
[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Scripts for Oracle WebCenter Enterprise Capture

11g Release 1 (11.1.1)

E28275-04

October 2017

Documentation for Oracle WebCenter Enterprise Capture developers that describes how to develop scripts for customizing Capture functionality.

Oracle Fusion Middleware Developing Scripts for Oracle WebCenter Enterprise Capture, 11g Release 1 (11.1.1)

E28275-04

Copyright © 2013, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sacheth S

Contributor: Oracle WebCenter development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New In This Guide

	New and Changed Features for 11g Release 1 (11.1.1.9) - October 2017 Patch
	New and Changed Features for 11g Release 1 (11.1.1.9)
	Other Significant Changes in this Document for 11g Release 1 (11.1.1.9)

1 Introduction to Developing Scripts with Oracle WebCenter Enterprise Capture

	1.1 Developing Scripts with WebCenter Enterprise Capture

2 Integrating the Client With Other Web Applications

	2.1 Configuring a Client Integration
	2.1.1 Example Client Integration Web Address

3 Creating Client Scripts

	3.1 Client Events
	3.1.1 BatchScanBegin
	3.1.2 BatchScanComplete
	3.1.3 BatchSelected
	3.1.4 CaptureImage
	3.1.5 DBSearchComplete
	3.1.6 DBSearchResults
	3.1.7 DBSearchStart
	3.1.8 DocumentCreated
	3.1.9 DocumentRemoved
	3.1.10 DocumentSelected
	3.1.11 FieldGotFocus
	3.1.12 FieldLostFocus
	3.1.13 FieldProcessKey
	3.1.14 PreBatchDelete
	3.1.15 PreCaptureImage
	3.1.16 PreDocumentRemove
	3.1.17 PreDownloadItem
	3.1.18 PrePageDelete
	3.1.19 PreReleaseBatch
	3.1.20 PreUploadItem
	3.1.21 PostCaptureImage
	3.1.22 PostDownloadItem
	3.1.23 PostUploadItem
	3.1.24 RegionSelected
	3.1.25 ScriptStart

	3.2 Event Classes
	3.2.1 BatchDeleteEvent
	3.2.2 BatchScanEvent
	3.2.3 BatchSelectedEvent
	3.2.4 DBSearchEvent
	3.2.5 DocumentRemovedEvent
	3.2.6 DocumentSelectedEvent
	3.2.7 DownloadItemEvent
	3.2.8 FieldEvent
	3.2.9 ImageCaptureEvent
	3.2.10 PageDeleteEvent
	3.2.11 PreDocumentRemoveEvent
	3.2.12 RegionSelectedEvent
	3.2.13 ReleaseBatchEvent
	3.2.14 UploadItemEvent

	3.3 Capture Client Core Classes
	3.3.1 CaptureBatch
	3.3.2 CaptureBatchStatus
	3.3.3 CaptureDataType
	3.3.4 CaptureDocument
	3.3.5 CaptureDocumentPage
	3.3.6 CaptureDocumentPages
	3.3.7 CaptureDocuments
	3.3.8 CaptureErrorManager
	3.3.9 CaptureField
	3.3.10 CaptureFields
	3.3.11 CaptureItem
	3.3.12 CaptureItems
	3.3.13 CaptureOperation
	3.3.14 CaptureStateManager
	3.3.15 CaptureWorkspace
	3.3.16 ClientProfile
	3.3.17 ClientUI
	3.3.18 DBLookupProfile
	3.3.19 DBLookupResult
	3.3.20 DbSearchResultRow
	3.3.21 DbSearchFieldInfo
	3.3.22 DocumentType
	3.3.23 DocumentTypes
	3.3.24 FieldDefinition
	3.3.25 FieldDefinitions

	3.4 Capture Client FieldEdit Classes
	3.4.1 DataField
	3.4.2 DateField
	3.4.3 FloatField
	3.4.4 IntegerField
	3.4.5 PicklistEntry
	3.4.6 PicklistField
	3.4.7 TextField

	3.5 Sample Client Scripts
	3.5.1 Sample Client Script 1
	3.5.2 Sample Client Script 2

4 Creating Recognition Processor Scripts

	4.1 Recognition Processor Methods
	4.1.1 initialize
	4.1.2 processBatch
	4.1.3 restoreCaptureBatch
	4.1.4 beginPhase
	4.1.5 endPhase
	4.1.6 extractBatchItem
	4.1.7 barcodesFoundOnItem
	4.1.8 batchItemAllValidBarcodes
	4.1.9 determineSeparatorPage
	4.1.10 batchItemValidBarcode
	4.1.11 determineDocType
	4.1.12 beginDatabaseLookup
	4.1.13 determineIndexValues
	4.1.14 renameOrigCaptureDocTitle
	4.1.15 createCaptureDoc
	4.1.16 postProcess
	4.1.17 endBatchProcess

	4.2 Recognition Processor Classes
	4.2.1 BarcodeDefinition
	4.2.2 DocumentDefinition
	4.2.3 PostProcessContext
	4.2.4 ProcessorDocument
	4.2.5 ProcessorItem
	4.2.6 ProcessorSeparatorPage
	4.2.7 RecognitionJob
	4.2.8 RecognitionJobField
	4.2.9 RecognitionProcessorContext
	4.2.10 SeparatorDefinition
	4.2.11 SeparatorRuleDefinition

	4.3 Sample Recognition Processor Script

5 Creating Import Processor Scripts

	5.1 Import Processor Events
	5.1.1 preProcess
	5.1.2 process
	5.1.3 postProcess
	5.1.4 preCreateBatch
	5.1.5 postCreateBatch
	5.1.6 preCreateDocument
	5.1.7 postCreateDocument
	5.1.8 preImportFile
	5.1.9 postImportFile
	5.1.10 preRelease
	5.1.11 postRelease
	5.1.12 preDatabaseSearch
	5.1.13 processDatabaseSearchResults

	5.2 Email Source Events
	5.2.1 deleteMessage
	5.2.2 moveMessage
	5.2.3 newAttachment
	5.2.4 newMessage

	5.3 Folder Source Events
	5.3.1 deleteDocumentFile
	5.3.2 newFolder
	5.3.3 renameDocumentFile

	5.4 List File Source Events
	5.4.1 deleteListFile
	5.4.2 newFolder
	5.4.3 newListFile
	5.4.4 newListFileLine
	5.4.5 renameListFile

	5.5 Import Processor Classes
	5.5.1 EmailSourceContext
	5.5.2 FolderSourceContext
	5.5.3 ImportJob
	5.5.4 ImportProcessorContext
	5.5.5 ListFileSourceContext

	5.6 Sample Import Processor Script

6 Working with Common Capture Classes

	6.1 Common Capture Classes
	6.1.1 BatchEntity
	6.1.2 BatchItemEntity
	6.1.3 BatchLockEntity
	6.1.4 BatchStatusEntity
	6.1.5 CaptureWorkspaceEntity
	6.1.6 DBSearchResults
	6.1.7 DBSearchResultRow
	6.1.8 DBSearchFieldInfo
	6.1.9 DocumentEntity
	6.1.10 DocumentPageEntity
	6.1.11 DocumentTypeEntity
	6.1.12 IndexDefinitionEntity
	6.1.13 IndexValue

A Keycodes

Preface

This guide contains information to develop scripts to customize Oracle WebCenter Enterprise Capture components.

Audience

This guide is intended for developers responsible for customizing Oracle WebCenter Enterprise Capture functionality.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle WebCenter Enterprise Capture 11g Release 1 (11.1.1) documentation set:

	
Oracle Fusion Middleware Administering Oracle WebCenter Enterprise Capture

	
Oracle Fusion Middleware Using Oracle WebCenter Enterprise Capture

	
Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
	getter/setter pattern	Getter/setter pattern indicates properties that uses this pattern. For example, to access the title property of the Document class from code use the following:
title = document.getTitle();

What's New In This Guide

This section summarizes the new and changed features of Oracle WebCenter Enterprise Capture, other significant changes that are described in this guide, and provides pointers to additional information.

It contains the following topics:

	
New and Changed Features for 11g Release 1 (11.1.1.9) - October 2017 Patch

	
New and Changed Features for 11g Release 1 (11.1.1.9)

	
Other Significant Changes in this Document for 11g Release 1 (11.1.1.9)

New and Changed Features for 11g Release 1 (11.1.1.9) - October 2017 Patch

This section describes the following new and changed features for Oracle WebCenter Enterprise Capture 11g Release 1 (11.1.1.9) patch:

	
Added the following Client Events:

	
PreDocumentRemove

	
PrePageDelete

	
Added the following Event Classes:

	
PageDeleteEvent

	
PreDocumentRemoveEvent

New and Changed Features for 11g Release 1 (11.1.1.9)

This section describes the following new and changed features for Oracle WebCenter Enterprise Capture 11g Release 1 (11.1.1.9):

	
Oracle WebCenter Capture was rebranded to Oracle WebCenter Enterprise Capture.

Other Significant Changes in this Document for 11g Release 1 (11.1.1.9)

For 11g Release 1 (11.1.1.9), following are the sections that have been added or changed:

	
Revised the organization of the book.

	
Added a new chapter to describe the common classes that pertain to the Recognition Processor and the Import Processor. See Section 6.1, "Common Capture Classes."

	
Modified the DocumentCreated parameter. See Section 3.1.8, "DocumentCreated" and Section 3.5.1, "Sample Client Script 1."

	
Modified the postProcess parameter. See Section 4.1.16, "postProcess."

	
Added information on the PreReleaseBatch event. See Section 3.1.19, "PreReleaseBatch" and Section 3.5.1, "Sample Client Script 1."

	
Added information on the following classes:

	
ReleaseBatchEvent. See Section 3.2.13, "ReleaseBatchEvent."

	
ClientProfile. See Section 3.3.16, "ClientProfile."

	
ClientUI. See Section 3.3.17, "ClientUI."

	
RecognitionProcessorContext. See Section 4.2.9, "RecognitionProcessorContext."

	
BatchLockEntity. See Section 6.1.3, "BatchLockEntity."

1 Introduction to Developing Scripts with Oracle WebCenter Enterprise Capture

This chapter provides an introduction to developing scripts for Oracle WebCenter Enterprise Capture.

A script is a custom piece of code consumed by the Capture client or batch processor (Import or Recognition) that allows you to customize functionality beyond existing configuration settings. For example, you might incorporate a script to change the first letter of a name to uppercase or to use a proprietary calculation to validate an account number used in a transaction.

For scripting, Capture uses the JavaScript script engine included with the Java Runtime Environment. Refer to the Oracle Java documentation for more information.

Scripts can be incorporated in the following Capture components:

	
Client

Client Scripts are JavaScript modules that enable you to customize the behavior of certain client events. To use one or more scripts in a client profile, a workspace manager selects and orders them in an extension profile.

	
Recognition Processor

Recognition Processor scripts allow you to customize the behavior of certain recognition job events.

	
Import Processor

Import Processor scripts allow you to customize the behavior of certain import job events.

For more information on incorporating scripts in Capture, see Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture.

1.1 Developing Scripts with WebCenter Enterprise Capture

The following are the main steps for developing and incorporating scripts in Capture components:

	
For each Capture component, write the JavaScript using the events and classes. For more information, refer to the following component's chapter:

	
Chapter 3, "Creating Client Scripts"

	
Chapter 4, "Creating Recognition Processor Scripts"

	
Chapter 5, "Creating Import Processor Scripts"

	
On the Advanced tab of a selected workspace in the WebCenter Enterprise Capture Workspace Console, a workspace manager adds the script by identifying its component type and loading the script file.

For more information, see Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture.

	
In a client profile or an import or recognition processor job, the workspace manager then selects the script for use.

Note that workspace managers can incorporate multiple client scripts in a client profile and specify the order in which they are executed. For more information, see Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture.

2 Integrating the Client With Other Web Applications

This chapter discusses how to configure the client to launch from another web application.

The web application invokes the client through a web address. Parameters such as the workspace, capture source, client profile, document profile, and optional metadata values are passed within the address.

For example, you might add a Scan button to a line of business web application. After completing business application entry fields, the user clicks Scan. The client window displays to the user and Capture immediately begins scanning a document using a specified scanner and settings in the client profile specified in the web address. Once scanned, the document is displayed in the document pane. Metadata fields are automatically populated with user entries, which were passed in the web address. The user reviews the document and completes other metadata fields, then releases the batch, scans additional batches, or closes the browser. Upon close, the user returns to the line of business web application.

2.1 Configuring a Client Integration

To configure an integration between a web application and the Capture client:

	
In the web application, add a launching point, such as a Scan button, from which to activate the client.

	
Configure the web address and its parameters.

Parameters are listed and described in Table 2-1.

See the example integration configuration in Section 2.1.1.

	
If needed, configure Single Sign-on (SSO) to prevent users from having to sign in to Capture before beginning scanning.

Table 2-1 Client Integration URL Parameters

	Parameter	Description
	
CaptureWorkspace

	
Specifies the workspace to which to capture documents.

	
ClientProfile

	
Optionally specifies the client profile with which to capture documents. If you specify a profile, the Client Profile field does not display in the client's batch pane. If no profile is specified, the client uses the client profile that was last used by the user on the system.

	
CaptureDriver

	
Specifies the driver to use to capture documents.

	
For importing, specify CAPTURE_IMPORT_DRIVER.

	
For TWAIN scanning, specify CAPTURE_TWAIN_DRIVER.

If neither driver ID or source name are specified, the last used driver and source are used.

