D–10 coherence-caching-system Element Hierarchy

coherence-caching-system
name
coherence-cache-config
coherence-cluster-config

Example D–11 diagnostic-profiles Element Hierarchy

diagnostic-profiles
name
profile

name
enabled
start-stage
max-latency

name
collect-interval

amount
unit

start-location
application
stage
direction

end-location
application
stage
direction

average-latency
name
collect-interval

amount
unit

start-location
application
stage
direction

end-location
application
stage
direction

threshold
throughput

name
throughput-interval

amount
unit

average-interval
amount
unit

location
application
stage
direction

Example of an Oracle Event Processing Component Configuration File
The following sample component configuration file from the HelloWorld application
shows how to use many of the Oracle Event Processing elements:

accept-backlog

D-14 Developer's Guide for Oracle Event Processing

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<processor>

<name>helloworldProcessor</name>
<rules>

<query id="helloworldRule">
<![CDATA[select * from helloworldInputChannel [Now]]]>

</query>
</rules>

</processor>
<channel>

<name>helloworldInputChannel</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>

</channel>
<channel>

<name>helloworldOutputChannel</name>
<max-size>10000</max-size>
<max-threads>2</max-threads>

</channel>
</n1:config>

accept-backlog
Use this element to define the maximum number of pending connections allowed on a
socket. This element is only applicable in a netio element.

Child Elements
The accept-backlog component configuration element has no child elements.

Attributes
The accept-backlog component has no attributes.

Example
The following example shows how to use the accept-backlog element in the
component configuration file:

<netio> <provider-name>providerCache</provider-name>
<num-threads>1000</num-threads>
<accept-backlog>50</accept-backlog>

</netio>

active
Specify true for this element to specify that event tracing or event injection is on. The
default is true.

Note that when the value of the active element is false, the channel-name value will
be ignored.

For more on event tracing and injection, see the following:

■ Section , "Tracing Events"

■ Section , "Injecting Events"

adapter

Schema Reference: Component Configuration wlevs_application_config.xsd D-15

Child Elements
The active component configuration element has no child elements.

Attributes
The active component configuration element has no attributes.

Example
The component configuration excerpt shown in the following example illlustrates how
you might configure a processor for event tracing. The trace-parameters element’s
active child element specifies that tracing is on, while the channel-name element
specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
<name>FindCrossRates</name>
<trace-parameters>

<active>true</active>
<channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>

</trace-parameters>
<rules>

<!-- Query rules omitted. -->
</rules>

</processor>

adapter
Use this element to define a custom adapter component. For an HTTP
publish-subscribe or JMS adapter, use the specific http-pub-sub-adapter and
jms-adapter elements.

For more information, see Chapter 15, "Integrating an External Component Using a
Custom Adapter".

Child Elements
The adapter component configuration element supports the following child elements:

■ name

■ record-parameters

■ playback-parameters

■ symbols

■ work-manager-name

■ netio

Attributes
The adapter component configuration element has no attributes.

Example
The following example shows how to use the adapter element in the component
configuration file:

amount

D-16 Developer's Guide for Oracle Event Processing

<adapter>
<name>trackdata</name>
<symbols>

<symbol>BEAS</symbol>
<symbol>IBM</symbol>

</symbols>
 </adapter>

In the example, the adapter's unique identifier is trackdata.

amount
Use this element to define the a time duration of a diagnostic profile. This element is
applicable in any of the following elements:

■ average-interval

■ collect-interval

■ throughput-interval

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The amount component configuration has no child elements:

Attributes
The amount component has no attributes.

Example
The following example shows how to use the amount element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>

average-interval

Schema Reference: Component Configuration wlevs_application_config.xsd D-17

</diagnostic-profiles>

application
Use this element to define the type of application Oracle Event Processing server
applies to a foreign stage. In a diagnostic profile, this element always has a value of
diagnostic.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The application component configuration has no child elements:

Attributes
The application component has no attributes.

Example
The following example shows how to use the application element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

average-interval
Use this element to define the time interval for which you want to gather metrics.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

average-latency

D-18 Developer's Guide for Oracle Event Processing

Child Elements
The average-interval component configuration element supports the following child
elements:

■ amount

■ unit

Attributes
The average-interval component has no attributes.

Example
The following example shows how to use the average-interval element in the
component configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<throughput>

<throughput-interval>
<amount>100000</amount>
<unit>MICROSECONDS</unit>

</throughput-interval>
<average-interval>

<amount>100000000</amount>
<unit>NANOSECONDS</unit>

</average-interval>
<location>

<application>diagnostic</application>
<stage>AlertEventStream</stage>
<direction>INBOUND</direction>

</location>
</throughput>

</profile>
</diagnostic-profiles>

average-latency
Use this element to define an average latency calculation in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The average-latency component configuration element supports the following child
elements:

■ name

■ collect-interval

■ start-location

■ end-location

■ threshold

batch-size

Schema Reference: Component Configuration wlevs_application_config.xsd D-19

Attributes
The average-latency component has no attributes.

Example
The following example shows how to use the average-latency element in the
component configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<average-latency>

<start-location>
<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
<threshhold>

<amount>100</amount>
<unit>MILLISECONDS</unit>

</threshhold>
</average-latency>

</profile>
</diagnostic-profiles>

batch-size
Use this element to define the number of updates that are picked up from the store
buffer to write back to the backing store. This element may be changed dynamically.

Child Elements
The batch-size component configuration element has no child elements.

Attributes
The batch-size component has no attributes.

Example
The following example shows how to use the batch-size element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>

batch-time-out

D-20 Developer's Guide for Oracle Event Processing

</store-policy-parameters>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

batch-time-out
Use this element to define The number of seconds event buffer will wait to accumulate
batch-size number of events before to write to the event store.

Child Elements
The batch-time-out component configuration element has no child elements.

Attributes
The batch-time-out component has no attributes.

Example
The following example shows how to use the batch-time-out element in the
component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

binding
Use this element to define values for a parameterized Oracle CQL or EPL rule in an
EPL processor component.

For more information, see:

■ "Parameterized Queries" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

■ "Parameterized Queries" in the Oracle Fusion Middleware EPL Language Reference for
Oracle Event Processing

Child Elements
The binding component configuration element supports the following child elements:

■ params

Attributes
Table D–1 lists the attributes of the binding component configuration element.

bindings (jms-adapter)

Schema Reference: Component Configuration wlevs_application_config.xsd D-21

Example
The following example shows how to use the binding element in the component
configuration file:

<processor>
<name>processor1</name>

<record-parameters>
<dataset-name>test1data</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
<rules>

<rule id="rule1"><![CDATA[
select stockSymbol, avg(price) as percentage
from StockTick retain 5 events
where stockSymbol=?
having avg(price) > ? or avg(price) < ?

]]></rule>
</rules>
<bindings>

<binding id="rule1">
<params>BEAS,10.0,-10.0</params>
<params id="IBM">IBM,5.0,5.0</params>

</binding>
</bindings>

</processor>

bindings (jms-adapter)
Using the com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean, you can
partition an incoming JMS stream in Oracle Event Processing applications by utilizing
the notification groups that the ActiveActiveGroupBean creates.

Use this element to associate a notification group with a particular message-selector
value.

For more information, see Section , "ActiveActiveGroupBean".

Child Elements
The bindings component configuration element supports the following child
elements:

■ group-binding

Attributes
The bindings component has no attributes.

Table D–1 Attributes of the binding Component Configuration Element

Attribute Description Data Type Required?

id The identifier of the EPL rule to which this binding
applies.

String Yes.

bindings (processor)

D-22 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the bindings element in the component
configuration file:

<jms-adapter>
<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic1</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>true</session-transacted>
<message-selector>${CONDITION}</message-selector>
<bindings>

<group-binding group-id="ActiveActiveGroupBean_group1">
<param id="CONDITION">acctid > 400</param>

</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group2">

<param id="CONDITION">acctid BETWEEN 301 AND 400</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group3">

<param id="CONDITION">acctid BETWEEN 201 AND 300</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group4">

<param id="CONDITION">acctid <= 200</param>
</group-binding>

 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing
server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid >
400 and the application processes events whose acctid property is greater than 400.

bindings (processor)
Use this element to define bindings for one or more parameterized Oracle CQL or EPL
rules in a processor component.

For more information, see:

■ "Parameterized Queries" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

■ "Parameterized Queries" in the Oracle Fusion Middleware EPL Language Reference for
Oracle Event Processing

Child Elements
The bindings component configuration element supports the following child
elements:

■ binding

Attributes
The bindings component has no attributes.

buffer-size

Schema Reference: Component Configuration wlevs_application_config.xsd D-23

Example
The following example shows how to use the bindings element in the component
configuration file:

<processor>
<name>processor1</name>

<record-parameters>
<dataset-name>test1data</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
<rules>

<rule id="rule1"><![CDATA[
select stockSymbol, avg(price) as percentage
from StockTick retain 5 events
where stockSymbol=?
having avg(price) > ? or avg(price) < ?

]]></rule>
</rules>
<bindings>

<binding id="rule1">
<params>BEAS,10.0,-10.0</params>
<params id="IBM">IBM,5.0,5.0</params>

</binding>
</bindings>

</processor>

buffer-size
Use this element to define the size of the internal store buffer that's used to
temporarily hold asynchronous updates that need to be written to the store. Does not
support dynamic updates.

Child Elements
The buffer-size component configuration element has no child elements.

Attributes
The buffer-size component has no attributes.

Example
The following example shows how to use the buffer-size element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-behind>

<work-manager-name>JettyWorkManager</work-manager-name>
<batch-size>100</batch-size>
<buffer-size>100</buffer-size>

buffer-write-attempts

D-24 Developer's Guide for Oracle Event Processing

<buffer-write-attempts>100</buffer-write-attempts>
<buffer-write-timeout>100</buffer-write-timeout>

</write-behind>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

buffer-write-attempts
Use this element to define the number of attempts that the user thread will make to
write to the store buffer. The user thread is the thread that creates or updates a cache
entry. If the user thread cannot write to the store buffer (all write attempts fail), it will
invoke the store synchronously. This element may be changed dynamically.

Child Elements
The buffer-write-attempts component configuration element has no child elements.

Attributes
The buffer-write-attempts component has no attributes.

Example
The following example shows how to use the buffer-write-attempts element in the
component configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-behind>

<work-manager-name>JettyWorkManager</work-manager-name>
<batch-size>100</batch-size>
<buffer-size>100</buffer-size>
<buffer-write-attempts>100</buffer-write-attempts>
<buffer-write-timeout>100</buffer-write-timeout>

</write-behind>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

buffer-write-timeout
Use this element to define the time in milliseconds that the user thread will wait before
aborting an attempt to write to the store buffer. The attempt to write to the store buffer
fails only in case the buffer is full. After the timeout, further attempts may be made to

cache

Schema Reference: Component Configuration wlevs_application_config.xsd D-25

write to the buffer based on the value of buffer-write-attempts. This element may be
changed dynamically.

Child Elements
The buffer-write-timeout component configuration element has no child elements.

Attributes
The buffer-write-timeout component has no attributes.

Example
The following example shows how to use the buffer-write-timeout element in the
component configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-behind>

<work-manager-name>JettyWorkManager</work-manager-name>
<batch-size>100</batch-size>
<buffer-size>100</buffer-size>
<buffer-write-attempts>100</buffer-write-attempts>
<buffer-write-timeout>100</buffer-write-timeout>

</write-behind>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

cache
Use this element to define a cache for a component. A cache is a temporary storage area
for events, created exclusively to improve the overall performance of your Oracle
Event Processing application; it is not necessary for the application to function
correctly. Oracle Event Processing applications can optionally publish or consume
events to and from a cache to increase the availability of the events and increase the
performance of their applications.

For more information, see Section , "Configuring an Oracle Event Processing Local
Caching System and Cache".

Child Elements
The cache component configuration element supports the following child elements:

■ name

■ max-size

■ eviction-policy

■ time-to-live

caching-system

D-26 Developer's Guide for Oracle Event Processing

■ idle-time

■ One of:

– write-none

– write-through

– write-behind

■ work-manager-name

■ listeners

Attributes
The cache component has no attributes.

Example
The following example shows how to use the cache element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

caching-system
Use this element to define an Oracle Event Processing local caching system
component. A caching system refers to a configured instance of a caching
implementation. A caching system defines a named set of configured caches as well as
the configuration for remote communication if any of the caches are distributed across
multiple machines.

For more information, see Section , "Configuring a Cache as an Event Listener".

Child Elements
The caching-system component configuration element supports the following child
elements:

■ name

■ cache

Attributes
The caching-system component has no attributes.

channel

Schema Reference: Component Configuration wlevs_application_config.xsd D-27

Example
The following example shows how to use the caching-system element in the
component configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

In the example, the channel’s unique identifier is providerCachingSystem.

channel
Use this element to define a channel component. An Oracle Event Processing
application contains one or more channel components that represent the physical
conduit through which events flow between other types of components, such as
between adapters and processors, and between processors and event beans (business
logic POJOs).

Child Elements
The channel component configuration element supports the following child elements:

■ name

■ record-parameters

■ playback-parameters

■ max-size

■ max-threads

■ selector

■ heartbeat

■ partition-order-capacity

Attributes
The channel component has no attributes.

Example
The following example shows how to use the channel element in the component
configuration file:

<channel>
<name>MatchOutputChannel</name>
<max-size>0</max-size>
<max-threads>0</max-threads>

channel (http-pub-sub-adapter Child Element)

D-28 Developer's Guide for Oracle Event Processing

<selector>match</selector>
</channel>

In the example, the channel’s unique identifier is MatchOutputChannel.

channel (http-pub-sub-adapter Child Element)
Use the channel element to specify the channel that the http-pub-sub-adapter
publishes or subscribes to, whichever is appropriate, for all http-pub-sub-adapter,
whether they are local or remote or for publishing or subscribing.

Child Elements
The channel component configuration element has no child elements.

Attributes
The channel component has no attributes.

Example
The following example shows how to use the channel element in the component
configuration file:

<http-pub-sub-adapter>
<name>localPublisher</name>
<server-context-path>/pubsub</server-context-path>
<channel>/channel2</channel>

</http-pub-sub-adapter>

In the example, the localPublisher pub-sub adapter publishes to a local channel with
pattern /channel2.

channel-name
Use this element to specify the name of the channel onto which events should be
injected or to which traced events should be sent. The element’s value must be a path
to the channel in a form like the following default values (note that the path must
begin with a slash):

■ For event tracing:

/serverID/appID/stageID/output

■ For event injection:

/serverID/appID/stageID/input

Note that when the value of the active element is false, the channel-name value will
be ignored.

For more on event tracing and injection, see the following:

■ Section , "Tracing Events"

■ Section , "Injecting Events"

Child Elements
The channel-name component configuration element has no child elements.

coherence-caching-system

Schema Reference: Component Configuration wlevs_application_config.xsd D-29

Attributes
The channel-name component configuration element has no attributes.

Example
The component configuration excerpt shown in the following example illlustrates how
you might configure a processor for event tracing. The trace-parameters element’s
active child element specifies that tracing is on, while the channel-name element
specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
<name>FindCrossRates</name>
<trace-parameters>

<active>true</active>
<channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>

</trace-parameters>
<rules>

<!-- Query rules omitted. -->
</rules>

</processor>

coherence-cache-config
Use this element to define the Oracle Coherence cache configuration for a
coherence-caching-system.

For more information, see Section , "Configuring an Oracle Event Processing Local
Caching System and Cache".

Child Elements
The coherence-cache-config component configuration element has no child
elements.

Attributes
The coherence-cache-config component has no attributes.

Example
The following example shows how to use the coherence-cache-config element in the
component configuration file:

<coherence-caching-system>
<name>nativeCachingSystem</name>
<coherence-cache-config>

applications/cache_cql/coherence/coherence-cache-config.xml
</coherence-cache-config></coherence-caching-system>

coherence-caching-system
Use this element to define an Oracle Coherence caching system component. A caching
system refers to a configured instance of a caching implementation. A caching system
defines a named set of configured caches as well as the configuration for remote
communication if any of the caches are distributed across multiple machines.

coherence-cluster-config

D-30 Developer's Guide for Oracle Event Processing

For more information, see Section , "Configuring an Oracle Coherence Caching System
and Cache".

Child Elements
The coherence-caching-system component configuration element supports the
following child elements:

■ name

■ coherence-cache-config

■ coherence-cluster-config

Attributes
The coherence-caching-system component has no attributes.

Example
The following example shows how to use the coherence-caching-system element in
the component configuration file:

<coherence-caching-system>
<name>nativeCachingSystem</name>
<coherence-cache-config>

applications/cache_cql/coherence/coherence-cache-config.xml
</coherence-cache-config>

</coherence-caching-system>

In the example, the channel’s unique identifier is nativeCachingSystem.

coherence-cluster-config
Use this element to define the Oracle Coherence cluster configuration for a
coherence-caching-system.

For more information, see "Overview of Oracle Event Processing Multi-Server Domain
Administration" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event
Processing.

Child Elements
The coherence-cache-config component configuration element has no child
elements.

Attributes
The coherence-cache-config component has no attributes.

Example
The following example shows how to use the coherence-cache-config element in the
component configuration file:

<coherence-caching-system>
<name>nativeCachingSystem</name>
<coherence-cluster-config>

applications/cluster_cql/coherence/coherence-cluster-config.xml
</coherence-cluster-config></coherence-caching-system>

concurrent-consumers

Schema Reference: Component Configuration wlevs_application_config.xsd D-31

collect-interval
Use this element to define the collection interval of an average-latency or
max-latency element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The collect-interval component configuration element supports the following child
elements:

■ amount

■ unit

Attributes
The collect-interval component has no attributes.

Example
The following example shows how to use the collect-interval element in the
component configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

concurrent-consumers
Use this element to define the number of consumers to create. Default value is 1.

If you set this value to number greater than one, be sure that your converter bean is
thread-safe because the converter bean will be shared among the consumers.

connection-jndi-name

D-32 Developer's Guide for Oracle Event Processing

If concurrent-consumers is greater than 1 and you want all the consumers to be run
concurrently, then consider how you configure the work-manager you associate with
this JMS adapter:

■ If the work-manager is shared with other components (such as other adapters and
Jetty) then set the work-manager attribute max-threads-constraint greater than or
equal to the concurrent-consumers setting.

■ If the work-manager is not shared (that is, it is dedicated to this inbound JMS
adapter only) then set the work-manager attribute max-threads-constraint equal
to the concurrent-consumers setting.

For more information, see:

■ Section , "Creating a Custom Converter Between JMS Messages and Event Types"

■ Section , "work-manager"

Child Elements
The concurrent-consumers component configuration element has no child elements.

Attributes
The concurrent-consumers component has no attributes.

Example
The following example shows how to use the concurrent-consumers element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

connection-jndi-name
Use this optional element to define a JNDI name of the JMS connection factory. Default
value is weblogic.jms.ConnectionFactory for Oracle Event Processing server JMS.

Child Elements
The connection-jndi-name component configuration element has no child elements.

Attributes
The connection-jndi-name component has no attributes.

Example
The following example shows how to use the connection-jndi-name element in the
component configuration file:

<jms-adapter>

connection-password

Schema Reference: Component Configuration wlevs_application_config.xsd D-33

<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

connection-encrypted-password
Use the connection-encrypted-password element to define the encrypted
jms-adapter password that Oracle Event Processing uses when it acquires a
connection to the JMS service provider.

When Oracle Event Processing calls the createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS
queue or topic), it uses the connection-user and connection-password or
connection-encrypted-password element, if configured. Otherwise, Oracle Event
Processing uses the user and password (or encrypted-password) elements.

Use either connection-encrypted-password or connection-password but not both.

For more information, see Section , "Encrypting Passwords in the JMS Adapter
Component Configuration File".

Child Elements
The connection-encrypted-password component configuration element has no child
elements.

Attributes
The connection-encrypted-password component has no attributes.

Example
The following example shows how to use the connection-encrypted-password
element in the component configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>
<connection-user>wlevscon</user>
<encrypted-password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</encrypted-password>

</http-pub-sub-adapter>

connection-password
Use the connection-password element to define the jms-adapter password that
Oracle Event Processing uses when it acquires a connection to the JMS service
provider.

When Oracle Event Processing calls the createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS

connection-user

D-34 Developer's Guide for Oracle Event Processing

queue or topic), it uses the connection-user and connection-password or
connection-encrypted-password element, if configured. Otherwise, Oracle Event
Processing uses the user and password (or encrypted-password) elements.

Use either connection-password or connection-encrypted-password but not both.

Child Elements
The connection-password component configuration element has no child elements.

Attributes
The connection-password component has no attributes.

Example
The following example shows how to use the connection-password element in the
component configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>
<connection-user>wlevscon</user>
<connection-password>wlevscon</password>

</http-pub-sub-adapter>

connection-user
Use the connection-user element to define the jms-adapter user name that Oracle
Event Processing uses when it acquires a connection to the JMS service provider.

When Oracle Event Processing calls the createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS
queue or topic), it uses the connection-user and connection-password or
connection-encrypted-password element, if configured. Otherwise, Oracle Event
Processing uses the user and password (or encrypted-password) elements.

You can use the connection-user and connection-password (or
connection-encrypted-password) settings in applications where one security
provider is used for JNDI access and a separate security provider is used for JMS
access.

Child Elements
The connection-user component configuration element has no child elements.

Attributes
The connection-user component has no attributes.

Example
The following example shows how to use the connection-user element in the
component configuration file:

<http-pub-sub-adapter>

dataset-name

Schema Reference: Component Configuration wlevs_application_config.xsd D-35

<name>remotePub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>
<connection-user>wlevscon</user>
<connection-password>wlevscon</password>

</http-pub-sub-adapter>

database
Use this element to define a database reference for an EPL processor component.

For more information, see Chapter 19, "Querying an Event Stream with Oracle EPL".

Child Elements
The database component configuration element has no child elements.

Attributes
Table D–2 lists the attributes of the database component configuration element.

Example
The following example shows how to use the database element in the component
configuration file:

<processor>
<name>proc</name>
<rules>

<rule id="rule1"><![CDATA[
SELECT symbol, price
FROM ExchangeEvent retain 1 event,
StockDb ('SELECT symbol FROM Stock WHERE symbol = ${symbol}')

]]></rule>
</rules>

<database name="StockDb" data-source-name="StockDs" />

</processor>

dataset-name
Use this element to define the group of data that the user wants to group together. In
the case of the Oracle RDBMS-based provider, it specifies the database area, or schema,
in which the tables that store the recorded events are created. When configuring the
Oracle RDBMS-based provider, you are required to specify this element.

Child Elements
The dataset-name component configuration element has no child elements.

Table D–2 Attributes of the database Component Configuration Element

Attribute Description Data Type Required?

name Unique identifier for this query. String Yes.

data-source-name The name of the data source as defined in the Oracle
Event Processing server config.xml file.

String Yes.

delivery-mode

D-36 Developer's Guide for Oracle Event Processing

Attributes
The dataset-name component has no attributes.

Example
The following example shows how to use the dataset-name element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

delivery-mode
Use this element to define the delivery mode for a jms-adapter.

Valid values are:

■ persistent (default)

■ nonpersistent

Child Elements
The delivery-mode component configuration element has no child elements.

Attributes
The delivery-mode component has no attributes.

Example
The following example shows how to use the delivery-mode element in the
component configuration file:

<jms-adapter>
<name>jmsOutbound-map</name>
<event-type>JMSTestEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Topic1</destination-jndi-name>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>

destination-jndi-name
Use this required element to define the JMS destination name for a jms-adapter.

Specify either the JNDI name or the actual destination-name, but not both.

Child Elements
The destination-jndi-name component configuration element has no child elements.

destination-type

Schema Reference: Component Configuration wlevs_application_config.xsd D-37

Attributes
The destination-jndi-name component has no attributes.

Example
The following example shows how to use the destination-jndi-name element in the
component configuration file:

<jms-adapter>
<name>jmsOutbound-map</name>
<event-type>JMSTestEvent</event-type>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-jndi-name>Topic1</destination-jndi-name>
<delivery-mode>nonpersistent</delivery-mode>

</jms-adapter>

destination-name
Use this required element to define the JMS destination name for a jms-adapter.

Specify either the actual destination name or the destination-jndi-name, but not
both.

Child Elements
The destination-name component configuration element has no child elements.

Attributes
The destination-name component has no attributes.

Example
The following example shows how to use the destination-name element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

destination-type
Use this element to define the JMS destination type for a jms-adapter. Valid values are
TOPIC or QUEUE. This property must be set to TOPIC whenever the
durable-subscription property is set to true.

Child Elements
The destination-type component configuration element has no child elements.

diagnostic-profiles

D-38 Developer's Guide for Oracle Event Processing

Attributes
The destination-type component has no attributes.

Example
The following example shows how to use the destination-type element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<destination-type>TOPIC</destination-name>
<durable-subscription>true</durable-subscription>
<durable-subscription-name>JmsDurableSubscription</durable-subscription-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

diagnostic-profiles
Use this element to define one or more Oracle Event Processing diagnostic profiles.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The diagnostics-profiles component configuration element supports the following
child elements:

■ name

■ profile

Attributes
The diagnostics-profiles component has no attributes.

Example
The following example shows how to use the diagnostics-profiles element in the
component configuration file:

<diagnostics-profiles>
<name>myDiagnosticProfiles</name>
<profile>

...
</profile>

</diagnostics-profiles>

In the example, the channel’s unique identifier is myDiagnosticProfiles.

durable-subscription

Schema Reference: Component Configuration wlevs_application_config.xsd D-39

direction
Use this element to define the direction for a diagnostic profile end-location or
start-location.

Valid values are:

■ INBOUND

■ OUTBOUND

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The direction component configuration has no child elements:

Attributes
The direction component has no attributes.

Example
The following example shows how to use the direction element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

durable-subscription
Use this element to specify whether the JMS topic subscription of a jms-adapter is
durable, meaning that it can persist even if subscribers become inactive. Valid values
are true or false. This property is only valid if destination-type is set to TOPIC.

durable-subscription-name

D-40 Developer's Guide for Oracle Event Processing

Child Elements
The durable-subscription component configuration element has no child elements.

Attributes
The durable-subscription component has no attributes.

Example
The following example shows how to use the durable-subscription element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<destination-type>TOPIC</destination-name>
<durable-subscription>true</durable-subscription>
<durable-subscription-name>JmsDurableSubscription</durable-subscription-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

durable-subscription-name
Use this element to specify the name to uniquely identify a durable subscription of a
jms-adapter. A durable subscription can persist even if subscribers become inactive.

Child Elements
The durable-subscription-name component configuration element has no child
elements.

Attributes
The durable-subscription-name component has no attributes.

Example
The following example shows how to use the durable-subscription-name element in
the component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<destination-type>TOPIC</destination-name>
<durable-subscription>true</durable-subscription>
<durable-subscription-name>JmsDurableSubscription</durable-subscription-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

enabled

Schema Reference: Component Configuration wlevs_application_config.xsd D-41

duration
Use this element to define a time duration for a schedule-time-range-offset or
time-range-offset element in the form:

HH:MM:SS

Where: HH is a number of hours, MM is a number of minutes, and SS is a number of
seconds.

Child Elements
The duration component configuration element has no child elements.

Attributes
The duration component has no attributes.

Example
The following example shows how to use the duration element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<time-range-offset>

<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</time-range-offset>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

enabled
Use this element to define whether or not a diagnostic profile is enabled.

Valid values are:

■ true

■ false

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The enabled component configuration element has no child elements.

encrypted-password

D-42 Developer's Guide for Oracle Event Processing

Attributes
The enabled component has no attributes.

Example
The following example shows how to use the enabled element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<start-location>
<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

encrypted-password
Use the encrypted-password element in the following parent elements:

■ http-pub-sub-adapter: Use the encrypted-password element to define the
encrypted password if the HTTP pub-sub server to which the Oracle Event
Processing application is publishing requires user authentication.

■ jms-adapter: When Oracle Event Processing acquires the JNDI InitialContext, it
uses the user and password (or encrypted-password) elements. When Oracle
Event Processing calls the createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS
queue or topic), it uses the connection-user and connection-password (or
connection-encrypted-password element), if configured. Otherwise, Oracle Event
Processing the user and password (or encrypted-password) elements.

Use either encrypted-password or password but not both.

For more information, see Section , "Encrypting Passwords in the JMS Adapter
Component Configuration File".

Child Elements
The encrypted-password component configuration element has no child elements.

Attributes
The encrypted-password component has no attributes.

end

Schema Reference: Component Configuration wlevs_application_config.xsd D-43

Example
The following example shows how to use the encrypted-password element in the
component configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<encrypted-password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</encrypted-password>

</http-pub-sub-adapter>

end
Use this element to define an end time for a time-range or schedule-time-range
element.

Express the end time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and
end on January 20, 2010, at 6:00 pm, enter the following:

<time-range>
<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

Child Elements
The end component configuration element has no child elements.

Attributes
The end component has no attributes.

Example
The following example shows how to use the end element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<time-range>

<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>

end-location

D-44 Developer's Guide for Oracle Event Processing

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

end-location
Use this element to define the end location of a average-latency or max-latency
element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The end-location component configuration element supports the following child
elements:

■ application

■ stage

■ direction

Attributes
The end-location component has no attributes.

