

Oracle® Fusion Middleware
Developing Applications with Oracle ADF Desktop Integration

12c (12.1.2)

E23244-01

June 2013

Documentation for Oracle ADF Desktop Integration
developers that describes how to extend the functionality
provided by a Fusion web application to desktop
applications.

Oracle Fusion Middleware Developing Applications with Oracle ADF Desktop Integration 12c (12.1.2)

E23244-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Himanshu Marathe

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiii
Conventions ... xiii

What's New in This Guide ... xv

New and Changed Features for 12c (12.1.2) .. xv
Other Significant Changes in this Document for 12c (12.1.2) ... xvi

1 Introduction to ADF Desktop Integration

1.1 About ADF Desktop Integration .. 1-1
1.2 About ADF Desktop Integration with Microsoft Excel .. 1-2
1.2.1 Overview of Creating an Integrated Excel Workbook .. 1-2
1.2.2 Advantages of Integrating Excel with a Fusion Web Application 1-3

2 Introduction to the ADF Desktop Integration Sample Application

2.1 About the Summit Sample Application for ADF Desktop Integration 2-1
2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration 2-1
2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF

Desktop Integration .. 2-3
2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF

Desktop Integration ... 2-3
2.3.2 Downloading Integrated Excel Workbooks ... 2-3
2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF

Desktop Integration .. 2-4
2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook 2-4
2.4.2 Downloading Data Rows ... 2-5
2.4.3 Modify Customers and Warehouses Information in the Workbooks 2-5
2.4.4 Upload Modified Information to the Fusion Web Application 2-6

3 Setting Up Your Development Environment

3.1 About Setting Up Your Development Environment .. 3-1
3.2 Required Oracle ADF Modules and Third-Party Software ... 3-2
3.3 Configuring Excel to work with ADF Desktop Integration .. 3-3

iv

3.4 Installing ADF Desktop Integration ... 3-4
3.4.1 How to Set Up ADF Desktop Integration .. 3-4
3.5 Removing ADF Desktop Integration .. 3-6
3.6 Upgrading ADF Desktop Integration ... 3-6
3.6.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF Desktop

Integration ... 3-7
3.7 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration 3-8
3.8 Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper 3-8

4 Preparing Your Integrated Excel Workbook

4.1 About Preparing Your Integrated Excel Workbooks .. 4-1
4.2 Adding an Integrated Excel Workbook to a Fusion Web Application 4-1
4.2.1 How to Add an Integrated Excel Workbook to a Fusion Web Application 4-2
4.2.2 How to Configure a New Integrated Excel Workbook .. 4-3
4.2.3 How to Add Additional Worksheets to an Integrated Excel Workbook 4-7
4.2.4 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web

Application from JDeveloper ... 4-8
4.2.4.1 Fusion Web Application is Deployed on Oracle WebLogic Server 4-8
4.3 Working with Page Definition Files for an Integrated Excel Workbook 4-8
4.3.1 How to Create ADF Desktop Integration Page Definition File 4-9
4.3.2 What Happens When You Create a Page Definition File ... 4-11
4.3.3 How to Reload a Page Definition File in an Excel Workbook 4-11
4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel

Workbook .. 4-12
4.4 Enabling ADF Desktop Integration Manually .. 4-13
4.4.1 How to Manually Add ADF Desktop Integration In Fusion Web Application 4-13
4.4.2 How to Enable ADF Desktop Integration in an Existing Workbook 4-14
4.4.3 How to Manually Configure a New Integrated Excel Workbook 4-15
4.4.4 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project .

4-17
4.4.5 Adding ADF Library Web Application Support .. 4-18

5 Getting Started with the Development Tools

5.1 About Development Tools ... 5-1
5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples 5-2
5.1.2 Additional Functionality for ADF Desktop Integration Development Tools 5-3
5.2 Designer Ribbon Tab .. 5-3
5.3 ADF Desktop Integration Designer Task Pane ... 5-6
5.4 Using the Bindings Palette ... 5-7
5.5 Using the Components Palette ... 5-9
5.6 Using the Property Inspector ... 5-9
5.7 Using the Binding ID Picker ... 5-11
5.8 Using the Expression Builder ... 5-11
5.9 Using the Web Page Picker .. 5-12
5.10 Using the File System Folder Picker ... 5-13
5.11 Using the Page Definition Picker .. 5-14
5.12 Using the Collection Editors ... 5-15

v

5.13 Using the Cell Context Menu ... 5-16
5.14 Removing ADF Desktop Integration Components ... 5-17
5.15 Exporting and Importing Excel Workbook Integration Metadata 5-19
5.15.1 How to Export Workbook Integration Metadata ... 5-19
5.15.2 How to Import Workbook Integration Metadata ... 5-20
5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook

Integration Metadata ... 5-21

6 Working with ADF Desktop Integration Form-Type Components

6.1 About ADF Desktop Integration Form-Type Components .. 6-1
6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples 6-2
6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components 6-3
6.2 Inserting an ADF Button Component ... 6-3
6.3 Inserting an ADF Label Component ... 6-5
6.4 Inserting an ADF Input Text Component ... 6-7
6.5 Inserting an ADF Output Text Component .. 6-8
6.6 Inserting an ADF List of Values Component .. 6-10
6.7 Displaying Output from a Managed Bean in an ADF Component 6-12
6.7.1 How to Display Output from a Managed Bean ... 6-12
6.7.2 What Happens at Runtime: How an ADF Component Displays Output from a

Managed Bean ... 6-13
6.8 Displaying Concatenated or Calculated Data in Components 6-13
6.8.1 How to Configure a Component to Display Calculated Data 6-13
6.9 Using Navigation Buttons .. 6-15

7 Working with ADF Desktop Integration Table-Type Components

7.1 About ADF Desktop Integration Table-Type Components .. 7-2
7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples 7-2
7.1.2 Additional Functionality of Table-Type Components ... 7-3
7.2 Page Definition Requirements for an ADF Table Component .. 7-3
7.3 Inserting ADF Table Component into Excel Worksheet ... 7-4
7.3.1 How to Insert ADF Table Component ... 7-4
7.3.2 How to Add a Column in an ADF Table Component .. 7-7
7.4 Configuring Oracle ADF Component to Download Data to an ADF Table Component . 7-8
7.4.1 How to Configure an ADF Component to Download Data to an ADF Table

Component .. 7-8
7.4.2 What Happens at Runtime: How the ADF Table Component Downloads Data 7-9
7.5 Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table

component .. 7-10
7.5.1 What Happens at Runtime: Download Action is Invoked 7-11
7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts .. 7-11
7.5.3 What You May Need to Know About DownloadForInsert Action 7-11
7.6 Configuring an ADF Table Component to Update Existing Data 7-11
7.6.1 How to Configure an ADF Table Component to Update Data 7-12
7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data 7-12
7.7 Configuring an ADF Table Component to Insert Data ... 7-13

vi

7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's
Operations ... 7-13

7.8 Configuring an ADF Component to Upload Changes from an ADF Table Component 7-15
7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table

Component .. 7-15
7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data 7-17
7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During

Upload ... 7-18
7.8.4 What Happens at Runtime: Upload Failure .. 7-18
7.8.5 How to Create a Custom Upload Dialog ... 7-19
7.8.6 What Happens at Runtime: Custom Upload Dialog .. 7-19
7.9 Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing

Action ... 7-20
7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action 7-20
7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked 7-21
7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With

UploadAllOrNothing Action ... 7-21
7.10 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

7-21
7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web

Application .. 7-22
7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion

Web Application .. 7-23
7.11 Batch Processing in an ADF Table Component .. 7-24
7.11.1 How to Configure Batch Options for an ADF Table Component 7-24
7.11.2 Row Flagging in an ADF Table Component .. 7-25
7.11.3 Troubleshooting Errors While Uploading Data ... 7-26
7.12 Special Columns in the ADF Table Component .. 7-26
7.13 Configuring ADF Table Component Key Column ... 7-28
7.13.1 How to Configure the Key Column ... 7-28
7.13.2 How to Manually Add the Key Column At Design Time .. 7-29
7.14 Creating a List of Values in an ADF Table Component Column 7-30
7.14.1 How to Create a List of Values in an ADF Table Component Column 7-30
7.14.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values 7-32
7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table

Component ... 7-32
7.16 Adding a Dynamic Column to Your ADF Table Component .. 7-33
7.16.1 How to Configure a Dynamic Column .. 7-34
7.16.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic

Column .. 7-34
7.16.3 How to Specify Header Labels for Dynamic Columns .. 7-35
7.16.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type ... 7-36
7.17 Creating an ADF Read-Only Table Component ... 7-36
7.17.1 How to Insert an ADF Read-only Table Component ... 7-37
7.17.2 How to Manually Add a Column to the ADF Read-only Table Component 7-38
7.18 Limiting the Number of Rows Your Table-Type Component Downloads 7-39
7.18.1 How to Limit the Number of Rows a Component Downloads 7-39
7.18.2 What Happens at Runtime: How the RowLimit Property Works 7-40
7.19 Clearing the Values of Cached Attributes in an ADF Table Component 7-41

vii

7.19.1 How to Clear the Values of Cached Attributes in an ADF Table Component 7-41
7.19.2 What Happens at Runtime: How the ADF Table Component Clears Cached Values

7-41
7.20 Tracking Changes in an ADF Table Component .. 7-42
7.21 Evaluating EL Expression for ReadOnly Properties ... 7-42
7.21.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data .. 7-42
7.21.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or

Tracking Changes .. 7-43
7.21.3 What You May Need to Know About Evaluating EL Expression While Uploading Data

or Tracking Changes .. 7-43
7.22 Using Explicit Worksheet Setup Action ... 7-43
7.22.1 How to Configure Explicit Worksheet Setup Action ... 7-44
7.22.2 What You May Need to Know About Explicit Worksheet Setup Action 7-45

8 Adding Interactivity to Your Integrated Excel Workbook

8.1 About Adding Interactivity to an Integrated Excel Workbook ... 8-1
8.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples 8-2
8.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook 8-3
8.2 Using Action Sets ... 8-3
8.2.1 How to Invoke a Method Action Binding in an Action Set .. 8-5
8.2.2 How to Invoke Component Actions in an Action Set .. 8-5
8.2.3 What You May Need to Know About an Action Set Invoking a Component Action 8-7
8.2.3.1 Verifying an Action Set Invokes the Correct Component Action 8-7
8.2.3.2 Invoking Action Sets in a Disconnected Workbook .. 8-8
8.2.4 How to Invoke an Action Set from a Worksheet Event .. 8-8
8.2.5 How to Display a Status Message While an Action Set Executes 8-9
8.2.6 What Happens at Runtime: How the Action Set Displays a Status Message 8-11
8.2.7 What You May Need to Know About Progress Bars ... 8-12
8.2.8 How to Provide an Alert After the Invocation of an Action Set 8-13
8.2.9 What Happens at Runtime: How the Action Set Provides an Alert 8-14
8.2.10 How to Configure Error Handling for an Action Set ... 8-15
8.2.11 How to Invoke a Confirmation Action in an Action Set .. 8-16
8.2.12 What Happens at Runtime: How the Action Set Provides a Confirmation 8-17
8.3 Configuring the Runtime Ribbon Tab .. 8-18
8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab 8-19
8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab 8-20
8.4 Displaying Web Pages from a Fusion Web Application ... 8-22
8.4.1 How to Display a Web Page in a Popup Dialog ... 8-22
8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane 8-24
8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web

Application .. 8-24
8.4.3.1 Keeping an Integrated Excel Workbook and a Fusion Web Application

Synchronized ... 8-25
8.4.3.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion

Web Application Pages ... 8-25
8.4.3.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame

Sharing .. 8-26
8.5 Adding a Custom Popup Picker Dialog to an ADF Table Column 8-26

viii

8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook 8-28
8.6.1 How to Create a Search Form in an Integrated Excel Workbook 8-29
8.6.2 How to Create a Search Form using a Web Page in an Integrated Excel Workbook 8-31
8.7 Creating a Form in an Integrated Excel Workbook .. 8-33
8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook 8-34
8.8.1 How to Create a Dependent List of Values in an Excel Worksheet 8-37
8.8.2 What Happens at Runtime: How the Excel Worksheet Renders a Dependent List of

Values .. 8-38
8.8.3 How to Create a Dependent List of Values in an ADF Table Component's Columns

8-39
8.8.4 What Happens at Runtime: How the ADF Table Component Column Renders a

Dependent List of Values ... 8-40
8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table

Component Column .. 8-41
8.8.6 What Happens at Runtime: How the Excel Worksheet and the ADF Table Component

Column Render a Dependent List of Values ... 8-43
8.9 Using EL Expression to Generate an Excel Formula .. 8-44
8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression 8-45
8.9.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression .

8-45
8.10 Using Calculated Cells in an Integrated Excel Workbook .. 8-46
8.10.1 How to Calculate the Sum of a Table-Type Component Column 8-47
8.10.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type

Component Column .. 8-47
8.11 Using Macros in an Integrated Excel Workbook ... 8-48

9 Configuring the Appearance of an Integrated Excel Workbook

9.1 About Configuring the Appearance of an Integrated Excel Workbook 9-1
9.1.1 Integrated Excel Workbook Configuration Use Cases and Examples 9-2
9.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel

Workbook .. 9-2
9.2 Working with Styles ... 9-2
9.2.1 Predefined Styles in ADF Desktop Integration .. 9-2
9.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options 9-3
9.2.3 How to Apply a Style to an Oracle ADF Component .. 9-4
9.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component 9-5
9.3 Applying Styles Dynamically Using EL Expressions ... 9-6
9.3.1 What Happens at Runtime: How an EL Expression Is Evaluated 9-6
9.3.2 How to Write an EL Expression That Applies a Style at Runtime 9-7
9.3.3 What You May Need to Know About EL Expressions That Apply Styles 9-8
9.4 Using Labels in an Integrated Excel Workbook ... 9-8
9.4.1 Retrieving the Values of String Keys from a Resource Bundle 9-8
9.4.2 Retrieving the Values of Attribute Control Hints .. 9-9
9.4.3 How an Integrated Excel Workbook Evaluates a Label Property 9-10
9.5 Using Styles to Improve the User Experience .. 9-10
9.5.1 Using ADF Label Components to improve the User Experience 9-11
9.5.2 What You May Need to Know About the Read-Only Property in an Integrated Excel

Workbook .. 9-11

ix

9.6 Branding Your Integrated Excel Workbook ... 9-12
9.6.1 How to Brand an Integrated Excel Workbook ... 9-12
9.6.2 What Happens at Runtime: the BrandingItems Group of Properties 9-13
9.7 Using Worksheet Protection ... 9-14
9.7.1 How to Enable Worksheet Protection .. 9-14
9.7.2 What Happens at Runtime: How the Locked Property Works 9-15
9.7.3 What You May Need to Know About Worksheet Protection 9-16

10 Internationalizing Your Integrated Excel Workbook

10.1 About Internationalizing Your Integrated Excel Workbook ... 10-1
10.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples 10-2
10.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook 10-2
10.2 Using Resource Bundles in an Integrated Excel Workbook .. 10-3
10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook 10-3
10.2.2 How to Override Resources That Are Not Configurable ... 10-4
10.2.3 What Happens at Runtime: Override Resources That Are Not Configurable 10-5
10.2.4 What You May Need to Know About Resource Bundles ... 10-5
10.2.4.1 Resource Bundle Types ... 10-5
10.2.4.2 Caching of Resource Bundles in an Integrated Excel Workbook 10-5
10.2.4.3 EL Expression Syntax for Resource Bundles ... 10-6
10.3 Localization in ADF Desktop Integration ... 10-6
10.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings 10-7
10.3.1.1 How to Create a User Preference Handler .. 10-7
10.3.1.2 How to Register the User Preference Handler ... 10-8

11 Securing Your Integrated Excel Workbook

11.1 About Security In Your Integrated Excel Workbook .. 11-1
11.1.1 Integrated Excel Workbook Security Use Cases and Examples 11-2
11.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web

Application .. 11-2
11.2 Authenticating the Excel Workbook User .. 11-3
11.2.1 What Happens at Runtime: How the Login Method Is Invoked 11-3
11.2.2 What Happens at Runtime: How the Logout Method Is Invoked 11-4
11.3 Checking the Integrity of an Integrated Excel Workbook's Metadata 11-4
11.3.1 How to Reset the Workbook ID ... 11-5
11.3.2 What Happens When the Metadata Tamper-Check Is Performed 11-5
11.4 What You May Need to Know About Securing an Integrated Excel Workbook 11-6
11.5 Authorizing the Excel Workbook User ... 11-6
11.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet .

11-7

12 Adding Validation to an Integrated Excel Workbook

12.1 About Adding Validation to an Integrated Excel Workbook ... 12-1
12.1.1 Integrated Excel Workbook Validation Use Cases and Examples 12-1
12.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook 12-2
12.2 Providing Server-Side Validation for an Integrated Excel Workbook 12-2

x

12.3 Providing Client-Side Validation for an Integrated Excel Workbook 12-2
12.4 Error Reporting in an Integrated Excel Workbook ... 12-3
12.4.1 Error Reporting Using EL Expressions .. 12-3
12.4.2 Error Reporting Using Component Actions .. 12-4
12.5 Providing a Row-by-Row Status on an ADF Table Component 12-6
12.6 Adding Detail to Error Messages in an Integrated Excel Workbook 12-7
12.7 Handling Data Conflicts When Uploading Data from a Workbook 12-7
12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data .. 12-8
12.7.2 What Happens at Runtime: How Data Conflicts Are Handled 12-8

13 Testing Your Integrated Excel Workbook

13.1 About Testing Your Integrated Excel Workbook ... 13-1
13.1.1 Integrated Excel Workbook Testing Use Cases and Examples 13-1
13.1.2 Additional Functionality of Testing an Integrated Excel Workbook 13-2
13.2 Testing Your Fusion Web Application ... 13-2
13.3 Validating the Integrated Excel Workbook Configuration ... 13-3
13.3.1 How to Validate the Integrated Excel Workbook Configuration 13-3
13.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration 13-4
13.3.3 How to Fix Validation Failures .. 13-4
13.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at

Runtime ... 13-5
13.4 Testing Your Integrated Excel Workbook .. 13-6
13.5 Running a Server Ping Test .. 13-7

14 Deploying Your Integrated Excel Workbook

14.1 About Deploying Your Integrated Excel Workbook .. 14-1
14.1.1 Integrated Excel Workbook Deployment Use Cases and Examples 14-2
14.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook 14-2
14.2 Making ADF Desktop Integration Available to End Users ... 14-2
14.3 Publishing Your Integrated Excel Workbook ... 14-3
14.3.1 How to Publish an Integrated Excel Workbook from Excel 14-3
14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish

Tool .. 14-4
14.3.3 What Happens When You Publish an Integrated Excel Workbook 14-5
14.4 Deploying a Published Workbook with Your Fusion Web Application 14-5
14.4.1 What Happens at Runtime: Deploying a Published Workbook 14-7
14.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook 14-7
14.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters 14-8
14.5.2 How to Configure the Page Definition File for the Worksheet to Receive Parameters ...

14-9
14.5.3 How to Configure Parameters Properties in the Integrated Excel Workbook 14-10
14.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web

Application to the Integrated Excel Workbook .. 14-13

15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in
Disconnected Mode

15.1 About Disconnected Workbooks .. 15-1

xi

15.1.1 Disconnected Workbooks Use Cases and Examples .. 15-2
15.1.2 Additional Functionality for Disconnected Workbooks .. 15-2
15.2 Restore Server Data Context Between Sessions .. 15-2
15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context . 15-3
15.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data

Context ... 15-4
15.3 Caching of Static Information in an Integrated Excel Workbook 15-4
15.4 Caching Lists of Values for Use in Disconnected Mode ... 15-5

A ADF Desktop Integration Component Properties and Actions

A.1 Frequently Used Properties in the ADF Desktop Integration ...A-1
A.2 ADF Input Text Component Properties ...A-3
A.3 ADF Output Text Component Properties ..A-4
A.4 ADF Label Component Properties ..A-4
A.5 ADF List of Values Component Properties ...A-5
A.6 TreeNodeList Subcomponent Properties ...A-5
A.7 ModelDrivenColumnComponent Subcomponent Properties ..A-6
A.8 ADF Button Component Properties ..A-6
A.9 ADF Table Component Properties and Actions ..A-6
A.9.1 ADF Table Component Properties ...A-6
A.9.2 ADF Table Component Column Properties ...A-11
A.9.3 ADF Table Component Actions ...A-13
A.10 ADF Read-only Table Component Properties and Actions ..A-15
A.11 Action Set Properties ...A-16
A.11.1 Confirmation Action Properties ...A-18
A.11.2 Dialog Action Properties ..A-19
A.12 Workbook Actions and Properties ...A-19
A.13 Worksheet Actions and Properties ...A-23

B ADF Desktop Integration EL Expressions

B.1 Guidelines for Creating EL Expressions ...B-1
B.2 EL Syntax for ADF Desktop Integration Components ...B-2
B.3 Attribute Control Hints in ADF Desktop Integration ...B-4

C Troubleshooting an Integrated Excel Workbook

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration C-1
C.2 Verifying End-User Authentication for Integrated Excel Workbooks C-2
C.3 Generating Log Files for an Integrated Excel Workbook ... C-2
C.3.1 About Server-Side Logging ... C-2
C.3.2 About Client-Side Logging ... C-3
C.3.2.1 How to Configure ADF Desktop Integration to Save Logs C-3
C.3.2.2 About the ADF Desktop Integration Configuration File C-5
C.3.2.3 How to Configure Logging Using User Environment Variables C-6
C.3.2.4 What You May Need to Know About the adfdi-common Object C-6
C.4 Common ADF Desktop Integration Error Messages and Problems C-6

xii

D ADF Desktop Integration Settings in the Web Application Deployment
Descriptor

D.1 Configuring the ADF Desktop Integration Servlet ...D-1
D.2 Configuring the ADF Desktop Integration Excel Download FilterD-3
D.3 Examples in a Deployment Descriptor File ..D-7

E String Keys in the Overridable Resources

F Java Data Types Supported By ADF Desktop Integration

G Using the ADF Desktop Integration Model API

G.1 About the Temporary Row Object .. G-1
G.2 About ADF Desktop Integration Model API ... G-2
G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

G-2
G.3 ADF Desktop Integration Model API Classes and Methods ... G-3
G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class G-3
G.3.1.1 The getAdfdiTempChildRow Method ... G-3
G.3.1.2 The getAdfdiTempRowForView Method .. G-4
G.3.1.3 The getChildViewDef Method ... G-4

H End User Actions

H.1 Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration
H-1

H.1.1 How to Install Runtime Edition of ADF Desktop IntegrationH-2
H.1.2 How to Remove the Runtime Edition of ADF Desktop IntegrationH-3
H.1.3 How to Upgrade the Runtime Edition of ADF Desktop Integration On a Local System

H-3
H.2 Importing Data from a Non-Integrated Excel Worksheet ..H-3
H.3 Removing Personal Information ..H-4
H.4 Editing an Integrated Excel Workbook at Runtime ..H-5
H.5 Limitations of an Integrated Excel Workbook at Runtime ...H-5
H.6 Using An Integrated Excel Workbook ..H-6
H.6.1 How to Insert a Row in an ADF Table Component of an Integrated Excel Workbook ...

H-6
H.6.2 How to Sort ADF Table Data in an Integrated Excel WorkbookH-7
H.6.3 How to Delete a Row in ADF Table of an Integrated Excel WorkbookH-7
H.7 Handling Time Zone Conversion ...H-7

xiii

Preface

Welcome to the Developing Applications with Oracle ADF Desktop Integration.

Audience
This manual is intended for enterprise developers who configure desktop applications
to integrate with the Oracle Application Development Framework (Oracle ADF).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following:

■ Developing Fusion Web Applications with Oracle Application Development Framework

■ Developing Web User Interfaces with Oracle ADF Faces

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

xiv

monospace Monospace type indicates language and syntax elements, directory and
file names, URLs, text that appears on the screen, or text that you enter.

Convention Meaning

xv

What's New in This Guide

The following topics introduce the new and changed features of ADF Desktop
Integration and other significant changes that are described in this guide, and provides
pointers to additional information. This document is the new edition of the formerly
titled Desktop Integration Developer's Guide for Oracle Application Development Framework.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the What's New page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

New and Changed Features for 12c (12.1.2)
Oracle ADF Desktop Integration 12c (12.1.2) includes the following new and changed
development features for this document.

■ All procedures and graphics have been updated to use Windows 7 as the primary
Windows Operating System.

■ All demo examples and graphics have been updated to use Summit Sample
Application for ADF Desktop Integration.

■ Some Administrator-related content has been moved to Administering Oracle ADF
Applications.

■ System requirements and installation instructions have been updated. See
Section 3.4, "Installing ADF Desktop Integration."

■ Add integrated Excel workbook to a project in JDeveloper. See Section 4.2,
"Adding an Integrated Excel Workbook to a Fusion Web Application."

■ Create and configure ADF Desktop Integration Page Definition file. See
Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook."

■ Drag-and-drop components from the Bindings Palette and Components Palette.
See Section 5.4, "Using the Bindings Palette" and Section 5.5, "Using the
Components Palette."

■ Double-click to edit a component. See Section 5.6, "Using the Property Inspector."

■ Export and import Excel workbook integration metadata. See Section 5.15,
"Exporting and Importing Excel Workbook Integration Metadata."

■ Insert components in merged cells. See Section 6.1, "About ADF Desktop
Integration Form-Type Components."

xvi

■ New action, UploadAllOrNothing, which allows rows to get committed if none
of the changed (or new) rows fail. See Section 7.9, "Configuring an ADF Table
Component to Upload Changes Using UploadAllOrNothing Action."

■ New feature, Explicit Worksheet Setup Action, which allows user to customize the
data (or the binding container) before the client retrieves the binding container
metadata. See Section 7.22, "Using Explicit Worksheet Setup Action."

■ New property, DetailStatusMessage for ComponentAction. Section 8.2.2,
"How to Invoke Component Actions in an Action Set."

■ Visual status progress bars. See Section 8.2.5, "How to Display a Status Message
While an Action Set Executes" and Section 8.2.7, "What You May Need to Know
About Progress Bars."

■ Worksheet authorization through ADF Desktop Integration page definition. See
Section 11.5, "Authorizing the Excel Workbook User."

■ Track and detect time zone change. See Section H.7, "Handling Time Zone
Conversion."

Other Significant Changes in this Document for 12c (12.1.2)
For 12c (12.1.2), this document has been updated in several ways, to include
corrections and clarifications. In addition, the following significant changes or
additions have occurred in these sections:

■ Chapters now include a "Use Cases and Examples" section.

■ All Introduction sections in chapters have been renamed to "About ..."

■ Updated Section 3.6.1, "How to Migrate an Integrated Excel Workbook to the
Current Version of ADF Desktop Integration" to include migration information
while using workbooks integrated with older, or newer versions, of ADF Desktop
Integration.

■ Updated Section 3.7, "Using an Integrated Excel Workbook with Older Versions of
ADF Desktop Integration" to describe compatibility of a workbook created, or
updated, by a newer version of ADF Desktop Integration on a system running an
older version of ADF Desktop Integration.

■ Added a section to describe how to remove a component from integrated Excel
workbook. See Section 5.14, "Removing ADF Desktop Integration Components."

■ Revised various sections in Chapter 7, "Working with ADF Desktop Integration
Table-Type Components" to:

– include information that a table component should not be inserted in a
merged cell, and wide tables (a table with many columns) gives slow
performance. See Section 7.3, "Inserting ADF Table Component into Excel
Worksheet."

– add a custom method action that creates one or more status_initialized
rows in the iterator. See Section 7.5, "Configuring a Worksheet to Download
Data as Pending Insert Rows in an ADF Table component."

– include information that the DownloadFlaggedRows action does not apply
to inserted rows. See Section 7.11.2, "Row Flagging in an ADF Table
Component."

xvii

– include information that the first column of the ADF Read-only Table contains
important data used by the table component, and it must not be removed. See
Section 7.17, "Creating an ADF Read-Only Table Component."

■ Added a section to describe how EL expressions for ReadOnly properties are
evaluated while downloading and uploading data. See Section 7.21, "Evaluating
EL Expression for ReadOnly Properties."

■ Revised various sections in Section 8, "Adding Interactivity to Your Integrated
Excel Workbook" to:

– document default values of the CancelButtonLabel, OKButtonLabel, or
Prompt properties, if they are empty. See Section 8.2.12, "What Happens at
Runtime: How the Action Set Provides a Confirmation."

– add a note about toolbar ribbon controls that they are shared among all open
integrated workbooks. See Section 8.3.2, "How to Configure a Worksheet
Command for the Runtime Ribbon Tab."

– include information about web pages displayed with the Dialog action that
they are rendered using a .NET Web Browser control, which leverages the
local Internet Explorer installation. See Section 8.4.3, "What You May Need to
Know About Displaying Pages from a Fusion Web Application."

– add a note that evaluated EL expressions in Excel formula should not have no
more than 255 characters. See Section 8.9, "Using EL Expression to Generate an
Excel Formula."

■ Updated Section 10.2.1, "How to Register a Resource Bundle in an Integrated Excel
Workbook" to add information about file extensions that they should not be
included while registering a resource bundle class.

■ Revised following sections for clarity:

– Section 11.1, "About Security In Your Integrated Excel Workbook"

– Section 13.2, "Testing Your Fusion Web Application"

– Section 13.4, "Testing Your Integrated Excel Workbook"

■ Updated Section 14.2, "Making ADF Desktop Integration Available to End Users"
to update the path of adfdi-excel-runtime-client-installer.zip file.

■ Updated Section 14.4, "Deploying a Published Workbook with Your Fusion Web
Application" to describe runtime behavior after a workbook is published.

■ Updated Table A–1, Table A–9, Table A–11, Table A–14, Table A–15, Table A–15,
and Table A–19 of Appendix A, "ADF Desktop Integration Component Properties
and Actions" to add new attributes.

■ Updated Section C.4, "Common ADF Desktop Integration Error Messages and
Problems" to add more error messages.

■ Revised Section H.1, "Installing, Upgrading, and Removing the Runtime Edition of
ADF Desktop Integration" to include the fully qualified path limit of the directory
where set up files of the runtime edition of ADF Desktop Integration are extracted.

■ Added a section to describe how to upgrade the runtime edition of ADF Desktop
Integration on a local system. See Section H.1.3, "How to Upgrade the Runtime
Edition of ADF Desktop Integration On a Local System."

xviii

1

Introduction to ADF Desktop Integration 1-1

1Introduction to ADF Desktop Integration

This chapter introduces ADF Desktop Integration and provides an overview of the
framework. The chapter also describes the advantages of integrating Microsoft Excel
with a Fusion web application.

This chapter includes the following sections:

■ Section 1.1, "About ADF Desktop Integration"

■ Section 1.2, "About ADF Desktop Integration with Microsoft Excel"

1.1 About ADF Desktop Integration
Many end users of Fusion web applications use desktop applications, such as
Microsoft Excel, to manage information also used by their web application. ADF
Desktop Integration provides a framework for Oracle Application Development
Framework (Oracle ADF) developers to extend the functionality provided by a Fusion
web application to desktop applications. It allows end users to avail themselves of
Oracle ADF functionality when they are disconnected from their company network.
End users may also prefer ADF Desktop Integration because it provides Excel's
familiar user interface to undertake information management tasks, such as
performing complex calculations or uploading a large amount of data, easily and
seamlessly.

ADF Desktop Integration is a part of the Oracle ADF architecture. More information
about the Oracle ADF architecture can be found in the "Oracle ADF Architecture"
section of the Developing Fusion Web Applications with Oracle Application Development
Framework.