	
CaptureSource

	
Specify the source to use to capture documents, based on the selected CaptureDriver.

	
For importing, specify Import Source.

	
For TWAIN scanning, specify the scanner name. This is the same scanner name as identified in the client's Capture Source options.

If neither driver ID or source name are specified, the client uses the driver and source that were last used by the user on the system.

	
SignOutOnRelease

	
Specify whether the business user is signed out of Capture after releasing a batch.

	
If you specify false or 0 (default), the user remains signed in after releasing a batch by clicking the Release icon.

	
If you specify true or 1, the user is signed out after a batch is released and the SignOutAction is performed, if specified.

	
SignOutAction

	
Specifies the action that occurs after the user is signed out.

	
If you specify CloseBrowser, the browser is closed and the user returns to the web application.

Note that SignOutAction and CloseBrowser options function in Internet Explorer. In Firefox, they function if the client integration was launched through JavaScript.

	
If you specify a URL, the window is redirected to the specified URL.

	
ShowAllBatches

	
Specifies if batches display in a list to client users in the batch pane.

	
If you specify false or 0 (default), the batch list is initially empty and only shows batches scanned during the session.

	
If you specify true or 1, the batch list shows all the batches the user is allowed to see.

	
DocumentProfile

	
Specifies the document profile for users to use to index documents.

	
If you specify a document profile, the Document Profile field does not display in the client's metadata pane.

	
If no profile is specified, the client uses the document profile that was last used by the user on the system.

	
Other

	
Any other characters included in the URL are assumed to be a metadata names and values.

2.1.1 Example Client Integration Web Address

Here is an example URL. (Note that this URL should be all on one line.)

http://svr-capture:16400/dc-client/faces/dc-client?CaptureWorkspace=Accounting&ClientProfile=Import%20Invoices&CaptureDriver=CAPTURE_IMPORT_DRIVER&CaptureSource=Import%20Source&SignOutOnRelease=1&SignOutAction=CloseBrowser&Company=MyCompany&Dept=Accounting

This web address configures the client integration as follows:

	
CaptureWorkspace=Accounting - Specifies Accounting as the workspace to which to capture documents.

	
ClientProfile=Import Invoices - Specifies Import Invoices as the client profile to use.

	
CaptureDriver=CAPTURE_IMPORT_DRIVER - Specifies CAPTURE_IMPORT_DRIVER as the capture source for importing and CAPTURE_TWAIN_DRIVER for TWAIN scanning.

	
CaptureSource=Import Source - Specifies Import Source as the capture source.

	
SignOutOnRelease=1&SignOutAction=CloseBrowser - 1&SignOutAction=CloseBrowser specifies that the user is signed out after releasing a batch and the browser closes.

	
Company=MyCompany - Passes a value of MyCompany for the Company metadata field.

	
Dept=Accounting - Passes a value of Accounting for the Dept metadata field.

3 Creating Client Scripts

This chapter describes the various events and classes that can be used to create scripts for Capture client.

Scripts provide hooks into client events. You can create a client script that gets executed when certain Capture client events are triggered. Capture enables you to create custom scripts to suit your business requirements.

Extensions allow you to customize client scripts. You can write and incorporate JavaScript extensions to extend Capture functionality. For more information on JavaScript extensions, see Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture.

This chapter includes the following sections:

	
Section 3.1, "Client Events"

	
Section 3.2, "Event Classes"

	
Section 3.3, "Capture Client Core Classes"

	
Section 3.4, "Capture Client FieldEdit Classes"

	
Section 3.5, "Sample Client Scripts"

3.1 Client Events

Client scripts are JavaScript modules that enable you to customize the behavior of certain client events.

This section describes the following events:

	
BatchScanBegin

	
BatchScanComplete

	
BatchSelected

	
CaptureImage

	
DBSearchComplete

	
DBSearchResults

	
DBSearchStart

	
DocumentCreated

	
DocumentRemoved

	
DocumentSelected

	
FieldGotFocus

	
FieldLostFocus

	
FieldProcessKey

	
PreBatchDelete

	
PreCaptureImage

	
PreDocumentRemove

	
PreDownloadItem

	
PrePageDelete

	
PreReleaseBatch

	
PreUploadItem

	
PostCaptureImage

	
PostDownloadItem

	
PostUploadItem

	
RegionSelected

	
ScriptStart

3.1.1 BatchScanBegin

The BatchScanBegin event occurs when scanning into a batch is about to begin.

	Syntax	Parameter
	public void BatchScanBegin(BatchScanEvent event);	BatchScanEvent event

3.1.2 BatchScanComplete

The BatchScanComplete event occurs when scanning into a batch is complete.

	Syntax	Parameter
	public void BatchScanComplete(BatchScanEvent event);	BatchScanEvent event

3.1.3 BatchSelected

The BatchSelected event occurs when a batch has been selected.

	Syntax	Parameter
	public void BatchSelected(BatchSelectedEvent event);	BatchScanEvent event

3.1.4 CaptureImage

The CaptureImage event occurs when an image is about to be captured from the scan source.

	Syntax	Parameter
	public void CaptureImage(ImageCaptureEvent event);	ImageCaptureEvent event

3.1.5 DBSearchComplete

The DBSearchComplete event occurs when the database search has completed, just before the results are to be processed.

	Syntax	Parameter
	public void DBSearchComplete(DBSearchEvent event);	DBSearchEvent event

3.1.6 DBSearchResults

The DBSearchResults event occurs as database search results are being processed.

	Syntax	Parameter
	public void DBSearchResults(DBSearchEvent event);	DBSearchEvent event

3.1.7 DBSearchStart

The DBSearchStart event occurs just before a database search.

	Syntax	Parameter
	public void DBSearchStart(DBSearchEvent event);	DBSearchEvent event

3.1.8 DocumentCreated

The DocumentCreated event occurs after a document has been created.

	Syntax	Parameter
	public void DocumentCreated(CaptureDocument document);	CaptureDocument document

3.1.9 DocumentRemoved

The DocumentRemoved event occurs after a document has been removed.

	Syntax	Parameter
	public void DocumentRemoved(DocumentRemovedEvent event);	DocumentRemovedEvent event

3.1.10 DocumentSelected

The DocumentSelected event occurs when a document has been selected.

	Syntax	Parameter
	public void DocumentSelected(DocumentSelectedEvent event);	DocumentSelectedEvent event

3.1.11 FieldGotFocus

The FieldGotFocus event occurs when a metadata field receives the input focus.

	Syntax	Parameter
	public void FieldGotFocus(FieldEvent event);	FieldEvent event

3.1.12 FieldLostFocus

The FieldLostFocus event occurs when a field has lost the input focus.

	Syntax	Parameter
	public void FieldLostFocus(FieldEvent event);	FieldEvent event

3.1.13 FieldProcessKey

The FieldProcessKey event occurs when a key event happens while the focus is in a metadata field.

	Syntax	Parameter
	public void FieldProcessKey(FieldEvent event);	FieldEvent event

3.1.14 PreBatchDelete

The PreBatchDelete event occurs when a batch is about to be deleted.

	Syntax	Parameter
	public void PreBatchDelete(BatchDeleteEvent event);	BatchDeleteEvent event

3.1.15 PreCaptureImage

The PreCaptureImage event occurs before an image has been captured from the scan source.

	Syntax	Parameter
	public void PreCaptureImage(ImageCaptureEvent event);	ImageCaptureEvent event

3.1.16 PreDocumentRemove

The PreDocumentRemove event occurs when one or more documents are about to be deleted.

	Syntax	Parameter
	public void PreDocumentRemove(PreDocumentRemoveEvent event);	PreDocumentRemoveEvent event

3.1.17 PreDownloadItem

The PreDownloadItem event occurs when a batch item is about to be downloaded.

	Syntax	Parameter
	public void PreDownloadItem(DownloadItemEvent event);	DownloadItemEvent event

3.1.18 PrePageDelete

The PrePageDelete event occurs when one or more pages are about to be deleted.

	Syntax	Parameter
	public void PrePageDelete(PageDeleteEvent event);	PageDeleteEvent event

3.1.19 PreReleaseBatch

The PreReleaseBatch event occurs when a batch is about to be released.

	Syntax	Parameter
	public void PreReleaseBatch(ReleaseBatchEvent event);	ReleaseBatchEvent event

3.1.20 PreUploadItem

The PreUploadItem event occurs when a batch item is about to be uploaded.

	Syntax	Parameter
	public void PreUploadItem(UploadItemEvent event);	UploadItemEvent event

3.1.21 PostCaptureImage

The PostCaptureImage event occurs after an image has been captured from the scan source.

	Syntax	Parameter
	public void PostCaptureImage(ImageCaptureEvent event);	ImageCaptureEvent event

3.1.22 PostDownloadItem

The PostDownloadItem event occurs after a batch item has been downloaded.

	Syntax	Parameter
	public void PostDownloadItem(DownloadItemEvent event);	DownloadItemEvent event

3.1.23 PostUploadItem

The PostUploadItem event occurs after a batch item has been uploaded.

	Syntax	Parameter
	public void PostUploadItem(UploadItemEvent event);	UploadItemEvent event

3.1.24 RegionSelected

The RegionSelected event occurs when a region has been selected on a document page.

	Syntax	Parameter
	public void RegionSelected(RegionSelectedEvent event);	RegionSelectedEvent event

3.1.25 ScriptStart

The ScriptStart event occurs when scripting is first initialized.

	Syntax
	public void ScriptStart();

3.2 Event Classes

An event class is used to define an event. This section describes the following event classes:

	
BatchDeleteEvent

	
BatchScanEvent

	
BatchSelectedEvent

	
DBSearchEvent

	
DocumentRemovedEvent

	
DocumentSelectedEvent

	
DownloadItemEvent

	
FieldEvent

	
ImageCaptureEvent

	
PageDeleteEvent

	
PreDocumentRemoveEvent

	
RegionSelectedEvent

	
ReleaseBatchEvent

	
UploadItemEvent

3.2.1 BatchDeleteEvent

The BatchDeleteEvent class is used in events that occur when a user deletes a batch.

	Property	Type	Description
	batches	List<CaptureBatch>	List of batches that will be deleted.
	canceled	boolean	If set to True, the delete operation will be canceled.

3.2.2 BatchScanEvent

The BatchScanEvent class is used in events that occur when a user scans a batch.

	Property	Type	Description
	batch	CaptureBatch
	The batch that new items will be added to during scan or import.
	canceled	boolean	If set to True, the scan or import will be canceled.
	sourceFiles	List<File>	When using the Import Source, this contains the list of files being imported.
	operation	CaptureOperation
	Indicates the operation that triggered this event.

3.2.3 BatchSelectedEvent

The BatchSelectedEvent class is used in events that occur when a user selects a batch.

	Property	Type	Description
	batch	CaptureBatch
	Batch that has been selected in the batch pane.

3.2.4 DBSearchEvent

The DBSearchEvent class is used in events that occur when a user initiates a database lookup.

	Property	Type	Description
	displayHitlist	boolean	If set to True, displays the database lookup results.
	exactMatch	boolean	If set to True, the search value must be an exact match.
	metadataID	String	ID of the metadata field being searched.
	metadataValue	String	Value of the metadata field being searched.
	rowResults	List<DbSearchResultRow>	List of row results returned from the search.
	canceled	boolean	If set to True, cancels the search.

3.2.5 DocumentRemovedEvent

The DocumentRemovedEvent class is used in events that occur when a user removes a document from the batch.

	Property	Type	Description
	document	CaptureDocument
	The document being removed from the batch.

3.2.6 DocumentSelectedEvent

The DocumentSelectedEvent class is used in events that occur when a user selects a document.

	Property	Type	Description
	document	CaptureDocument
	The document that has been selected in the batch pane.

3.2.7 DownloadItemEvent

The DownloadItemEvent class is used in events that occur when batch items are downloaded from the server.

	Property	Type	Description
	captureItem	CaptureItem
	After a batch is opened, indicates the current item being downloaded from the server.

3.2.8 FieldEvent

The FieldEvent class is used in events that occur when a user enters a field, exits a field, or types into a field.

	Property	Type	Description
	cancel	Boolean	If set to True, cancels the event.
	field	DataField
	The field this event is acting upon.
	keyEvent	KeyEvent	The keyboard event used to generate this event.
	traversalDirection	Integer	Indicates which direction the field focus is moving.
TRAVERSAL Constants:

	
TRAVERSAL_UNDETERMINED = 0

	
TRAVERSAL_FORWARD = 1

	
TRAVERSAL_BACKWARD = 2

	
TRAVERSAL_FORWARD_COMPONENT = 3

	
TRAVERSAL_BACKWARD_COMPONENT = 4

3.2.9 ImageCaptureEvent

The ImageCaptureEvent class is used in events that occur when the user is capturing an image.

	Property	Type	Description
	cancel	boolean	If set to True, the capture operation will be canceled.
	imageCount	Integer	Indicates how many images have been captured.
	imageFileName	String	Indicates the file name of image saved locally.
	xdpi	Integer	For images, indicates the horizontal dots per inch.
	ydpi	Integer	For images, indicates the vertical dots per inch.
	brightness	Integer	The brightness value used to capture the image.
	contrast	Integer	The contrast value used to capture the image.
	logicalBreak	boolean	If set to True, indicates the start of a document.
	sourceFiles	List<File>	When using the Import Source, contains the list of files being imported.
	sourceFileName	String	When using the Import Source, contains the name of the source file being imported.
	image	BufferedImage	For images files, contains a BufferedImage object.
	source	ImageCaptureEngine	The ImageCaptureEngine that created this event.
	imageFormat	ImageCaptureEngine.ImageFormat	Indicates the format that images will be saved as Available Formats: tiffG4, tiffJpegGray, tiffJpegColor, jpegGray, and jpegColor.

