

[1] Oracle® Fusion Middleware
Getting Started With JAX-RPC Web Services for Oracle
WebLogic Server

11g Release 1 (10.3.6)

E13760-07

April 2015

Documentation for software developers that describes how
to develop WebLogic Web services using Java API for
XML-based RPC (JAX-RPC).

Oracle Fusion Middleware Getting Started With JAX-RPC Web Services for Oracle WebLogic Server, 11g
Release 1 (10.3.6)

E13760-07

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction

2 Use Cases and Examples

2.1 Creating a Simple HelloWorld Web Service... 2-1
2.1.1 Sample HelloWorldImpl.java JWS File .. 2-3
2.1.2 Sample Ant Build File for HelloWorldImpl.java .. 2-4
2.2 Creating a Web Service With User-Defined Data Types... 2-5
2.2.1 Sample BasicStruct JavaBean ... 2-8
2.2.2 Sample ComplexImpl.java JWS File.. 2-8
2.2.3 Sample Ant Build File for ComplexImpl.java JWS File.. 2-9
2.3 Creating a Web Service from a WSDL File... 2-11
2.3.1 Sample WSDL File .. 2-14
2.3.2 Sample TemperaturePortType Java Implementation File .. 2-15
2.3.3 Sample Ant Build File for TemperatureService ... 2-16
2.4 Invoking a Web Service from a Java SE Client .. 2-17
2.4.1 Sample Java Client Application.. 2-20
2.4.2 Sample Ant Build File For Building Java Client Application..................................... 2-20
2.5 Invoking a Web Service from a WebLogic Web Service .. 2-21
2.5.1 Sample ClientServiceImpl.java JWS File ... 2-24
2.5.2 Sample Ant Build File For Building ClientService... 2-24

3 Developing WebLogic Web Services

3.1 Overview of the WebLogic Web Service Programming Model... 3-1
3.2 Configuring Your Domain For Web Services Features ... 3-2
3.3 Developing WebLogic Web Services Starting From Java: Main Steps................................ 3-3
3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps 3-4
3.5 Creating the Basic Ant build.xml File .. 3-6
3.6 Running the jwsc WebLogic Web Services Ant Task .. 3-7
3.6.1 Examples of Using jwsc .. 3-8
3.6.2 Advanced Uses of jwsc ... 3-9
3.7 Running the wsdlc WebLogic Web Services Ant Task ... 3-9

iv

3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc.......... 3-11
3.9 Deploying and Undeploying WebLogic Web Services .. 3-12
3.9.1 Using the wldeploy Ant Task to Deploy Web Services .. 3-13
3.9.2 Using the Administration Console to Deploy Web Services...................................... 3-14
3.10 Browsing to the WSDL of the Web Service .. 3-14
3.11 Configuring the Server Address Specified in the Dynamic WSDL.................................. 3-15
3.11.1 Web Service is not a callback service and can be invoked using HTTP/S............... 3-16
3.11.2 Web Service is not a callback service and can be invoked using JMS Transport 3-16
3.11.3 Web Service is a callback service .. 3-16
3.11.4 Web Service is invoked using a proxy server... 3-17
3.12 Testing the Web Service .. 3-17
3.13 Integrating Web Services Into the WebLogic Split Development

Directory Environment ... 3-17

4 Programming the JWS File

4.1 Overview of JWS Files and JWS Annotations... 4-1
4.2 Java Requirements for a JWS File ... 4-2
4.3 Programming the JWS File: Typical Steps... 4-2
4.3.1 Example of a JWS File ... 4-3
4.3.2 Specifying that the JWS File Implements a Web Service

(@WebService Annotation)... 4-4
4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol

(@SOAPBinding Annotation) ... 4-5
4.3.4 Specifying the Context Path and Service URI of the Web Service (@WLHttpTransport

Annotation) .. 4-5
4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and

@OneWay Annotations) ... 4-6
4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements

(@WebParam Annotation) ... 4-7
4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL Element

(@WebResult Annotation) .. 4-7
4.4 Accessing Run-Time Information About a Web Service... 4-8
4.4.1 Using JwsContext to Access Run-Time Information.. 4-8
4.4.1.1 Guidelines for Accessing the Web Service Context... 4-8
4.4.1.2 Methods of the JwsContext ... 4-9
4.4.2 Using the Stub Interface to Access Run-Time Information .. 4-12
4.5 Should You Implement a Stateless Session EJB? ... 4-13
4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File................ 4-13
4.5.2 Example of a JWS File That Implements an EJB... 4-14
4.6 Programming the User-Defined Java Data Type .. 4-15
4.7 Throwing Exceptions... 4-16
4.8 Invoking Another Web Service from the JWS File.. 4-18
4.9 Programming Additional Miscellaneous Features Using JWS

Annotations and APIs ... 4-18
4.9.1 Sending Binary Data Using MTOM/XOP .. 4-19
4.9.2 Streaming SOAP Attachments.. 4-21
4.9.3 Using SOAP 1.2 ... 4-21
4.9.4 Specifying that Operations Run Inside of a Transaction .. 4-22

v

4.9.5 Getting the HttpServletRequest/Response Object .. 4-22
4.10 JWS Programming Best Practices .. 4-24

5 Understanding Data Binding

5.1 Overview of Data Binding... 5-1
5.2 Supported Built-In Data Types ... 5-2
5.2.1 XML-to-Java Mapping for Built-in Data Types... 5-2
5.2.2 Java-to-XML Mapping for Built-In Data Types... 5-3
5.3 Supported User-Defined Data Types... 5-4
5.3.1 Supported XML User-Defined Data Types.. 5-5
5.3.2 Supported Java User-Defined Data Types ... 5-5

6 Invoking Web Services

6.1 Overview of Web Services Invocation ... 6-1
6.1.1 Invoking Web Services Using JAX-RPC... 6-2
6.1.2 Examples of Clients That Invoke Web Services .. 6-2
6.2 Invoking a Web Service from a Java SE Client ... 6-3
6.2.1 Using the clientgen Ant Task To Generate Client Artifacts .. 6-4
6.2.2 Getting Information About a Web Service... 6-5
6.2.3 Writing the Java Client Application Code to Invoke a Web Service............................ 6-6
6.2.4 Compiling and Running the Client Application... 6-7
6.2.5 Sample Ant Build File for a Java Client .. 6-8
6.3 Invoking a Web Service from Another Web Service ... 6-9
6.3.1 Sample build.xml File for a Web Service Client... 6-10
6.3.2 Sample JWS File That Invokes a Web Service .. 6-11
6.4 Using a Stand-Alone Client JAR File When Invoking Web Services 6-13
6.5 Using a Proxy Server When Invoking a Web Service... 6-14
6.5.1 Using the HttpTransportInfo API to Specify the Proxy Server 6-14
6.5.2 Using System Properties to Specify the Proxy Server ... 6-15
6.6 Client Considerations When Redeploying a Web Service... 6-17
6.7 WebLogic Web Services Stub Properties.. 6-17
6.8 Setting the Character Encoding For the Response SOAP Message 6-19

7 Administering Web Services

7.1 Overview of WebLogic Web Services Administration Tasks... 7-1
7.2 Administration Tools ... 7-2
7.3 Using the Administration Console... 7-2
7.3.1 Invoking the Administration Console .. 7-3
7.3.2 How Web Services Are Displayed In the Administration Console 7-4
7.3.3 Creating a Web Services Security Configuration.. 7-4
7.3.4 Monitoring Web Services and Clients .. 7-5
7.4 Using the Oracle Enterprise Manager Fusion Middleware Control 7-7
7.5 Using the WebLogic Scripting Tool ... 7-8
7.6 Using WebLogic Ant Tasks ... 7-8
7.7 Using the Java Management Extensions (JMX).. 7-9
7.8 Using the Java EE Deployment API .. 7-10

vi

7.9 Using Work Managers to Prioritize Web Services Work and Reduce
Stuck Execute Threads .. 7-10

8 Upgrading WebLogic Web Services From Previous Releases to 10.3.x

8.1 Upgrading a 9.2 or 10.0 WebLogic Web Service to 10.3.x ... 8-1
8.2 Upgrading a 9.0 or 9.1 WebLogic Web Service to 10.3.x ... 8-1
8.3 Upgrading an 8.1 WebLogic Web Service to 10.3.x ... 8-2
8.3.1 Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10.3.x: Main

Steps ... 8-3
8.3.1.1 Example of an 8.1 Java File and the Corresponding 10.3.x JWS File 8-5
8.3.1.2 Example of an 8.1 and Updated 10.3.x Ant Build File for Java Class-Implemented

Web Services ... 8-6
8.3.2 Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10.3.x: Main Steps .. 8-7
8.3.2.1 Example of 8.1 EJB Files and the Corresponding 10.3.x JWS File 8-9
8.3.2.1.1 8.1 SessionBean Class.. 8-9
8.3.2.1.2 8.1 Remote Interface... 8-11
8.3.2.1.3 8.1 EJB Home Interface .. 8-11
8.3.2.1.4 Equivalent 10.3.x JWS File... 8-11
8.3.2.2 Example of an 8.1 and Updated 10.3.x Ant Build File for an 8.1 EJB-Implemented

Web Service ... 8-12
8.3.3 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes 8-14

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction 1-1

1Introduction

[2] This chapter provides a summary table of getting started topics for software
developers who program WebLogic Web services using Java API for XML-based RPC
(JAX-RPC).

JAX-RPC is a specification that defines the Java APIs for making XML-based remote
procedure calls (RPC). In particular, these APIs are used to invoke and get a response
from a Web service using SOAP 1.1, and XML-based protocol for exchange of
information in a decentralized and distributed environment. For more information, see
http://java.net/projects/jax-rpc/.

The following table summarizes the contents of this guide.

For an overview of WebLogic Web services, standards, samples, and related
documentation, see Oracle Fusion Middleware Introducing WebLogic Web Services for
Oracle WebLogic Server

Note: JAX-WS is designed to take the place of JAX-RPC in Web
services and Web applications. To compare the features that are
supported for JAX-WS and JAX-RPC, see "How Do I Choose Between
JAX-WS and JAX-RPC?" in Oracle Fusion Middleware Introducing
WebLogic Web Services for Oracle WebLogic Server.

Table 1–1 Content Summary

This section . . . Describes how to . . .

Chapter 2, "Use Cases and Examples" Review and run common use cases and
examples.

Chapter 3, "Developing WebLogic Web
Services"

Develop Web services using the WebLogic
development environment.

Chapter 4, "Programming the JWS File" Program the JWS file that implements your Web
service.

Chapter 5, "Understanding Data Binding" Use the Java Architecture for XML Binding
(JAXB) data binding.

Chapter 6, "Invoking Web Services" Invoke your Web service from a Java client or
another Web service.

Chapter 8, "Upgrading WebLogic Web
Services From Previous Releases to 10.3.x"

Upgrade a Web service from a previous release.

Chapter 7, "Administering Web Services" Administer WebLogic Web services using the
Administration Console.

1-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

For information about WebLogic Web service security, see Oracle Fusion Middleware
Securing WebLogic Web Services for Oracle WebLogic Server.

2

Use Cases and Examples 2-1

2Use Cases and Examples

[3] This chapter describes common use cases and examples for WebLogic Web services
using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following topics:

■ Section 2.1, "Creating a Simple HelloWorld Web Service"

■ Section 2.2, "Creating a Web Service With User-Defined Data Types"

■ Section 2.3, "Creating a Web Service from a WSDL File"

■ Section 2.4, "Invoking a Web Service from a Java SE Client"

■ Section 2.5, "Invoking a Web Service from a WebLogic Web Service"

Each use case provides step-by-step procedures for creating simple WebLogic Web
services and invoking an operation from a deployed Web service. The examples
include basic Java code and Ant build.xml files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The use cases do not go into detail about the processes and tools used in the examples;
later chapters are referenced for more detail.

2.1 Creating a Simple HelloWorld Web Service
This section describes how to create a very simple Web service that contains a single
operation. The Java Web Service (JWS) file that implements the Web service uses just the
one required JWS annotation: @WebService. A JWS file is a standard Java file that uses
JWS metadata annotations to specify the shape of the Web service. Metadata
annotations were introduced with JDK 5.0, and the set of annotations used to annotate
Web service files are called JWS annotations. WebLogic Web services use standard JWS
annotations. For a complete list of JWS annotations that are supported, see "Web
Service Annotation Support" in Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server.

The following example shows how to create a Web service called HelloWorldService
that includes a single operation, sayHelloWorld. For simplicity, the operation returns
the inputted String value.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is MW_HOME/user_

Creating a Simple HelloWorld Web Service

2-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory, as follows:

 prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/hello_world
 prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the Web service.

Open your favorite Java IDE or text editor and create a Java file called
HelloWorldImpl.java using the Java code specified in Section 2.1.1, "Sample
HelloWorldImpl.java JWS File."

The sample JWS file shows a Java class called HelloWorldImpl that contains a
single public method, sayHelloWorld(String). The @WebService annotation
specifies that the Java class implements a Web service called HelloWorldService.
By default, all public methods are exposed as operations.

5. Save the HelloWorldImpl.java file in the src/examples/webservices/hello_
world directory.

6. Create a standard Ant build.xml file in the project directory (myExamples/hello_
world/src) and add a taskdef Ant task to specify the full Java classname of the
jwsc task:

<project name="webservices-hello_world" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.1.2, "Sample Ant Build File for HelloWorldImpl.java" for a full
sample build.xml file that contains additional targets from those described in this
procedure, such as clean, undeploy, client, and run. The full build.xml file also
uses properties, such as ${ear-dir}, rather than always using the hard-coded
name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside
of the build-service target:

 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">
 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXRPC"/>
 </jwsc>
 </target>

The jwsc WebLogic Web service Ant task generates the supporting artifacts (such
as the deployment descriptors, serialization classes for any user-defined data
types, the WSDL file, and so on), compiles the user-created and generated Java
code, and archives all the artifacts into an Enterprise Application EAR file that you
later deploy to WebLogic Server.

8. Execute the jwsc Ant task by specifying the build-service target at the command
line:

Creating a Simple HelloWorld Web Service

Use Cases and Examples 2-3

prompt> ant build-service

See the output/helloWorldEar directory to view the files and artifacts generated
by the jwsc Ant task.

9. Start the WebLogic Server instance to which the Web service will be deployed.

10. Deploy the Web service, packaged in an enterprise application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In either
case, you deploy the helloWorldEar Enterprise application, located in the output
directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy"
 name="helloWorldEar" source="output/helloWorldEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/HelloWorldImpl/HelloWorldImpl?WSDL

You construct the URL using the values of the contextPath and serviceUri
attributes of the WLHttpTransport JWS annotation; however, because the JWS file
in this use case does not include the WLHttpTransport annotation, use the default
values for the contextPath and serviceUri attributes: the name of the Java class
in the JWS file. These attributes will be set explicitly in the next example,
Section 2.2, "Creating a Web Service With User-Defined Data Types." Use the
hostname and port relevant to your WebLogic Server instance.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml
file to iteratively update, rebuild, undeploy, and redeploy the Web service as part of
your development process.

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Client" for an example of creating a Java client
application that invokes a Web service.

2.1.1 Sample HelloWorldImpl.java JWS File
package examples.webservices.hello_world;
// Import the @WebService annotation
import javax.jws.WebService;
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld

Creating a Simple HelloWorld Web Service

2-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 */
public class HelloWorldImpl {
 // By default, all public methods are exposed as Web Services operation
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }

 return "Here is the message: '" + message + "'";
 }
 }

2.1.2 Sample Ant Build File for HelloWorldImpl.java
The following build.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="helloWorldEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/helloWorldEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXRPC"/>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"

Creating a Web Service With User-Defined Data Types

Use Cases and Examples 2-5

 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.hello_world.client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/hello_world/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.hello_world.client.Main"
 fork="true" failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
 line="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl" />
 </java> </target>
</project>

2.2 Creating a Web Service With User-Defined Data Types
The preceding use case uses only a simple data type, String, as the parameter and
return value of the Web service operation. This next example shows how to create a
Web service that uses a user-defined data type, in particular a JavaBean called
BasicStruct, as both a parameter and a return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a
Web service, other than to create the Java source of the data type and use it correctly in
the JWS file. The jwsc Ant task, when it encounters a user-defined data type in the
JWS file, automatically generates all the data binding artifacts needed to convert data
between its XML representation (used in the SOAP messages) and its Java
representation (used in WebLogic Server). The data binding artifacts include the XML
Schema equivalent of the Java user-defined type, the JAX-RPC type mapping file, and
so on.

The following procedure is very similar to the procedure in Section 2.1, "Creating a
Simple HelloWorld Web Service." For this reason, although the procedure does show
all the needed steps, it provides details only for those steps that differ from the simple
HelloWorld example.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/complex

Creating a Web Service With User-Defined Data Types

2-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/complex
 prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
BasicStruct.java, in the project directory, using the Java code specified in
Section 2.2.1, "Sample BasicStruct JavaBean."

5. Save the BasicStruct.java file in the src/examples/webservices/complex
subdirectory of the project directory.

6. Create the JWS file that implements the Web service using the Java code specified
in Section 2.2.2, "Sample ComplexImpl.java JWS File."

The sample JWS file uses several JWS annotations: @WebMethod to specify explicitly
that a method should be exposed as a Web service operation and to change its
operation name from the default method name echoStruct to echoComplexType;
@WebParam and @WebResult to configure the parameters and return values;
@SOAPBinding to specify the type of Web service; and @WLHttpTransport to specify
the URI used to invoke the Web service. The ComplexImpl.java JWS file also
imports the examples.webservice.complex.BasicStruct class and then uses the
BasicStruct user-defined data type as both a parameter and return value of the
echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 4,
"Programming the JWS File."

7. Save the ComplexImpl.java file in the src/examples/webservices/complex
subdirectory of the project directory.

8. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the fully Java classname of the jwsc task:

<project name="webservices-complex" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.2.3, "Sample Ant Build File for ComplexImpl.java JWS File" for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside
of the build-service target:

<target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/ComplexServiceEar" >
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"
 portName="ComplexServicePort"/>
 </jws>
 </jwsc>
 </target>

In the preceding example:

Creating a Web Service With User-Defined Data Types

Use Cases and Examples 2-7

– The type attribute of the <jws> element specifies the type of Web service
(JAX-WS or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant
task specifies the context path and service URI sections of the URL used to
invoke the Web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL. This value overrides the value specified in the
JWS file using the @WLHttpTransport attribute. For more information about
defining the context path, see "Defining the Context Path of a WebLogic Web
Service" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server.

10. Execute the jwsc Ant task:

prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts
generated by the jwsc Ant task.

11. Start the WebLogic Server instance to which the Web service will be deployed.

12. Deploy the Web service, packaged in the ComplexServiceEar Enterprise
Application, to WebLogic Server, using either the Administration Console or the
wldeploy Ant task. For example:

 prompt> ant deploy

13. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In either
case, you deploy the ComplexServiceEar Enterprise application, located in the
output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy"
 name="ComplexServiceEar" source="output/ComplexServiceEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

14. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/complex/ComplexService?WSDL

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Client" for an example of creating a Java client
application that invokes a Web service.

Creating a Web Service With User-Defined Data Types

2-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

2.2.1 Sample BasicStruct JavaBean
package examples.webservices.complex;
/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */
public class BasicStruct {
 // Properties
 private int intValue;
 private String stringValue;
 private String[] stringArray;
 // Getter and setter methods
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }
 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }
 public String[] getStringArray() {
 return stringArray;
 }
 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }
 public String toString() {
 return "IntValue="+intValue+", StringValue="+stringValue;
 }
 }

2.2.2 Sample ComplexImpl.java JWS File
package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
 import javax.jws.WebParam;
 import javax.jws.WebResult;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interface
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
// Standard JWS annotation that specifies that the portType name of the Web
 // Service is "ComplexPortType", its public service name is "ComplexService",
 // and the targetNamespace used in the generated WSDL is "http://example.org"
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies this is a document-literal-wrapped
 // Web Service
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

Creating a Web Service With User-Defined Data Types

Use Cases and Examples 2-9

// WebLogic-specific JWS annotation that specifies the context path and service
 // URI used to build the URI of the Web Service is "complex/ComplexService"
@WLHttpTransport(contextPath="complex", serviceUri="ComplexService",
 portName="ComplexServicePort")
/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 */
public class ComplexImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".
 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 System.out.println("echoComplexType called");
 return struct;
 }
 }

2.2.3 Sample Ant Build File for ComplexImpl.java JWS File
The following build.xml file uses properties to simplify the file.

<project name="webservices-complex" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />

Creating a Web Service With User-Defined Data Types

2-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="complexServiceEAR" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/complexServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client"/>
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}"
 keepGenerated="true"
 >
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"
 portName="ComplexServicePort"/>
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy"
 name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"/>
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" failonerror="false"
 name="${ear.deployed.name}"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"/>
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.complex.client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>

Creating a Web Service from a WSDL File

Use Cases and Examples 2-11

 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/complex/client/**/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.complex.client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"
 />
 </java>
 </target>
</project>

2.3 Creating a Web Service from a WSDL File
Another common use case of creating a Web service is to start from an existing WSDL
file, often referred to as the golden WSDL. A WSDL file is a public contract that
specifies what the Web service looks like, such as the list of supported operations, the
signature and shape of each operation, the protocols and transports that can be used
when invoking the operations, and the XML Schema data types that are used when
transporting the data. Based on this WSDL file, you generate the artifacts that
implement the Web service so that it can be deployed to WebLogic Server. You use the
wsdlc Ant task to generate the following artifacts.

■ JWS service endpoint interface (SEI) that implements the Web service described by
the WSDL file.

■ JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

■ Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the Web service parameters and return values.

■ Optional Javadocs for the generated JWS SEI.

Typically, you run the wsdlc Ant task one time to generate a JAR file that contains the
generated JWS SEI file and data binding artifacts, then code the generated JWS file that
implements the interface, adding the business logic of your Web service. In particular,
you add Java code to the methods that implement the Web service operations so that
the operations behave as needed and add additional JWS annotations.

After you have coded the JWS implementation file, you run the jwsc Ant task to
generate the deployable Web service, using the same steps as described in the
preceding sections. The only difference is that you use the compiledWsdl attribute to
specify the JAR file (containing the JWS SEI file and data binding artifacts) generated
by the wsdlc Ant task.

The following simple example shows how to create a Web service from the WSDL file
shown in Section 2.3.1, "Sample WSDL File." The Web service has one operation,
getTemp, that returns a temperature when passed a zip code.

Note: The only file generated by the wsdlc Ant task that you update
is the JWS implementation file. You never need to update the JAR file
that contains the JWS SEI and data binding artifacts.

Creating a Web Service from a WSDL File

2-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a working directory:

 prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
TemperatureService.wsdl and is located in the /myExamples/wsdlc/wsdl_files
directory. See Section 2.3.1, "Sample WSDL File" for a full listing of the file.

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the wsdlc task:

<project name="webservices-wsdlc" default="all">
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
</project>

See Section 2.3.3, "Sample Ant Build File for TemperatureService" for a full sample
build.xml file that contains additional targets from those described in this
procedure, such as clean, undeploy, client, and run. The full build.xml file also
uses properties, such as ${ear-dir}, rather than always using the hard-coded
name for the EAR directory.

5. Add the following call to the wsdlc Ant task to the build.xml file, wrapped inside
of the generate-from-wsdl target:

 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc" />
 </target>

The wsdlc task in the examples generates the JAR file that contains the JWS SEI
and data binding artifacts into the output/compiledWsdl directory under the
current directory. It also generates a partial implementation file
(TemperaturePortTypeImpl.java) of the JWS SEI into the
output/impl/examples/webservices/wsdlc directory (which is a combination of
the output directory specified by destImplDir and the directory hierarchy
specified by the package name). All generated JWS files will be packaged in the
examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at the
command line:

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated by
the wsdlc Ant task.

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

Creating a Web Service from a WSDL File

Use Cases and Examples 2-13

JWS implementation file using your favorite Java IDE or text editor to add Java
code to the methods so that they behave as you want.

See Section 2.3.2, "Sample TemperaturePortType Java Implementation File" for an
example; the added Java code is in bold. The generated JWS implementation file
automatically includes values for the @WebService and @WLHttpTransport JWS
annotations that correspond to the values in the original WSDL file.

For simplicity, the sample getTemp() method in TemperaturePortTypeImpl.java
returns a hard-coded number. In real life, the implementation of this method
would actually look up the current temperature at the given zip code.

8. Copy the updated TemperaturePortTypeImpl.java file into a permanent directory,
such as a src directory under the project directory; remember to create child
directories that correspond to the package name:

prompt> cd /examples/wsdlc
 prompt> mkdir src/examples/webservices/wsdlc
 prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
\
 src/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

9. Add a build-service target to the build.xml file that executes the jwsc Ant task
against the updated JWS implementation class. Use the compiledWsdl attribute of
jwsc to specify the name of the JAR file generated by the wsdlc Ant task:

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="temp" serviceUri="TemperatureService"
 portName="TemperaturePort">
 </WLHttpTransport>
 </jws>
 </jwsc>
 </target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of Web services
(JAX-WS or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant
task specifies the context path and service URI sections of the URL used to
invoke the Web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL. This value overrides the value specified in the
JWS file using the @WLHttpTransport attribute.

Note: There are restrictions on the JWS annotations that you can add
to the JWS implementation file in the "starting from WSDL" use case.
See "wsdlc" in the Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for details.

Creating a Web Service from a WSDL File

2-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

10. Execute the build-service target to generate a deployable Web service:

prompt> ant build-service

You can re-run this target if you want to update and then re-build the JWS file.

11. Start the WebLogic Server instance to which the Web service will be deployed.

12. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In either
case, you deploy the wsdlcEar Enterprise application, located in the output
directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy" name="wsdlcEar"
 source="output/wsdlcEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

13. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic
Server instance. Note that the deployed and original WSDL files are the same,
except for the host and port of the endpoint address.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml
file to iteratively update, rebuild, undeploy, and redeploy the Web service as part of
your development process.

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Client" for an example of creating a Java client
application that invokes a Web service.