Example
The following example shows how to use the end-location element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

event-bean
Use this element to define an event bean component.

event-type

Schema Reference: Component Configuration wlevs_application_config.xsd D-45

For more information, see Chapter , "Configuring a Java Class as an Event Bean".

Child Elements
The event-bean component configuration element supports the following child
elements:

■ name

■ record-parameters

■ playback-parameters

Attributes
The event-bean component has no attributes.

Example
The following example shows how to use the event-bean element in the component
configuration file:

<event-bean>
<name>myEventBean</name>

</event-bean>

In the example, the channel’s unique identifier is myEventBean.

event-type
Use the event-type element in the following parent elements:

■ http-pub-sub-adapter:

– Publishing: Optional. For both local and remote HTTP pub-sub adapters for
publishing, specify the fully qualified class name of the JavaBean event to
limit the types of events that are published. Otherwise, all events sent to the
HTTP pub-sub adapter are published.

– Subscribing: Required. For both local and remote HTTP pub-sub adapters for
subscribing, specify the fully qualified class name of the JavaBean to which
incoming messages are mapped. At runtime, Oracle Event Processing uses the
incoming key-value pairs in the message to map the message data to the
specified event type.

You must register this class in the EPN assembly file as a
wlevs:event-type-repository element wlevs:class child element. For more
information, see Section , "Creating an Oracle Event Processing Event Type as a
JavaBean".

■ jms-adapter: Use the event-type element to specify an event type whose
properties match the JMS message properties. Specify this child element only if
you want Oracle Event Processing to automatically perform the conversion
between JMS messages and events. If you have created your own custom
converter bean, then do not specify this element.

■ record-parameters: Use the event-type element to specify an event that you
want to record.

event-type-list

D-46 Developer's Guide for Oracle Event Processing

The value of the event-type element must be one of the event types you defined in
your event type repository. For more information, see Section , "Overview of Oracle
Event Processing Event Types".

Child Elements
The event-type component configuration element has no child elements.

Attributes
The event-type component has no attributes.

Example
The following example shows how to use the event-type element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

event-type-list
Use this element to define one or more events for record or playback for a component.

Child Elements
The event-type-list component configuration element supports the following child
elements:

■ event-type

Attributes
The event-type-list component has no attributes.

Example
The following example shows how to use the event-type-list element in the
component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

eviction-policy
Use this element to define the eviction policy the cache uses when max-size is reached.

fail-when-rejected

Schema Reference: Component Configuration wlevs_application_config.xsd D-47

Valid values are:

■ FIFO: first in, first out.

■ LRU: least recently used

■ LFU: least frequently used (default)

■ NRU: not recently used

Child Elements
The eviction-policy component configuration element has no child elements.

Attributes
The eviction-policy component has no attributes.

Example
The following example shows how to use the eviction-policy element in the
component configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

fail-when-rejected
Use this element to specify whether an
com.bea.wlevs.ede.api.EventProcessingException should be raised if the event
queue is full when the offer timeout expires. If set to false or not set at all, then the
event is dropped rather than an exception raised. This configuration is only applicable
for event queues whose max-size value is greater than 0. The default value is false.

For more on setting the offer timeout, see , "offer-timeout".

Child Elements
The fail-when-rejected component configuration element has no child elements.

Attributes
The fail-when-rejected component configuration element has no attributes.

Example
In the following example, the channel is configured to raise an
EventProcessingException if 15 seconds pass while the event queue is full.

group-binding

D-48 Developer's Guide for Oracle Event Processing

<channel>
<name>QueuedChannel</name>
<max-size>1000</max-size>
<max-threads>1</max-threads>
<offer-timeout>15000000000</offer-timeout>
<fail-when-rejected>true</fail-when-rejected>

</channel>

group-binding
Edit the component configuration file to add group-binding child elements to the
jms-adapter element for the JMS inbound adapters.

Add one group-binding element for each possible JMS message-selector value.

For more information, see Section , "bindings (jms-adapter)".

Child Elements
The group-binding component configuration element supports the following child
elements:

■ param

Attributes
Table D–3 lists the attributes of the group-binding component configuration element.

Example
The following example shows how to use the group-binding element in the
component configuration file:

<jms-adapter>
<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic1</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>true</session-transacted>
<message-selector>${CONDITION}</message-selector>
<bindings>

<group-binding group-id="ActiveActiveGroupBean_group1">
<param id="CONDITION">acctid > 400</param>

</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group2">

<param id="CONDITION">acctid BETWEEN 301 AND 400</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group3">

<param id="CONDITION">acctid BETWEEN 201 AND 300</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group4">

<param id="CONDITION">acctid <= 200</param>
</group-binding>

Table D–3 Attributes of the group-binding Component Configuration Element

Attribute Description Data Type Required?

group-id The name of a cluster element groups child element. String Yes.

http-pub-sub-adapter

Schema Reference: Component Configuration wlevs_application_config.xsd D-49

 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing
server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid >
400 and the application processes events whose acctid property is greater than 400.

heartbeat
Use this element to define a new heartbeat timeout for a system-timestamped channel
component. By default, the timeout value is 100 milliseconds, or 100,000,000
nanoseconds.

For system-timestamped relations or streams, time is dependent upon the arrival of
data on the relation or stream data source. Oracle Event Processing generates a
heartbeat on a system timestamped relation or stream if there is no activity (no data
arriving on the stream or relation’s source) for more than the value for this setting.
Either the relation or stream is populated by its specified source or Oracle Event
Processing generates a heartbeat every heartbeat number of nanoseconds.

The heartbeat child element applies to system-timestamped relations or streams only
when no events arrive in the event channels that are feeding the processors and the
processor has been configured with a statement that includes some temporal operator,
such as a time-based window or a pattern matching with duration.

Child Elements
The heartbeat component configuration element has no child elements.

Attributes
The heartbeat component configuration element has no attributes.

Example
The following example shows how to use the heartbeat element in the component
configuration file:

<channel>
<name>MatchOutputChannel</name>
<max-size>0</max-size>
<max-threads>0</max-threads>
<selector>match</selector>
<heartbeat>10000</heartbeat>

</channel>

In the example, the channel’s unique identifier is MatchOutputChannel.

http-pub-sub-adapter
Use this element to define an HTTP publish-subscribe server adapter component.

For more information, see Chapter 12, "Integrating an HTTP Publish-Subscribe
Server".

idle-time

D-50 Developer's Guide for Oracle Event Processing

Child Elements
The http-pub-sub-adapter component configuration element supports the following
child elements:

■ name

■ record-parameters

■ playback-parameters

■ symbols

■ work-manager-name

■ netio

■ One of:

– server-context-path

– server-url

■ event-type

■ user

■ One of:

– password

– encrypted-password

Attributes
The http-pub-sub-adapter component configuration element has no attributes.

Example
The following example shows how to use the http-pub-sub-adapter element in the
component configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>

In the example, the adapter's unique identifier is remotePub.

idle-time
Use this element to define the number of milliseconds a cache entry may not be
accessed before being actively removed from the cache. By default, there is no
idle-time set. This element may be changed dynamically.

Child Elements
The idle-time component configuration element has no child elements.

inject-parameters

Schema Reference: Component Configuration wlevs_application_config.xsd D-51

Attributes
The idle-time component has no attributes.

Example
The following example shows how to use the idle-time element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

inject-parameters
Use this element to configure event injection for a stage in the event processing
network.

For more information about event injection, see Section , "Injecting Events".

Child Elements
The inject-parameters component configuration element supports the following
child elements:

■ channel-name

■ active

Attributes
The inject-parameters component configuration element has no attributes.

Example
The component configuration excerpt shown in the following example illlustrates how
you might configure a processor for event injection. The inject-parameters element’s
active child element specifies that injection is on, while the channel-name element
specifies the HTTP pub-sub channel to which injected elements should be sent.

<processor>
<name>FindCrossRates</name>
<inject-parameters>

<active>true</active>
<channel-name>/NonClusteredServer/fx/FindCrossRates/input</channel-name>

</inject-parameters>
<rules>

<!-- Query rules omitted. -->
</rules>

</processor>

jms-adapter

D-52 Developer's Guide for Oracle Event Processing

jms-adapter
Use this element to define a JMS adapter component.

For more information, see Chapter 11, "Integrating the Java Message Service".

Child Elements
The jms-adapter component configuration element supports the following child
elements:

■ name

■ record-parameters

■ playback-parameters

■ event-type

■ jndi-provider-url

■ connection-jndi-name

■ One of:

– destination-jndi-name

– destination-name

■ user

One of:

– password

– encrypted-password

■ connection-user

One of:

– connection-password

– connection-encrypted-password

■ work-manager

■ concurrent-consumers

■ message-selector

■ session-ack-mode-name

■ session-transacted

■ delivery-mode

Attributes
The jms-adapter component configuration element has no attributes.

Example
The following example shows how to use the jms-adapter element in the component
configuration file:

jndi-provider-url

Schema Reference: Component Configuration wlevs_application_config.xsd D-53

<jms-adapter>
<name>jmsInbound-text</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

In the example, the adapter's unique identifier is jmsInbound-text.

jndi-factory
Use this optional element to define a JNDI factory for a jms-adapter. The JNDI factory
name. Default value is weblogic.jndi.WLInitialContextFactory, for Oracle Event
Processing server JMS

Child Elements
The jndi-factory component configuration element has no child elements.

Attributes
The jndi-factory component has no attributes.

Example
The following example shows how to use the jndi-provider-url element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<jndi-factory>weblogic.jndi.WLInitialContextFactory</jndi-factory>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

jndi-provider-url
Use this required element to define a JNDI provider URL for a jms-adapter.

Child Elements
The jndi-provider-url component configuration element has no child elements.

Attributes
The jndi-provider-url component has no attributes.

listeners

D-54 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the jndi-provider-url element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

listeners
Use this element to define the behavior for cache listeners.

The listeners element has a single child element, work-manager-name, that specifies
the work manager to be used for asynchronously invoking listeners. This value is
ignored if synchronous invocations are enabled. If a work manager is specified for the
cache itself, this value overrides it for invoking listeners only.

Child Elements
The listeners component configuration element supports the following child
elements:

■ work-manager-name

Attributes
Table D–4 lists the attributes of the listeners component configuration element.

Example
The following example shows how to use the listeners element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-behind>

<work-manager-name>JettyWorkManager</work-manager-name>
<batch-size>100</batch-size>
<buffer-size>100</buffer-size>
<buffer-write-attempts>100</buffer-write-attempts>
<buffer-write-timeout>100</buffer-write-timeout>

</write-behind>

Table D–4 Attributes of the listeners Component Configuration Element

Attribute Description Data Type Required?

asynchronous Execute listeners asynchronously.

Valid values are true and false. Default value is false.

Boolean No.

max-latency

Schema Reference: Component Configuration wlevs_application_config.xsd D-55

<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

location
Use this element to define the location of a throughput element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The location component configuration element supports the following child
elements:

■ application

■ stage

■ direction

Attributes
The location component has no attributes.

Example
The following example shows how to use the location element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<throughput>

<throughput-interval>
<amount>100000</amount>
<unit>MICROSECONDS</unit>

</throughput-interval>
<average-interval>

<amount>100000000</amount>
<unit>NANOSECONDS</unit>

</average-interval>
<location>

<application>diagnostic</application>
<stage>AlertEventStream</stage>
<direction>INBOUND</direction>

</location>
</throughput>

</profile>
</diagnostic-profiles>

max-latency
Use this element to define the maximum latency calculation of a diagnostic profile.

max-size

D-56 Developer's Guide for Oracle Event Processing

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The max-latency component configuration element supports the following child
elements:

■ name

■ collect-interval

■ start-location

■ end-location

Attributes
The max-latency component has no attributes.

Example
The following example shows how to use the max-latency element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<start-location>
<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

max-size
Use the max-size element in the following parent elements:

■ channel or stream: Use the max-size child element to specify the maximum size of
the channel. Zero-size channels synchronously pass-through events. Non-zero size
channels process events asynchronously, buffering events by the requested size. If
max-threads is zero, then max-size is zero. The default value is 0.

■ cache: Use the max-size element to define the number of cache elements in
memory after which eviction or paging occurs. Currently, the maximum cache size
is 2^31-1 entries. This element may be changed dynamically

max-threads

Schema Reference: Component Configuration wlevs_application_config.xsd D-57

Child Elements
The max-size component configuration element has no child elements.

Attributes
The max-size component has no attributes.

Example
The following example shows how to use the max-size element in the component
configuration file:

<stream>
<name>monitoring-control-stream</name>
<max-size>10000</max-size>
<max-threads>1</max-threads>

</stream>

max-threads
Use this element to define the maximum number of threads that Oracle Event
Processing server uses to process events for a channel or stream. The default value is
0.

When set to 0, the channel acts as a pass-through. When max-threads > 0, the channel
acts as classic blocking queue, where upstream components are producers of events
and the downstream components are the consumers of events. The queue size is
defined by the configuration max-size. There will be up to max-threads number of
threads consuming events from the queue.

You can change max-threads from 0 to a positive integer (that is, from a pass through
to multiple threads) without redeploying. However, if you change max-threads from a
positive integer to 0 (that is, from multiple threads to a pass through), then you must
redeploy your application.

If the max-size attribute is 0, then setting a value for max-threads has no effect.

The default value for this attribute is 0.

Setting this value has no effect when max-size is 0.

Child Elements
The max-threads component configuration element has no child elements.

Attributes
The max-threads component has no attributes.

Example
The following example shows how to use the max-threads element in the component
configuration file:

<channel>
<name>monitoring-control-stream</name>
<max-size>10000</max-size>
<max-threads>1</max-threads>

</channel>

message-selector

D-58 Developer's Guide for Oracle Event Processing

message-selector
Use this element to JMS message selector to use to filter messages in a jms-adapter.

The syntax of a message selector expression is based on a subset of the SQL92
conditional expression syntax and message headers and properties. For example, to
select messages based on property EventType, you could use:

EventType = ’News’ OR ’Commentary’

Child Elements
The message-selector component configuration element has no child elements.

Attributes
The message-selector component has no attributes.

Example
The following example shows how to use the message-selector element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<message-selector>EventType = ’News’ OR ’Commentary’</message-selector>
<session-transacted>false</session-transacted>

</jms-adapter>

name
Use the name element in the following parent elements:

■ adapter, http-pub-sub-adapter, jms-adapter, processor (EPL), processor
(Oracle CQL), stream, channel, event-bean, caching-system, and
coherence-caching-system: Use the name element to associate this application
configuration element with its corresponding element in the EPN assembly file.
Valid value is the corresponding EPN assembly file element id attribute.

■ diagnostic-profiles: Use the name element to uniquely identify the
diagnostic-profiles element and each of its profile child elements.

■ parameter: Use the name element to define the name of a name/value pair.

Child Elements
The name component configuration element has no child elements:

Attributes
The name component has no attributes.

num-threads

Schema Reference: Component Configuration wlevs_application_config.xsd D-59

Example
The following example shows how to use the name element in the component
configuration file:

<diagnostics-profiles>
<name>myDiagnosticProfiles</name>
<profile>

...
</profile>

</diagnostics-profiles>

In the example, the channel’s unique identifier is myDiagnosticProfiles.

netio
Use this element to define a network input/output port for a component.

Child Elements
The netio component configuration element supports the following child elements:

■ provider-name

■ num-threads

■ accept-backlog

Attributes
The netio component has no attributes.

Example
The following example shows how to use the netio element in the component
configuration file:

<netio>
<provider-name>providerCache</provider-name>
<num-threads>1000</num-threads>

</netio>

num-threads
Use this element to define the number of threads in a network input/output port for a
component.

Child Elements
The num-threads component configuration element has no child elements.

Attributes
The num-threads component has no attributes.

Note: When a child of the adapter element, this element is for
internal use only.

offer-timeout

D-60 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the num-threads element in the component
configuration file:

<netio>
<provider-name>providerCache</provider-name>
<num-threads>1000</num-threads>

</netio>

offer-timeout
Use this element to specify the amount of time, when an event queue is full and a
pending insert (the "offer") is blocked, after which the pending event will be dropped
or an exception raised. An exception will be raised when the fail-when-rejected
value is set to true; otherwise, the event will be dropped. This setting is only
applicable for event queues whose max-size value is greater than 0. The
offer-timeout value should be specified as nanoseconds. The default is 60 seconds.

Child Elements
The offer-timeout component configuration element has no child elements:

Attributes
The offer-timeout component has no attributes.

Example
In the following example, the channel is configured to raise an
EventProcessingException if 15 seconds pass while the event queue is full.

<channel>
<name>QueuedChannel</name>
<max-size>1000</max-size>
<max-threads>1</max-threads>
<offer-timeout>15000000000</offer-timeout>
<fail-when-rejected>true</fail-when-rejected>

</channel>

param
Use the param element to associate a message selector value with the parameter name
specified in the message-selector element.

For more information, see Section , "bindings (jms-adapter)".

Child Elements
The param component configuration element has no child elements.

Attributes
Table D–5 lists the attributes of the param component configuration element.

parameter

Schema Reference: Component Configuration wlevs_application_config.xsd D-61

Example
The following example shows how to use the param element in the component
configuration file:

<jms-adapter>
<name>JMSInboundAdapter</name>
<event-type>StockTick</event-type>
<jndi-provider-url>t3://ppurich-pc:7001</jndi-provider-url>
<destination-jndi-name>./Topic1</destination-jndi-name>
<user>weblogic</user>
<password>weblogic1</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>true</session-transacted>
<message-selector>${CONDITION}</message-selector>
<bindings>

<group-binding group-id="ActiveActiveGroupBean_group1">
<param id="CONDITION">acctid > 400</param>

</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group2">

<param id="CONDITION">acctid BETWEEN 301 AND 400</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group3">

<param id="CONDITION">acctid BETWEEN 201 AND 300</param>
</group-binding>
<group-binding group-id="ActiveActiveGroupBean_group4">

<param id="CONDITION">acctid <= 200</param>
</group-binding>

 </bindings>
</jms-adapter>

In this configuration, when the application is deployed to an Oracle Event Processing
server with a cluster element groups child element that contains
ActiveActiveGroupBean_group1, then the CONDITION parameter is defined as acctid >
400 and the application processes events whose acctid property is greater than 400.

parameter
Use this element to define a name/value parameter for a component.

Child Elements
The parameter component configuration element supports the following child
elements:

■ name

■ value

Attributes
The parameter component has no attributes.

Table D–5 Attributes of the param Component Configuration Element

Attribute Description Data Type Required?

id The parameter name specified in the
message-selector.

String Yes.

params

D-62 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the parameter element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

params
Use this element to define the parameters for a binding element.

The value of this element is a comma separated list of simple type values. The order of
the values must correspond with the order of the parameters in the EPL rule
associated with this binding.

For more information, see:

■ "Parameterized Queries" in the Oracle Fusion Middleware CQL Language Reference for
Oracle Event Processing

■ "Parameterized Queries" in the Oracle Fusion Middleware EPL Language Reference for
Oracle Event Processing

Child Elements
The params component configuration element has no child elements.

Attributes
Table D–6 lists the attributes of the params component configuration element.

Example
The following example shows how to use the params element in the component
configuration file:

<processor>
<name>processor1</name>

<record-parameters>
<dataset-name>test1data</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

Table D–6 Attributes of the params Component Configuration Element

Attribute Description Data Type Required?

id Unique identifier for this params element. String No.

partition-order-capacity

Schema Reference: Component Configuration wlevs_application_config.xsd D-63

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
<rules>

<rule id="rule1"><![CDATA[
select stockSymbol, avg(price) as percentage
from StockTick retain 5 events
where stockSymbol=?
having avg(price) > ? or avg(price) < ?

]]></rule>
</rules>
<bindings>

<binding id="rule1">
<params>BEAS,10.0,-10.0</params>
<params id="IBM">IBM,5.0,5.0</params>

</binding>
</bindings>

</processor>

partition-order-capacity
Use this element to define the maximum capacity of a query partition when the
ordering-constraint attribute is set to PARTITION_ORDERED. Set this on a channel
component. Consider setting this element’s value when you’ve configured a query
processor for parallel execution, and when the query’s ordering-constraint attribute is
set to PARTITION_ORDERED.

For more information, including best practices and information on the locations where
this value can be set (including their precedence), see "Using partition-order-capacity
with Partitioning Queries" in Chapter 17, "Querying an Event Stream with Oracle
CQL".

To have the capacity value apply at a larger scope, you can set it in the server
configuration file. For more information, see "partition-order-capacity" in Appendix F,
"Schema Reference: Server Configuration wlevs_server_config.xsd".

Child Elements
The partition-order-capacity component configuration element has no child
elements.

Attributes
The partition-order-capacity component configuration element has no attributes.

Example
The following example shows how to use the partition-order-capacity element in
the component configuration file:

<channel>
<name>MatchOutputChannel</name>
<max-size>0</max-size>
<max-threads>0</max-threads>
<selector>match</selector>
<partition-order-capacity>20</partition-order-capacity>

</channel>

password

D-64 Developer's Guide for Oracle Event Processing

password
Use the password element in the following parent elements:

■ http-pub-sub-adapter: Use the password element to define the user password if
the HTTP pub-sub server to which the Oracle Event Processing application is
publishing requires user authentication.

■ jms-adapter: When Oracle Event Processing acquires the JNDI InitialContext, it
uses the user and password (or encrypted-password) elements. When Oracle
Event Processing calls the createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS
queue or topic), it uses the connection-user and connection-password (or
connection-encrypted-password element), if configured. Otherwise, Oracle Event
Processing the user and password (or encrypted-password) elements.

Use either encrypted-password or password but not both.

Child Elements
The password component configuration element has no child elements.

Attributes
The password component has no attributes.

Example
The following example shows how to use the password element in the component
configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>

playback-parameters
Use this element to define event playback parameters for a component.

For more information, see Chapter 20, "Configuring Event Record and Playback".

Child Elements
The playback-parameters component configuration element supports the following
child elements:

■ dataset-name

■ event-type-list

■ provider-name

■ store-policy-parameters

■ max-size

■ max-threads

playback-speed

Schema Reference: Component Configuration wlevs_application_config.xsd D-65

■ One of:

– time-range

– time-range-offset

■ One of:

– schedule-time-range

– schedule-time-range-offset

■ playback-speed

■ repeat

Attributes
The playback-parameters component has no attributes.

Example
The following example shows how to use the playback-parameters element in the
component configuration file:

<playback-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

</playback-parameters>

playback-speed
Use this element to define the playback speed as a positive float. The default value is 1,
which corresponds to normal speed. A value of 2 means that events will be played
back 2 times faster than the original record speed. Similarly, a value of 0.5 means that
events will be played back at half the speed.

Child Elements
The playback-speed component configuration element has no child elements.

Attributes
The playback-speed component has no attributes.

Example
The following example shows how to use the duration element in the component
configuration file:

<playback-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

processor (EPL)

D-66 Developer's Guide for Oracle Event Processing

<parameter>
</store-policy-parameters>
<time-range-offset>

<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</time-range-offset>
<playback-speed>100</playback-speed>

</playback-parameters>

processor (EPL)
Use this element to define an Oracle CQL or EPL processor component.

For more information, see Chapter 19, "Querying an Event Stream with Oracle EPL".

For information on the processor element for Oracle CQL processors, see processor
(Oracle CQL).

Child Elements
The processor component configuration element supports the following child
elements:

■ name

■ record-parameters

■ playback-parameters

■ rules

■ database

■ bindings (processor)

Attributes
The processor component has no attributes.

Example
The following example shows how to use the processor element in the component
configuration file:

<processor>
<name>processor1</name>

<record-parameters>
<dataset-name>test1data</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
<rules>

<rule id="rule1"><![CDATA[
select stockSymbol, avg(price) as percentage
from StockTick retain 5 events
where stockSymbol=?
having avg(price) > ? or avg(price) < ?

]]></rule>
</rules>
<bindings>

processor (Oracle CQL)

Schema Reference: Component Configuration wlevs_application_config.xsd D-67

<binding id="rule1">
<params>BEAS,10.0,-10.0</params>
<params id="IBM">IBM,5.0,5.0</params>

</binding>
</bindings>

</processor>

In the example, the processor’s unique identifier is processor1.

processor (Oracle CQL)
Use this element to define an Oracle CQL processor component.

For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

For information on the processor element for EPL processors, see processor (EPL).

Child Elements
The processor component configuration element supports the following child
elements:

■ name

■ record-parameters

■ playback-parameters

■ rules

■ bindings (processor)

Attributes
The processor component has no attributes.

Example
The following example shows how to use the processor element in the component
configuration file:

<processor>
<name>cqlProcessor</name>
<rules>

<view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from inputChannel[partition by srcId, cusip rows 1]

]]></view>
<view id="bidask" schema="cusip bid ask"><![CDATA[

select cusip, max(bid), min(ask)
from lastEvents
group by cusip

]]></view>
<view ...><![CDATA[

...
]]></view>
...
<view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty

askQty"><![CDATA[
select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,

ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
from BIDMAX as bid, ASKMIN as ask
where bid.cusip = ask.cusip

]]></view>

profile

D-68 Developer's Guide for Oracle Event Processing

<query id="BBAQuery"><![CDATA[
ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,

bba.askSrcId, bba.ask, bba.bidQty, bba.askQty,
"BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as priority

from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>
<query id="MarketRule"><![CDATA[

SELECT symbol, AVG(price) AS average, :1 AS market
FROM StockTick [RANGE 5 SECONDS]
WHERE symbol = :2

]]></query>
</rules>
<bindings>

<binding id="MarketRule">
<params id="nasORCL">NASDAQ, ORCL</params>
<params id="nyJPM">NYSE, JPM</params>
<params id="nyWFC">NYSE, WFC</params>

</binding>
</bindings>

</processor>

In the example, the processor’s unique identifier is cqlProcessor.

profile
Use this element to define a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The profile component configuration element supports the following child elements:

■ name

■ enabled

■ start-stage

■ max-latency

■ average-latency

■ throughput

Attributes
The profile component has no attributes.

Example
The following example shows how to use the profile element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<start-location>

provider-name

Schema Reference: Component Configuration wlevs_application_config.xsd D-69

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>
<average-latency>

<start-location>
<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
<threshhold>

<amount>100</amount>
<unit>MILLISECONDS</unit>

</threshhold>
</average-latency>
<throughput>

<throughput-interval>
<amount>100000</amount>
<unit>MICROSECONDS</unit>

</throughput-interval>
<average-interval>

<amount>100000000</amount>
<unit>NANOSECONDS</unit>

</average-interval>
<location>

<application>diagnostic</application>
<stage>AlertEventStream</stage>
<direction>INBOUND</direction>

</location>
</throughput>

</profile>
</diagnostic-profiles>

provider-name
Use the provider-name element in the following parent elements:

■ netio: Use the provider-name element to define which provider to use for the
underlying socket implementation. Valid value is an Oracle Event Processing
server config.xml file netio child element provider-type.

■ record-parameters: Use the provider-name element to define the name of the
event store provider. The value of this element corresponds to the value of the
name child element of the rdbms-event-store-provider element in the
config.xml file of the Oracle Event Processing server instance.

When configuring the Oracle RDBMS-based provider, you are required to specify
this element.

This may be left blank to configure to use the default Berkeley database provider.

query

D-70 Developer's Guide for Oracle Event Processing

Child Elements
The provider-name component configuration element has no child elements.

Attributes
The provider-name component has no attributes.

Example
The following example shows how to use the provider-name element in the
component configuration file:

<netio>
<provider-name>providerCache</provider-name>
<num-threads>1000</num-threads>

</netio>

query
Use this element to define an Oracle CQL query for a component.

For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

Child Elements
The query component configuration element has no child elements.

Attributes
Table D–7 lists the attributes of the query component configuration element.

Table D–7 Attributes of the query Component Configuration Element

Attribute Description Data Type Required?

id Unique identifier for this query. String Yes.

active Execute this query when the application is
deployed and run.

Valid values are true and false. Default value
is false.

Boolean No.

ordering-constraint Enable or disable parallel query execution,
through which events can be processed in
parallel rather than serially.

The attribute supports the following three
values:

■ ORDERED means that the query must handle
events serially. This is the default behavior.

■ UNORDERED means that, whenever possible,
the CQL processor will execute in parallel
on multiple threads to process the events.

■ PARTITION_ORDERED means that when the
query is partitioning events, ensure total
order within a partition and (if possible)
disregard order across partitions.

For more information see "Using the
ordering-constraint Attribute" in Chapter 17,
"Querying an Event Stream with Oracle CQL".

String No.

record-parameters

Schema Reference: Component Configuration wlevs_application_config.xsd D-71

Example
The following example shows how to use the query element in the component
configuration file:

<processor>
<name>cqlProcessor</name>
<rules>

<view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from inputChannel[partition by srcId, cusip rows 1]

]]></view>
<view id="bidask" schema="cusip bid ask"><![CDATA[

select cusip, max(bid), min(ask)
from lastEvents
group by cusip

]]></view>
<view ...><![CDATA[

...
]]></view>
...
<view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty

askQty"><![CDATA[
select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,

ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
from BIDMAX as bid, ASKMIN as ask
where bid.cusip = ask.cusip

]]></view>
<query id="BBAQuery"><![CDATA[

ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
bba.askSrcId, bba.ask, bba.bidQty, bba.askQty, "BBAStrategy" as

intermediateStrategy,
p.seq as correlationId, 1 as priority

from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>

</rules>
</processor>

record-parameters
Use this element to define event record parameters for a component.