Figure 1–1 illustrates the architecture of ADF Desktop Integration, which comprises of
the following components:

■ ADF Desktop Integration

■ ADF Desktop Integration remote servlet

■ ADF Model layer

About ADF Desktop Integration with Microsoft Excel

1-2 Developing Applications with Oracle ADF Desktop Integration

Figure 1–1 ADF Desktop Integration Architecture

For more information about ADF Desktop Integration, see the ADF Desktop
Integration page on Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/i
ndex-085534.html

1.2 About ADF Desktop Integration with Microsoft Excel
Currently, ADF Desktop Integration supports integration with Microsoft Excel 2007,
and other higher versions of Microsoft Excel.

1.2.1 Overview of Creating an Integrated Excel Workbook
Creating an integrated Excel workbook involves the steps described in Table 1–1.

Note: This guide uses the term integrated Excel workbook to refer to
Excel workbooks that you integrate with a Fusion web application
and to distinguish these workbooks from workbooks that have not
been integrated with a Fusion web application or configured with
Oracle ADF functionality.

Table 1–1 Steps to Create an Integrated Excel Workbook

Use To

JDeveloper ■ Create a Fusion web application.

For information about creating a Fusion web application, see the
Developing Fusion Web Applications with Oracle Application Development
Framework.

■ Add data controls that expose the elements you require in Microsoft
Excel.

■ Create page definition files that expose the Oracle ADF bindings to use
in Excel.

For more information, see Section 4.3, "Working with Page Definition
Files for an Integrated Excel Workbook."

About ADF Desktop Integration with Microsoft Excel

Introduction to ADF Desktop Integration 1-3

1.2.2 Advantages of Integrating Excel with a Fusion Web Application
Advantages that accrue from integrating Microsoft Excel workbooks with your Fusion
web application include:

Excel ■ Create the Excel workbooks that you intend to configure with Oracle
ADF functionality.

For more information, see Section 4.2, "Adding an Integrated Excel
Workbook to a Fusion Web Application."

■ Configure the Excel workbook using the Oracle ADF bindings that you
exposed in the page definition files and the Oracle ADF components
that ADF Desktop Integration provides.

For more information, see the following sections and chapters:

– Chapter 5, "Getting Started with the
Development Tools"

This chapter provides an overview of the
tools that ADF Desktop Integration
provides to configure an Excel workbook
with Oracle ADF functionality.

– Chapter 6, " Working with ADF Desktop
Integration Form-Type Components"

This chapter describes how to insert ADF
Desktop Integration form-type
components into Excel worksheets and
configure their properties to determine
behavior at runtime.

– Chapter 7, "Working with ADF Desktop
Integration Table-Type Components"

This chapter describes how to use the ADF
Table and Read-only Table components to
provide end users with a means of
displaying and editing data hosted by a
Fusion web application.

– Chapter 12, "Adding Validation to an
Integrated Excel Workbook"

This chapter describes how to provide
validation for your integrated Excel
workbook.

■ Test your integrated Excel workbook.

For more information, see Chapter 13, "Testing Your Integrated Excel
Workbook."

■ After completing the integration of the Excel workbook with the Fusion
web application, you deploy it to make it available to the end users.

For information about this task, see Chapter 14, "Deploying Your
Integrated Excel Workbook."

Table 1–1 (Cont.) Steps to Create an Integrated Excel Workbook

Use To

About ADF Desktop Integration with Microsoft Excel

1-4 Developing Applications with Oracle ADF Desktop Integration

■ Providing end users with access to data and functionality hosted by a Fusion web
application through a desktop interface (Microsoft Excel) that may be more
familiar to them.

■ End users can access data hosted by a Fusion web application while not connected
to the application. They must log on to the Fusion web application to download
data. Once data is downloaded to an Excel workbook, they can modify it while
disconnected from the Fusion web application.

■ Bulk entry and update of data may be easier to accomplish through a
spreadsheet-style interface.

■ End users can use native Excel features such as macros and calculation.

2

Introduction to the ADF Desktop Integration Sample Application 2-1

2Introduction to the ADF Desktop Integration
Sample Application

This chapter provides an overview of the Summit sample application for ADF Desktop
Integration. The Summit sample application for ADF Desktop Integration contains
several Microsoft Excel workbooks that are integrated with the sample's Fusion web
application.

This chapter includes the following sections:

■ Section 2.1, "About the Summit Sample Application for ADF Desktop Integration"

■ Section 2.2, "Setting Up and Running the Summit Sample Application for ADF
Desktop Integration"

■ Section 2.3, "Overview of the Fusion Web Application in the Summit Sample
Application for ADF Desktop Integration"

■ Section 2.4, "Overview of the Integrated Excel Workbooks in the Summit Sample
Application for ADF Desktop Integration"

2.1 About the Summit Sample Application for ADF Desktop Integration
The Summit sample application for ADF Desktop Integration is a set of sample
demonstrations that illustrate the main capabilities from ADF Desktop Integration.
Each of the samples contain specific features that can also be identified on the
developer's guide. All of the samples use the same underlying database schema which
makes it very easy for accessing the source code, and also to experience the runtime
behavior in a standalone way.

2.2 Setting Up and Running the Summit Sample Application for ADF
Desktop Integration

Set up the development environment as described in Chapter 3, "Setting Up Your
Development Environment" before you download and run the Summit sample
application for ADF Desktop Integration.

To download the Summit sample application for ADF Desktop Integration:
1. Download and install Oracle JDeveloper Release 12c. For more information, see

Installing Oracle JDeveloper.

2. Download the Summit sample application for ADF Desktop Integration ZIP file
(SummitADF_DI1212.zip) from Oracle Technology Network.

http://www.oracle.com/pls/topic/lookup?ctx=E26099_01&id=jdevcodesamples

Setting Up and Running the Summit Sample Application for ADF Desktop Integration

2-2 Developing Applications with Oracle ADF Desktop Integration

3. Download the SummitADF_Schema1212.zip file and install the Summit ADF
schema. For more information, see the "How to Install the Summit ADF Schema"
section in Developing Fusion Web Applications with Oracle Application Development
Framework.

4. Install ADF Desktop Integration. For more information, see Section 3.4, "Installing
ADF Desktop Integration."

To run the Summit sample application for ADF Desktop Integration:
1. Extract the contents of SummitADF_DI1212.zip file to a local directory.

2. Open the SummitADFdi.jws file in JDeveloper.

This file is located in the Summit_ADFDI directory.

3. In the Applications window, click and expand the Model project.

4. Open Model > Application Sources > oracle.summitdi.model > Model.jpx file.

5. Expand the Connection group of the General tab, and click the Add icon to create
a database connection.

6. In the Create Database Connection dialog, add the connection information shown
in Table 2–1 for your environment.

Click Test Connection to verify the connection, and then click OK to close the
dialog.

7. Save the Model.jpx file.

8. Right-click Model project and choose Rebuild Model.jpr.

9. Expand the ViewController project and choose Web Content > MainPage.jsf.

Note: If you have an old version of ADF Desktop Integration
installed on your system, upgrade ADF Desktop Integration as
described in Section 3.6, "Upgrading ADF Desktop Integration."

Table 2–1 Database Connection Properties for the Summit Sample Application for ADF
Desktop Integration

Property Description

Username summit_adf

Password summit_adf

Host Name The host name for your database.

For example:

localhost

JDBC Port The port for your database.

For example:

1521

SID The SID of your database.

For example:

ORCL or XE

Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration

Introduction to the ADF Desktop Integration Sample Application 2-3

10. Right-click MainPage.jsf and choose Run.

2.3 Overview of the Fusion Web Application in the Summit Sample
Application for ADF Desktop Integration

The Fusion web application in the Summit sample application for ADF Desktop
Integration enables end users to download the integrated Excel workbooks.

2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF
Desktop Integration

When the end user runs the Summit sample application for ADF Desktop Integration
in JDeveloper, the default browser opens the application home page. The end user can
download various integrated Excel workbooks from the home page.

Figure 2–1 Home page of Summit Sample Application for ADF Desktop Integration

2.3.2 Downloading Integrated Excel Workbooks
The Summit sample application for ADF Desktop Integration provides various
integrated Excel workbooks to meet different requirements. End users can navigate
and download different workbooks using the slider control, or from the Available
Demos dropdown list.

Table 2–2 lists the menu options and the downloaded integrated Excel workbooks.

Table 2–2 Integrated Excel Workbooks of Summit sample application for ADF Desktop
Integration

Menu Option Description

Editable Table Sample Downloads EditCusotmers.xlsx workbook.

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

2-4 Developing Applications with Oracle ADF Desktop Integration

2.4 Overview of the Integrated Excel Workbooks in the Summit Sample
Application for ADF Desktop Integration

The Summit sample application for ADF Desktop Integration provides the
EditCustomers.xlsx, EditWarehouses.xlsx, EditCustomerSearch.xlsx,
and WarehouseLocations.xlsx integrated Excel workbooks.

The EditCustomers.xlsx workbook enable end users to:

■ Download and view customer data in a tabular format

■ Modify and upload the information in the workbook

■ Upload multiple rows of data

The EditWarehouses.xlsx workbook enable end users to:

■ Download and view warehouse data in a navigational format

■ Modify and upload warehouse information in the workbook

■ Upload the updated information immediately when user navigates to another
record.

The EditCustomerSearch.xlsx workbook enable end users to:

■ Download and view customer data in a tabular format

■ Filter customers by Country

The WarehouseLocations.xlsx workbook enable end users to:

■ Download and view warehouse data and their locations in a tabular format

■ Modify and update the region of all warehouses

■ Upload the updated information

Subsequent sections in this chapter provide more information about the functionality
in the workbooks along with cross-references to implementation details.

2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
At runtime, the integrated Excel workbooks in the Summit sample application for
ADF Desktop Integration render an Excel ribbon tab that allows end users to log on to
the Fusion web application. Figure 2–2 shows the runtime Warehouses tab in the
Ribbon of the EditWarehouses.xlsx workbook.

Navigation Form Sample Downloads EditWarehouses.xlsx workbook.

Editable Table with Web
Picker

Downloads EditableCusotmerSearch.xlsx workbook.

Form and Table Quick
Location Change

Downloads WarehouseLocations.xlsx workbook.

Table 2–2 (Cont.) Integrated Excel Workbooks of Summit sample application for ADF
Desktop Integration

Menu Option Description

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

Introduction to the ADF Desktop Integration Sample Application 2-5

Figure 2–2 Runtime Warehouses Tab

2.4.2 Downloading Data Rows
Some workbooks, such as EditCustomers.xlsx workbook, use an ADF Table
component to host information downloaded from the Fusion web application. This
component allows end users to edit rows and upload modified rows to the Fusion web
application.

The following sections provide information about how to implement the download
functionality:

■ Each worksheet that you integrate with a Fusion web application requires an
associated page definition file.

For example, the Customers worksheet in the EditCustomers.xlsx workbook
is associated with the ExcelCustomers.xml page definition file. In JDeveloper,
expand the following nodes in the Applications window to view this file:

ViewController > Application Sources > oracle.summitdi.view > pageDefs

For information about how to configure a page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook."

■ The ADF Table component Download action downloads data from the Fusion
web application to the worksheet. For information about how you invoke this
action, see Section 7.4, "Configuring Oracle ADF Component to Download Data to
an ADF Table Component."

■ In the EditCustomers.xlsx workbook, the worksheet Startup event invokes
an action set that includes the ADF Table component Download action. For
information about configuring worksheet events, see Section 8.2.4, "How to Invoke
an Action Set from a Worksheet Event."

2.4.3 Modify Customers and Warehouses Information in the Workbooks
The EditCustomers.xlsx and EditWarehouses.xlsx workbooks enable end
users to edit customers and warehouses information that the ADF Table component
and form components downloads from the Fusion web application. Columns in the
runtime ADF Table component that have an UpdateComponent property configured
permit end users to modify values and upload the changes to the Fusion web
application. For example, end users can modify the values that appear in the Name,
Phone, and Address columns in EditCustomers.xlsx.

Other columns, such as Status and Changed, appear in the ADF Table component to
provide status information about upload operations and changed columns.

The following sections provide information about how to implement this
functionality:

■ For information about inserting an ADF Table component, see Section 7.3,
"Inserting ADF Table Component into Excel Worksheet."

Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration

2-6 Developing Applications with Oracle ADF Desktop Integration

■ For information about using Excel formulas, see Section 8.10, "Using Calculated
Cells in an Integrated Excel Workbook."

■ For information about special columns, such as Status and Changed, see
Section 7.12, "Special Columns in the ADF Table Component."

2.4.4 Upload Modified Information to the Fusion Web Application
The integrated workbooks allow end users to upload modified data in the ADF Table
component to the Fusion web application. An action set is configured for the
runtime Upload button that invokes the ADF Table component's Upload action. For
information about implementing this functionality, see Section 7.8, "Configuring an
ADF Component to Upload Changes from an ADF Table Component."

3

Setting Up Your Development Environment 3-1

3Setting Up Your Development Environment

This chapter describes how to set up the development environment to integrate an
Excel workbook with a Fusion web application, how to upgrade and remove ADF
Desktop Integration, and how to localize the Visual Studio tools for Microsoft Office.

This chapter includes the following sections:

■ Section 3.1, "About Setting Up Your Development Environment"

■ Section 3.2, "Required Oracle ADF Modules and Third-Party Software"

■ Section 3.3, "Configuring Excel to work with ADF Desktop Integration"

■ Section 3.4, "Installing ADF Desktop Integration"

■ Section 3.5, "Removing ADF Desktop Integration"

■ Section 3.6, "Upgrading ADF Desktop Integration"

■ Section 3.7, "Using an Integrated Excel Workbook with Older Versions of ADF
Desktop Integration"

■ Section 3.8, "Using ADF Desktop Integration on a System with Multiple Instances
of JDeveloper"

3.1 About Setting Up Your Development Environment
Setting up the development environment involves making sure that you have the
correct versions of JDeveloper, Microsoft Office, and Microsoft Internet Explorer
installed, as described in Section 3.2, "Required Oracle ADF Modules and Third-Party
Software."

After verifying that you have the required software, complete the setup of your
development environment by:

■ Allowing ADF Desktop Integration to access Microsoft Excel

■ Installing ADF Desktop Integration

Note: The instructions in this guide assume that you are using
Windows 7 operating system and Microsoft Excel 2007. Note that the
steps might be different for different editions of Windows and Excel.

Required Oracle ADF Modules and Third-Party Software

3-2 Developing Applications with Oracle ADF Desktop Integration

3.2 Required Oracle ADF Modules and Third-Party Software
Before you begin to integrate your Excel workbook with a Fusion web application,
ensure that you have the required Oracle ADF modules and third-party software
installed and configured:

■ Oracle JDeveloper

Install the current release of JDeveloper. ADF Desktop Integration is available as a
JDeveloper feature.

■ Microsoft Windows

Microsoft Windows operating systems support the development and deployment
of Excel workbooks that integrate with Fusion web applications. For more
information about supported versions of Windows, see the "Oracle JDeveloper
and Application Development Framework Certification Information" page on
OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111.html

■ Microsoft Excel

ADF Desktop Integration supports the integration of Fusion web applications with
the following types of Excel workbook:

– Excel Workbook

The default file format for Excel workbooks is the Excel XML-based file format
(.xlsx).

– Excel Macro-Enabled Workbook

Workbooks in this format (.xlsm) use the Excel XML-based file format and
can store VBA macro code.

ADF Desktop Integration does not support the use of other Excel file formats. For
more information about supported versions of Excel, see the "Oracle JDeveloper
and Application Development Framework Certification Information" page on
OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111.html

■ Internet Explorer

Some features in ADF Desktop Integration use a web browser control from the
Microsoft .NET Framework. This browser control relies on the local Internet
Explorer installation to function properly.

ADF Desktop Integration uses Internet Explorer to render web pages inside Excel,
regardless of other browsers installed on the system or any other browser set as
the default browser.