2.3.1 Sample WSDL File
<?xml version="1.0"?>
<definitions
 name="TemperatureService"
 targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
 xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <message name="getTempRequest">
 <part name="zip" type="xsd:string"/>

Creating a Web Service from a WSDL File

Use Cases and Examples 2-15

 </message>
 <message name="getTempResponse">
 <part name="return" type="xsd:float"/>
 </message>
 <portType name="TemperaturePortType">
 <operation name="getTemp">
 <input message="tns:getTempRequest"/>
 <output message="tns:getTempResponse"/>
 </operation>
 </portType>
 <binding name="TemperatureBinding" type="tns:TemperaturePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getTemp">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="urn:xmethods-Temperature" />
 </input>
 <output>
 <soap:body use="literal"
 namespace="urn:xmethods-Temperature" />
 </output>
 </operation>
 </binding>
 <service name="TemperatureService">
 <documentation>
 Returns current temperature in a given U.S. zipcode
 </documentation>
 <port name="TemperaturePort" binding="tns:TemperatureBinding">
 <soap:address

location="http://localhost:7001/temp/TemperatureService"/>
 </port>
 </service>
</definitions>

2.3.2 Sample TemperaturePortType Java Implementation File
package examples.webservices.wsdlc;
import javax.jws.WebService;
 import weblogic.jws.*;
/**
 * TemperaturePortTypeImpl class implements web service endpoint
 * interface TemperaturePortType */
@WebService(
 serviceName="TemperatureService",
 targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType)
@WLHttpTransport(
 contextPath="temp",
 serviceUri="TemperatureService",
 portName="TemperaturePort")
 public class TemperaturePortTypeImpl implements
examples.webservices.wsdlc.TemperaturePortType {
 public TemperaturePortTypeImpl() { }
 public float getTemp(java.lang.String zip) {
 return 1.234f;
 }

Creating a Web Service from a WSDL File

2-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 }

2.3.3 Sample Ant Build File for TemperatureService
The following build.xml file uses properties to simplify the file.

<project default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="wsdlcEar" />
 <property name="example-output" value="output" />
 <property name="compiledWsdl-dir" value="${example-output}/compiledWsdl" />
 <property name="impl-dir" value="${example-output}/impl" />
 <property name="ear-dir" value="${example-output}/wsdlcEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all"
 depends="clean,generate-from-wsdl,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="${compiledWsdl-dir}"
 destImplDir="${impl-dir}"
 packageName="examples.webservices.wsdlc" />
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="temp" serviceUri="TemperatureService"
 portName="TemperaturePort"/>
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"

Invoking a Web Service from a Java SE Client

Use Cases and Examples 2-17

 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/temp/TemperatureService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.wsdlc.client"
 type="JAXRPC">
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/wsdlc/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.wsdlc.client.TemperatureClient"
 fork="true" failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
 line="http://${wls.hostname}:${wls.port}/temp/TemperatureService" />
 </java>
 </target>
</project>

2.4 Invoking a Web Service from a Java SE Client

When you invoke an operation of a deployed Web service from a client application,
the Web service could be deployed to WebLogic Server or to any other application
server, such as .NET. All you need to know is the URL to its public contract file, or
WSDL.

In addition to writing the Java client application, you must also run the clientgen
WebLogic Web service Ant task to generate the artifacts that your client application
needs to invoke the Web service operation. These artifacts include:

■ The Java class for the JAX-RPC Stub and Service interface implementations for
the particular Web service you want to invoke.

Note: As described in this section, you can invoke a Web service
from any Java SE or Java EE application running on WebLogic Server
(with access to the WebLogic Server classpath). For information about
support for stand-alone Java applications that are running in an
environment where WebLogic Server libraries are not available, see
Section 6.4, "Using a Stand-Alone Client JAR File When Invoking Web
Services".

Invoking a Web Service from a Java SE Client

2-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

■ The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

■ A client-side copy of the WSDL file.

The following example shows how to create a Java client application that invokes the
echoComplexType operation of the ComplexService WebLogic Web service described in
Section 2.2, "Creating a Web Service With User-Defined Data Types." The
echoComplexType operation takes as both a parameter and return type the
BasicStruct user-defined data type.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/simple_client

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the Java client application (shown later on in
this procedure):

 prompt> cd /myExamples/simple_client
 prompt> mkdir src/examples/webservices/simple_client

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the clientgen task:

<project name="webservices-simple_client" default="all">
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
</project>

See Section 2.4.2, "Sample Ant Build File For Building Java Client Application" for
a full sample build.xml file. The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output
directory for client classes.

5. Add the following calls to the clientgen and javac Ant tasks to the build.xml
file, wrapped inside of the build-client target:

 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="output/clientclass"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 <javac

Note: It is assumed in this procedure that you have created and
deployed the ComplexService Web service.

Invoking a Web Service from a Java SE Client

Use Cases and Examples 2-19

 srcdir="output/clientclass" destdir="output/clientclass"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="output/clientclass"
 includes="examples/webservices/simple_client/*.java"/>
</target>

The clientgen Ant task uses the WSDL of the deployed ComplexService Web
service to generate the necessary artifacts and puts them into the
output/clientclass directory, using the specified package name. Replace the
variables with the actual hostname and port of your WebLogic Server instance that
is hosting the Web service.

The clientgen Ant task also automatically generates the
examples.webservices.complex.BasicStruct JavaBean class, which is the Java
representation of the user-defined data type specified in the WSDL.

The build-client target also specifies the standard javac Ant task, in addition to
clientgen, to compile all the Java code, including the simple Java program
described in the next step, into class files.

The clientgen Ant task also provides the destFile attribute if you want the Ant
task to automatically compile the generated Java code and package all artifacts
into a JAR file. For details and an example, see "clientgen" in the Oracle Fusion
Middleware WebLogic Web Services Reference for Oracle WebLogic Server.

6. Create the Java client application file that invokes the echoComplexType operation.

Open your favorite Java IDE or text editor and create a Java file called Main.java
using the code specified in Section 2.4.1, "Sample Java Client Application."

The Main client application takes a single argument: the WSDL URL of the Web
service. The application then follows standard JAX-RPC guidelines to invoke an
operation of the Web service using the Web service-specific implementation of the
Service interface generated by clientgen. The application also imports and uses
the BasicStruct user-defined type, generated by the clientgen Ant task, that is
used as a parameter and return value for the echoStruct operation. For details,
see Chapter 6, "Invoking Web Services."

7. Save the Main.java file in the src/examples/webservices/simple_client
subdirectory of the main project directory.

8. Execute the clientgen and javac Ant tasks by specifying the build-client target
at the command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated by
the clientgen Ant task.

9. Add the following targets to the build.xml file, used to execute the Main
application:

 <path id="client.class.path">
 <pathelement path="output/clientclass"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >

Invoking a Web Service from a Java SE Client

2-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </java>
 </target>

The run target invokes the Main application, passing it the WSDL URL of the
deployed Web service as its single argument. The classpath element adds the
clientclass directory to the CLASSPATH, using the reference created with the
<path> task.

10. Execute the run target to invoke the echoComplexType operation:

 prompt> ant run

If the invoke was successful, you should see the following final output:

run:
 [java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

2.4.1 Sample Java Client Application
The following provides a simple Java client application that invokes the
echoComplexType operation.

package examples.webservices.simple_client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
// import the BasicStruct class, used as a param and return value of the
 // echoComplexType operation. The class is generated automatically by
 // the clientgen Ant task.
import examples.webservices.complex.BasicStruct;
/**
 * This is a simple Java client application that invokes the
 * echoComplexType operation of the ComplexService Web service.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException {
 ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
 }

2.4.2 Sample Ant Build File For Building Java Client Application
The following build.xml file defines tasks to build the Java client application. The
example uses properties to simplify the file.

<project name="webservices-simple_client" default="all">
 <!-- set global properties for this build -->

Invoking a Web Service from a WebLogic Web Service

Use Cases and Examples 2-21

 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="example-output" value="output" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="clean" >
 <delete dir="${clientclass-dir}"/>
 </target>
 <target name="all" depends="clean,build-client,run" />
 <target name="build-client">
 <clientgen
 type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.simple_client"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/simple_client/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </java>
 </target>
</project>

2.5 Invoking a Web Service from a WebLogic Web Service
You can also invoke a Web service (WebLogic, .NET, and so on) from within a
deployed WebLogic Web service.

The procedure for invoking a Web service from a WebLogic Web service is similar to
that described in Section 2.4, "Invoking a Web Service from a Java SE Client" except
that instead of running the clientgen Ant task to generate the client stubs, you use the
<clientgen> child element of <jws>, inside of the jwsc Ant task. The jwsc Ant task
automatically packages the generated client stubs in the invoking Web service WAR
file so that the Web service has immediate access to them. You then follow standard
JAX-RPC programming guidelines in the JWS file that implements the Web service
that invokes the other Web service.

The following example shows how to write a JWS file that invokes the
echoComplexType operation of the ComplexService Web service described in
Section 2.2, "Creating a Web Service With User-Defined Data Types."

Note: It is assumed that you have successfully deployed the
ComplexService Web service.

Invoking a Web Service from a WebLogic Web Service

2-22 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS and client application files (shown
later on in this procedure):

 prompt> cd /myExamples/service_to_service
 prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the Web service that invokes the
ComplexService Web service.

Open your favorite Java IDE or text editor and create a Java file called
ClientServiceImpl.java using the Java code specified in Section 2.5.1, "Sample
ClientServiceImpl.java JWS File."

The sample JWS file shows a Java class called ClientServiceImpl that contains a
single public method, callComplexService(). The Java class imports the JAX-RPC
stubs, generated later on by the jwsc Ant task, as well as the BasicStruct Java
Bean (also generated by clientgen), which is the data type of the parameter and
return value of the echoComplexType operation of the ComplexService Web
service.

The ClientServiceImpl Java class defines one method, callComplexService(),
which takes two parameters: a BasicStruct which is passed on to the
echoComplexType operation of the ComplexService Web service, and the URL of
the ComplexService Web service. The method then uses the standard JAX-RPC
APIs to get the Service and PortType of the ComplexService, using the stubs
generated by jwsc, and then invokes the echoComplexType operation.

5. Save the ClientServiceImpl.java file in the
src/examples/webservices/service_to_service directory.

6. Create a standard Ant build.xml file in the project directory and add the
following task:

<project name="webservices-service_to_service" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

The taskdef task defines the full classname of the jwsc Ant task.

See Section 2.5.2, "Sample Ant Build File For Building ClientService" for a full
sample build.xml file that contains additional targets from those described in this
procedure, such as clean, deploy, undeploy, client, and run. The full build.xml
file also uses properties, such as ${ear-dir}, rather than always using the
hard-coded name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside
of the build-service target:

<target name="build-service">

Invoking a Web Service from a WebLogic Web Service

Use Cases and Examples 2-23

 <jwsc
 srcdir="src"
 destdir="output/ClientServiceEar" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>
 <clientgen
 type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>

In the preceding example, the <clientgen> child element of the <jws> element of
the jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc should
also generate and compile the client artifacts needed to invoke the Web service
described by the WSDL file.

In this example, the package name is set to examples.webservices.complex,
which is different from the client application package name,
examples.webservices.simple_client. As a result, you need to import the
appropriate class files in the client application:

import examples.webservices.complex.BasicStruct;
 import examples.webservices.complex.ComplexPortType;
 import examples.webservices.complex.ComplexService;

If the package name is set to the same package name as the client application, the
import calls would be optional.

8. Execute the jwsc Ant task by specifying the build-service target at the command
line:

prompt> ant build-service

9. Start the WebLogic Server instance to which you will deploy the Web service.

10. Deploy the Web service, packaged in an enterprise application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In either
case, you deploy the ClientServiceEar Enterprise application, located in the
output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy" name="ClientServiceEar"
 source="ClientServiceEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

Invoking a Web Service from a WebLogic Web Service

2-24 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 prompt> ant deploy

11. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/ClientService/ClientService?WSDL

See Section 2.4, "Invoking a Web Service from a Java SE Client" for an example of
creating a Java client application that invokes a Web service.

2.5.1 Sample ClientServiceImpl.java JWS File
The following provides a simple Web service client application that invokes the
echoComplexType operation.

package examples.webservices.service_to_service;
import java.rmi.RemoteException;
 import javax.xml.rpc.ServiceException;
import javax.jws.WebService;
 import javax.jws.WebMethod;
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct data type, generated by clientgen and used
 // by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;
// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
 // Stubs generated by clientgen
import examples.webservices.service_to_service.ComplexPortType;
 import examples.webservices.service_to_service.ComplexService_Impl;
 import examples.webservices.service_to_service.ComplexService;
@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")
@WLHttpTransport(contextPath="ClientService", serviceUri="ClientService",
 portName="ClientServicePort")
public class ClientServiceImpl {
 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 throws ServiceException, RemoteException
 {
 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");
 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";
 }
 }

2.5.2 Sample Ant Build File For Building ClientService
The following build.xml file defines tasks to build the client application. The example
uses properties to simplify the file.

The following build.xml file uses properties to simplify the file.

<project name="webservices-service_to_service" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />

Invoking a Web Service from a WebLogic Web Service

Use Cases and Examples 2-25

 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>
 <clientgen
 type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXRPC"/>
 <javac

Invoking a Web Service from a WebLogic Web Service

2-26 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg

line="http://${wls.hostname}:${wls.port}/ClientService/ClientService"/>
 </java>
 </target>
</project>

3

Developing WebLogic Web Services 3-1

3Developing WebLogic Web Services

[4] This chapter describes the iterative development process for WebLogic Web services
using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following topics:

■ Section 3.1, "Overview of the WebLogic Web Service Programming Model"

■ Section 3.2, "Configuring Your Domain For Web Services Features"

■ Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

■ Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

■ Section 3.5, "Creating the Basic Ant build.xml File"

■ Section 3.6, "Running the jwsc WebLogic Web Services Ant Task"

■ Section 3.7, "Running the wsdlc WebLogic Web Services Ant Task"

■ Section 3.8, "Updating the Stubbed-out JWS Implementation Class File Generated
By wsdlc"

■ Section 3.9, "Deploying and Undeploying WebLogic Web Services"

■ Section 3.10, "Browsing to the WSDL of the Web Service"

■ Section 3.11, "Configuring the Server Address Specified in the Dynamic WSDL"

■ Section 3.12, "Testing the Web Service"

■ Section 3.13, "Integrating Web Services Into the WebLogic Split Development
Directory Environment"

3.1 Overview of the WebLogic Web Service Programming Model
The WebLogic Web Services programming model centers around JWS files—Java files
that use JWS annotations to specify the shape and behavior of the Web Service—and
Ant tasks that execute on the JWS file. JWS annotations are based on the metadata
feature, introduced in Version 5.0 of the JDK (specified by JSR-175 at
http://www.jcp.org/en/jsr/detail?id=175) and include standard annotations
defined by Web Services Metadata for the Java Platform specification (JSR-181), described
at http://www.jcp.org/en/jsr/detail?id=181, as well as additional ones. For a
complete list of JWS annotations that are supported, see "Web Service Annotation
Support" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server. For additional detailed information about this programming model,
see "Anatomy of a WebLogic Web Service" in Oracle Fusion Middleware Introducing
WebLogic Web Services for Oracle WebLogic Server.

Configuring Your Domain For Web Services Features

3-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

The following sections describe the high-level steps for iteratively developing a Web
Service, either starting from Java or starting from an existing WSDL file:

■ Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

■ Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

Iterative development refers to setting up your development environment in such a
way so that you can repeatedly code, compile, package, deploy, and test a Web Service
until it works as you want. The WebLogic Web Service programming model uses Ant
tasks to perform most of the steps of the iterative development process. Typically, you
create a single build.xml file that contains targets for all the steps, then repeatedly run
the targets, after you have updated your JWS file with new Java code, to test that the
updates work as you expect.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper, to develop Web services. For more information, see "Using
Oracle IDEs to Build Web Services" in Oracle Fusion Middleware Introducing WebLogic
Web Services for Oracle WebLogic Server.

3.2 Configuring Your Domain For Web Services Features
After you have created a WebLogic Server domain, you can use the Configuration
Wizard to update the domain, using a Web Services-specific extension template, so
that the resources required by certain WebLogic Web Services features are
automatically configured. Although use of this extension template is not required, it
makes the configuration of JMS and JDBC resources much easier.

The Web Services extension template automatically configures the resources required
for the following features:

■ Web Services Reliable Messaging

■ Buffering

■ JMS Transport

The following procedures describe how to create and extend a domain so that it is
automatically configured for the advanced Web services features. For detailed
instructions about using the Configuration Wizard to create and update WebLogic
Server domains, see Oracle WebLogic Server Creating WebLogic Domains Using the
Configuration Wizard.

To create a domain that is automatically configured for the advanced Web service
features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Create a new WebLogic domain.

3. Click Next.

Note: A domain that does not contain Web Services resources will
still boot and operate correctly for non-Web services scenarios, and
any Web Services scenario that does not involve asynchronous request
and response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for Web services has not been
completely deployed.

Developing WebLogic Web Services Starting From Java: Main Steps

Developing WebLogic Web Services 3-3

4. Select Generate a domain configured automatically to support the following
products and select WebLogic Advanced Web Services for JAX-RPC Extension.

5. Click Next.

6. Enter the name and location of the domain and click Next.

7. Configure the administrator user name and password and click Next.

8. Configure the server start mode and JDK and click Next.

9. If you want to further configure the JMS services, file stores, or any other feature,
select the items on the Select Optional Configuration screen. This is not typical.

Otherwise, leave all items deselected and click Next.

10. When you reach the Configuration Summary screen, verify the domain details and
click Create.

11. Click Done to exit.

To extend an existing domain so that it is automatically configured for these Web
Services features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Extend an Existing WebLogic Domain.

3. Click Next.

4. Select the domain to which you want to apply the extension template.

5. Click Next.

6. Select Extend my domain automatically to support the following added products
and select WebLogic Advanced Web Services for JAX-RPC Extension.

7. Click Next.

8. If you want to further configure the JMS services or file stores, select the items on
the Select Optional Configuration screen. This is not typical.

Otherwise, leave all items deselected and click Next.

9. Verify that you are extending the correct domain, then click Extend.

10. Click Done to exit.

3.3 Developing WebLogic Web Services Starting From Java: Main Steps
This section describes the general procedure for developing WebLogic Web Services
starting from Java—in effect, coding the JWS file from scratch and later generating the
WSDL file that describes the service. See Chapter 2, "Use Cases and Examples" for
specific examples of this process.

The following procedure is just a recommendation; if you have set up your own
development environment, you can use this procedure as a guide for updating your
existing environment to develop WebLogic Web Services.

Note: This procedure does not use the WebLogic Web Services split
development directory environment. If you are using this
development environment, and would like to integrate Web Services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment" for details.

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

3-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

See Chapter 6, "Invoking Web Services" for information on writing client applications
that invoke a Web Service.

3.4 Developing WebLogic Web Services Starting From a WSDL File: Main
Steps

This section describes the general procedure for developing WebLogic Web Services
based on an existing WSDL file. See Chapter 3, "Developing WebLogic Web Services"
for a specific example of this process.

Table 3–1 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv.sh
(UNIX) command, located in the bin subdirectory of your
domain directory. The default location of WebLogic
Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and
domainName is the name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source
for any user-defined data types, and the Ant build.xml
file. You can name the project directory anything you
want.

3 Create the JWS file that
implements the Web Service.

See Section 4.3, "Programming the JWS File: Typical
Steps."

4 Create user-defined data
types. (Optional)

If your Web Service uses user-defined data types, create
the JavaBeans that describes them. See Section 4.6,
"Programming the User-Defined Java Data Type."

5 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

6 Run the jwsc Ant task against
the JWS file.

The jwsc Ant task generates source code, data binding
artifacts, deployment descriptors, and so on, into an
output directory. The jwsc Ant task generates an
Enterprise application directory structure at this output
directory; later you deploy this exploded directory to
WebLogic Server as part of the iterative development
process. See Section 3.6, "Running the jwsc WebLogic Web
Services Ant Task."

7 Deploy the Web Service to
WebLogic Server.

See Section 3.9, "Deploying and Undeploying WebLogic
Web Services."

8 Browse to the WSDL of the
Web Service.

Browse to the WSDL of the Web Service to ensure that it
was deployed correctly. See Section 3.10, "Browsing to the
WSDL of the Web Service."

9 Test the Web Service. See Section 3.12, "Testing the Web Service."

10 Edit the Web Service.
(Optional)

To make changes to the Web Service, update the JWS file,
undeploy the Web Service as described in Section 3.9,
"Deploying and Undeploying WebLogic Web Services,"
then repeat the steps starting from running the jwsc Ant
task (Step 6).

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Developing WebLogic Web Services 3-5

The procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing
environment to develop WebLogic Web Services.

It is assumed in this procedure that you already have an existing WSDL file.

Note: This procedure does not use the WebLogic Web Services split
development directory environment. If you are using this
development environment, and would like to integrate Web Services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment" for details.

Table 3–2 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv.sh
(UNIX) command, located in the bin subdirectory of your
domain directory. The default location of WebLogic
Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and
domainName is the name of your domain.

2 Create a project directory. The project directory will contain the generated artifacts
and the Ant build.xml file.

3 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

4 Put your WSDL file in a
directory that the build.xml
Ant build file is able to read.

For example, you can put the WSDL file in a wsdl_files
child directory of the project directory.

5 Run the wsdlc Ant task
against the WSDL file.

The wsdlc Ant task generates the JWS service endpoint
interface (SEI), the stubbed-out JWS class file, JavaBeans
that represent the XML Schema data types, and so on,
into output directories. See Section 3.7, "Running the
wsdlc WebLogic Web Services Ant Task."

6 Update the stubbed-out JWS
file generated by the wsdlc
Ant task.

The wsdlc Ant task generates a stubbed-out JWS file. You
need to add your business code to the Web Service so it
behaves as you want. See Section 3.8, "Updating the
Stubbed-out JWS Implementation Class File Generated
By wsdlc."

7 Run the jwsc Ant task against
the JWS file.

Specify the artifacts generated by the wsdlc Ant task as
well as your updated JWS implementation file, to
generate an Enterprise Application that implements the
Web Service. See Section 3.6, "Running the jwsc WebLogic
Web Services Ant Task."

8 Deploy the Web Service to
WebLogic Server.

See Section 3.9, "Deploying and Undeploying WebLogic
Web Services."

Creating the Basic Ant build.xml File

3-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

See Chapter 6, "Invoking Web Services" for information on writing client applications
that invoke a Web Service.

3.5 Creating the Basic Ant build.xml File
Ant uses build files written in XML (default name build.xml) that contain a <project>
root element and one or more targets that specify different stages in the Web Services
development process. Each target contains one or more tasks, or pieces of code that
can be executed. This section describes how to create a basic Ant build file; later
sections describe how to add targets to the build file that specify how to execute
various stages of the Web Services development process, such as running the jwsc Ant
task to process a JWS file and deploying the Web Service to WebLogic Server.

The following skeleton build.xml file specifies a default all target that calls all other
targets that will be added in later sections:

<project default="all">
 <target name="all"
 depends="clean,build-service,deploy" />
 <target name="clean">
 <delete dir="output" />
 </target>
 <target name="build-service">
 <!--add jwsc and related tasks here -->
 </target>
 <target name="deploy">
 <!--add wldeploy task here -->
 </dftarget>
</project>

9 Browse to the WSDL of the
Web Service.

Browse to the WSDL of the Web Service to ensure that it
was deployed correctly. See Section 3.10, "Browsing to the
WSDL of the Web Service."

The URL used to invoke the WSDL of the deployed Web
Service is essentially the same as the value of the
location attribute of the <address> element in the
original WSDL (except for the host and port values which
now correspond to the host and port of the WebLogic
Server instance to which you deployed the service.) This
is because the wsdlc Ant task generated values for the
contextPath and serviceURI of the @WLHttpTransport
annotation in the JWS implementation file so that
together they create the same URI as the endpoint
address specified in the original WSDL.

10 Test the Web Service. See Section 3.12, "Testing the Web Service."

11 Edit the Web Service.
(Optional)

To make changes to the Web Service, update the JWS file,
undeploy the Web Service as described in Section 3.9,
"Deploying and Undeploying WebLogic Web Services,"
then repeat the steps starting from running the jwsc Ant
task (Step 6).

Table 3–2 (Cont.) Steps to Develop Web Services Starting From Java

Step Description

Running the jwsc WebLogic Web Services Ant Task

Developing WebLogic Web Services 3-7

3.6 Running the jwsc WebLogic Web Services Ant Task
The jwsc Ant task takes as input a JWS file that contains JWS annotations and
generates all the artifacts you need to create a WebLogic Web Service. The JWS file can
be either one you coded yourself from scratch or one generated by the wsdlc Ant task.
The jwsc-generated artifacts include:

■ JSR-109 Web Service class file.

■ All required deployment descriptors, including:

– Standard and WebLogic-specific Web Services deployment descriptors:
webservices.xml and weblogic-webservices.xml.

– JAX-RPC mapping files.

– Java class-implemented Web Services: web.xml and weblogic.xml.

– EJB-implemented Web Services: ejb-jar.xml and weblogic-ejb-jar.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

■ The XML Schema representation of any Java user-defined types used as
parameters or return values to the Web Service operations.

■ The WSDL file that publicly describes the Web Service.

If you are running the jwsc Ant task against a JWS file generated by the wsdlc Ant
task, the jwsc task does not generate these artifacts, because the wsdlc Ant task
already generated them for you and packaged them into a JAR file. In this case, you
use an attribute of the jwsc Ant task to specify this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files
(including your JWS file), packages the compiled classes and generated artifacts into a
deployable JAR archive file, and finally creates an exploded Enterprise Application
directory that contains the JAR file.

To run the jwsc Ant task, add the following taskdef and build-service target to the
build.xml file:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
 <jwsc
 srcdir="src_directory"
 destdir="ear_directory"
 >
 <jws file="JWS_file"
 compiledWsdl="WSDLC_Generated_JAR"
 type="WebService_type"/>
 </jwsc>
 </target>

where:

■ ear_directory refers to an Enterprise Application directory that will contain all
the generated artifacts.

■ src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

■ JWS_file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

Running the jwsc WebLogic Web Services Ant Task

3-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS SEI and data binding artifacts that correspond to an existing
WSDL file.

■ WebService_type specifies the type of Web Service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This means
that, by default, it is assumed that Java files referenced by the JWS file (such as
JavaBeans input parameters or user-defined exceptions) are in the same package as the
JWS file. If this is not the case, use the sourcepath attribute to specify the top-level
directory of these other Java files. See "jwsc" in Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server for more information.

3.6.1 Examples of Using jwsc
The following build.xml excerpt shows a basic example of running the jwsc Ant task
on a JWS file:

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">
 <jws
 file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXRPC"/>
 </jwsc>
 </target>

In the example:

■ The Enterprise application will be generated, in exploded form, in
output/helloWorldEar, relative to the current directory.