For more information, see Chapter 20, "Configuring Event Record and Playback".

Child Elements
The record-parameters component configuration element supports the following
child elements:

■ dataset-name

■ event-type-list

■ provider-name

partition-expression The partition expression (used in the CQL code)
that should be the basis for relaxing the
cross-partition ordering constraint.

For more information see "Using the
ordering-constraint Attribute" in Chapter 17,
"Querying an Event Stream with Oracle CQL".

String No.

Table D–7 (Cont.) Attributes of the query Component Configuration Element

Attribute Description Data Type Required?

repeat

D-72 Developer's Guide for Oracle Event Processing

■ store-policy-parameters

■ max-size

■ max-threads

■ One of:

– time-range

– time-range-offset

■ batch-size

■ batch-time-out

Attributes
The record-parameters component has no attributes.

Example
The following example shows how to use the record-parameters element in the
component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

repeat
Use this element to define whether or not to repeat playback-parameters.

Valid values are:

■ true

■ false

Child Elements
The repeat component configuration element has no child elements.

Attributes
The repeat component has no attributes.

Example
The following example shows how to use the duration element in the component
configuration file:

<playback-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>

rule

Schema Reference: Component Configuration wlevs_application_config.xsd D-73

<store-policy-parameters>
<parameter>

<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<time-range-offset>

<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</time-range-offset>
<repeat>true</repeat>

</playback-parameters>

rule
Use this element to define an EPL rule for a component.

This element is applicable only in a rules element.

Child Elements
The rule component configuration element has no child elements.

Attributes
Table D–8 lists the attributes of the rule component configuration element.

Table D–8 Attributes of the rule Component Configuration Element

Attribute Description Data Type Required?

id Unique identifier for this rule. String Yes.

active Execute this rule when the application is
deployed and run.

Valid values are true and false. Default value
is false.

Boolean No.

ordering-constraint Enable or disable parallel query execution,
through which events can be processed in
parallel rather than serially.

The attribute supports the following three
values:

■ ORDERED means that the query must handle
events serially. This is the default behavior.

■ UNORDERED means that, whenever possible,
the CQL processor will execute in parallel
on multiple threads to process the events.

■ PARTITION_ORDERED means that when the
query is partitioning events, ensure total
order within a partition and (if possible)
disregard order across partitions.

For more information see "Using the
ordering-constraint Attribute" in Chapter 17,
"Querying an Event Stream with Oracle CQL".

String No.

partition-expression The partition expression (used in the CQL code)
that should be the basis for relaxing the
cross-partition ordering constraint.

For more information see "Using the
ordering-constraint Attribute" in Chapter 17,
"Querying an Event Stream with Oracle CQL".

String No.

rules

D-74 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the rule element in the component
configuration file:

<processor>
<name>rvSampleProcessor</name>
<rules>

<rule id="rvSampleRule1"><![CDATA[
select * from RVSampleEvent retain 1 event

]]></rule>
</rules>

</processor>

rules
Use this element to define one or more Oracle CQL queries or views for a processor
(Oracle CQL) or EPL rules for a processor (EPL).

Child Elements
The rules component configuration element supports the following child elements:

■ rule

■ query

■ view

Attributes
The rules component has no attributes.

Example
The following example shows how to use the rules element in the component
configuration file:

<processor>
<name>cqlProcessor</name>
<rules>

<view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from inputChannel[partition by srcId, cusip rows 1]

]]></view>
<view id="bidask" schema="cusip bid ask"><![CDATA[

select cusip, max(bid), min(ask)
from lastEvents
group by cusip

]]></view>
<view ...><![CDATA[

...
]]></view>
...
<view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty

askQty"><![CDATA[
select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,

ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
from BIDMAX as bid, ASKMIN as ask
where bid.cusip = ask.cusip

]]></view>
<query id="BBAQuery"><![CDATA[

ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
bba.askSrcId, bba.ask, bba.bidQty, bba.askQty,

schedule-time-range-offset

Schema Reference: Component Configuration wlevs_application_config.xsd D-75

"BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as priority
from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)

]]></query>
</rules>

</processor>

schedule-time-range
Use this element to define the time during which events will be played back to the
stage. Playing back will start at the specified start time and will continue until all the
events are played back or specified end time. If repeat is set to true, playback will
continue until the specified end time or until playback is explicitly stopped by the
user.

This element is applicable only to the playback-parameters element.

Child Elements
The schedule-time-range component configuration element supports the following
child elements:

■ start

■ end

Attributes
The schedule-time-range component has no attributes.

Example
The following example shows how to use the schedule-time-range element in the
component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<schedule-time-range>

<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</schedule-time-range>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

schedule-time-range-offset
Use this element to define the time during which events will be played back to the
stage. Playing back will start at the specified start time and will continue until all the
events are played back or specified end time. If repeat is set to true, playback will
continue until the specified end time or until playback is explicitly stopped by the
user.

selector

D-76 Developer's Guide for Oracle Event Processing

This element is applicable only to the playback-parameters element.

Child Elements
The schedule-time-range-offset component configuration element supports the
following child elements:

■ start

■ duration

Attributes
The schedule-time-range-offset component has no attributes.

Example
The following example shows how to use the schedule-time-range-offset element
in the component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<schedule-time-range-offset>

<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</schedule-time-range-offset>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

selector
Use this element to specify which up-stream Oracle CQL processor queries are
permitted to output their results to a downstream channel.

Figure D–1 shows an EPN with channel filteredStream connected to up-stream
Oracle CQL processor filteredFanoutProcessor.

Figure D–1 EPN With Oracle CQL Processor and Down-Stream Channel

Example D–12 shows the queries configured for the Oracle CQL processor.

Example D–12 filterFanoutProcessor Oracle CQL Queries

<processor>
<name>filterFanoutProcessor</name>
<rules>

selector

Schema Reference: Component Configuration wlevs_application_config.xsd D-77

<query id="Yr3Sector"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="3_YEAR"

]]></query>
<query id="Yr2Sector"><![CDATA[

select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="2_YEAR"

]]></query>
<query id="Yr1Sector"><![CDATA[

select cusip, bid, srcId, bidQty, ask, askQty, seq
from priceStream where sector="1_YEAR"

]]></query>
</rules>

</processor>

If you specify more than one query for an Oracle CQL processor as Example D–12
shows, then, by default, all query results are output to the processor’s out-bound
channel (filteredStream in Figure D–1). Optionally, in the component configuration
source, you can use the channel element selector child element to specify a
space-delimited list of one or more Oracle CQL query names that may output their
results to the channel as Example D–13 shows. In this example, query results for query
Yr3Sector and Yr2Sector are output to filteredStream but not query results for
query Yr1Sector.

Example D–13 Using selector to Control Which Query Results are Output

<channel>
<name>filteredStream</name>
<selector>Yr3Sector Yr2Sector</selector>

</channel>

You may configure a channel element with a selector before creating the queries in
the upstream processor. In this case, you must specify query names that match the
names in the selector.

Child Elements
The selector component configuration element has no child elements.

Attributes
The selector component has no attributes.

Example
The following example shows how to use the selector element in the component
configuration file:

<processor>
<name>PatternProcessor</name>
<rules>

<query id="match"><![CDATA[
select T.firstW as firstw, T.lastZ as lastz, T.price as price
from StockInputsStream
MATCH_RECOGNIZE (

MEASURES A.c1 as firstW, last(Z.c1) as lastZ, A.c2 as price

Note: The selector attribute is only applicable if the up-stream
node is an Oracle CQL processor. For more information, see
Chapter 17, "Querying an Event Stream with Oracle CQL".

server-context-path

D-78 Developer's Guide for Oracle Event Processing

PATTERN(A W+ X+ Y+ Z+)
DEFINE A as A.c1 = A.c1,

W as W.c2 < prev(W.c2),
X as X.c2 > prev(X.c2),
Y as Y.c2 < prev(Y.c2),
Z as Z.c2 > prev(Z.c2))

as T
]]></query>
<query id="stock"><![CDATA[

select c1 as ts, c2 as price from StockInputsStream
]]></query>

</rules>
</processor>
<channel>

<name>StockOutputChannel</name>
<selector>stock</selector>

</channel>
<channel>

<name>MatchOutputChannel</name>
<selector>match</selector>

</channel>

server-context-path
Required. For each local http-pub-sub-adapter for publishing, specify the value of the
Oracle Event Processing server config.xml file element http-pubsub child element
path of the local HTTP pub-sub server associated with the Oracle Event Processing
instance hosting the current Oracle Event Processing application.

Default: /pubsub.

If you have created a new local HTTP pub-sub server, or changed the default
configuration, then specify the appropriate path child element value.

Child Elements
The server-context-path component configuration element has no child elements.

Attributes
The server-context-path component has no attributes.

Example
The following example shows how to use the server-context-path element in the
component configuration file:

<http-pub-sub-adapter>
<name>localPub</name>
<server-context-path>/pubsub</server-context-path>
<channel>/test1</channel>

</http-pub-sub-adapter>

server-url
Required. For each remote http-pub-sub-adapter for publishing or subscribing,
specify the URL of the remote HTTP pub-sub server to which the Oracle Event
Processing application will publish. The remote HTTP pub-sub server could be

Note: Do not specify this option for a remote HTTP pub-sub adapter.

session-ack-mode-name

Schema Reference: Component Configuration wlevs_application_config.xsd D-79

another instance of Oracle Event Processing, or a WebLogic Server instance, or it could
be any third-party HTTP pub-sub server. For example:

http://myhost.com:9102/pubsub

Child Elements
The server-url component configuration element has no child elements.

Attributes
The server-url component has no attributes.

Example
The following example shows how to use the server-url element in the component
configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>
<server-url>http://myhost.com:9102/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>

In the example, the URL of the remote HTTP pub-sub server to which the
remotePublisher adapter will publish events is http://myhost.com:9102/pubsub.

session-ack-mode-name
Use this element to define the session acknowledge mode name for a jms-adapter.

Valid values from javax.jms.Session are:

■ AUTO_ACKNOWLEDGE: With this acknowledgment mode, the session automatically
acknowledges a client's receipt of a message either when the session has
successfully returned from a call to receive or when the message listener the
session has called to process the message successfully returns.

■ CLIENT_ACKNOWLEDG: With this acknowledgment mode, the client acknowledges a
consumed message by calling the message's acknowledge method.

■ DUPS_OK_ACKNOWLEDGE: This acknowledgment mode instructs the session to lazily
acknowledge the delivery of messages.

Default: AUTO_ACKNOWLEDGE.

Child Elements
The session-ack-mode-name component configuration element has no child elements.

Attributes
The session-ack-mode-name component has no attributes.

Note: Do not specify this option for a local HTTP pub-sub adapter.

session-transacted

D-80 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the session-ack-mode-name element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<session-ack-mode-name>AUTO_ACKNOWLEDGE</session-ack-mode-name>
<session-transacted>false</session-transacted>

</jms-adapter>

session-transacted
Use this element to define whether or not a session is transacted for both an inbound
or outbound jms-adapter.

Valid values are:

■ true

■ false

Child Elements
The session-transacted component configuration element has no child elements.

Attributes
The session-transacted component has no attributes.

Example
The following example shows how to use the session-transacted element in the
component configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<connection-jndi-name>weblogic.jms.ConnectionFactory</connection-jndi-name>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<session-ack-mode-name>AUTO_ACKNOWLEDGE</session-ack-mode-name>
<session-transacted>false</session-transacted>

</jms-adapter>

stage
Use this element to define the stage for a start-location or end-location element of
a diagnostic profile.

Valid values are the name of an existing stage in your Event Processing Network
(EPN).

Child Elements
The stage component configuration has no child elements:

start

Schema Reference: Component Configuration wlevs_application_config.xsd D-81

Attributes
The stage component has no attributes.

Example
The following example shows how to use the stage element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

start
Use this element to define a start time for a time-range, time-range-offset, or
schedule-time-range-offset element.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and
end on January 20, 2010, at 6:00 pm, enter the following:

<time-range>
<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>

For complete details of the XML Schema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

Child Elements
The start component configuration element has no child elements.

Attributes
The start component has no attributes.

start-location

D-82 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the start element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<time-range>

<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

start-location
Use this element to define the start location of a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The start-location component configuration element supports the following child
elements:

■ application

■ stage

■ direction

Attributes
The start-location component has no attributes.

Example
The following example shows how to use the start-location element in the
component configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

start-stage

Schema Reference: Component Configuration wlevs_application_config.xsd D-83

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

start-stage
Use this element to define the starting stage of a diagnostic profile.

Valid values are the name of an existing stage in your Event Processing Network
(EPN).

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The start-stage component configuration element has no child elements.

Attributes
The start-stage component has no attributes.

Example
The following example shows how to use the start-stage element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<start-location>
<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

store-policy-parameters

D-84 Developer's Guide for Oracle Event Processing

store-policy-parameters
Use this element to define one or more store policy parameter, specific to the event
store provider.

Child Elements
The store-policy-parameter component configuration element supports the
following child elements:

■ parameter

Attributes
The store-policy-parameter component has no attributes.

Example
The following example shows how to use the store-policy-parameter element in the
component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

stream
Use this element to define a stream component.

Child Elements
The stream component configuration element supports the following child elements:

■ name

■ record-parameters

■ playback-parameters

■ max-size

■ max-threads

Attributes
The stream component has no attributes.

Note: The stream component is deprecated in 11g Release 1 (11.1.1).
Use the channel element instead.

symbols

Schema Reference: Component Configuration wlevs_application_config.xsd D-85

Example
The following example shows how to use the stream element in the component
configuration file:

<stream>
<name>fxMarketEuroOut</name>
<max-size>0</max-size>
<max-threads>0</max-threads>

</stream>

In the example, the stream’s unique identifier is fxMarketEuroOut.

symbol
Use this element to define a symbol for an adapter, http-pub-sub-adapter, or
jms-adapter element.

Child Elements
The symbol component configuration has no child elements:

Attributes
The symbol component has no attributes.

Example
The following example shows how to use the symbol element in the component
configuration file:

<adapter>
<name>trackdata</name>
<symbols>

<symbol>BEAS</symbol>
<symbol>IBM</symbol>

</symbols>
</adapter>

symbols
Use this element to define one or more symbol elements for a component.

Child Elements
The symbols component configuration element supports the following child elements:

■ symbol

Attributes
The symbols component has no attributes.

Note: The symbol component is deprecated in 11g Release 1 (11.1.1).

Note: The symbol component is deprecated in 11g Release 1 (11.1.1).

threshold

D-86 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the symbols element in the component
configuration file:

<adapter>
<name>trackdata</name>
<symbols>

<symbol>BEAS</symbol>
<symbol>IBM</symbol>

</symbols>
</adapter>

threshold
Use this element to define the threshold above which Oracle Event Processing server
logs a monitoring event.

This element is applicable only in an average-latency element in a diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The threshold component configuration element supports the following child
elements:

■ amount

■ unit

Attributes
The threshhold component has no attributes.

Example
The following example shows how to use the threshhold element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<average-latency>

<start-location>
<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
<threshhold>

<amount>100</amount>
<unit>MILLISECONDS</unit>

</threshhold>

throughput-interval

Schema Reference: Component Configuration wlevs_application_config.xsd D-87

</average-latency>
</profile>

</diagnostic-profiles>

throughput
Use this element to define a throughput diagnostic profile.

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The throughput component configuration element supports the following child
elements:

■ name

■ throughput-interval

■ average-interval

■ location

Attributes
The throughput component has no attributes.

Example
The following example shows how to use the throughput element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<throughput>

<throughput-interval>
<amount>100000</amount>
<unit>MICROSECONDS</unit>

</throughput-interval>
<average-interval>

<amount>100000000</amount>
<unit>NANOSECONDS</unit>

</average-interval>
<location>

<application>diagnostic</application>
<stage>AlertEventStream</stage>
<direction>INBOUND</direction>

</location>
</throughput>

</profile>
</diagnostic-profiles>

throughput-interval
Use this element to define the throughput interval of a diagnostic profile.

time-range

D-88 Developer's Guide for Oracle Event Processing

For more information, see "Monitoring the Throughput and Latency of a Stage or Path
in the EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event
Processing.

Child Elements
The throughput-interval component configuration element supports the following
child elements:

■ amount

■ unit

Attributes
The throughput-interval component has no attributes.

Example
The following example shows how to use the throughput-interval element in the
component configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<throughput>

<throughput-interval>
<amount>100000</amount>
<unit>MICROSECONDS</unit>

</throughput-interval>
<average-interval>

<amount>100000000</amount>
<unit>NANOSECONDS</unit>

</average-interval>
<location>

<application>diagnostic</application>
<stage>AlertEventStream</stage>
<direction>INBOUND</direction>

</location>
</throughput>

</profile>
</diagnostic-profiles>

time-range
Use this element to define a filter that Oracle Event Processing server applies to the
events in the event store. Only events with a record-time in this time range will be
played back to the stage.

Use either time-range-offset or time-range but not both.

For more information, see Chapter 20, "Configuring Event Record and Playback".

Child Elements
The time-range component configuration element supports the following child
elements:

■ start

time-range-offset

Schema Reference: Component Configuration wlevs_application_config.xsd D-89

■ end

Attributes
The time-range component has no attributes.

Example
The following example shows how to use the time-range element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<time-range>

<start>2010-01-20T05:00:00</start>
<end>2010-01-20T18:00:00</end>

</time-range>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

time-range-offset
Use this element to define a filter that Oracle Event Processing server applies to the
events in the event store. Only events with a record-time in this time range will be
played back to the stage.

Use either time-range or time-range-offset but not both.

For more information, see Chapter 20, "Configuring Event Record and Playback".

Child Elements
The time-range-offset component configuration element supports the following
child elements:

■ start

■ duration

Attributes
The time-range-offset component has no attributes.

Example
The following example shows how to use the time-range-offset element in the
component configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>
<event-type-list>

time-to-live

D-90 Developer's Guide for Oracle Event Processing

<event-type>TupleEvent1</event-type>
</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>
<time-range-offset>

<start>2010-01-20T05:00:00</start>
<duration>03:00:00</duration>

</time-range-offset>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

time-to-live
Use this element to define the maximum amount of time, in milliseconds, that an entry
is cached. Default value is infinite.

For more information, see Section , "Configuring an Oracle Event Processing Local
Caching System and Cache".

Child Elements
The time-to-live component configuration element has no child elements.

Attributes
The time-to-live component has no attributes.

Example
The following example shows how to use the time-to-live element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

trace-parameters
Use this element to configure event tracing for a stage in the event processing network.

For more information about event tracing, see Section , "Tracing Events".

unit

Schema Reference: Component Configuration wlevs_application_config.xsd D-91

Child Elements
The trace-parameters component configuration element supports the following child
elements:

■ channel-name

■ active

Attributes
The trace-parameters component configuration element has no attributes.

Example
The component configuration excerpt shown in the following example illlustrates how
you might configure a processor for event tracing. The trace-parameters element’s
active child element specifies that tracing is on, while the channel-name element
specifies the HTTP pub-sub channel to which traced elements should be sent.

<processor>
<name>FindCrossRates</name>
<trace-parameters>

<active>true</active>
<channel-name>/NonClusteredServer/fx/FindCrossRates/output</channel-name>

</trace-parameters>
<rules>

<!-- Query rules omitted. -->
</rules>

</processor>

unit
Use this element to define the duration units of amount element.

Valid values are:

■ NANOSECONDS

■ MICROSECONDS

■ MILLISECONDS

■ SECONDS

■ MINUTES

■ HOURS

■ DAYS

Child Elements
The unit component configuration has no child elements:

Attributes
The unit component has no attributes.

user

D-92 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the unit element in the component
configuration file:

<diagnostic-profiles>
<name>myselfprofiles</name>
<profile>

<name>testProfile0</name>
<enabled>true</enabled>
<start-stage>MetricSubscriber</start-stage>
<max-latency>

<collect-interval>
<amount>1000</amount>
<unit>s</unit>

</collect-interval>
<name>testProfile0MaxLat</name>
<start-location>

<application>diagnostic</application>
<stage>MetricSubscriber</stage>
<direction>INBOUND</direction>

</start-location>
<end-location>

<application>diagnostic</application>
<stage>MonitorProcessor</stage>
<direction>OUTBOUND</direction>

</end-location>
</max-latency>

</profile>
</diagnostic-profiles>

user
Use the user element in the following parent elements:

■ http-pub-sub-adapter: Use the user element to define the user name if the HTTP
pub-sub server to which the Oracle Event Processing application is publishing
requires user authentication.

■ jms-adapter: When Oracle Event Processing acquires the JNDI InitialContext, it
uses the user and password (or encrypted-password) elements. When Oracle
Event Processing calls the createConnection method on the
javax.jms.ConnectionFactory to create a connection to the JMS destination (JMS
queue or topic), it uses the connection-user and connection-password (or
connection-encrypted-password element), if configured. Otherwise, Oracle Event
Processing uses the user and password (or encrypted-password) elements.

Child Elements
The user component configuration element has no child elements.

Attributes
The user component has no attributes.

Example
The following example shows how to use the user element in the component
configuration file:

<http-pub-sub-adapter>
<name>remotePub</name>

view

Schema Reference: Component Configuration wlevs_application_config.xsd D-93

<server-url>http://localhost:9002/pubsub</server-url>
<channel>/test1</channel>
<event-type>com.bea.wlevs.tests.httppubsub.PubsubTestEvent</event-type>
<user>wlevs</user>
<password>wlevs</password>

</http-pub-sub-adapter>

value
Use this element to define the value of a parameter element.

Child Elements
The value component configuration element has no child elements.

Attributes
The value component has no attributes.

Example
The following example shows how to use the value element in the component
configuration file:

<record-parameters>
<dataset-name>tuple1</dataset-name>

<event-type-list>
<event-type>TupleEvent1</event-type>

</event-type-list>
<provider-name>test-rdbms-provider</provider-name>
<store-policy-parameters>

<parameter>
<name>timeout</name>
<value>300</value>

<parameter>
</store-policy-parameters>

<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>

view
Use this element to define an Oracle CQL view for a component.

For more information, see Chapter 17, "Querying an Event Stream with Oracle CQL".

Child Elements
The view component configuration element has no child elements.

Attributes
Table D–9 lists the attributes of the view component configuration element.

Table D–9 Attributes of the view Component Configuration Element

Attribute Description Data Type Required?

id Unique identifier for this query. String Yes.

view

D-94 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the view element in the component
configuration file:

<processor>
<name>cqlProcessor</name>
<rules>

<view id="lastEvents" schema="cusip bid srcId bidQty ask askQty seq"><![CDATA[
select cusip, bid, srcId, bidQty, ask, askQty, seq
from inputChannel[partition by srcId, cusip rows 1]

]]></view>
<view id="bidask" schema="cusip bid ask"><![CDATA[

select cusip, max(bid), min(ask)
from lastEvents
group by cusip

]]></view>
<view ...><![CDATA[

...
]]></view>
...
<view id="MAXBIDMINASK" schema="cusip bidseq bidSrcId bid askseq askSrcId ask bidQty

askQty"><![CDATA[
select bid.cusip, bid.seq, bid.srcId as bidSrcId, bid.bid, ask.seq,

ask.srcId as askSrcId, ask.ask, bid.bidQty, ask.askQty
from BIDMAX as bid, ASKMIN as ask
where bid.cusip = ask.cusip

]]></view>
<query id="BBAQuery"><![CDATA[

active Execute this query when the application is
deployed and run.

Valid values are true and false. Default value
is false.

Boolean No.

ordering-constraint Enable or disable parallel query execution,
through which events can be processed in
parallel rather than serially.

The attribute supports one of the following
three values:

■ ORDERED means that the query must handle
events serially. This is the default behavior.

■ UNORDERED means that, whenever possible,
the CQL processor will execute in parallel
on multiple threads to process the events.

■ PARTITION_ORDERED means that when the
query is partitioning events, ensure total
order within a partition and (if possible)
disregard order across partitions.

For more information see "Using the
ordering-constraint Attribute" in Chapter 17,
"Querying an Event Stream with Oracle CQL".

String No.

partition-expression The partition expression (used in the CQL code)
that should be the basis for relaxing the
cross-partition ordering constraint.

For more information see "Using the
ordering-constraint Attribute" in Chapter 17,
"Querying an Event Stream with Oracle CQL".

String No.

schema Space delimited list of stream elements used in
the view.

String of
space
delimited
tokens.

No.

Table D–9 (Cont.) Attributes of the view Component Configuration Element

Attribute Description Data Type Required?

work-manager-name

Schema Reference: Component Configuration wlevs_application_config.xsd D-95

ISTREAM(select bba.cusip, bba.bidseq, bba.bidSrcId, bba.bid, bba.askseq,
bba.askSrcId, bba.ask, bba.bidQty, bba.askQty,
"BBAStrategy" as intermediateStrategy, p.seq as correlationId, 1 as priority

from MAXBIDMINASK as bba, inputChannel[rows 1] as p where bba.cusip = p.cusip)
]]></query>

</rules>
</processor>

work-manager
Use this element to define the name of a work manager for a jms-adapter.

Valid value is the name specified in the Oracle Event Processing server config.xml file
work-manager element name child element.The default value is the work manager
configured for the application itself.

For more information, see Section , "work-manager".

Child Elements
The work-manager component configuration element has no child elements:

Attributes
The work-manager component has no attributes.

Example
The following example shows how to use the work-manager element in the component
configuration file:

<jms-adapter>
<name>jmsInbound-text</name>
<jndi-provider-url>t3://localhost:7001</jndi-provider-url>
<destination-name>JMSServer-0/Module1!Queue1</destination-name>
<user>weblogic</user>
<password>weblogic</password>
<work-manager>JettyWorkManager</work-manager>
<concurrent-consumers>1</concurrent-consumers>
<session-transacted>false</session-transacted>

</jms-adapter>

work-manager-name
Use this element to define a work manager for a cache.

The listeners element has a single child element, work-manager-name, that specifies
the work manager to be used for asynchronously invoking listeners. This value is
ignored if synchronous invocations are enabled. If a work manager is specified for the
cache itself, this value overrides it for invoking listeners only.

Valid value is the name specified in the Oracle Event Processing server config.xml file
work-manager element name child element.The default value is the work manager
configured for the application itself.

Child Elements
The work-manager-name component configuration element has no child elements:

write-behind

D-96 Developer's Guide for Oracle Event Processing

Attributes
The work-manager-name component has no attributes.

Example
The following example shows how to use the work-manager-name element in the
component configuration file:

<cache>
<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>

write-behind
Use this element to specify asynchronous writes to the cache store. The cache store is
invoked from a separate thread after a create or update of a cache entry. This element
may be changed dynamically.

Child Elements
The write-behind component configuration element supports the following child
elements:

■ work-manager-name

■ batch-size

■ buffer-size

■ buffer-write-attempts

■ buffer-write-timeout

Attributes
The write-behind component has no attributes.

Example
The following example shows how to use the write-behind element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-behind>

<work-manager-name>JettyWorkManager</work-manager-name>
<batch-size>100</batch-size>

write-through

Schema Reference: Component Configuration wlevs_application_config.xsd D-97

<buffer-size>100</buffer-size>
<buffer-write-attempts>100</buffer-write-attempts>
<buffer-write-timeout>100</buffer-write-timeout>

</write-behind>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

write-none
Use this element to specify no writes to a cache store. This is the default write policy.
This element may be changed dynamically.

Child Elements
The write-none component configuration element has no child elements.

Attributes
The write-none component has no attributes.

Example
The following example shows how to use the write-none element in the component
configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-none/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

write-through
Use this element to specify synchronous writes to the cache store. As soon as an entry
is created or updated the write occurs. This element may be changed dynamically.

Child Elements
The write-through component configuration element has no child elements.

Attributes
The write-through component has no attributes.

write-through

D-98 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the write-through element in the
component configuration file:

<caching-system>
<name>providerCachingSystem</name>
<cache>

<name>providerCache</name>
<max-size>1000</max-size>
<eviction-policy>FIFO</eviction-policy>
<time-to-live>60000</time-to-live>
<idle-time>120000</idle-time>
<write-through/>
<work-manager-name>JettyWorkManager</work-manager-name>
<listeners asynchronous="false">

<work-manager-name>JettyWorkManager</work-manager-name>
</listeners>

</cache>
</caching-system>

E

Schema Reference: Deployment deployment.xsd E-1

E Schema Reference: Deployment
deployment.xsd

[33] This appendix provides a reference to the elements of the deployment.xsd schema, the
schema behind the XML with which you configure Oracle Event Processing
application deployment.

This appendix includes the following sections:

■ Overview of the Oracle Event Processing Deployment Elements

■ wlevs:deployment

Overview of the Oracle Event Processing Deployment Elements
Oracle Event Processing provides a number of application assembly elements that you
use in the EPN assembly file of your application to register event types, declare the
components of the event processing network and specify how they are linked together.
The EPN assembly file is an extension of the standard Spring context file.

Element Hierarchy
The Oracle Event Processing component configuration elements are organized into the
following hierarchy:

beans
Standard Spring and OSGi elements such as bean, osgi-service, and so on.