■ Application server

For information about the application servers that you can use to deploy an
application developed using ADF Desktop Integration, see the "Oracle JDeveloper

Note: Microsoft Excel 2003 or older versions of Microsoft Excel are
not supported.

Configuring Excel to work with ADF Desktop Integration

Setting Up Your Development Environment 3-3

and Application Development Framework Certification Information" page on
OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111.html

3.3 Configuring Excel to work with ADF Desktop Integration
You must configure Microsoft Excel settings to make it accessible from ADF Desktop
Integration. You only need to perform this procedure once.

To allow Excel to run an integrated Excel workbook:
1. Open Excel.

2. Click the Microsoft Office button, and choose Excel Options.

3. In the Excel Options dialog, choose the Trust Center tab, and then click Trust
Center Settings.

4. In the Trust Center dialog, choose the Macro Settings tab, and then click the Trust
access to the VBA project object model checkbox, as shown in Figure 3–1.

Figure 3–1 Excel Trust Center Dialog

5. Click OK.

For more information about securing an Excel workbook that is integrated with a
Fusion web application, see Chapter 11, "Securing Your Integrated Excel Workbook."

Installing ADF Desktop Integration

3-4 Developing Applications with Oracle ADF Desktop Integration

3.4 Installing ADF Desktop Integration
When you run the ADF Desktop Integration setup tool, it verifies whether software in
the following list is installed on the system where you want to install the framework. If
one or more of these pieces of software is not installed, the setup tool automatically
downloads and installs it in the order specified.

1. Windows Installer 3.1

2. Microsoft .NET Framework

The Microsoft .NET Framework 4 provides the runtime and associated files
required to run applications developed to target the Microsoft .NET Framework.
You can download the framework from
http://www.microsoft.com/download/.

3. Microsoft Visual Studio 2010 Tools for Office Runtime

The Microsoft Visual Studio 2010 Tools for Office Runtime (version 4) is required
to run VSTO solutions for the Microsoft Office system. You can download the
Microsoft Visual Studio 2010 Tools for Office Runtime from
http://www.microsoft.com/download/.

4. ADF Desktop Integration add-in

You can install the ADF Desktop Integration add-in from JDeveloper, or from the
setup tool provided in MW_HOME\jdeveloper\adfdi. For more information
about how to set up ADF Desktop Integration, see Section 3.4.1, "How to Set Up
ADF Desktop Integration."

Note that the ADF Desktop Integration installation is specific to the current
Windows user profile. If you have multiple Windows user profiles on your system,
and you want to use ADF Desktop Integration integrated Excel workbooks from
some specific user profiles, you must log in to each user profile and install the
ADF Desktop Integration add-in. For more information, see Section 3.4.1, "How to
Set Up ADF Desktop Integration."

3.4.1 How to Set Up ADF Desktop Integration
The ADF Desktop Integration add-in is available in two editions, the Designer edition
and the Runtime edition. Use the Designer edition to create and test integrated Excel
workbooks, and the Runtime edition to enable end users to use ADF Desktop
Integration and integrated Excel workbooks.

Notes:

■ Do not download the Client Profile edition of Microsoft .NET
Framework as it is insufficient to run ADF Desktop Integration.

■ Installation of Microsoft .NET Framework may require you to
restart the system where you install it. After the restart, the setup
tool automatically recommences to finalize installation.

Note: Do not install both editions of ADF Desktop Integration on the
same system.

Installing ADF Desktop Integration

Setting Up Your Development Environment 3-5

Although you do not require administrator privileges to install the ADF Desktop
Integration add-in, administrator privileges may be required to run the installers for
additional software that the installer attempts to download and install. You should
also ensure that the proxy settings for Internet Explorer are configured to allow access
to *.microsoft.com because the installer attempts to automatically download
missing prerequisite software from Microsoft's website.

By default, the installer runs in English. You can change the language that appears by
following the instructions in the "Localizing the ADF Desktop Integration Installer"
section of Administering Oracle ADF Applications.

Before you begin:
It may be helpful to have an understanding of ADF Desktop Integration requirements.
For more information, see Section 3.4, "Installing ADF Desktop Integration."

To install the Designer edition of ADF Desktop Integration:
1. Open JDeveloper.

2. From the Tools menu, choose Install ADF Desktop Integration, as shown in
Figure 3–2.

Figure 3–2 Tools Menu in JDeveloper

3. Follow the instructions that appear in the dialog boxes to successfully install the
required components.

If you encounter an error during the installation process, ensure that you have
removed the previous version of ADF Desktop Integration. For more information,
see Section 3.5, "Removing ADF Desktop Integration."

4. If prompted, click Yes to restart the system and complete the setup of ADF
Desktop Integration.

Note: The Install ADF Desktop Integration menu option is
available only on the Windows installation of JDeveloper.

Removing ADF Desktop Integration

3-6 Developing Applications with Oracle ADF Desktop Integration

If multiple instances of JDeveloper are installed, or if you have an existing instance of
the ADF Desktop Integration add-in on the system, review the information in
Section 3.8, "Using ADF Desktop Integration on a System with Multiple Instances of
JDeveloper" before you perform the installation procedure.

If you want to install the Runtime edition of ADF Desktop Integration, see Section H.1,
"Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop
Integration."

3.5 Removing ADF Desktop Integration
Use the Microsoft Windows Control Panel to remove the ADF Desktop Integration
add-in from the system where you set it up. After removing ADF Desktop Integration,
you can no longer use integrated Excel workbooks on this system unless you reinstall
ADF Desktop Integration.

To remove the ADF Desktop Integration add-in:
1. Click the Windows Start button, and then choose Control Panel.

2. In the Control Panel, select and open Programs and Features.

3. Select the Oracle ADF Desktop Integration Add-in for Excel entry in the
Uninstall or change a program window and click Uninstall.

3.6 Upgrading ADF Desktop Integration
If you are using an old version of ADF Desktop Integration, you must upgrade to the
current version.

To upgrade the ADF Desktop Integration add-in:
1. Uninstall the old version of ADF Desktop Integration.

For more information, see Section 3.5, "Removing ADF Desktop Integration."

2. Download and install the latest version of Oracle JDeveloper.

3. Install the new version of ADF Desktop Integration.

For more information, see Section 3.4, "Installing ADF Desktop Integration."

Tip: You can also install the Designer edition of ADF Desktop
Integration by running setup.exe available in the MW_
HOME\jdeveloper\adfdi\bin\excel\addin\designer
directory.

Note: If you have installed ADF Desktop Integration on multiple
user profiles, you must remove it from each user profile.

Note: If you do not uninstall the old version of ADF Desktop
Integration, an error occurs unless the new installer is in the exact
same location as the old installer.

Upgrading ADF Desktop Integration

Setting Up Your Development Environment 3-7

3.6.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF
Desktop Integration

When you open the integrated Excel workbook after upgrading the ADF Desktop
Integration add-in, the add-in detects and compares the ADF Desktop Integration
version information of the workbook with the version installed on the client system. If
required, you are asked to upgrade the configuration of the integrated workbook to
the version installed on the client.

If you are migrating your integrated Excel workbooks created using the ADF Desktop
Integration client of 11.1.1.3.0 version, or older, the Migrate Workbook dialog appears
confirming your action.

Before you begin:
It may be helpful to have an understanding of ADF Desktop Integration upgrade. For
more information, see Section 3.6, "Upgrading ADF Desktop Integration."

To migrate an integrated Excel workbook after upgrading:
1. Open the integrated Excel workbook.

The Migrate Workbook dialog prompts you to migrate the workbook to the
current version of ADF Desktop Integration, as shown in Figure 3–3.

Figure 3–3 Migrate Workbook Dialog

If you get one or more Microsoft Office Customization Installer error messages
when you open the integrated Excel workbook, ignore the messages and continue.
The error messages appear because ADF Desktop Integration cannot remove the
old version information from the workbook before Excel detects it and reports the
error.

Note: Integrated Excel workbooks created using an older ADF
Desktop Integration client (version X) do not require migration on a
system running a new version of ADF Desktop Integration client
(version X+1), but integrated Excel workbooks used and saved with a
newer client (version X+1) may no longer work with older clients
(version X).

When the integrated Excel workbook is not compatible with the
installed version of the ADF Desktop Integration client, a message is
displayed when you open the workbook. In such a case, you should
install the newer version of the ADF Desktop Integration client in
order to interact with the newer workbook.

Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration

3-8 Developing Applications with Oracle ADF Desktop Integration

2. Click Yes to migrate the workbook. The ADF Desktop Integration migration
process closes the workbook and then reopens it, ready to be used with the current
version of ADF Desktop Integration.

3.7 Using an Integrated Excel Workbook with Older Versions of ADF
Desktop Integration

When you open a workbook created, or last updated, by a newer version of ADF
Desktop Integration on a system running an older version of ADF Desktop
Integration, an error message is displayed if the workbook is incompatible with the
installed client version. An integrated workbook and the installed ADF Desktop
Integration client are incompatible if the first element of their Oracle Release number is
different. For example, an integrated workbook created using version 12.1.2 of ADF
Desktop Integration client is incompatible with the client from version 11.1.1.7.0.

At runtime, ADF Desktop Integration ignores an incompatible workbook. The data in
the workbook is not removed, but ADF Desktop Integration treats the workbook as a
non-integrated workbook and the following functionalities are affected:

■ ADF Desktop Integration does not respond to workbook events (for example,
Activate and Startup)

■ ADF Button components do not respond to events

■ Worksheet command buttons do not appear in the Excel Ribbon

In design mode, or test mode, the workbook continues to function as expected, but
you might notice some unknown exceptions and functionality issues.

3.8 Using ADF Desktop Integration on a System with Multiple Instances
of JDeveloper

There can be only one active installation of ADF Desktop Integration on a given
system. By default, when you install JDeveloper, ADF Desktop Integration is extracted
to MW_HOME\jdeveloper\adfdi . If you move to another version of JDeveloper
installed in a different directory, you should remove the old version of ADF Desktop
Integration, as described in Section 3.5, "Removing ADF Desktop Integration." You
should then set up ADF Desktop Integration from the new version of JDeveloper, as
described in Section 3.4, "Installing ADF Desktop Integration," to keep ADF Desktop
Integration consistent with JDeveloper.

Alternatively, you can set up ADF Desktop Integration in a directory that is
independent of your JDeveloper installation. This approach means that you do not
have to remove ADF Desktop Integration before moving to a newer version.

To set up ADF Desktop Integration in an independent directory:
1. Create a directory independent of the JDeveloper installation directory. For

example, you may create the following directory:

D:\adfdi-excel-setup

Tip: To see the release number of the installed client and integrated
workbook, examine the values of ADF Desktop Integration and
Workbook Edited by Version entries in Versions tab of the About
ADF Desktop Integration dialog box.

Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper

Setting Up Your Development Environment 3-9

2. When you move to a newer version of JDeveloper, copy the contents of the
following directory:

MW_HOME\jdeveloper\adfdi\bin\excel\addin\designer

to:

D:\adfdi-excel-setup

where MW_HOME is the Middleware Home directory.

3. Run the setup.exe tool located in D:\adfdi-excel-setup.

4. Follow the instructions that appear in the dialog boxes launched by setup.exe to
set up the new version of ADF Desktop Integration.

5. If prompted, click Yes to restart the system and complete the setup of ADF
Desktop Integration.

WARNING: After you install ADF Desktop Integration, do not
delete the directory where you copied the setup files. You can delete
the files after removing ADF Desktop Integration from the system.

Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper

3-10 Developing Applications with Oracle ADF Desktop Integration

4

Preparing Your Integrated Excel Workbook 4-1

4Preparing Your Integrated Excel Workbook

This chapter describes how to prepare Excel workbooks and integrate them with
Fusion web applications using ADF Desktop Integration, how to use the page
definition files with an integrated Excel workbook, and how to enable ADF Desktop
Integration manually to integrate an existing workbook with the Fusion web
application.

This chapter includes the following sections:

■ Section 4.1, "About Preparing Your Integrated Excel Workbooks"

■ Section 4.2, "Adding an Integrated Excel Workbook to a Fusion Web Application"

■ Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook"

■ Section 4.4, "Enabling ADF Desktop Integration Manually"

4.1 About Preparing Your Integrated Excel Workbooks
This chapter (and the guide as a whole) assumes that you have developed a
functioning Fusion web application, as described in the Developing Fusion Web
Applications with Oracle Application Development Framework.

Having developed the Fusion web application, you perform the tasks described in this
chapter to configure an integrated Excel workbook with the Fusion web application.
The subsequent chapters of the guide enable you to configure the integrated workbook
with advanced features, such as configuration with Oracle ADF functionality, and
adding Oracle ADF components that provide the functionality you require at runtime.

4.2 Adding an Integrated Excel Workbook to a Fusion Web Application
The Fusion web application is automatically enabled with ADF Desktop Integration
when you add an integrated Excel workbook to a project. An integrated Excel
workbook enables you to add ADF components and ADF data bindings.

Note: Before you start, ensure that the Designer edition of ADF
Desktop Integration is installed. For more information about the ADF
Desktop Integration editions, see Section 3.4, "Installing ADF Desktop
Integration."

Adding an Integrated Excel Workbook to a Fusion Web Application

4-2 Developing Applications with Oracle ADF Desktop Integration

4.2.1 How to Add an Integrated Excel Workbook to a Fusion Web Application
To add an integrated Excel workbook, open the Fusion web application in JDeveloper
and add an Excel workbook to the project from New Gallery.

Before you begin:
It may be helpful to have an understanding of adding ADF Desktop Integration to a
Fusion web application. For more information, see Section 4.2, "Adding an Integrated
Excel Workbook to a Fusion Web Application."

To add an integrated Excel workbook in JDeveloper:
1. Open the Fusion web application in JDeveloper.

2. In the Applications window, select the user interface project, such as
ViewController, to which you want to add the new integrated Excel workbook.

3. From the File menu, choose New > From Gallery.

4. In the New Gallery, expand Client Tier, select ADF Desktop Integration, then
Microsoft Excel Workbook, and then click OK.

Figure 4–1 shows the New Gallery with ADF Desktop Integration category and
the Microsoft Excel Workbook option.

Figure 4–1 New Gallery - Microsoft Excel Workbook

Click OK.

5. In the Create ADF Desktop Integration-Enabled Excel Workbook dialog, if
required, edit the file name of the workbook and its location.

By default, the integrated Excel workbook is saved as adfdi-workbook.xlsx in
the <PROJECT_HOME>\src\excel directory of the selected project. Although
you can save the workbook anywhere you choose, you should save the workbook
with the other files of the Fusion web application.

6. Click OK.

Adding an Integrated Excel Workbook to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-3

JDeveloper adds the integrated Excel workbook into the Fusion web application, and
automatically enables the project with ADF Desktop Integration. Figure 4–2 shows the
ViewController project in the Applications window.

Figure 4–2 adfdi-workbook.xlsx in Applications Window

4.2.2 How to Configure a New Integrated Excel Workbook
After adding the integrated Excel workbook, you must configure it.

Before you begin:
It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Section 4.2, "Adding an
Integrated Excel Workbook to a Fusion Web Application."

To configure a new integrated Excel workbook:
1. Open the integrated Excel workbook.

■ If you have saved the workbook with other files of the Fusion web application,
the Page Definition dialog automatically appears, as illustrated in Figure 4–3.

Figure 4–3 Page Definition Dialog

Select the page definition file for the active worksheet from the Page
Definition dialog, and click OK.

■ If you have saved the workbook elsewhere, configure the workbook as
described in Section 4.4.3, "How to Manually Configure a New Integrated
Excel Workbook."

Adding an Integrated Excel Workbook to a Fusion Web Application

4-4 Developing Applications with Oracle ADF Desktop Integration

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, set or verify the values for the following
properties so that you can switch between design mode and test mode as you
configure the workbook:

■ ApplicationHomeFolder

The value for this property corresponds to the absolute path for the root
directory of the JDeveloper application workspace (.jws). If the workbook is
located within the JDeveloper application workspace, the value of the
ApplicationHomeFolder workbook property is assigned automatically.