■ The JWS file is called HelloWorldImpl.java, and is located in the
src/examples/webservices/hello_world directory, relative to the current
directory. This implies that the JWS file is in the package
examples.webservices.helloWorld.

■ A JAX-RPC Web Service is generated.

The following example is similar to the preceding one, except that it uses the
compiledWsdl attribute to specify the JAR file that contains wsdlc-generated artifacts
(for the "starting with WSDL" use case):

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/wsdlcEar">
 <jws

Note: You specify this attribute only in the "starting from WSDL" use
case; this procedure is described in Section 3.4, "Developing WebLogic
Web Services Starting From a WSDL File: Main Steps."

Running the wsdlc WebLogic Web Services Ant Task

Developing WebLogic Web Services 3-9

 file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
 type="JAXRPC"/>
 </jwsc>
 </target>

In the preceding example, the TemperaturePortTypeImpl.java file is the stubbed-out
JWS file that you updated to include your business logic. Because the compiledWsdl
attribute is specified and points to a JAR file, the jwsc Ant task does not regenerate the
artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

 prompt> ant build-service

3.6.2 Advanced Uses of jwsc
This section described two very simple examples of using the jwsc Ant task. The task,
however, includes additional attributes and child elements that make the tool very
powerful and useful. For example, you can use the tool to:

■ Process multiple JWS files at once. You can choose to package each resulting Web
Service into its own Web application WAR file, or group all of the Web Services
into a single WAR file.

■ Specify the transports (HTTP/HTTPS/JMS) that client applications can use when
invoking the Web Service, possibly overriding any existing @WLXXXTransport
annotations.

■ Automatically generate the JAX-RPC client stubs of any other Web Service that is
invoked within the JWS file.

■ Update an existing Enterprise Application or Web application, rather than
generate a completely new one.

See "jwsc" in the Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server for complete documentation and examples about the jwsc Ant task.

3.7 Running the wsdlc WebLogic Web Services Ant Task
The wsdlc Ant task takes as input a WSDL file and generates artifacts that together
partially implement a WebLogic Web Service. These artifacts include:

■ JWS service endpoint interface (SEI) that implements the Web Service described by
the WSDL file.

■ JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

■ Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the Web Service parameters and return values.

■ Optional Javadocs for the generated JWS SEI.

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the jwsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl targets
to the build.xml file:

 <taskdef name="wsdlc"

Running the wsdlc WebLogic Web Services Ant Task

3-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="WSDL_file"
 destJwsDir="JWS_interface_directory"
 destImplDir="JWS_implementation_directory"
 packageName="Package_name"
 type="WebService_type"/>
 </target>

where:

■ WSDL_file refers to the name of the WSDL file from which you want to generate a
partial implementation, including its absolute or relative pathname.

■ JWS_interface_directory refers to the directory into which the JAR file that
contains the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFile_wsdl.jar, where WSDLFile refers
to the root name of the WSDL file. For example, if the name of the WSDL file you
specify to the file attribute is MyService.wsdl, then the generated JAR file is
MyService_wsdl.jar.

■ JWS_implementation_directory refers to the top directory into which the
stubbed-out JWS implementation file is generated. The file is generated into a
subdirectory hierarchy corresponding to its package name.

The name of the generated JWS file is PortTypeImpl.java, where PortType refers
to the name attribute of the <portType> element in the WSDL file for which you are
generating a Web Service. For example, if the port type name is
MyServicePortType, then the JWS implementation file is called
MyServicePortTypeImpl.java.

■ Package_name refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the
wsdlc Ant task generates a package name based on the targetNamespace of the
WSDL.

■ WebService_type specifies the type of Web Service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcWsdl and destJwsDir attributes of the wsdlc Ant task are required.
Typically, however, you generate the stubbed-out JWS file to make your programming
easier. Oracle recommends you explicitly specify the package name in case the
targetNamespace of the WSDL file is not suitable to be converted into a readable
package name.

The following build.xml excerpt shows an example of running the wsdlc Ant task
against a WSDL file:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="impl_output"
 packageName="examples.webservices.wsdlc"
 type="JAXRPC" />
 </target>

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

Developing WebLogic Web Services 3-11

In the example:

■ The existing WSDL file is called TemperatureService.wsdl and is located in the
wsdl_files subdirectory of the directory that contains the build.xml file.

■ The JAR file that will contain the JWS SEI and data binding artifacts is generated
to the output/compiledWsdl directory; the name of the JAR file is
TemperatureService_wsdl.jar.

■ The package name of the generated JWS files is examples.webservices.wsdld.

■ The stubbed-out JWS file is generated into the impl_
output/examples/webservices/wsdlc directory relative to the current directory.

■ Assuming that the port type name in the WSDL file is TemperaturePortType, then
the name of the JWS implementation file is TemperaturePortTypeImpl.java.

■ A JAX-RPC Web Service is generated.

To actually run this task, type the following at the command line:

 prompt> ant generate-from-wsdl

See "wsdlc" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server for more information.

3.8 Updating the Stubbed-out JWS Implementation Class File Generated
By wsdlc

The wsdlc Ant task generates the stubbed-out JWS implementation file into the
directory specified by its destImplDir attribute; the name of the file is
PortTypeImpl.java, where PortType is the name of the portType in the original
WSDL. The class file includes everything you need to compile it into a Web Service,
except for your own business logic.

The JWS class implements the JWS Web Service endpoint interface that corresponds to
the WSDL file; the JWS SEI is also generated by wsdlc and is located in the JAR file
that contains other artifacts, such as the Java representations of XML Schema data
types in the WSDL and so on. The public methods of the JWS class correspond to the
operations in the WSDL file.

The wsdlc Ant task automatically includes the @WebService and @WLHttpTransport
annotations in the JWS implementation class; the values of the attributes corresponds
to the equivalent values in the WSDL. For example, the serviceName attribute of
@WebService is the same as the name attribute of the <service> element in the WSDL
file; the contextPath and serviceUri attributes of @WLHttpTransport together make
up the endpoint address specified by the location attribute of the <address> element
in the WSDL.

When you update the JWS file, you add Java code to the methods so that the
corresponding Web Service operations operate as required. Typically, the generated
JWS file contains comments where you should add code, such as:

 //replace with your impl here

In addition, you can add additional JWS annotations to the file, with the following
restrictions:

■ You can include the following annotations from the standard (JSR-181) javax.jws
package in the JWS implementation file: @WebService, @HandlerChain,

Deploying and Undeploying WebLogic Web Services

3-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

@SOAPMessageHandler, and @SOAPMessageHandlers. If you specify any other JWS
annotation from the javax.jws package, the jwsc Ant task returns error when you
try to compile the JWS file into a Web Service.

■ You can specify only the serviceName, endpointInterface, and targetNamespace
attributes of the @WebService annotation. Use the serviceName attribute to specify
a different <service> WSDL element from the one that the wsdlc Ant task used, in
the rare case that the WSDL file contains more than one <service> element. Use
the endpointInterface attribute to specify the JWS SEI generated by the wsdlc
Ant task. Use the targetNamespace attribute to specify the namespace of a WSDL
service, which can be different from the on in JWS SEI.

■ You can specify WebLogic-specific JWS annotations, as required.

After you have updated the JWS file, Oracle recommends that you move it to an
official source location, rather than leaving it in the wsdlc output directory.

The following example shows the wsdlc-generated JWS implementation file from the
WSDL shown in Section 2.3.1, "Sample WSDL File"; the text in bold indicates where
you would add Java code to implement the single operation (getTemp) of the Web
Service:

package examples.webservices.wsdlc;
import javax.jws.WebService;
 import weblogic.jws.*;
/**
 * TemperaturePortTypeImpl class implements web service endpoint interface
 * TemperaturePortType */
@WebService(
 serviceName="TemperatureService",
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType")
@WLHttpTransport(
 contextPath="temp",
 serviceUri="TemperatureService",
 portName="TemperaturePort")
public class TemperaturePortTypeImpl implements TemperaturePortType {
 public TemperaturePortTypeImpl() {
 }
 public float getTemp(java.lang.String zipcode)
 {
 //replace with your impl here
 return 0;
 }
}

3.9 Deploying and Undeploying WebLogic Web Services
Because Web Services are packaged as Enterprise Applications, deploying a Web
Service simply means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the
Administration Console to using the weblogic.Deployer Java utility. There are also
various issues you must consider when deploying an application to a production
environment as opposed to a development environment. For a complete discussion
about deployment, see Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

This guide, because of its development nature, discusses just two ways of deploying
Web Services:

Deploying and Undeploying WebLogic Web Services

Developing WebLogic Web Services 3-13

■ Section 3.9.1, "Using the wldeploy Ant Task to Deploy Web Services"

■ Section 3.9.2, "Using the Administration Console to Deploy Web Services"

3.9.1 Using the wldeploy Ant Task to Deploy Web Services
The easiest way to deploy a Web Service as part of the iterative development process is
to add a target that executes the wldeploy WebLogic Ant task to the same build.xml
file that contains the jwsc Ant task. You can add tasks to both deploy and undeploy
the Web Service so that as you add more Java code and regenerate the service, you can
redeploy and test it iteratively.

To use the wldeploy Ant task, add the following target to your build.xml file:

 <target name="deploy">
 <wldeploy action="deploy"
 name="DeploymentName"
 source="Source" user="AdminUser"
 password="AdminPassword"
 adminurl="AdminServerURL"
 targets="ServerName"/>
 </target>

where:

■ DeploymentName refers to the deployment name of the Enterprise Application, or
the name that appears in the Administration Console under the list of
deployments.

■ Source refers to the name of the Enterprise Application EAR file or exploded
directory that is being deployed. By default, the jwsc Ant task generates an
exploded Enterprise Application directory.

■ AdminUser refers to administrative username.

■ AdminPassword refers to the administrative password.

■ AdminServerURL refers to the URL of the Administration Server, typically
t3://localhost:7001.

■ ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.

For example, the following wldeploy task specifies that the Enterprise Application
exploded directory, located in the output/ComplexServiceEar directory relative to the
current directory, be deployed to the myServer WebLogic Server instance. Its deployed
name is ComplexServiceEar.

 <target name="deploy">
 <wldeploy action="deploy"
 name="ComplexServiceEar"
 source="output/ComplexServiceEar" user="weblogic"
 password="weblogic" verbose="true"
 adminurl="t3://localhost:7001"
 targets="myserver"/>
 </target>

To actually deploy the Web Service, execute the deploy target at the command-line:

 prompt> ant deploy

You can also add a target to easily undeploy the Web Service so that you can make
changes to its source code, then redeploy it:

Browsing to the WSDL of the Web Service

3-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 <target name="undeploy">
 <wldeploy action="undeploy"
 name="ComplexServiceEar"
 user="weblogic"
 password="weblogic" verbose="true"
 adminurl="t3://localhost:7001"
 targets="myserver"/>
 </target>

When undeploying a Web Service, you do not specify the source attribute, but rather
undeploy it by its name.

3.9.2 Using the Administration Console to Deploy Web Services
To use the Administration Console to deploy the Web Service, first invoke it in your
browser using the following URL:

 http://host:port/console

where:

■ host refers to the computer on which WebLogic Server is running.

■ port refers to the port number on which WebLogic Server is listening (default
value is 7001).

Then use the deployment assistants to help you deploy the Enterprise application. For
more information on the Administration Console, see the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

3.10 Browsing to the WSDL of the Web Service
You can display the WSDL of the Web Service in your browser to ensure that it has
deployed correctly.

The following URL shows how to display the Web Service WSDL in your browser:

http://host:port/contextPath/serviceUri?WSDL

where:

■ host refers to the computer on which WebLogic Server is running (for example,
localhost).

■ port refers to the port number on which WebLogic Server is listening (default
value is 7001).

■ contextPath refers to the context root of the Web Service. There are many places to
set the context root (the contextPath attribute of the @WLHttpTransport
annotation, the <WLHttpTransport>, <module>, or <jws> element of jwsc) and
certain methods take precedence over others. See "Defining the Context Path of a
WebLogic Web Service" in Oracle Fusion Middleware WebLogic Web Services Reference
for Oracle WebLogic Server for a complete explanation.

■ serviceUri refers to the value of the serviceUri attribute of the
@WLHttpTransport JWS annotation of the JWS file that implements your Web
Service or <WLHttpTransport> child element of the jwsc Ant task; the second takes
precedence over the first. If you do not specify any serviceUri attribute in either
the JWS file or the jwsc Ant task, then the serviceUri of the Web Service is the
default value: the name of the JWS file without its *.java extension.

Configuring the Server Address Specified in the Dynamic WSDL

Developing WebLogic Web Services 3-15

For example, assume you specified the following @WLHttpTransport annotation in the
JWS file that implements your Web Service

 ...
 @WLHttpTransport(contextPath="complex",
 serviceUri="ComplexService",
 portName="ComplexServicePort")
 /**
 * This JWS file forms the basis of a WebLogic Web Service.
 *
 */
 public class ComplexServiceImpl {
 ...

Further assume that you do not override the contextPath or serviceURI values by
setting equivalent attributes for the <WLHttpTransport> element of the jwsc Ant task.
Then the URL to view the WSDL of the Web Service, assuming the service is running
on a host called ariel at the default port number (7001), is:

 http://ariel:7001/complex/ComplexService?WSDL

3.11 Configuring the Server Address Specified in the Dynamic WSDL
The WSDL of a deployed Web Service (also called dynamic WSDL) includes an
<address> element that assigns an address (URI) to a particular Web Service port. For
example, assume that the following WSDL snippet partially describes a deployed
WebLogic Web Service called ComplexService:

<definitions name="ComplexServiceDefinitions"
 targetNamespace="http://example.org">
...
 <service name="ComplexService">
 <port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
 <s1:address location="http://myhost:7101/complex/ComplexService"/>
 </port>
 </service>
</definitions>

The preceding example shows that the ComplexService Web Service includes a port
called ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address by
examining the contextPath and serviceURI attributes of the @WLXXXTransport
annotations or jwsc elements, as described in Section 3.10, "Browsing to the WSDL of
the Web Service." However, the method WebLogic Server uses to determine the
protocol and host section of the address (http://myhost:7101, in the example) is more
complicated, as described below. For clarity, this section uses the term server address to
refer to the protocol and host section of the address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed
Web Service depends on whether the Web Service can be invoked using HTTP/S or
JMS, whether you have configured a proxy server, whether the Web Service is
deployed to a cluster, or whether the Web Service is actually a callback service.

The following sections reflect these different configuration options, and provide links
to procedural information about changing the configuration to suit your needs.

Configuring the Server Address Specified in the Dynamic WSDL

3-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ Section 3.11.1, "Web Service is not a callback service and can be invoked using
HTTP/S"

■ Section 3.11.2, "Web Service is not a callback service and can be invoked using JMS
Transport"

■ Section 3.11.3, "Web Service is a callback service"

■ Section 3.11.4, "Web Service is invoked using a proxy server"

It is assumed in the sections that you use the WebLogic Server Administration Console
to configure cluster and standalone servers.

3.11.1 Web Service is not a callback service and can be invoked using HTTP/S
1. If the Web Service is deployed to a cluster, and the cluster Frontend Host,

Frontend HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server
uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

2. If the preceding cluster values are not set, but the Frontend Host, Frontend HTTP
Port, and Frontend HTTPS Port values are set for the individual server to which the
Web Service is deployed, then WebLogic Server uses these values in the server
address.

See "Configure HTTP Protocol" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3. If these values are not set for the cluster or individual server, then WebLogic
Server uses the server address of the WSDL request in the dynamic WSDL.

3.11.2 Web Service is not a callback service and can be invoked using JMS Transport
1. If the Web Service is deployed to a cluster and the Cluster Address is set, then

WebLogic Server uses this value in the server address of the dynamic WSDL.

See "Configure Clusters" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

2. If the cluster address is not set, or the Web Service is deployed to a standalone
server, and the Listen Address of the server to which the Web Service is deployed
is set, then WebLogic Server uses this value in the server address.

See "Configure Listen Addresses" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3.11.3 Web Service is a callback service
1. If the callback service is deployed to a cluster, and the cluster Frontend Host,

Frontend HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server
uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

2. If the callback service is deployed to either a cluster or a standalone server, and the
preceding cluster values are not set, but the Frontend Host, Frontend HTTP Port,
and Frontend HTTPS Port values are set for the individual server to which the
callback service is deployed, then WebLogic Server uses these values in the server
address.

Integrating Web Services Into the WebLogic Split Development Directory Environment

Developing WebLogic Web Services 3-17

See "Configure HTTP Protocol" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3. If the callback service is deployed to a cluster, but none of the preceding values are
set, but the Cluster Address is set, then WebLogic Server uses this value in the
server address.

See "Configure Clusters" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

4. If none of the preceding values are set, but the Listen Address of the server to
which the callback service is deployed is set, then WebLogic Server uses this value
in the server address.

See "Configure Listen Addresses" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3.11.4 Web Service is invoked using a proxy server
Although not required, Oracle recommends that you explicitly set the Frontend Host,
FrontEnd HTTP Port, and Frontend HTTPS Port of either the cluster or individual
server to which the Web Service is deployed to point to the proxy server.

See "Configure HTTP Settings for a Cluster" or "Configure HTTP Protocol" in the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

3.12 Testing the Web Service
After you have deployed a WebLogic Web Service, you can use the Web Services Test
Client, included in the WebLogic Administration Console, to test your service without
writing code. You can quickly and easily test any Web Service, including those with
complex types and those using advanced features of WebLogic Server such as
conversations. The test client automatically maintains a full log of requests allowing
you to return to the previous call to view the results.

To test a deployed Web Service using the Administration Console, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where:

– host refers to the computer on which WebLogic Server is running.

– port refers to the port number on which WebLogic Server is listening (default
value is 7001).

2. Follow the procedure described in "Test a Web Service" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

3.13 Integrating Web Services Into the WebLogic Split Development
Directory Environment

This section describes how to integrate Web Services development into the WebLogic
split development directory environment. It is assumed that you understand this
WebLogic feature and have set up this type of environment for developing standard
Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules, such
as EJBs and Web applications, and you want to update the single build.xml file to
include Web Services development.

Integrating Web Services Into the WebLogic Split Development Directory Environment

3-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

For detailed information about the WebLogic split development directory
environment, see "Creating a Split Development Directory for an Application" in
Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server and the
splitdir/helloWorldEar example installed with WebLogic Server, located in the WL_
HOME/samples/server/examples/src/examples directory, where WL_HOME is the
top-level directory of your WebLogic Server installation.

1. In the main project directory, create a directory that will contain the JWS file that
implements your Web Service.

For example, if your main project directory is called /src/helloWorldEar, then
create a directory called /src/helloWorldEar/helloWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the helloWebService directory that
corresponds to the package name of your JWS file.

For example, if your JWS file is in the package examples.splitdir.hello package,
then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
 prompt> mkdir examples/splitdir/hello

3. Put your JWS file in the just-created Web Service subdirectory of your main project
directory (/src/helloWorldEar/helloWebService/examples/splitdir/hello in
this example.)

4. In the build.xml file that builds the Enterprise application, create a new target to
build the Web Service, adding a call to the jwsc WebLogic Web Service Ant task, as
described in Section 3.6, "Running the jwsc WebLogic Web Services Ant Task."

The jwsc srcdir attribute should point to the top-level directory that contains the
JWS file (helloWebService in this example). The jwsc destdir attribute should
point to the same destination directory you specify for wlcompile, as shown in the
following example:

 <target name="build.helloWebService">
 <jwsc
 srcdir="helloWebService"
 destdir="destination_dir"
 keepGenerated="yes" >
 <jws file="examples/splitdir/hello/HelloWorldImpl.java"
 type="JAXRPC" />
 </jwsc>
 </target>

In the example, destination_dir refers to the destination directory that the other
split development directory environment Ant tasks, such as wlappc and
wlcompile, also use.

5. Update the main build target of the build.xml file to call the Web Service-related
targets:

 <!-- Builds the entire helloWorldEar application -->
 <target name="build"
 description="Compiles helloWorldEar application and runs appc"
 depends="build-helloWebService,compile,appc" />

Integrating Web Services Into the WebLogic Split Development Directory Environment

Developing WebLogic Web Services 3-19

6. If you use the wlcompile and wlappc Ant tasks to compile and validate the entire
Enterprise Application, be sure to exclude the Web Service source directory for
both Ant tasks. This is because the jwsc Ant task already took care of compiling
and packaging the Web Service. For example:

<target name="compile">
 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
 excludes="appStartup,helloWebService">
 ...
 </wlcomplile>
...
 </target>
<target name="appc">
 <wlappc source="${dest.dir}" deprecation="yes" debug="false"
 excludes="helloWebService"/>
</target>

7. Update the application.xml file in the META-INF project source directory, adding
a <web> module and specifying the name of the WAR file generated by the jwsc
Ant task.

For example, add the following to the application.xml file for the helloWorld
Web Service:

<application>
...
 <module>
 <web>
 <web-uri>examples/splitdir/hello/HelloWorldImpl.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>
...
</application>

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the
Web Service will also be deployed as part of the EAR. You invoke the Web Service in
the standard way described in Section 3.10, "Browsing to the WSDL of the Web
Service."

Note: When you actually build your Enterprise Application, be sure
you run the jwsc Ant task before you run the wlappc Ant task. This is
because wlappc requires some of the artifacts generated by jwsc for it
to execute successfully. In the example, this means that you should
specify the build-helloWebService target before the appc target.

Note: The jwsc Ant task always generates a Web Application WAR
file from the JWS file that implements your Web Service, unless your
JWS file explicitly implements javax.ejb.SessionBean. In that case
you must add an <ejb> module element to the application.xml file
instead.

Integrating Web Services Into the WebLogic Split Development Directory Environment

3-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

4

Programming the JWS File 4-1

4Programming the JWS File

[5] This chapter describes how to program the JWS file that implements the WebLogic
Web services using Java API for XML-based RPC (JAX-RPC).

This chapter includes the following topics:

■ Section 4.1, "Overview of JWS Files and JWS Annotations"

■ Section 4.2, "Java Requirements for a JWS File"

■ Section 4.3, "Programming the JWS File: Typical Steps"

■ Section 4.4, "Accessing Run-Time Information About a Web Service"

■ Section 4.5, "Should You Implement a Stateless Session EJB?"

■ Section 4.6, "Programming the User-Defined Java Data Type"

■ Section 4.7, "Throwing Exceptions"

■ Section 4.8, "Invoking Another Web Service from the JWS File"

■ Section 4.9, "Programming Additional Miscellaneous Features Using JWS
Annotations and APIs"

■ Section 4.10, "JWS Programming Best Practices"

4.1 Overview of JWS Files and JWS Annotations
There are two ways to program a WebLogic Web service from scratch:

1. Annotate a standard EJB or Java class with Web service Java annotations, as
defined by JSR-181, the JAX-WS specification, and by the WebLogic Web services
programming model.

2. Combine a standard EJB or Java class with the various XML descriptor files and
artifacts specified by JSR-109 (such as, deployment descriptors, WSDL files, data
mapping descriptors, data binding artifacts for user-defined data types, and so
on).

Oracle strongly recommends using option 1 above. Instead of authoring XML
metadata descriptors yourself, the WebLogic Ant tasks and run time will generate the
required descriptors and artifacts based on the annotations you include in your JWS.
Not only is this process much easier, but it keeps the information about your Web
service in a central location, the JWS file, rather than scattering it across many Java and
XML files.

The Java Web Service (JWS) annotated file is the core of your Web service. It contains
the Java code that determines how your Web service behaves. A JWS file is an ordinary
Java class file that uses Java metadata annotations to specify the shape and

Java Requirements for a JWS File

4-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

characteristics of the Web service. The JWS annotations you can use in a JWS file
include the standard ones defined by the Web Services Metadata for the Java Platform
specification (JSR-181), described at http://www.jcp.org/en/jsr/detail?id=181,
plus a set of additional annotations based on the type of Web service you are
building—JAX-WS or JAX-RPC. For a complete list of JWS annotations that are
supported for JAX-WS and JAX-RPC Web services, see "Web Service Annotation
Support" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server.

When programming the JWS file, you include annotations to program basic Web
service features. The annotations are used at different levels, or targets, in your JWS
file. Some are used at the class-level to indicate that the annotation applies to the entire
JWS file. Others are used at the method-level and yet others at the parameter level.

4.2 Java Requirements for a JWS File
When you program your JWS file, you must follow a set of requirements, as specified
by the Web Services Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181. In particular, the Java class that
implements the Web service:

■ Must be an outer public class, must not be declared final, and must not be
abstract.

■ Must have a default public constructor.

■ Must not define a finalize() method.

■ Must include, at a minimum, a @WebService JWS annotation at the class level to
indicate that the JWS file implements a Web service.

■ May reference a service endpoint interface by using the
@WebService.endpointInterface annotation. In this case, it is assumed that the
service endpoint interface exists and you cannot specify any other JWS
annotations in the JWS file other than @WebService.endpointInterface,
@WebService.serviceName and @WebService.targetNamespace.

■ If JWS file does not implement a service endpoint interface, all public methods
other than those inherited from java.lang.Object will be exposed as Web service
operations. This behavior can be overridden by using the @WebMethod annotation
to specify explicitly the public methods that are to be exposed. If a @WebMethod
annotation is present, only the methods to which it is applied are exposed.

4.3 Programming the JWS File: Typical Steps
The following procedure describes the typical steps for programming a JWS file that
implements a Web service.

For more information about each of the JWS annotations, see "JWS Annotation
Reference" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server. See Oracle Fusion Middleware Programming Advanced Features of
JAX-RPC Web Services for Oracle WebLogic Server for information on using other JWS
annotations to program more advanced features, such as Web service reliable
messaging, conversations, SOAP message handlers, and so on.

Note: It is assumed that you have created a JWS file and now want
to add JWS annotations to it.

Programming the JWS File: Typical Steps

Programming the JWS File 4-3

4.3.1 Example of a JWS File
The following sample JWS file shows how to implement a simple Web service.

package examples.webservices.simple;
// Import the standard JWS annotation interfaces

Table 4–1 Steps to Program the JWS File

Step Description

1 Import the standard JWS
annotations that will be used
in your JWS file.

The standard JWS annotations are in either the javax.jws
or javax.jws.soap package. For example:

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2 Import the WebLogic-specific
annotations used in your JWS
file.