3.2.10 PageDeleteEvent

The PageDeleteEvent class is used when a page is being deleted.

	Property	Type	Description
	pages	List<CaptureDocumentPage>	The list of pages being deleted. You can modify this list to remove pages that you do not want to delete.
	canceled	Boolean	If set to True, no pages will be deleted.

3.2.11 PreDocumentRemoveEvent

The PreDocumentRemoveEvent class is used when one or more documents are being deleted.

	Property	Type	Description
	selectedDocuments	List<CaptureDocument>	The list of selected documents about to be removed from the batch.
	canceled	Boolean	If set to True, no documents will be deleted.

3.2.12 RegionSelectedEvent

The RegionSelectedEvent class is used in events that occur when a user selects a region of the image in the viewer.

	Property	Type	Description
	mouseEvent	MouseEvent	The MouseEvent used to select the region within the image.
	selectionRectangle	Rectangle	The rectangle selected within the image.
	image	BufferedImage	The BufferedImage containing the selected portion of the image.

3.2.13 ReleaseBatchEvent

The ReleaseBatchEvent class is used in events that occur when a batch is about to get released.

	Property	Type	Description
	batches	List<CaptureBatch>	The list of batches that are about to be released.
	processorID	String	ID of the processor to which the batches will get released.
	jobID	String	ID of the processor job.
	canceled	boolean	If the flag is set to True, the release will be canceled.

3.2.14 UploadItemEvent

The UploadItemEvent class is used in events that occur when batch items are uploaded to the server.

	Property	Type	Description
	captureItem	CaptureItem
	After a batch is released, indicates the current item being uploaded to the server.

3.3 Capture Client Core Classes

This section describes the following Capture Client Core classes:

	
CaptureBatch

	
CaptureBatchStatus

	
CaptureDataType

	
CaptureDocument

	
CaptureDocumentPage

	
CaptureDocumentPages

	
CaptureDocuments

	
CaptureErrorManager

	
CaptureField

	
CaptureFields

	
CaptureItem

	
CaptureItems

	
CaptureOperation

	
CaptureStateManager

	
CaptureWorkspace

	
ClientProfile

	
ClientUI

	
DBLookupProfile

	
DBLookupResult

	
DbSearchResultRow

	
DbSearchFieldInfo

	
DocumentType

	
DocumentTypes

	
FieldDefinition

	
FieldDefinitions

3.3.1 CaptureBatch

The CaptureBatch class contains all properties and operations for a batch.

	Property	Type	Description
	batchId	String	The internal ID for the batch.
	batchName	String	The name of the batch.
	batchPath	String	The local path where information for this batch is stored.
	createdBy	String	The user that created the batch.
	createdDate	Date	The date that the batch was created.
	currentPriority	Integer	The priority assigned to the batch.
	currentStatus	CaptureBatchStatus
	The status assigned to the batch.
	documents	CaptureDocuments
	The documents contained in the batch.
	items	CaptureItems
	The items associated with the batch.
	jobID	String	ID of the processor job. This property is populated just before the batch is released.
	lastModifiedDate	Date	The date that the batch was last modified.
	note	String	The note assigned to the batch.
	processorID	String	ID of the processor to which the batch will get released. This property is populated just before the batch is released.
	workspace	CaptureWorkspace
	The workspace used to create the batch.

The following table describes the syntax for persist() method:

	Syntax	Description
	persist() throws BatchLockException, CaptureException	Saves the batch record to the server.

3.3.2 CaptureBatchStatus

The CaptureBatchStatus class contains the properties of a batch status.

	Property	Type	Description
	value	String	The description of the status.
	id	String	The internal ID of the status.

3.3.3 CaptureDataType

The CaptureDataType is an enumeration that defines the data types for metadata field definitions. The following are valid Capture data types:

	
NUMERIC

	
ALPHA

	
ALPHANUMERIC

	
DATE

	
FLOAT

3.3.4 CaptureDocument

The CaptureDocument class contains all properties of a document.

	Property	Type	Description
	documentType	DocumentType
	The document profile assigned to the document.
	fields	CaptureFields	The metadata assigned to the document.
	id	String	The internal ID for the document.
	pages	CaptureDocumentPages
	The pages contained in the document.
	parentBatch	CaptureBatch
	The batch that contains this document.
	title	String	The title of the document.

The following table describes the syntax for persist() method:

	Syntax	Description
	persist() throws BatchLockException, CaptureException	Saves the document, related document pages, and metadata to the server.

3.3.5 CaptureDocumentPage

The CaptureDocumentPage class contains the properties of a document page.

	Property	Type	Description
	imageFilenameKey	String	The local filename for this page.
	pageID	String	The internal ID for the page.
	pageNumber	Integer	The number of the page within the document.
	parentDocument	CaptureDocument
	The document that contains this page.

3.3.6 CaptureDocumentPages

The CaptureDocumentPages class is a collection of document pages and is of type Vector<CaptureDocumentPage>. Use the Vector methods to retrieve document pages from instances of this class.

See the Java API documentation for more information on the Vector class and its methods.

3.3.7 CaptureDocuments

The CaptureDocuments class is a collection of documents and is of type Vector<CaptureDocument>. Use the Vector methods to retrieve documents from instances of this class.

See the Java API documentation for more information on the Vector class and its methods.

3.3.8 CaptureErrorManager

The CaptureErrorManager class manages what error messages are logged.

	Property	Type	Description
	logLevel	Level	The minimum level used to log messages.

The following table describes the syntax for logMessage() method:

	Syntax	Description
	logMessage(Level level, String message)
logMessage(Level level, String message, Throwable errorException)

	Logs a message with the specified log level.
or

Logs a message and error with the specified log level.

The following table describes the parameters for logMessage() method:

	Parameter	Type	Description
	level	Level	The severity level for this log entry.
	message	String	The message you wish to log.
	errorException	Throwable	If logging an error, the exception that is the cause of the error.

3.3.9 CaptureField

The CaptureField class contains the properties of a document metadata field.

	Property	Type	Description
	displayValue	String	The value to display for this field.
	fieldname	String	The name of the field.
	length	Integer	The maximum length of the field.
	required	boolean	If True, this field is required to have a value.
	value	String	The value for this field.

The following table describes the syntax for setDate() method:

	Syntax	Description
	setDate(Date date)	Sets the value of the metadata field to a date.

The following table describes the parameters for setDate() method:

	Parameter	Type	Description
	date	Date	The date value to be set.

3.3.10 CaptureFields

The CaptureField class is a map of metadata field definitions. It is of type LinkedHashMap<String, CaptureField> and the map key is the field name. Use the LinkedHashMap methods to retrieve the fields from instances of this class.

See the Java API documentation for more information on the LinkedHashMap class and its methods.

3.3.11 CaptureItem

The CaptureItem class contains properties of an item (single image or non-image file) associated with a document page.

	Property	Type	Description
	filename	String	The name of the file for this item.
	parentBatch	CaptureBatch
	The batch containing this item.
	sourceFilename	String	If this item was imported, contains the name of the file it was imported from.

3.3.12 CaptureItems

The CaptureItems class is a map of Capture items. It is of type TreeMap<String, CaptureItem> and the map key is the item filename. Use the TreeMap methods to retrieve the items from instances of this class.

See the Java API documentation for more information on the TreeMap class and its methods.

3.3.13 CaptureOperation

This is an enumeration that defines the capture operation being performed on the batch. The following are valid Capture operation values:

	
Create

	
Append

	
Insert

	
Replace

3.3.14 CaptureStateManager

The CaptureStateManager class contains properties related to the current state of the client. The instance of this class is available to all scripting events through the "Capture" property.

	Property	Type	Description
	activeBatch	CaptureBatch
	The active batch.
	activeDocument	CaptureDocument
	The active document.
	activeDocumentType	DocumentType
	The active document profile.
	activePage	CaptureDocumentPage
	The active document page.
	activeProfile	ClientProfile
	The active client profile.
	applicationUserPath	String	The path the client uses for its application data.
	batchesPath	String	The path the client uses to cache batch data.
	captureSystemId	String	The ID of the Capture system that the client is connected to.
	computerName	String	The name of the computer the client is running on.
	currentUser	String	The user currently logged into the client.
	errorManager	CaptureErrorManager
	The Error Manager object used for logging information.

3.3.15 CaptureWorkspace

The CaptureWorkspace class contains all properties and operations for a workspace.

	Property	Type	Description
	id	String	The internal ID associated with the workspace.
	fieldDefinitions	FieldDefinitions	The metadata defined for this workspace.
	name	String	The name of the workspace.
	statuses	List<CaptureBatchStatus>	A list of batch statuses available to this workspace.

The following table describes the syntax for getDBLookupProfile() method:

	Syntax	Description
	public DBLookupProfile getDBLookupProfile(String profileId) throws CaptureException	Retrieves the database lookup profile for the given database lookup profile ID.

The following table describes the parameter for getDBLookupProfile() method:

	Parameter	Type	Description
	profileId	String	The ID of the database lookup profile.

3.3.16 ClientProfile

The ClientProfile class contains the properties of a client profile as defined in the Capture Workspace Console.

	Property	Type	Description
	alwaysDisplayHitList	boolean	If True, after a database lookup is executed, the results are displayed regardless of the number of results returned.
	applyBrightness	boolean	If True, applies the brightness and contrast settings to the selected Capture source.
	batchFilterDaysOldFrom	Integer	A batch filter setting that specifies the minimum days old a batch can be.
	batchFilterDaysOldTo	Integer	A batch filter setting that specifies the maximum days old a batch can be.
	batchFilterPrimarySortField	String	The batch property used for the primary sort of the batches tree.
	batchFilterPrimarySortOrder	SortOrder
	The primary sort order for the batches tree.
	batchFilterSecondarySortField	String	The batch property used for the secondary sort of the batches tree.
	batchFilterSecondarySortOrder	SortOrder
	The secondary sort order for the batches tree.
	batchFilterState	Integer	The batch states to include in the batch filter.
	batchPrefix	String	The batch prefix to use for batches created using this profile.
	batchProcessorID	String	The ID of the batch processor to use during post-processing.
	batchProcessorJobID	String	The ID of the batch processor's job to use during post-processing.
	batchVisibility	BatchVisibility
	A batch filter setting that specifies when a user sees the batch in the batches tree.
	blankByteThreshold	long	If the number of bytes in the file size of an image is less than the blankByteThreshold, the page is considered to be a blank page.
	brightness	Integer	The brightness to apply to the selected Capture source.
	captureType	CaptureType
	Indicates whether the profile is capture-only, capture and index, or index-only.
	contrast	Integer	The contrast to apply to the selected Capture source.
	DBLookupMaxRecords	Integer	The maximum number of records to return from a database lookup.
	DBLookupProfileId	String	The ID of the database lookup profile used by this profile.
	defaultColor	ColorType
	The default color type used during capture.
	defaultDpi	Integer	The default DPI to use during capture.
	defaultPriority	Integer	A batch created from this profile will be assigned this priority.
	defaultStatusId	String	A batch created from this profile will be assigned this status.
	description	String	The description for the profile.
	documentCreationType	DocumentCreationType
	Specifies how many pages are created per document at capture time.
	documentTypes	DocumentTypes
	An object containing the document profiles that this profile can assign to a batch.
	id	String	The ID associated with this profile.
	maxPages	Integer	The non-image file preview page limit.
	name	String	The name of the profile.
	nonImageAction	NonImageAction
	The action to take for non-image files.
	nonImageDpi	int	For client profiles having a nonImageAction property of type CONVERT, this property contains the image DPI for non-image files.
	nonImageFormat	String	For client profiles having a nonImageAction property of type CONVERT, this property contains the image format for non-image files. This value will be either "TIFF_BW" or "JPEG".
	nonImageJpegQuality	int	For client profiles having a nonImageAction property of type CONVERT and a nonImageFormat value of "JPEG", this property contains the JPEG image quality for non-image files.
	picklistRelationshipProfile	String	The dependent choice list used by this profile.
	prefixes	List<String>	The batch prefixes used in the batch filter.
	preventDefaultColorOverride	boolean	If True, the color cannot be overridden.
	preventDefaultDpiOverride	boolean	If True, the dpi cannot be overridden.
	priorities	List<Integer>	The batch priorities used in the batch filter.
	sepByteThreshold	Integer	If the number of bytes in the file size of an image is less than the sepByteThreshold, the page is considered to be a separator sheet.
	statuses	List<String>	The batch statuses used in the batch filter.
	supportedDocumentTypes	List<String>	A list of document profile IDs which represent the document profiles that this profile can assign to a batch.
	workspaceId	String	The ID of the workspace in which this profile is associated.
	workspaceName	String	The name of the workspace in which this profile is associated.

The following table describes the enumeration and values for the ClientProfile class:

	Enumeration	Value
	AutoPopulateType	NONE, SCANDATE, INDEXDATE, DEFAULTVALUE, BATCHNAME, USERID, COMPUTERNAME, CLIENTPROFILENAME, BATCHSTATUS, BATCHPRIORITY
	BatchVisibility	USER_AND_COMPUTER, USER, ALL
	DocumentCreationType	ONE_PAGE, TWO_PAGES, VARIABLE_PAGES, PROMPT_USER
	CaptureType	CAPTURE_ONLY, CAPTURE_AND_INDEX, INDEX_ONLY
	NonImageAction	DISALLOW, ALLOW, CONVERT
	SortOrder	ASCENDING, DESCENDING
	ColorType	NotSpecified, BlackAndWhite, Gray, Color

3.3.17 ClientUI

The ClientUI class allows the user to invoke user interface related actions and can be accessed through client scripts.