■ Project

The value for this property corresponds to the name of the JDeveloper project
(.jpr) in the JDeveloper application workspace. To change the project, click
the browse (...) icon and choose the project from the Project dialog, which lists
the projects defined in the JDeveloper application workspace.

By default, Project is set to the name of the project that contains the Excel
document. ADF Desktop Integration loads the names of the available projects
from the application_name.jws specified as a value for
ApplicationHomeFolder.

■ WebAppRoot

Set the value for this property to the fully qualified URL for the web context
root that you want to integrate the Fusion web application with. The fully
qualified URL has the following format:

http://<hostname>:<portnumber>/context-root

In JDeveloper, you specify the web context root (context-root) in the Java
EE Application page of the Project Properties dialog. Figure 4–4 shows the
web context root used for the Summit sample application for ADF Desktop
Integration in JDeveloper and integrated Excel workbook.

Note: If you are opening the Excel file after moving the application
directory, ensure that the ApplicationHomeFolder property's
value reflects the correct path.

Adding an Integrated Excel Workbook to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-5

Figure 4–4 Setting Web Context Root in JDeveloper and Integrated Excel Workbook

Note that the fully qualified URL is similar to the following if you set up a test
environment on the system using the Summit sample application for ADF
Desktop Integration, as shown in Figure 4–5.

http://localhost:7101/summit

Adding an Integrated Excel Workbook to a Fusion Web Application

4-6 Developing Applications with Oracle ADF Desktop Integration

Figure 4–5 Home Page of Summit Sample Application for ADF Desktop Integration in a
Browser

For information about how to verify that the Fusion web application is online
and that it supports ADF Desktop Integration, see Section C.1, "Verifying That
Your Fusion Web Application Supports ADF Desktop Integration."

If you are integrating an Excel file with a secure Fusion web application, you
should use the https protocol while entering the value for WebAppRoot. For
more information about securing the Fusion web application, see Developing
Applications with the WebLogic Security Service.

■ WebPagesFolder

Set the value for this property to the directory that contains web pages for the
Fusion web application. The directory path should be relative to the value of
ApplicationHomeFolder. For example, in the EditCustomers-DT.xlsx
workbook, WebPagesFolder is set to ViewController\public_html.

Figure 4–6 shows an example of workbook properties in the Edit Workbook
Properties dialog of the Summit sample application for ADF Desktop Integration
EditCustomers-DT.xlsx workbook.

Adding an Integrated Excel Workbook to a Fusion Web Application

Preparing Your Integrated Excel Workbook 4-7

Figure 4–6 Edit Workbook Properties Dialog

4. Click OK.

5. Save the Excel workbook.

4.2.3 How to Add Additional Worksheets to an Integrated Excel Workbook
To use Oracle ADF functionality, associate each worksheet with a page definition file.
You associate a page definition file with a worksheet when you add a worksheet to the
integrated Excel workbook. You can integrate multiple worksheets in an integrated
Excel workbook with a Fusion web application. Use a different page definition file for
each worksheet in the integrated Excel workbook.

Before you begin:
It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Section 4.2, "Adding an
Integrated Excel Workbook to a Fusion Web Application."

To associate a page definition file with an Excel worksheet:
1. While the Excel workbook is in design mode, click the Home tab in the Excel

ribbon, and then choose Insert > Insert Sheet in the Cells group.

2. In the Choose Page Definition dialog, select the page definition file.

This populates the bindings palette in the ADF Desktop Integration task pane with
the bindings contained in the page definition file. You can now configure the
worksheet with Oracle ADF functionality.

Note: In Step 1, if the fully qualified path of the selected page
definition file contains more than 259 characters, a warning message
will appear when the Workbook Properties dialog is closed, and the
page definition will not be loaded.

Working with Page Definition Files for an Integrated Excel Workbook

4-8 Developing Applications with Oracle ADF Desktop Integration

4.2.4 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion
Web Application from JDeveloper

When you deploy the ADF Desktop Integration-enabled Fusion web application from
JDeveloper, references to the ADF Desktop Integration shared libraries are added to
the appropriate descriptor files. For any Fusion web application that contains one or
more projects referencing the ADF Desktop Integration Model API library or the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Model API shared library is added during deployment.

For any web application module (WAR) project that contains a reference to the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Runtime shared library is added during deployment.

4.2.4.1 Fusion Web Application is Deployed on Oracle WebLogic Server
When you deploy the Fusion web application on Oracle WebLogic Server, the
following happens:

■ The META-INF/weblogic-application.xml file of the deployed application
EAR file contains a library reference to
oracle.adf.desktopintegration.model.

For example:

<library-ref>
 <library-name>oracle.adf.desktopintegration.model</library-name>
</library-ref>

The shared library is delivered in MW_HOME/oracle_
common/modules/oracle.adf.desktopintegration.model_12.1.2, in
the oracle.adf.desktopintegration.model.ear.

■ The WEB-INF/weblogic.xml file of the deployed web application WAR file
contains a library reference to oracle.adf.desktopintegration.

For example:

<library-ref>
 <library-name>oracle.adf.desktopintegration</library-name>
</library-ref>

The shared library is delivered in MW_HOME/oracle_
common/modules/oracle.adf.desktopintegration_12.1.2, in the
oracle.adf.desktopintegration.war.

4.3 Working with Page Definition Files for an Integrated Excel Workbook
Page definition files define the bindings that populate the data in the Oracle ADF
components at runtime. Page definition files also reference the action bindings and
method action bindings that define the operations or actions to use on this data. You

Note: If you get an error message Programmatic access to Visual
Basic Project is not trusted when you run an integrated Excel
workbook after inserting a new worksheet, enable the Trust access to
the VBA project object model checkbox in Excel Options. For more
information, see Section 3.3, "Configuring Excel to work with ADF
Desktop Integration."

Working with Page Definition Files for an Integrated Excel Workbook

Preparing Your Integrated Excel Workbook 4-9

must define a separate page definition file for each Excel worksheet that you are going
to integrate with a Fusion web application. The integrated Excel workbook can include
worksheets that do not reference page definition files.

The ADF Desktop Integration task pane displays only those bindings that ADF
Desktop Integration supports in the bindings palette. If a page definition file
references a binding that ADF Desktop Integration does not support (for example, a
graph binding), it is not displayed.

Table 4–1 lists and describes the binding types that the ADF Desktop Integration
module supports.

For information about the bindings that components in ADF Desktop Integration use,
see Appendix A, "ADF Desktop Integration Component Properties and Actions."

For information about the elements and attributes in page definition files, see the
"pageNamePageDef.xml" section of the Developing Fusion Web Applications with Oracle
Application Development Framework.

For information about ADF data binding and page definition files in a Fusion web
application, see the "Using ADF Model in a Fusion Web Application" chapter of the
Developing Fusion Web Applications with Oracle Application Development Framework.

4.3.1 How to Create ADF Desktop Integration Page Definition File
You create and configure a page definition file that determines the Oracle ADF
bindings to expose in the JDeveloper project.

Before you begin:
It may be helpful to have an understanding of page definition files. For more
information, see Section 4.3, "Working with Page Definition Files for an Integrated
Excel Workbook."

Table 4–1 Binding Requirements for ADF Desktop Integration Components

ADF Desktop
Integration
component Supported Binding Additional comments

ADF Input Text Attribute binding

ADF Output Text Attribute binding

ADF Label Attribute and list bindings This ADF Desktop Integration component
uses the label property of a control binding.

ADF List of
Values

List binding

Tree Node List Tree binding attributes and
list binding

Tree binding attributes must be associated
with a model-driven list.

ADF Button Various The ADF Button component in ADF Desktop
Integration can invoke action sets. Action sets
can reference action bindings, method action
bindings, or actions exposed by components
in ADF Desktop Integration. For more
information about action sets, see Section 8.2,
"Using Action Sets."

ADF Read-only
Table

Tree binding

ADF Table Tree binding

Working with Page Definition Files for an Integrated Excel Workbook

4-10 Developing Applications with Oracle ADF Desktop Integration

To create an ADF Desktop Integration page definition file:
1. Open the Fusion web application in JDeveloper.

2. In the Applications window, select the user interface project, such as
ViewController, to which you want to add the page definition file.

3. From the File menu, choose New > From Gallery.

4. In the New Gallery, expand Client Tier, select ADF Desktop Integration, then
ADF Desktop Integration Page Definition, and then click OK.

Figure 4–7 shows the New Gallery with ADF Desktop Integration category and
the ADF Desktop Integration Page Definition option.

Figure 4–7 New Gallery - ADF Desktop Integration Page Definition

Click OK.

5. In the Create ADF Desktop Integration Page Definition dialog, if required, edit the
page definition file name.

6. Click OK.

JDeveloper adds the page definition into the Fusion web application and opens the
new page definition's editor. Figure 4–8 shows the ViewController project with the
new page definition in the Applications window.

Working with Page Definition Files for an Integrated Excel Workbook

Preparing Your Integrated Excel Workbook 4-11

Figure 4–8 adfdiPageDefn.xml in Applications Window

For information about working with page definition files, see the "Working with Page
Definition Files" section in the Developing Fusion Web Applications with Oracle
Application Development Framework.

4.3.2 What Happens When You Create a Page Definition File
JDeveloper creates the DataBindings.cpx file the first time you add a page
definition file in the JDeveloper project using the procedure described in Section 4.3.1,
"How to Create ADF Desktop Integration Page Definition File."

The DataBindings.cpx file defines the binding context for the Fusion web
application and provides the configuration from which the Oracle ADF bindings are
created at runtime. Information about working with this file can be found in the
"Working with the DataBindings.cpx File" section of the Developing Fusion Web
Applications with Oracle Application Development Framework. Information about the
elements and attributes in the file can be found in the "DataBindings.cpx" section of
the same guide.

4.3.3 How to Reload a Page Definition File in an Excel Workbook
If you make changes in your JDeveloper desktop integration project to a page
definition file that is associated with an Excel worksheet, rebuild the JDeveloper
desktop integration project and reload the page definition file in the Excel worksheet
to ensure that the changes appear in the ADF Desktop Integration task pane. You
associate a page definition file with an Excel worksheet when you choose the page
definition file, as described in Section 4.2.2, "How to Configure a New Integrated Excel
Workbook."

The Oracle ADF tab provides a button that reloads all page definition files in an Excel
workbook.

Errors may occur when you switch an integrated Excel workbook from design mode
to runtime if you do not rebuild the JDeveloper desktop integration project and restart
the application after making changes to a page definition file. For example, if you:

■ Remove an element in a page definition file

■ Do not rebuild and restart the Fusion web application

■ Or do not reload the page definition file in the integrated Excel workbook

an error message such as the following may appear when you attempt to switch a
workbook to test mode:

[ADFDI-05530] unable to initialize worksheet: MyWorksheet
[ADFDI-05517] unable to find control MyBindingThatWasRemoved

Working with Page Definition Files for an Integrated Excel Workbook

4-12 Developing Applications with Oracle ADF Desktop Integration

Before you begin:
It may be helpful to have an understanding of page definition files. For more
information, see Section 4.3, "Working with Page Definition Files for an Integrated
Excel Workbook."

To reload page definition files in an Excel workbook:
1. Ensure that you have saved the updated page definition file in JDeveloper.

2. In the Excel workbook, click the Refresh Bindings button in the Components
group of the Oracle ADF tab.

For information about the Refresh Bindings button, see Section 5.1, "About
Development Tools."

After reloading the page definition file, the ADF Desktop Integration task pane of the
worksheet displays the same bindings that are available in its associated page of the
Fusion web application. For example, Figure 4–9 shows the bindings in the
ExcelCustomersPageDef.xml page definition file and the same bindings in the
worksheet of the EditCustomers-DT.xlsx workbook.

Figure 4–9 Page Definition Bindings in JDeveloper and Integrated Excel Workbook

4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook

Note the following points about page definition files in an ADF Desktop Integration
project:

■ Integrating Multiple Excel Worksheets: You can integrate multiple worksheets in
an Excel workbook with a Fusion web application. You associate a page definition
file with each worksheet as described in Section 4.2.3, "How to Add Additional
Worksheets to an Integrated Excel Workbook."

■ EL Expressions in a Page Definition File: Use the following syntax to write EL
expressions in a page definition file:

Dynamic (${})

Enabling ADF Desktop Integration Manually

Preparing Your Integrated Excel Workbook 4-13

Do not use the syntax Deferred (#{}) to write EL expressions. EL expressions
using this syntax generate errors because they attempt to access the ADF Faces
context, which is not available.

4.4 Enabling ADF Desktop Integration Manually
To enable ADF Desktop Integration in the Fusion web application without adding the
integrated Excel workbook, you must add the ADF Desktop Integration feature
manually.

4.4.1 How to Manually Add ADF Desktop Integration In Fusion Web Application
Use the Project Properties dialog in JDeveloper to add ADF Desktop Integration to the
feature list of your project.

Before you begin:
It may be helpful to have an understanding of adding ADF Desktop Integration to a
Fusion web application. For more information, see Section 4.4, "Enabling ADF Desktop
Integration Manually."

To manually add ADF Desktop Integration to your project:
1. Open the project in JDeveloper.

2. In the Applications window, right-click the project to which you want to add ADF
Desktop Integration and choose Project Properties.

If the application uses the Fusion Web Application (ADF) application template,
select the user interface project, such as ViewController. If the application uses
another application template, select the project that corresponds to the web
application.

3. In the Project Properties dialog, select Features to view the list of available
features.

4. Click Add Features.

5. In the Add Features dialog, select the ADF Desktop Integration feature and add it
to the Selected list, as shown in Figure 4–10.

Note: EL expressions that you write for ADF Desktop Integration
component in the integrated Excel workbook, such as the Input Text
component, must use the Deferred (#{}) syntax.

Enabling ADF Desktop Integration Manually

4-14 Developing Applications with Oracle ADF Desktop Integration

Figure 4–10 Add Features Dialog

6. Click OK to close the Add Features dialog.

7. Click OK to close the Project Properties dialog.

For more information about what happens when you add ADF Desktop Integration,
see Section 4.4.4, "What Happens When You Add ADF Desktop Integration to Your
JDeveloper Project."

4.4.2 How to Enable ADF Desktop Integration in an Existing Workbook
To integrate an existing workbook with the ADF Desktop Integration enabled Fusion
web application, you must manually enable ADF Desktop Integration for the
workbook. For information about the file formats of Excel workbooks that you can
convert for integration with a Fusion web application, see Section 3.2, "Required
Oracle ADF Modules and Third-Party Software."

Before you begin:
It may be helpful to have an understanding of adding integrated Excel workbook to a
Fusion web application. For more information, see Section 4.4, "Enabling ADF Desktop
Integration Manually."

To enable ADF Desktop Integration in an existing Excel workbook:
1. In Excel, open the workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Enable Workbook dialog, click Yes, as shown in Figure 4–11.

Note: If you plan to distribute integrated Excel workbooks by
adding them to ADF library files through EAR and JAR files, add
ADF Library Web Application Support to your project. For more
information, see Section 4.4.5, "Adding ADF Library Web Application
Support."

Enabling ADF Desktop Integration Manually

Preparing Your Integrated Excel Workbook 4-15

Figure 4–11 Enable Workbook Dialog

ADF Desktop Integration prepares your workbook, displays the ADF Desktop
Integration Designer task pane, and opens the Browse For Folder dialog. For more
information, see Section 4.4.3, "How to Manually Configure a New Integrated
Excel Workbook."

4. Save the workbook.

Although you can store the Excel workbooks that you integrate with Fusion web
applications anywhere you choose, there are several advantages to storing them with
the other files of the Fusion web application. Some of these advantages are:

■ Source control of the workbooks

■ Facilitating the download of workbooks from web pages

■ The file system folder picker that appears the first time a workbook is opened
defaults to the location where you store the workbook

For example, the Summit sample application for ADF Desktop Integration stores the
Excel workbooks it integrates in the following subdirectory:

Summit_HOME\ViewController\src\oracle\summitdi\excel

where Summit_HOME is the root directory that stores the source files for the Summit
sample application for ADF Desktop Integration.