The WebLogic-specific annotations are in the
weblogic.jws package. For example:

import weblogic.jws.WLHttpTransport;

3 Add the standard required
@WebService JWS annotation
at the class level to specify
that the Java class exposes a
Web service.

See Section 4.3.2, "Specifying that the JWS File
Implements a Web Service (@WebService Annotation)."

4 Add the standard
@SOAPBinding JWS annotation
at the class level to specify the
mapping between the Web
service and the SOAP
message protocol. (Optional)

In particular, use this annotation to specify whether the
Web service is document-literal, RPC-encoded, and so on.
See Section 4.3.3, "Specifying the Mapping of the Web
Service to the SOAP Message Protocol (@SOAPBinding
Annotation)."

Although this JWS annotation is not required, Oracle
recommends you explicitly specify it in your JWS file to
clarify the type of SOAP bindings a client application
uses to invoke the Web service.

5 Add the WebLogic-specific
@WLHttpTransport JWS
annotation at the class level to
specify the context path and
service URI used in the URL
that invokes the Web service.
(Optional)

See Section 4.3.4, "Specifying the Context Path and
Service URI of the Web Service (@WLHttpTransport
Annotation)."

Although this JWS annotation is not required, Oracle
recommends you explicitly specify it in your JWS file so
that it is clear what URL a client application uses to
invoke the Web service.

6 Add the standard @WebMethod
annotation for each method
in the JWS file that you want
to expose as a public
operation. (Optional)

Optionally specify that the operation takes only input
parameters but does not return any value by using the
standard @Oneway annotation. See Section 4.3.5,
"Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)."

7 Add @WebParam annotation to
customize the name of the
input parameters of the
exposed operations.
(Optional)

See Section 4.3.6, "Customizing the Mapping Between
Operation Parameters and WSDL Elements (@WebParam
Annotation)."

8 Add @WebResult annotations
to customize the name and
behavior of the return value
of the exposed operations.
(Optional)

See Section 4.3.7, "Customizing the Mapping Between the
Operation Return Value and a WSDL Element
(@WebResult Annotation)."

9 Add your business code. Add your business code to the methods to make the
WebService behave as required.

Programming the JWS File: Typical Steps

4-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

import javax.jws.WebMethod;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interfaces
import weblogic.jws.WLHttpTransport;
// Standard JWS annotation that specifies that the porType name of the Web
 // Service is "SimplePortType", the service name is "SimpleService", and the
 // targetNamespace used in the generated WSDL is "http://example.org"
@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies the mapping of the service onto the
 // SOAP message protocol. In particular, it specifies that the SOAP messages
 // are document-literal-wrapped.
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
// WebLogic-specific JWS annotation that specifies the context path and
 // service URI used to build the URI of the Web Service is
 // "simple/SimpleService"
@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
 portName="SimpleServicePort")
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SimpleImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: sayHello.
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 }

4.3.2 Specifying that the JWS File Implements a Web Service (@WebService
Annotation)

Use the standard @WebService annotation to specify, at the class level, that the JWS file
implements a Web service, as shown in the following code excerpt:

@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")

In the example, the name of the Web service is SimplePortType, which will later map
to the wsdl:portType element in the WSDL file generated by the jwsc Ant task. The
service name is SimpleService, which will map to the wsdl:service element in the
generated WSDL file. The target namespace used in the generated WSDL is
http://example.org.

You can also specify the following additional attributes of the @WebService annotation:

■ endpointInterface—Fully qualified name of an existing service endpoint
interface file. This annotation allows the separation of interface definition from the
implementation. If you specify this attribute, the jwsc Ant task does not generate

Programming the JWS File: Typical Steps

Programming the JWS File 4-5

the interface for you, but assumes you have created it and it is in your
CLASSPATH.

■ portname—Name that is used in the wsdl:port.

None of the attributes of the @WebService annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default values of each attribute.

4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)

It is assumed that you want your Web service to be available over the SOAP message
protocol; for this reason, your JWS file should include the standard @SOAPBinding
annotation, at the class level, to specify the SOAP bindings of the Web service (such as,
RPC-encoded or document-literal-wrapped), as shown in the following code excerpt:

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

In the example, the Web service uses document-wrapped-style encodings and literal
message formats, which are also the default formats if you do not specify the
@SOAPBinding annotation.

You can also use the WebLogic-specific @weblogic.jws.soap.SOAPBinding annotation
to specify the SOAP binding at the method level; the attributes are the same as the
standard @javax.jws.soap.SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web service
operation parameters represent the entire SOAP message body, or whether the
parameters are elements wrapped inside a top-level element with the same name as
the operation.

4.3.4 Specifying the Context Path and Service URI of the Web Service
(@WLHttpTransport Annotation)

Use the WebLogic-specific @WLHttpTransport annotation to specify the context path
and service URI sections of the URL used to invoke the Web service over the HTTP
transport, as well as the name of the port in the generated WSDL, as shown in the
following code excerpt:

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
 portName="SimpleServicePort")

In the example, the name of the port in the WSDL (in particular, the name attribute of
the <port> element) file generated by the jwsc Ant task is SimpleServicePort. The

Table 4–2 Attributes of the @SOAPBinding Annotation

Attribute Possible Values Default Value

style SOAPBinding.Style.RPC
SOAPBinding.Style.DOCUMENT

SOAPBinding.Style.DOCUMENT

use SOAPBinding.Use.LITERAL
SOAPBinding.Use.ENCODED

SOAPBinding.Use.LITERAL

parameterStyle SOAPBinding.ParameterStyle.BARE
SOAPBinding.ParameterStyle.WRAPPED

SOAPBinding.ParameterStyle.WRAPPED

Programming the JWS File: Typical Steps

4-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

URL used to invoke the Web service over HTTP includes a context path of simple and
a service URI of SimpleService, as shown in the following example:

http://host:port/simple/SimpleService

For reference documentation on this and other WebLogic-specific annotations, see
"JWS Annotation Reference" in the WebLogic Web Services Reference.

4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @OneWay Annotations)

Use the standard @WebMethod annotation to specify that a method of the JWS file
should be exposed as a public operation of the Web service, as shown in the following
code excerpt:

public class SimpleImpl {
 @WebMethod(operationName="sayHelloOperation")
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 ...

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a
public operation of the Web service. The operationName attribute specifies, however,
that the public name of the operation in the WSDL file is sayHelloOperation. If you
do not specify the operationName attribute, the public name of the operation is the
name of the method itself.

You can also use the action attribute to specify the action of the operation. When
using SOAP as a binding, the value of the action attribute determines the value of the
SOAPAction header in the SOAP messages.

You can specify that an operation not return a value to the calling application by using
the standard @Oneway annotation, as shown in the following example:

 public class OneWayImpl {
 @WebMethod()
 @Oneway()
 public void ping() {
 System.out.println("ping operation");
 }
...

If you specify that an operation is one-way, the implementing method is required to
return void, cannot use a Holder class as a parameter, and cannot throw any checked
exceptions.

None of the attributes of the @WebMethod annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default values of each attribute, as well as additional information about the
@WebMethod and @Oneway annotations.

If none of the public methods in your JWS file are annotated with the @WebMethod
annotation, then by default all public methods are exposed as Web service operations.

Programming the JWS File: Typical Steps

Programming the JWS File 4-7

4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation)

Use the standard @WebParam annotation to customize the mapping between operation
input parameters of the Web service and elements of the generated WSDL file, as well
as specify the behavior of the parameter, as shown in the following code excerpt:

public class SimpleImpl {
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/docLiteralBare")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 ...

In the example, the name of the parameter of the echoInt operation in the generated
WSDL is IntegerInput; if the @WebParam annotation were not present in the JWS file,
the name of the parameter in the generated WSDL file would be the same as the name
of the method's parameter: input. The targetNamespace attribute specifies that the
XML namespace for the parameter is http://example.org/docLiteralBare; this
attribute is relevant only when using document-style SOAP bindings where the
parameter maps to an XML element.

You can also specify the following additional attributes of the @WebParam annotation:

■ mode—The direction in which the parameter is flowing (WebParam.Mode.IN,
WebParam.Mode.OUT, or WebParam.Mode.INOUT). The OUT and INOUT modes may
be specified only for parameter types that conform to the JAX-RPC definition of
Holder types. OUT and INOUT modes are only supported for RPC-style
operations or for parameters that map to headers.

■ header—Boolean attribute that, when set to true, specifies that the value of the
parameter should be retrieved from the SOAP header, rather than the default
body.

None of the attributes of the @WebParam annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default value of each attribute.

4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult Annotation)

Use the standard @WebResult annotation to customize the mapping between the Web
service operation return value and the corresponding element of the generated WSDL
file, as shown in the following code excerpt:

public class Simple {
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/docLiteralBare")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)

Accessing Run-Time Information About a Web Service

4-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 ...

In the example, the name of the return value of the echoInt operation in the generated
WSDL is IntegerOutput; if the @WebResult annotation were not present in the JWS
file, the name of the return value in the generated WSDL file would be the hard-coded
name return. The targetNamespace attribute specifies that the XML namespace for the
return value is http://example.org/docLiteralBare; this attribute is relevant only
when using document-style SOAP bindings where the return value maps to an XML
element.

None of the attributes of the @WebResult annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://www.jcp.org/en/jsr/detail?id=181
for the default value of each attribute.

4.4 Accessing Run-Time Information About a Web Service
The following sections describe how to access run-time information about a Web
service:

■ Section 4.4.1, "Using JwsContext to Access Run-Time Information"—Use the Web
service context to access and change run-time information about the service in
your JWS file.

■ Section 4.4.2, "Using the Stub Interface to Access Run-Time Information"—Get and
set properties on the Stub interface in the client file.

4.4.1 Using JwsContext to Access Run-Time Information
When a client application invokes a WebLogic Web service that was implemented with
a JWS file, WebLogic Server automatically creates a context that the Web service can
use to access, and sometimes change, run-time information about the service. Much of
this information is related to conversations, such as whether the current conversation
is finished, the current values of the conversational properties, changing
conversational properties at run time, and so on. (See "Creating Conversational Web
Services" in Oracle Fusion Middleware Programming Advanced Features of JAX-RPC Web
Services for Oracle WebLogic Server for information about conversations and how to
implement them.) Some of the information accessible via the context is more generic,
such as the protocol that was used to invoke the Web service (HTTP/S or JMS), the
SOAP headers that were in the SOAP message request, and so on.

You can use annotations and WebLogic Web service APIs in your JWS file to access
run-time context information, as described in the following sections.

4.4.1.1 Guidelines for Accessing the Web Service Context
The following example shows a simple JWS file that uses the context to determine the
protocol that was used to invoke the Web service. The code in bold is discussed in the
programming guidelines described following the example.

package examples.webservices.jws_context;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Context;
import weblogic.wsee.jws.JwsContext;

Accessing Run-Time Information About a Web Service

Programming the JWS File 4-9

 import weblogic.wsee.jws.Protocol;
@WebService(name="JwsContextPortType", serviceName="JwsContextService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="contexts", serviceUri="JwsContext",
 portName="JwsContextPort")
/**
 * Simple web service to show how to use the @Context annotation.
 */
public class JwsContextImpl {
 @Context
 private JwsContext ctx;
 @WebMethod()
 public String getProtocol() {
 Protocol protocol = ctx.getProtocol();
 System.out.println("protocol: " + protocol);
 return "This is the protocol: " + protocol;
 }
}

Use the following guidelines in your JWS file to access the run-time context of the Web
service, as shown in the code in bold in the preceding example:

■ Import the @weblogic.jws.Context JWS annotation:

import weblogic.jws.Context;

■ Import the weblogic.wsee.jws.JwsContext API, as well as any other related APIs
that you might use (the example also uses the weblogic.wsee.jws.Protocol API):

import weblogic.wsee.jws.JwsContext;
 import weblogic.wsee.jws.Protocol;

See the weblogic.wsee.* packages in the Oracle Fusion Middleware Oracle WebLogic
Server API Reference for more documentation about the context-related APIs.

■ Annotate a private variable, of data type weblogic.wsee.jws.JwsContext, with
the field-level @Context JWS annotation:

@Context
 private JwsContext ctx;
WebLogic Server automatically assigns the annotated variable (in this case, ctx)
with a run-time implementation of JwsContext the first time the Web service is
invoked, which is how you can later use the variable without explicitly initializing
it in your code.

Use the methods of the JwsContext class to access run-time information about the
Web service. The following example shows how to get the protocol that was used
to invoke the Web service.

Protocol protocol = ctx.getProtocol();

See Section 4.4.1.2, "Methods of the JwsContext" for the full list of available
methods.

4.4.1.2 Methods of the JwsContext
The following table summarizes the methods of the JwsContext that you can use in
your JWS file to access run-time information about the Web service. See
weblogic.wsee.* packages in the Oracle Fusion Middleware Oracle WebLogic Server API
Reference for detailed reference information about JwsContext, and other
context-related APIs, as Protocol and ServiceHandle.

Accessing Run-Time Information About a Web Service

4-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Table 4–3 Methods of JwsContext

Method Returns Description

isFinished() boolean Returns a boolean value specifying whether the
current conversation is finished, or if it is still
continuing.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

finishConversation
()

void Finishes the current conversation.

This method is equivalent to a client application
invoking a method that has been annotated with the
@Conversation (Conversation.Phase.FINISH) JWS
annotation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxAge(java.uti
l.Date)

void Sets a new maximum age for the conversation to an
absolute Date. If the date parameter is in the past,
WebLogic Server immediately finishes the
conversation.

This method is equivalent to the maxAge attribute of
the @Conversational annotation, which specifies the
default maximum age of a conversation. Use this
method to override this default value at run time.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxAge(String) void Sets a new maximum age for the conversation by
specifying a String duration, such as 1 day.

Valid values for the String parameter are a number
and one of the following terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a maximum age of ten
minutes, use the following syntax:

ctx.setMaxAge("10 minutes")

This method is equivalent to the maxAge attribute of
the @Conversational annotation, which specifies the
default maximum age of a conversation. Use this
method to override this default value at run time.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getMaxAge() long Returns the maximum allowed age, in seconds, of a
conversation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

Accessing Run-Time Information About a Web Service

Programming the JWS File 4-11

getCurrentAge() long Returns the current age, in seconds, of the
conversation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

resetIdleTime() void Resets the timer which measures the number of
seconds since the last activity for the current
conversation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxIdleTime(lon
g)

void Sets the number of seconds that the conversation can
remain idle before WebLogic Server finishes it due to
client inactivity.

This method is equivalent to the maxIdleTime
attribute of the @Conversational annotation, which
specifies the default idle time of a conversation. Use
this method to override this default value at run time.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxIdleTime(Str
ing)

void Sets the number of seconds, specified as a String, that
the conversation can remain idle before WebLogic
Server finishes it due to client inactivity.

Valid values for the String parameter are a number
and one of the following terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a maximum idle time of ten
minutes, use the following syntax:

ctx.setMaxIdleTime("10 minutes")

This method is equivalent to the maxIdleTime
attribute of the @Conversational annotation, which
specifies the default idle time of a conversation. Use
this method to override this default value at run time.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getMaxIdleTime() long Returns the number of seconds that the conversation
is allowed to remain idle before WebLogic Server
finishes it due to client inactivity.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

Table 4–3 (Cont.) Methods of JwsContext

Method Returns Description

Accessing Run-Time Information About a Web Service

4-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

4.4.2 Using the Stub Interface to Access Run-Time Information
Thejavax.xml.rpc.Stub interface enables you to dynamically configure the Stub
instance in your Web service client file. For more information, see
http://download.oracle.com/javaee/5/api/javax/xml/rpc/Stub.html. For
example, you can set the target service endpoint dynamically for the port Stub
instance, as follows:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:8010/MyContext/MyService");

For more information about developing Web service clients, see Chapter 6, "Invoking
Web Services."

The following table summarizes the methods of the Stub interface that you can use in
your JWS file to access run-time information about the Web service.

getCurrentIdleTime
()

long Gets the number of seconds since the last client
request, or since the conversation's maximum idle
time was reset.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getCallerPrincipal
()

java.security
.Principal

Returns the security principal associated with the
operation that was just invoked, assuming that basic
authentication was performed.

isCallerInRole(Str
ing)

boolean Returns true if the authenticated principal is within
the specified security role.

getService() weblogic.wsee
.jws.ServiceH
andle

Returns an instance of ServiceHandle, a WebLogic
Web service API, which you can query to gather
additional information about the Web service, such as
the conversation ID (if the Web service is
conversational), the URL of the Web service, and so
on.

getLogger(String) weblogic.wsee
.jws.util.Log
ger

Gets an instance of the Logger class, which you can
use to send messages from the Web service to a log
file.

getInputHeaders() org.w3c.dom.E
lement[]

Returns an array of the SOAP headers associated with
the SOAP request message of the current operation
invoke.

setUnderstoodInput
Headers(boolean)

void Indicates whether input headers should be
understood.

getUnderstoodInput
Headers()

boolean Returns the value that was most recently set by a call
to setUnderstoodInputHeader.

setOutputHeaders(E
lement[])

void Specifies an array of SOAP headers that should be
associated with the outgoing SOAP response message
sent back to the client application that initially
invoked the current operation.

getProtocol() weblogic.wsee
.jws.Protocol

Returns the protocol (such as HTTP/S or JMS) used to
invoke the current operation.

Table 4–3 (Cont.) Methods of JwsContext

Method Returns Description

Should You Implement a Stateless Session EJB?

Programming the JWS File 4-13

The following table defined the javax.xml.rpc.Stub property values that you can
access from the Stub instance.

4.5 Should You Implement a Stateless Session EJB?
The jwsc Ant task always chooses a plain Java object as the underlying
implementation of a Web service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your Web
service to be a stateless session EJB so as to take advantage of all that EJBs have to
offer, such as instance pooling, transactions, security, container-managed persistence,
container-managed relationships, and data caching. If you decide you want an EJB
implementation for your Web service, then follow the programming guidelines in the
following section.

4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File
The general guideline is to always use EJBGen annotations in your JWS file to
automatically generate, rather than manually create, the EJB Remote and Home
interface classes and deployment descriptor files needed when implementing an EJB.
EJBGen annotations work in the same way as JWS annotations: they follow the JDK 5.0
metadata syntax and greatly simplify your programming tasks.

For more information on EJBGen, see "EJBGen Reference" in Oracle Fusion Middleware
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Follow these guidelines when explicitly implementing a stateless session EJB in your
JWS file. See Section 4.5.2, "Example of a JWS File That Implements an EJB" for an
example; the relevant sections are shown in bold:

■ Import the standard Java Platform, Enterprise Edition (Java EE) Version 5 EJB
classes:

Table 4–4 Methods of Stub Interface

Method Returns Description

_getProperty() java.lang.Object Gets the value of the specified configuration
property.

_getPropertyNames() java.util.Iterator Returns an Iterator view of the names of the
properties that can be configured on the Stub
instance.

_setProperty() void Sets the name and value of a configuration
property for the Stub instance.

Table 4–5 Properties of Stub Interface

Property Type Description

ENDPOINT_ADDRESS_
PROPERTY

java.lang.String Target service endpoint address.

PASSWORD_PROPERTY java.lang.String Password used for authentication.

SESSION_MAINTAIN_
PROPERTY

java.lang.String Flag specifying whether to participate in a session
with a service endpoint.

USERNAME_PROPERTY java.lang.String User name used for authentication.

Note: JAX-RPC supports EJB 2.x only; it does not support EJB 3.0.

Should You Implement a Stateless Session EJB?

4-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

import javax.ejb.SessionBean;
 import javax.ejb.SessionContext;

■ Import the EJBGen annotations, all of which are in the weblogic.ejbgen package.
At a minimum you need to import the @Session annotation; if you want to use
additional EJBGen annotations in your JWS file to specify the shape and behavior
of the EJB, see the "EJBGen Reference" in Oracle Fusion Middleware Programming
WebLogic Enterprise JavaBeans for Oracle WebLogic Server for the name of the
annotation you should import.

import weblogic.ejbgen.Session;

■ At a minimum, use the @Session annotation at the class level to specify the name
of the EJB:

@Session(ejbName="TransactionEJB")

@Session is the only required EJBGen annotation when used in a JWS file. You can,
if you want, use other EJBGen annotations to specify additional features of the
EJB.

■ Ensure that the JWS class implements SessionBean:

public class TransactionImpl implements SessionBean {...

■ You must also include the standard EJB methods ejbCreate(), ejbActivate() and
so on, although you typically do not need to add code to these methods unless you
want to change the default behavior of the EJB:

 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}

If you follow all these guidelines in your JWS file, the jwsc Ant task later compiles the
Web service into an EJB and packages it into an EJB JAR file inside of the Enterprise
Application.

4.5.2 Example of a JWS File That Implements an EJB
The following example shows a simple JWS file that implement a stateless session EJB.
The relevant code is shown in bold.

package examples.webservices.transactional;
import javax.ejb.SessionBean;
 import javax.ejb.SessionContext;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Transactional;
import weblogic.ejbgen.Session;
@Session(ejbName="TransactionEJB")
@WebService(name="TransactionPortType", serviceName="TransactionService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="transactions", serviceUri="TransactionService",
 portName="TransactionPort")
/**
 * This JWS file forms the basis of simple EJB-implemented WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.

Programming the User-Defined Java Data Type

Programming the JWS File 4-15

 *
 */
public class TransactionImpl implements SessionBean {
 @WebMethod()
 @Transactional(value=true)
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 // Standard EJB methods. Typically there's no need to override the methods.
 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
 }

4.6 Programming the User-Defined Java Data Type
The methods of the JWS file that are exposed as Web service operations do not
necessarily take built-in data types (such as Strings and integers) as parameters and
return values, but rather, might use a Java data type that you create yourself. An
example of a user-defined data type is TradeResult, which has two fields: a String
stock symbol and an integer number of shares traded.

If your JWS file uses user-defined data types as parameters or return values of one or
more of its methods, you must create the Java code of the data type yourself, and then
import the class into your JWS file and use it appropriately. The jwsc Ant task will
later take care of creating all the necessary data binding artifacts, such as the
corresponding XML Schema representation of the Java user-defined data type, the
JAX-RPC type mapping file, and so on.

Follow these basic requirements when writing the Java class for your user-defined
data type:

■ Define a default constructor, which is a constructor that takes no parameters.

■ Define both getXXX() and setXXX() methods for each member variable that you
want to publicly expose.

■ Make the data type of each exposed member variable one of the built-in data
types, or another user-defined data type that consists of built-in data types.

These requirements are specified by JAX-RPC; for more detailed information and the
complete list of requirements, see the JAX-RPC specification at
http://java.net/projects/jax-rpc/.

The jwsc Ant task can generate data binding artifacts for most common XML and Java
data types. For the list of supported user-defined data types, see Section 5.3,
"Supported User-Defined Data Types." See Section 5.2, "Supported Built-In Data
Types" for the full list of supported built-in data types.

The following example shows a simple Java user-defined data type called
BasicStruct:

package examples.webservices.complex;
/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */

Throwing Exceptions

4-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

public class BasicStruct {
 // Properties
 private int intValue;
 private String stringValue;
 private String[] stringArray;
 // Getter and setter methods
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }
 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }
 public String[] getStringArray() {
 return stringArray;
 }
 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }
}

The following snippets from a JWS file show how to import the BasicStruct class and
use it as both a parameter and return value for one of its methods; for the full JWS file,
see Section 2.2.2, "Sample ComplexImpl.java JWS File":

package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
 import javax.jws.WebParam;
 import javax.jws.WebResult;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interface
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
...
public class ComplexImpl {
 @WebMethod(operationName="echoComplexType")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 return struct;
 }
 }

4.7 Throwing Exceptions
When you write the error-handling Java code in methods of the JWS file, you can
either throw your own user-defined exceptions or throw a
javax.xml.rpc.soap.SOAPFaultException exception. If you throw a

Throwing Exceptions

Programming the JWS File 4-17

SOAPFaultException, WebLogic Server maps it to a SOAP fault and sends it to the
client application that invokes the operation.

If your JWS file throws any type of Java exception other than SOAPFaultException,
WebLogic Server tries to map it to a SOAP fault as best it can. However, if you want to
control what the client application receives and send it the best possible exception
information, you should explicitly throw a SOAPFaultException exception or one that
extends the exception. See the JAX-RPC specification at
http://java.net/projects/jax-rpc/ for detailed information about creating and
throwing your own user-defined exceptions.

The following excerpt describes the SOAPFaultException class:

public class SOAPFaultException extends java.lang.RuntimeException {
 public SOAPFaultException (QName faultcode,
 String faultstring,
 String faultactor,
 javax.xml.soap.Detail detail) {...}
 public Qname getFaultCode() {...}
 public String getFaultString() {...}
 public String getFaultActor() {...}
 public javax.xml.soap.Detail getDetail() {...}
 }

Use the SOAP with Attachments API for Java 1.1 (SAAJ)
javax.xml.soap.SOAPFactory.createDetail() method to create the Detail object,
which is a container for DetailEntry objects that provide detailed application-specific
information about the error.

You can use your own implementation of the SOAPFactory, or use Oracle 's, which can
be accessed in the JWS file by calling the static method
weblogic.wsee.util.WLSOAPFactory.createSOAPFactory() which returns a
javax.xml.soap.SOAPFactory object. Then at run time, use the
-Djavax.xml.soap.SOAPFactory flag to specify Oracle's SOAPFactory implementation
as shown:

-Djavax.xml.soap.SOAPFactory=weblogic.xml.saaj.SOAPFactoryImpl

The following JWS file shows an example of creating and throwing a
SOAPFaultException from within a method that implements an operation of your Web
service; the sections in bold highlight the exception code:

package examples.webservices.soap_exceptions;
import javax.xml.namespace.QName;
 import javax.xml.soap.Detail;
 import javax.xml.soap.SOAPException;
 import javax.xml.soap.SOAPFactory;
 import javax.xml.rpc.soap.SOAPFaultException;
// Import the @WebService annotation
import javax.jws.WebService;
// Import WLHttpTransport
import weblogic.jws.WLHttpTransport;
@WebService(serviceName="SoapExceptionsService",
 name="SoapExceptionsPortType",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="exceptions",
 serviceUri="SoapExceptionsService",
 portName="SoapExceptionsServicePort")
 /**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld

Invoking Another Web Service from the JWS File

4-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 *
 */
public class SoapExceptionsImpl {
 public SoapExceptionsImpl() {
 }
 public void tirarSOAPException() {
 Detail detail = null;
 try {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 detail = soapFactory.createDetail();
 } catch (SOAPException e) {
 // do something
 }
 QName faultCode = null;
 String faultString = "the fault string";
 String faultActor = "the fault actor";
 throw new SOAPFaultException(faultCode, faultString, faultActor, detail);
 }
 }

The preceding example uses the default implementation of SOAPFactory.