Example of an Oracle Event Processing Deployment Configuration File
The following sample deployment configuration file from the fx application shows
how to use many of the Oracle Event Processing elements:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment" xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.bea.com/ns/wlevs/deployment
http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment

id="fx"
state="start"
location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>

wlevs:deployment

E-2 Developer's Guide for Oracle Event Processing

</beans>

wlevs:deployment
Use this element to declare an adapter component to the Spring application context.

Child Elements
The wlevs:deployment deployment element has no child elements:

Attributes
Table E–1 lists the attributes of the wlevs:deployment deployment element.

Example
The following example shows how to use the wlevs:deployment element in the
deployment file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment" xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.bea.com/ns/wlevs/deployment
http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment

id="fx"
state="start"
location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>

</beans>

Table E–1 Attributes of the wlevs:deployment Deployment Element

Attribute Description Data Type Required?

id Unique identifier for this deployed application. String Yes.

depends-on The names of the beans that this deployment bean
depends on being initialized. The bean factory will
guarantee that these beans get initialized before this
bean.

String Yes.

location URL that specifies the location of the bundle that is to be
deployed. If a relative URL is specified then the location
is relative the DOMAIN_DIR domain directory.

For example:

location="file:applications/simpleApp/simpleApp.j
ar"

Specifies that the bundle simpleApp.jar, located in the
DOMAIN_DIR/applications/simpleApp directory, is to be
deployed to Oracle Event Processing server.

String No.

state Specifies the state that the bundle should be in once it is
deployed to the Oracle Event Processing server. The
value of this attribute must be one of the following:

■ start: Install and start the bundle so that it
immediately begins taking client requests.

■ install: Install the bundle, but do not start it.

■ update: Update an existing bundle.

Default value: start.

String No.

wlevs:deployment

Schema Reference: Deployment deployment.xsd E-3

wlevs:deployment

E-4 Developer's Guide for Oracle Event Processing

F

Schema Reference: Server Configuration wlevs_server_config.xsd F-1

FSchema Reference: Server Configuration
wlevs_server_config.xsd

[34] This appendix provides a reference to elements of the welvs_server_config.xsd
schema, the schema behind XML you use to configure Oracle Event Processing server
attributes and services such as logging, Oracle Continuous Query Language (CQL),
Secure Sockets Layer (SSL), Java Management Extensions (JMX), HTTP
Publish-Subscribe, and more.

This appendix includes the following sections:

■ Overview of the Oracle Event Processing Server Configuration Elements

■ auth-constraint

■ bdb-config

■ channels

■ channel-constraints

■ channel-resource-collection

■ cluster

■ connection-pool-params

■ cql

■ data-source

■ data-source-params

■ driver-params

■ domain

■ debug

■ event-store

■ exported-jndi-context

■ http-pubsub

■ jetty

■ jetty-web-app

■ jmx

■ jndi-context

■ log-file

Overview of the Oracle Event Processing Server Configuration Elements

F-2 Developer's Guide for Oracle Event Processing

■ log-stdout

■ logging-service

■ message-filters

■ name

■ netio

■ netio-client

■ partition-order-capacity

■ path

■ pubsub-bean

■ rdbms-event-store-provider

■ rmi

■ scheduler

■ server-config

■ services

■ show-detail-error-message

■ ssl

■ timeout-seconds

■ transaction-manager

■ use-secure-connections

■ weblogic-instances

■ weblogic-jta-gateway

■ weblogic-rmi-client

■ work-manager

■ xa-params

Overview of the Oracle Event Processing Server Configuration Elements
Oracle Event Processing provides a number of server configuration elements that you
use to configure Oracle Event Processing server-specific attributes and services.

Element Hierarchy
The top-level Oracle Event Processing server configuration elements are organized
into the following hierarchy:

■ config

– domain

– rmi

– jndi-context

– exported-jndi-context

– jmx

Overview of the Oracle Event Processing Server Configuration Elements

Schema Reference: Server Configuration wlevs_server_config.xsd F-3

– transaction-manager

– work-manager

– logging-service

– log-stdout

– log-file

– jetty-web-app

– netio

– jetty

– netio-client

– debug

– data-source

– http-pubsub

– event-store

– cluster

– bdb-config

– rdbms-event-store-provider

– ssl

– weblogic-rmi-client

– weblogic-jta-gateway

– use-secure-connections

– show-detail-error-message

– cql

Example of an Oracle Event Processing Server Configuration File
The following sample Oracle Event Processing server configuration file from the
HelloWorld application shows how to use many of the Oracle Event Processing
elements:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"

xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <domain>
 <name>WLEventServerDomain</name>

 </domain>

 <netio>

<name>NetIO</name>
<port>9002</port>

 </netio>

 <netio>

<name>sslNetIo</name>
<ssl-config-bean-name>sslConfig</ssl-config-bean-name>
<port>9003</port>

 </netio>

 <work-manager>

Overview of the Oracle Event Processing Server Configuration Elements

F-4 Developer's Guide for Oracle Event Processing

<name>JettyWorkManager</name>
<min-threads-constraint>5</min-threads-constraint>
<max-threads-constraint>10</max-threads-constraint>

 </work-manager>

 <jetty>

<name>JettyServer</name>
<network-io-name>NetIO</network-io-name>
<work-manager-name>JettyWorkManager</work-manager-name>
<secure-network-io-name>sslNetIo</secure-network-io-name>

 </jetty>

 <rmi>
<name>RMI</name>
<http-service-name>JettyServer</http-service-name>

 </rmi>

 <jndi-context>

<name>JNDI</name>
 </jndi-context>

 <exported-jndi-context>

<name>exportedJndi</name>
<rmi-service-name>RMI</rmi-service-name>

 </exported-jndi-context>

 <jmx>

<rmi-service-name>RMI</rmi-service-name>
<rmi-jrmp-port>9999</rmi-jrmp-port>
<jndi-service-name>JNDI</jndi-service-name>
<rmi-registry-port>9004</rmi-registry-port>

 </jmx>

 <ssl>

<name>sslConfig</name>
<key-store>./ssl/evsidentity.jks</key-store>
<key-store-pass>

<password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</password>
</key-store-pass>
<key-store-alias>evsidentity</key-store-alias>
<key-manager-algorithm>SunX509</key-manager-algorithm>
<ssl-protocol>TLS</ssl-protocol>
<enforce-fips>false</enforce-fips>
<need-client-auth>false</need-client-auth>

 </ssl>

 <http-pubsub>

<name>pubsub</name>
<path>/pubsub</path>
<pub-sub-bean>
 <server-config>

<supported-transport>
 <types>

<element>long-polling</element>
 </types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

 </server-config>
<channels>

<element>
 <channel-pattern>/evsmonitor</channel-pattern>
</element>
<element>
 <channel-pattern>/evsalert</channel-pattern>
</element>
<element>

auth-constraint

Schema Reference: Server Configuration wlevs_server_config.xsd F-5

 <channel-pattern>/evsdomainchange</channel-pattern>
</element>

</channels>
</pub-sub-bean>

 </http-pubsub>

 <!-- Sample cluster configuration -->
 <!--
 <cluster>

<server-name>myServer</server-name>
<multicast-address>239.255.0.1</multicast-address>
<enabled>coherence</enabled>
<security>none</security>
<groups></groups>

 </cluster>
 -->

 <logging-service>

<name>myLogService</name>
<log-file-config>myFileConfig</log-file-config>
<stdout-config>myStdoutConfig</stdout-config>
<logger-severity>Notice</logger-severity>
<!-- logger-severity-properties is used to selectively enable logging for
 individual categories -->
<!--logger-severity-properties>
 <entry>

<key>org.springframework.osgi.extender.internal.dependencies.startup</key>
<value>Debug</value>

 </entry>
</logger-severity-properties-->

 </logging-service>

 <log-file>

<name>myFileConfig</name>
<rotation-type>none</rotation-type>

 </log-file>

 <log-stdout>

<name>myStdoutConfig</name>
<stdout-severity>Debug</stdout-severity>

 </log-stdout>

</n1:config>

auth-constraint
Use this element to configure an authorization constraint for a channel-constraints
element.

For more information on channels, see channels.

Child Elements
The auth-constraint server configuration element supports the child elements that
Table F–1 lists

Table F–1 Child Elements of: auth-constraint

XML Tag Type Description

description string The description of the role.

bdb-config

F-6 Developer's Guide for Oracle Event Processing

Attributes
The auth-constraint server configuration element has no attributes.

Example
The following example shows how to use the auth-constraint element in the Oracle
Event Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

...
<channel-constraints>

<element>
...

<auth-constraint>
<description>Administrators</description>
<role-name>admin</role-name>

</auth-constraint>
</element>

</channel-constraints>
</pub-sub-bean>

</http-pubsub>

bdb-config
Use this element to configure the default event store provider that uses a Berkeley
database instance.

Optionally, you may configure Oracle Event Processing server to use a relational
database instance as the event store provider as Section , "rdbms-event-store-provider"
describes.

Child Elements
The bdb-config server configuration element supports the child elements that
Table F–2 lists

role-name string A valid role name.

"Users, Groups, and Roles" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing

Table F–2 Child Elements of: bdb-config

XML Tag Type Description

db-env-path string Specifies the subdirectory in which Oracle Event
Processing server creates Berkeley database instances
relative to the DOMAIN_DIR/servername/config directory of
your server, where DOMAIN_DIR refers to the domain
directory, such as /oracle_cep/user_
projects/domains/myDomain and servername refers to the
name of your server, such as defaultserver.

Default: bdb

Table F–1 (Cont.) Child Elements of: auth-constraint

XML Tag Type Description

channels

Schema Reference: Server Configuration wlevs_server_config.xsd F-7

Attributes
The bdb-config server configuration element has no attributes.

Example
The following example shows how to use the bdb-config element in the Oracle Event
Processing server configuration file:

<bdb-config>
<db-env-path>bdb</db-env-path>
<cache-size>1000</cache-size>

</bdb-config>

channels
Use this element to configure one or more channels for a pubsub-bean element.

Channel patterns always begin with a forward slash (/). Clients subscribe to these
channels to either publish or receive messages

Child Elements
The channels server configuration element contains one or more element child
elements that each contain a channel-pattern child element and zero or more
message-filters child elements. Each message-filters child element contains an
element child element with the string value of a message-filter-name that
corresponds to a message-filters element.

Attributes
The channels server configuration element has no attributes.

Example
The following example shows how to use the channels element in the Oracle Event
Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

<server-config>
<supported-transport>

cache-size long Specifies the amount of memory, in bytes, available for
Berkeley database cache entries. You can adjust the cache
size to tune Berkeley database performance.

For more information, see:

■ http://www.oracle.com/technology/documentation/ber
keley-db/je/GettingStartedGuide/cachesize.html.

■ http://www.oracle.com/technology/documentation/ber
keley-db/je/java/com/sleepycat/je/EnvironmentM
utableConfig.html#setCacheSize(long)

Default: je.maxMemoryPercent * JVM maximum memory

Table F–2 (Cont.) Child Elements of: bdb-config

XML Tag Type Description

channel-constraints

F-8 Developer's Guide for Oracle Event Processing

<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>

true
</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>

<channel-pattern>/evsalert</channel-pattern>
</element>
<element>

<channel-pattern>/evsdomainchange</channel-pattern>
</element>

</channels>
</pub-sub-bean>

</http-pubsub>

channel-constraints
Use this element to configure one or more channel constraints for a pubsub-bean
element.

For more information on channels, see channels.

Child Elements
The channel-constraints server configuration element contains one or more element
child element that each support the following child elements:

■ channel-resource-collection

■ auth-constraint

Attributes
The channel-constraints server configuration element has no attributes.

Example
The following example shows how to use the channel-constraints element in the
Oracle Event Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

...
<channel-constraints>

<element>
<channel-resource-collection>

<element>
<channel-resource-name>Foo</channel-resource-name>
<descriptions>

<element>Foo</element>
</descriptions>

channel-resource-collection

Schema Reference: Server Configuration wlevs_server_config.xsd F-9

<channel-patterns>
<element>Foo</element>

</channel-patterns>
<channel-operations>

<element>Foo</element>
</channel-operations>

</element>
</channel-resource-collection>
<auth-constraint>

<description>Foo</description>
<role-name>Foo</role-name>

</auth-constraint>
</element>

</channel-constraints>
</pub-sub-bean>

</http-pubsub>

channel-resource-collection
Use this element to configure one or more channel resource collections for a
channel-constraints element.

For more information on channels, see channels.

Child Elements
The channel-resource-collection server configuration element contains zero or
more element child elements that support the child elements that Table F–3 lists

Attributes
The channel-resource-collection server configuration element has no attributes.

Example
The following example shows how to use the channel-resource-collection element
in the Oracle Event Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>

Table F–3 Child Elements of: channel-resource-collection

XML Tag Type Description

channel-resource-name string The name of this channel resource.

descriptions string Description of this channel resource collection.

This element contains an element child element with a string
value.

channel-patterns string Specifies a channel pattern.

This element contains an element child element with a string
value.

channel-operations string Specifies the operation to channel, validate values include:

■ create

■ delete

■ subscribe

■ publish

This element contains an element child element with a string
value.

cluster

F-10 Developer's Guide for Oracle Event Processing

<path>/pubsub</path>
<pub-sub-bean>

...
<channel-constraints>

<element>
<channel-resource-collection>

<element>
<channel-resource-name>Foo</channel-resource-name>
<descriptions>

<element>Foo</element>
</descriptions>
<channel-patterns>

<element>Foo</element>
</channel-patterns>
<channel-operations>

<element>Foo</element>
</channel-operations>

</element>
</channel-resource-collection>
<auth-constraint>

<description>Foo</description>
<role-name>Foo</role-name>

</auth-constraint>
</element>

</channel-constraints>
</pub-sub-bean>

</http-pubsub>

cluster
Use this element to configure a cluster component in the Oracle Event Processing
server.

For more information, see "Administrating Multi-Server Domains With Oracle Event
Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Event Processing.

Child Elements
The cluster server configuration element supports the child elements that Table F–4
lists.

Table F–4 Child Elements of: cluster

XML Tag Type Description

name string The name of this cluster. For more information, see name.

server-name string Specifies a unique name for the server. Oracle Event
Processing Visualizer uses the value of this element when it
displays the server in its console.

Default value:

■ Oracle Event Processing native clustering:
WLEvServer-identity where identity is the value of
the identity element.

■ Oracle Coherence: WLEvServer-identity where
identity is the member ID as determined by Oracle
Coherence.

server-host-name string Specifies the host address or IP used for point-to-point
HTTP multi-server communication. Default value is the IP
address associated with the default NIC for the machine.

cluster

Schema Reference: Server Configuration wlevs_server_config.xsd F-11

Attributes
The cluster server configuration element has no attributes.

multicast-address string This child element is required unless all servers of the
multi-server domain are hosted on the same computer; in
that case you can omit the multicast-address element and
Oracle Event Processing automatically assigns a multicast
address to the multi-server domain based on the
computer's IP address.

If, however, the servers are hosted on different computers,
then you must provide an appropriate domain-local
address. Oracle recommends you use an address of the
form 239.255.X.X, which is what the auto-assigned
multicast address is based on.

All the Oracle Event Processing servers using this
multicast-address must be on the same subnet.

Using Oracle Coherence, there is also an extension: if you
use a unicast address then Oracle Coherence will be
configured in Well Known Address (WKA) mode. This is
necessary in environments that do not support multicast.

multicast-interface string The name of the interface that the multicast address should
be bound to. This can be one of:

■ Simple name, such as eth0.

■ IP address to which the NIC is bound, such as
192.168.1.2.

■ IP address and network mask to which the NIC is
bound separated by a /, such as
192.68.1.2/255.255.255.0.

multicast-port int Specifies the port used for multicast traffic. Default value is
9100.

identity string Applicable only to Oracle Event Processing native
clustering: specifies the server's identity and must be an
integer between 1 and INT_MAX. Oracle Event Processing
numerically compares the server identities during
multi-server operations; the server with the lowest identity
becomes the domain coordinator. Be sure that each server
in the multi-server domain has a different identity; if
servers have the same identity, the results of multi-server
operations are unpredictable.

Not applicable to Oracle Coherence.

enabled See Description Specifies whether or not the cluster is enabled. Valid
values:

■ coherence

■ evs4j

■ true: cluster is enabled (Oracle Coherence mode)

■ false: cluster is not enabled (default).

security See Description Specifies the type of security for this cluster. Valid values:

■ none—Default value. Specifies that no security is
configured for the multi-server domain.

■ encrypt—Specifies that multi-server messages should
be encrypted.

groups string Specifies a comma-separated list of the names of the
groups this cluster belongs to. For more information, see
"Groups" in the Oracle Fusion Middleware Administrator's
Guide for Oracle Event Processing.

operation-timeout int Specifies, in milliseconds, the timeout for point-to-point
HTTP multi-server requests. Default value is 30000.

Table F–4 (Cont.) Child Elements of: cluster

XML Tag Type Description

connection-pool-params

F-12 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the cluster element in the Oracle Event
Processing server configuration file:

<cluster>
<name>MyCluster</name>
<server-name>myServer1</server-name>
<multicast-address>239.255.0.1</multicast-address>
<identity>1</identity>
<enabled>true</enabled>

</cluster>

In the example, the cluster element’s unique identifier is MyCluster.

connection-pool-params
Use this element to specify connection pool-related data-source parameters.

Child Elements
The connection-pool-params server configuration element supports the child
elements that Table F–5 lists.

Table F–5 Child Elements of: connection-pool-params

XML Tag Type Description

statement-timeout int The time after which a statement currently being executed will time out.
statement-timeout relies on underlying JDBC driver support. The
server passes the time specified to the JDBC driver using the
java.sql.Statement.setQueryTimeout method. If your JDBC driver
does not support this method, it may throw an exception and the
timeout value is ignored. A value of -1 disables this feature. A value of 0
means that statements will not time out.

Default: -1.

profile-harvest-f
requency-seconds

int The number of seconds between diagnostic profile harvest operations.

Default: 300.

inactive-connecti
on-timeout-second
s

int The number of inactive seconds on a reserved connection before the
connection is reclaimed and released back into the connection pool.

Default: 0.

shrink-frequency-
seconds

int The number of seconds to wait before shrinking a connection pool that
has incrementally increased to meet demand.

Default: 900.

driver-intercepto
r

string Specifies the absolute name of the application class used to intercept
method calls to the JDBC driver. The application specified must
implement the weblogic.jdbc.extensions.DriverInterceptor
interface.

seconds-to-trust-
an-idle-pool-conn
ection

int The number of seconds within a connection use that the server trusts
that the connection is still viable and will skip the connection test, either
before delivering it to an application or during the periodic connection
testing process.

Default: 10.

pinned-to-thread boolean This option can improve performance by enabling execute threads to
keep a pooled database connection even after the application closes the
logical connection.

Default: false.

test-connections-
on-reserve

boolean Test a connection before giving it to a client. Requires that you specify
test-table-name.

Default: false.

connection-pool-params

Schema Reference: Server Configuration wlevs_server_config.xsd F-13

profile-type int Specifies that type of profile data to be collected.

statement-cache-t
ype

string The algorithm used for maintaining the prepared statements stored in
the statement cache. Valid values:

■ LRU - when a new prepared or callable statement is used, the least
recently used statement is replaced in the cache

■ FIXED - the first fixed number of prepared and callable statements
are cached

Default: LRU.

connection-reserv
e-timeout-seconds

int The number of seconds after which a call to reserve a connection from
the connection pool will timeout. When set to 0, a call will never
timeout. When set to -1, a call will timeout immediately.

Default: -1.

credential-mappin
g-enabled

boolean Enables the server to set a light-weight client ID on the database
connection based on a map of database IDs when an application
requests a database connection.

Default: false.

login-delay-secon
ds

int The number of seconds to delay before creating each physical database
connection. This delay supports database servers that cannot handle
multiple connection requests in rapid succession. The delay takes place
both during initial data source creation and during the lifetime of the
data source whenever a physical database connection is created.

Default: 0.

test-table-name string The name of the database table to use when testing physical database
connections. This name is required when you specify
test-frequency-seconds and enable test-reserved-connections. The
default SQL code used to test a connection is select count(*) from
test-table-name where test-table-name is the value of the
test-table-name element. Most database servers optimize this SQL to
avoid a table scan, but it is still a good idea to set test-table-name to
the name of a table that is known to have few rows, or even no rows. If
test-table-name begins with SQL, then the rest of then the rest of the
string following that leading token will be taken as a literal SQL
statement that will be used to test connections instead of the standard
query.

statement-cache-s
ize

int The number of prepared and callable statements stored in the cache
between 1 and 1024. This may increase server performance.

Default: 10.

init-sql string SQL statement to execute that will initialize newly created physical
database connections. Start the statement with SQL followed by a space.

connection-creati
on-retry-frequenc
y-seconds

int The number of seconds between attempts to establish connections to
the database. If you do not set this value, data source creation fails if the
database is unavailable. If set and if the database is unavailable when
the data source is created, the server will attempt to create connections
in the pool again after the number of seconds you specify, and will
continue to attempt to create the connections until it succeeds. When set
to 0, connection retry is disabled.

Default: 0.

test-frequency-se
conds

int The number of seconds between when the server tests unused
connections. (Requires that you specify a Test Table Name.)
Connections that fail the test are closed and reopened to re-establish a
valid physical connection. If the test fails again, the connection is closed.
In the context of multi data sources, this attribute controls the frequency
at which the server checks the health of data sources it had previously
marked as unhealthy. When set to 0, the feature is disabled.

Default: 120.

jdbc-xa-debug-lev
el

int Specifies the JDBC debug level for XA drivers.

Default: 10.

Table F–5 (Cont.) Child Elements of: connection-pool-params

XML Tag Type Description

connection-pool-params

F-14 Developer's Guide for Oracle Event Processing

Attributes
The connection-pool-params server configuration element has no attributes.

Example
The following example shows how to use the connection-pool-params element in the
Oracle Event Processing server configuration file:

<data-source>
<name>orads</name>
<xa-params>

<keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
</xa-params>
<driver-params>

<url>jdbc:oracle:thin:@localhost:1521:ce102</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>
<properties>

<element>
<name>user</name>
<value>wlevs</value>

</element>
<element>

<name>password</name>
<value>wlevs</value>

</element>
</properties>

</driver-params>
<connection-pool-params>

<initial-capacity>5</initial-capacity>
<max-capacity>10</max-capacity>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<test-frequency-seconds>5</test-frequency-seconds>

</connection-pool-params>
<data-source-params>

<jndi-names>
<element>orads</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

initial-capacity int The number of physical connections to create when creating the
connection pool in the data source. If unable to create this number of
connections, creation of the data source will fail.

Default: 1.

max-capacity int The maximum number of physical connections that this connection
pool can contain.

Default: 15.

capacity-incremen
t

int The number of connections created when new connections are added to
the connection pool.

Default: 1.

highest-num-waite
rs

int The maximum number of connection requests that can concurrently
block threads while waiting to reserve a connection from the data
source's connection pool.

Default: Integer.MAX_VALUE.

Table F–5 (Cont.) Child Elements of: connection-pool-params

XML Tag Type Description

data-source

Schema Reference: Server Configuration wlevs_server_config.xsd F-15

cql
Use this element to configure Oracle CQL-specific options in the Oracle Event
Processing server.

Child Elements
The cql server configuration element supports the following child elements:

■ name

■ scheduler

■ partition-order-capacity

Attributes
The cql server configuration element has no attributes.

Example
The following example shows how to use the cql element in the Oracle Event
Processing server configuration file:

<cql>
<name>myCQL</name>
<storage>

<folder>myfolder</folder>
<metadata-name>myname</metadata-name>

</storage>
<scheduler>

<class-name>myclass</class-name>
<threads>10</threads>
<direct-interop>false</direct-interop>

</scheduler>
</cql>

In the example, the cql element’s unique identifier is myCQL.

data-source
This configuration type defines configuration for a DataSource service.

Child Elements
The data-source server configuration element supports the following child elements:

■ name

■ xa-params

■ data-source-params

■ connection-pool-params

■ driver-params

Attributes
The data-source server configuration element has no attributes.

data-source-params

F-16 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the data-source element in the Oracle Event
Processing server configuration file:

<data-source>
<name>orads</name>
<driver-params>

<url>jdbc:oracle:thin:@localhost:1521:ce102</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>
<properties>

<element>
<name>user</name>
<value>wlevs</value>

</element>
<element>

<name>password</name>
<value>wlevs</value>

</element>
</properties>

</driver-params>
<connection-pool-params>

<initial-capacity>5</initial-capacity>
<max-capacity>10</max-capacity>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<test-frequency-seconds>5</test-frequency-seconds>

</connection-pool-params>
<data-source-params>

<jndi-names>
<element>orads</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

In the example, the data-source element’s unique identifier is orads.

data-source-params
Use this element to specify data source-related data-source parameters.

Child Elements
The data-source-params server configuration element supports the child elements
that Table F–6 lists.

Table F–6 Child Elements of: data-source-params

XML Tag Type Description

algorithm-type See Description The algorithm determines the connection request processing for
the multi data source. Valid values:

■ Failover

■ Load-Balancing

Default: Failover.

stream-chunk-size int Specifies the data chunk size for steaming data types between 1
and 65536.

Default: 256.

row-prefetch boolean Specifies whether or not multiple rows to be prefetched (that is,
sent from the server to the client) in one server access.

Default: false.

data-source-params

Schema Reference: Server Configuration wlevs_server_config.xsd F-17

Attributes
The data-source-params server configuration element has no attributes.

Example
The following example shows how to use the data-source-params element in the
Oracle Event Processing server configuration file:

<data-source>
<name>orads</name>
<xa-params>

<keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
</xa-params>
<driver-params>

<url>jdbc:oracle:thin:@localhost:1521:ce102</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>
<properties>

<element>

data-source-list string The list of data sources to which the multi data source will route
connection requests. The order of data sources in the list
determines the failover order.

failover-request-
if-busy

boolean For multi data sources with the Failover algorithm, enables the
multi data source to failover connection requests to the next data
source if all connections in the current data source are in use.

Default: false.

row-prefetch-size int If row prefetching is enabled, specifies the number of result set
rows to prefetch for a client between 2 and 65536.

Default: 48.

jndi-names See Description The JNDI path to where this Data Source is bound. By default, the
JNDI name is the name of the data source. This element contains
the following child elements:

■ element: contains the string name of a valid data-source
element. For more information, see data-source.

■ config-data-source-DataSourceParams-JNDINames.

scope boolean Specifies the scoping of the data source. Note that Global is the
only scoped supported by MSA.

Default: Global.

connection-pool-f
ailover-callback-
handler

string The name of the application class to handle the callback sent
when a multi data source is ready to failover or fail back
connection requests to another data source within the multi data
source. The name must be the absolute name of an application
class that implements the
weblogic.jdbc.extensions.ConnectionPoolFailoverCallback
interface.

global-transactio
ns-protocol

int Determines the transaction protocol (global transaction
processing behavior) for the data source. Valid values:

■ TwoPhaseCommit - Standard XA transaction processing.
Requires an XA driver

■ LoggingLastResource - A performance enhancement for one
non-XA resource

■ EmulateTwoPhaseCommit - Enables one non-XA resource to
participate in a global transaction, but has some risk to data

■ OnePhaseCommit - One-phase XA transaction processing
using a non-XA driver. This is the default setting

■ None - Support for local transactions only

Default: OnePhaseCommit.

Table F–6 (Cont.) Child Elements of: data-source-params

XML Tag Type Description

driver-params

F-18 Developer's Guide for Oracle Event Processing

<name>user</name>
<value>wlevs</value>

</element>
<element>

<name>password</name>
<value>wlevs</value>

</element>
</properties>

</driver-params>
<connection-pool-params>

<initial-capacity>5</initial-capacity>
<max-capacity>10</max-capacity>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<test-frequency-seconds>5</test-frequency-seconds>

</connection-pool-params>
<data-source-params>

<jndi-names>
<element>orads</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

driver-params
Use this element to specify JDBC driver-related data-source parameters.

Child Elements
The driver-params server configuration element supports the child elements that
Table F–7 lists.

Attributes
The driver-params server configuration element has no attributes.

Table F–7 Child Elements of: driver-params

XML Tag Type Description

use-xa-data-sourc
e-interface

boolean Specifies that the server should use the XA interface of the JDBC driver.
If the JDBC driver class used to create database connections implements
both XA and non-XA versions of a JDBC driver, you can set this
attribute to indicate that the server should treat the JDBC driver as an
XA driver or as a non-XA driver.

Default: true.

password string The password attribute passed to the JDBC driver when creating
physical database connections.

driver-name string The full package name of JDBC driver class used to create the physical
database connections in the connection pool in the data source.

url string The URL of the database to connect to. The format of the URL varies by
JDBC driver. The URL is passed to the JDBC driver to create the
physical database connections.

properties string Specifies the list of properties passed to the JDBC driver when creating
physical database connections. This element contains one or more
element child elements that contain child elements:

■ name: the property name.

■ value: the property value.

domain

Schema Reference: Server Configuration wlevs_server_config.xsd F-19

Example
The following example shows how to use the driver-params element in the Oracle
Event Processing server configuration file:

<data-source>
<name>orads</name>
<xa-params>

<keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
</xa-params>
<driver-params>

<url>jdbc:oracle:thin:@localhost:1521:ce102</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>
<properties>

<element>
<name>user</name>
<value>wlevs</value>

</element>
<element>

<name>password</name>
<value>wlevs</value>

</element>
</properties>

</driver-params>
<connection-pool-params>

<initial-capacity>5</initial-capacity>
<max-capacity>10</max-capacity>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<test-frequency-seconds>5</test-frequency-seconds>

</connection-pool-params>
<data-source-params>

<jndi-names>
<element>orads</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

domain
Use this element to configure a domain name in the Oracle Event Processing server.