	Property	Type	Description
	batchEditForm	BatchEditForm	An instance of the current batch edit form.

This class includes the following methods:

	
releaseBatch()

	
setActiveMetadataFieldByName()

	
setActiveMetadataFieldByID()

	
execDBSearch()

	
execDBSearch()

releaseBatch()

The following table describes the syntax for releaseBatch() method:

	Syntax	Description
	public void releaseBatch(List<CaptureBatch> batches, String processorID, String jobID)	Unlocks or releases a list of batches for further processing.

The following table describes the parameters for releaseBatch() method:

	Parameter	Type	Description
	batches	List<CaptureBatch>	The list of batches to be released.
	processorID	String	ID of the processor to which the batches will get released.
	jobID	String	ID of the processor job.

setActiveMetadataFieldByName()

The following table describes the syntax for setActiveMetadataFieldByName() method:

	Syntax	Description
	public void setActiveMetadataFieldByName(String fieldName)	Moves the focus in the metadata pane to the metadata field specified by the field name.

The following table describes the parameter for setActiveMetadataFieldByName() method:

	Parameter	Type	Description
	fieldName	String	The name of the metadata field to which the focus is to be moved.

setActiveMetadataFieldByID()

The following table describes the syntax for setActiveMetadataFieldByID() method:

	Syntax	Description
	public void setActiveMetadataFieldByID(String fieldID)	Moves the focus in the metadata pane to the metadata field name specified by the field ID.

The following table describes the parameter for setActiveMetadataFieldByID() method:

	Parameter	Type	Description
	fieldID	String	The ID of the metadata field to which the focus is to be moved.

execDBSearch()

The following table describes the syntax for execDBSearch() method:

	Syntax	Description
	public void execDBSearch(String metadataName, String metadataValue, Boolean alwaysDisplayHitList)	Performs a database lookup for the given metadata field name and value. This method then updates the metadata fields in the metadata pane with the results.

The following table describes the parameters for execDBSearch() method:

	Parameter	Type	Description
	metadataName	String	The name of the metadata field that is to be looked up.
	metadataValue	String	The value that is used to perform the lookup.
	alwaysDisplayHitList	Boolean	If set to True, displays the lookup results irrespective of the number of results.

execDBSearch()

The following table describes the syntax for execDBSearch() method:

	Syntax	Description
	public void execDBSearch(String metadataName, String metadataValue, Boolean alwaysDisplayHitList, Boolean exactSearch, Integer maximumRecords)	Performs a database lookup for the given metadata field name and value. This method then updates the metadata fields in the metadata pane with the results.

The following table describes the parameters for execDBSearch() method:

	Parameter	Type	Description
	metadataName	String	The name of the metadata field that is to be looked up.
	metadataValue	String	The value that is used to perform the lookup.
	alwaysDisplayHitList	Boolean	If set to True, displays the lookup results irrespective of the number of results.
	exactSearch	Boolean	If set to True, the result must exactly match the value being searched. If set to False, partial matches are also returned.
	maximumRecords	Integer	Indicates the maximum number of records the search returns.

3.3.18 DBLookupProfile

The DBLookupProfile class represents a profile for database lookup. This class includes the following method:

execDBLookup()

The following table describes the syntax for execDBLookup() method:

	Syntax	Description
	Database Lookup without sorting
DBLookupResult execDBLookup(String searchID, String fieldID, String value, boolean exactMatch, Integer maxRows) throws CaptureException

Database Lookup with sorting

DBLookupResult execDBLookup(String searchID, String fieldID, String value, Boolean exactMatch, String primarySortField, Integer primarySortOrder, String secondarySortField, Integer secondarySortOrder, Integer maxRows) throws CaptureException

	Executes a database lookup with or without sorting.
Sort Constants:

	
SORT_ASC = 0

	
SORT_DESC = 1

The following table describes the parameters for the execDBLookup() method:

	Parameter	Type	Description
	searchID	String	The ID of the database search defined for the database lookup profile.
	fieldID	String	The ID of the metadata field being searched.
	value	String	The value being searched upon.
	exactMatch	Boolean	If True, the value must be an exact match.
	primarySortField	String	The field ID used for the primary sort.
	primarySortOrder	Integer	The sort order of the primary sort.
	secondarySortField	String	The field ID used for the secondary sort.
	secondarySortOrder	Integer	The sort order of the secondary sort.
	maxRows	Integer	The maximum number of rows to be returned.

3.3.19 DBLookupResult

The DBLookupResult class represents the result of a database lookup.

	Property	Type	Description
	searchFieldInfoList	List<DbSearchFieldInfo>	A list of search field information describing the results returned by the database lookup.
	searchResultRows	List<DbSearchResultRow>	A list of search result rows returned by the database lookup.

3.3.20 DbSearchResultRow

The DbSearchResultRow class represents one row result returned from a database lookup.

	Property	Type	Description
	results	List<String>	A list of string values associated with one search result. The values in the list will be in the same order in which the return fields are defined.

3.3.21 DbSearchFieldInfo

The DbSearchFieldInfo class represents the field information describing the results of a database lookup.

	Property	Type	Description
	captureIndexDefID	String	The metadata field ID.
	dbColumnName	String	The name of the database column.
	dbColumnType	Integer	The type of the database column.
	captureFieldType	Integer	The data type of the metadata field.

3.3.22 DocumentType

The DocumentType class represents a document profile. A document profile dictates what metadata fields are available to documents created from this type.

	Property	Type	Description
	fieldDefinitions	FieldDefinitions
	The metadata applicable to the document profile.
	id	String	The internal ID associated with the document profile.
	name	String	The name for the document profile.
	description	String	The description for the document profile.

3.3.23 DocumentTypes

The DocumentTypes class is a map of document profiles. It is of type TreeMap<String, DocumentType> and the map key is the document profile ID. You can use the TreeMap methods to retrieve the document profiles from instances of this class.

See the Java API documentation for more information on the TreeMap class and its methods.

3.3.24 FieldDefinition

The FieldDefinition class represents a metadata field's definition.

	Property	Type	Description
	autoPopulateType	ClientProfile.AutoPopulateType	Specifies how the field should be auto-populated.
	dataType	CaptureDataType	The data type of this field.
	autoPopulateDefault	String	The default value for this field.
	displayable	boolean	Indicates whether this field will be displayed in the client.
	length	Integer	The maximum length for this field.
	id	String	The internal ID for this field.
	name	String	The name of this field.
	inputMask	String	The input mask.
	locked	boolean	True if the field is locked.
	maxValue	Float	The maximum value for this field.
	minValue	Float	The minimum value for this field.
	pickListCaseInsensitive	boolean	If True, the choice list is case insensitive.
	pickListID	String	The ID of the choice list associated with this field.
	pickListParentFieldID	String	The ID of the choice list parent field.
	pickListSourceID	String	The source ID of the dependent choice list for this field.
	profileDisplayFormat	String	The format used when displaying the field.
	required	boolean	Indicates whether this field is required to have a value.
	validationExpression	String	A regular expression used to validate the values entered for this field.

3.3.25 FieldDefinitions

The FieldDefinitions class is a map of metadata field definitions. It is of type LinkedHashMap<String, FieldDefinition> and the map key is the metadata field definition ID. You can use the LinkedHashMap methods to retrieve the metadata field definitions from instances of this class.

See the Java API documentation for more information on the LinkedHashMap class and its methods.

3.4 Capture Client FieldEdit Classes

The FieldEdit class is the user interface component for entering metadata values. This section describes the following Capture Client FieldEdit classes:

	
DataField

	
FloatField

	
IntegerField

	
PicklistEntry

	
PicklistField

	
TextField

3.4.1 DataField

The DataField class represents the data for a single field of the FieldEdit component and is the base class for the various field types.

	Property	Type	Description
	caption	String	The field caption.
	fieldName	String	The field name.
	displayFormat	Format	The display format for the field.
	inputMask	String	The input mask.
	fieldLock	boolean	If True, the field is locked.
	maxLength	Long	The maximum length of the field.
	required	boolean	If True, this field is required to be entered.
	uncommittedText	String	The current text in the field.

3.4.2 DateField

The DataField class extends from DataField and represents a date field.

	Property	Type	Description
	value	Date	The value, represented by a Date object.

3.4.3 FloatField

This FloatField class extends from DataField and represents a float field.

	Property	Type	Description
	value	Float	The value, represented by a Float object.

3.4.4 IntegerField

The IntegerField class extends from DataField and represents an integer field.

	Property	Type	Description
	value	Integer	The value, represented by an Integer object.

3.4.5 PicklistEntry

The PicklistEntry class is used in picklist-type fields to determine the display and commit values. This class includes the following methods:

	
getCommitValue()

	
getDisplayValue()

getCommitValue()

The following table describes the syntax for getCommitValue() method:

	Syntax	Description
	public String getCommitValue()	Returns the commit value of the choice list entry.

getDisplayValue()

The following table describes the syntax for getDisplayValue() method:

	Syntax	Description
	public String getDisplayValue()	Returns the display value of the choice list entry.

3.4.6 PicklistField

The PicklistField class extends from DataField and represents a Pick-list (Choice List) field.

	Property	Type	Description
	pickListCaseSensitive	boolean	If true, the contents of this list are sensitive to case.
	pickListEntries	List<PicklistEntry>	The list of entries in the choice list.
	value	PicklistEntry
	The current value of the choice list.

3.4.7 TextField

This TextField class extends from DataField and represents an alphanumeric field.

	Property	Type	Description
	value	String	The alphanumeric value of the field.

3.5 Sample Client Scripts

The section describes the following sample client scripts:

	
Sample Client Script 1

	
Sample Client Script 2

3.5.1 Sample Client Script 1

This sample script customizes client behavior in the following ways:

	
Prevents the client user from leaving a metadata field if the entry contains the word "test".

	
Prevents the user from entering an asterisk in any metadata field.

	
Outputs event information to the java console, such as coordinates after a user right-mouse-drags a selection on an image.

	
Stops releasing the batches to predefined processors and unlocks the batches.

Note that this script also writes out a line (printIn) to the java console for each script event, for verification or debugging purposes.

importClass(java.awt.event.KeyEvent);

function ScriptStart() {
 println("ScriptStart");
}

function BatchScanBegin(event) { // BatchScanEvent
 println("BatchScanBegin");
}

function BatchScanComplete(event) { // BatchScanEvent
 println("BatchScanComplete");
 println(event.getBatch().getBatchName() + " finished Scanning.");
}

function BatchSelected(event) { // BatchSelectedEvent
 println("BatchSelected: " + event.getBatch().getBatchName());
}

function PreBatchDelete(event) { // BatchDeleteEvent
 println("BatchDelete");
}

function CaptureImage(event) { // ImageCaptureEvent
 println("CaptureImage");
}

function DocumentCreated(event) { // CaptureDocument
 println("DocumentCreated");
}

function DocumentSelected(event) { // DocumentSelectedEvent
 println("DocumentSelected: " + event.getDocument().getTitle());
}

function FieldGotFocus(event) { // FieldEvent
 println("FieldGotFocus");
}

function FieldLostFocus(event) { // FieldEvent
 var dataField;
 println("FieldLostFocus");
 dataField = event.getField();
 if (dataField.getUncommittedText().equalsIgnoreCase("test")) {
 event.setCancel(true);
 println("invalid value. script will not allow leaving focus.");
 }
}

function FieldProcessKey(event) { // FieldEvent
 var keyEvent;
 // println("FieldProcessKey");
 keyEvent = event.getKeyEvent();
 if (keyEvent.getID() == KeyEvent.KEY_TYPED) {
 //println(keyEvent.getKeyChar());
 if (String.fromCharCode(keyEvent.getKeyChar()) == '*') {
 println("Asterisk not allowed in any field.");
 keyEvent.consume();
 }
 }
}

function PostCaptureImage(event) { // ImageCaptureEvent
 println("PostCaptureImage");
}

function PreCaptureImage(event) { // ImageCaptureEvent
 println("PreCaptureImage");
}

function PreUploadItem(event) { // UploadItemEvent
 println("PreUploadItem: " + event.getCaptureItem().getFilename());
}

function PostUploadItem(event) { // UploadItemEvent
 println("PostUploadItem: " + event.getCaptureItem().getFilename());
}

function DBSearchComplete(searchEvent) { // DBSearchEvent
 println("DBSearchComplete.");
}

function DBSearchResults(searchEvent) { // DBSearchEvent
 var results;
 var resultRow;
 var searchParameters;

 println("DBSearchResult");

 results = searchEvent.getRowResults();
 println("Found " + results.size() + " results.");
}

function DBSearchStart(searchEvent) { // DBSearchEvent
 println("DBSearchStart");
 println("Metadata value was " + searchEvent.getMetadataValue());
 //searchEvent.setMetadataValue("c");
}

function DocumentRemoved(event) { // DocumentRemovedEvent
 println("DocumentRemoved");
}

function ImportFilesSelected(files, cancel) { // ImportFilesSelectedEvent
 println("ImportFilesSelected");
}

function PostDownloadItem(event) { // DownloadItemEvent
 println("PostDownloadItem: " + event.getCaptureItem().getFilename());
}

function PreDownloadItem(event) { // DownloadItemEvent
 println("PreDownloadItem: " + event.getCaptureItem().getFilename());
}

function RegionSelected(event) { // RegionSelectedEvent
 var rect;
 println("RegionSelected");
 rect = event.getSelectionRectangle();
 println("Rectangle (X,Y): (" + rect.getX() + "," + rect.getY() + "); (W,H): (" + rect.getWidth() + "," + rect.getHeight() + ")");
}

function PreReleaseBatch(event) { // ReleaseBatchEvent
 // Clears the postProcess setting specified in the Capture profile and allows the batches to get unlocked.
 event.setProcessorID(null);
 event.setJobID(null);
}

3.5.2 Sample Client Script 2

This sample script customizes client behavior in the following ways:

	
Uses the BatchScanBegin function to restrict files that can be imported to those with a .TIF extension only.