4.8 Invoking Another Web Service from the JWS File
From within your JWS file you can invoke another Web service, either one deployed
on WebLogic Server or one deployed on some other application server, such as .NET.
The steps to do this are similar to those described in Section 2.4, "Invoking a Web
Service from a Java SE Client," except that rather than running the clientgen Ant task
to generate the client stubs, you include a <clientgen> child element of the jwsc Ant
task that builds the invoking Web service to generate the client stubs instead. You then
use the standard JAX-RPC APIs in your JWS file.

See Section 6.3, "Invoking a Web Service from Another Web Service" for detailed
instructions.

4.9 Programming Additional Miscellaneous Features Using JWS
Annotations and APIs

The following sections describe additional miscellaneous features you can program by
specifying particular JWS annotations in your JWS file or using WebLogic Web services
APIs:

■ Section 4.9.1, "Sending Binary Data Using MTOM/XOP"

■ Section 4.9.2, "Streaming SOAP Attachments"

■ Section 4.9.3, "Using SOAP 1.2"

Note: If you create and throw your own exception (rather than use
SOAPFaultException) and two or more of the properties of your
exception class are of the same data type, then you must also create
setter methods for these properties, even though the JAX-RPC
specification does not require it. This is because when a WebLogic
Web service receives the exception in a SOAP message and converts
the XML into the Java exception class, there is no way of knowing
which XML element maps to which class property without the
corresponding setter methods.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Programming the JWS File 4-19

■ Section 4.9.4, "Specifying that Operations Run Inside of a Transaction"

■ Section 4.9.5, "Getting the HttpServletRequest/Response Object"

4.9.1 Sending Binary Data Using MTOM/XOP
SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) describes a method for optimizing the transmission of XML
data of type xs:base64Binary in SOAP messages. When the transport protocol is
HTTP, MIME attachments are used to carry that data while at the same time allowing
both the sender and the receiver direct access to the XML data in the SOAP message
without having to be aware that any MIME artifacts were used to marshal the
xs:base64Binary data. The binary data optimization process involves encoding the
binary data, removing it from the SOAP envelope, compressing it and attaching it to
the MIME package, and adding references to that package in the SOAP envelope.

The MTOM specification does not require that, when MTOM is enabled, the Web
service run time use XOP binary optimization when transmitting base64binary data.
Rather, the specification allows the run time to choose to do so. This is because in
certain cases the run time may decide that it is more efficient to send base64binary
data directly in the SOAP Message; an example of such a case is when transporting
small amounts of data in which the overhead of conversion and transport consumes
more resources than just inlining the data as is. The WebLogic Web services
implementation for MTOM for JAX-RPC service, however, always uses MTOM/XOP
when MTOM is enabled.

Support for MTOM/XOP in WebLogic JAX-RPC Web services is implemented using
the pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy
specification, described at http://www.w3.org/TR/ws-policy; this specification
provides a general purpose model and XML syntax to describe and communicate the
policies of a Web service, in this case the use of MTOM/XOP to send binary data. The
installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the
Web service WSDL is as follows (provided for your information only; you cannot
change this file):

<wsp:Policy wsu:Id="myService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:OptimizedMimeSerialization

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserializati
on" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the Web service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding_IMtomTest"
 type="i0:IMtomTest">
 <wsp:PolicyReference URI="#myService_policy" />
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a Web service at development-time
by specifying the @Policy metadata annotation in your JWS file. Be sure you also
specify the attachToWsdl=true attribute to ensure that the dynamic WSDL includes
the required reference to the Mtom.xml file; see the example below.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

4-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

You can associate the Mtom.xml WS-Policy file with a Web service at deployment time
by modifying the WSDL to add the Policy to the types section just before deployment.

In addition, you can attach the file at run time using by the Administration Console;
for details, see "Associate a WS-Policy file with a Web Service" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help. This section describes
how to use the JWS annotation.

To send binary data using MTOM/XOP, follow these steps:

1. Use the WebLogic-specific @weblogic.jws.Policy annotation in your JWS file to
specify that the pre-packaged Mtom.xml file should be applied to your Web service,
as shown in the following simple JWS file (relevant code shown in bold):

package examples.webservices.mtom;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Policy;
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="mtom",
 serviceUri="MtomService",
 portName="MtomServicePort")
@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class MtomImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

2. Use the Java byte[] data type in your Web service operations as either a return
value or input parameter whenever you want the resulting SOAP message to use
MTOM/XOP to send or receive the binary data. See the implementation of the
echoBinaryAsString operation above for an example; this operation simply takes
as input an array of byte and returns it as a String.

3. The WebLogic Web services run time has built in MTOM/XOP support which is
enabled if the WSDL for which the clientgen Ant task generates client-side
artifacts specifies MTOM/XOP support. In your client application itself, simply
invoke the operations as usual, using byte[] as the relevant data type.

See the SOAP Message Transmission Optimization Mechanism specification at
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125 for additional information
about the MTOM/XOP feature itself as well as the version of the specification
supported by WebLogic JAX-RPC Web services.

Note: In this release of WebLogic Server, the only supported Java
data type when using MTOM/XOP is byte[]; other binary data types,
such as image, are not supported.

In addition, this release of WebLogic Server does not support using
MTOM with deprecated 9.x security policies.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Programming the JWS File 4-21

4.9.2 Streaming SOAP Attachments
Using the @weblogic.jws.StreamAttachments JWS annotation, you can specify that a
Web service use a streaming API when reading inbound SOAP messages that include
attachments, rather than the default behavior in which the service reads the entire
message into memory. This feature increases the performance of Web services whose
SOAP messages are particular large.

See "weblogic.jws.StreamAttachments" in the Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server for an example of specifying that
attachments should be streamed.

4.9.3 Using SOAP 1.2
WebLogic Web services use, by default, Version 1.1 of Simple Object Access Protocol
(SOAP) as the message format when transmitting data and invocation calls between
the Web service and its client. WebLogic Web services support both SOAP 1.1 and the
newer SOAP 1.2, and you are free to use either version.

To specify that the Web service use Version 1.2 of SOAP, use the class-level
@weblogic.jws.Binding annotation in your JWS file and set its single attribute to the
value Binding.Type.SOAP12, as shown in the following example (relevant code shown
in bold):

package examples.webservices.soap12;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Binding;
@WebService(name="SOAP12PortType",
 serviceName="SOAP12Service",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="soap12",
 serviceUri="SOAP12Service",
 portName="SOAP12ServicePort")
@Binding(Binding.Type.SOAP12)
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The class uses SOAP 1.2
 * as its binding.
 *
 */
public class SOAP12Impl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 }

Other than set this annotation, you do not have to do anything else for the Web service
to use SOAP 1.2, including changing client applications that invoke the Web service;
the WebLogic Web services run time takes care of all the rest.

See "weblogic.jws.Binding" in the Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for additional information about this annotation.

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

4-22 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

4.9.4 Specifying that Operations Run Inside of a Transaction
When a client application invokes a WebLogic Web service operation, the operation
invocation takes place outside the context of a transaction, by default. If you want the
operation to run inside a transaction, specify the @weblogic.jws.Transactional
annotation in your JWS file, and set the boolean value attribute to true, as shown in
the following example (relevant code shown in bold):

package examples.webservices.transactional;
import javax.jws.WebMethod;
 import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
 import weblogic.jws.Transactional;
@WebService(name="TransactionPojoPortType",
 serviceName="TransactionPojoService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="transactionsPojo",
 serviceUri="TransactionPojoService",
 portName="TransactionPojoPort")
/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.
 *
 */
public class TransactionPojoImpl {
 @WebMethod()
 @Transactional(value=true)
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
 }

If you want all operations of a Web service to run inside of a transaction, specify the
@Transactional annotation at the class-level. If you want only a subset of the
operations to be transactional, specify the annotation at the method-level. If there is a
conflict, the method-level value overrides the class-level.

See "weblogic.jws.Transactional" in the Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for information about additional attributes.

4.9.5 Getting the HttpServletRequest/Response Object
If your Web service uses HTTP as its transport protocol, you can use the
"weblogic.wsee.connection.transport.servlet.HttpTransportUtils" API in the
Oracle Fusion Middleware Oracle WebLogic Server API Referenceto get the
javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse objects from the JAX-RPC
ServletEndpointContext object, as shown in the following example (relevant code
shown in bold and explained after the example):

package examples.webservices.http_transport_utils;
import javax.xml.rpc.server.ServiceLifecycle;
 import javax.xml.rpc.server.ServletEndpointContext;
 import javax.xml.rpc.ServiceException;
import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;
import javax.jws.WebMethod;
 import javax.jws.WebService;

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Programming the JWS File 4-23

import weblogic.jws.WLHttpTransport;
import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;
@WebService(name="HttpTransportUtilsPortType",
 serviceName="HttpTransportUtilsService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="servlet", serviceUri="HttpTransportUtils",
 portName="HttpTransportUtilsPort")
public class HttpTransportUtilsImpl implements ServiceLifecycle {
 private ServletEndpointContext wsctx = null;
 public void init(Object context) throws ServiceException {
 System.out.println("ServletEndpointContext inited...");
 wsctx = (ServletEndpointContext)context;
 }
 public void destroy() {
 System.out.println("ServletEndpointContext destroyed...");
 wsctx = null;
 }
 @WebMethod()
 public String getServletRequestAndResponse() {
 HttpServletRequest request =
 HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());
 HttpServletResponse response =
 HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());
 System.out.println("HttpTransportUtils API used successfully.");
 return "HttpTransportUtils API used successfully";
 }
}

The important parts of the preceding example are as follows:

■ Import the required JAX-RPC and Servlet classes:

import javax.xml.rpc.server.ServiceLifecycle;
 import javax.xml.rpc.server.ServletEndpointContext;
 import javax.xml.rpc.ServiceException;
import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

■ Import the WebLogic HttpTransportUtils class:

import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;

■ Because you will be querying the JAX-RPC message context, your JWS file must
explicitly implement ServiceLifecycle:

public class HttpTransportUtilsImpl implements ServiceLifecycle

■ Create a variable of data type ServletEndpointContext:

 private ServletEndpointContext wsctx = null;

■ Because the JWS file implements ServiceLifecycle, you must also implement the
init and destroy lifecycle methods:

 public void init(Object context) throws ServiceException {
 System.out.println("ServletEndpointContext inited...");
 wsctx = (ServletEndpointContext)context;
 }
 public void destroy() {
 System.out.println("ServletEndpointContext destroyed...");
 wsctx = null;
 }

JWS Programming Best Practices

4-24 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ Finally, in the method that implements the Web service operation, use the

ServletEndpointContext object to get the HttpServletRequest and
HttpServletResponse objects:

HttpServletRequest request =
 HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());
 HttpServletResponse response =
 HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

4.10 JWS Programming Best Practices
The following list provides some best practices when programming the JWS file:

■ When you create a document-literal-bare Web service, use the @WebParam JWS
annotation to ensure that all input parameters for all operations of a given Web
service have a unique name. Because of the nature of document-literal-bare Web
services, if you do not explicitly use the @WebParam annotation to specify the name
of the input parameters, WebLogic Server creates one for you and run the risk of
duplicating the names of the parameters across a Web service.

■ In general, document-literal-wrapped Web services are the most interoperable
type of Web service.

■ Use the @WebResult JWS annotation to explicitly set the name of the returned
value of an operation, rather than always relying on the hard-coded name return,
which is the default name of the returned value if you do not use the @WebResult
annotation in your JWS file.

■ Use SOAPFaultExceptions in your JWS file if you want to control the exception
information that is passed back to a client application when an error is
encountered while invoking a the Web service.

■ Even though it is not required, Oracle recommends you always specify the
portName attribute of the WebLogic-specific @WLHttpTransport annotation in your
JWS file. If you do not specify this attribute, the jwsc Ant task will generate a port
name for you when generating the WSDL file, but this name might not be very
user-friendly. A consequence of this is that the getXXX() method you use in your
client applications to invoke the Web service will not be very well-named. To
ensure that your client applications use the most user-friendly methods possible
when invoking the Web service, specify a relevant name of the Web service port by
using the portName attribute.

5

Understanding Data Binding 5-1

5Understanding Data Binding

[6] This chapter describes the data binding and the data types (both built-in and
user-defined) that are supported for WebLogic Web services using Java API for
XML-based RPC (JAX-RPC).

This chapter includes the following topics:

■ Section 5.1, "Overview of Data Binding"

■ Section 5.2, "Supported Built-In Data Types"

■ Section 5.3, "Supported User-Defined Data Types"

5.1 Overview of Data Binding
With the emergence of XML as the standard for exchanging data across disparate
systems, Web service applications need a way to access documents that are in XML
format directly from the Java application. Specifically, the XML content needs to be
converted to a format that is readable by the Java application. Data binding describes
the conversion of data between its XML and Java representations.

As in previous releases, WebLogic Web services support a full set of built-in XML
Schema, Java, and SOAP types, as specified by the JAX-RPC specification, described at
http://java.net/projects/jax-rpc/, that you can use in your Web service
operations without performing any additional programming steps. Built-in data types
are those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types,
including Apache XmlBeans (in package org.apache.xmlbeans), as input parameters
and return values of your Web service. User-defined data types are those that you
create from XML Schema or Java building blocks, such as <xsd:complexType> or
JavaBeans. The WebLogic Web services Ant tasks, such as jwsc and clientgen,
automatically generate the data binding artifacts needed to convert the user-defined
data types between their XML and Java representations. The XML representation is
used in the SOAP request and response messages, and the Java representation is used
in the JWS that implements the Web service.

Supported Built-In Data Types

5-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

5.2 Supported Built-In Data Types
The following sections describe the built-in data types supported by WebLogic Web
services and the mapping between their XML and Java representations. As long as the
data types of the parameters and return values of the back-end components that
implement your Web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

If, however, you use user-defined data types, then you must create the data binding
artifacts that convert the data between XML and Java.WebLogic Server includes the
jwsc and wsdlc Ant tasks that can automatically generate the data binding artifacts for
most user-defined data types. See Section 5.3, "Supported User-Defined Data Types"
for a list of supported XML and Java data types.

5.2.1 XML-to-Java Mapping for Built-in Data Types
The following table lists the supported XML Schema data types (target namespace
http://www.w3.org/2001/XMLSchema) and their corresponding Java data types.

For a list of the supported user-defined XML data types, see Section 5.2.2,
"Java-to-XML Mapping for Built-In Data Types."

Note: As of WebLogic Server 9.1, using XMLBeans 1.x data types (in
other words, extensions of com.bea.xml.XmlObject) as parameters or
return types of a WebLogic Web service is deprecated. New
applications should use XMLBeans 2.x data types.

If a Web service uses XMLBeans that are compiled with the -noupa
option, then -Dweblogic.wsee.bind.setCompileNoUpaRule=true flag
is required to be set in the WebLogic server startup script to ensure the
Web service deploys successfully.Otherwise, deployment will fail with
the following error: cos-nonambig: Content model violates the
unique particle attribution rule.

Table 5–1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type

Equivalent Java Data Type

(lower case indicates a primitive data type)

boolean boolean

byte byte

short short

int int

long long

float float

double double

integer java.math.BigInteger

decimal java.math.BigDecimal

string java.lang.String

dateTime java.util.Calendar

base64Binary byte[]

Supported Built-In Data Types

Understanding Data Binding 5-3

5.2.2 Java-to-XML Mapping for Built-In Data Types
For a list of the supported user-defined Java data types, see Section 5.3.2, "Supported
Java User-Defined Data Types."

hexBinary byte[]

duration java.lang.String

time java.util.Calendar

date java.util.Calendar

gYearMonth java.util.Calendar

gYear java.util.Calendar

gMonthDay java.util.Calendar

gDay java.util.Calendar

gMonth java.util.Calendar

anyURI java.net.URI

NOTATION java.lang.String

token java.lang.String

normalizedString java.lang.String

language java.lang.String

Name java.lang.String

NMTOKEN java.lang.String

NCName java.lang.String

NMTOKENS java.lang.String[]

ID java.lang.String

IDREF java.lang.String

ENTITY java.lang.String

IDREFS java.lang.String[]

ENTITIES java.lang.String[]

nonPositiveInteger java.math.BigInteger

nonNegativeInteger java.math.BigInteger

negativeInteger java.math.BigInteger

unsignedLong java.math.BigInteger

positiveInteger java.math.BigInteger

unsignedInt long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Table 5–1 (Cont.) Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type

Equivalent Java Data Type

(lower case indicates a primitive data type)

Supported User-Defined Data Types

5-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

5.3 Supported User-Defined Data Types
The tables in the following sections list the user-defined XML and Java data types for
which the jwsc and wsdlc Ant tasks can automatically generate data binding artifacts,
such as the corresponding Java or XML representation, the JAX-RPC type mapping
file, and so on.

Table 5–2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data type) Equivalent XML Schema Data Type

int int

short short

long long

float float

double double

byte byte

boolean boolean

char string (with facet of length=1)

java.lang.Integer int

java.lang.Short short

java.lang.Long long

java.lang.Float float

java.lang.Double double

java.lang.Byte byte

java.lang.Boolean boolean

java.lang.Character string (with facet of length=1)

java.lang.String string

java.math.BigInteger integer

java.math.BigDecimal decimal

java.util.Calendar dateTime

java.util.Date dateTime

byte[] base64Binary

javax.xml.namespace.QName Qname

java.net.URI anyURI

javax.xml.datatype.XMLGregori
anCalendar

anySimpleType

javax.xml.datatype.Duration duration

java.lang.Object anyType

java.awt.Image base64Binary

javax.activation.DataHandler base64Binary

javax.xml.transform.Source base64Binary

java.util.UUID string

Supported User-Defined Data Types

Understanding Data Binding 5-5

If your XML or Java data type is not listed in these tables, and it is not one of the
built-in data types listed in Section 5.2, "Supported Built-In Data Types," then you
must create the user-defined data type artifacts manually.

5.3.1 Supported XML User-Defined Data Types
The following table lists the XML Schema data types supported by the jwsc and wsdlc
Ant tasks and their equivalent Java data type or mapping mechanism.

For details and examples of the data types, see the JAX-RPC specification at
http://java.net/projects/jax-rpc/.

5.3.2 Supported Java User-Defined Data Types
The following table lists the Java user-defined data types supported by the jwsc and
wsdlc Ant tasks and their equivalent XML Schema data type.

Table 5–3 Supported User-Defined XML Schema Data Types

XML Schema Data Type
Equivalent Java Data Type or Mapping
Mechanism

<xsd:complexType> with elements of both
simple and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in <xsd:complexType> Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element. Facets not enforced during serialization
and deserialization.

<xsd:list> Array of the list data type.

Array derived from soapenc:Array by restriction
using the wsdl:arrayType attribute.

Array of the Java equivalent of the
arrayType data type.

Array derived from soapenc:Array by
restriction.

Array of Java equivalent.

Derivation of a complex type from a simple type. JavaBean with a property called _value
whose type is mapped from the simple type
according to the rules in this section.

<xsd:anyType> java.lang.Object

<xsd:any> javax.xml.soap.SOAPElement or
org.apache.xmlbeans.XmlObject

<xsd:any[]> javax.xml.soap.SOAPElement[] or
org.apache.xmlbeans.XmlObject[]

<xsd:union> Common parent type of union members.

<xsi:nil> and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and usually
maps to a Java primitive data type (such as
int or short), then the XML data type is
actually mapped to the equivalent object
wrapper type (such as java.lang.Integer
or java.lang.Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

Supported User-Defined Data Types

5-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Table 5–4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported
data type.

<xsd:complexType> whose content model
is a <xsd:sequence> of elements
corresponding to JavaBean properties.

Array and multidimensional array of any
supported data type (when used as a JavaBean
property)

An element in a <xsd:complexType> with
the maxOccurs attribute set to unbounded.

java.lang.Object

Note: The data type of the run-time object must
be a known type.

<xsd:anyType>

Apache XMLBeans (that are inherited from
org.apache.xmlbeans.XmlObject only)

Note: The Web service that uses an Apache
XMLBeans data type as a return type or
parameter must be defined as
document-literal-wrapped or
document-literal-bare.

See Apache XMLBeans at
http://xmlbeans.apache.org/index.html.

java.util.Collection Literal Array

java.util.List Literal Array

java.util.ArrayList Literal Array

java.util.LinkedList Literal Array

java.util.Vector Literal Array

java.util.Stack Literal Array

java.util.Set Literal Array

java.util.TreeSet Literal Array

java.utils.SortedSet Literal Array

java.utils.HashSet Literal Array

Note: The following user-defined Java data type, used as a
parameter or return value of a WebLogic Web service in Version 8.1, is
no longer supported: JAX-RPC-style enumeration class.

Additionally, generics are not supported when used as a parameter or
return value. For example, the following Java method cannot be
exposed as a public operation:

public ArrayList<String> echoGeneric(ArrayList<String> in) {
 return in;
 }

6

Invoking Web Services 6-1

6Invoking Web Services

[7] This chapter describes how to invoke WebLogic Web services using Java API for
XML-based RPC (JAX-RPC).

This chapter includes the following topics:

■ Section 6.1, "Overview of Web Services Invocation"

■ Section 6.2, "Invoking a Web Service from a Java SE Client"

■ Section 6.3, "Invoking a Web Service from Another Web Service"

■ Section 6.4, "Using a Stand-Alone Client JAR File When Invoking Web Services"

■ Section 6.5, "Using a Proxy Server When Invoking a Web Service"

■ Section 6.6, "Client Considerations When Redeploying a Web Service"

■ Section 6.7, "WebLogic Web Services Stub Properties"

■ Section 6.8, "Setting the Character Encoding For the Response SOAP Message"

6.1 Overview of Web Services Invocation
Invoking a Web service refers to the actions that a client application performs to use
the Web service. Client applications that invoke Web services can be written using any
technology: Java, Microsoft .NET, and so on.

There are two types of client applications:

■ Java SE client—In its simplest form, a Java SE client is a Java program that has the
Main public class that you invoke with the java command.

■ Java EE component deployed to WebLogic Server—In this type of client
application, the Web service runs inside a Java Platform, Enterprise Edition (Java
EE) Version 5 component deployed to WebLogic Server, such as an EJB, servlet, or
another Web service. This type of client application, therefore, runs inside a
WebLogic Server container.

You can invoke a Web service from any Java SE or Java EE application running on
WebLogic Server (with access to the WebLogic Server classpath). For information
about support for stand-alone Java applications that are running in an environment

Note: The following sections do not include information about
invoking message-secured Web services; for that topic, see "Updating
a Client Application to Invoke a Message-Secured Web Service" in
Oracle Fusion Middleware Securing WebLogic Web Services for Oracle
WebLogic Server.

Overview of Web Services Invocation

6-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

where WebLogic Server libraries are not available, see Section 6.4, "Using a
Stand-Alone Client JAR File When Invoking Web Services".

The sections that follow describe how to use Oracle's implementation of the JAX-RPC
specification to invoke a Web service from a Java client application. You can use this
implementation to invoke Web services running on any application server, both
WebLogic and non-WebLogic. In addition, you can create a client that runs as part of a
WebLogic Server, or a stand-alone client that runs in an environment where WebLogic
Server libraries are not available.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper, for proxy generation and testing. For more information, see
"Using Oracle IDEs to Build Web Services" in Oracle Fusion Middleware Introducing
WebLogic Web Services for Oracle WebLogic Server.

6.1.1 Invoking Web Services Using JAX-RPC
The Java API for XML based RPC (JAX-RPC) is a specification that defines the APIs
used to invoke a Web service. WebLogic Server implements the JAX-RPC specification.

The following table briefly describes the core JAX-RPC interfaces and classes.

6.1.2 Examples of Clients That Invoke Web Services
WebLogic Server includes examples of creating and invoking WebLogic Web services
in the WL_HOME/samples/server/examples/src/examples/webservices directory,
where WL_HOME refers to the main WebLogic Server directory. For detailed instructions
on how to build and run the examples, open the WL_
HOME/samples/server/docs/index.html Web page in your browser and expand the
WebLogic Server Examples->Examples->API->Web Services node.

Note: You cannot use a dynamic client to invoke a Web service
operation that implements user-defined data types as parameters or
return values. A dynamic client uses the JAX-RPC Call interface.
Standard (static) clients use the Service and Stub JAX-RPC interfaces,
which correctly invoke Web services that implement user-defined data
types.

Table 6–1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface or Class Description

Service Main client interface.

ServiceFactory Factory class for creating Service instances.

Stub Base class of the client proxy used to invoke the operations
of a Web service.

Call Used to dynamically invoke a Web service.

JAXRPCException Exception thrown if an error occurs while invoking a Web
service.

Invoking a Web Service from a Java SE Client

Invoking Web Services 6-3

6.2 Invoking a Web Service from a Java SE Client

The following table summarizes the main steps to create a Java SE client that invokes a
Web service.

Note: As described in this section, you can invoke a Web service
from any Java SE or Java EE application running on WebLogic Server
(with access to the WebLogic Server classpath). For information about
support for stand-alone Java applications that are running in an
environment where WebLogic Server libraries are not available, see
Section 6.4, "Using a Stand-Alone Client JAR File When Invoking Web
Services".

Note: It is assumed that you use Ant in your development
environment to build your client application, compile Java files, and
so on, and that you have an existing build.xml file that you want to
update with Web services client tasks. For general information about
using Ant in your development environment, see Section 3.5,
"Creating the Basic Ant build.xml File." For a full example of a
build.xml file used in this section, see Section 6.2.5, "Sample Ant
Build File for a Java Client."

Table 6–2 Steps to Invoke a Web Service from a Java SE Client

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv.sh
(UNIX) command, located in the bin subdirectory of your
domain directory. The default location of WebLogic
Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and
domainName is the name of your domain.

2 Update your build.xml file to
execute the clientgen Ant
task to generate the needed
client-side artifacts to invoke
a Web service.

See Section 6.2.1, "Using the clientgen Ant Task To
Generate Client Artifacts."

3 Get information about the
Web service, such as the
signature of its operations
and the name of the ports.

See Section 6.2.2, "Getting Information About a Web
Service."

4 Write the client application
Java code that includes code
for invoking the Web service
operation.

See Section 6.2.3, "Writing the Java Client Application
Code to Invoke a Web Service."