Child Elements
The domain server configuration element supports the following child elements:

■ name

Attributes
The domain server configuration element has no attributes.

Example
The following example shows how to use the domain element in the Oracle Event
Processing server configuration file:

<domain>
<name>WLEventServerDomain</name>

</domain>

In the example, the domain’s unique identifier is WLEventServerDomain.

debug

F-20 Developer's Guide for Oracle Event Processing

debug
Use this element to configure one or more debug properties for the Oracle Event
Processing server.

Child Elements
The debug server configuration element supports the child elements that Table F–8
lists.

Attributes
The debug server configuration element has no attributes.

Example
The following example shows how to use the debug element to turn on Simple
Declarative Services (SDS) debugging using debug flag
com.bea.core.debug.DebugSDS in the Oracle Event Processing server configuration
file.

<debug>
<name>myDebug</name>
<debug-properties>

<DebugSDS>true</DebugSDS>
...

</debug-properties>
</debug>

event-store
Use this element to configure an event store for the Oracle Event Processing server.

Child Elements
The event-store server configuration element supports the child elements that
Table F–9 lists.

Table F–8 Child Elements of: debug

XML Tag Type Description

name string The name of this debug configuration. For more
information, see name.

debug-properties string One or more child elements formed by taking a debug flag
name (without its package name) and specifying a value of
true.

For more information including a full list of all debug flags,
see "How to Configure Oracle Event Processing Debugging
Options Using a Configuration File" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event Processing

Table F–9 Child Elements of: event-store

XML Tag Type Description

name string The name of this debug configuration. For more
information, see name.

exported-jndi-context

Schema Reference: Server Configuration wlevs_server_config.xsd F-21

Attributes
The event-store server configuration element has no attributes.

Example
The following example shows how to use the event-store element in the Oracle Event
Processing server configuration file:

<config>
<event-store>

<name>myEventStore</name>
<provider-order>

<provider>provider1</provider>
<provider>provider2</provider>

</provider-order>
</event-store>

</config>

In the example, the adapter's unique identifier is myEventStore.

exported-jndi-context
This configuration type is used to export a remote JNDI service that may be accessed
via clients using RMI. It registers the JNDI context with the RMI service, so that it may
be accessed remotely by clients that pass a provider URL parameter when they create
their InitialContext object. This service requires that a jndi-context configuration
object also be specified. If it is not, then this service will not be able to start.

Child Elements
The exported-jndi-context server configuration element supports the child elements
that Table F–10 lists.

Attributes
The exported-jndi-context server configuration element has no attributes.

provider-order string Specifies the name of one or more provider child elements
in the order in which the Oracle Event Processing server
should access them.

For more information, see:

■ rdbms-event-store-provider

Table F–10 Child Elements of: exported-jndi-context

XML Tag Type Description

name string The name of this debug configuration. For more information, see name.

rmi-service-name string The name of the RMI service that should be used to serve this JNDI
context over the network. It must match an existing RMI object in the
configuration. For more information, see rmi.

Table F–9 (Cont.) Child Elements of: event-store

XML Tag Type Description

http-pubsub

F-22 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the exported-jndi-context element in the
Oracle Event Processing server configuration file:

<rmi>
<name>myRMI</name>
<http-service-name>TestJetty</http-service-name>

</rmi>

<exported-jndi-context>
<name>RemoteJNDI</name>
<rmi-service-name>myRMI</rmi-service-name>

</exported-jndi-context>

In the example, the adapter's unique identifier is RemoteJNDI.

http-pubsub
Use this element to configure an HTTP publish-subscribe service.

Child Elements
The http-pubsub server configuration element supports the following child elements:

■ name

■ path

■ pubsub-bean

Attributes
The http-pubsub server configuration element has no attributes.

Example
The following example shows how to use the http-pubsub element in the Oracle Event
Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

<server-config>
<supported-transport>

<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>

true
</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>

<channel-pattern>/evsalert</channel-pattern>
</element>

jetty

Schema Reference: Server Configuration wlevs_server_config.xsd F-23

<element>
<channel-pattern>/evsdomainchange</channel-pattern>

</element>
</channels>

</pub-sub-bean>
</http-pubsub>

In the example, the http-pubsub element’s unique identifier is myPubsub.

jetty
Use this element to configure an instance of the Jetty HTTP server.

Child Elements
The jetty server configuration element supports the child elements that Table F–11
lists.

Attributes
The jetty server configuration element has no attributes.

Example
The following example shows how to use the jetty element in the Oracle Event
Processing server configuration file:

<jetty>
<name>TestJetty</name>

Table F–11 Child Elements of: jetty

XML Tag Type Description

name string The name of this jetty element. For more information, see
name.

network-io-name string The name of the Network I/O service that should be used.
This also defines which port the server listens on. This
parameter must refer to the name of a valid "netio"
configuration object.

work-manager-name string The name of the Work Manager that should be used for
thread pooling. If this parameter is not specified, then Jetty
will use a default work manager. For more information, see
work-manager.

scratch-directory string The name of a directory where temporary files required for
Web applications, JSPs, and other types of Web artifacts are
kept. This parameter is overridden by the scratch-directory
parameter on the jetty-web-app element. If this directory
does not exist, it will be created.

debug-enabled boolean Enable debugging in the Jetty code. Specified debug messages
are logged the same way as all other Debug level messages in
the log service.

listen-port int The name of the network port that should be set. This
parameter may not be set if the network-io-name parameter is
not specified. When this parameter is used instead of
network-io-name, a simplified socket I/O subsystem is used
that does not require the netio module.

secure-network-io-name string The name of the Network I/O service that should be used for
secure communications. The specified service must be
configured to support SSL encryption. This parameter must
refer to the name of a valid netio configuration object.

jetty-web-app

F-24 Developer's Guide for Oracle Event Processing

<work-manager-name>WM</work-manager-name>
<network-io-name>Netio</network-io-name>
<secure-network-io-name>SecureNetio</secure-network-io-name>
<debug-enabled>false</debug-enabled>
<scratch-directory>JettyWork</scratch-directory>

</jetty>

In the example, the jetty element’s unique identifier is TestJetty.

jetty-web-app
Use this element to represent a Web application for use by Jetty. Each instance of this
object represents a Web application which must be deployed using the Jetty service.

Child Elements
The jetty-web-app server configuration element supports the child elements that
Table F–12 lists.

Attributes
The jetty-web-app server configuration element has no attributes.

Example
The following example shows how to use the jetty-web-app element in the Oracle
Event Processing server configuration file:

<jetty-web-app>
<name>financial</name>
<context-path>/financial</context-path>
<path>../testws2/financialWS.war</path>
<jetty-name>TestJetty</jetty-name>

</jetty-web-app>

In the example, the jetty-web-app element’s unique identifier is financial.

jmx
Use this element to configure Java Management Extension (JMX) properties in the
Oracle Event Processing server.

Table F–12 Child Elements of: jetty-web-app

XML Tag Type Description

name string The name of this jetty-web-app element. For more information, see
name.

context-path string The context path where this web app will be deployed in the web
server's name space.

Default:/

scratch-directory string The location where Jetty should store temporary files for this web app.
This parameter overrides the scratch-directory parameter on the
jetty element. If this directory does not exist, it will be created.

path string A file name that points to the location of the web app on the server. It
may be a directory or a WAR file.

jetty-name string The name of the Jetty service where this Web application should be
deployed. This name must match the name of an existing jetty
configuration object. For more information, see jetty.

jndi-context

Schema Reference: Server Configuration wlevs_server_config.xsd F-25

Child Elements
The jmx server configuration element supports the child elements that Table F–13 lists.

Attributes
The jmx server configuration element has no attributes.

Example
The following example shows how to use the jmx element in the Oracle Event
Processing server configuration file:

<jmx>
<name>myJMX</name>
<jndi-service-name>JNDI</jndi-service-name>
<rmi-service-name>RMI</rmi-service-name>

</jmx>

In the example, the jmx element’s unique identifier is myJMX.

jndi-context
This configuration object is used to configure the JNDI provider. When it is placed in
the configuration, the MSA JNDI Context is initialized. One instance of this
configuration type must be placed in the configuration if the JNDI service is to be
used, either locally, or remotely through the exported-jndi-context configuration type.

Child Elements
The jndi-context server configuration element supports the child elements that
Table F–14 lists.

Attributes
The jndi-context server configuration element has no attributes.

Table F–13 Child Elements of: jmx

XML Tag Type Description

name string The name of this debug configuration. For more information, see
name.

rmi-service-name string The name of the RMI service that should be used to serve this JNDI
context over the network. It must match an existing RMI object in the
configuration. For more information, see rmi.

jndi-service-name string The name of the JNDI service to which the JMX server will bind its
object.

Table F–14 Child Elements of: jndi-context

XML Tag Type Description

name string The name of this debug configuration. For more
information, see name.

default-provider string This parameter defaults to true. If it is set to false then the
provider will not be installed as the default. The provider
will be set as the default as long as there is at least one
JNDIContextType bean in the configuration with
DefaultProvider set to true. If multiple JNDIContextType
objects are placed in the configuration, the effect will be the
same as if one was started.

log-file

F-26 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the jndi-context element in the Oracle
Event Processing server configuration file:

<jndi-context>
<name>myJNDI</name>
<default-provider>true</default-provider>

</jndi-context>

In the example, the adapter's unique identifier is myJNDI.

log-file
Use this element to configure logging to a file on the Oracle Event Processing server.

Child Elements
The log-file server configuration element supports the child elements that Table F–15
lists.

Table F–15 Child Elements of: log-file

XML Tag Type Description

name string The name of this work-manager element. For more
information, see name.

number-of-files-limited boolean Determines whether old rotated files need to be kept
around forever.

Default: false.

rotation-type string Determines how the log file rotation will be performed
based on size, time or not at all. Valid values:

■ bySize

■ byTime

■ none

Default: bySize.

rotation-time string The time in k:mm format when the first rotation happens
where k is the hour specified in 24-hour notation and mm is
the minutes.

Default: 00:00.

rotated-file-count int If old rotated files are to be deleted, this parameter
determines how many of the last files to always keep.

Default: 7.

rotation-size int The size threshold at which the log file is rotated in KB.

Default: 500.

rotation-time-span-factor long The factor that is applied to the timespan to arrive at the
number of milliseconds that will be the frequency of time
based log rotations.

Default: (long)(3600 * 1000).

rotation-time-span int The interval for every time based log rotation.

Default: 24.

base-log-file-name string Log file name.

Default: server.log

rotate-log-on-startup-enabl
ed

boolean Specifies whether the log file will be rotated on startup.

Default: true.

log-stdout

Schema Reference: Server Configuration wlevs_server_config.xsd F-27

Attributes
The log-file server configuration element has no attributes.

Example
The following example shows how to use the log-file element in the Oracle Event
Processing server configuration file:

<log-file>
<name>logFile</name>
<number-of-files-limited>true</number-of-files-limited>
<rotated-file-count>4</rotated-file-count>
<rotate-log-on-startup-enabled>true</rotate-log-on-startup-enabled>

</log-file>

In the example, the log-file element’s unique identifier is logFile.

log-stdout
Use this element to configure logging to standard out (console) on the Oracle Event
Processing server.

Child Elements
The log-stdout server configuration element supports the child elements that
Table F–16 lists.

log-file-severity string Specifies the threshold importance of the messages that are
propagated to the handlers. The default is Info so that to
see Debug and Trace messages you need to ensure that the
severity is set to either Debug or Trace. Valid values:

■ Emergency

■ Alert

■ Critical

■ Error

■ Warning

■ Notice

■ Info

■ Debug

■ Trace

Default: Notice.

log-file-rotation-dir string The directory where the old rotated files are stored. If not
set, the old files are stored in the same directory as the base
log file.

Table F–16 Child Elements of: log-stdout

XML Tag Type Description

name string The name of this work-manager element. For more information,
see name.

stack-trace-depth int Determines the number of stack trace frames to display on
standard out. All frames are displayed in the log file. A value of -1
means all frames are displayed.

Default: -1.

Table F–15 (Cont.) Child Elements of: log-file

XML Tag Type Description

logging-service

F-28 Developer's Guide for Oracle Event Processing

Attributes
The log-stdout server configuration element has no attributes.

Example
The following example shows how to use the log-stdout element in the Oracle Event
Processing server configuration file:

<log-stdout>
<name>logStdout</name>
<stdout-severity>Debug</stdout-severity>

</log-stdout>

In the example, the log-stdout element’s unique identifier is logStdout.

logging-service
Use this element to configure a logging service on the Oracle Event Processing server.

Child Elements
The logging-service server configuration element supports the child elements that
Table F–17 lists.

stack-trace-enabled boolean Specifies whether to dump stack traces to the console when
included in a logged message.

Default: true.

stdout-severity string Defines the threshold importance of the messages that are
propagated to the handlers. The default is Info so that to see
Debug and Trace messages you need to ensure that the severity is
set to either Debug or Trace. Valid values:

■ Emergency

■ Alert

■ Critical

■ Error

■ Warning

■ Notice

■ Info

■ Debug

■ Trace

Default: Notice.

Table F–17 Child Elements of: logging-service

XML Tag Type Description

name string The name of this work-manager element. For more information,
see name.

log-file-config string The configuration of the log file and its rotation policies.

stdout-config string The configuration of the stdout output.

Table F–16 (Cont.) Child Elements of: log-stdout

XML Tag Type Description

message-filters

Schema Reference: Server Configuration wlevs_server_config.xsd F-29

Attributes
The logging-service server configuration element has no attributes.

Example
The following example shows how to use the logging-service element in the Oracle
Event Processing server configuration file:

<logging-service>
<name>myLogService</name>
<stdout-config>myStdoutConfig</stdout-config>
<logger-severity>Notice</logger-severity>
<logger-severity-properties>
<entry>
<key>FileAdapter</key>
<value>Debug</value>

</entry>
<entry>
<key>CQLProcessor</key>
<value>Debug</value>

</entry>
</logger-severity-properties>

</logging-service>

In the example, the logging-service element’s unique identifier is myLogService.

message-filters
Use this element to configure one or more message filters for a pubsub-bean element.

Child Elements
The message-filters server configuration element contains one or more element
child elements that each contain a message-filter-name and message-filter-class
child element.

logger-severity string Defines the threshold importance of the messages that are
propagated to the handlers. The default is Info so that to see
Debug and Trace messages you need to ensure that the severity
is set to either Debug or Trace. Valid values:

■ Emergency

■ Alert

■ Critical

■ Error

■ Warning

■ Notice

■ Info

■ Debug

■ Trace

Default: Info.

logger-severity-pro
perties

See Description The Severity values for different nodes in the Logger tree
composed of one or more entry child elements each containing
a key and value child element.

Table F–17 (Cont.) Child Elements of: logging-service

XML Tag Type Description

name

F-30 Developer's Guide for Oracle Event Processing

Attributes
The message-filters server configuration element has no attributes.

Example
The following example shows how to use the message-filters element in the Oracle
Event Processing server configuration file:

<http-pubsub>
<name>pubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

...
<message-fitlers>
<element>
<message-filter-name>Foo</message-filter-name>
<message-filter-class>Foo</message-filter-class>

</element>
<element>
<message-filter-name>Foo</message-filter-name>
<message-filter-class>Foo</message-filter-class>

</element>
</message-filters>

...
</pub-sub-bean>

</http-pubsub>

name
Use this element to declare a unique identifier for an Oracle Event Processing server
configuration element.

Child Elements
The name server configuration element has no child elements.

Attributes
The name server configuration element has no attributes.

Example
The following example shows how to use the name element in the Oracle Event
Processing server configuration file:

<http-pubsub>
<name>pubsub</name>
<path>/pubsub</path>

...
</http-pubsub>

netio
Use this element to represent a network input/output (IO) service, that may be used
by other services to act as the server for network IO.

netio-client

Schema Reference: Server Configuration wlevs_server_config.xsd F-31

Child Elements
The netio server configuration element supports the child elements that Table F–18
lists.

Attributes
The netio server configuration element has no attributes.

Example
The following example shows how to use the netio element in the Oracle Event
Processing server configuration file:

<netio>
<name>myNetio</name>
<port>12345</port>

</netio>

In the example, the netio element’s unique identifier is myNetio.

netio-client
Use this element to register a network input/output (IO) service that may be used to
perform non-blocking network IO, but which will not act as a server and listen for
incoming connections.

Child Elements
The netio-client server configuration element supports the child elements that
Table F–19 lists.

Table F–18 Child Elements of: netio

XML Tag Type Description

name string The name of this netio element. For more information, see name.

ssl-config-bean-name string The name of the SSL configuration object to use. If not null, then
this client will create secure sockets using the specified SSL
configuration. If not set, then no SSL will be supported.

provider-type string Specify which provider to use for the underlying socket
implementation. For a list of the valid provider types, see
"Network IO Providers" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

io-threads int A hint to the provider as to the number of threads to use for
processing sockets. A value of zero will result in the provider
choosing based on its own default.Default: 0.

port int The port to listen on. The server will immediately start to listen for
incoming connections on this port.

listen-address string The address on which this instance of Netio should listen for
incoming connections. It may be set to a numeric IP address in the
a.b.c.d format, or to a host name. If not set, then netio will listen
on all network interfaces. Note that the value of this parameter
cannot be validated until the server actually starts.

Table F–19 Child Elements of: netio-client

XML Tag Type Description

name string The name of this netio element. For more information, see name.

partition-order-capacity

F-32 Developer's Guide for Oracle Event Processing

Attributes
The netio-client server configuration element has no attributes.

Example
The following example shows how to use the netio-client element in the Oracle
Event Processing server configuration file:

<netio-client>
<name>netiossl</name>
<ssl-config-bean-name>sslConfig</ssl-config-bean-name>
<provider-type>NIO</provider-type>

</netio-client>

In the example, the netio-client element’s unique identifier is netiossl.

partition-order-capacity
Use this element to define the maximum capacity of a query partition when the
ordering-constraint attribute is set to PARTITION_ORDERED. Set this on a cql
component. Consider setting this element’s value when you’ve configured a query
processor for parallel execution, and when the query’s ordering-constraint attribute is
set to PARTITION_ORDERED.

The element’s default value is 4.

For more information, including best practices and information on the locations where
this value can be set (including their precedence), see "Using partition-order-capacity
with Partitioning Queries" in Chapter 17, "Querying an Event Stream with Oracle
CQL".

Child Elements
The partition-order-capacity element has no child elements.

Attributes
The partition-order-capacity element has no attributes.

Example
The following example shows how to use the partition-order-capacity element in
the Oracle Event Processing server configuration file:

<cql>
<name>myCQL</name>
<partition-order-capacity>20</partition-order-capacity>

</cql>

ssl-config-bean-name string The name of the SSL configuration object to use. If not null, then
this client will create secure sockets using the specified SSL
configuration. If not set, then no SSL will be supported.

provider-type string Specify which provider to use for the underlying socket
implementation. For a list of the valid provider types, see
"Network IO Providers" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Event Processing.

Table F–19 (Cont.) Child Elements of: netio-client

XML Tag Type Description

pubsub-bean

Schema Reference: Server Configuration wlevs_server_config.xsd F-33

path
Use this element to configure the path for an http-pubsub element.

Child Elements
The path element has no child elements.

Attributes
The path element has no attributes.

Example
The following example shows how to use the path element in the Oracle Event
Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

<server-config>
<supported-transport>

<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>

true
</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>

<channel-pattern>/evsalert</channel-pattern>
</element>
<element>

<channel-pattern>/evsdomainchange</channel-pattern>
</element>

</channels>
</pub-sub-bean>

</http-pubsub>

pubsub-bean
Use this element to configure a publish-subscribe bean for an http-pubsub element.

Child Elements
The pubsub-bean server configuration element supports the following child elements:

■ name

■ server-config

■ message-filters

■ channels

rdbms-event-store-provider

F-34 Developer's Guide for Oracle Event Processing

■ channel-constraints

■ services

Attributes
The pubsub-bean server configuration element has no attributes.

Example
The following example shows how to use the pubsub-bean element in the Oracle Event
Processing server configuration file:

<http-pubsub>
<name>myPubsub</name>
<path>/pubsub</path>
<pub-sub-bean>

<server-config>
<supported-transport>

<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>

true
</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>

<channel-pattern>/evsalert</channel-pattern>
</element>
<element>

<channel-pattern>/evsdomainchange</channel-pattern>
</element>

</channels>
</pub-sub-bean>

</http-pubsub>

rdbms-event-store-provider
Use this element to configure an event store provider that uses a relational database
management system in the Oracle Event Processing server.

By default, Oracle Event Processing server uses a Berkeley database instance as the
event store provider as Section , "bdb-config" describes.

Child Elements
The rdbms-event-store-provider server configuration element supports the child
elements that Table F–20 lists.

Table F–20 Child Elements of: rdbms-event-store-provider

XML Tag Type Description

name string The name of this debug configuration. For more
information, see name.

rmi

Schema Reference: Server Configuration wlevs_server_config.xsd F-35

Attributes
The rdbms-event-store-provider server configuration element has no attributes.

Example
The following example shows how to use the rdbms-event-store-provider element
in the Oracle Event Processing server configuration file:

<rdbms-event-store-provider>
<name>test-rdbms-provider</name>
<init-timeout>10000</init-timeout>
<data-source-name>derby1</data-source-name>
<user-policy-attributes>

<entry>
<key>key1</key>
<value>value1</value>

</entry>
<key>key1</key>
<value>value1</value>

<entry>
</entry>

</user-policy-attributes>
</rdbms-event-store-provider>

In the example, the rdbms-event-store-provider element’s unique identifier is
test-rdbms-provider.

rmi
Use this element to configure an RMI service, which allows server- side objects to be
exported to remote clients.

Child Elements
The rmi server configuration element supports the child elements that Table F–21 lists.

init-timeout int The maximum time (in milliseconds) that the Oracle
Event Processing server will wait for this provider to
initialize.

Default: 10000 ms.

data-source-name string The name of a data source element. For more
information, see data-source.

user-policy-attributes See Description One or more entry child elements that each contain a
key and value child element that you use to specify
additional data source properties.

Table F–21 Child Elements of: rmi

XML Tag Type Description

name string The name of this rmi element. For more information, see name.

heartbeat-period int The number of failed heartbeat attempts before triggering disconnect
notifications to all registered listeners.Default-Value: 4.

http-service-name string The name of the HTTP service that this service should use to register
remote objects. The service may be provided by a Jetty or Tomcat
instance of the same name.

Table F–20 (Cont.) Child Elements of: rdbms-event-store-provider

XML Tag Type Description

scheduler

F-36 Developer's Guide for Oracle Event Processing

Attributes
The rmi server configuration element has no attributes.

Example
The following example shows how to use the rmi element in the Oracle Event
Processing server configuration file:

<rmi>
<name>myRMI</name>
<http-service-name>TestJetty</http-service-name>

</rmi>

In the example, the rmi element’s unique identifier is myRMI.

scheduler
Use this element to configure cql scheduler options in the Oracle Event Processing
server.

Child Elements
The scheduler server configuration element supports the child elements that
Table F–22 lists.

heartbeat-interval int The time in milliseconds between heartbeats. Once the number of
unsuccessful heartbeat attempts has reached the value specified by
the HeartbeatPeriod attribute, all registered DisconnectListener
instances will be notified.

Default-Value: 5000.

Table F–22 Child Elements of: scheduler

XML Tag Type Description

class-name string Specify the value for one of the sched_name scheduling option as the
fully qualified package name of Java class that implements the
Oracle Event Processing Service Engine scheduling

algorithm. This class determines in what order the Oracle Event
Processing Service Engine scheduler executes Oracle
CQL queries. Valid values:

■ oracle.cep.execution.scheduler.RoundRobinScheduler: This
algorithm assigns time slices to each Oracle CQL query in
equal portion and in order, handling all processes without
priority. This option is appropriate if the number of Oracle
CQL queries is not prone to large variations.

■ oracle.cep.execution.scheduler.FIFOScheduler: This
algorithm assigns time slices to each Oracle CQL query in
the order that they were created. This algorithm is appropriate
if the number of Oracle CQL queries is prone to large
variations.

Default: oracle.cep.execution.scheduler.RoundRobinScheduler

Table F–21 (Cont.) Child Elements of: rmi

XML Tag Type Description

server-config

Schema Reference: Server Configuration wlevs_server_config.xsd F-37

Attributes
The scheduler server configuration element has no attributes.

Example
The following example shows how to use the scheduler element in the Oracle Event
Processing server configuration file:

<cql>
<name>myCQL</name>
<scheduler>

<class-name>oracle.cep.execution.scheduler.FIFOScheduler</class-name>
</scheduler>

</cql>

server-config
Use this element to configure the server-specific properties of a pubsub-bean element.

Child Elements
The server-config server configuration element supports the child elements that
Table F–23 lists.

runtime long Total number of seconds that the Oracle Event Processing Service
Engine scheduler will run.

Default: 1000000 ms.

time-slice int The frequency at which the Oracle Event Processing Service Engine
scheduler executes Oracle CQL queries.

Default: 1000 ms

schedule-on-new-thre
ad

boolean Whether or not the Oracle Event Processing Service Engine
scheduler will use a separate thread. Options are:

■ true: the scheduler runs in a separate thread.

■ false: the scheduler runs in the same thread as the Oracle
Event Processing Service Engine (Default).

Table F–23 Child Elements of: server-config

XML Tag Type Description

name string The name of this server-config element. For more
information, see name.

Table F–22 (Cont.) Child Elements of: scheduler

XML Tag Type Description

server-config

F-38 Developer's Guide for Oracle Event Processing

Attributes
The server-config server configuration element has no attributes.

Example
The following example shows how to use the server-config element in the Oracle
Event Processing server configuration file:

<http-pubsub>
<name>pubsub</name>
<path>/pubsub</path>

supported-transport See Description This element contains one or more types child elements, one
for each supported transport. Each types child element
contains an element child element with the transport name as
a string value. Valid values:

■ long-polling: Using this transport, the client requests
information from Oracle Event Processing server and if
Oracle Event Processing server does not have
information available, it does not reply until it has. When
the Oracle Event Processing server replies, the client
typically sends another request immediately.

■ callback-polling: Use this transport for HTTP
publish-subscribe applications using a cross domain
configuration in which the browser downloads the page
from one Web server (including the JavaScript code) and
connects to another server as an HTTP publish-subscribe
client. This is required by the Bayeux protocol. For more
information on the Bayeux protocol, see
http://svn.cometd.org/trunk/bayeux/bayeux.html.

For more information, see "How the HTTP Pub-Sub Server
Works" in the Oracle Fusion Middleware Administrator's Guide
for Oracle Event Processing.

client-timeout-secs int Specifies the number of seconds after which the HTTP
pub-sub server disconnects a client if the client does has not
sent back a connect/reconnect message.

Default: 60.

persistent-client-t
imeout-secs

int Specifies the number of seconds after which persistent clients
are disconnected and deleted by the pub-sub server, if during
that time the persistent client does not send a connect or
re-connect message. This value must be larger than
client-timeout-secs. If the persistent client reconnects before
the persistent timeout is reached, the client receives all
messages that have been published to the persistent channel
during that time; if the client reconnects after the timeout, then
it does not get the messages.

Default: 600 seconds.

interval-millisecs int Specifies how long (in milliseconds) the client can delay
subsequent requests to the /meta/connect channel.

Default: 500 ms.

work-manager string Specifies the name of the work manager that delivers
messages to clients. The value of this element corresponds to
the value of the name child element of the work-manager you
want to assign.

For more information, see work-manager.

publish-without-con
nect-allowed

boolean Specifies whether clients can publish messages without having
explicitly connected to the HTTP pub-sub server. Valid values:

■ true

■ false

Table F–23 (Cont.) Child Elements of: server-config

XML Tag Type Description

services

Schema Reference: Server Configuration wlevs_server_config.xsd F-39

<pub-sub-bean>
<server-config>
<name>/pubsub</name>
<supported-transport>
<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>
<channel-pattern>/evsalert</channel-pattern>

</element>
<element>
<channel-pattern>/evsdomainchange</channel-pattern>

</element>
</channels>

</pub-sub-bean>
</http-pubsub>

services
Use this element to configure the service properties of a pubsub-bean element.

Child Elements
The services server configuration element contains one or more element child
elements that each support the child elements that Table F–24 lists.

Attributes
The services server configuration element has no attributes.

Example
The following example shows how to use the services element in the Oracle Event
Processing server configuration file:

<http-pubsub>
<name>pubsub</name>
<path>/pubsub</path>
<pub-sub-bean>
<server-config>
<name>/pubsub</name>
<supported-transport>

Table F–24 Child Elements of: services

XML Tag Type Description

service-channel string Specifies a service channel, for example: /service/echo.

service-class string Specifies the class to service this service, for example:
EchoService.

service-method string Define a service method in the service class. The service
method must have only one payload parameter of type
Object. For example: Object echo(Object payload).

show-detail-error-message

F-40 Developer's Guide for Oracle Event Processing

<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

</server-config>
<channels>

<element>
<channel-pattern>/evsmonitor</channel-pattern>

</element>
<element>
<channel-pattern>/evsalert</channel-pattern>

</element>
<element>
<channel-pattern>/evsdomainchange</channel-pattern>

</element>
</channels>
<services>

<element>
<service-channel>Foo</service-channel>
<service-class>Foo</service-class>
<service-method>Foo</service-method>

</element>
</services>

</pub-sub-bean>
</http-pubsub>

show-detail-error-message
Use this element to configure whether or not the Oracle Event Processing server uses
secure connections.