	
Uses the DBSearchResults function to modify the results of a database lookup so that only the first result is used, and prevents the results list from displaying.

importClass(java.util.ArrayList);

function BatchScanBegin(event) { // BatchScanEvent
 // Check if there are files being imported.
 var sourceFilesList = event.getSourceFiles();
 if (sourceFilesList != null) {
 // Create a list to hold the filtered results.
 var filteredList = new ArrayList();

 // Loop through each of the files.
 var iterator = sourceFilesList.iterator();
 while (iterator.hasNext()) {
 // If the file name ends with ".TIF", add it to the list.
 var file = iterator.next();
 var filename = file.getName().toUpperCase();
 if (filename.endsWith(".TIF")) {
 filteredList.add(file);
 }
 }

 // Replace the original list with the filtered list.
 event.setSourceFiles(filteredList);
 }
}

function DBSearchResults(searchEvent) { // DBSearchEvent
 var results;
 var resultRow;
 var searchParameters;

 // Return only the first search result.
 results = searchEvent.getRowResults();
 if (results.size() > 0) {
 resultRow = results.get(0);
 results.clear();
 results.add(resultRow);
 // Do not display the list of results to the user.
 searchEvent.setDisplayHitlist(false);
 }
}

4 Creating Recognition Processor Scripts

This chapter describes creating Recognition Processor scripts.

The following are common uses for Recognition Processor scripts:

	
Splitting a single bar code value into multiple field values.

	
Assigning bar code value(s) to proper fields.

	
Using custom logic to determine which pages constitute document separation.

	
Performing custom auditing of server activity.

	
Canceling the committing of a batch due to invalid data.

Capture enables you to create Recognition Processor scripts to customize recognition processing. For more information, see Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture.

This chapter covers the following topics:

	
Section 4.1, "Recognition Processor Methods"

	
Section 4.2, "Recognition Processor Classes"

	
Section 4.3, "Sample Recognition Processor Script"

4.1 Recognition Processor Methods

This section provides a description of the Recognition Processor methods. Methods are executed in the following order in Recognition Processor batch jobs:

	
initialize

	
processBatch

	
restoreCaptureBatch

	
beginPhase

	
endPhase

	
extractBatchItem

	
barcodesFoundOnItem

	
batchItemAllValidBarcodes

	
determineSeparatorPage

	
batchItemValidBarcode

	
determineDocType

	
beginDatabaseLookup

	
determineIndexValues

	
renameOrigCaptureDocTitle

	
createCaptureDoc

	
postProcess

	
endBatchProcess

	
Note:

Some methods are only executed under certain job configurations.

4.1.1 initialize

This is the very first call the Recognition Processor makes to the script. There is no batch identified yet.

The following are the properties populated in the Recognition Processor class (rpc):

	
phaseID: 0

	
logger: Logger can be used to log additional entries. This property remains during the entire process, and does not repeat for every method.

	
job: current Recognition Job. This property remains during the entire process, and does not repeat for every method.

	
workspaceEntity: Current workspace entity. This property remains during the entire process, and does not repeat for every method.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void initialize(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.2 processBatch

The processBatch method is called before the Recognition Processor processes the batch. The following are the properties populated in the rpc:

	
phaseID: 0

	
ble: At this point, the Recognition Processor has refreshed the document list for the batch. This property will remain during the remainder of the process, and will not repeat for the rest of the methods.

	
cancelAction: You can set the flag to true to skip processing of a batch.

	
processorBase: This is part of Dynamic Monitoring Service (DMS) using which the user can collect their own set of metrics data into the noun, that this property represents. This property will stay through the remainder of the process and does not repeat for each method.

	
DMS_Literals: Resource bundles that are being used by DMS. This property will stay through the remainder of the process and does not repeat for each method.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void processBatch(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.3 restoreCaptureBatch

The restoreCaptureBatch method is invoked when a batch that was processed earlier was aborted due to an error or other reasons during document creation phase. Recognition Processor needs to first clean up the batch to restore the batch to its original state, before initiating processing.

The restoreCaptureBatch method is invoked when all the following conditions are met:

	
Batch state indicates that the processor last failed at the document creation phase.

	
Batch has not been modified since last process.

	
Recognition job has not been modified since last process.

The Recognition Processor makes sure that both batch and job have not been modified since the last process. In such cases, the processor attempts to restore the batch to its original state by removing previous documents created by the recognition process.

The following are the properties populated in the rpc:

	
phaseID: 0

	
cancelAction: You can set the flag to true to skip restoring of the batch, and the process skips processing this batch.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void restoreCaptureBatch(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.4 beginPhase

The beginPhase method indicates the beginning of a phase. The following are the properties populated in the rpc:

	
phaseID: Identification of the phase. There are six different phases (see Section 4.2.9 for details on RecognitionProcessorContext phaseID).

	
cancelAction: You can set the flag to true to skip certain phases. For phases that cannot be skipped, this flag is ignored.

	
Phases that can be canceled are: bar code recognition, document classification, and indexing.

	
Phases that cannot be canceled are: document organization, document creation, and post-processing.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void beginPhase(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.5 endPhase

The endPhase method indicates the end of a phase. The following are the properties populated in the rpc:

	
phaseID: Identification of the phase. There are six different phases (see Section 4.2.9 for details on RecognitionProcessorContext phaseID).

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void endPhase(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.6 extractBatchItem

The extractBatchItem method is executed during the bar code recognition phase. The Recognition Processor extracts batch items, one at a time, into a directory right before the processor performs bar code recognition on the page. Then the processor informs you where the items are located.

The following are the properties populated in the rpc:

	
phaseID: 1.

	
extractPath: The directory where the batch item is located.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void extractBatchItem(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.7 barcodesFoundOnItem

The barcodesFoundOnItem method is invoked after the Recognition Processor processed the batch item, collected and recognized bar codes on this item.

The following are the properties populated in the rpc:

	
phaseID: 1.

	
batchItem: Current batch item that is used to perform bar code recognition.

	
patchCodeRead: Patch code value found on the batch item.

	
barCodesRead: A combination of bar codes read on the page and existing bar codes on the batch item.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void barcodesFoundOnItem(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.8 batchItemAllValidBarcodes

The batchItemAllValidBarcodes method is called after the Recognition Processor has finished validating bar codes on a specific batch item.

The following are the properties populated in the rpc:

	
phaseID: 2.

	
batchItem: Current batch item that is used to perform bar code validation.

	
validBarCodes: A list of name or value pairs of the valid bar codes found on the batch item. This list includes all bar codes definitions in the recognition job. You can change the value, but you should not change the name, or add or remove items from the list.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void batchItemAllValidBarcodes(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.9 determineSeparatorPage

The determineSeparatorPage method is called after the Recognition Processor has validated a page as a separator. This method is only invoked if a separator is defined for a recognition job.

The following are the properties populated in the rpc:

	
phaseID: 2.

	
batchItem: Current batch item that is to determine whether the page is a separator or not.

	
validBarCodes: A list of name or value pair of the valid bar codes found on the batch item. This list includes all bar code definitions in the recognition job.

	
separator: This object is null unless this batch item is a valid separator. If you want to make changes, you need to either set the separator to null or to a valid object of class ProcessSeparatorPage.

Recognition Processor's hierarchical separator feature processes and organizes documents within a hierarchy of levels. You can change the level determined by the processor. However, if the level does not fit into a recognition job definition, the processor uses either the highest level (level<=0) or lowest level (level>=max defined level).

Level is used for the hierarchy separator page type only. For any other organization type, this value is ignored. Level should always begin with 1.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void determineSeparatorPage(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.10 batchItemValidBarcode

The batchItemValidBarcode method passes in one valid bar code recognized on a specific batch item. This method call will only happen when the batch organization type is bar code on every page, and Optimize Bar Code Recognition is turned on.

When the processor cannot find a bar code on a page, it will try to determine the separator bar code value on the next page. validBarcode is populated with the bar code found on the next page. If bar code is not found, validBarcode is set to null. In such cases, this method is called right after the processor has determined the bar code value.

The following are the properties populated in the rpc:

	
phaseID: 2.

	
batchItem: Next page batch item that is to determine the separator bar code value.

	
validBarcode: Name or value pair for the separator bar code. You can change the value if required.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void batchItemValidBarcode(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.11 determineDocType

The determineDocType method is called after the Recognition Processor has identified a document type as either the default document type or one of the dynamic document type mappings. docTypeID can be null if the processor is unable to identify it.

The following are the properties populated in the rpc:

	
phaseID: 3.

	
document: Contains the current document information. Some properties are specific to certain organization type. The docTypeID needs to be examined here, and changed if required.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void determineDocType(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.12 beginDatabaseLookup

The beginDatabaseLookup method is called after the Recognition Processor has determined the lookup value, and before the actual execution of the lookup is called.

The following are the properties populated in the rpc:

	
phaseID: 4.

	
dbLookupValue: You can modify the lookupValue.

	
cancelAction: You can cancel lookup.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void beginDatabaseLookup(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.13 determineIndexValues

The determineIndexValues method is called after the Recognition Processor has determined all metadata values for a particular processor document. You can modify the metadata values.

The following are the properties populated in the rpc:

	
phaseID: 4.

	
document: Contains the current document information. Some properties are specific to certain organization types. The indexValues needs to be examined here, and changed if required.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void determineIndexValues(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.14 renameOrigCaptureDocTitle

The renameOrigCaptureDocTitle method is called before the processor renames the original document as "unindexed". This applies to all batch organization types except the "Do not perform document organization" type.

The following are the properties populated in the rpc:

	
phaseID: 5.

	
unIndexedDocTitle: You can change the title.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void renameOrigCaptureDocTitle(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.15 createCaptureDoc

Before the processor creates the Capture document, it is possible to customize the document title, document type id, metadata values, and document comments. You can also change the batch items associated with this document, although in the case of the "Do not perform document organization" type, changing batch items does not affect the outcome.

	
Note:

You must be careful while changing batch items as it may possibly leave orphan items in the batch, that are not associated with any documents.

The following are the properties populated in the rpc:

	
phaseID: 5.

	
document: Capture document that the processor is about to create.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void createCaptureDoc(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.1.16 postProcess

The postProcess method is invoked after the Recognition Processor has determined all post-process settings, but before any actual changes take place.

The following is the property populated in the rpc:

	
phaseID: 6.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void postProcess(RecognitionProcessorContext rpc, PostProcessContext ppc);	RecognitionProcessorContext rpc
PostProcessContext ppc

4.1.17 endBatchProcess

The endBatchProcess method indicates that the Recognition Processor has finished processing the batch.

The following is the property populated in the rpc:

	
phaseID: 0.

The following table describes the syntax and parameter for this method:

	Syntax	Parameter
	public void endBatchProcess(RecognitionProcessorContext rpc);	RecognitionProcessorContext rpc

4.2 Recognition Processor Classes

The Recognition Processor classes can be used to design Recognition Processor scripts. This section describes the following classes:

	
BarcodeDefinition

	
DocumentDefinition

	
PostProcessContext

	
ProcessorDocument

	
ProcessorItem

	
ProcessorSeparatorPage

	
RecognitionJob

	
RecognitionJobField

	
RecognitionProcessorContext

	
SeparatorDefinition

	
SeparatorRuleDefinition

In addition to the following classes that can be used to design Recognition Processor scripts, there are some common classes that pertain to the Recognition Processor and the Import Processor. For more information on the common classes, see Section 6.1.

4.2.1 BarcodeDefinition

The BarcodeDefinition class contains the constants for the bar code validation rule type. This class represents one bar code definition specified in the third train stop of Recognition Processor Job.

	Property	Type	Description
	barcodeName	String	Bar code definition name.
	validationRule	Integer	Bar code validation rule; valid values are 0-4, as defined in the constants.
The following are the constants for the bar code validation rule type:

	
0 – Does not have a validation rule specified.

	
1 – Uses the bar code length to validate.

	
2 – Uses the mask to validate.

	
3 – Uses a regular expression to validate.

	
4 – Uses a choice list to validate.

	validationLength	Integer	Validation length.
	validationMask	String	Validation mask.
	validationRegularExpression	String	Validation regular expression.
	pickListSourceID	String	Validation choice list source ID.
	pickListID	String	Validation choice list ID.

4.2.2 DocumentDefinition

When a document profile is set to "Determine dynamically using bar code", you can define "Document Profile and Bar Code Value Mappings". Each mapping is represented by a DocumentDefinition class.

	Property	Type	Description
	docTypeID	String	Unique identifier of the Document Type.
	mappingType	Integer	This sets whether to determine document type based on a literal value or a choice list. The valid values are 0 and 1, as defined in the constants:
	
0 – To compare bar code value detected with a literal value specified.