5 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

6 Compile and run your Java
client application.

See Section 6.2.4, "Compiling and Running the Client
Application."

Invoking a Web Service from a Java SE Client

6-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

6.2.1 Using the clientgen Ant Task To Generate Client Artifacts
The clientgen WebLogic Web services Ant task generates, from an existing WSDL file,
the client artifacts that client applications use to invoke both WebLogic and
non-WebLogic Web services. These artifacts include:

■ The Java class for the JAX-RPC Stub and Service interface implementations for
the particular Web service you want to invoke.

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

■ The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

■ A client-side copy of the WSDL file.

For additional information about the clientgen Ant task, such as all the available
attributes, see "Ant Task Reference" in the Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server.

Update your build.xml file, adding a call to the clientgen Ant task, as shown in the
following example:

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="clientclasses"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 </target>

Before you can execute the clientgen WebLogic Web service Ant task, you must
specify its full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to specify
the WSDL file from which you want to create client-side artifacts and the directory
into which these artifacts should be generated. The packageName attribute is optional;
if you do not specify it, the clientgen task uses a package name based on the
targetNamespace of the WSDL. The type is also optional; if not specified, it defaults to
JAXRPC.

In this example, the package name is set to the same package name as the client
application, examples.webservices.simple_client. If you set the package name to
one that is different from the client application, you would need to import the
appropriate class files. For example, if you defined the package name as
examples.webservices.complex, you would need to import the following class files in
the client application:

import examples.webservices.complex.BasicStruct;
 import examples.webservices.complex.ComplexPortType;
 import examples.webservices.complex.ComplexService;

Invoking a Web Service from a Java SE Client

Invoking Web Services 6-5

If the WSDL file specifies that user-defined data types are used as input parameters or
return values of Web service operations, clientgen automatically generates a
JavaBean class that is the Java representation of the XML Schema data type defined in
the WSDL. The JavaBean classes are generated into the destDir directory.

For a full sample build.xml file that contains additional targets from those described
in this procedure, such as clean, see Section 6.2.5, "Sample Ant Build File for a Java
Client."

To execute the clientgen Ant task, along with the other supporting Ant tasks, specify
the build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the
clientgen Ant task.

6.2.2 Getting Information About a Web Service
You need to know the name of the Web service and the signature of its operations
before you write your Java client application code to invoke an operation. There are a
variety of ways to find this information.

The best way to get this information is to use the clientgen Ant task to generate the
Web service-specific JAX-RPC stubs and look at the generated *.java files. These files
are generated into the directory specified by the destDir attribute, with subdirectories
corresponding to either the value of the packageName attribute, or, if this attribute is
not specified, to a package based on the targetNamespace of the WSDL.

■ The ServiceName.java source file contains the getPortName() methods for getting
the Web service port, where ServiceName refers to the name of the Web service and
PortName refers to the name of the port. If the Web service was implemented with
a JWS file, the name of the Web service is the value of the serviceName attribute of
the @WebService JWS annotation and the name of the port is the value of the
portName attribute of the @WLHttpTransport annotation.

■ The PortType.java file contains the method signatures that correspond to the
public operations of the Web service, where PortType refers to the port type of the
Web service. If the Web service was implemented with a JWS file, the port type is
the value of the name attribute of the @WebService JWS annotation.

You can also examine the actual WSDL of the Web service; see Section 3.10, "Browsing
to the WSDL of the Web Service" for details about the WSDL of a deployed WebLogic
Web service. The name of the Web service is contained in the <service> element, as
shown in the following excerpt of the TraderService WSDL:

Note: The clientgen Ant task also provides the destFile attribute if
you want the Ant task to automatically compile the generated Java
code and package all artifacts into a JAR file. For details and an
example, see "clientgen" in the Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server.

Note: The package of the Java user-defined data type is based on the
XML Schema of the data type in the WSDL, which is different from
the package name of the JAX-RPC stubs.

Invoking a Web Service from a Java SE Client

6-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 <service name="TraderService">
 <port name="TraderServicePort"
 binding="tns:TraderServiceSoapBinding">
 ...
 </port>
 </service>

The operations defined for this Web service are listed under the corresponding
<binding> element. For example, the following WSDL excerpt shows that the
TraderService Web service has two operations, buy and sell (for clarity, only relevant
parts of the WSDL are shown):

 <binding name="TraderServiceSoapBinding" ...>
 ...
 <operation name="sell">
 ...
 </operation>
 <operation name="buy">
 </operation>
 </binding>

6.2.3 Writing the Java Client Application Code to Invoke a Web Service
In the following code example, a Java application invokes a Web service operation.
The client application takes a single argument: the WSDL of the Web service.The
application then uses standard JAX-RPC API code and the Web service-specific
implementation of the Service interface, generated by clientgen, to invoke an
operation of the Web service.

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.complex.BasicStruct) as an input parameter and return
value. The clientgen Ant task automatically generates the Java code for this
user-defined data type.

package examples.webservices.simple_client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
// import the BasicStruct class, used as a param and return value of the
 // echoComplexType operation. The class is generated automatically by
 // the clientgen Ant task.
import examples.webservices.complex.BasicStruct;
/**
 * This is a simple Java client application that invokes the
 * the echoComplexType operation of the ComplexService Web service.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException {
 ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
 }

Invoking a Web Service from a Java SE Client

Invoking Web Services 6-7

In the preceding example:

■ The following code shows how to create a ComplexPortType stub:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();

The ComplexService_Impl stub factory implements the JAX-RPC Service
interface. The constructor of ComplexService_Impl creates a stub based on the
provided WSDL URI (args[0] + "?WSDL"). The getComplexServicePort()
method is used to return an instance of the ComplexPortType stub implementation.

■ The following code shows how to invoke the echoComplexType operation of the
ComplexService Web service:

BasicStruct result = port.echoComplexType(in);

The echoComplexType operation returns the user-defined data type called
BasicStruct.

The method of your application that invokes the Web service operation must throw or
catch java.rmi.RemoteException and javax.xml.rpc.ServiceException, both of
which are thrown from the generated JAX-RPC stubs.

6.2.4 Compiling and Running the Client Application
Add javac tasks to the build-client target in the build.xml file to compile all the
Java files (both of your client application and those generated by clientgen) into class
files, as shown by the bold text in the following example:

 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="clientclasses"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 <javac
 srcdir="clientclasses"
 destdir="clientclasses"
 includes="**/*.java"/>
 <javac
 srcdir="src"
 destdir="clientclasses"
 includes="examples/webservices/simple_client/*.java"/>
 </target>

In the example, the first javac task compiles the Java files in the clientclasses
directory that were generated by clientgen, and the second javac task compiles the
Java files in the examples/webservices/simple_client subdirectory of the current
directory; where it is assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the resulting
compiled classes end up in the same directory (clientclasses). Although this might
be adequate for prototyping, it is often a best practice to keep source code (even
generated code) in a different directory from the compiled classes. To do this, set the
destdir for both javac tasks to a directory different from the srcdir directory. You
must also copy the following clientgen-generated files from clientgen's destination
directory to javac's destination directory, keeping the same subdirectory hierarchy in
the destination:

Invoking a Web Service from a Java SE Client

6-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

packageName/ServiceName_internaldd.xml
packageName/ServiceName_java_wsdl_mapping.xml
packageName/ServiceName_saved_wsdl.wsdl

where packageName refers to the subdirectory hierarchy that corresponds to the
package of the generated JAX-RPC stubs and ServiceName refers to the name of the
Web service.

To run the client application, add a run target to the build.xml that includes a call to
the java task, as shown below:

<path id="client.class.path">
 <pathelement path="clientclasses"/>
 <pathelement path="${java.class.path}"/>
 </path>
<target name="run" >
 <java
 fork="true"
 classname="examples.webServices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </target>

The path task adds the clientclasses directory to the CLASSPATH. The run target
invokes the Main application, passing it the URL of the deployed Web service as its
single argument.

See Section 6.2.5, "Sample Ant Build File for a Java Client" for a full sample build.xml
file that contains additional targets from those described in this procedure, such as
clean.

Rerun the build-client target to regenerate the artifacts and recompile into classes,
then execute the run target to invoke the echoStruct operation:

 prompt> ant build-client run

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

6.2.5 Sample Ant Build File for a Java Client
The following example shows a complete build.xml file for generating and compiling
a Java client. See Section 6.2.1, "Using the clientgen Ant Task To Generate Client
Artifacts" and Section 6.2.4, "Compiling and Running the Client Application" for
explanations of the sections in bold.

<project name="webservices-simple_client" default="all">
 <!-- set global properties for this build -->
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="example-output" value="output" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="clean" >

Invoking a Web Service from Another Web Service

Invoking Web Services 6-9

 <delete dir="${clientclass-dir}"/>
 </target>
 <target name="all" depends="clean,build-client,run" />
 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.simple_client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/simple_client/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"
 />
 </java>
 </target>
</project>

6.3 Invoking a Web Service from Another Web Service
Invoking a Web service from within a WebLogic Web service is similar to invoking one
from another Java application, as described in Section 6.2, "Invoking a Web Service
from a Java SE Client." However, instead of using the clientgen Ant task to generate
the JAX-RPC stubs of the Web service to be invoked, you use the <clientgen> child
element of the <jws> element, inside the jwsc Ant task that compiles the invoking Web
service. In the JWS file that invokes the other Web service, however, you still use the
same standard JAX-RPC APIs to get Service and PortType instances to invoke the
Web service operations.

It is assumed that you have read and understood Section 6.2, "Invoking a Web Service
from a Java SE Client." It is also assumed that you use Ant in your development
environment to build your client application, compile Java files, and so on, and that
you have an existing build.xml that builds a Web service that you want to update to
invoke another Web service.

The following list describes the changes you must make to the build.xml file that
builds your client Web service, which will invoke another Web service. See
Section 6.3.1, "Sample build.xml File for a Web Service Client" for the full sample
build.xml file:

■ Add a <clientgen> child element to the <jws> element that specifies the JWS file
that implements the Web service that invokes another Web service. Set the
required wsdl attribute to the WSDL of the Web service to be invoked. Set the
required packageName attribute to the package into which you want the JAX-RPC
client stubs to be generated.

The following list describes the changes you must make to the JWS file that
implements the client Web service; see Section 6.3.2, "Sample JWS File That Invokes a
Web Service" for the full JWS file example.

Invoking a Web Service from Another Web Service

6-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ Import the files generated by the <clientgen> child element of the jwsc Ant task.
These include the JAX-RPC stubs of the invoked Web service, as well as the Java
representation of any user-defined data types used as parameters or return values
in the operations of the invoked Web service.

■ Update the method that contains the invoke of the Web service to either throw or
catch both java.rmi.RemoteException and javax.xml.rpc.ServiceException.

■ Get the Service and PortType JAX-RPC stubs implementation and invoke the
operation on the port as usual; see Section 6.2.3, "Writing the Java Client
Application Code to Invoke a Web Service" for details.

6.3.1 Sample build.xml File for a Web Service Client
The following sample build.xml file shows how to create a Web service that itself
invokes another Web service; the relevant sections that differ from the build.xml for
building a simple Web service that does not invoke another Web service are shown in
bold.

The build-service target in this case is very similar to a target that builds a simple
Web service; the only difference is that the jwsc Ant task that builds the invoking Web
service also includes a <clientgen> child element of the <jws> element so that jwsc
also generates the required JAX-RPC client stubs.

<project name="webservices-service_to_service" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"

Note: The user-defined data types are generated into a package
based on the XML Schema of the data type in the WSDL, not in the
package specified by clientgen. The JAX-RPC stubs, however, use the
package name specified by the packageName attribute of the
<clientgen> element.

Invoking a Web Service from Another Web Service

Invoking Web Services 6-11

 destdir="${ear-dir}" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXRPC"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg

line="http://${wls.hostname}:${wls.port}/ClientService/ClientService"/>
 </java>
 </target>
</project>

6.3.2 Sample JWS File That Invokes a Web Service
The following sample JWS file, called ClientServiceImpl.java, implements a Web
service called ClientService that has an operation that in turn invokes the
echoComplexType operation of a Web service called ComplexService. This operation
has a user-defined data type (BasicStruct) as both a parameter and a return value.
The relevant code is shown in bold and described after the example.

Invoking a Web Service from Another Web Service

6-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

package examples.webservices.service_to_service;
import java.rmi.RemoteException;
 import javax.xml.rpc.ServiceException;
import javax.jws.WebService;
 import javax.jws.WebMethod;
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct data type, generated by clientgen and used
 // by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;
// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
 // Stubs generated by clientgen
import examples.webservices.service_to_service.ComplexPortType;
 import examples.webservices.service_to_service.ComplexService_Impl;
 import examples.webservices.service_to_service.ComplexService;
@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")
@WLHttpTransport(contextPath="ClientService", serviceUri="ClientService",
 portName="ClientServicePort")
public class ClientServiceImpl {
 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 throws ServiceException, RemoteException
 {
 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();
 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePortTypePort();
 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");
 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";
 }
 }

Follow these guidelines when programming the JWS file that invokes another Web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import any user-defined data types that are used by the invoked Web service. In
this example, the ComplexService uses the BasicStruct JavaBean:

import examples.webservices.complex.BasicStruct;

■ Import the JAX-RPC stubs of the ComplexService Web service; the stubs are
generated by the <cliengen> child element of <jws>:

import examples.webservices.service_to_service.ComplexPortType;
 import examples.webservices.service_to_service.ComplexService_Impl;
 import examples.webservices.service_to_service.ComplexService;

■ Ensure that your client Web service throws or catches ServiceException and
RemoteException:

throws ServiceException, RemoteException

■ Create the JAX-RPC Service and PortType instances for the ComplexService:

ComplexService service = new
 ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePortTypePort();

Using a Stand-Alone Client JAR File When Invoking Web Services

Invoking Web Services 6-13

■ Invoke the echoComplexType operation of ComplexService using the port you just
instantiated:

BasicStruct result = port.echoComplexType(input);

6.4 Using a Stand-Alone Client JAR File When Invoking Web Services
It is assumed in this document that, when you invoke a Web service using the
client-side artifacts generated by the clientgen or wsdlc Ant tasks, you have the entire
set of WebLogic Server classes in your CLASSPATH. If, however, your computer does
not have WebLogic Server installed, you can still invoke a Web service by using the
stand-alone WebLogic Web services client JAR file, as described in this section.

The standalone client JAR file supports basic client-side functionality, such as:

■ Use with client-side artifacts created by both the clientgen Ant tasks

■ Processing SOAP messages

■ Using client-side SOAP message handlers

■ Using MTOM

■ Invoking JAX-RPC Web services

■ Using SSL

The stand-alone client JAR file does not, however, support invoking Web services that
use the following advanced features:

■ Web services reliable SOAP messaging

■ Message-level security (WS-Security)

■ Conversations

■ Asynchronous request-response

■ Buffering

■ JMS transport

To use the stand-alone WebLogic Web services client JAR file with your client
application, follow these steps:

1. Copy the file WL_HOME/server/lib/wseeclient.zip from the computer hosting
WebLogic Server to the client computer, where WL_HOME refers to the WebLogic
Server installation directory, such as /Oracle/Middleware/wlserver_10.3.

2. Unzip the wseeclient.zip file into the appropriate directory. For example, you
might unzip the file into a directory that contains other classes used by your client
application.

3. Add the wseeclient.jar file (unzipped from the wseeclient.zip file) to your
CLASSPATH.

Note: Also be sure that your CLASSPATH includes the JAR file that
contains the Ant classes (ant.jar). This JAR file is typically located in
the lib directory of the Ant distribution.

Using a Proxy Server When Invoking a Web Service

6-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

6.5 Using a Proxy Server When Invoking a Web Service
You can use a proxy server to proxy requests from a client application to an
application server (either WebLogic or non-WebLogic) that hosts the invoked Web
service. You typically use a proxy server when the application server is behind a
firewall. There are two ways to specify the proxy server in your client application:
programmatically using the WebLogic HttpTransportInfo API or using system
properties.

6.5.1 Using the HttpTransportInfo API to Specify the Proxy Server
You can programmatically specify within the Java client application itself the details of
the proxy server that will proxy the Web service invoke by using the standard
java.net.* classes and the WebLogic-specific HttpTransportInfo API. You use the
java.net classes to create a Proxy object that represents the proxy server, and then use
the WebLogic API and properties to set the proxy server on the JAX-RPC stub, as
shown in the following sample client that invokes the echo operation of the
HttpProxySampleService Web service. The code in bold is described after the
example:

package dev2dev.proxy.client;
import java.net.Proxy;
 import java.net.InetSocketAddress;
import weblogic.wsee.connection.transport.http.HttpTransportInfo;
/**
 * Sample client to invoke a service through a proxy server via
 * programmatic API
 */
public class HttpProxySampleClient {
 public static void main(String[] args) throws Throwable{
 assert args.length == 5;
 String endpoint = args[0];
 String proxyHost = args[1];
 String proxyPort = args[2];
 String user = args[3];
 String pass = args[4];
 //create service and port
 HttpProxySampleService service = new HttpProxySampleService_Impl();
 HttpProxySamplePortType port = service.getHttpProxySamplePortTypeSoapPort();
 //set endpoint address
 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);
 //set proxy server info
 Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));
 HttpTransportInfo info = new HttpTransportInfo();
 info.setProxy(p);
 ((Stub)port)._setProperty("weblogic.wsee.connection.transportinfo",info);
 //set proxy-authentication info
 ((Stub)port)._setProperty("weblogic.webservice.client.proxyusername",user);
 ((Stub)port)._setProperty("weblogic.webservice.client.proxypassword",pass);
 //invoke
 String s = port.echo("Hello World!");
 System.out.println("echo: " + s);
 }
 }

The sections of the preceding example to note are as follows:

■ Import the required java.net.* classes:

Using a Proxy Server When Invoking a Web Service

Invoking Web Services 6-15

import java.net.Proxy;
 import java.net.InetSocketAddress;

■ Import the WebLogic HttpTransportInfo API:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

■ Create a Proxy object that represents the proxy server:

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));

The proxyHost and proxyPort arguments refer to the host computer and port of
the proxy server.

■ Create an HttpTransportInfo object and use the setProxy() method to set the
proxy server information:

HttpTransportInfo info = new HttpTransportInfo();
 info.setProxy(p);

■ Use the weblogic.wsee.connection.transportinfo WebLogic stub property to
set the HttpTransportInfo object on the JAX-RPC stub:

((Stub)port)._setProperty("weblogic.wsee.connection.transportinfo",info);

■ Use weblogic.webservice.client.proxyusername and
weblogic.webservice.client.proxypassword WebLogic-specific stub properties
to specify the username and password of a user who is authenticated to access the
proxy server:

((Stub)port)._setProperty("weblogic.webservice.client.proxyusername",user);
 ((Stub)port)._
setProperty("weblogic.webservice.client.proxypassword",pass);

Alternatively, you can use the setProxyUsername() and setProxyPassword()
methods of the HttpTransportInfo API to set the proxy username and password,
as shown in the following example:

 info.setProxyUsername("juliet".getBytes());
 info.setProxyPassword("secret".getBytes());

6.5.2 Using System Properties to Specify the Proxy Server
To use system properties to specify the proxy server, write your client application in
the standard way, and then specify system properties when you execute the client
application.

You have a choice of using standard Java system properties or historical WebLogic
properties. If the proxySet system property is set to false (proxySet=false), proxy
properties will be ignored and no proxy will be used.

The following table summarizes the Java system properties. In this case, the proxySet
system property must not be set.

Using a Proxy Server When Invoking a Web Service

6-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

The following excerpt from an Ant build script shows an example of setting Java
system properties when invoking a client application called
clients.InvokeMyService:

 <target name="run-client">
 <java fork="true"
 classname="clients.InvokeMyService"
 failonerror="true">
 <classpath refid="client.class.path"/>
 <arg line="${http-endpoint}"/>
 <jvmarg line=
 "-Dhttp.proxyHost=${proxy-host}
 -Dhttp.proxyPort=${proxy-port}
 -Dhttp.nonProxyHosts=${mydomain}"
 />
 </java>
 </target>

The following table summarizes the WebLogic system properties. In this case, the
proxySet system property must be set to true.

The following excerpt from an Ant build script shows an example of setting WebLogic
system properties when invoking a client application called
clients.InvokeMyService:

 <target name="run-client">
 <java fork="true"
 classname="clients.InvokeMyService"

Table 6–3 Java System Properties Used to Specify Proxy Server

Property Description

http.proxyHost=proxyHost

or

https.proxyHost=proxyHost

Name of the host computer on which the proxy server is
running. Use https.proxyHost for HTTP over SSL.

http.proxyPort=proxyPort

or

https.proxy.Port=proxyPort

Port to which the proxy server is listening. Use https.proxyPort
for HTTP over SSL.

http.nonProxyHosts=

hostname | hostname | ...

List of hosts that should be reached directly, bypassing the
proxy. Separate each host name using a | character. This
property applies to both HTTP and HTTPS.

Table 6–4 WebLogic System Properties Used to Specify the Proxy Server

Property Description

proxySet=true Flag that specifies that the historical WebLogic proxy properties
should be used.

proxyHost=proxyHost Name of the host computer on which the proxy server is
running.

proxyPort=proxyPort Port to which the proxy server is listening.

weblogic.webservice.client.
proxyusername=username

Username used to access the proxy server.

weblogic.webservice.client.
proxypassword=password

Password used to access the proxy server.

WebLogic Web Services Stub Properties

Invoking Web Services 6-17

 failonerror="true">
 <classpath refid="client.class.path"/>
 <arg line="${http-endpoint}"/>
 <jvmarg line=
 "-DproxySet=true
 -DproxyHost=${proxy-host}
 -DproxyPort=${proxy-port}
 -Dweblogic.webservice.client.proxyusername=${proxy-username}
 -Dweblogic.webservice.client.proxypassword=${proxy-passwd}"
 />
 </java>
 </target>

6.6 Client Considerations When Redeploying a Web Service
WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated WebLogic Web service alongside an older version
of the same Web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the Web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
Web service. If the client is connected to a conversational or reliable Web service, its
work is considered complete when the existing conversation or reliable messaging
sequence is explicitly ended by the client or because of a timeout.

You can continue using the old client application with the new version of the Web
service, as long as the following Web service artifacts have not changed in the new
version:

■ WSDL that describes the Web service

■ WS-Policy files attached to the Web service

If any of these artifacts have changed, you must regenerate the JAX-RPC stubs used by
the client application by re-running the clientgen Ant task.

For example, if you change the signature of an operation in the new version of the Web
service, then the WSDL file that describes the new version of the Web service will also
change. In this case, you must regenerate the JAX-RPC stubs. If, however, you simply
change the implementation of an operation, but do not change its public contract, then
you can continue using the existing client application.

6.7 WebLogic Web Services Stub Properties
WebLogic Server provides a set of stub properties that you can set in the JAX-RPC
Stub used to invoke a WebLogic Web service. Use the Stub._setProperty() method to
set the properties, as shown in the following example:

((Stub)port)._setProperty(WLStub.MARSHAL_FORCE_INCLUDE_XSI_TYPE,"true");

Most of the stub properties are defined in the WLStub class. See
"weblogic.wsee.jaxrpc.WLStub" in the Oracle Fusion Middleware Oracle WebLogic
Server API Referencefor details.

The following table describes additional stub properties not defined in the WLStub
class.

WebLogic Web Services Stub Properties

6-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Table 6–5 Additional Stub Properties

Stub Property Description

weblogic.wsee.transport.connection.timeout Specifies, in milliseconds, how long a client application that is
attempting to invoke a Web service waits to make a
connection. After the specified time elapses, if a connection
hasn't been made, the attempt times out.

weblogic.wsee.transport.read.timeout Specifies, in milliseconds, how long a client application waits
for a response from a Web service it is invoking. After the
specified time elapses, if a response hasn't arrived, the client
times out.

weblogic.wsee.security.bst.serverVerifyCert Specifies the certificate that the client application uses to
validate the signed response from WebLogic Server. By
default, WebLogic Server includes the certification used to
validate in the response SOAP message itself; if this is not
possible, then use this stub property to specify a different
one.

This stub property applies only to client applications that run
inside of a WebLogic Server container, and not to stand-alone
client applications.

The value of the property is an object of data type
java.security.cert.X509Certificate.

weblogic.wsee.security.bst.serverEncryptCert Specifies the certificate that the client application uses to
encrypt the request SOAP message sent to WebLogic Server.
By default, the client application uses the public certificate
published in the Web service's WSDL; if this is not possible,
then use this stub property to specify a different one.

This stub property applies only to client applications that run
inside of a WebLogic Server container, and not to stand-alone
client applications.

The value of the property is an object of data type
java.security.cert.X509Certificate.

weblogic.wsee.marshal.forceIncludeXsiType Specifies that the SOAP messages for a Web service operation
invoke should include the XML Schema data type of each
parameter. By default, the SOAP messages do not include the
data type of each parameter.

If you set this property to True, the elements in the SOAP
messages that describe operation parameters will include an
xsi:type attribute to specify the data type of the parameter,
as shown in the following example:

<soapenv:Envelope>
 ...
 <maxResults xsi:type="xs:int">10</maxResults>
 ...

By default (or if you set this property to False), the
parameter element would look like the following example:

<soapenv:Envelope>
 ...
 <maxResults>10</maxResults>
 ...

Valid values for this property are True and False; default
value is False.

Setting the Character Encoding For the Response SOAP Message

Invoking Web Services 6-19

6.8 Setting the Character Encoding For the Response SOAP Message
Use the weblogic.wsee.jaxrpc.WLStub.CHARACTER_SET_ENCODING WLStub property
to set the character encoding of the response (outbound) SOAP message. You can set it
to the following two values:

■ UTF-8

■ UTF-16

The following code snippet from a client application shows how to set the character
encoding to UTF-16:

 Simple port = service.getSimpleSoapPort();
 ((Stub) port)._setProperty(weblogic.wsee.jaxrpc.WLStub.CHARACTER_SET_ENCODING,
"UTF-16");
 port.invokeMethod();

See "weblogic.wsee.jaxrpc.WLStub" in the Oracle Fusion Middleware Oracle WebLogic
Server API Reference for additional WLStub properties you can set.

Setting the Character Encoding For the Response SOAP Message

6-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

7

Administering Web Services 7-1

7Administering Web Services

[8] This chapter describes how to administer WebLogic Web services using Java API for
XML-based RPC (JAX-RPC).