4.4.3 How to Manually Configure a New Integrated Excel Workbook
After enabling ADF Desktop Integration manually in a workbook, you would need to
configure it.

Before you begin:
It may be helpful to have an understanding of adding an integrated Excel workbook to
a Fusion web application. For more information, see Section 4.4, "Enabling ADF
Desktop Integration Manually."

To manually configure a new integrated Excel workbook:
1. Open the integrated Excel workbook.

The Browse For Folder dialog automatically appears, as illustrated in Figure 4–12.

Enabling ADF Desktop Integration Manually

4-16 Developing Applications with Oracle ADF Desktop Integration

Figure 4–12 Browse For Folder Dialog

Use the Browse for Folder dialog to select the JDeveloper application home
directory. In a typical JDeveloper project, the JDeveloper application home
directory stores the application_name.jws file. The value you select is
assigned to the ApplicationHomeFolder workbook property.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, configure the properties as described in
Step 3 of Section 4.2.2, "How to Configure a New Integrated Excel Workbook."

4. Click OK.

5. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

6. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the Page
Definition input field and select a page definition file from the Page Definition
dialog, as shown in Figure 4–13.

Note: The Browse for Folder dialog does not appear if the workbook
is located within the JDeveloper application workspace. In such a
case, the value of the ApplicationHomeFolder workbook property
is assigned automatically.

Enabling ADF Desktop Integration Manually

Preparing Your Integrated Excel Workbook 4-17

Figure 4–13 Page Definition Dialog

7. Click OK.

The Excel worksheet appears with ADF Desktop Integration in the task pane. The
bindings of the page definition file that you selected in Step 6, appear in the
Bindings tab.

8. Save the Excel workbook.

By default, when you prepare a new Excel workbook with ADF Desktop Integration, it
is assumed that the workbook will be integrated with an unsecure Fusion web
application. If you want to integrate a workbook with a secure Fusion web application,
see Chapter 11, "Securing Your Integrated Excel Workbook."

4.4.4 What Happens When You Add ADF Desktop Integration to Your JDeveloper
Project

When you add the ADF Desktop Integration feature to a project, the following events
occur:

■ The project adds the ADF Desktop Integration runtime library. This library
references the following .jar files in its class path:

– adf-desktop-integration.jar

– adf-desktop-integration-model-api.jar

– resourcebundle.jar

■ The project's deployment descriptor (web.xml) is modified to include the
following entries:

– An ADF bindings filter (adfBindings)

– A servlet named adfdiRemote

Enabling ADF Desktop Integration Manually

4-18 Developing Applications with Oracle ADF Desktop Integration

– A filter named adfdiExcelDownload

– A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding ADF Desktop Integration to a project
makes other changes to web.xml. Note that some entries in web.xml are added
only if they do not already appear in the file.

4.4.5 Adding ADF Library Web Application Support
If you want to distribute integrated workbooks by adding them to ADF library files,
add ADF Library web application support to the Fusion web application. For more
information, see the "Packaging a Reusable ADF Component into an ADF Library"
section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

When updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

Figure 4–14 shows the Filters tab of the overview editor of the web.xml in
JDeveloper.

Figure 4–14 Filters Tab of web.xml

You should also update the include-extension-list initialization parameter to
add the Excel file extensions (such as .xlsx and .xlsm), as shown in Figure 4–15.

Note: The value for the url-pattern attribute of the
servlet-mapping element for adfdiRemote must match the value
of the RemoteServletPath workbook property described in
Table A–18.

Enabling ADF Desktop Integration Manually

Preparing Your Integrated Excel Workbook 4-19

Figure 4–15 ADFLibraryFilter Using include-extension-list Parameter

For more information about web.xml, see Appendix D, "ADF Desktop Integration
Settings in the Web Application Deployment Descriptor."

Enabling ADF Desktop Integration Manually

4-20 Developing Applications with Oracle ADF Desktop Integration

5

Getting Started with the Development Tools 5-1

5Getting Started with the Development Tools

This chapter describes how to use the development tools (such as Bindings Palette,
Components Palette, Property Inspector, and Expression Builder) provided by ADF
Desktop Integration. It provides an overview of the development environment that
ADF Desktop Integration exposes in the Excel Ribbon.

This chapter includes the following sections:

■ Section 5.1, "About Development Tools"

■ Section 5.2, "Designer Ribbon Tab"

■ Section 5.3, "ADF Desktop Integration Designer Task Pane"

■ Section 5.4, "Using the Bindings Palette"

■ Section 5.5, "Using the Components Palette"

■ Section 5.6, "Using the Property Inspector"

■ Section 5.7, "Using the Binding ID Picker"

■ Section 5.8, "Using the Expression Builder"

■ Section 5.9, "Using the Web Page Picker"

■ Section 5.10, "Using the File System Folder Picker"

■ Section 5.11, "Using the Page Definition Picker"

■ Section 5.12, "Using the Collection Editors"

■ Section 5.13, "Using the Cell Context Menu"

■ Section 5.14, "Removing ADF Desktop Integration Components"

■ Section 5.15, "Exporting and Importing Excel Workbook Integration Metadata"

5.1 About Development Tools
ADF Desktop Integration provides several tools to configure Excel workbooks so that
they can access Oracle ADF functionality. Using these tools you configure the
workbook and corresponding worksheets to display, and edit, data from the Fusion
web application in the integrated Excel workbook. The tools are available in the Oracle
ADF tab and in the ADF Desktop Integration Designer task pane.

ADF Desktop Integration development tools include the following tools, also shown in
Figure 5–1:

■ Bindings Palette

■ Components Palette

About Development Tools

5-2 Developing Applications with Oracle ADF Desktop Integration

■ Property Inspector

■ Binding ID Picker

■ Expression Builder

■ Web Page Picker

■ File System Folder Picker

■ Page Definition Picker

■ Collection Editors

Figure 5–1 ADF Desktop Integration Development Tools

ADF Desktop Integration provides two modes, design mode and the test mode, in
which you can work while you configure the Excel workbook.

In design mode, you use the tools provided by Oracle ADF in Excel to design and
configure the integrated Excel workbook. In test mode, you can view and test the
changes you made in the design mode, in the same way that the end user views the
published integrated Excel workbook.

5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples
You use the development tools to configure and design the integrated Excel
workbook. For example, as shown in Figure 5–2, in EditCustomers-DT.xlsx a

Designer Ribbon Tab

Getting Started with the Development Tools 5-3

binded ADF Table component is inserted in the integrated Excel workbook using the
Customers binding from the Bindings palette.

Figure 5–2 ADF Desktop Integration Components and Bindings

Other ADF Desktop Integration components, such as ADF Button and ADF Label, are
inserted from the Components palette, and configured using the Property Inspector
and Expression Builder.

5.1.2 Additional Functionality for ADF Desktop Integration Development Tools
After adding the desired components and configuring your work, you may find that
you need additional functionality such as changing the appearance of the workbook,
and localizing it. Following are links to other functionality that you can use:

■ Localization: You can customize the integrated Excel workbook as part of the
process to internationalize and localize with the Fusion web application. For more
information, see Chapter 10, "Internationalizing Your Integrated Excel Workbook."

■ Styles: You can configure the display of your components using several
predefined Excel styles. For more information, see Section 9.2, "Working with
Styles."

■ EL Expressions: You can use EL expressions with the ADF Desktop Integration
components. For more information, see Appendix B, "ADF Desktop Integration EL
Expressions."

5.2 Designer Ribbon Tab
You use the Oracle ADF tab, also called as Designer Ribbon tab, for various tasks such
as configuring the integrated workbook and worksheets properties, insert Oracle ADF
components and edit their properties, run the workbook in test mode, and publish the
workbook. The Oracle ADF tab, also shown in Figure 5–3, provides various buttons in
design mode.

Figure 5–3 Oracle ADF Tab in Design Mode

Tip: To access Oracle ADF tab from the keyboard, press Alt+C. Press
the Alt key again to view the shortcut keys for Oracle ADF tab
command buttons.

Designer Ribbon Tab

5-4 Developing Applications with Oracle ADF Desktop Integration

You can use Oracle ADF tab buttons to invoke the actions described in Table 5–1.

Table 5–1 Oracle ADF Tab Options

In this
group... Click this button... To...

Mode when the
button is
available...

Workbook Display the Edit Workbook
Properties dialog to view and
edit integrated Excel workbook
properties.

The button is also used to enable
ADF Desktop Integration in a
non-integrated Excel workbook.

Design

Workbook Display the Edit Worksheet
Properties dialog to view and
edit the current worksheet
properties.

Design

Workbook Open the About ADF Desktop
Integration dialog that provides
version and property
information of integrated Excel
workbook.

The button is also available in
non-integrated Excel workbooks
after ADF Desktop Integration
is installed.

Design, Test

Workbook Open the Save Workbook
Definition as dialog that exports
the current workbook definition
as .xml file.

Design

Workbook Open the Choose Workbook
Definition File to Import dialog
that imports the workbook
integration metadata from the
saved .xml file.

Design

ADF
Components

Display a dropdown list of
Oracle ADF components that
you can insert in the selected
cell.

Design

ADF
Components

Display the property inspector
window to view and edit
component properties of the
selected component.

Design

ADF
Components

Delete the selected component
from the Excel worksheet.

Design

Designer Ribbon Tab

Getting Started with the Development Tools 5-5

ADF
Components

■ Reload the application
workspace file (.jws) and
project file (.jpr)
referenced by the workbook
properties of the integrated
Excel workbook.

■ Refresh all information
from the page definition
files used in the active
integrated Excel workbook.

Any modifications that you
made to the page definition files
in the JDeveloper project now
become available in the Excel
workbook. For more
information, see Section 4.3.3,
"How to Reload a Page
Definition File in an Excel
Workbook."

Design

Test Validate the Excel workbook
configuration against ADF
Desktop Integration validation
rules.

For more information about
validating a workbook, see
Section 13.3, "Validating the
Integrated Excel Workbook
Configuration."

Design

Test Switch the Excel workbook from
design mode to test mode. This
button is active only when you
are in design mode.

Design

Test Switch the Excel workbook from
test mode to design mode. This
button is active only when you
are in test mode.

For more information about
switching between design mode
and test mode, see Section 13.4,
"Testing Your Integrated Excel
Workbook."

Test

Logging Display a dialog to review the
client-side log entries. For more
information, see Section C.3.2,
"About Client-Side Logging."

Design, Test

Logging Display the Set Output Level
dialog to choose client-side log
output level. For more
information, see Section C.3.2,
"About Client-Side Logging."

Design, Test

Table 5–1 (Cont.) Oracle ADF Tab Options

In this
group... Click this button... To...

Mode when the
button is
available...

ADF Desktop Integration Designer Task Pane

5-6 Developing Applications with Oracle ADF Desktop Integration

5.3 ADF Desktop Integration Designer Task Pane
The development tools in ADF Desktop Integration Designer Task Pane are organized
in two palettes, the Bindings palette and the Component palette. You use the Bindings
palette of ADF Desktop Integration Designer task pane to insert a predefined binding
into the integrated Excel workbook. ADF Desktop Integration inserts an Oracle ADF
component that references the binding you selected, and prepopulates the properties
of the Oracle ADF component with appropriate values. Similarly, you use the
Components palette to insert an Oracle ADF component in the integrated Excel
workbook. Figure 5–4 displays the ADF Desktop Integration Designer task pane.

Logging Create a new temporary logging
listener to act as a client-side log
output file. For more
information, see Section C.3.2,
"About Client-Side Logging."

Design, Test

Logging Reload the ADF Desktop
Integration configuration file.
For more information, see
Section C.3.2, "About
Client-Side Logging."

Design, Test

Publish Publish the Excel workbook
after you complete the
integration between the Excel
workbook and the Fusion web
application.

For more information about
publishing an integrated Excel
workbook, see Chapter 14,
"Deploying Your Integrated
Excel Workbook."

Design

Tip: For quick and easy access, you can add Oracle ADF tab buttons
to the Excel Quick Access toolbar.

Table 5–1 (Cont.) Oracle ADF Tab Options

In this
group... Click this button... To...

Mode when the
button is
available...

Using the Bindings Palette

Getting Started with the Development Tools 5-7

Figure 5–4 ADF Desktop Integration Designer Task Pane

You invoke the ADF Desktop Integration Designer task pane through launcher buttons
(highlighted by the red boxes in Figure 5–5) available in the bottom-right corner of the
Workbook and ADF Components group on the Oracle ADF tab.

Figure 5–5 ADF Desktop Integration Designer Task Pane Launcher Buttons

Table 5–2 lists the view tabs and links that appear in the task pane, provides a brief
description of each item.

5.4 Using the Bindings Palette
The bindings palette presents the available Oracle ADF bindings that you can insert
into the Excel worksheet. The page definition file for the current Excel worksheet
determines what Oracle ADF bindings appear in the bindings palette. Figure 5–6
shows a bindings palette populated with Oracle ADF bindings in the ADF Desktop

Table 5–2 Overview of ADF Desktop Integration Designer Task Pane

Task Pane UI Element Description

Workbook Properties Click to display the Edit Workbook Properties dialog. This
dialog enables you to view and edit properties that affect the
whole workbook. Examples include properties that reference the
directory paths to page definition files, the URL for your Fusion
web application, and so on.

Worksheet Properties Click to display the Edit Worksheet Properties dialog. This
dialog enables you to view and edit properties specific to the
active worksheet. An example is the file name of the page
definition file that you associate with the worksheet.

About Click to display the About dialog. This dialog provides the
version and property information that can be useful when
troubleshooting an integrated Excel workbook. For example, it
provides information about the underlying Microsoft .NET and
Oracle ADF frameworks that support an integrated Excel
workbook.

Using the Bindings Palette

5-8 Developing Applications with Oracle ADF Desktop Integration

Integration Designer task pane. Note that the bindings palette does not display
bindings that an integrated Excel workbook cannot use, so the bindings that appear
may differ from those that appear in the page definition file viewed in JDeveloper.

Figure 5–6 Oracle ADF Bindings Palette in the ADF Desktop Integration Designer Task
Pane

You use the bindings palette in design mode to insert a binding. When you attempt to
insert a binding, ADF Desktop Integration inserts an Oracle ADF component that
references the binding you selected. ADF Desktop Integration also prepopulates the
properties of the Oracle ADF component with appropriate values. For example, if you
insert a binding, such as the Commit (action) binding illustrated in Figure 5–6, the
property inspector for an Oracle ADF Button component appears. This Oracle ADF
Button component has values specified for its ClickActionSet that include
invoking the Commit action binding.

To insert an Oracle ADF binding, select the cell to anchor the Oracle ADF component
that is going to reference the binding in the Excel worksheet, and then insert the
binding in one of the following ways:

■ Double-click the Oracle ADF control binding you want to insert.

■ Select the binding that you want to insert, and drag it to the desired cell.

■ Select the control binding and click Insert Binding in the ADF Desktop Integration
Designer task pane.

A property inspector for the Oracle ADF component that is associated with the
binding you attempt to insert appears. In some instances, you may be prompted to
select one Oracle ADF component from a list of Oracle ADF components where
multiple Oracle ADF components can be associated with the binding. After you
select an Oracle ADF component from the list, a property inspector appears.

If you choose the Oracle ADF component as ADF Input Text, ADF Output Text, or
ADF Label, the binding name is assigned to the Value property. If you choose the
Oracle ADF component as ADF Button or ADF Ribbon Command, the binding
name is assigned to the Label property. If you choose the Oracle ADF component
as ADF Table or ADF Read-only Table, the binding name is assigned to the TreeID
property.

Using the Property Inspector

Getting Started with the Development Tools 5-9

5.5 Using the Components Palette
The components palette displays the available ADF Desktop Integration components
that you can insert into an Excel worksheet. Figure 5–7 shows the components palette
as it appears in the ADF Desktop Integration Designer task pane.

Figure 5–7 Oracle ADF Components Palette in the ADF Desktop Integration Designer
Task Pane

You use the components palette in design mode to insert an Oracle ADF component.
First, select the cell to anchor the Oracle ADF component in the Excel worksheet, and
then insert the Oracle ADF component in one of the following ways:

■ Double-click the Oracle ADF component you want to insert.