	
1 – The document type mapping option that determines document type based on values in the choice list.

	value	String	Literal string specified.
	pickListSourceID	String	Choice list source ID specified.
	pickListID	String	Choice list ID specified.

4.2.3 PostProcessContext

The PostProcessContext class represents all the settings needed to apply to a batch after processing is completed. If there is any error during processing, PostProcessContext data is populated from the setting of Post Process train stop of Recognition Processor Job.

	Property	Type	Description
	renameBatch	String	Name that the batch will be renamed to during post process. If null, the batch will not be renamed.
	priority	int	Priority that the batch will be changed to during post process. If the priority is not valid (<0 or >10), the batch priority will remain the same.
	status	BatchStatusEntity
	Status entity object that the batch will be associated with during post process. If null, the batch status will remain the same.
	batchState	int	If there were some errors during the recognition process, the batch state will be preset to 16; otherwise, the batch state will be preset to 1.
	emailRecipients	List<String>	A list of email recipients that email notification will be sent to. If empty, email will not be sent.
	emailSubject	String	Subject line of the email notification.
	emailMessage	String	Main message body of email notification. If empty, email will not be sent.
	processorID	String	The processor ID to which the current batch will be released.
	processorJobID	String	The processor job ID to which the current batch will be released.
	comment	String	Comment that will be assigned to the batch being processed.
	errorMessage	String	Error that occurred during the batch processing.

4.2.4 ProcessorDocument

The ProcessorDocument class is a representation of a logical capture document that Recognition Processor has identified. In the last phase, the document creation phase, the recognition process will attempt to create documents to the batch based on a collection of ProcessorDocument.

	Property	Type	Description
	title	String	Title of the document, which is populated during the document creation phase.
	batchItems	List<String>	All batch items associated with this document. This is populated during the document organization phase.
	validBarcodes	List<ProcessorItem>	Valid bar codes associated with this document. This is a combination of all valid bar codes found for all batch items associated with this document. This is populated during the document organization phase.
	failureStatus	int	Status of the current document:
	
0 – No error

	
1 – Failed to validate bar code. This is the case when the processor finds duplicate bar codes in a document that matches the bar code validation rule, and the job setting is to clear the value.

	
2 – Document exceeded maximum page rule.

	
3 – Unable to determine document type.

	
4 – No database search result found, and job setting is to prevent commit when no record is found.

	docTypeID	String	Document type ID associated with the document. If null, the document type has not been determined.
	comment	String	Comments for the document. It is usually error detail for 'failureStatus,' which you can customize through script.
	captureDocID	String	This is only used in the "Do not perform document organization" type, where the processor does not organize documents, and does not create any Capture documents. This ID is the Capture document ID.
	separator	ProcessorSeparatorPage
	Separator page of this document. This applies to the "Do not perform document organization" and "multiple page document with separator" organization types.
	hierarchySeparators	List<ProcessorSeparatorPage>	Separator pages for this document. This applies to the "multiple pages with hierarchy separator" organization type.
	indexValues	List<IndexValue>	List of metadata names and values.

4.2.5 ProcessorItem

The ProcessorItem class is a representation of an item identified by Name and Value properties. This class holds the name or value pair of data. In this case, this class holds a particular bar code's name and value.

	Property	Type	Description
	name	String	Indicates the bar code name for the ProcessorItem.
	value	String	Specifies the value for the ProcessorItem.

4.2.6 ProcessorSeparatorPage

The ProcessorSeparatorPage class represents a separator page that has been identified by Recognition Processor.

	Property	Type	Description
	include	boolean	Indicates whether this separator page will be deleted after commit.
	level	int	This is only used in the hierarchy separator pages organization type. Level always starts with 1.
	name	String	Separator page name.
	batchItemID	String	The batch item with which this separator page is associated.
	validBarcodes	List<ProcessorItem>	Used only in hierarchical separator pages that holds all the valid bar codes for this batch item.

4.2.7 RecognitionJob

The RecognitionJob class represents a Recognition Process Job and contains the constants for the bar code symbologies.

	Property	Type	Description
	workspaceName	String	Name of the workspace with which this job is associated.
	workspaceID	String	ID of the workspace with which this job is associated.
	jobID	String	Job ID.
	lastModifiedDateTime	Date	Date and time the job was last modified.
	lastModifiedUserID	String	ID of the user that last modified the job.
	jobName	String	Job name.
	description	String	Job description.
	scriptID	String	ID of the script with which this job is associated.
	barcodes	List<BarcodeDefinition>	List of bar code definitions.
	autoDetectBarcodes	Boolean	Determines whether Enable Auto-detect Bar Codes is turned on.
	validateCheckSum	Boolean	Determines whether Validate Optional Checksum is turned on.
	symbologies	List<Integer>	A list of selected bar code symbologies for recognition: valid values are from 0 - 21, as defined in the constants for bar code symbologies earlier in this section.
The constants for the bar code symbologies are as follows:

	
0 – codabar

	
1 – code 128

	
2 – code 39

	
3 – code 93

	
4 – EAN-13

	
5 – EAN-8

	
6 – interleaved 2/5

	
7 – UCC/EAN 128

	
8 – UPC-A

	
9 – UPC-E

	
10 – Airline(IATA) 2/5

	
11 – Code 32

	
12 – Datalogic 2/5

	
13 – Industrial 2/5

	
14 – ISBN Addon 2

	
15 – ISBN Addon 5

	
16 – Matrix 2/5

	
17 – Postnet/Planet

	
18 – Patch Code

	
19 – Data Matrix

	
20 – PDF417

	
21 – QR code

	batchOrganization	Integer	Document organization type; valid values ranges from 0 - 4.
The following are constants for the document organization type:

	
0 – Fixed number of pages per document.

	
1 – (None) Do not perform document organization.

	
2 – Same bar code value on each page.

	
3 – Separator pages

	
4 – Hierarchical separator pages.

	documentPageCount	Integer	For the "Fixed number of pages per document" document organization type, this property refers to the maximum number of pages per document.
	pagesPerDoc2ReadBarcodes	Integer	For the "None: Do not perform document organization" document organization type, this property refers to the number of pages per document to read bar codes.
	maxPageCountPerDoc	Integer	For the "Same bar code value on each page, or Separator pages" document organization type, this property refers to the maximum number of pages per document.
	multiPageDocBarcode	BarcodeDefinition
	For the "Same bar code value on each page" document organization type, this property refers to the bar code that determines document separation.
	optimizeBarcodeDetection	Boolean	For the "Same bar code value on each page" document organization type, this property determines whether to optimize bar code detection.
	coverPages	List<SeparatorDefinition>	For the "Separator pages, Hierarchical separator pages, None: Do not perform document organization" document organization type, this property holds the data that defines the separator page. When the hierarchical separator page is used, the list may contain more than one separator page definition, while in the other two scenarios, the list will only contain one separator page definition.
	multiBarcodeValuesOption	Integer	Actions to take if more than one value is found for a bar code within a document; valid values are 0-2 as defined in the constants.
The following are actions to take when multiple bar code values are found for a bar code definition:

	
0 – Use the first bar code value found.

	
1 – Use the last bar code value found.

	
2 – Do not use the bar code values.

	dynamicDocType	Integer	Options on how the Dynamic Document Profile is determined; valid values are 0-2 as defined in the constants.
The following values show how the document type is dynamically determined:

	
0 – The document type is not dynamically determined.

	
1 – The document type is dynamically determined based on a bar code value.

	
2 – The document type is dynamically determined based on a separator page.

	defaultDocTypeID	String	ID for the Default Document Profile.
	docTypeBarCode	BarcodeDefinition
	When the Document Profile is being dynamically determined using the bar code, this property represents the selected bar code.
	docTypeMappings	List<DocumentDefinition>	When the Document Profile is being dynamically determined using the bar code, this mapping represents the Document Profile and Bar Code Value Mappings.
	jobFields	List<RecognitionJobField>	Field mappings information.
	dblookupUsing	Integer	Type of value the database lookup will be using; valid values are 0-2 as defined in the constants.
The following are values used by database lookup:

	
0 – No database lookup is configured.

	
1 – Use a bar code value to perform database lookup.

	
2 – Use the index field value to perform database lookup.

	dblookupBarcodeField	BarcodeDefinition
	Bar code definition that is selected for database lookup.
	dblookupIndexDefID	String	Metadata field ID that is selected for database lookup.
	dblookupProfile	String	Database lookup profile ID.
	dblookupSearchField	String	Database lookup search field ID.
	dblookupMultipleRecordAction	Integer	Actions to take when more than one record is found during database lookup; valid values are 0-1 as defined in the constants.
The following show actions to take when a database lookup finds multiple records:

	
0 – Use the first record found during database lookup.

	
1 – Do not populate the database lookup result.

	dblookupNoMatchAction	Integer	Actions to take when no record is found during database lookup; valid values are 0-1 as defined in the constants.
The following show what action to take when a database lookup finds no match:

	
0 – Permit the batch to be committed even when no database record is found.

	
1 – Do not allow the batch to be committed when no match is found.

	renamePrefix	String	Part of post-process setting. When there is no system error, this is the batch prefix to rename, if required.
	renameEmail	String	Part of post-process setting. When there is no system error, this is the email address to send email notification to rename, if required.
	renameStatus	String	Part of post-process setting. When there is no system error, this is the batch status to change, if required.
	renamePriority	Integer	Part of post-process setting. When there is no system error, this is the batch priority to change, if required.
	processorID	String	Part of post-process setting. When there is no system error, this is the batch processor ID to which the batch will be released.
	processorJobID	String	Part of post-process setting. When there is no system error, this is the batch processor job ID to which the batch will be released.
	failureRenamePrefix	String	Part of post-process setting. When there is a system error, this is the batch prefix to rename, if required.
	failureRenameEmail	String	Part of post-process setting. When there is a system error, this is the email address to which notification should be sent, if required.
	failureRenameStatus	String	Part of post-process setting. When there is a system error, this is the batch status to change, if required.
	failureRenamePriority	Integer	Part of post-process setting. When there is a system error, this is the batch priority to change, if required.
	failureProcessorID	String	Part of post-process setting. When there is a system error, this is the batch processor ID to which the batch will be released.
	failureProcessorJobID	String	Part of post-process setting. When there is a system error, this is the batch processor job ID to which the batch will be released.
	online	boolean	Indicates whether this recognition job is active or not.

4.2.8 RecognitionJobField

The RecognitionJobField class represents each field in the "Fields" train stop.

	Property	Type	Description
	indexDefID	String	Metadata ID to populate with property values.
	autoPopulate	Integer	Auto-populate type; valid values are 0-5, as defined in the constants.
The following are the constants for the auto-populate type:

	
0 – Does not auto-populate the index value.

	
1 – Auto-populates the index value with the bar code value.

	
2 – Auto-populates the index value with the batch name.

	
3 – Auto-populates the index value with a default value.

	
4 – Auto-populates the index value with the index date.

	
5 – Auto-populates the index value with the scan date.

	populateValue	String	For the bar code type, this represents the bar code definition name; for the default type, this represents a default value.

4.2.9 RecognitionProcessorContext

The RecognitionProcessorContext class is a context object that contains relevant attributes that relates to the recognition processing.

	property	Type	Description
	logger	Logger	An instance of java.util.logging.Logger that can be used to log additional entries.
	job	RecognitionJob
	Current job being used.
	ble	BatchLockEntity
	A lock entity which contains the batch currently being processed.
	workspaceEntity	CaptureWorkspaceEntity
	Current workspace that is being used.
	phaseID	int	An integer that identifies the current phase:
	
0 – pre batch process. In this step, recognition processor performs resource initialization, batch validation, and clean up if required.

	
1 – bar code recognition. In this step, recognition processor goes through all batch items for all documents, extracts batch items one at a time, and performs bar code recognition based on recognition settings.

	
2 – document organization. In this step, recognition processor finds valid bar codes based on barcode definition configuration, and creates logical documents based on document processing settings.

	
3 – document classification. In this step, recognition processor determines property document type for each logical document created in previous step based on Document Profile settings.

	
4 – indexing. In this step, recognition processor performs database lookup based on database lookup configuration, and determines index values for all logical documents based on fields settings.

	
5 – document creation. In this step, recognition processor creates actual capture documents based on the logical documents determined, populates document indexes, and assigns document type. If any warnings or errors occurred during process, document comments are updated.

	
6 – post processing. In this step, recognition processor releases a batch according to post processing configuration. Batch may also get renamed, batch status and priority changed, and email message sent if required.

	cancelAction	boolean	In certain calls, the user is allowed to cancel the action (for example, bar code recognition or database lookup).
	batchItem	BatchItemEntity
	Current batch item being processed. This is specifically used during bar code recognition and bar code validation (part of the document organization phase).
	patchCodeRead	Integer	Patch code found on a batch item. This is only used during the bar code recognition phase.
	barcodesRead	List<String>	All bar codes associated with a batch item, which includes original bar codes associated with the batch item, and bar codes read through the bar code recognition engine. This is only used during the bar code recognition phase.
	validBarcodes	List<ProcessorItem>	List of valid bar codes found for a specific batch item. This only applies to the bar code validation step (part of the document organization phase).
ProcessorDocument also contains a list of valid bar codes, which is associated with a specific document. It is a collection of all valid bar codes found on all batch items associated with the document.

	validBarcode	ProcessorItem
	Specific to the bar code that determines document separation and optimized bar code recognition setting. If batch organization type is bar code on every page, optimized recognition is turned on, and the barcode on a given page is null (barcode not found), then validBarcode contains the barcode for the following page.
	separator	ProcessorSeparatorPage
	Specific for organization types that involve a separator page. If the separator is null, then this batch item is not a separator page.
	document	ProcessorDocument
	Used for the document classification, indexing, and document creation phase. It contains everything you need to know about the document.
	dbLookupValue	String	Used only before database lookup is executed. You can change the lookup value.
	unIndexedDocTitle	String	Specific to the Document Creation phase. The first capture document holds all batch items for which the recognition processor is unable to determine the document they belong to. This property allows you to customize the first Capture document title. The default title is unindexed; if this value is null, then the first document title will remain unchanged.
	extractPath	String	Path to which batch items were extracted. This is specific during the bar code recognition phase. You should not modify this property.
	processorBase	Noun	DMS Noun that holds the processor metrics data.
	DMS_Literals	ResourceBundle	Resource bundle that is being used by DMS.