Child Elements
The show-detail-error-message server configuration element supports the child
elements that Table F–25 lists.

Attributes
The show-detail-error-message server configuration element has no attributes.

Example
The following example shows how to use the show-detail-error-message element in
the Oracle Event Processing server configuration file:

<show-detail-error-message>
<name>myShowDetail</name>
<value>true</value>

Table F–25 Child Elements of: show-detail-error-message

XML Tag Type Description

name string The name of this show-detail-error-message element. For more information, see
name.

value boolean Whether or not to show detailed error messages. Valid values:

■ true: the Oracle Event Processing server shows detailed error messages.

■ false: the Oracle Event Processing server shows abbreviated error messages
(default).

ssl

Schema Reference: Server Configuration wlevs_server_config.xsd F-41

</show-detail-error-message>

In the example, the show-detail-error-message element’s unique identifier is
myShowDetail.

ssl
Use this element to configure Secure Sockets Layer-specific properties on the Oracle
Event Processing server.

Child Elements
The ssl server configuration element supports the child elements that Table F–26 lists.

Table F–26 Child Elements of: ssl

XML Tag Type Description

name string The name of this cluster. For more information, see
name.

key-store string Specifies the file path to the key store such as
./ssl/evsidentity.jks.

key-store-pass See Description This element contains a password child element with
a string value that specifies the password used to
access the key store.

key-store-alias string Specifies the alias for the key store.

key-manager-algorithm string Specifies the key manager algorithm such as SunX509.

ssl-protocol string Specifies the SSL protocol such as TLS.

trust-store string Specifies the file path to the trust store such as
./ssl/evstrust.jks.

trust-store-pass See Description This element contains a password child element with
a string value that specifies the password used to
access the trust store.

trust-store-alias string Specifies the alias for the trust store.

trust-store-type string Specifies the trust store type such as JKS.

trust-manager-algorithm string Specifies the trust manager algorithm such as
SunX509.

enforce-fips boolean Specifies whether or not Oracle Event Processing
server uses a Federal Information Processing
Standards (FIPS)-certified pseudo-random number
generator.

For more information, see "FIPS" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Event
Processing.

need-client-auth boolean Specifies whether or not client certificate
authentication is required.

ciphers See Description This element contains one or more cipher child
elements, each with a string value that specifies the
ciphers that are required.

secure-random-algorithm string When enforce-fips is set to true, specify the secure
random algorithm to use. Valid values:

■ FIPS186PRNG

secure-random-provider string When enforce-fips is set to true, specify the secure
random provider to use. Valid values:

■ JsafeJCE

timeout-seconds

F-42 Developer's Guide for Oracle Event Processing

Attributes
The ssl server configuration element has no attributes.

Example
The following example shows how to use the ssl element in the Oracle Event
Processing server configuration file:

<ssl>
<name>sslConfig</name>
<key-store>./ssl/evsidentity.jks</key-store>
<key-store-pass>

<password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</password>
</key-store-pass>
<key-store-alias>evsidentity</key-store-alias>
<key-manager-algorithm>SunX509</key-manager-algorithm>
<ssl-protocol>TLS</ssl-protocol>
<enforce-fips>false</enforce-fips>
<need-client-auth>false</need-client-auth>

</ssl>

In the example, the ssl element’s unique identifier is sslConfig.

timeout-seconds
Use this element to configure weblogic-jta-gateway default transaction timeout in
seconds in the Oracle Event Processing server.

Default: 60.

Child Elements
The timeout-seconds server configuration element has no attributes.

Attributes
The timeout-seconds server configuration element has no attributes.

Example
The following example shows how to use the timeout-seconds element in the Oracle
Event Processing server configuration file:

<weblogic-jta-gateway>
<name>myJTAGateway</name>
<timeout-seconds>90</timeout-seconds>
<weblogic-instances>

<weblogic-instance>
<domain-name>ocep_domain</domain-name>
<server-name>fxserver</server-name>
<protocol>t3</protocol>
<host-address>ariel</host-address>
<port>9002</port>

</weblogic-instance>
</weblogic-instances>

</weblogic-jta-gateway>

transaction-manager

Schema Reference: Server Configuration wlevs_server_config.xsd F-43

transaction-manager
Use this element to configure transaction manager properties in the Oracle Event
Processing server.

Child Elements
The transaction-manager server configuration element supports the child elements
that Table F–27 lists.

Table F–27 Child Elements of: transaction-manager

XML Tag Type Description

name string The name of this transaction-manager element. For more
information, see name.

max-resource-reques
ts-on-server

int Maximum number of concurrent requests to resources allowed for
each server.

Default: 50.

max-resource-unavai
lable-millis

long Maximum duration in milliseconds that a resource is declared dead.
After the duration, the resource will be declared available again, even
if the resource provider does not explicitly re-register the
resource.Default: 1800000.

security-interop-mo
de

string Specifies the security mode of the communication channel used for
XA calls between servers that participate in a global transaction. All
server instances in a domain must have the same security mode
setting. Valid values:

■ default: The transaction coordinator makes calls using the
kernel identity over an admin channel if it is enabled, and
anonymous otherwise. Man-in-the-middle attacks are possible if
the admin channel is not enabled.

■ Performance: The transaction coordinator makes calls using
anonymous at all times. This implies a security risk since a
malicious third party could then try to affect the outcome of
transactions using a man-in-the-middle attack.

■ Compatibility: The transaction coordinator makes calls as the
kernel identity over an insecure channel. This is a high security
risk because a successful man-in-the-middle attack would allow
the attacker to gain administrative control over both domains.
This setting should only be used when strong network security
is in place.

Default: default.

parallel-xa-enabled boolean Execute XA calls in parallel if there are available threads.

Default: true.

tlog-location string The location of the file store that contains the transaction log. This
attribute can be either an absolute or relative path in the filesystem.

max-xa-call-millis long Maximum allowed duration of XA calls to resources. If a particular
XA call to a resource exceeds the limit, the resource is declared
unavailable.

Default: 120000.

timeout-seconds int The default transaction timeout in seconds.

Default: 30.

checkpoint-interval
-seconds

int The interval at which the transaction manager performs transaction
log checkpoint operations.

Default: 300.

transaction-manager

F-44 Developer's Guide for Oracle Event Processing

forget-heuristics boolean Specifies whether the transaction manager will automatically
perform an XAResource forget operation for heuristic transaction
completions. When enabled, the transaction manager automatically
performs an XA Resource forget operation for all resources as soon
as the transaction learns of a heuristic outcome. Disable this feature
only if you know what to do with the resource when it reports a
heuristic decision.

Default: true.

before-completion-i
teration-limit

int The maximum number of cycles that the transaction manager will
perform the before completion synchronization callback processing.

Default: 10.

abandon-timeout-sec
onds

int The transaction abandon timeout seconds for transactions in the
second phase of the two-phase commit (prepared and later). During
the second phase of the two-phase commit process, the transaction
manager will continue to try to complete the transaction until all
resource managers indicate that the transaction is completed. Using
this timeout, you can set the maximum time that a transaction
manager will persist in attempting to complete a transaction during
the second phase of the transaction. After the abandon transaction
timer expires, no further attempt is made to resolve the transaction. If
the transaction is in a prepared state before being abandoned, the
transaction manager will roll back the transaction to release any locks
held on behalf of the abandoned transaction.

Default: 86400.

serialize-enlistmen
ts-gc-interval-mill
is

long The interval at which internal objects used to serialize resource
enlistment are cleaned up.

Default: 30000.

unregister-resource
-grace-period

int The grace period (number of seconds) that the transaction manager
waits for transactions involving the resource to complete before
unregistering a resource. The grace period can help minimize the risk
of abandoned transactions because of an unregistered resource, such
as a JDBC data source module packaged with an application. During
the specified grace period, the unregisterResource call will block
until the call can return, and no new transactions are started for the
associated resource. If the number of outstanding transactions for the
resource goes to 0, the unregisterResource call returns immediately.
At the end of the grace period, if there are still outstanding
transactions associated with the resource, the unregisterResource call
returns and a log message is written on the server on which the
resource was previously registered.

Default: 30.

rmi-service-name string The name of the RMI service that is used for distributed transaction
coordination.

For more information, see rmi.

max-unique-name-sta
tistics

int The maximum number of unique transaction names for which
statistics will be maintained.

Default: 1000.

purge-resource-from
-checkpoint-interva
l-seconds

int The interval that a particular resource must be accessed within for it
to be included in the checkpoint record.

Default: 86400.

max-transactions int The maximum number of simultaneous in-progress transactions
allowed on this server.

Default: 10000.

migration-checkpoin
t-interval-seconds

int The interval that the checkpoint is done for the migrated transaction
logs (TLOGs).

Default: 60.

Table F–27 (Cont.) Child Elements of: transaction-manager

XML Tag Type Description

use-secure-connections

Schema Reference: Server Configuration wlevs_server_config.xsd F-45

Attributes
The transaction-manager server configuration element has no attributes.

Example
The following example shows how to use the transaction-manager element in the
Oracle Event Processing server configuration file:

<transaction-manager>
<name>My_tm</name>
<timeout-seconds>30</timeout-seconds>
<abandon-timeout-seconds>86400</abandon-timeout-seconds>
<forget-heuristics>true</forget-heuristics>
<before-completion-iteration-limit>12</before-completion-iteration-limit>
<max-transactions>10100</max-transactions>
<max-unique-name-statistics>500</max-unique-name-statistics>
<max-resource-requests-on-server>50</max-resource-requests-on-server>
<max-resource-unavailable-millis>1800000</max-resource-unavailable-millis>
<recovery-threshold-millis>300000</recovery-threshold-millis>
<max-transactions-health-interval-millis>

60000
</max-transactions-health-interval-millis>
<purge-resource-from-checkpoint-interval-seconds>

86400
</purge-resource-from-checkpoint-interval-seconds>
<checkpoint-interval-seconds>300</checkpoint-interval-seconds>
<parallel-xa-enabled>true</parallel-xa-enabled>
<unregister-resource-grace-period>30</unregister-resource-grace-period>
<security-interop-mode>default</security-interop-mode>
<rmi-service-name>RMI_ce1</rmi-service-name>

 </transaction-manager>

In the example, the transaction-manager element’s unique identifier is My_tm.

use-secure-connections
Use this element to configure whether or not the Oracle Event Processing server uses
secure connections.

For more information, see "How to Configure SSL in a Multi-Server Domain for Oracle
Event Processing Visualizer" in the Oracle Fusion Middleware Administrator's Guide for
Oracle Event Processing.

recovery-threshold-
millis

long The interval that recovery is attempted until the resource becomes
available.

Default: 300000.

max-transactions-he
alth-interval-milli
s

long The interval for which the transaction map must be full for the JTA
subsystem to declare its health as CRITICAL.

Default: 60000.

parallel-xa-dispatc
h-policy

string The dispatch policy to use when performing XA operations in
parallel. By default the policy of the thread coordinating the
transaction is used.

Table F–27 (Cont.) Child Elements of: transaction-manager

XML Tag Type Description

weblogic-instances

F-46 Developer's Guide for Oracle Event Processing

Child Elements
The use-secure-connections server configuration element supports the child
elements that Table F–28 lists.

Attributes
The use-secure-connections server configuration element has no attributes.

Example
The following example shows how to use the use-secure-connections element in the
Oracle Event Processing server configuration file:

<use-secure-connections>
<name>myUseSecConn</name>
<value>true</value>

</use-secure-connections>

In the example, the use-secure-connections element’s unique identifier is
myUseSecConn.

weblogic-instances
Use this element to configure Oracle Event Processing server instances for a
weblogic-jta-gateway element.

Child Elements
The weblogic-instances server configuration element supports zero or more
weblogic-instance child elements that each contain the child elements that Table F–29
lists.

Attributes
The weblogic-instances server configuration element has no attributes.

Table F–28 Child Elements of: use-secure-connections

XML Tag Type Description

name string The name of this use-secure-connections element. For more information, see
name.

value boolean Whether or not to use secure connections. Valid values:

■ true: the Oracle Event Processing server uses only secure connections.

■ false: the Oracle Event Processing server accepts connections that are not
secure.

Table F–29 Child Elements of: weblogic-instances

XML Tag Type Description

domain-name string Specifies the name of the domain of the Oracle Event Processing server.

server-name string Specifies the name of the Oracle Event Processing server.

protocol string Specifies the JTA protocol.

Default: t3.

host-address string The host name or IP address of the Oracle Event Processing server.

port int The netio port for the Oracle Event Processing server.

weblogic-jta-gateway

Schema Reference: Server Configuration wlevs_server_config.xsd F-47

Example
The following example shows how to use the weblogic-instances element in the
Oracle Event Processing server configuration file:

<weblogic-jta-gateway>
<name>myJTAGateway</name>
<timeout-seconds>90</timeout-seconds>
<weblogic-instances>

<weblogic-instance>
<domain-name>ocep_domain</domain-name>
<server-name>fxserver</server-name>
<protocol>t3</protocol>
<host-address>ariel</host-address>
<port>9002</port>

</weblogic-instance>
</weblogic-instances>

</weblogic-jta-gateway>

weblogic-jta-gateway
Use this element to configure the attributes for the singleton Oracle Event Processing
server client JTA gateway service.

Child Elements
The weblogic-jta-gateway server configuration element supports the following child
elements:

■ name

■ timeout-seconds

■ weblogic-instances

Attributes
The weblogic-jta-gateway server configuration element has no attributes.

Example
The following example shows how to use the weblogic-jta-gateway element in the
Oracle Event Processing server configuration file:

<weblogic-jta-gateway>
<name>myJTAGateway</name>
<timeout-seconds>90</timeout-seconds>
<weblogic-instances>

<weblogic-instance>
<domain-name>ocep_domain</domain-name>
<server-name>fxserver</server-name>
<protocol>t3</protocol>
<host-address>ariel</host-address>
<port>9002</port>

</weblogic-instance>
</weblogic-instances>

</weblogic-jta-gateway>

In the example, the weblogic-jta-gateway element’s unique identifier is myJTAGateway.

weblogic-rmi-client

F-48 Developer's Guide for Oracle Event Processing

weblogic-rmi-client
Use this element to configure the attributes for the singleton Oracle Event Processing
server RMI client.

Child Elements
The weblogic-rmi-client server configuration element supports the child elements
that Table F–30 lists.

Attributes
The weblogic-rmi-client server configuration element has no attributes.

Example
The following example shows how to use the weblogic-rmi-client element in the
Oracle Event Processing server configuration file:

<netio-client>
<name>netio</name>
<provider-type>NIO</provider-type>

</netio-client>

<netio-client>

<name>netiossl</name>
<provider-type>NIO</provider-type>
<ssl-config-bean-name>sslConfig</ssl-config-bean-name>

</netio-client>

<weblogic-rmi-client>

<name>wlclient</name>
<netio-name>netio</netio-name>
<secure-netio-name>netiossl</secure-netio-name>

</weblogic-rmi-client>

In the example, the weblogic-rmi-client element’s unique identifier is wlclient.

work-manager
Use this element to configure a work manager on the Oracle Event Processing server.

Child Elements
The work-manager server configuration element supports the child elements that
Table F–31 lists.

Table F–30 Child Elements of: weblogic-rmi-client

XML Tag Type Description

name string The name of this weblogic-rmi-client element. For more
information, see name.

netio-name string Specifies the name of the netio-client element to use. For more
information, see netio-client.

secure-netio-name string Specifies the name of the netio-client element configured for SSL.
For more information, see netio-client.

xa-params

Schema Reference: Server Configuration wlevs_server_config.xsd F-49

Attributes
The work-manager server configuration element has no attributes.

Example
The following example shows how to use the work-manager element in the Oracle
Event Processing server configuration file:

<work-manager>
<name>WM</name>
<fairshare>5</fairshare>
<min-threads-constraint>1</min-threads-constraint>
<max-threads-constraint>4</max-threads-constraint>

</work-manager>

In the example, the work-manager element’s unique identifier is WM.

xa-params
Use this element to specify distributed transaction-related data-source parameters.

Child Elements
The xa-params server configuration element supports the child elements that
Table F–32 lists.

Table F–31 Child Elements of: work-manager

XML Tag Type Description

name string The name of this work-manager element. For more information,
see name.

min-threads-constraint int The minimum threads constraint this work manager should
use.

Default: -1.

fairshare int The fairshare value this work manager should use.

Default: -1.

max-threads-constraint int The maximum threads constraint this work manager should
use.

Default: -1.

Table F–32 Child Elements of: xa-params

XML Tag Type Description

keep-xa-conn-till-tx-c
omplete

boolean Enables the server to associate the same XA database connection
from the connection pool with a global transaction until the
transaction completes. Only applies to connection pools that use
an XA driver. Use this setting to work around specific problems
with JDBC XA drivers.

Default: true.

xa-params

F-50 Developer's Guide for Oracle Event Processing

xa-transaction-timeout int The number of seconds to set as the transaction branch timeout. If
set, this value is passed as the transaction timeout value in the
XAResource.setTransactionTimeout call on the XA resource
manager, typically the JDBC driver. When this value is set to 0,
the Transaction Manager passes the global server transaction
timeout in seconds in the method. If set, this value should be
greater than or equal to the global server transaction timeout.
Note: You must enable xa-set-transaction-timeout to enable
setting the transaction branch timeout.

Default: 0.

rollback-local-tx-upon
-conn-close

boolean Enables the server to call rollback on the connection before
returning the connection to the connection pool. Enabling this
attribute will have a performance impact as the rollback call
requires communication with the database server.

Default: false.

xa-retry-duration-seco
nds

int Determines the duration in seconds for which the transaction
manager will perform recover operations on the resource. A
value of zero indicates that no retries will be performed.

Default: 60.

xa-set-transaction-tim
eout

boolean Enables the server to set a transaction branch timeout based on
the value for xa-transaction-timeout. When enabled, the
Transaction Manager calls XAResource.setTransactionTimeout
before calling XAResource.start, and passes either the XA
Transaction Timeout value or the global transaction timeout. You
may want to set a transaction branch timeout if you have
long-running transactions that exceed the default timeout value
on the XA resource.

Default: false.

keep-logical-conn-open
-on-release

boolean Enables the server to keep the logical JDBC connection open for a
global transaction when the physical XA connection is returned
to the connection pool. Select this option if the XA driver used to
create database connections or the DBMS requires that a logical
JDBC connection be kept open while transaction processing
continues (although the physical XA connection can be returned
to the connection pool). Only applies to data sources that use an
XA driver. Use this setting to work around specific problems with
JDBC XA drivers.

Default: false.

resource-health-monito
ring

boolean Enables JTA resource health monitoring for an XA data source.
When enabled, if an XA resource fails to respond to an XA call
within the period specified in MaxXACallMillis, the server marks
the data source as unhealthy and blocks any further calls to the
resource. This property applies to XA data sources only, and is
ignored for data sources that use a non-XA driver.

Default: true.

new-xa-conn-for-commit boolean Specifies that a dedicated XA connection is used for commit and
rollback processing for a global transaction. Only applies to data
sources that use an XA driver. Use this setting to work around
specific problems with JDBC XA drivers.

Default: false.

xa-end-only-once boolean Specifies that XAResource.end is called only once for each
pending XAResource.start. This option prevents the XA driver
from calling XAResource.end(TMSUSPEND) and
XAResource.end(TMSUCCESS) successively. Only applies to data
sources that use an XA driver. Use this setting to work around
specific problems with JDBC XA drivers.

Default: false.

xa-retry-interval-seco
nds

int The number of seconds between XA retry operations if
XARetryDurationSeconds is set to a positive value.

Default: 60.

Table F–32 (Cont.) Child Elements of: xa-params

XML Tag Type Description

xa-params

Schema Reference: Server Configuration wlevs_server_config.xsd F-51

Attributes
The xa-params server configuration element has no attributes.

Example
The following example shows how to use the xa-params element in the Oracle Event
Processing server configuration file:

<data-source>
<name>orads</name>
<xa-params>

<keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
</xa-params>
<driver-params>

<url>jdbc:oracle:thin:@localhost:1521:ce102</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>
<properties>

<element>
<name>user</name>
<value>wlevs</value>

</element>
<element>

<name>password</name>
<value>wlevs</value>

</element>
</properties>

</driver-params>
<connection-pool-params>

<initial-capacity>5</initial-capacity>
<max-capacity>10</max-capacity>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<test-frequency-seconds>5</test-frequency-seconds>

</connection-pool-params>
<data-source-params>

<jndi-names>
<element>orads</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

recover-only-once boolean Specifies that the transaction manager calls recover on the
resource only once. Only applies to data sources that use an XA
driver. Use this setting to work around specific problems with
JDBC XA drivers.

Default: false.

need-tx-ctx-on-close boolean Specifies whether the XA driver requires a distributed transaction
context when closing various JDBC objects (result sets,
statements, connections, and so forth). Only applies to connection
pools that use an XA driver. When enabled, SQL exceptions that
are thrown while closing the JDBC objects without a transaction
context will be suppressed. Use this setting to work around
specific problems with JDBC XA drivers.

Default: false.

Table F–32 (Cont.) Child Elements of: xa-params

XML Tag Type Description

xa-params

F-52 Developer's Guide for Oracle Event Processing

G

Schema Reference: Message Catalog msgcat.dtd G-1

GSchema Reference: Message Catalog
msgcat.dtd

[35] This appendix provides a reference to elements of the msgcat.dtd schema, the schema
behind XML you use to configure message catalog elements for log messages you can
localize.

This appendix includes the following sections:

■ Overview of the Message Catalog Elements

■ message_catalog

■ logmessage

■ message

■ messagebody

■ messagedetail

■ cause

■ action

Overview of the Message Catalog Elements
Oracle Event Processing provides a number of message catalog elements that you use
to define log messages that you can localize.

Element Hierarchy
The top-level Oracle Event Processing message catalog elements are organized into the
following hierarchies, depending on message catalog type:

■ Example G–1, "Log Message Catalog Hierarchy"

■ Example G–2, "Simple Text Catalog Hierarchy"

Example G–1 Log Message Catalog Hierarchy

message_catalog
log_message

messagebody
messagedetail
cause
action

Overview of the Message Catalog Elements

G-2 Developer's Guide for Oracle Event Processing

Example G–2 Simple Text Catalog Hierarchy

message_catalog
message

messagebody

Examples
This section provides the following message catalog examples:

■ Example G–3, "Log Message Catalog"

■ Example G–4, "Simple Text Catalog"

Example G–3 Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

Example G–4 Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"

"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0">
<message messageid="FileMenuTitle">
<messagebody>
File

</messagebody>
</message>

message_catalog

Schema Reference: Message Catalog msgcat.dtd G-3

</message_catalog>

message_catalog
This element represents the log message catalog.

Child Elements
The message_catalog element supports the following child elements:

■ message

■ logmessage

Attributes
Table G–1 lists the attributes of the message_catalog element.

Table G–1 Attributes of the message_catalog Element

Attribute Description Data Type Required?

i18n_package Java package containing generated Logger classes for
this catalog. The classes are named after the catalog file
name. For example, for a catalog using mycat.xml, a
generated Logger class would be called i18n_
package.mycatLogger.class.

Syntax: standard Java package syntax.

Example: i18n_package="programs.utils"

Default: weblogic.i18n

String No.

I10n_package A Java package containing generated LogLocalizer
properties for the catalog. For example, for a catalog
called mycat.xml, the following property files would be
generated:

■ l10n_package.mycatLogLocalizer.properties

■ l10n_
packagemycatLogLocalizerDetail.properties

Syntax: standard Java package syntax.

Example: l10n_package="programs.utils"

Default: weblogic.i18n

String No.

subsystem An acronym identifying the subsystem associated with
this catalog. The name of the subsystem is included in
the server log and is used for message isolation
purposes.

Example: subsystem="MYUTIL"

String Yes.

version Specifies the version of the msgcat.dtd being used.

Use: Must be "1.0"

Syntax: x.y where x and y are numeric.

Example: version="1.0"

String Yes.

baseid Specifies the lowest message ID used in this
catalog.Syntax: one to six decimal digits.Example:
baseid="600000"

Valid values are:

■ 000000 for Oracle Event Processing server catalogs

■ 500000 for user-defined catalogs

String No.

message_catalog

G-4 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the message_catalog element in log
message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">

endid Specifies the highest message ID used in this catalog.

Syntax: one to six decimal digits.

Example: endid="600100"

Valid values are:

■ 499999 for Oracle Event Processing server catalogs

■ 999999 for user-defined catalogs

String No.

loggables Indicates whether to generate additional methods that
return loggable objects.

Example: loggable="true"

Valid values are:

■ true

■ false

Default: false

String

prefix Specifies a String to be prepended to message IDs
when logged. Oracle Event Processing server messages
default to "CEP" as the prefix and may not specify a
different prefix. User messages can specify any prefix. A
prefixed message ID is presented in a log entry as
follows:

<[prefix-]id>

Where prefix is this attribute and id is the six-digit
message ID associated with a specific message.

For example, if prefix is "XYZ", then message 987654
would be shown in a log entry as <XYZ-987654>. If
prefix is not defined, then the log entry would be
<987654>.

Syntax: any String (should be limited to five
characters).

Example: prefix="CEP"

Valid values are:

■ "CEP" for Oracle Event Processing server catalogs.

■ null for user-defined catalogs

String No.

description An optional attribute that serves to document the
catalog content.

Example: description="Contains messages logged
by the foobar application"

String No.

Table G–1 (Cont.) Attributes of the message_catalog Element

Attribute Description Data Type Required?

logmessage

Schema Reference: Message Catalog msgcat.dtd G-5

<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

logmessage
Use this element to define a formal log message.

Child Elements
The logmessage component configuration element supports the following child
elements:

■ messagebody

■ messagedetail

■ cause

■ action

Attributes
Table G–2 lists the attributes of the logmessage component configuration element.

Table G–2 Attributes of the logmessage Element

Attribute Description Data Type Required?

messageid Unique identifier for this log message. Uniqueness
should extend across all catalogs. Value must be in
range defined by baseid and endid attributes.

Use: Value must be in the range defined by the
baseid and endid attributes defined in the message_
catalog element.

Syntax: one to six decimal digits.

Example: messageid="600001"

String Yes.

datelastchanged Date/time stamp used for managing modifications
to this message. The date is supplied by utilities that
run on the catalogs.

Use: The date is supplied by utilities that run on the
catalogs.

Syntax: Long.toString(new Date().getTime());

String No.

logmessage

G-6 Developer's Guide for Oracle Event Processing

severity Indicates the severity of the log message.
User-defined catalogs may only use debug, info,
warning, and error.

Valid values:

■ error

■ warning

■ info

■ debug

Example: severity="warning"

String Yes.

method Method signature for logging this message.

The syntax is the standard Java method signature,
without the qualifiers, semicolon, and extensions.
Argument types can be any Java primitive or class.
Classes must be fully qualified if not in java.lang.
Classes must also conform to
java.text.MessageFormat conventions. In general,
class arguments should have a useful toString()
method.

Arguments can be any valid name, but should
follow the convention of argn where n is 0 through
9. There can be no more than 10 arguments. For
each argn there should be at least one
corresponding placeholder in the text elements
Section , "Child Elements" describes. Placeholders
are of the form {n}, {n,number} or {n,date}.

String Yes.

methodtype Specifies type of method to generate. Methods can
be:

■ Logger methods format the message body into
the default locale and log the results.

■ Getter methods return the message body
prefixed by the subsystem and messageid, as
follows: [susbsystem:msgid]text.

Valid values are:

■ logger

■ getter

Default: logger.

String No.

stacktrace Indicates whether to generate a stack trace for
Throwable arguments. When the value is true, a
trace is generated.

Valid values are:

■ true

■ false

Default: true.

String No.

retired Indicates whether message is retired. A retired
message is one that was used in a previous release
but is now obsolete and not used in the current
version. Retired messages are not represented in
any generated classes or resource bundles.

Valid values are:

■ true

■ false

Default: false.

String No.

Table G–2 (Cont.) Attributes of the logmessage Element

Attribute Description Data Type Required?

message

Schema Reference: Message Catalog msgcat.dtd G-7

Example
The following example shows how to use the logmessage element in log message
catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

message
Use this element to define an informal log message.

Child Elements
The message element supports the following child elements:

■ messagebody

Attributes
Table G–3 lists the attributes of the message element.

Table G–3 Attributes of the message Element

Attribute Description Data Type Required?

messageid Unique identifier for this log message in alpha-numeric
string format. Uniqueness is required only within the
context of this catalog.

String Yes.

message

G-8 Developer's Guide for Oracle Event Processing

Example
The following example shows how to use the message element in log message catalog
file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"

"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0">
<message messageid="FileMenuTitle">
<messagebody>
File

</messagebody>
</message>

</message_catalog>

datelastchanged Date/time stamp used for managing modifications to
this message. The date is supplied by utilities that run
on the catalogs.