■ Select the component that you want to insert, and drag it to the desired cell.

■ Select the component and click Insert Component in the ADF Desktop Integration
Designer task pane.

In all of the above cases, the Oracle ADF component's property inspector appears. Use
the property inspector to specify values for the component before you complete its
insertion into the Excel worksheet.

5.6 Using the Property Inspector
The property inspector is a dialog that enables you to view and edit the properties of
Oracle ADF bindings, Oracle ADF components, Excel worksheets, or the Excel
workbook. You can open the property inspector in one of the following ways:

■ Select the component or binding, and click the Edit Properties icon in the Oracle
ADF tab.

■ Select the component or binding, right-click and choose Edit ADF Component
Properties.

■ Double-click the component or binding.

To open property inspector of ADF Table or ADF Read-only Table, double-click
any cell that is part of the table.

Note: The ADF Desktop Integration components are also available in
the Insert Component dropdown list of Oracle ADF tab.

Using the Property Inspector

5-10 Developing Applications with Oracle ADF Desktop Integration

The property inspector also appears automatically after you insert an Oracle ADF
binding or component into an Excel worksheet. Figure 5–8 shows a property inspector
where you can view and edit the properties of an Oracle ADF Button component.

At design time, you can edit key properties of certain Oracle ADF components by
editing the Excel cell where the component appears. For example, you can edit the
Value property of ADF Label and ADF Input Text components by editing the value
displayed in the cell.

You can display the properties in an alphabetical list or in a list where the properties
are grouped by categories such as Behavior, Data, and so on. Table 5–3 describes the
buttons that you can use to change how properties display in the property inspector.

In Figure 5–8, the property inspector displays the properties grouped by category.

Figure 5–8 Property Inspector Window for ADF Button Component

Note: ADF Button does not support the right-click or double-click
action, click the button to open the property inspector dialog.

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector.

Table 5–3 Buttons to Configure Properties Display in Property Inspector

Button Description

Use this button to display the properties according to category.

Use this button to display the properties in an alphabetical list.

Using the Expression Builder

Getting Started with the Development Tools 5-11

5.7 Using the Binding ID Picker
The binding ID picker is a dialog that enables you to select Oracle ADF bindings at
design time to configure the behavior of Oracle ADF components at runtime. You
invoke the binding ID picker from the property inspector. The binding ID picker filters
the Oracle ADF bindings that appear, based on the type of binding that the Oracle
ADF component property accepts. For example, the SuccessActionID property for
an ADF Button component supports only action bindings. Therefore, the binding ID
picker filters the bindings from the page definition file so that only action bindings
appear, as illustrated in Figure 5–9.

Figure 5–9 Binding ID Picker

For more information about ADF Desktop Integration component properties and the
bindings they support, see Appendix A, "ADF Desktop Integration Component
Properties and Actions."

5.8 Using the Expression Builder
You use the expression builder to write Expression Language, or EL, expressions that
configure the behavior of components at runtime in the Excel workbook. You invoke
the expression builder from the property inspector of component properties that
support EL expressions. For example, the Label property in Figure 5–10 supports EL
expressions and, as a result, you can invoke the expression builder to set a value for
this property.

You can reference bindings in the EL expressions that you write. Note that the
expression builder does not filter bindings. It displays all bindings that the page
definition file exposes. See Table 4–1 to identify the types of bindings that each ADF
Desktop Integration component supports.

To add an expression in the Expression box, select the item and click Insert Into
Expression. You can also double-click the item to add it in the Expression box.
Table 5–4 describes the folders available in the expression builder.

Using the Web Page Picker

5-12 Developing Applications with Oracle ADF Desktop Integration

Figure 5–10 Expression Builder

For more information about using the expression builder, see Section 9.3, "Applying
Styles Dynamically Using EL Expressions." For information about the syntax of EL
expressions in ADF Desktop Integration, and guidelines on how you write these
expressions, see Appendix B, "ADF Desktop Integration EL Expressions."

5.9 Using the Web Page Picker
Use the web page picker to select a web page from your Fusion web application. At
runtime, an Oracle ADF component, for example an Oracle ADF Button component,
can invoke the web page that you associate with the Oracle ADF component.

You can invoke the web page picker when you add a Dialog action to an action set in
the Action Collector Editor. You use the web page picker to specify a web page for the
Page property of the Dialog action, as illustrated in Figure 5–11.

Table 5–4 Expression Builder Folders

Folder Name Description

Bindings Lists the bindings supported in ADF Desktop Integration from
the current worksheet's page definition.

Components Lists the ADF components available in the current worksheet.

Resources Lists the resource bundles registered in Workbook.Resources
along with the built-in resource bundle _ADFDIres.

Styles Lists all Excel styles defined in the current workbook. For more
information, see Section 9.2, "Working with Styles.".

Workbook Lists parameters defined in Workbook.Parameters.

Worksheet Lists the errors expression.

Excel Functions Lists sample Excel functions that you can use with ADF Desktop
Integration. For more information, see Excel's documentation.

Using the File System Folder Picker

Getting Started with the Development Tools 5-13

Figure 5–11 Web Page Picker Dialog

For more information about displaying web pages in your integrated Excel workbook,
see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

5.10 Using the File System Folder Picker
Use the file system folder picker to navigate over the Windows file system and select
folders. You use this picker to specify values for the following workbook properties:

■ ApplicationHomeFolder

■ WebPagesFolder

The first time you open an Excel workbook the picker appears so that you can set
values for the previously listed properties. For more information about opening an
Excel workbook for the first time and the properties you set, see Section 4.2.2, "How to
Configure a New Integrated Excel Workbook."

Figure 5–12 shows the file system folder picker selecting a value for the
ApplicationHomeFolder workbook property.

Using the Page Definition Picker

5-14 Developing Applications with Oracle ADF Desktop Integration

Figure 5–12 File System Folder Picker

5.11 Using the Page Definition Picker
Use the page definition picker to select the page definition ID of a page definition file
and associate the file with a worksheet. The picker appears the first time that you
activate a worksheet in an integrated Excel workbook. It can also be invoked when
you attempt to set a value for the worksheet property, PageDefinition, as
illustrated in Figure 5–13.

Using the Collection Editors

Getting Started with the Development Tools 5-15

Figure 5–13 Page Definition Picker

For more information about page definition files, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook."

5.12 Using the Collection Editors
ADF Desktop Integration uses collection editors to manage the properties of elements
in a collection. The title that appears in a collection editor's title bar describes what the
collection editor enables you to configure. Examples of titles for collection editors
include Edit CachedAttributes, Edit Columns, and the Edit Actions. These collection
editors allow you to configure collections of cached data, table columns in the ADF
Table component, and actions in an action set. Figure 5–14 shows the collection editor.

Using the Cell Context Menu

5-16 Developing Applications with Oracle ADF Desktop Integration

Figure 5–14 Collection Editor

5.13 Using the Cell Context Menu
When working with ADF components at design time, right-click any cell of the
component to get menu options to edit or delete the component. Some keyboards
feature a key that invokes the context menu. Using this key, you will see the edit and
delete menu options as well. Figure 5–15 shows the context menu options of an ADF
Output Text component.

Tip: Write a description in the Annotation field for each element that
you add to the Edit Action dialog. The description you write appears
in the Members list view and, depending on the description you
write, may be more meaningful than the default entry that ADF
Desktop Integration generates.

Removing ADF Desktop Integration Components

Getting Started with the Development Tools 5-17

Figure 5–15 Context Menu Options of the ADF Output Text Component

You should use either the keyboard context menu key or the mouse's right-click
button during any given session. If you use both the mouse right-click and the context
menu key, the menu options may not always appear when expected. The context
menu options do not appear if you select a range of cells and then invoke the context
menu.

5.14 Removing ADF Desktop Integration Components
At design time, you can remove the inserted ADF Desktop Integration components (or
bindings) from the integrated workbooks using the Delete ribbon command, or the
Delete ADF Component context menu option (see Figure 5–15).

When you remove a component, ADF Desktop Integration prompts you to confirm
your action, as shown in Figure 5–16.

Removing ADF Desktop Integration Components

5-18 Developing Applications with Oracle ADF Desktop Integration

Figure 5–16 Removing ADF Desktop Integration Component

You can also remove multiple components by selecting a range of cells anchoring the
components (see Figure 5–17), or select individual component cells using the Ctrl key,
and then click the Delete ribbon button.

Figure 5–17 Removing Multiple ADF Desktop Integration Components

While removing the components, make a note of the following:

■ You can also remove a single component using the Delete key of the keyboard
when the component origin cell is selected.

You cannot remove a table component using the Delete key of the keyboard, use
the Delete ribbon command instead.

■ To delete a component that occupies more than one cell (such as a table
component, or a component in a merged cell), you need not select the entire

Exporting and Importing Excel Workbook Integration Metadata

Getting Started with the Development Tools 5-19

component. If the selected range intersects any cell of the component, it will be
removed.

■ Do not delete cells or clear cells of the workbook if your selection includes one or
more ADF Desktop Integration components. Always use the Delete ribbon
command to remove a ADF Desktop Integration component.

■ ADF Desktop Integration context menu options are not available if multiple cells
are selected when the context menu is invoked.

5.15 Exporting and Importing Excel Workbook Integration Metadata
Workbook integration metadata, also known as the workbook definition, is a set of
information that describes how a given workbook is integrated with a particular
Fusion web application. It includes the placement and configuration of components as
well as workbook- and worksheet-level properties. Workbook integration metadata is
defined by Oracle ADF. It does not include settings of a workbook that are native to
Excel.

You can export the integration metadata of your Excel workbook to an XML file with a
name and location that you specify. The XML file contains child elements for each
worksheet in the workbook, resources such as the relative path to the remote servlet,
and so on. The exported XML file enables you to do the following actions:

■ Edit, or analyze the Excel workbook that is integrated with a Fusion web
application.

■ Using an XML editor, copy or move components between worksheets and
workbooks.

■ Copy action-set definitions between buttons or events.

■ Perform global search and replace operations.

■ Quickly rearrange, or copy, columns of table components.

5.15.1 How to Export Workbook Integration Metadata
The following procedure describes how you export XML configuration metadata from
an integrated Excel workbook.

Before you begin:
It may be helpful to have an understanding of workbook integration metadata. For
more information, see Section 5.15, "Exporting and Importing Excel Workbook
Integration Metadata."

To export workbook integration metadata from an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Click Export in the Oracle ADF tab.

The Save Workbook Definition As dialog box appears.

3. Specify the file name and location of the XML file that stores the exported
metadata, and click Save. ADF Desktop Integration writes the workbook
definition to the specified file.

4. In Export Workbook Metadata dialog, click OK to complete the export process.

Exporting and Importing Excel Workbook Integration Metadata

5-20 Developing Applications with Oracle ADF Desktop Integration

After exporting the workbook definition, you can edit the XML file in any XML editor,
such as JDeveloper. Figure 5–18 shows the workbook definition of
EditCustomers-DT.xlsx in JDeveloper. While editing the workbook definition file
in JDeveloper, JDeveloper automatically validates your changes against the workbook
definition schema. It will display warnings that help you avoid problems later on.

Figure 5–18 Editing Workbook Definition in JDeveloper

5.15.2 How to Import Workbook Integration Metadata
After editing, you can import the integrated metadata into an empty integrated
workbook to create a copy of the source integrated Excel workbook. Note that the
empty workbook must be enabled with ADF Desktop Integration before you import
the metadata.

The following procedure describes how to import XML configuration metadata to an
integrated Excel workbook.

Before you begin:
It may be helpful to have an understanding of workbook integration metadata. For
more information, see Section 5.15, "Exporting and Importing Excel Workbook
Integration Metadata."

Before you import the integration metadata from an XML file, perform basic XML
validations such as whether the XML code is well formed and the XML file contains
the root element. You may import the workbook definition into the same workbook
from which it was exported, or import it in a new workbook.

Note: The exported XML file does not contain any native Excel
settings such as named styles, named ranges, cell properties, content
in unbound cells, and so on.

Publishing a workbook also exports the workbook definition. For
more information about publishing a workbook, see Section 14.3,
"Publishing Your Integrated Excel Workbook."

Exporting and Importing Excel Workbook Integration Metadata

Getting Started with the Development Tools 5-21

To import workbook integration metadata to an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Click Import in the Oracle ADF tab.

The Choose a Workbook Definition file to Import dialog box appears.

3. Select the XML file that stores the workbook integration metadata, and click Open.

4. In Import Workbook Metadata dialog, click OK to complete the import process.

The changes made in the workbook definition appear automatically in the integrated
Excel workbook.

For example, Figure 5–19 shows the branding value of workbook changed to Edit
Customers New Workbook in the workbook definition file.

Figure 5–19 Editing Branding Value in the Workbook Definition

Figure 5–20 shows the changed branding workbook value in the Edit Workbook
Properties dialog after importing the workbook definition.

Figure 5–20 Updated Branding Value in Edit Workbook Properties Dialog

5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook
Integration Metadata

The workbook integration metadata XML file uses the
adfdi-workbook-definition.xsd XML schema document, which defines the
XML namespace as
http://xmlns.oracle.com/adf/desktopintegration/workbook. The
schema is integrated into JDeveloper through the ADF Desktop Integration add-in.
You can find a copy of the schema at <MW_
HOME>\jdeveloper\adfdi\etc\adfdi-workbook-definition.xsd, where
MW_HOME is the Middleware Home directory.

Exporting and Importing Excel Workbook Integration Metadata

5-22 Developing Applications with Oracle ADF Desktop Integration

While importing the workbook integration metadata, make a note of following points:

■ When the import process is initiated, the schema version number
(schema-version attribute of <workbook>) of the XML file is compared against
the schema version number of the installed ADF Desktop Integration client.

If both values match, the workbook integration metadata is imported to the
workbook. If the schema version of the XML file is lower than the schema version
of the installed client, the XML file is migrated to use the installed client's schema.
No prompt appears when the file is migrated, but a log of the same is maintained.
If the schema version of the XML file is greater than the schema version of the
installed client, the import process fails and an error message appears.

■ After verifying the schema version, the imported XML file is validated against the
schema of the installed client. If the validation fails, the validation failure details
are logged, an error is reported to the user, and the import process aborts. If the
schema validation succeeds, the import process continues.

■ If an element is missing in the imported XML file, the default value of the element
is used in the integrated Excel workbook.

■ All pre-existing worksheet and component metadata is removed before the
import.

■ If the imported worksheet's name matches an existing worksheet in the integrated
workbook, that worksheet is used. Otherwise, a new worksheet is created.

■ All non-integrated worksheets of the integrated Excel workbook are not affected
by the import.

■ If the imported component does not have valid origin information, the import
process attempts to place that component on the first unused row in the target
integrated worksheet.

■ After the XML file is imported, the integrated Excel workbook's Workbook ID is
replaced with the Workbook ID of the XML file. If the workbook ID is missing in
the XML file, a new ID is generated.

6

Working with ADF Desktop Integration Form-Type Components 6-1

6 Working with ADF Desktop Integration
Form-Type Components

This chapter describes how to insert and configure components (such as buttons,
labels, input and output text, and list of values) that ADF Desktop Integration
provides to allow end users to manage data retrieved from a Fusion web application,
and how to display calculated data in these components using Excel formulae.

This chapter includes the following sections:

■ Section 6.1, "About ADF Desktop Integration Form-Type Components"

■ Section 6.2, "Inserting an ADF Button Component"

■ Section 6.3, "Inserting an ADF Label Component"

■ Section 6.4, "Inserting an ADF Input Text Component"

■ Section 6.5, "Inserting an ADF Output Text Component"

■ Section 6.6, "Inserting an ADF List of Values Component"

■ Section 6.7, "Displaying Output from a Managed Bean in an ADF Component"

■ Section 6.8, "Displaying Concatenated or Calculated Data in Components"

■ Section 6.9, "Using Navigation Buttons"

6.1 About ADF Desktop Integration Form-Type Components
The ADF Desktop Integration Form-type components allow end users to manage data
retrieved from the Fusion web application in the integrated Excel workbook. Rather
than expose an ADF Form component in the components palette described in
Section 5.5, "Using the Components Palette," ADF Desktop Integration uses the
following components to create form-type functionality in an integrated Excel
workbook:

■ ADF Input Text

■ ADF Output Text

■ ADF Label

■ ADF List of Values

■ ADF Button

Figure 6–1 shows these components.