This chapter includes the following topics:

■ Section 7.1, "Overview of WebLogic Web Services Administration Tasks"

■ Section 7.2, "Administration Tools"

■ Section 7.3, "Using the Administration Console"

■ Section 7.4, "Using the Oracle Enterprise Manager Fusion Middleware Control"

■ Section 7.5, "Using the WebLogic Scripting Tool"

■ Section 7.6, "Using WebLogic Ant Tasks"

■ Section 7.7, "Using the Java Management Extensions (JMX)"

■ Section 7.8, "Using the Java EE Deployment API"

■ Section 7.9, "Using Work Managers to Prioritize Web Services Work and Reduce
Stuck Execute Threads"

7.1 Overview of WebLogic Web Services Administration Tasks
When you use the jwsc Ant task to compile and package a WebLogic Web service, the
task packages it as part of an Enterprise Application. The Web service itself is
packaged inside the Enterprise application as a Web application WAR file, by default.
However, if your JWS file implements a session bean then the Web service is packaged
as an EJB JAR file. Therefore, basic administration of Web services is very similar to
basic administration of standard Java Platform, Enterprise Edition (Java EE) Version 5
applications and modules. These standard tasks include:

■ Installing the Enterprise application that contains the Web service.

■ Starting and stopping the deployed Enterprise application.

■ Configuring the Enterprise application and the archive file which implements the
actual Web service. You can configure general characteristics of the Enterprise
application, such as the deployment order, or module-specific characteristics, such
as session time-out for Web applications or transaction type for EJBs.

■ Creating and updating the Enterprise application's deployment plan.

■ Monitoring the Enterprise application.

■ Testing the Enterprise application.

The following administrative tasks are specific to Web services:

Administration Tools

7-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ Configuring the JMS resources used by Web service reliable messaging and JMS
transport

■ Configuring the WS-Policy files associated with a Web service endpoint or its
operations.

■ Viewing the SOAP handlers associated with the Web service.

■ Viewing the WSDL of the Web service.

■ Creating a Web service security configuration.

7.2 Administration Tools
There are a variety of ways to administer Java EE modules and applications that run
on WebLogic Server, including Web services; use the tool that best fits your needs:

■ Section 7.3, "Using the Administration Console"

■ Section 7.5, "Using the WebLogic Scripting Tool"

■ Section 7.6, "Using WebLogic Ant Tasks"

■ Section 7.7, "Using the Java Management Extensions (JMX)"

■ Section 7.8, "Using the Java EE Deployment API"

7.3 Using the Administration Console
The WebLogic Server Administration Console is a Web browser-based, graphical user
interface you use to manage a WebLogic Server domain, one or more WebLogic Server
instances, clusters, and applications, including Web services, that are deployed to the
server or cluster.

One instance of WebLogic Server in each domain is configured as an Administration
Server. The Administration Server provides a central point for managing a WebLogic
Server domain. All other WebLogic Server instances in a domain are called Managed
Servers. In a domain with only a single WebLogic Server instance, that server
functions both as Administration Server and Managed Server. The Administration
Server hosts the Administration Console, which is a Web Application accessible from
any supported Web browser with network access to the Administration Server.

You can use the System Administration Console to:

■ "Install an Enterprise application"

■ "Start and stop a deployed Enterprise application"

■ "Configure an Enterprise application"

■ "Configure Web applications"

■ "Configure EJBs"

Note: If you used the @Policy annotation in your Web service to
specify an associated WS-Policy file at the time you programmed the
JWS file, you cannot change this association at run-time using the
Administration Console or other administrative tools. You can only
associate a new WS-Policy file, or disassociate one you added at
run-time.

Using the Administration Console

Administering Web Services 7-3

■ "Create a deployment plan"

■ "Update a deployment plan"

■ "Test the modules in an Enterprise application"

■ "Configure JMS resources for Web service reliable messaging"

■ "Associate the WS-Policy file with a Web service"

■ "View the SOAP message handlers of a Web service"

■ "View the WSDL of a Web service"

■ "Create a Web service security configuration"

7.3.1 Invoking the Administration Console
To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is running.

■ port refers to the port number where the Administration Server is listening for
connection requests. The default port number for the Administration server is
7001.

Click the Help button, located at the top right corner of the Administration Console, to
invoke the Online Help for detailed instructions on using the Administration Console.

The following figure shows the main Administration Console window.

Figure 7–1 WebLogic Server Administration Console Main Window

Using the Administration Console

7-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

7.3.2 How Web Services Are Displayed In the Administration Console
Web services are typically deployed to WebLogic Server as part of an Enterprise
Application. The Enterprise Application can be either archived as an EAR, or be in
exploded directory format. The Web service itself is almost always packaged as a Web
Application; the only exception is if your JWS file implements a session bean in which
case it is packaged as an EJB. The Web service can be in archived format (WAR or EJB
JAR file, respectively) or as an exploded directory.

It is not required that a Web service be installed as part of an Enterprise application; it
can be installed as just the Web Application or EJB. However, Oracle recommends that
users install the Web service as part of an Enterprise application. The WebLogic Ant
task used to create a Web service, jwsc, always packages the generated Web service
into an Enterprise application.

To view and update the Web service-specific configuration information about a Web
service using the Administration Console, click on the Deployments node in the left
pane and, in the Deployments table that appears in the right pane, locate the
Enterprise application in which the Web service is packaged. Expand the application
by clicking the + node; the Web services in the application are listed under the Web
services category. Click on the name of the Web service to view or update its
configuration.

The following figure shows how the HelloWorldService Web service, packaged inside
the helloWorldEar Enterprise application, is displayed in the Deployments table of
the Administration Console.

Figure 7–2 WebLogic Server Administration Console Main Window

7.3.3 Creating a Web Services Security Configuration
When a deployed WebLogic Web service has been configured to use message-level
security (encryption and digital signatures, as described by the WS-Security
specification), the Web services run time determines whether a Web service security
configuration is also associated with the service. This security configuration specifies

Using the Administration Console

Administering Web Services 7-5

information such as whether to use an X.509 certificate for identity, whether to use
password digests, the keystore to be used for encryption, and so on. A single security
configuration can be associated with many Web services.

Because Web services security configurations are domain-wide, you create them from
the domainName > WebService Security tab of the Administration Console, rather than
the Deployments tab. The following figure shows the location of this tab.

Figure 7–3 Web Service Security Configuration in Administration Console

7.3.4 Monitoring Web Services and Clients
You can monitor run-time information for Web service and client such as number of
invocations, errors, faults, and so on from the Administration Console.

To monitor a Web service using the Administration Console, click on the Deployments
node in the left pane and, in the Deployments table that appears in the right pane,
locate the Enterprise application in which the Web service is packaged. Expand the
application by clicking the + node; the Web services in the application are listed under
the Web Services category. Click on the name of the Web service and click the
Monitoring tab.

The following table lists the tabs that you can select to monitor Web service
information. The pages aggregate the statistics of all the servers on which the Web
service is running.

Table 7–1 Monitoring Web Services

Click this tab . . . To view . . .

Monitoring> General General statistics about the Web services, including total error and invocations counts.

Monitoring> Invocations Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy Policies that are attached to the Web service, organized into the following categories:
authentication, authorization, confidentiality, and integrity.

Using the Administration Console

7-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

To monitor a Web service client using the Administration Console, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the Web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the Web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. The table provides a summary of run-time
information for each Web service client. Click the client name in the table to view more
information.

Monitoring> Ports Table listing the Web service endpoints (ports). The table provides a summary of
information for each port. Click a port name to view the public operations that can be
invoked by client applications.

For each operation, run-time monitoring information is displayed, such as the
number of times the operation has been invoked since the WebLogic Server instance
started, the average time it took to invoke the Web service, the average time it took to
respond, and so on. You can customize the information that is shown in the table by
clicking Customize this table.

Monitoring> Ports >
General

General statistics about the Web service endpoint. The page displays information such
as the Web service endpoint name, its URI, and its associated Web service, Enterprise
application, and application module. Error and invocations counts are aggregated for
all Web service endpoint operations.

Monitoring> Ports >
Invocations

Invocation statistics for the Web service endpoint, such as success, fault, and violation
counts.

Monitoring> Ports >
WS-Policy

Statistics related to the policies that are attached to the Web service endpoint,
organized into the following categories: authentication, authorization, confidentiality,
and integrity.

Monitoring> Ports >
Operations

List of operations for the Web service endpoint. For each operation, run-time
monitoring information is displayed, such as average response, execution, and
dispatch times, response, invocation and error counts, and so on. You can customize
the information that is shown in the table by clicking Customize this table.

Note: For JAX-WS Web services, the built-in Ws-Protocol operation displays statistics
that are relevant to the underlying WS-* protocols. This information is helpful in
evaluating the application performance.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

Table 7–2

Click this tab . . . To view . . .

Monitoring> General General statistics about the Web service clients, including total error and invocations
counts. The page displays the Web service client name, its associated Enterprise
application and application module, and context root. Error and invocations statistics
are aggregated for all servers on which the Web service is running.

Monitoring> Invocations Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy Policies that are attached to the Web service client, organized into the following
categories: authentication, authorization, confidentiality, and integrity.

Monitoring> Servers Table listing the server on which the client is currently running. Click the client name
and then use the tabs in the following steps to view more information about the Web
service client on that server.

Table 7–1 (Cont.) Monitoring Web Services

Click this tab . . . To view . . .

Using the Oracle Enterprise Manager Fusion Middleware Control

Administering Web Services 7-7

7.4 Using the Oracle Enterprise Manager Fusion Middleware Control
The Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware
Control) Fusion Middleware Control is a Web browser-based, graphical user interface
that you can use to monitor and administer a farm. A farm is a collection of
components managed by Fusion Middleware Control. It can contain Oracle WebLogic
Server domains, one or more Managed Servers and the Oracle Fusion Middleware
system components that are installed, configured, and running in the domain.

Fusion Middleware Control organizes a wide variety of performance data and
administrative functions into distinct, Web-based home pages for the farm, Oracle
WebLogic Server domain, components, and applications. The Fusion Middleware
Control home pages make it easy to locate the most important monitoring data and the
most commonly used administrative functions—all from your Web browser.

The following figure shows Fusion Middleware Control.

Monitoring> Servers >
General

General statistics about the Web service client. The page displays information such as
the Web service client port, its associated Enterprise application, and application
module, context root, and so on. Error and invocations counts are aggregated for all
Web service client operations.

Monitoring> Servers >
Invocations

Invocation statistics for the Web service client, such as success, fault, and violation
counts.

Monitoring> Servers >
WS-Policy

Statistics related to the policies that are attached to the Web service client, organized
into the following categories: authentication, authorization, confidentiality, and
integrity.

Monitoring> Servers >
Operations

List of operations for the Web service client. For each operation, run-time monitoring
information is displayed, such as average response, execution, and dispatch times,
response, invocation and error counts, and so on. You can customize the information
that is shown in the table by clicking Customize this table.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

Table 7–2 (Cont.)

Click this tab . . . To view . . .

Using the WebLogic Scripting Tool

7-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Figure 7–4 Oracle Enterprise Manager Fusion Middleware Control

For more information about monitoring and testing Web services using the Enterprise
Manager, see "Securing and Administering WebLogic Web Services" in Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

Fusion Middleware Control is available as part of the Oracle Fusion Middleware
product; it is not available to you if you purchase the standalone version of Oracle
WebLogic Server. For more information about Fusion Middleware Control, see
"Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in
Oracle Fusion Middleware Administrator's Guide.

7.5 Using the WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you
can use to interact with and configure WebLogic Server domains and instances, as well
as deploy Java EE modules and applications (including Web services) to a particular
WebLogic Server instance. Using WLST, system administrators and operators can
initiate, manage, and persist WebLogic Server configuration changes.

Typically, the types of WLST commands you use to administer Web services fall under
the Deployment category.

For more information on using WLST, see Oracle Fusion Middleware Oracle WebLogic
Scripting Tool.

7.6 Using WebLogic Ant Tasks
WebLogic Server includes a variety of Ant tasks that you can use to centralize many of
the configuration and administrative tasks into a single Ant build script. These Ant
tasks can:

Using the Java Management Extensions (JMX)

Administering Web Services 7-9

■ Create, start, and configure a new WebLogic Server domain, using the wlserver
and wlconfig Ant tasks.

■ Deploy a compiled application to the newly-created domain, using the wldeploy
Ant task.

See "Using Ant Tasks to Configure and Use a WebLogic Server Domain" and
"wldeploy Ant Task Reference" in Oracle Fusion Middleware Developing Applications for
Oracle WebLogic Server for specific information about the non-Web services related
WebLogic Ant tasks.

7.7 Using the Java Management Extensions (JMX)
A managed bean (MBean) is a Java bean that provides a Java Management Extensions
(JMX) interface. JMX is the Java EE solution for monitoring and managing resources on
a network. Like SNMP and other management standards, JMX is a public specification
and many vendors of commonly used monitoring products support it.

WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX. WebLogic Web services also have
their own set of MBeans that you can use to perform some Web service administrative
tasks.

There are two types of MBeans: run-time (for read-only monitoring information) and
configuration (for configuring the Web service after it has been deployed).

The configuration Web services MBeans are:

■ WebserviceSecurityConfigurationMBean

■ WebserviceCredentialProviderMBean

■ WebserviceSecurityMBean

■ WebserviceSecurityTokenMBean

■ WebserviceTimestampMBean

■ WebserviceTokenHandlerMBean

The run-time Web services MBeans are:

■ WseeRuntimeMBean

■ WseeHandlerRuntimeMBean

■ WseePortRuntimeMBean

■ WseeOperationRuntimeMBean

■ WseePolicyRuntimeMBean

For more information on JMX, see the Oracle Fusion Middleware Oracle WebLogic Server
MBean Reference and the following sections in Oracle Fusion Middleware Developing
Custom Management Utilities With JMX for Oracle WebLogic Server:

■ "Understanding WebLogic Server MBeans"

■ "Accessing WebLogic Server MBeans with JMX"

■ "Managing a Domain's Configuration with JMX"

Using the Java EE Deployment API

7-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

7.8 Using the Java EE Deployment API
In Java EE 5, the Java EE Application Deployment specification (JSR-88), described at
http://jcp.org/en/jsr/detail?id=88, defines a standard API that you can use to
configure an application for deployment to a target application server environment.

The specification describes the Java EE Deployment architecture, which in turn defines
the contracts that enable tools or application programmers to configure and deploy
applications on any Java EE platform product. The contracts define a uniform model
between tools and Java EE platform products for application deployment
configuration and deployment. The Deployment architecture makes it easier to deploy
applications: Deployers do not have to learn all the features of many different Java EE
deployment tools in order to deploy an application on many different Java EE
platform products.

See Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server for more
information.

7.9 Using Work Managers to Prioritize Web Services Work and Reduce
Stuck Execute Threads

After a connection has been established between a client application and a Web
service, the interactions between the two are ideally smooth and quick, whereby the
client makes requests and the service responds in a prompt and timely manner.
Sometimes, however, a client application might take a long time to make a new
request, during which the Web service waits to respond, possibly for the life of the
WebLogic Server instance; this is often referred to as a stuck execute thread. If, at any
given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular Web service gets into this state fairly often, you can specify how the
service prioritizes the execution of its work by configuring a Work Manager and
applying it to the service. For example, you can configure a response time request class (a
specific type of Work Manager component) that specifies a response time goal for the
Web service.

The following shows an example of how to define a response time request class in a
deployment descriptor:

<work-manager>
 <name>responsetime_workmanager</name>
 <response-time-request-class>
 <name>my_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
 </work-manager>

You can configure the response time request class using the Administration Console,
as described in "Work Manager: Response Time: Configuration" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

For more information about Work Managers in general and how to configure them for
your Web service, see "Using Work Managers to Optimize Scheduled Work" in Oracle
Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.

8

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-1

8Upgrading WebLogic Web Services From
Previous Releases to 10.3.x

[9] This chapter describes how to upgrade a pre-10.3.x WebLogic Server Web service to
run in the Oracle WebLogic Server 11g Release 1 (10.3.x) Web service run-time
environment.

This chapter includes the following topics:

■ Section 8.1, "Upgrading a 9.2 or 10.0 WebLogic Web Service to 10.3.x"

■ Section 8.2, "Upgrading a 9.0 or 9.1 WebLogic Web Service to 10.3.x"

■ Section 8.3, "Upgrading an 8.1 WebLogic Web Service to 10.3.x"

8.1 Upgrading a 9.2 or 10.0 WebLogic Web Service to 10.3.x
No steps are required to upgrade a 9.2 or 10.x WebLogic Web service to 10.3.x; you can
redeploy the Web service to WebLogic Server 10.3.x without making any changes or
recompiling.

8.2 Upgrading a 9.0 or 9.1 WebLogic Web Service to 10.3.x
If your 9.0/9.1 Web service used any of the following features, then you must
recompile the Web service before you redeploy it to WebLogic Server 10.3.x:

Note: 8.1 and 9.2 WebLogic Web services will continue to run,
without any changes, on version 10.3.x of WebLogic Server because
the associated Web services run time is still supported in this release,
although it is deprecated and will be removed from the product in
future releases. For this reason, Oracle highly recommends that you
follow the instructions in this chapter to upgrade your 8.1 or 9.2 Web
service to 10.3.x.

In order for 8.1 Web services to run on version 10.3.x of WebLogic
Server, you need to update the following system property:

System.setProperty('javax.xml.soap.SOAPFactory',
 'weblogic.webservice.core.soap.SOAPFactoryImpl');

To minimize the impact that this system property settings has on your
10.3.x Web service applications, it is recommended that you deploy
the 8.1 Web services and clients on a server that is separate from the
10.3.x Web services and clients.

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

■ Conversations

■ @weblogic.jws.Context JWS annotation

■ weblogic.wsee.jws.JwsContext API

To recompile, simply rerun the jwsc Ant task against the JWS file that implements
your Web service.

If your 9.0/9.1 Web service did not use these features, then you can redeploy it to
WebLogic Server 10.3.x without making any changes or recompiling it.

8.3 Upgrading an 8.1 WebLogic Web Service to 10.3.x
This section describes how to upgrade an 8.1 WebLogic Web service to use the new
Version 10.3.x Web services run-time environment. The 10.3.x run time is based on the
Web Services for Java EE 1.2 specification at
http://www.jcp.org/en/jsr/detail?id=109. The 10.3.x programming model uses
standard JDK 1.5 metadata annotations, as specified by the Web Services Metadata for
the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181.

Upgrading your 8.1 Web service includes the following high-level tasks; the
procedures in later sections go into more detail:

■ Update the 8.1 Java source code of the Java class or stateless session EJB that
implements the Web service so that the source code uses JWS annotations.

In 10.3.x, WebLogic Web services are implemented using JWS files, which are Java
files that contains JWS annotations. The jwsc Ant Task always implements the
Web service as a plain Java file unless you explicitly implement
javax.ejb.SessionBean in your JWS file. This latter case is not typical. This
programming model differs from that of 8.1, where you were required to specify
the type of back-end component (Java class or EJB).

■ Update the Ant build script that builds the Web service to call the 10.3.x WebLogic
Web service Ant task jwsc instead of the 8.1 servicegen task.

In the sections that follow it is assumed that:

■ You previously used servicegen to generate your 8.1 Web service and that, more
generally, you use Ant scripts in your development environment to iteratively
develop Web services and other Java Platform, Enterprise Edition (Java EE)
Version 5 artifacts that run on WebLogic Server. The procedures in this section
direct you to update existing Ant build.xml files.

■ You have access to the Java class or EJB source code for your 8.1 Web service.

This section does not discuss the following topics:

■ Upgrading a JMS-implemented 8.1 Web service, because the 10.3.x WebLogic Web
services run time does not support JMS-implemented services.

Note: 8.1 WebLogic Web services will continue to run, without any
changes, on 10.3.x of WebLogic Server because the 8.1 Web services
run time is still supported in 10.3.x, although it is deprecated and will
be removed from the product in future releases. For this reason,
Oracle highly recommends that you follow the instructions in this
chapter to upgrade your 8.1 Web service to 10.3.x.

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-3

■ Upgrading Web services from versions previous to 8.1.

■ Upgrading a client application that invokes an 8.1 Web service to one that invokes
a 10.3.x Web service. For details on how to write a client application that invokes a
10.3.x Web service, see Chapter 6, "Invoking Web Services."

8.3.1 Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10.3.x: Main
Steps

To upgrade an 8.1 Java class-implemented Web service to use the 10.3.x WebLogic Web
services run time:

1. Open a command window and set your WebLogic Server 10.3.x environment by
executing the setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script,
located in the bin subdirectory of your 10.3.x domain directory.

The default location of WebLogic Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/upgrade_pojo

3. Create a src directory under the project directory, as well as sub-directories that
correspond to the package name of the new 10.3.x JWS file (shown later in this
procedure) that corresponds to the old 8.1 Java class:

 prompt> cd /myExamples/upgrade_pojo
 prompt> mkdir src/examples/webservices/upgrade_pojo

4. Copy the old Java class that implements the 8.1 Web service to the
src/examples/webservices/upgrade_pojo directory of the working directory.
Rename the file, if desired.

5. Edit the Java file, as described in the following steps. See the old and new sample
Java files in Section 8.3.1.1, "Example of an 8.1 Java File and the Corresponding
10.3.x JWS File" for specific examples.

a. If needed, change the package name and class name of the Java file to reflect
the new 10.3.x source environment.

b. Add import statements to import both the standard and WebLogic-specific
JWS annotations.

c. Add, at a minimum, the following JWS annotation:

– The standard @WebService annotation at the Java class level to specify that
the JWS file implements a Web service.

Oracle recommends you also add the following annotations:

– The standard @SOAPBinding annotation at the class-level to specify the
type of Web service, such as document-literal-wrapped or RPC-encoded.

– The WebLogic-specific @WLHttpTransport annotation at the class-level to
specify the context and service URIs that are used in the URL that invokes
the deployed Web service.

– The standard @WebMethod annotation at the method-level for each method
that is exposed as a Web service operation.

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

See Chapter 4, "Programming the JWS File" for general information about
using JWS annotations in a Java file.

d. You might need to add additional annotations to your JWS file, depending on
the 8.1 Web service features you want to carry forward to 10.3.x. In 8.1, many
of these features were configured with attributes of servicegen. See
Section 8.3.3, "Mapping of servicegen Attributes to JWS Annotations or jwsc
Attributes" for a table that lists equivalent JWS annotation, if available, for
features you enabled in 8.1 using servicegen attributes.

6. Copy the old build.xml file that built the 8.1 Web service to the 10.3.x working
directory.

7. Update your Ant build.xml file to execute the jwsc Ant task, along with other
supporting tasks, instead of servicegen.

Oracle recommends that you create a new target, such as build-service, in your
Ant build file and add the jwsc Ant task call to compile the new JWS file you
created in the preceding steps. Once this target is working correctly, you can
remove the old servicegen Ant task.

The following procedure lists the main steps to update your build.xml file; for
details on the steps, see the standard iterative development process outlined in
Chapter 3, "Developing WebLogic Web Services."

See Section 8.3.1.2, "Example of an 8.1 and Updated 10.3.x Ant Build File for Java
Class-Implemented Web Services" for specific examples of the steps in the
following procedure.

1. Add the jwsc taskdef to the build.xml file.

2. Create a build-service target and add the tasks needed to build the 10.3.x
Web service, as described in the following steps.

3. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_pojo/src, in this example) and the destdir attribute
to the root Enterprise application directory you created in the preceding step.

Set the file attribute of the <jws> child element to the name of the new JWS
file, created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on
the 8.1 Web service features you want to carry forward to 10.3.x. In 8.1, many
of these features were configured using attributes of servicegen. See
Section 8.3.3, "Mapping of servicegen Attributes to JWS Annotations or jwsc
Attributes" for a table that describes if there is an equivalent jwsc attribute for
features you enabled using servicegen attributes.

8. Execute the build-service Ant target. Assuming all the tasks complete
successfully, the resulting Enterprise application contains your upgraded 10.3.x
Web service.

See Section 3.9, "Deploying and Undeploying WebLogic Web Services" and
Section 3.10, "Browsing to the WSDL of the Web Service" for additional information
about deploying and testing your Web service.

Based on the sample Java code shown in the following sections, the URL to invoke the
WSDL of the upgraded 10.3.x Web service is:

http://host:port/upgradePOJO/HelloWorld?WSDL

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-5

8.3.1.1 Example of an 8.1 Java File and the Corresponding 10.3.x JWS File
Assume that the following sample Java class implemented a 8.1 Web service:

package examples.javaclass;
/**
 * Simple Java class that implements the HelloWorld Web service. It takes
 * as input an integer and a String, and returns a message that includes these
 * two parameters.
 */
public final class HelloWorld81 {
 /**
 * Returns a text message that includes the integer and String input
 * parameters.
 *
 */
 public String sayHello(int num, String s) {
 System.out.println("sayHello operation has been invoked with arguments " + s +
" and " + num);
 String returnValue = "This message brought to you by the letter "+s+" and the
number "+num;
 return returnValue;
 }
}

An equivalent JWS file for a 10.3.x Java class-implemented Web service is shown
below, with the differences shown in bold. Note that some of the JWS annotation
values are taken from attributes of the 8.1 servicegen Ant task shown in
Section 8.3.1.2, "Example of an 8.1 and Updated 10.3.x Ant Build File for Java
Class-Implemented Web Services."

package examples.webservices.upgrade_pojo;
// Import standard JWS annotations
import javax.jws.WebService;
 import javax.jws.WebMethod;
 import javax.jws.soap.SOAPBinding;
// Import WebLogic JWS anntoation
import weblogic.jws.WLHttpTransport;
/**
 * Simple Java class that implements the HelloWorld92 Web service. It takes
 * as input an integer and a String, and returns a message that includes these
 * two parameters.
 */
@WebService(name="HelloWorld92PortType", serviceName="HelloWorld",
 targetNamespace="http://example.org")
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
@WLHttpTransport(contextPath="upgradePOJO", serviceUri="HelloWorld",
 portName="HelloWorld92Port")
public class HelloWorld92Impl {
 /**
 * Returns a text message that includes the integer and String input
 * parameters.
 *
 */
 @WebMethod()
 public String sayHello(int num, String s) {
 System.out.println("sayHello operation has been invoked with arguments " + s +
" and " + num);
 String returnValue = "This message brought to you by the letter "+s+" and the

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

number "+num;
 return returnValue;
 }
 }

8.3.1.2 Example of an 8.1 and Updated 10.3.x Ant Build File for Java
Class-Implemented Web Services
The following simple build.xml file shows the 8.1 way to build a WebLogic Web
service using the servicegen Ant task; in the example, the Java file that implements
the 8.1 Web service has already been compiled into the
examples.javaclass.HelloWorld81 class:

<project name="javaclass-webservice" default="all" basedir=".">
 <!-- set global properties for this build -->
 <property name="source" value="."/>
 <property name="build" value="${source}/build"/>
 <property name="war_file" value="HelloWorldWS.war" />
 <property name="ear_file" value="HelloWorldApp.ear" />
 <property name="namespace" value="http://examples.org" />
 <target name="all" depends="clean, ear"/>
 <target name="clean">
 <delete dir="${build}"/>
 </target>
 <!-- example of old 8.1 servicegen call to build Web Service -->
 <target name="ear">
 <servicegen
 destEar="${build}/${ear_file}"
 warName="${war_file}">
 <service
 javaClassComponents="examples.javaclass.HelloWorld81"
 targetNamespace="${namespace}"
 serviceName="HelloWorld"
 serviceURI="/HelloWorld"
 generateTypes="True"
 expandMethods="True">
 </service>
 </servicegen>
 </target>
</project>

An equivalent build.xml file that calls the jwsc Ant task to build a 10.3.x Web service
is shown below, with the relevant tasks discussed in this section in bold. In the
example, the new JWS file that implements the 10.3.x Web service is called
HelloWorld92Impl.java:

<project name="webservices-upgrade_pojo" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="upgradePOJOEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/upgradePOJOEar" />
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="wldeploy"

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-7

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/upgrade_pojo/HelloWorld92Impl.java" />
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
</project>

8.3.2 Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10.3.x: Main Steps
The following procedure describes how to upgrade an 8.1 EJB-implemented Web
service to use the 10.3.x WebLogic Web services run time.