4.2.10 SeparatorDefinition

The SeparatorDefinition class represents the definition on what is considered a separator page.

	Property	Type	Description
	name	String	Name of the separator page.
	deleteUponCommit	Boolean	Determines whether to delete the separator page after commit.
	operator	Integer	Operator used for rules; valid values are 0 and 1:
	
0 – The OR operator, used in cover page definition rules. For rules separated using this operator, any one rule must match the rule condition.

	
1 – The AND operator, used in cover page definition rules. For rules separated using this operator, all rules must match the rule condition.

	docTypeID	String	If the document type is dynamically determined based on a separator page, this is the ID of the document type for this separator page.
	rules	List<SeparatorRuleDefinition>	Collection of rules associated with this separator page.

4.2.11 SeparatorRuleDefinition

The SeparatorRuleDefinition class represents one rule that applies to a separator definition.

	Property	Type	Description
	name	String	Name of the rule.
	operator	Integer	Operator used for patch code and bar codes selected; valid values are 0 and 1. For more information, see Section 4.2.10.
	patchCode	String	Patch code selected for this rule.
	barcodes	List<String>	Bar codes selected for this rule.

4.3 Sample Recognition Processor Script

The steps below are involved in configuring a batch job. You can modify the processing behavior based on the following job configuration steps using the sample script given after the steps:

	
Set the job to detect PDF417 bar codes.

	
Set the PDF417 bar code on the page to be | delimited, and has 10 fields concatenated together.

	
Define three bar code definitions: processorDate, Title, and Amount (with no validation rules).

	
Map the three bar code definitions to three index fields.

The Recognition Processor script parses a PDF417 bar code found on a batch item, parses the value, and applies appropriate parsed text to the three bar code definitions.

function batchItemAllValidBarcodes (rpc) {
 // Obtain current batch item
 var batchItem = rpc.getBatchItem();

 // obtain bar code count.
 var count = batchItem.getBarcodeCount();

 // All barcodes on a batch item.
 var allBarcodes;

 // bar code of interest.
 var barcodeValue;

 // after parsed barcode value.
 var parsed;

 // Obtain bar code value if there is a bar code found.
 if (count > 0) {
 allBarcodes = batchItem.getBarcodes();
 barcodeValue = allBarcodes[0];

 // Parse the bar code value by | character.
 parsed = barcodeValue.split('\\|');
 var len = parsed.length;

 // It should get splitted into 10 strings.
 if (len == 10) {
 // This is the barcode we want, populate valid bar codes.
 populateValues(rpc, parsed);
 }

 }
}

function populateValues(rpc, parsed) {
 var valid = rpc.getValidBarcodes();
 var i;

 for (i=0; i<valid.size(); i++) {
 var bar = valid.get(i);

 if (bar.getName() == "processDate") {
 bar.setValue(parsed[5]);
 } else if (bar.getName() == "Title") {
 bar.setValue(parsed[6]);
 } else if (bar.getName() == "Amount") {
 bar.setValue(parsed[4]);
 }
 }
}

5 Creating Import Processor Scripts

This chapter describes creating Import Processor scripts.

You can develop scripts for the Import Processor to perform a wide variety of functions. Some common tasks include:

	
Skipping the importing of certain image files

	
Changing Capture batch properties

	
Skipping the importing of a batch

	
Adding page level metadata values during importing

	
After importing, moving images to a different folder

If an Import Job specifies a script to use during processing, the Import Processor Bean will create an instance of the JDK's ScriptRuntime class and initialize it with the script specified in the job. The Import Processor Bean, Import Manager Bean, and import sources all share this scripting runtime.

Capture enables you to create Import Processor scripts to customize the importing process. For more information, see Oracle Fusion Middleware Managing Oracle WebCenter Enterprise Capture.

This chapter contains the following sections:

	
Section 5.1, "Import Processor Events"

	
Section 5.2, "Email Source Events"

	
Section 5.3, "Folder Source Events"

	
Section 5.4, "List File Source Events"

	
Section 5.5, "Import Processor Classes"

	
Section 5.6, "Sample Import Processor Script"

5.1 Import Processor Events

Import Processor scripts are JavaScript modules that enable you to customize the behavior of certain Import Processor events.

This section describes the following Import Processor events:

	
preProcess

	
process

	
postProcess

	
preCreateBatch

	
postCreateBatch

	
preCreateDocument

	
postCreateDocument

	
preImportFile

	
postImportFile

	
preRelease

	
postRelease

	
preDatabaseSearch

	
processDatabaseSearchResults

5.1.1 preProcess

The preProcess event occurs prior to the pre-processing of the import source. Initialization code can be performed here.

	Syntax	Parameter
	public void preProcess(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.2 process

The process event signals the start of the import process.

	Syntax	Parameter
	public process(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.3 postProcess

The postProcess event occurs after the import source has been processed.

	Syntax	Parameter
	public void postProcess(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.4 preCreateBatch

The preCreateBatch event occurs immediately after a new batch is started.

	Syntax	Parameter
	public void preCreateBatch(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.5 postCreateBatch

The postCreateBatch event occurs immediately after a batch is created, but before any documents have been created.

	Syntax	Parameter
	public void postCreateBatch(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.6 preCreateDocument

The preCreateDocument event occurs prior to a new document being created.

	Syntax	Parameter
	public void preCreateDocument(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.7 postCreateDocument

The preCreateDocument event occurs after a new document has been created.

	Syntax	Parameter
	public void postCreateDocument(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.8 preImportFile

The preImportFile event occurs prior to a file being imported.

	Syntax	Parameter
	public void preImportFile(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.9 postImportFile

The postImportFile event occurs after a file is imported.

	Syntax	Parameter
	public void postImportFile(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.10 preRelease

The preRelease event occurs prior to a batch being released.

	Syntax	Parameter
	public void preRelease(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.11 postRelease

The postRelease event occurs after a batch has been released.

	Syntax	Parameter
	public void postRelease(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.12 preDatabaseSearch

The preDatabaseSearch event occurs prior to a database lookup.

	Syntax	Parameter
	public void preDatabaseSearch(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.1.13 processDatabaseSearchResults

The processDatabaseSearchResults event occurs after the database lookup has returned the search results.

	Syntax	Parameter
	public void processDatabaseSearchResults(ImportProcessorContext ctx);	ImportProcessorContext ctx

5.2 Email Source Events

This section describes the following email source events:

	
deleteMessage

	
moveMessage

	
newAttachment

	
newMessage

5.2.1 deleteMessage

The deleteMessage event occurs in the email message post-processing step when an email message is about to be deleted.

	Syntax	Parameter
	public void deleteMessage(ImportProcessorContext ctx, EmailSourceContext emailCtx);	ImportProcessorContext ctx
EmailSourceContext emailCtx

5.2.2 moveMessage

The moveMessage event occurs in the email message post-processing step when an email message is about to be moved to an email folder.

	Syntax	Parameter
	public void moveMessage(ImportProcessorContext ctx, EmailSourceContext emailCtx);	ImportProcessorContext ctx
EmailSourceContext emailCtx

5.2.3 newAttachment

The newAttachment event occurs when a new email attachment is about to be processed.

	Syntax	Parameter
	public void newAttachment(ImportProcessorContext ctx, EmailSourceContext emailCtx);	ImportProcessorContext ctx
EmailSourceContext emailCtx

5.2.4 newMessage

The newMessage event occurs when a new email message is about to be processed.

	Syntax	Parameter
	public void newMessage(ImportProcessorContext ctx, EmailSourceContext emailCtx);	ImportProcessorContext ctx
EmailSourceContext emailCtx

5.3 Folder Source Events

This section describes the following folder source events:

	
deleteDocumentFile

	
newFolder

	
renameDocumentFile

5.3.1 deleteDocumentFile

The deleteDocumentFile event occurs in the folder post-processing step when a file from the folder is about to be deleted.

	Syntax	Parameter
	public void deleteDocumentFile(ImportProcessorContext ctx, FolderSourceContext folderCtx);	ImportProcessorContext ctx
FolderSourceContext folderCtx

5.3.2 newFolder

The newFolder event occurs when a new folder is about to be processed.

	Syntax	Parameter
	public void newFolder(ImportProcessorContext ctx, FolderSourceContext folderCtx);	ImportProcessorContext ctx
FolderSourceContext folderCtx

5.3.3 renameDocumentFile

The renameDocumentFile event occurs in the folder post-processing step when a file from the folder is about to be renamed.

	Syntax	Parameter
	public void renameDocumentFile(ImportProcessorContext ctx, FolderSourceContext folderCtx);	ImportProcessorContext ctx
FolderSourceContext folderCtx

5.4 List File Source Events

This section describes the following list file source events:

	
deleteListFile

	
newFolder

	
newListFile

	
newListFileLine

	
renameListFile

5.4.1 deleteListFile

The deleteListFile event occurs in the list file post-processing step when a list file is about to be deleted.

	Syntax	Parameter
	public void deleteListFile(ImportProcessorContext ctx, ListFileSourceContext listFileCtx);	ImportProcessorContext ctx
ListFileSourceContext listFileCtx

5.4.2 newFolder

The newFolder event occurs when a new folder containing list files is about to be processed.

	Syntax	Parameter
	public void newFolder(ImportProcessorContext ctx, ListFileSourceContext listFileCtx);	ImportProcessorContext ctx
ListFileSourceContext listFileCtx

5.4.3 newListFile

The newListFile event occurs when a new list file is about to be processed.

	Syntax	Parameter
	public void newListFile(ImportProcessorContext ctx, ListFileSourceContext listFileCtx);	ImportProcessorContext ctx
ListFileSourceContext listFileCtx

5.4.4 newListFileLine

The newListFileLine event occurs when a new line in the list file is about to be processed.

	Syntax	Parameter
	public void newListFileLine(ImportProcessorContext ctx, ListFileSourceContext listFileCtx);	ImportProcessorContext ctx
ListFileSourceContext listFileCtx

5.4.5 renameListFile

The renameListFile event occurs in the list file post-processing step when a list file is about to be renamed.

	Syntax	Parameter
	public void renameListFile(ImportProcessorContext ctx, ListFileSourceContext listFileCtx);	ImportProcessorContext ctx
ListFileSourceContext listFileCtx

5.5 Import Processor Classes

In Capture, you can describes an Import Processor event class for every type of event you maintain in the database.

This section describes the following Import Processor classes:

	
EmailSourceContext

	
FolderSourceContext

	
ImportJob

	
ImportProcessorContext

	
ListFileSourceContext

In addition to the following event classes that can be used to design Import Processor scripts, there are some common classes that pertain to the Recognition Processor and the Import Processor. For more information on the common classes, see Section 6.1.

5.5.1 EmailSourceContext

The EmailSourceContext class contains all classes used in the processing of an email source.

	Property	Type	Description
	account	String	Name of the email account currently being processed.
	folder	Folder	Email folder currently being processed.
	message	Message	Email message currently being processed.
	attachmentFilename	String	File name of the email message attachment currently being processed.

For more information on the Folder and Message class definitions, see the Javamail API documentation.

5.5.2 FolderSourceContext

The FolderSourceContext class contains all classes used in the processing of a folder source.

	Property	Type	Description
	folderName	String	Name of the directory currently being processed.
	documentFilename	String	Name of the file currently being processed.
	renamedDocumentFilename	String	If the post-processing step indicates the file should have a prefix added to it or the extension changed, this property indicates the changed file name.

5.5.3 ImportJob

Import jobs are configured within a Capture Workspace to import batches from import sources such as a file system folder, a delimited list file, or an inbox/folder of an email server.

	Property	Type	Description
	jobID	String	A value that uniquely identifies the job in the system.
	workspaceID	String	Identifier of the workspace to which the job belongs.
	jobName	String	A human-readable name for the job.
	dbSearchID	String	Identifier of the database search to use when processing the job.
	dbSearchFieldID	String	Identifier of the database search field to use when processing the job.
	imageDownsample	Integer	Determines how to sample an image:
	
0 – None (retain image format).

	
1 – Down-sample color to 8 bit grayscale.

	
2 – Down-sample color or grayscale to black and white.

	jpegQuality	Integer	The JPEG quality ratio 0 to 99.
	batchPrefix	String	Batch prefix to use when creating batch names.
	defaultBatchStatusID	String	Identifier of the batch status to associate with batches created by this job.
	defaultPriority	Integer	Default priority assigned to batches ranging from 0 to 10.
	defaultDocumentTypeID	String	Default document profile for documents created by this job.
	searchResultOption	Integer	Determines how to handle database lookups that return more than one result.
	
0 – Use the first record.