Use: The date is supplied by utilities that run on the
catalogs.

Syntax: Long.toString(new Date().getTime());

String No.

method Method signature for formatting this message.

The syntax is a standard Java method signature, less
return type, qualifiers, semicolon, and extensions. The
return type is always String. Argument types can be
any Java primitive or class. Classes must be fully
qualified if not in java.lang. Classes must also conform
to java.text.MessageFormat conventions. In general,
class arguments should have a useful toString()
method, and the corresponding MessageFormat
placeholders must be strings; they must be of the form
{n}. Argument names can be any valid name. There can
be no more than 10 arguments.

For each argument there must be at least one
corresponding placeholder in the messagebody element.
Placeholders are of the form {n}, {n,number} or
{n,date}.

Example: method="getNoAuthorization(String
filename, java.util.Date creDate)"

This example would result in a method in the
TextFormatter class as follows:

public String getNoAuthorization(String
filename, java.util.Date creDate)

String No.

retired Indicates whether message is retired. A retired message
is one that was used in a previous release but is now
obsolete and not used in the current version. Retired
messages are not represented in any generated classes
or resource bundles.

Valid values are:

■ true

■ false

Default: false.

String No.

Table G–3 (Cont.) Attributes of the message Element

Attribute Description Data Type Required?

messagebody

Schema Reference: Message Catalog msgcat.dtd G-9

messagebody
Use this element to define a short description for this message.

The messagebody element can contain a 0 to 10 placeholder as {n}, to be replaced by
the appropriate argument when the log message is localized.

The message body must include placeholders for all arguments listed in the
corresponding method attribute, unless the last argument is throwable or a subclass.

Be careful when using single quotes, because these are specially parsed by
java.text.MessageFormat. If it is appropriate to quote a message argument, use
double quotes (Section , "Example" shows). If a message has one or more placeholders,
in order for a single quote to appear correctly (for example, as an apostrophe), it must
be followed by a second single quote.

Syntax: a String

Child Elements
The messagebody element has no child elements.

Attributes
The messagebody element has no attributes.

Example
The following example shows how to use the messagebody element in log message
catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
<messagebody>
Could not open file, "{0}" on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

messagedetail

G-10 Developer's Guide for Oracle Event Processing

</message_catalog>

messagedetail
Use this element to define a detailed description of the event. This element may
contain any argument place holders.

Syntax: a String

Child Elements
The messagedetail element supports has no child elements.

Attributes
The messagedetail element has no attributes.

Example
The following example shows how to use the messagedetail element in log message
catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

cause
Use this element to define the root cause of the problem. This element can contain any
argument place holders.

action

Schema Reference: Message Catalog msgcat.dtd G-11

Syntax: a String.

Child Elements
The cause element supports has no child elements.

Attributes
The cause element has no attributes.

Example
The following example shows how to use the cause element in log message catalog
file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

action
Use this element to define the recommended resolution. This element can contain any
argument place holders.

Syntax: a String.

Child Elements
The action element supports has no child elements.

action

G-12 Developer's Guide for Oracle Event Processing

Attributes
The action element has no attributes.

Example
The following example shows how to use the action element in log message catalog
file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
l10n_package="programs.utils"
i18n_package="programs.utils"
subsystem="MYUTIL"
version="1.0"
baseid="600000"
endid="600100">
<logmessage
messageid="600001"
severity="warning"
method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

H

Schema Reference: Locale Message Catalog l10n_msgcat.dtd H-1

HSchema Reference: Locale Message Catalog
l10n_msgcat.dtd

[36] This appendix provides a reference to elements of the l10n_msgcat.dtd schema, the
schema behind XML you use to define log messages localized for a specific Java locale.

This appendix includes the following sections:

■ Overview of the Locale Message Catalog Elements

■ locale_message_catalog

■ logmessage

■ message

■ messagebody

■ messagedetail

■ cause

■ action

Overview of the Locale Message Catalog Elements
Oracle Event Processing provides a number of locale message catalog elements that
you use to define log messages localized for a given Java locale.

Element Hierarchy
The top-level Oracle Event Processing locale message catalog elements are organized
into the following hierarchies, depending on message catalog type:

■ Example H–1, "Locale-Specific Log Message Catalog Hierarchy"

■ Example H–2, "Locale-Specific Simple Text Catalog Hierarchy"

Example H–1 Locale-Specific Log Message Catalog Hierarchy

locale_message_catalog
logmessage

messagebody
messagedetail
cause
action

Overview of the Locale Message Catalog Elements

H-2 Developer's Guide for Oracle Event Processing

Example H–2 Locale-Specific Simple Text Catalog Hierarchy

message_catalog
message

messagebody

Examples
This section provides the following message catalog examples:

■ Example H–3, "Locale-Specific Log Message Catalog"

■ Example H–4, "Locale-Specific Simple Text Catalog"

Example H–3 Locale-Specific Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</log_message>

</message_catalog>

Example H–4 Locale-Specific Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<locale_message_catalog
l10n_package="programs.utils"
subsystem="MYUTIL"
version="1.0">
<message>
<messageid="FileMenuTitle">
<messagebody> Fichier </messagebody>

</message>
</locale_message_catalog>

locale_message_catalog

Schema Reference: Locale Message Catalog l10n_msgcat.dtd H-3

locale_message_catalog
Use this element to define values for a parameterized Oracle CQL or EPL rule in an
EPL processor component.

Child Elements
The locale_message_catalog element supports the following child elements:

■ message

■ logmessage

Attributes
Table H–1 lists the attributes of the locale_message_catalog element.

Example
The following example shows how to use the message_catalog element in log
message catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to

Table H–1 Attributes of the locale_message_catalog Element

Attribute Description Data Type Required?

I10n_package Java package containing generated LogLocalizer or
TextLocalizer properties for this catalog.properties file
are named after the catalog file name.

For example, for a French log message catalog called
mycat.xml, a properties file called <l10n_
package>.mycatLogLocalizer_fr_FR.properties is
generated.

String No.

version Specifies the version of the I10n_msgcat.dtd being
used.

Use: Must be "1.0"

Syntax: x.y where x and y are numeric.

Example: version="1.0"

String Yes.

logmessage

H-4 Developer's Guide for Oracle Event Processing

live with the default settings.
</action>

</logmessage>
</message_catalog>

logmessage
Use this element to define a formal log message.

Child Elements
The logmessage component configuration element supports the following child
elements:

■ messagebody

■ messagedetail

■ cause

■ action

Attributes
Table H–2 lists the attributes of the logmessage component configuration element.

Example
The following example shows how to use the logmessage element in log message
catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>

Table H–2 Attributes of the logmessage Element

Attribute Description Data Type Required?

messageid Unique identifier for this log message. Uniqueness
should extend across all catalogs. Value must be in
range defined by baseid and endid attributes.

Use: Value must be in the range defined by the
baseid and endid attributes defined in the message_
catalog element.

Syntax: one to six decimal digits.

Example: messageid="600001"

String Yes.

datelastchanged Date/time stamp used for managing modifications
to this message. The date is supplied by utilities that
run on the catalogs.

Use: The date is supplied by utilities that run on the
catalogs.

Syntax: Long.toString(new Date().getTime());

String No.

message

Schema Reference: Locale Message Catalog l10n_msgcat.dtd H-5

The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

message
Use this element to define an informal log message.

Child Elements
The message element supports the following child elements:

■ messagebody

Attributes
Table H–3 lists the attributes of the message element.

Example
The following example shows how to use the message element in log message catalog
file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<locale_message_catalog
l10n_package="programs.utils"
version="1.0">
<message messageid="FileMenuTitle">
<messagebody>
File

</messagebody>
</message>

</message_catalog>

Table H–3 Attributes of the message Element

Attribute Description Data Type Required?

messageid Unique identifier for this log message in alpha-numeric
string format. Uniqueness is required only within the
context of this catalog.

String Yes.

datelastchanged Date/time stamp used for managing modifications to
this message. The date is supplied by utilities that run
on the catalogs.

Use: The date is supplied by utilities that run on the
catalogs.

Syntax: Long.toString(new Date().getTime());

String No.

messagebody

H-6 Developer's Guide for Oracle Event Processing

messagebody
Use this element to define a concise, one-line log message body.

Child Elements
The messagebody element has no child elements.

Attributes
The messagebody element has no attributes.

Example
The following example shows how to use the messagebody element in log message
catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

messagedetail
Use this element to define a more detailed explanation of the issue being logged.

Child Elements
The messagedetail element supports has no child elements.

Attributes
The messagedetail element has no attributes.

cause

Schema Reference: Locale Message Catalog l10n_msgcat.dtd H-7

Example
The following example shows how to use the messagedetail element in log message
catalog file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

cause
Use this element to define the root cause of the issue being logged.

Child Elements
The cause element supports has no child elements.

Attributes
The cause element has no attributes.

Example
The following example shows how to use the cause element in log message catalog
file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

action

H-8 Developer's Guide for Oracle Event Processing

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>
</logmessage>

</message_catalog>

action
Use this element to define how to fix the issue being logged, if possible.

Child Elements
The action element supports has no child elements.

Attributes
The action element has no attributes.

Example
The following example shows how to use the action element in log message catalog
file:

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC

"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">

<message_catalog
l10n_package="programs.utils"
version="1.0">
<logmessage
messageid="600001">
<messagebody>
Could not open file, {0} on {1,date} after {2,number} attempts.

</messagebody>
<messagedetail>
The configuration for this application will be defaulted to
factory settings. Custom configuration information resides
in file, {0}, created on {1,date}, but is not readable.

</messagedetail>
<cause>
The user is not authorized to use custom configurations. Custom

 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
</cause>
<action>
The user needs to gain approriate authorization or learn to
live with the default settings.

</action>

action

Schema Reference: Locale Message Catalog l10n_msgcat.dtd H-9

</logmessage>
</message_catalog>

action

H-10 Developer's Guide for Oracle Event Processing

I

Oracle Event Processing Metadata Annotation Reference I-1

IOracle Event Processing Metadata Annotation
Reference

[37] This appendix provides a reference to Oracle Event Processing Java annotations you
can use to specify methods that handle adapter lifecycle stages, a method injected with
an OSGi service reference, and to configure resource access at design time.

This appendix includes the following sections:

■ Overview of Oracle Event Processing Metadata Annotations

■ com.bea.wlevs.configuration.Activate

■ com.bea.wlevs.configuration.Prepare

■ com.bea.wlevs.configuration.Rollback

■ com.bea.wlevs.util.Service

Overview of Oracle Event Processing Metadata Annotations
Oracle Event Processing metadata annotations are used to access the configuration of
an Oracle Event Processing component. Oracle Event Processing offers the following
annotations:

■ Section , "Adapter Lifecycle Annotations"

■ Section , "OSGi Service Reference Annotations"

■ Section , "Resource Access Annotations"

For more information, see:

■ Section , "Oracle Event Processing Application Lifecycle"

■ Section , "Configuring Oracle Event Processing Resource Access"

Adapter Lifecycle Annotations
You use the following annotations to specify the methods of an adapter Java
implementation that handle various stages of the adapter's lifecyle: when its
configuration is prepared, when the configuration is activated, and when the adapter
is terminated due to an exception:

■ com.bea.wlevs.configuration.Activate

■ com.bea.wlevs.configuration.Prepare

■ com.bea.wlevs.configuration.Rollback

com.bea.wlevs.configuration.Activate

I-2 Developer's Guide for Oracle Event Processing

OSGi Service Reference Annotations
Use the com.bea.wlevs.util.Service annotation to specify the method of a component
that is injected with an OSGi service reference.

Resource Access Annotations
Use the following annotations to configure resource access at design time and the
corresponding deployment XML to override this configuration at deploy time:

■ javax.annotation.Resource

For more information, see Section , "Configuring Oracle Event Processing Resource
Access".

com.bea.wlevs.configuration.Activate
Target: Method

The @Activate annotation is one of the adapter lifecycle annotations that you use in
the Java file that implements your custom adapter to explicitly specify the methods
that Oracle Event Processing uses to send configuration information to the adapter.

Oracle Event Processing calls methods marked with the @Activate annotation after,
and if, the server has called and successfully executed all the methods marked with
the @Prepare annotation. You typically use the @Activate method to actually get the
adapter's configuration data to use in the rest of the adapter implementation.

The method you annotate with this annotation must have the following signature:

public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject
refers to the Java representation of the adapter's configuration XML file which is
deployed with the application. The type of this class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if,
however, you have extended the configuration of the adapter, then the type is
whatever have specified in the XSD that describes the extended XML file. For example,
in the HelloWorld sample, the type is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At runtime, Oracle Event Processing automatically creates an instance of this class,
populates it with data from the actual XML file, and passes the instance to the adapter.
The adapter methods annotated with the adapter lifecycle annotations can then use
the class to get information about the adapter's configuration.

This metadata annotation does not have any attributes.

Example
Example I–1 shows how to use the @Activate annotation in the adapter component of
the HelloWorld example; only relevant code is shown:

Example I–1 @Activate Annotation

package com.bea.wlevs.adapter.example.helloworld;
...
import com.bea.wlevs.configuration.Activate;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;

com.bea.wlevs.configuration.Activate

Oracle Event Processing Metadata Annotation Reference I-3

import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
...

@Activate
public void activateAdapter(HelloWorldAdapterConfig adapterConfig) {

this.message = adapterConfig.getMessage();
}

...
}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is
a Java representation of the adapter's configuration XML file. In the HelloWorld
example, the configuration has been extended; this means a custom XSD file describes
the XML file. Example I–2 shows this XSD file also specifies the fully qualified name of
the resulting Java configuration object, as shown in bold:

Example I–2 HelloWorldAdapterConfig

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.bea.com/ns/wlevs/example/helloworld"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
targetNamespace="http://www.bea.com/ns/wlevs/example/helloworld"
elementFormDefault="unqualified" attributeFormDefault="unqualified"
jxb:extensionBindingPrefixes="xjc" jxb:version="1.0">
<xs:annotation>

<xs:appinfo>
<jxb:schemaBindings>
<jxb:package name="com.bea.wlevs.adapter.example.helloworld"/>

</jxb:schemaBindings>
</xs:appinfo>

</xs:annotation>
<xs:import namespace="http://www.bea.com/ns/wlevs/config/application"

schemaLocation="wlevs_application_config.xsd"/>
<xs:element name="config">
<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element name="adapter" type="HelloWorldAdapterConfig"/>
<xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>
<xs:element name="channel" type="wlevs:DefaultStreamConfig" />

</xs:choice>
</xs:complexType>
</xs:element>
<xs:complexType name="HelloWorldAdapterConfig">
<xs:complexContent>
<xs:extension base="wlevs:AdapterConfig">
<xs:sequence>
<xs:element name="message" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:schema>

Oracle Event Processing automatically creates an instance of this class when the
application is deployed. For example, the adapter section of the helloworldAdapter
configuration file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<helloworld:config
...
<adapter>

com.bea.wlevs.configuration.Prepare

I-4 Developer's Guide for Oracle Event Processing

<name>helloworldAdapter</name>
<message>HelloWorld - the current time is:</message>

</adapter>
</helloworld:config>

In the Java code of the adapter above, the activateAdapter method is annotated with
the @Activate annotation. The method uses the getMessage method of the
configuration object to get the value of the message property set in the adapter's
configuration XML file. In this case, the value is HelloWorld - the current time
is:. This value can then be used in the main part of the adapter implementation file.

com.bea.wlevs.configuration.Prepare
Target: Method

The @Prepare annotation is one of the adapter lifecycle annotations that you use in the
Java file that implements your custom adapter to explicitly specify the methods that
Oracle Event Processing uses to send configuration information to the adapter.

Oracle Event Processing calls the method annotated with @Prepare whenever a
component's state has been updated by a particular configuration change.

The method you annotate with this annotation must have the following signature:

public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject
refers to the Java representation of the adapter's configuration XML file which is
deployed with the application. The type of this class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if,
however, you have extended the configuration of the adapter, then the type is
whatever have specified in the XSD that describes the extended XML file. For example,
in the HelloWorld sample, the type is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At runtime, Oracle Event Processing automatically creates an instance of this class,
populates it with data from the actual XML file, and passes the instance to the adapter.
The adapter methods annotated with the adapter lifecycle annotations can then use
the class to get information about the adapter's configuration.

This metadata annotation does not have any attributes.

Example
Example I–3, from the adapter component of the HelloWorld example, shows how to
use the @Prepare annotation; only relevant code is shown:

Example I–3 @Prepare Annotation

package com.bea.wlevs.adapter.example.helloworld;
...
import com.bea.wlevs.configuration.Prepare;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
...

@Prepare
public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {

com.bea.wlevs.configuration.Rollback

Oracle Event Processing Metadata Annotation Reference I-5

if (adapterConfig.getMessage() == null
|| adapterConfig.getMessage().length() == 0) {

throw new RuntimeException("invalid message: " + message);
}

}
...
}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is
a Java representation of the adapter's configuration XML file; Oracle Event Processing
automatically creates an instance of this class when the application is deployed. In the
HelloWorld example, the adapter configuration has been extended. See the example in
Appendix , "com.bea.wlevs.configuration.Activate" for additional details.

In the Java code of the adapter above, the checkConfiguration method is annotated
with the @Prepare annotation, which means this method is called when the adapter's
configuration changes in some way. The example further shows that the method
checks to make sure that the message property of the adapter's configuration (set in the
extended adapter configuration file) is not null or empty; if it is, then the method
throws an exception.

com.bea.wlevs.configuration.Rollback
Target: Method

The @Rollback annotation is one of the adapter lifecycle annotations that you use in
the Java file that implements your custom adapter to explicitly specify the methods
that Oracle Event Processing uses to send configuration information to the adapter.

Oracle Event Processing calls the method annotated with @Rollback whenever a
component whose @Prepare method was called but threw an exception. The server
calls the @Rollback method for each component for which this is true.

The method you annotate with this annotation must have the following signature:

public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject
refers to the Java representation of the adapter's configuration XML file which is
deployed with the application. The type of this class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if,
however, you have extended the configuration of the adapter, then the type is
whatever have specified in the XSD that describes the extended XML file. For example,
in the HelloWorld sample, the type is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At runtime, Oracle Event Processing automatically creates an instance of this class,
populates it with data from the actual XML file, and passes the instance to the adapter.
The adapter methods annotated with the adapter lifecycle annotations can then use
the class to get information about the adapter's configuration.

This metadata annotation does not have any attributes.

Example
Example I–4, sample code from the adapter component of the HelloWorld example,
shows how to use the @Rollback annotation; only relevant code is shown:

Example I–4 @Rollback Annotation

package com.bea.wlevs.adapter.example.helloworld;

com.bea.wlevs.util.Service

I-6 Developer's Guide for Oracle Event Processing

...
import com.bea.wlevs.configuration.Rollback;
import com.bea.wlevs.ede.api.RunnableBean;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.ede.api.StreamSource;
import com.bea.wlevs.event.example.helloworld.HelloWorldEvent;

public class HelloWorldAdapter implements RunnableBean, StreamSource {
...

@Rollback
public void rejectConfigurationChange(HelloWorldAdapterConfig adapterConfig) {
}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is
a Java representation of the adapter's configuration XML file; Oracle Event Processing
automatically creates an instance of this class when the application is deployed. In the
HelloWorld example, the adapter configuration has been extended. See the example in
Appendix , "com.bea.wlevs.configuration.Activate" for additional details.

In the example, the rejectConfigurationChange method is annotated with the
@Rollback annotation, which means this is the method that is called if the @Prepare
method threw an exception. In the example above, nothing actually happens.

com.bea.wlevs.util.Service
Target: Method

Specifies that the annotated method, typically a JavaBean setter method, requires an
OSGi service reference.

Attributes
Table I–1 describes the attributes of the com.bea.wlevs.util.Service JWS annotation.

Table I–1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

Name Description Data Type Required?

serviceBeanName The name of the bean that backs the injected service.
May be null.

String No.

cardinality Valid values for this attribute are:

■ ServiceCardinality.C0__1

■ ServiceCardinality.C0__N

■ ServiceCardinality.C1__1

■ ServiceCardinality.C1__N

Default value is ServiceCardinality.C1__1.

enum No.

contextClassloader Valid values for this attribute are:

■ ServiceClassloader.CLIENT

■ ServiceClassloader.SERVICE_PROVIDER

■ ServiceClassloader.UNMANAGED

Default value is ServiceClassloader.CLIENT.

enum No.

timeout Timeout for service resolution in milliseconds.

Default value is 30000.

int No.

serviceType Interface (or class) of the service to be injected

Default value is Service.class.

Class No.

filter Specifies the filter used to narrow service matches.
Value may be null.

String No.

com.bea.wlevs.util.Service

Oracle Event Processing Metadata Annotation Reference I-7

Example
Example I–5 shows how to use the @Service annotation.

Example I–5 @Service Annotation

@Service(filter = "(Name=StockDs)")
public void setDataSourceService(DataSourceService dss) {

initStockTable(dss.getDataSource());
}

For another example, see Section , "Accessing the Event Type Repository".

com.bea.wlevs.util.Service

I-8 Developer's Guide for Oracle Event Processing

	Contents
	List of Tables
	List of Examples
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	Part I Getting Started with Creating Oracle Event Processing Applications
	1 Overview of Creating Oracle Event Processing Applications
	Oracle Event Processing Application Programming Model
	Key Concepts Underlying Oracle Event Processing Applications
	Component Roles in an Event Processing Network
	Tools and Supporting Technologies for Developing Applications

	How an Oracle Event Processing Application Works
	Overview of Events, Streams and Relations
	Overview of Application Configuration
	Overview of EPN Assembly Files
	Nesting Stages in an EPN Assembly File
	Referencing Foreign Stages in an EPN Assembly File

	Overview of Component Configuration Files
	Accessing Component and Server Configuration Using the ConfigurationPropertyPlaceholderConfigurer Class

	Configuring Oracle Event Processing Resource Access
	Static Resource Injection
	Static Resource Names
	Dynamic Resource Names

	Dynamic Resource Injection
	Dynamic Resource Lookup Using JNDI
	Understanding Resource Name Resolution

	Oracle Event Processing APIs
	Packaging an Application
	Oracle Event Processing Application Lifecycle

	2 Oracle Event Processing Samples
	Overview of the Samples Provided in the Distribution Kit
	Ready-to-Run Samples
	Sample Source

	Installing the Default ocep_domain and Samples
	Using Oracle Event Processing Visualizer With the Samples
	Increasing the Performance of the Samples
	HelloWorld Example
	Running the HelloWorld Example from the helloworld Domain
	Building and Deploying the HelloWorld Example from the Source Directory
	Description of the Ant Targets to Build Hello World
	Implementation of the HelloWorld Example

	Oracle Continuous Query Language (Oracle CQL) Example
	Running the CQL Example
	Building and Deploying the CQL Example
	Description of the Ant Targets to Build the CQL Example
	Implementation of the CQL Example
	Creating the Missing Event Query
	Creating the Moving Average Query

	Oracle Spatial Example
	Running the Oracle Spatial Example
	Building and Deploying the Oracle Spatial Example
	Description of the Ant Targets to Build the Oracle Spatial Example
	Implementation of the Oracle Spatial Example

	Foreign Exchange (FX) Example
	Running the Foreign Exchange Example
	Building and Deploying the Foreign Exchange Example from the Source Directory
	Description of the Ant Targets to Build FX
	Implementation of the FX Example

	Signal Generation Example
	Running the Signal Generation Example
	Building and Deploying the Signal Generation Example from the Source Directory
	Description of the Ant Targets to Build Signal Generation
	Implementation of the Signal Generation Example

	Event Record and Playback Example
	Running the Event Record/Playback Example
	Building and Deploying the Event Record/Playback Example from the Source Directory
	Description of the Ant Targets to Build the Record and Playback Example
	Implementation of the Record and Playback Example

	3 Getting Started with Developing Oracle Event Processing Applications
	Creating an Oracle Event Processing Application
	Setting Your Development Environment
	How to Set Your Development Environment on Windows
	How to Set Your Development Environment on UNIX

	Using an IDE to Develop Applications
	Testing Applications

	Part II Oracle Event Processing IDE for Eclipse
	4 Overview of the Oracle Event Processing IDE for Eclipse
	Overview of Oracle Event Processing IDE for Eclipse
	Features
	JDK Requirements
	Default Oracle Event Processing Domain ocep_domain and Development

	Installing the Latest Oracle Event Processing IDE for Eclipse
	Installing the Oracle Event Processing IDE for Eclipse Distributed With Oracle Event Processing
	Configuring Eclipse

	5 Oracle Event Processing IDE for Eclipse Projects
	Oracle Event Processing Project Overview
	Creating Oracle Event Processing Projects
	How to Create an Oracle Event Processing Project

	Creating EPN Assembly Files
	How to Create a New EPN Assembly File Using Oracle Event Processing IDE for Eclipse

	Creating Component Configuration Files
	How to Create a New Component Configuration File Using Oracle Event Processing IDE for Eclipse

	Exporting Oracle Event Processing Projects
	How to Export an Oracle Event Processing Project

	Upgrading Projects
	How to Upgrade Projects from Oracle Event Processing 2.1 to 10.3
	How to Upgrade Projects from Oracle Event Processing 10.3 to 11g Release 1 (11.1.1)

	Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects
	How to Add a Standard JAR File to an Oracle Event Processing Project
	How to Add an OSGi Bundle to an Oracle Event Processing Project
	How to Add a Property File to an Oracle Event Processing Project
	How to Export a Package
	How to Import a Package

	Configuring Oracle Event Processing IDE for Eclipse Preferences
	How to Configure Application Library Path Preferences
	How to Configure Problem Severity Preferences

	6 Oracle Event Processing IDE for Eclipse and Oracle Event Processing Servers
	Oracle Event Processing Server Overview
	Creating Oracle Event Processing Servers
	How to Create a Local Oracle Event Processing Server and Server Runtime
	How to Create a Remote Oracle Event Processing Server and Server Runtime
	How to Create an Oracle Event Processing Server Runtime

	Managing Oracle Event Processing Servers
	How to Start a Local Oracle Event Processing Server
	How to Stop a Local Oracle Event Processing Server
	How to Attach to an Existing Local Oracle Event Processing Server Instance
	How to Attach to an Existing Remote Oracle Event Processing Server Instance
	How to Detach From an Existing Oracle Event Processing Server Instance
	How to Deploy an Application to an Oracle Event Processing Server
	How to Configure Connection and Control Settings for Oracle Event Processing Server
	How to Configure Domain (Runtime) Settings for Oracle Event Processing Server
	How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse

	Debugging an Oracle Event Processing Application Running on an Oracle Event Processing Server
	How to Debug an Oracle Event Processing Application Running on an Oracle Event Processing Server

	7 Oracle Event Processing IDE for Eclipse and the Event Processing Network
	Opening the EPN Editor
	How to Open the EPN Editor from a Project Folder
	How to Open the EPN Editor from a Context or Configuration File

	EPN Editor Overview
	Flow Representation
	Filtering
	Zooming
	Layout
	Showing and Hiding Unconnected Beans
	Printing and Exporting to an Image
	Configuration Badging
	Link Specification Location Indicator
	Nested Stages
	Event Type Repository Editor

	Navigating the EPN Editor
	Moving the Canvas
	Shortcuts to Component Configuration and EPN Assembly Files
	Hyperlinking
	Hyperlinking in Component Configuration and EPN Assembly Files
	Hyperlinking in Oracle CQL Statements

	Context Menus
	Browsing Oracle Event Processing Types
	How to Browse Oracle Event Processing Types

	Using the EPN Editor
	Creating Nodes
	How to Create a Basic Node
	How to Create an Adapter Node
	How to Create a Processor Node

	Connecting Nodes
	How to Connect Nodes

	Laying Out Nodes
	Renaming Nodes
	Deleting Nodes

	Part III Developing Oracle Event Processing Applications
	8 Walkthrough: Assembling a Simple Application
	Introduction to the Simple Application Walkthrough
	Key Concepts in this Walkthrough
	Before You Get Started

	Create the Workspace and Project
	Create an Event Type to Carry Event Data
	Add an Input Adapter to Receive Event Data
	Add a Channel to Convey Events
	Create a Listener to Receive and Report Events
	Set Up the Load Generator and Test
	Add an Oracle CQL Processor to Filter Events
	Summary: Simple Application Walkthrough

	9 Defining and Using Event Types
	Overview of Oracle Event Processing Event Types
	Where Event Type Instances are Used
	High-Level Process for Creating Event Types

	Designing Event Types
	Identifying the Structure of Event Data
	Choosing a Data Type for an Event Type
	Constraints on Design of Event Types
	Constraints on Event Types for Use With the csvgen Adapter
	Constraints on Event Types for Use With a Database Table Source

	Mixing Use of Event Type Data Types

	Creating Event Types
	Creating an Oracle Event Processing Event Type as a JavaBean
	How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor
	How to Create an Oracle Event Processing Event Type as a JavaBean Manually
	Using JavaBean Event Type Instances in Java Code
	Using JavaBean Event Type Instances in Oracle CQL Code
	Controlling Event Type Instantiation with an Event Type Builder Class
	Implementing an Event Type Builder Class
	Configuring an Event Type that Uses an Event Type Builder