The 10.3.x Web services programming model is quite different from the 8.1 model in
that it hides the underlying implementation of the Web service. Rather than specifying
up front that you want the Web service to be implemented by a Java class or an EJB,
the jwsc Ant task always picks a plain Java class implementation, unless you have
explicitly implemented javax.ejb.SessionBean in the JWS file, which is not typical.
For this reason, the following procedure does not show how to import EJB classes or
use EJBGen, even though the 8.1 Web service was explicitly implemented with an EJB.
Instead, the procedure shows how to create a standard JWS file that is the 10.3.x
equivalent to the 8.1 EJB-implemented Web service.

1. Open a command window and set your 10.3.xWebLogic Server environment by
executing the setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script,
located in the bin subdirectory of your 10.3.x domain directory.

The default location of WebLogic Server domains is MW_HOME/user_
projects/domains/domainName, where MW_HOME is the top-level installation
directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/upgrade_ejb

3. Create a src directory under the project directory, as well as sub-directories that
correspond to the package name of the new 10.3.x JWS file (shown later on in this
procedure) that corresponds to your 8.1 EJB implementation:

 prompt> cd /myExamples/upgrade_ejb

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 prompt> mkdir src/examples/webservices/upgrade_ejb

4. Copy the 8.1 EJB Bean file that implemented javax.ejb.SessionBean to the
src/examples/webservices/upgrade_ejb directory of the working directory.
Rename the file, if desired.

5. Edit the EJB Bean file, as described in the following steps. See the old and new
sample Java files in Section 8.3.2.1, "Example of 8.1 EJB Files and the
Corresponding 10.3.x JWS File" for specific examples.

a. If needed, change the package name and class name of the Java file to reflect
the new 10.3.x source environment.

b. Optionally remove the import statements that import the EJB classes
(javax.ejb.*). These classes are no longer needed in the upgraded JWS file.

c. Add import statements to import both the standard and WebLogic-specific
JWS annotations.

d. Ensure that the JWS file does not implement javax.ejb.SessionBean anymore
by removing the implements SessionBean code from the class declaration.

e. Remove all the EJB-specific methods:

– ejbActivate()

– ejbRemove()

– ejbPassivate()

– ejbCreate()

f. Add, at a minimum, the following JWS annotation:

– The standard @WebService annotation at the Java class level to specify that
the JWS file implements a Web service.

Oracle recommends you also add the following annotations:

– The standard @SOAPBinding annotation at the class-level to specify the
type of Web service, such as document-literal-wrapped or RPC-encoded.

– The WebLogic-specific @WLHttpTransport annotation at the class-level to
specify the context and service URIs that are used in the URL that invokes
the deployed Web service.

– The standard @WebMethod annotation at the method-level for each method
that is exposed as a Web service operation.

See Chapter 4, "Programming the JWS File" for general information about
using JWS annotations in a Java file.

g. You might need to add additional annotations to your JWS file, depending on
the 8.1 Web service features you want to carry forward to 10.3.x. In 8.1, many
of these features were configured using attributes of servicegen. See
Section 8.3.3, "Mapping of servicegen Attributes to JWS Annotations or jwsc
Attributes" for a table that lists equivalent JWS annotation, if available, for
features you enabled in 8.1 using servicegen attributes.

Note: You do not need to copy over the 8.1 Home and Remote EJB
files.

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-9

6. Copy the old build.xml file that built the 8.1 Web service to the 10.3.x working
directory.

7. Update your Ant build.xml file to execute the jwsc Ant task, along with other
supporting tasks, instead of servicegen.

Oracle recommends that you create a new target, such as build-service, in your
Ant build file and add the jwsc Ant task call to compile the new JWS file you
created in the preceding steps. Once this target is working correctly, you can
remove the old servicegen Ant task.

The following procedure lists the main steps to update your build.xml file; for
details on the steps, see the standard iterative development process outlined in

See Section 8.3.2.2, "Example of an 8.1 and Updated 10.3.x Ant Build File for an 8.1
EJB-Implemented Web Service" for specific examples of the steps in the following
procedure.

a. Add the jwsc taskdef to the build.xml file.

b. Create a build-service target and add the tasks needed to build the 10.3.x
Web service, as described in the following steps.

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_ejb/src, in this example) and the destdir attribute to
the root Enterprise application directory you created in the preceding step.

Set the file attribute of the <jws> child element to the name of the new JWS
file, created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on
the 8.1 Web service features you want to carry forward to 10.3.x. In 8.1, many
of these features were configured using attributes of servicegen. See
Section 8.3.3, "Mapping of servicegen Attributes to JWS Annotations or jwsc
Attributes" for a table that indicates whether there is an equivalent jwsc
attribute for features you enabled using servicegen attributes.

8. Execute the build-service Ant target. Assuming all tasks complete successfully,
the resulting Enterprise application contains your upgraded 10.3.x Web service.

See Section 3.9, "Deploying and Undeploying WebLogic Web Services" and
Section 3.10, "Browsing to the WSDL of the Web Service" for additional information
about deploying and testing your Web service.

Based on the sample Java code shown in the following sections, the URL to invoke the
WSDL of the upgraded 10.3.x Web service is:

http://host:port/upgradeEJB/HelloWorldService?WSDL

8.3.2.1 Example of 8.1 EJB Files and the Corresponding 10.3.x JWS File
Assume that the Bean, Home, and Remote classes and interfaces, shown in the next
three sections, implemented the 8.1 stateless session EJB which in turn implemented
an 8.1 Web service.

The equivalent 10.3.x JWS file is shown in Section 8.3.2.1.4, "Equivalent 10.3.x JWS
File." The differences between the 8.1 and 10.3.x classes are shown in bold. Note that
some of the JWS annotation values are taken from attributes of the 8.1 servicegen Ant
task shown in Section 8.3.2.2, "Example of an 8.1 and Updated 10.3.x Ant Build File for
an 8.1 EJB-Implemented Web Service."

8.3.2.1.1 8.1 SessionBean Class package examples.statelessSession;

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

import javax.ejb.CreateException;
 import javax.ejb.SessionBean;
 import javax.ejb.SessionContext;
/**
 * HelloWorldBean is a stateless session EJB. It has a single method,
 * sayHello(), that takes an integer and a String and returns a String.
 * <p>
 * The sayHello() method is the public operation of the Web service based on
 * this EJB.
 */
public class HelloWorldBean81 implements SessionBean {
 private static final boolean VERBOSE = true;
 private SessionContext ctx;
 // You might also consider using WebLogic's log service
 private void log(String s) {
 if (VERBOSE) System.out.println(s);
 }
 /**
 * Single EJB business method.
 */
 public String sayHello(int num, String s) {
 System.out.println("sayHello in the HelloWorld EJB has "+
 "been invoked with arguments " + s + " and " + num);
 String returnValue = "This message brought to you by the "+
 "letter "+s+" and the number "+num;
 return returnValue;
 }
 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbActivate() {
 log("ejbActivate called");
 }
 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbRemove() {
 log("ejbRemove called");
 }
 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbPassivate() {
 log("ejbPassivate called");
 }
 /**
 * Sets the session context.
 *
 * @param ctx SessionContext Context for session
 */
 public void setSessionContext(SessionContext ctx) {
 log("setSessionContext called");
 this.ctx = ctx;
 }

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-11

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbCreate () throws CreateException {
 log("ejbCreate called");
 }
}

8.3.2.1.2 8.1 Remote Interface package examples.statelessSession;
import java.rmi.RemoteException;
 import javax.ejb.EJBObject;
/**
 * The methods in this interface are the public face of HelloWorld.
 * The signatures of the methods are identical to those of the EJBean, except
 * that these methods throw a java.rmi.RemoteException.
 */
public interface HelloWorld81 extends EJBObject {
 /**
 * Simply says hello from the EJB
 *
 * @param num int number to return
 * @param s String string to return
 * @return String returnValue
 * @exception RemoteException if there is
 * a communications or systems failure
 */
 String sayHello(int num, String s)
 throws RemoteException;
 }

8.3.2.1.3 8.1 EJB Home Interface package examples.statelessSession;
import java.rmi.RemoteException;
 import javax.ejb.CreateException;
 import javax.ejb.EJBHome;
/**
 * This interface is the Home interface of the HelloWorld stateless session EJB.
 */
 public interface HelloWorldHome81 extends EJBHome {
 /**
 * This method corresponds to the ejbCreate method in the
 * HelloWorldBean81.java file.
 */
 HelloWorld81 create()
 throws CreateException, RemoteException;
}

8.3.2.1.4 Equivalent 10.3.x JWS File The differences between the 8.1 and 10.3.x files are
shown in bold. The value of some JWS annotations are taken from attributes of the 8.1
servicegen Ant task shown in Section 8.3.2.2, "Example of an 8.1 and Updated 10.3.x
Ant Build File for an 8.1 EJB-Implemented Web Service."

package examples.webservices.upgrade_ejb;
// Import the standard JWS annotations
import javax.jws.WebMethod;
 import javax.jws.WebService;

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 import javax.jws.soap.SOAPBinding;
// Import the WebLogic specific annotation
import weblogic.jws.WLHttpTransport;
// Class-level annotations
@WebService(name="HelloWorld92PortType", serviceName="HelloWorldService",
 targetNamespace="http://example.org")
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
@WLHttpTransport(contextPath="upgradeEJB", serviceUri="HelloWorldService",
 portName="HelloWorld92Port")
/**
 * HelloWorld92Impl is the JWS equivalent of the HelloWorld81 EJB that
 * implemented the 8.1 Web Service. It has a single method,
 * sayHello(), that takes an integer and a String and returns a String.
 */
public class HelloWorld92Impl {
 /** the sayHello method will become the public operation of the Web
 * Service.
 */
 @WebMethod()
 public String sayHello(int num, String s) {
 System.out.println("sayHello in the HelloWorld92 Web Service has "+
 "been invoked with arguments " + s + " and " + num);
 String returnValue = "This message brought to you by the "+
 "letter "+s+" and the number "+num;
 return returnValue;
 }
}

8.3.2.2 Example of an 8.1 and Updated 10.3.x Ant Build File for an 8.1
EJB-Implemented Web Service
The following simple build.xml file shows the 8.1 way to build an EJB-implemented
WebLogic Web service using the servicegen Ant task. Following this example is an
equivalent build.xml file that calls the jwsc Ant task to build a 10.3.x Web service.

<project name="ejb-webservice" default="all" basedir=".">
 <!-- set global properties for this build -->
 <property name="source" value="."/>
 <property name="build" value="${source}/build"/>
 <property name="ejb_file" value="HelloWorldWS.jar" />
 <property name="war_file" value="HelloWorldWS.war" />
 <property name="ear_file" value="HelloWorldApp.ear" />
 <property name="namespace" value="http://examples.org" />
 <target name="all" depends="clean,ear"/>
 <target name="clean">
 <delete dir="${build}"/>
 </target>
 <!-- example of old 8.1 servicegen call to build Web Service -->
 <target name="ejb">
 <delete dir="${build}" />
 <mkdir dir="${build}"/>
 <mkdir dir="${build}/META-INF"/>
 <copy todir="${build}/META-INF">
 <fileset dir="${source}">
 <include name="ejb-jar.xml"/>
 </fileset>
 </copy>

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-13

 <javac srcdir="${source}" includes="HelloWorld*.java"
 destdir="${build}" />
 <jar jarfile="${ejb_file}" basedir="${build}" />
 <wlappc source="${ejb_file}" />
 </target>
 <target name="ear" depends="ejb">
 <servicegen
 destEar="${build}/${ear_file}"
 warName="${war_file}">
 <service
 ejbJar="${ejb_file}"
 targetNamespace="${namespace}"
 serviceName="HelloWorldService"
 serviceURI="/HelloWorldService"
 generateTypes="True"
 expandMethods="True">
 </service>
 </servicegen>
 </target>
</project>

An equivalent build.xml file that calls the jwsc Ant task to build a 10.3.x Web service
is shown below, with the relevant tasks discussed in this section in bold:

<project name="webservices-upgrade_ejb" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="upgradeEJB" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/upgradeEJB" />
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/upgrade_ejb/HelloWorld92Impl.java" />
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

 targets="${wls.server.name}" />
 </target>
</project>

8.3.3 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes
The following table maps the attributes of the 8.1 servicegen Ant task to their
equivalent 10.3.x JWS annotation or jwsc attribute.

The attributes listed in the first column are a mixture of attributes of the main
servicegen Ant task and attributes of the four child elements of servicegen
(<service>, <client>, <handlerChain>, and <security>)

See "JWS Annotation Reference" and "jwsc" in the Oracle Fusion Middleware WebLogic
Web Services Reference for Oracle WebLogic Server for more information about the 10.3.x
JWS annotations and jwsc Ant task.

Table 8–1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of servicegen
Attribute Equivalent JWS Annotation or jwsc Attribute

contextURI contextPath attribute of the WebLogic-specific
@WLHttpTransport annotation.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

destEAR destdir attribute of the jwsc Ant task.

keepGenerated keepGenerated attribute of the jwsc Ant task.

mergeWithExistingWS No equivalent.

overwrite No equivalent.

warName name attribute of the <jws> child element of the jwsc Ant task.

ejbJAR

(attribute of the service child element)

No direct equivalent, because the jwsc Ant task generates Web
service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the file attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the JWS
file.

excludeEJBs

(attribute of the service child element)

No equivalent.

expandMethods

(attribute of the service child element)

No equivalent.

generateTypes

(attribute of the service child element)

No equivalent.

ignoreAuthHeader

(attribute of the service child element)

No equivalent.

includeEJBs

(attribute of the service child element)

No equivalent.

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-15

javaClassComponents

(attribute of the service child element)

No direct equivalent, because the jwsc Ant task generates Web
service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the file attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the JWS
file.

JMSAction

(attribute of the service child element)

No equivalent because JMS-implemented Web services are not
supported in the 10.3.x release.

JMSConnectionFactory

(attribute of the service child element)

No equivalent because JMS-implemented Web services are not
supported in the 10.3.x release.

JMSDestination

(attribute of the service child element)

No equivalent because JMS-implemented Web services are not
supported in the 10.3.x release.

JMSDestinationType

(attribute of the service child element)

No equivalent because JMS-implemented Web services are not
supported in the 10.3.x release.

JMSMessageType

(attribute of the service child element)

No equivalent because JMS-implemented Web services are not
supported in the 10.3.x release.

JMSOperationName

(attribute of the service child element)

No equivalent because JMS-implemented Web services are not
supported in the 10.3.x release.

protocol

(attribute of the service child element)

One of the following WebLogic-specific annotations:

■ @WLHttpTransport

■ @WLJmsTransport

Note: Because these are WebLogic-specific annotations, you
can use them to generate only a JAX-RPC Web service, and not
a JAX-WS Web service.

serviceName

(attribute of the service child element)

serviceName attribute of the standard @WebService annotation.

serviceURI

(attribute of the service child element)

serviceUri attribute of the WebLogic-specific
@WLHttpTransport or @WLJmsTransport annotations.

Note: Because these are WebLogic-specific annotations, you
can use them to generate only a JAX-RPC Web service, and not
a JAX-WS Web service.

style

(attribute of service child element)

style attribute of the standard @SOAPBinding annotation.

typeMappingFile

(attribute of the service child element)

No equivalent.

targetNamespace

(attribute of the service child element)

targetNamespace attribute of the standard @WebService
annotation.

userSOAP12

(attribute of the service child element)

value attribute of the WebLogic-specific
@weblogic.jws.Binding JWS annotation

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

Table 8–1 (Cont.) Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of servicegen
Attribute Equivalent JWS Annotation or jwsc Attribute

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

clientJarName

(attribute of client child element)

No equivalent.

packageName

(attribute of the client child element)

No direct equivalent.

Use the packageName attribute of the clientgen Ant task to
generate client-side Java code and artifacts.

saveWSDL

(attribute of the client child element)

No equivalent.

userServerTypes

(attribute of the client child element)

No equivalent.

handlers

(attribute of the handlerChain child element)

Standard @HandlerChain or @SOAPMessageHandlers annotation.

name

(attribute of the handlerChain child element)

Standard @HandlerChain or @SOAPMessageHandlers annotation.

duplicateElimination

(attribute of the reliability child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains Web service reliable messaging policy
assertions.

See "Using Web Service Reliable Messaging" in Oracle Fusion
Middleware Programming Advanced Features of JAX-RPC Web
Services for Oracle WebLogic Server.

persistDuration

(attribute of the reliability child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains Web service reliable messaging policy
assertions.

In this release, the equivalent is valid for JAX-RPC Web
services only. See "Using Web Service Reliable Messaging" in
Oracle Fusion Middleware Programming Advanced Features of
JAX-RPC Web Services for Oracle WebLogic Server.

enablePasswordAuth

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

encryptKeyName

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

Table 8–1 (Cont.) Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of servicegen
Attribute Equivalent JWS Annotation or jwsc Attribute

Upgrading an 8.1 WebLogic Web Service to 10.3.x

Upgrading WebLogic Web Services From Previous Releases to 10.3.x 8-17

encryptKeyPass

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

password

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

signKeyName

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

signKeyPass

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

username

(attribute of the security child element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a WS-Policy
file that contains message-level security policy assertions.

Note: Because this is a WebLogic-specific annotation, you can
use it to generate only a JAX-RPC Web service, and not a
JAX-WS Web service.

See "Configuring Message-Level Security" in Oracle Fusion
Middleware Securing WebLogic Web Services for Oracle WebLogic
Server.

Table 8–1 (Cont.) Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of servicegen
Attribute Equivalent JWS Annotation or jwsc Attribute

Upgrading an 8.1 WebLogic Web Service to 10.3.x

8-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction
	2 Use Cases and Examples
	2.1 Creating a Simple HelloWorld Web Service
	2.1.1 Sample HelloWorldImpl.java JWS File
	2.1.2 Sample Ant Build File for HelloWorldImpl.java

	2.2 Creating a Web Service With User-Defined Data Types
	2.2.1 Sample BasicStruct JavaBean
	2.2.2 Sample ComplexImpl.java JWS File
	2.2.3 Sample Ant Build File for ComplexImpl.java JWS File

	2.3 Creating a Web Service from a WSDL File
	2.3.1 Sample WSDL File
	2.3.2 Sample TemperaturePortType Java Implementation File
	2.3.3 Sample Ant Build File for TemperatureService

	2.4 Invoking a Web Service from a Java SE Client
	2.4.1 Sample Java Client Application
	2.4.2 Sample Ant Build File For Building Java Client Application

	2.5 Invoking a Web Service from a WebLogic Web Service
	2.5.1 Sample ClientServiceImpl.java JWS File
	2.5.2 Sample Ant Build File For Building ClientService

	3 Developing WebLogic Web Services
	3.1 Overview of the WebLogic Web Service Programming Model
	3.2 Configuring Your Domain For Web Services Features
	3.3 Developing WebLogic Web Services Starting From Java: Main Steps
	3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps
	3.5 Creating the Basic Ant build.xml File
	3.6 Running the jwsc WebLogic Web Services Ant Task
	3.6.1 Examples of Using jwsc
	3.6.2 Advanced Uses of jwsc

	3.7 Running the wsdlc WebLogic Web Services Ant Task
	3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
	3.9 Deploying and Undeploying WebLogic Web Services
	3.9.1 Using the wldeploy Ant Task to Deploy Web Services
	3.9.2 Using the Administration Console to Deploy Web Services

	3.10 Browsing to the WSDL of the Web Service
	3.11 Configuring the Server Address Specified in the Dynamic WSDL
	3.11.1 Web Service is not a callback service and can be invoked using HTTP/S
	3.11.2 Web Service is not a callback service and can be invoked using JMS Transport
	3.11.3 Web Service is a callback service
	3.11.4 Web Service is invoked using a proxy server

	3.12 Testing the Web Service
	3.13 Integrating Web Services Into the WebLogic Split Development Directory Environment

	4 Programming the JWS File
	4.1 Overview of JWS Files and JWS Annotations
	4.2 Java Requirements for a JWS File
	4.3 Programming the JWS File: Typical Steps
	4.3.1 Example of a JWS File
	4.3.2 Specifying that the JWS File Implements a Web Service (@WebService Annotation)
	4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding Annotation)
	4.3.4 Specifying the Context Path and Service URI of the Web Service (@WLHttpTransport Annotation)
	4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and @OneWay Annotations)
	4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements (@WebParam Annotation)
	4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL Element (@WebResult Annotation)

	4.4 Accessing Run-Time Information About a Web Service
	4.4.1 Using JwsContext to Access Run-Time Information
	4.4.1.1 Guidelines for Accessing the Web Service Context
	4.4.1.2 Methods of the JwsContext

	4.4.2 Using the Stub Interface to Access Run-Time Information

	4.5 Should You Implement a Stateless Session EJB?
	4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File
	4.5.2 Example of a JWS File That Implements an EJB

	4.6 Programming the User-Defined Java Data Type
	4.7 Throwing Exceptions
	4.8 Invoking Another Web Service from the JWS File
	4.9 Programming Additional Miscellaneous Features Using JWS Annotations and APIs
	4.9.1 Sending Binary Data Using MTOM/XOP
	4.9.2 Streaming SOAP Attachments
	4.9.3 Using SOAP 1.2
	4.9.4 Specifying that Operations Run Inside of a Transaction
	4.9.5 Getting the HttpServletRequest/Response Object

	4.10 JWS Programming Best Practices

	5 Understanding Data Binding
	5.1 Overview of Data Binding
	5.2 Supported Built-In Data Types
	5.2.1 XML-to-Java Mapping for Built-in Data Types
	5.2.2 Java-to-XML Mapping for Built-In Data Types

	5.3 Supported User-Defined Data Types
	5.3.1 Supported XML User-Defined Data Types
	5.3.2 Supported Java User-Defined Data Types

	6 Invoking Web Services
	6.1 Overview of Web Services Invocation
	6.1.1 Invoking Web Services Using JAX-RPC
	6.1.2 Examples of Clients That Invoke Web Services

	6.2 Invoking a Web Service from a Java SE Client
	6.2.1 Using the clientgen Ant Task To Generate Client Artifacts
	6.2.2 Getting Information About a Web Service
	6.2.3 Writing the Java Client Application Code to Invoke a Web Service
	6.2.4 Compiling and Running the Client Application
	6.2.5 Sample Ant Build File for a Java Client

	6.3 Invoking a Web Service from Another Web Service
	6.3.1 Sample build.xml File for a Web Service Client
	6.3.2 Sample JWS File That Invokes a Web Service

	6.4 Using a Stand-Alone Client JAR File When Invoking Web Services
	6.5 Using a Proxy Server When Invoking a Web Service
	6.5.1 Using the HttpTransportInfo API to Specify the Proxy Server
	6.5.2 Using System Properties to Specify the Proxy Server

	6.6 Client Considerations When Redeploying a Web Service
	6.7 WebLogic Web Services Stub Properties
	6.8 Setting the Character Encoding For the Response SOAP Message

	7 Administering Web Services
	7.1 Overview of WebLogic Web Services Administration Tasks
	7.2 Administration Tools
	7.3 Using the Administration Console
	7.3.1 Invoking the Administration Console
	7.3.2 How Web Services Are Displayed In the Administration Console
	7.3.3 Creating a Web Services Security Configuration
	7.3.4 Monitoring Web Services and Clients

	7.4 Using the Oracle Enterprise Manager Fusion Middleware Control
	7.5 Using the WebLogic Scripting Tool
	7.6 Using WebLogic Ant Tasks
	7.7 Using the Java Management Extensions (JMX)
	7.8 Using the Java EE Deployment API
	7.9 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

	8 Upgrading WebLogic Web Services From Previous Releases to 10.3.x
	8.1 Upgrading a 9.2 or 10.0 WebLogic Web Service to 10.3.x
	8.2 Upgrading a 9.0 or 9.1 WebLogic Web Service to 10.3.x
	8.3 Upgrading an 8.1 WebLogic Web Service to 10.3.x
	8.3.1 Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10.3.x: Main Steps
	8.3.1.1 Example of an 8.1 Java File and the Corresponding 10.3.x JWS File
	8.3.1.2 Example of an 8.1 and Updated 10.3.x Ant Build File for Java Class-Implemented Web Services

	8.3.2 Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10.3.x: Main Steps
	8.3.2.1 Example of 8.1 EJB Files and the Corresponding 10.3.x JWS File
	8.3.2.1.1 8.1 SessionBean Class
	8.3.2.1.2 8.1 Remote Interface
	8.3.2.1.3 8.1 EJB Home Interface
	8.3.2.1.4 Equivalent 10.3.x JWS File

	8.3.2.2 Example of an 8.1 and Updated 10.3.x Ant Build File for an 8.1 EJB-Implemented Web Service

	8.3.3 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