	
1 – Ignore results (do not populate fields).

	scriptID	String	Unique identifier of a script to use for this job.
	importFrequency	Integer	A value, specified in seconds, that determines how often a job should be polled for work to process. The following values are possible:
	
0 – Inactive

	
30 – Every 30 seconds

	
60 – Every 1 minute

	
300 – Every 5 minutes

	
900 – Every 15 minutes

	
1800 – Every 30 minutes

	
3600 – Every 1 hour

	
-1 – Daily (Specify Time)

	hour	Integer	If the importFrequency is set to Daily, this specifies the hour of the day.
	minute	Integer	If the importFrequency is set to Daily, this specifies the minute of the day.
	lastCheck	Date	Date or time the job was last checked for processing. This will be updated by the Import Job Scheduler after a job is polled for work to process.
	fieldMappings	Map<String, FieldMappingInfo>	A set of values that map Capture fields to import source metadata fields.
	importSourceClassName	String	Name of the Java class that provides the implementation of the import source for this job.
	batchProcessorClassName	String	Name of the class that will be used to process the batch when it is released. If this value is null, the batch lock will be discarded and the batch will be put in a READY state.
	batchProcessorJobID	String	A unique identifier for a batch processor job. If this value is null, either the processor does not support jobs or the batch is going to be put in a READY state.
	imageFailureAction	Integer	Specifies the action to be taken if an invalid image is encountered:
	
0 – Abort the batch

	
1 – Skip the item

	locale	Locale	Specifies the locale of the list file source.
	defaultDateFormat	String	Specifies the default date format of dates in the list file source.
	description	String	Description of this job.
	encoding	String	Specifies the file encoding of the list file source.
	isJobOnline	Boolean	Indicates whether this job should be processed.

5.5.4 ImportProcessorContext

The ImportProcessorContext class contains properties relevant to the job being processed. An instance of this class is created before processing is started and is passed to an import source at various stages throughout processing.

	Property	Type	Description
	cancel	Boolean	When this boolean value is set to True, it will cancel the operation being performed.
	cancelDBSearch	Boolean	When this boolean value is set to True, it will cancel the database lookup.
	dBSearchResults	DBSearchResults
	Contains the results from a database lookup.
	sourceName	String	Name of the import source that the current Import Job is configured to use.
	logger	Logger	An instance of java.util.logging.Logger that can be used to log additional entries.
	importJob	ImportJob
	Current Import Job being processed.
	batchLock	BatchLockEntity
	Contains the batch lock entity for the batch, after a new batch has been created.
	importSourceFile	String	Name of the file currently being processed.
	documentEntity	DocumentEntity
	Document entity associated with the file currently being processed.
	documentPageEntity	DocumentPageEntity
	Document page entity associated with the file currently being processed.
	lastMultiPageTiffNumber	Integer	Contains the current page number of a multi-page TIFF file being processed.
	workspaceEntity	CaptureWorkspaceEntity
	Workspace entity associated with the current batch.

5.5.5 ListFileSourceContext

The ListFileSourceContext class contains all classes used in the processing of a list file source.

	Property	Type	Description
	folderName	String	Name of the folder currently being processed.
	listFilename	String	Name of the list file currently being processed.
	listFileLine	String	Contents of the line currently being processed in the list file.
	documentFilename	String	Name of the file currently being processed from the current line in the list file.
	renamedListFilename	String	If the post-processing step indicates the list file should have a prefix added to it or the extension changed, this property indicates the changed list file name.

5.6 Sample Import Processor Script

The following sample script sets each document's title to the name of the file being imported. When the documents are later committed, their document title can be mapped to an output field.

importClass(java.io.File);

function preCreateDocument(event) { // ImportProcessorContext
 var document; // DocumentEntity
 var sourceFile; // File

 sourceFile = new File(event.getImportSourceFile());
 document = event.getDocumentEntity();

 // Set the document title to be the name of the source file
 document.setDocumentTitle(sourceFile.getName());
}

6 Working with Common Capture Classes

This chapter describes the common Capture classes that pertain to the Recognition Processor and the Import Processor.

This is in addition to the classes that you can use to design the Recognition Processor scripts and the Import Processor scripts. For more information on the Recognition Processor and Import Processor classes, see Section 4.2 and Section 5.5.

6.1 Common Capture Classes

The following are the classes that pertain to the Recognition Processor and the Import Processor:

	
BatchEntity

	
BatchItemEntity

	
BatchLockEntity

	
BatchStatusEntity

	
CaptureWorkspaceEntity

	
DBSearchResults

	
DBSearchResultRow

	
DBSearchFieldInfo

	
DocumentEntity

	
DocumentPageEntity

	
DocumentTypeEntity

	
IndexDefinitionEntity

	
IndexValue

6.1.1 BatchEntity

The BatchEntity class represents a batch within a Capture Workspace. A batch is a collection of batch items and documents.

	Property	Type	Description
	itemID	String	The unique batch item identifier.
	id	Integer	The unique batch ID.
	state	Integer	The current state of the batch, which will be one of the following values:
	
1 – READY

	
2 – LOCKED

	
16 – ERROR

	
32 – PROCESSING

	errorMessage	String	An error message related to processing failure.
	status	BatchStatusEntity
	A reference to a BatchStatusEntity that represents the current status of the batch.
	priority	Integer	The current priority value of the batch.
	itemCount	Integer	The number of items in the batch.
	userID	String	The user id of the user that created the batch.
	workstationID	String	The host name of the system that created the batch.
	comment	byte[]	A comment or note regarding the batch.
	dateTime	Date	The date and time the batch was created.
	workspace	CaptureWorkspaceEntity
	A reference to the workspace to which the batch belongs.
	documents	List<DocumentEntity>	A list of DocumentEntity references that exist in the batch.
	items	List<BatchItemEntity>	A list of batch items associated with the batch.
	lastModifiedDateTime	Date	The date and time the batch was last modified.
	lastModifiedUserID	String	The ID of the user that last modified the batch.
	batchName	String	The name of the batch.

6.1.2 BatchItemEntity

The BatchItemEntity class represents a batch item within a batch. BatchItemEntities are associated with DocumentPageEntities that are used to form documents within a batch.

	Property	Type	Description
	itemID	String	The unique batch item identifier.
	sourceFileName	String	The original file name of the item. Useful if the item is an imported file.
	sourceFormat	String	For non–image files this is generally the file extension (DOC, XLS, PDF). For image files, the value will be empty.
	patchCode	Integer	A patch code value if a patch code was read.
	barcodeCount	Integer	The number of barcodes that were read during barcode detection.
	linkCount	Integer	The number of documents the item is linked to.
	fileLength	Long	The size of the item in bytes.
	barcodes	String[]	An array of strings that represent barcode values that were read during barcode recognition.

6.1.3 BatchLockEntity

The BatchLockEntity class represents a lock on a batch. The lock is used to prevent users and processors from accessing the same batch simultaneously.

	Property	Type	Description
	id	String	The unique batch lock ID.
	batch	BatchEntity
	A reference to the locked batch.
	batchName	String	The name of the batch to which the batch lock is applied.
	workspace	CaptureWorkspaceEntity
	A reference to the workspace to which the batch belongs.
	workspaceName	String	The name of the workspace to which the batch belongs.
	lockDate	Date	The date that the batch lock was created.
	userID	String	The ID of the user who locked the batch.
	computerName	String	The name of the computer used to lock the batch.
	processID	String	The process ID used to lock the batch.

6.1.4 BatchStatusEntity

The BatchStatusEntity class defines a batch status within a Capture Workspace. Batch statuses may be associated with batches within a Capture Workspace.

	Property	Type	Description
	statusID	String	The unique identifier of the status.
	value	String	The text value of the status.
	workspaceEntity	CaptureWorkspaceEntity
	A reference to the workspace where the status is defined.

6.1.5 CaptureWorkspaceEntity

The CaptureWorkspaceEntity class represents a workspace in the Capture system. A workspace defines metadata, document profiles, and batch statuses.

	Property	Type	Description
	workspaceID	String	The unique workspace identifier.
	workspaceName	String	The name of the workspace.
	description	String	A description of the workspace.
	dateCreated	Date	The date the workspace was created.
	dateLastModified	Date	The date the workspace was last modified.
	createdBy	String	The user ID of the user that created the workspace.
	lastModifiedBy	String	The user ID of the user that last modified the workspace.
	indexDefinitions	List<IndexDefinitionEntity>	A list of index definition entities that have been defined in the workspace.
	statuses	List<BatchStatusEntity>	A list of batch statuses defined in the workspace.
	documentTypes	List<DocumentTypeEntity>	A list of document profiles that have been defined in the workspace.

6.1.6 DBSearchResults

The DBSearchResults class contains information returned from executing a database lookup. It contains a list of the rows returned as well as a list of the search field information describing the columns of the rows.

	Property	Type	Description
	resultsList	List<DbSearchResultRow>	A list of rows from the database lookup.
	fieldInfoList	List<DbSearchFieldInfo>	A list of search field information describing the columns used in the database lookup.

6.1.7 DBSearchResultRow

The DbSearchResultRow class represents one row result returned from a database lookup.

	Property	Type	Description
	results	List<String>	A list of string values associated with one search result. The values in the list will be in the same order in which the return fields are defined.

6.1.8 DBSearchFieldInfo

The DbSearchFieldInfo class represents the field information describing the results of a database lookup.

	Property	Type	Description
	captureIndexDefID	String	The metadata field ID.
	dbColumnName	String	The name of the database column.
	dbColumnType	Integer	The type of the database column.
	captureFieldType	Integer	The data type of the metadata field.

6.1.9 DocumentEntity

The DocumentEntity class represents a document within a batch. A document consists of a collection of DocumentPageEntity references which refer to BatchItemEntity references.

	Property	Type	Description
	documentID	String	A value that uniquely identifies the document.
	documentTitle	String	The document title.
	documentNumber	Integer	The document's position within the batch.
	batchEntity	BatchEntity
	A reference to the batch to which the document belongs.
	documentPages	List<DocumentPageEntity>	A list of document page entity references that make up the document.
	documentType	DocumentTypeEntity
	A reference to the documentType associated with the document.
	indexes	List<IndexValue>	A list of index values for the document.
	documentState	Integer	The current state of the document which will be one of the following values:
	
1 (READY) – Document is ready to be committed.

	
2 (ON HOLD) – Document will not be committed by the commit processor.

	lastModifiedDateTime	Date	The date and time the document was last modified.
	lastModifiedUserID	String	The ID of the user that last modified the document.

6.1.10 DocumentPageEntity

The DocumentPageEntity class represents a page within a document. It refers to a BatchItemEntity within a batch and contains a page number that represents the page's position within the parent document.

	Property	Type	Description
	docPageID	String	A value that uniquely identifies the document page.
	batchItemEntity	BatchItemEntity
	A reference to the BatchItemEntity associated with the document page.
	documentEntity	DocumentEntity
	A reference to the DocumentEntity to which the page belongs.
	pageNumber	int	The position of the page within a document.

6.1.11 DocumentTypeEntity

The DocumentTypeEntity class defines a document profile within a Capture Workspace. A DocumentTypeEntity consists of a name, description, and list of index definition fields that pertain to the document profile.

	Property	Type	Description
	docTypeID	String	The unique identifier of the document profile.
	docTypeName	String	The name of the document profile.
	description	String	The description of the document type.
	workspaceEntity	CaptureWorkspaceEntity
	The parent workspace to which the document profile belongs.
	fields	List<IndexDefinitionEntity>	A list of IndexFieldDefinitionEntity object references that are associated with the document profile.

6.1.12 IndexDefinitionEntity

The IndexDefinitionEntity represents an index definition defined in a workspace. An index definition defines a metadata field that can be used for input.

	Property	Type	Description
	indexFieldID	String	The unique identifier of the index definition.
	fieldName	String	The name of the field.
	workspaceEntity	CaptureWorkspaceEntity
	A reference to the parent workspace where the field is defined.
	dataType	Integer	The data type of the field.
	
0 – NUMERIC

	
1 – ALPHA NUMERIC

	
3 – DATE

	
4 – FLOAT

	maxLength	Integer	The maximum number of characters the field will hold.
	minValue	Float	The minimum value allowed.
	maxValue	Float	The maximum value allowed.
	required	Boolean	True if the field is required to have a value at commit time, false if it is not. The default value is False.
	defaultValue	String	A default value for the field.
	inputMask	String	The input mask defined for the field.
	displayFormat	String	The field's display format.
	locked	Boolean	Indicates if the field is locked for input.
	autoPopulate	Integer	Includes the following:
	
0 – None

	
1 – Default Value

	
2 – Scan Date

	
3 – Current Date

	
4 – Batch Name

	
5 – User ID

	
6 – Host Name

	
7 – Profile Name

	
8 – Batch Status

	
9 – Batch Priority

	
10 – Document Type

	validationExpression	String	The regular expression string used to validate the field value.

6.1.13 IndexValue

The IndexValue class represents the value of an index field for a metadata field in a document. It contains a display value that is presented to the user as well as a fieldValue which will be used at commit time.

	Property	Type	Description
	fieldID	String	The unique identifier of the IndexDefinitionEntity that is associated with the index value.
	fieldValue	String	The value of the field that will be used when the document is committed.
	displayValue	String	A value that is presented to the user. This value will not be used at commit time.

A Keycodes

If you need to specify a keycode in a JavaScript, refer to the following location:

http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyEvent.html

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing Scripts
for Oracle WebCenter Enterprise
Capture, 11g Release 1 (11.1.1)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing Scripts
for Oracle WebCenter Enterprise
Capture, 11g Release 1 (11.1.1)

OEBPS/dcommon/oracle.gif