	Creating an Oracle Event Processing Event Type as a Tuple
	Types for Properties in Tuple-Based Event Types
	How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor
	How to Create an Oracle Event Processing Event Type as a Tuple Manually
	Using a Tuple Event Type Instance in Java Code
	Using a Tuple Event Type Instance in Oracle CQL Code

	Creating an Oracle Event Processing Event Type as a java.util.Map
	Types for Properties in java.util.Map-Based Event Types
	How to Create an Oracle Event Processing Event Type as a java.util.Map
	Using a Map Event Type Instance in Java Code
	Using a Map Event Type Instance in Oracle CQL Code

	Accessing the Event Type Repository
	Using the EPN Assembly File
	Using the Spring-DM @ServiceReference Annotation
	Using the Oracle Event Processing @Service Annotation

	Sharing Event Types Between Application Bundles

	10 Connecting EPN Stages Using Channels
	Overview of Channel Configuration
	When to Use a Channel
	Channels Representing Streams and Relations
	Channels as Streams
	Channels as Relations

	System-Timestamped Channels
	Application-Timestamped Channels
	Controlling Which Queries Output to a Downstream Channel: selector
	Batch Processing Channels
	EventPartitioner Channels
	Handling Faults in Channels

	Configuring a Channel
	How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse
	How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse
	How to Create a Channel Component Configuration File Manually

	Example Channel Configuration Files
	Channel Component Configuration File
	Channel EPN Assembly File

	11 Integrating the Java Message Service
	Overview of JMS Adapter Configuration
	JMS Service Providers
	Inbound JMS Adapter
	Conversion Between JMS Messages and Event Types
	Single and Multi-threaded Inbound JMS Adapters
	Configuring a JMS Adapter for Durable Subscriptions

	Outbound JMS Adapter

	Configuring a JMS Adapter for a JMS Service Provider
	How to Configure a JMS Adapter Using the Oracle Event Processing IDE for Eclipse
	How to Configure a JMS Adapter Manually
	How to Configure a JMS Adapter for Oracle WebLogic Server JMS Manually
	How to Configure a JMS Adapter for Tibco EMS JMS Manually

	Creating a Custom Converter Between JMS Messages and Event Types
	How to Create a Custom Converter for the Inbound JMS Adapter
	How to Create a Custom Converter for the Outbound JMS Adapter

	Encrypting Passwords in the JMS Adapter Component Configuration File
	How to Encrypt Passwords in the JMS Adapter Component Configuration File

	Configuring the JMS Adapter EPN Assembly File
	JMS Inbound Adapter EPN Assembly File Configuration
	JMS Outbound Adapter EPN Assembly File Configuration

	Configuring the JMS Adapter Component Configuration File
	JMS Inbound Adapter Component Configuration
	JMS Outbound Adapter Component Configuration

	12 Integrating an HTTP Publish-Subscribe Server
	Overview of HTTP Publish-Subscribe Server Adapter Configuration
	Overview of the Built-In Pub-Sub Adapter for Publishing
	Local Publishing
	Remote Publishing

	Overview of the Built-In Pub-Sub Adapter for Subscribing
	Converting Between JSON Messages and Event Types

	Configuring an HTTP Pub-Sub Adapter
	How to Configure an HTTP Pub-Sub Adapter Using the Oracle Event Processing IDE for Eclipse
	How to Configure an HTTP Pub-Sub Adapter Manually

	Creating a Custom Converter Between the HTTP Pub-Sub Messages and Event Types
	Configuring the HTTP Pub-Sub Adapter EPN Assembly File
	HTTP Pub-Sub Adapter for Publishing EPN Assembly File Configuration
	HTTP Pub-Sub Adapter for Subscribing EPN Assembly File Configuration

	Configuring the HTTP Pub-Sub Adapter Component Configuration File
	HTTP Pub-Sub Adapter for Publishing Component Configuration
	HTTP Pub-Sub Adapter for Subscribing Component Configuration

	13 Integrating a Cache
	Overview of Integrating a Cache
	Caching Implementations Supported by Oracle Event Processing
	Overview of Cache Configuration
	Caching Use Cases
	Caching APIs

	Configuring an Oracle Coherence Caching System and Cache
	Configuring the Oracle Coherence Caching System and Caches
	The coherence-cache-config.xml File
	The tangosol-coherence-override.xml File

	Configuring a Shared Oracle Coherence Cache

	Configuring an Oracle Event Processing Local Caching System and Cache
	Configuring an Oracle Event Processing Caching System

	Configuring a Third-Party Caching System and Cache
	Adding Caching to an Event Processing Network
	Adding the Caching System and Caches to an EPN
	Configuring a Cache for Reuse Among Applications
	Configuring a Cache as an Event Listener
	Specifying the Key Used to Index a Cache
	Specifying a Key Property in EPN Assembly File
	Using a Metadata Annotation to Specify a Key
	Specifying a Composite Key

	Configuring a Cache as an Event Source
	Exchanging Data Between a Cache and Another Data Source
	Loading Cache Data from a Read-Only Data Source
	Exchanging Data with a Read-Write Data Source

	Accessing a Cache from Application Code
	Accessing a Cache from an Oracle CQL Statement
	How to Access a Cache from an Oracle CQL Statement

	Accessing a Cache From an EPL Statement
	How To Access a Cache from an EPL Statement

	Accessing a Cache from an Adapter
	Accessing a Cache From a Business POJO
	Accessing a Cache From an Oracle CQL User-Defined Function
	Accessing a Cache From an EPL User-Defined Function
	Accessing a Cache Using JMX
	How to Access a Cache With JMX Using Oracle Event Processing Visualizer
	How to Access a Cache With JMX Using Java

	14 Integrating Web Services
	Understanding Oracle Event Processing and Web Services
	How to Invoke a Web Service From an Oracle Event Processing Application
	How to Expose an Oracle Event Processing Application as a Web Service

	15 Integrating an External Component Using a Custom Adapter
	Overview of Custom Adapters
	Implementing a Custom Adapter
	Example: Input Adapter Implementation

	Implementing Support for Thread and Work Management
	Improving Scalability with Multi-Threaded Adapters
	Suspending and Resuming Adapter Event Processing

	Passing Login Credentials from an Adapter to a Data Feed Provider
	How to Pass Static Login Credentials to the Data Feed Provider
	How to Pass Dynamic Login Credentials to the Data Feed Provider
	How to Access Login Credentials From an Adapter at Runtime

	Configuring a Custom Adapter
	Configuring a Custom Adapter in an EPN Assembly File
	Configuring a Custom Adapter in a Component Configuration File

	Creating a Custom Adapter Factory

	16 Handling Events with Java
	Roles for Java Code in an Event Processing Network
	Handling Events with Sources and Sinks
	Implementing an Event Sink
	Implementing StreamSink or BatchStreamSink
	Implementing RelationSink or BatchRelationSink

	Implementing an Event Source
	Implementing StreamSource
	Implementing RelationSource

	Configuring Java Classes as Beans
	Configuring a Java Class as an Event Bean
	Configuring an Event Bean in an EPN Assembly File
	Configuring an Event Bean in a Component Configuration File
	Creating an Event Bean Factory

	Configuring a Java Class as a Spring Bean
	Supporting Spring Bean Characteristics

	17 Querying an Event Stream with Oracle CQL
	Overview of Oracle CQL Processor Configuration
	Controlling Which Queries Output to a Downstream Channel

	Configuring an Oracle CQL Processor
	How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse
	How to Create an Oracle CQL Processor Component Configuration File Manually

	Configuring an Oracle CQL Processor Table Source
	How to Configure an Oracle CQL Processor Table Source Using Oracle Event Processing IDE for Eclipse

	Configuring an Oracle CQL Processor Cache Source
	Configuring an Oracle CQL Processor for Parallel Query Execution
	Setting Up Parallel Query Execution Support
	Using the ordering-constraint Attribute
	Using partition-order-capacity with Partitioning Queries
	Limitations

	Handling Faults
	Implementing a Fault Handler Class
	Registering a Fault Handler

	Example Oracle CQL Processor Configuration Files
	Oracle CQL Processor Component Configuration File
	Oracle CQL Processor EPN Assembly File

	18 Configuring Applications With Data Cartridges
	Understanding Data Cartridge Application Context
	How to Configure Oracle Spatial Application Context
	How to Configure Oracle JDBC Data Cartridge Application Context

	19 Querying an Event Stream with Oracle EPL
	Overview of EPL Processor Component Configuration
	Configuring an EPL Processor
	How to Configure an EPL Processor Manually

	Configuring an EPL Processor Cache Source
	Example EPL Processor Configuration Files
	EPL Processor Component Configuration File
	EPL Processor EPN Assembly File

	20 Configuring Event Record and Playback
	Overview of Configuring Event Record and Playback
	Storing Events in the Persistent Event Store
	Default Persistent Event Store
	Custom Persistent Event Store
	Persistent Event Store Schema

	Recording Events
	Playing Back Events
	Querying Stored Events
	Record and Playback Example

	Configuring Event Record and Playback in Your Application
	Configuring an Event Store for Oracle Event Processing Server
	Configuring a Component to Record Events
	Configuring a Component to Playback Events
	Starting and Stopping the Record and Playback of Events
	Description of the Berkeley Database Schema

	Creating a Custom Event Store Provider

	21 Testing Applications With the Load Generator and csvgen Adapter
	Overview of Testing Applications With the Load Generator and csvgen Adapter
	Configuring and Running the Load Generator Utility
	Creating a Load Generator Property File
	Creating a Data Feed File
	Configuring the csvgen Adapter in Your Application

	22 Testing Applications With the Event Inspector
	Overview of Testing Applications With the Event Inspector
	Tracing Events
	Injecting Events
	Event Inspector Event Types
	Event Inspector HTTP Publish-Subscribe Channel and Server
	Event Inspector Clients
	Oracle Event Processing Visualizer

	Configuring the Event Inspector HTTP Pub-Sub Server
	How to Configure a Local Event Inspector HTTP Pub-Sub Server
	How to Configure a Remote Event Inspector HTTP Pub-Sub Server

	Injecting Events
	Tracing Events

	Part IV Completing and Refining Oracle Event Processing Applications
	23 Assembling and Deploying Oracle Event Processing Applications
	Overview of Application Assembly and Deployment
	Applications
	Application Dependencies
	Private Application Dependencies
	Shared Application Dependencies
	Native Code Dependencies

	Application Libraries
	Library Directory
	Library Extensions Directory
	Creating Application Libraries

	Deployment and Deployment Order
	Configuration History Management

	Assembling an Oracle Event Processing Application
	Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse
	Assembling an Oracle Event Processing Application Manually
	Creating the MANIFEST.MF File
	Accessing Third-Party JAR Files
	Accessing Third-Party JAR Files Using Bundle-Classpath
	Accessing Third-Party JAR Files Using -Xbootclasspath

	Assembling Applications With Foreign Stages
	Assembling a Custom Adapter or Event Bean in Its Own Bundle
	How to Assemble a Custom Adapter in its Own Bundle
	How to Assemble an Event Bean in its Own Bundle

	Managing Application Libraries
	How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse
	How to Configure an Absolute Path
	How to Extend a Path Variable

	How to Create an Application Library Using bundler.sh
	How to Create an Application Library Using Oracle Event Processing IDE for Eclipse
	How to Update an Application Library Using Oracle Event Processing IDE for Eclipse
	How to View an Application Library Using the Oracle Event Processing Visualizer

	Managing Log Message Catalogs
	Using Message Catalogs With Oracle Event Processing Server
	Message Catalog Hierarchy
	Guidelines for Naming Message Catalogs
	Using Message Arguments
	Message Catalog Formats
	Log Message Catalog
	Simple Text Catalog
	Locale-Specific Catalog

	Message Catalog Localization

	How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for Localization

	Deploying Oracle Event Processing Applications
	How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse
	How to Deploy an Oracle Event Processing Application Using Oracle Event Processing Visualizer
	How to Deploy an Oracle Event Processing Application Using the Deployer Utility

	24 Developing Applications for High Availability
	Understanding High Availability
	High Availability Architecture
	High Availability Lifecycle and Failover
	Secondary Failure
	Primary Failure and Failover
	Rejoining the High Availability Multi-Server Domain

	Deployment Group and Notification Group
	High Availability Components
	High Availability Input Adapter
	Buffering Output Adapter
	Broadcast Output Adapter
	Correlating Output Adapter
	ActiveActiveGroupBean

	High Availability and Scalability
	High Availability and Oracle Coherence

	Choosing a Quality of Service
	Simple Failover
	Simple Failover with Buffering
	Light-Weight Queue Trimming
	Precise Recovery with JMS

	Designing an Oracle Event Processing Application for High Availability
	Primary Oracle Event Processing High Availability Use Case
	High Availability Design Patterns
	Select the Minimum High Availability Your Application can Tolerate
	Use Oracle Event Processing High Availability Components at All Ingress and Egress Points
	Only Preserve What You Need
	Limit Oracle Event Processing Application State
	Choose an Adequate warm-up-window-length Time
	Type 1 Applications
	Type 2 Applications
	Ensure Applications are Idempotent
	Source Event Identity Externally
	Understand the Importance of Event Ordering
	Prefer Deterministic Behavior
	Avoid Multithreading
	Prefer Monotonic Event Identifiers
	Write Oracle CQL Queries with High Availability in Mind
	Avoid Coupling Servers
	Plan for Server Recovery

	Oracle CQL Query Restrictions
	Range-Based Windows
	Tuple-Based Windows
	Partitioned Windows
	Sliding Windows
	DURATION Clause and Non-Event Detection
	Prefer Application Time

	Configuring High Availability
	Configuring High Availability Quality of Service
	How to Configure Simple Failover
	How to Configure Simple Failover With Buffering
	How to Configure Light-Weight Queue Trimming
	How to Configure Precise Recovery With JMS

	Configuring High Availability Adapters
	How to Configure the High Availability Input Adapter
	High Availability Input Adapter EPN Assembly File Configuration
	High Availability Input Adapter Component Configuration File Configuration

	How to Configure the Buffering Output Adapter
	Buffering Output Adapter EPN Assembly File Configuration
	Buffering Output Adapter Component Configuration File Configuration

	How to Configure the Broadcast Output Adapter
	Broadcast Output Adapter EPN Assembly File Configuration
	Broadcast Output Adapter Component Configuration File Configuration

	How to Configure the Correlating Output Adapter
	Correlating Output Adapter EPN Assembly File Configuration
	Correlating Output Adapter Component Configuration File Configuration

	25 Developing Scalable Applications
	Understanding Scalability
	Scalability Options
	Scalability and High Availability

	Scalability Components
	EventPartitioner
	EventPartitioner Implementation
	EventPartitioner Initialization
	EventPartitioner Threading
	EventPartitioner Restrictions

	ActiveActiveGroupBean
	Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean Without High Availability
	Scalability in an Oracle Event Processing Application Using the ActiveActiveGroupBean With High Availability

	Configuring Scalability
	Configuring Scalability With a Channel EventPartitioner
	How to Configure Scalability With the Default Channel EventPartitioner
	How to Configure Scalability With a Custom Channel EventPartitioner

	Configuring Scalability With the ActiveActiveGroupBean
	How to Configure Scalability in a JMS Application Without Oracle Event Processing High Availability
	How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability
	How to Configure the ActiveActiveGroupBean Group Pattern Match

	26 Extending Component Configuration
	Overview of Extending Component Configuration
	Extending Component Configuration Using Annotations
	Extending Component Configuration Using an XSD

	Extending Component Configuration
	How to Extend Component Configuration Using Annotations
	How to Extend Component Configuration Using an XSD
	Creating the XSD Schema File
	Complete Example of an Extended XSD Schema File

	Programming Access to the Configuration of a Custom Adapter or Event Bean
	How to Access Component Configuration Using Resource Injection
	How to Access Component Configuration Using Lifecycle Callbacks
	Lifecycle Callback Annotations
	Lifecycle

	27 Performance Tuning
	EPN Performance Tuning
	Event Partitioner Channel
	Batching Channel
	Scalability Using the ActiveActiveGroupBean

	High Availability Performance Tuning
	Host Configuration
	High Availability Input Adapter and Quality of Service
	High Availability Input Adapter Configuration
	Broadcast Output Adapter Configuration
	Oracle Coherence Performance Tuning Options
	Oracle Coherence Heartbeat Frequency
	Oracle Coherence Serialization

	Part V Appendices
	EPN Assembly Schema spring-wlevs-v11_1_1_6.xsd
	Example EPN Assembly File

	Component Configuration Schema wlevs_application_config.xsd
	Example Component Configuration File

	Deployment Schema deployment.xsd
	Example Deployment XML File

	Server Configuration Schema wlevs_server_config.xsd
	Example Server Configuration XML File

	Overview of the Oracle Event Processing Application Assembly Elements
	Element Hierarchy
	Example of an EPN Assembly File That Uses Oracle Event Processing Elements

	wlevs:adapter
	Child Elements
	Attributes
	Example

	wlevs:application-timestamped
	Child Elements
	Attributes
	Example

	wlevs:cache
	Child Elements
	Attributes
	Example

	wlevs:cache-listener
	Attributes
	Example

	wlevs:cache-loader
	Attributes
	Example

	wlevs:cache-source
	Attributes
	Example

	wlevs:cache-store
	Attributes
	Example

	wlevs:caching-system
	Child Elements
	Attributes
	Example

	wlevs:channel
	Child Elements
	Attributes
	Example

	wlevs:class
	Example

	wlevs:event-bean
	Child Elements
	Attributes
	Example

	wlevs:event-type
	Child Elements
	Attributes
	Example

	wlevs:event-type-repository
	Child Elements
	Example

	wlevs:expression
	Example

	wlevs:factory
	Attributes
	Example

	wlevs:function
	Attributes
	Example
	Single-Row User-Defined Function on an Oracle CQL Processor
	Single-Row User-Defined Function on an EPL Processor
	Aggregate User-Defined Function on an Oracle CQL Processor
	Aggregate User-Defined Function on an EPL Processor
	Specifying the Implementation Class: Nested Bean or Reference

	wlevs:instance-property
	Child Elements
	Attributes
	Example

	wlevs:listener
	Attributes
	Example

	wlevs:metadata
	Child Elements
	Attributes
	Example

	wlevs:processor
	Child Elements
	Attributes
	Example

	wlevs:properties
	Child Elements
	Attributes
	Example

	wlevs:property
	Attributes
	Example

	wlevs:property
	Child Elements
	Attributes
	Example

	wlevs:source
	Attributes
	Example

	wlevs:table
	Attributes
	Example

	wlevs:table-source
	Attributes
	Example

	Overview of the Oracle Event Processing Component Configuration Elements
	Element Hierarchy
	Example of an Oracle Event Processing Component Configuration File

	accept-backlog
	Child Elements
	Attributes
	Example

	active
	Child Elements
	Attributes
	Example

	adapter
	Child Elements
	Attributes
	Example

	amount
	Child Elements
	Attributes
	Example

	application
	Child Elements
	Attributes
	Example

	average-interval
	Child Elements
	Attributes
	Example

	average-latency
	Child Elements
	Attributes
	Example

	batch-size
	Child Elements
	Attributes
	Example

	batch-time-out
	Child Elements
	Attributes
	Example

	binding
	Child Elements
	Attributes
	Example

	bindings (jms-adapter)
	Child Elements
	Attributes
	Example

	bindings (processor)
	Child Elements
	Attributes
	Example

	buffer-size
	Child Elements
	Attributes
	Example

	buffer-write-attempts
	Child Elements
	Attributes
	Example

	buffer-write-timeout
	Child Elements
	Attributes
	Example

	cache
	Child Elements
	Attributes
	Example

	caching-system
	Child Elements
	Attributes
	Example

	channel
	Child Elements
	Attributes
	Example

	channel (http-pub-sub-adapter Child Element)
	Child Elements
	Attributes
	Example

	channel-name
	Child Elements
	Attributes
	Example

	coherence-cache-config
	Child Elements
	Attributes
	Example

	coherence-caching-system
	Child Elements
	Attributes
	Example

	coherence-cluster-config
	Child Elements
	Attributes
	Example

	collect-interval
	Child Elements
	Attributes
	Example

	concurrent-consumers
	Child Elements
	Attributes
	Example

	connection-jndi-name
	Child Elements
	Attributes
	Example

	connection-encrypted-password
	Child Elements
	Attributes
	Example

	connection-password
	Child Elements
	Attributes
	Example

	connection-user
	Child Elements
	Attributes
	Example

	database
	Child Elements
	Attributes
	Example

	dataset-name
	Child Elements
	Attributes
	Example

	delivery-mode
	Child Elements
	Attributes
	Example

	destination-jndi-name
	Child Elements
	Attributes
	Example

	destination-name
	Child Elements
	Attributes
	Example

	destination-type
	Child Elements
	Attributes
	Example

	diagnostic-profiles
	Child Elements
	Attributes
	Example

	direction
	Child Elements
	Attributes
	Example

	durable-subscription
	Child Elements
	Attributes
	Example

	durable-subscription-name
	Child Elements
	Attributes
	Example

	duration
	Child Elements
	Attributes
	Example

	enabled
	Child Elements
	Attributes
	Example

	encrypted-password
	Child Elements
	Attributes
	Example

	end
	Child Elements
	Attributes
	Example

	end-location
	Child Elements
	Attributes
	Example

	event-bean
	Child Elements
	Attributes
	Example

	event-type
	Child Elements
	Attributes
	Example

	event-type-list
	Child Elements
	Attributes
	Example

	eviction-policy
	Child Elements
	Attributes
	Example

	fail-when-rejected
	Child Elements
	Attributes
	Example

	group-binding
	Child Elements
	Attributes
	Example

	heartbeat
	Child Elements
	Attributes
	Example

	http-pub-sub-adapter
	Child Elements
	Attributes
	Example

	idle-time
	Child Elements
	Attributes
	Example

	inject-parameters
	Child Elements
	Attributes
	Example

	jms-adapter
	Child Elements
	Attributes
	Example

	jndi-factory
	Child Elements
	Attributes
	Example

	jndi-provider-url
	Child Elements
	Attributes
	Example

	listeners
	Child Elements
	Attributes
	Example

	location
	Child Elements
	Attributes
	Example

	max-latency
	Child Elements
	Attributes
	Example

	max-size
	Child Elements
	Attributes
	Example

	max-threads
	Child Elements
	Attributes
	Example

	message-selector
	Child Elements
	Attributes
	Example

	name
	Child Elements
	Attributes
	Example

	netio
	Child Elements
	Attributes
	Example

	num-threads
	Child Elements
	Attributes
	Example

	offer-timeout
	Child Elements
	Attributes
	Example

	param
	Child Elements
	Attributes
	Example

	parameter
	Child Elements
	Attributes
	Example

	params
	Child Elements
	Attributes
	Example

	partition-order-capacity
	Child Elements
	Attributes
	Example

	password
	Child Elements
	Attributes
	Example

	playback-parameters
	Child Elements
	Attributes
	Example

	playback-speed
	Child Elements
	Attributes
	Example

	processor (EPL)
	Child Elements
	Attributes
	Example

	processor (Oracle CQL)
	Child Elements
	Attributes
	Example

	profile
	Child Elements
	Attributes
	Example

	provider-name
	Child Elements
	Attributes
	Example

	query
	Child Elements
	Attributes
	Example

	record-parameters
	Child Elements
	Attributes
	Example

	repeat
	Child Elements
	Attributes
	Example

	rule
	Child Elements
	Attributes
	Example

	rules
	Child Elements
	Attributes
	Example

	schedule-time-range
	Child Elements
	Attributes
	Example

	schedule-time-range-offset
	Child Elements
	Attributes
	Example

	selector
	Child Elements
	Attributes
	Example

	server-context-path
	Child Elements
	Attributes
	Example

	server-url
	Child Elements
	Attributes
	Example

	session-ack-mode-name
	Child Elements
	Attributes
	Example

	session-transacted
	Child Elements
	Attributes
	Example

	stage
	Child Elements
	Attributes
	Example

	start
	Child Elements
	Attributes
	Example

	start-location
	Child Elements
	Attributes
	Example

	start-stage
	Child Elements
	Attributes
	Example

	store-policy-parameters
	Child Elements
	Attributes
	Example

	stream
	Child Elements
	Attributes
	Example

	symbol
	Child Elements
	Attributes
	Example

	symbols
	Child Elements
	Attributes
	Example

	threshold
	Child Elements
	Attributes
	Example

	throughput
	Child Elements
	Attributes
	Example

	throughput-interval
	Child Elements
	Attributes
	Example

	time-range
	Child Elements
	Attributes
	Example

	time-range-offset
	Child Elements
	Attributes
	Example

	time-to-live
	Child Elements
	Attributes
	Example

	trace-parameters
	Child Elements
	Attributes
	Example

	unit
	Child Elements
	Attributes
	Example

	user
	Child Elements
	Attributes
	Example

	value
	Child Elements
	Attributes
	Example

	view
	Child Elements
	Attributes
	Example

	work-manager
	Child Elements
	Attributes
	Example

	work-manager-name
	Child Elements
	Attributes
	Example

	write-behind
	Child Elements
	Attributes
	Example

	write-none
	Child Elements
	Attributes
	Example

	write-through
	Child Elements
	Attributes
	Example

	Overview of the Oracle Event Processing Deployment Elements
	Element Hierarchy
	Example of an Oracle Event Processing Deployment Configuration File

	wlevs:deployment
	Child Elements
	Attributes
	Example

	Overview of the Oracle Event Processing Server Configuration Elements
	Element Hierarchy
	Example of an Oracle Event Processing Server Configuration File

	auth-constraint
	Child Elements
	Attributes
	Example

	bdb-config
	Child Elements
	Attributes
	Example

	channels
	Child Elements
	Attributes
	Example

	channel-constraints
	Child Elements
	Attributes
	Example

	channel-resource-collection
	Child Elements
	Attributes
	Example

	cluster
	Child Elements
	Attributes
	Example

	connection-pool-params
	Child Elements
	Attributes
	Example

	cql
	Child Elements
	Attributes
	Example

	data-source
	Child Elements
	Attributes
	Example

	data-source-params
	Child Elements
	Attributes
	Example

	driver-params
	Child Elements
	Attributes
	Example

	domain
	Child Elements
	Attributes
	Example

	debug
	Child Elements
	Attributes
	Example

	event-store
	Child Elements
	Attributes
	Example

	exported-jndi-context
	Child Elements
	Attributes
	Example

	http-pubsub
	Child Elements
	Attributes
	Example

	jetty
	Child Elements
	Attributes
	Example

	jetty-web-app
	Child Elements
	Attributes
	Example

	jmx
	Child Elements
	Attributes
	Example

	jndi-context
	Child Elements
	Attributes
	Example

	log-file
	Child Elements
	Attributes
	Example

	log-stdout
	Child Elements
	Attributes
	Example

	logging-service
	Child Elements
	Attributes
	Example

	message-filters
	Child Elements
	Attributes
	Example

	name
	Child Elements
	Attributes
	Example

	netio
	Child Elements
	Attributes
	Example

	netio-client
	Child Elements
	Attributes
	Example

	partition-order-capacity
	Child Elements
	Attributes
	Example

	path
	Child Elements
	Attributes
	Example

	pubsub-bean
	Child Elements
	Attributes
	Example

	rdbms-event-store-provider
	Child Elements
	Attributes
	Example

	rmi
	Child Elements
	Attributes
	Example

	scheduler
	Child Elements
	Attributes
	Example

	server-config
	Child Elements
	Attributes
	Example

	services
	Child Elements
	Attributes
	Example

	show-detail-error-message
	Child Elements
	Attributes
	Example

	ssl
	Child Elements
	Attributes
	Example

	timeout-seconds
	Child Elements
	Attributes
	Example

	transaction-manager
	Child Elements
	Attributes
	Example

	use-secure-connections
	Child Elements
	Attributes
	Example

	weblogic-instances
	Child Elements
	Attributes
	Example

	weblogic-jta-gateway
	Child Elements
	Attributes
	Example

	weblogic-rmi-client
	Child Elements
	Attributes
	Example

	work-manager
	Child Elements
	Attributes
	Example

	xa-params
	Child Elements
	Attributes
	Example

	Overview of the Message Catalog Elements
	Element Hierarchy
	Examples

	message_catalog
	Child Elements
	Attributes
	Example

	logmessage
	Child Elements
	Attributes
	Example

	message
	Child Elements
	Attributes
	Example

	messagebody
	Child Elements
	Attributes
	Example

	messagedetail
	Child Elements
	Attributes
	Example

	cause
	Child Elements
	Attributes
	Example

	action
	Child Elements
	Attributes
	Example

	Overview of the Locale Message Catalog Elements
	Element Hierarchy
	Examples

	locale_message_catalog
	Child Elements
	Attributes
	Example

	logmessage
	Child Elements
	Attributes
	Example

	message
	Child Elements
	Attributes
	Example

	messagebody
	Child Elements
	Attributes
	Example

	messagedetail
	Child Elements
	Attributes
	Example

	cause
	Child Elements
	Attributes
	Example

	action
	Child Elements
	Attributes
	Example

	Overview of Oracle Event Processing Metadata Annotations
	Adapter Lifecycle Annotations
	OSGi Service Reference Annotations
	Resource Access Annotations

	com.bea.wlevs.configuration.Activate
	Example

	com.bea.wlevs.configuration.Prepare
	Example

	com.bea.wlevs.configuration.Rollback
	Example

	com.bea.wlevs.util.Service
	Attributes
	Example