About ADF Desktop Integration Form-Type Components

6-2 Developing Applications with Oracle ADF Desktop Integration

Figure 6–1 ADF Desktop Integration Form-Type Components

You can insert a form component or a binding in a merged cell, or merge cells after
inserting the form component or binding, but you cannot insert multiple form
components in a merged cell or merge cells that are occupied by different form
components.

Before you insert a component in a merged cell, make a note of the following:

■ Drag-and-drop functionality is not supported for inserting component in a
merged cell.

■ Do not merge a component cell with non-empty cells that are above or left to it.
When two or more cells are merged, Excel keeps the data and style of the most
upper-left cell and discards the data of the remaining cells. So, merging a
component cell with a non-empty cell above or left to itself results in the
component data being overwritten.

■ Do not merge an empty component cell that has no value or binding with empty
cells above or left to it. Merging an empty component cell with empty cells above
or left to itself results in the style of that component cell being overwritten.

■ ADF Buttons do not expand to the whole merged area automatically. You can edit
the Position and LowerRightCorner properties of the button to resize it as
needed.

6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples
The ADF Desktop Integration Form-type components are used to build forms in the
integrated Excel workbook for user input, and output from the Fusion web
application. As shown in Figure 6–2, the form-type components used in navigation
form of EditWarehouses-DT.xlsx enable end users to navigate and update data
easily.

Figure 6–2 Navigation Form Using ADF Desktop Integration Form-Type Components

Inserting an ADF Button Component

Working with ADF Desktop Integration Form-Type Components 6-3

6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components
After you have added a component to the worksheet, you may find that you need to
add functionality such as responding to events or end user actions. Following are links
to other functionality that form components can use:

■ Displaying output from a managed bean: You can use ADF Label or ADF Output
Text components to display output from a managed bean. For more information,
see Section 6.7, "Displaying Output from a Managed Bean in an ADF Component."

■ Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Section 9.2, "Working with
Styles."

■ EL Expressions: You can use EL expressions with form-type components. For
more information, see Appendix B, "ADF Desktop Integration EL Expressions."

6.2 Inserting an ADF Button Component
The ADF Button component renders a button in the Excel worksheet at runtime. End
users click this button to invoke one or more actions specified by the
ClickActionSet group of properties.

The LowerRightCorner and Position properties determine the area that the
button occupies on the Excel worksheet at runtime.

Figure 6–3 shows an ADF Button component with its property inspector in the
foreground. The property inspector for the button is in the foreground. When an end
user clicks the button at runtime, it invokes the array of actions specified by
ClickActionSet.

Figure 6–3 ADF Button Component in Design Mode

For more information about the properties of the ADF Button component, see
Section A.8, "ADF Button Component Properties."

To insert an ADF Button component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

Inserting an ADF Button Component

6-4 Developing Applications with Oracle ADF Desktop Integration

3. In the components palette, select ADF Button and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Button from the Insert
Component dropdown list.

4. Configure properties in the property inspector to determine the actions the
component invokes at runtime in addition to the appearance, design, and layout
of the component. Table 6–1 outlines some properties you must specify values for,
and provides links to additional information.

5. Click OK.

Figure 6–4 shows an example of the ADF Button component (in red box) at
runtime.

Figure 6–4 ADF Button Component at Runtime

Table 6–1 ADF Button component properties

For this property... Specify...

Label A string or an EL expression that resolves to a label at runtime to
indicate the purpose of the ADF Button component. The button
label defaults to the action binding ID.

The EL expression, if used, references a string key in the res
resource bundle. For more information about resource bundles,
see Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook." For more information about using labels in
integrated Excel workbooks, see Section 9.4, "Using Labels in an
Integrated Excel Workbook."

To include the ampersand (&) character in the label, use &&. A
single & character acts as a special character and is not displayed
in the label.

ClickActionSet Specify one or more actions in the Actions array of the
ClickActionSet that the end user invokes when he or she
clicks the ADF Button component. For more information about
action sets, see Section 8.2, "Using Action Sets."

Inserting an ADF Label Component

Working with ADF Desktop Integration Form-Type Components 6-5

If you want to add navigation buttons in your integrated Excel workbook to navigate
to previous or next record, see Section 6.9, "Using Navigation Buttons."

6.3 Inserting an ADF Label Component
The ADF Label component is a component that you can insert into the active
worksheet to display a static string value. You specify a value in the input field for
Label in the property inspector or alternatively you invoke the expression builder to
write an EL expression that resolves to a string at runtime. The retrieved string can be
defined in a resource bundle or in an attribute control hint for an entity or view object.
For example, the following EL expression resolves to the value of label of CountryId
attribute binding at runtime:

#{bindings.CountryId.label}

The value that you specify for the Label property in an ADF Label component or
other Oracle ADF components is evaluated after the worksheet that hosts the Oracle
ADF component is initialized (opened for the first time).

You can configure a number of properties for the component, such as style and
position, in the worksheet using the property inspector.

Figure 6–5 shows an ADF Label component with its property inspector in the
foreground. The ADF Label component references an EL expression that resolves to
the label of CountryId attribute binding at runtime.

Notes:

■ If you change the view mode of the Excel worksheet to the Page
Layout or Page Break mode, the ADF Button components may be
rendered in an unexpected position. You must return back to
Normal mode without saving the workbook, and then Run and
stop the integrated Excel workbook to render the buttons to their
original positions.

■ You can modify the properties of the component at a later time by
selecting the cell in the worksheet that anchors the component
and then displaying the property inspector.

■ The ADF Button components are active at 100% zoom only, and
are disabled when the end user zooms in or out on an integrated
Excel worksheet.

■ To remove the component, use the Delete ribbon command. For
more information, see Section 5.14, "Removing ADF Desktop
Integration Components."

Tip: In design mode, you can click the button, or press the spacebar
when the button is in focus, to open the property inspector. The
right-click context menu is disabled for a button.

Inserting an ADF Label Component

6-6 Developing Applications with Oracle ADF Desktop Integration

Figure 6–5 ADF Label Component in Design Mode

To insert an ADF Label component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Label and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Label from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
design, and layout of the component.

5. Click OK.

Figure 6–6 shows an example of the ADF Label component (in red box) at runtime.

Figure 6–6 ADF Label Component at Runtime

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit ADF Component Properties to open the property
inspector.

To remove the component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration
Components."

Inserting an ADF Input Text Component

Working with ADF Desktop Integration Form-Type Components 6-7

For more information about using labels in an integrated Excel workbook, see
Section 9.4, "Using Labels in an Integrated Excel Workbook."

6.4 Inserting an ADF Input Text Component
The ADF Input Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component's binding after
the worksheet DownSync action is invoked. End users can edit this value at runtime.
You configure the worksheet UpSync action to transfer changes end users make to the
value back to the Fusion web application and a Commit action binding to commit
the changes in the Fusion web application.

You can configure a number of properties for the component, such as its position, style
and behavior when a user double-clicks the cell (DoubleClickActionSet
properties), in the worksheet using the property inspector. For more information
about DoubleClickActionSet, see Section 8.2, "Using Action Sets."

The ADF Table component can invoke this component as a subcomponent when you
set values for the ADF Table component column's InsertComponent or
UpdateComponent properties. In this context, the ADF Input Text component
enables the end user to input data into the ADF Table component. For more
information, see Section 7.7, "Configuring an ADF Table Component to Insert Data."

Figure 6–7 shows an ADF Input Text component with its property inspector in the
foreground. The ADF Input Text component binds to the City attribute binding in the
Summit sample application for ADF Desktop Integration. The end user enters a city
name in this component.

Figure 6–7 ADF Input Text Component in Design Mode

To insert an ADF Input Text component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Input Text and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF InputText from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component. Table 6–2 outlines some properties that

Inserting an ADF Output Text Component

6-8 Developing Applications with Oracle ADF Desktop Integration

you must specify values for. For information about the component's other
properties, see Section A.2, "ADF Input Text Component Properties."

5. Click OK.

Figure 6–8 shows an example of the ADF Input Text component (in red box) at
runtime.

Figure 6–8 ADF Input Text Component at Runtime

6.5 Inserting an ADF Output Text Component
The ADF Output Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component's binding after
you invoke the worksheet DownSync action. The value the component displays is
read-only. Changes that the end user makes to the value in the cell that anchors the
component are ignored when changes are sent to the Fusion web application.

This component can also serve as a subcomponent for the ADF Table and ADF
Read-only Table components. Columns in the ADF Table and ADF Read-only Table
components can be configured to use the ADF Output Text component.

Table 6–2 ADF Input Text component properties

For this property... Specify...

InputText.Value An EL expression for the Value property to determine what
binding the component references.

InputText.ReadOnly An EL expression that resolves to False so that changes the end
user makes are uploaded. Write an EL expression that resolves
to True if you want the component to ignore changes. False is
the default value.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit ADF Component Properties to open the property
inspector.

To remove the component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration
Components."

Inserting an ADF Output Text Component

Working with ADF Desktop Integration Form-Type Components 6-9

You can configure a number of properties for the component such as style, behavior
when a user double-clicks the cell (DoubleClickActionSet properties), and
position, in the worksheet using the property inspector.

Figure 6–9 shows an ADF Output Text component with its property inspector in the
foreground.

Figure 6–9 ADF Output Text Component in Design Mode

To insert an ADF Output Text component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Output Text, and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF OutputText from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component.

For example, you must write or specify an EL expression for the Value property
to determine what binding the ADF Output Text component references. For more
information about the values that you specify for the properties of the ADF
Output Text component, see Section A.3, "ADF Output Text Component
Properties."

5. Click OK.

Figure 6–10 shows an example of the ADF Output Text component (in red box) at
runtime.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit ADF Component Properties to open the property
inspector.

To remove the component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration
Components."

Inserting an ADF List of Values Component

6-10 Developing Applications with Oracle ADF Desktop Integration

Figure 6–10 ADF Output Text Component at Runtime

6.6 Inserting an ADF List of Values Component
The ADF List of Values component is a component that displays a dropdown menu in
the Excel worksheet cell at runtime. It displays a maximum of 250 values at runtime.
You can insert the List of Values component into a cell in the Excel worksheet.

You must specify a value for the ListID property. The ListID property references
the list binding which populates the dropdown menu with a list of values at runtime
after you invoke the worksheet DownSync action.

Figure 6–11 shows an ADF List of Values component with its property inspector in the
foreground. The ADF List of Values component references a list binding (RegionId)
that populates a dropdown menu in the Excel worksheet at runtime.

Notes:

■ You can display a dropdown menu in an ADF Table component's
column by selecting TreeNodeList or
ModelDrivenColumnComponent as the subcomponent to create
when you specify a value for the TableColumn array's
InsertComponent property. For more information, see
Section 7.14, "Creating a List of Values in an ADF Table
Component Column."

■ ADF List of Values components using date values are not
supported.

Inserting an ADF List of Values Component

Working with ADF Desktop Integration Form-Type Components 6-11

Figure 6–11 ADF List of Values Component

To insert an ADF List of Values component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF List of Values and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF List of Values from the Insert
Component dropdown list

4. Invoke the binding ID picker by clicking the browse (...) icon beside the input field
for the ListID property and select a list binding that the page definition file
exposes.

5. Configure other properties in the property inspector to determine the appearance,
design, and layout of the component. For information about ADF List of Values
component properties, see Section A.5, "ADF List of Values Component
Properties."

6. Click OK.

Notes:

■ You can modify the properties of the component at a later time by
selecting the cell in the worksheet that anchors the component
and then displaying the property inspector. You can also
right-click in the cell and choose Edit ADF Component Properties
to open the property inspector.

To remove the component, use the Delete ribbon command. For
more information, see Section 5.14, "Removing ADF Desktop
Integration Components."

■ An Excel form cannot be configured to use ADF List of Values
components that use model-driven list bindings, if the form's
bound iterator is expected to contain zero rows. As a workaround,
you may configure the ADF List of Values component to use a
dynamic list binding instead.

Displaying Output from a Managed Bean in an ADF Component

6-12 Developing Applications with Oracle ADF Desktop Integration

6.7 Displaying Output from a Managed Bean in an ADF Component
You can configure an ADF component to display output from a managed bean in your
Fusion web application. Information about how to use managed beans in a Fusion web
application can be found in the "Using a Managed Bean in a Fusion Web Application"
section of the Developing Fusion Web Applications with Oracle Application Development
Framework. You reference a managed bean in an integrated Excel workbook through an
EL expression. Add a method action binding to the page definition file you associate
with the Excel worksheet to retrieve the value of the managed bean and assign it to an
attribute binding. Use an EL expression to retrieve the value of the attribute binding at
runtime.

6.7.1 How to Display Output from a Managed Bean
You write an EL expression for a property that supports EL expressions (for example,
the Label property).

Before you begin:
It may be helpful to have an understanding of managed beans. For more information,
see Section 6.7, "Displaying Output from a Managed Bean in an ADF Component."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 6.1.2, "Additional
Functionality for ADF Desktop Integration Form-Type Components."

To display output from a managed bean:
1. Open the integrated Excel workbook.

2. Select the ADF component to display the output from the managed bean, and
open its property inspector.

Figure 6–12 shows an example where an ADF Label component is configured to
display the output from an attribute binding that has its value populated by an
action binding.

Figure 6–12 ADF Label Component That Displays Output from a Managed Bean at
Runtime

3. Write an EL expression that gets the output from a managed bean at runtime.

Displaying Concatenated or Calculated Data in Components

Working with ADF Desktop Integration Form-Type Components 6-13

The example in Figure 6–12 shows an EL expression that retrieves the value of a
string key (excel.connectionPrefix) from the res resource bundle and the
value of the loggedInUser attribute binding. This attribute binding references
the output from the managed bean.

4. Click OK.

6.7.2 What Happens at Runtime: How an ADF Component Displays Output from a
Managed Bean

The method action binding retrieves values from the managed bean and populates the
attribute binding. The EL expression that you write retrieves the value from the
attribute binding and displays it to the end user through the ADF component that you
configured to display output. For example, the ADF Label component shown in
design mode in Figure 6–13 displays a string similar to the following at runtime:

Connected as sking

Figure 6–13 Output from a Managed Bean at Runtime

In Figure 6–13, sking is the user name of the user that is logged on to the Fusion web
application through the integrated Excel workbook.

6.8 Displaying Concatenated or Calculated Data in Components
The ADF Desktop Integration module supports EL expressions within components
that allow a single component to display data that is based on a calculation or
concatenation of multiple binding expressions.

6.8.1 How to Configure a Component to Display Calculated Data
You write an EL expression for the Value property of an Input Text or Output Text
component.

Figure 6–14 shows an EL expression example where an ADF Output Text component
is configured to display the margin between two fields: List Price and Cost Price.

Displaying Concatenated or Calculated Data in Components

6-14 Developing Applications with Oracle ADF Desktop Integration

Figure 6–14 ADF Output Text Component Displaying Calculated Data

Before you begin:
It may be helpful to have an understanding of how to display concatenated or
calculated data in ADF components. For more information, see Section 6.8,
"Displaying Concatenated or Calculated Data in Components."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 6.1.2, "Additional
Functionality for ADF Desktop Integration Form-Type Components."

To create an EL expression to display calculated data
1. Open the integrated Excel workbook.

2. Select the ADF Input Text or ADF Output Text component to display calculated
data.

3. Open the property inspector and click the browse (...) icon of the Value property.

4. Write an EL expression that gets the output from two, or more, expressions.

Example 6–1 shows an EL expression that calculates the difference between the
values of two fields, List Price and Cost Price, and then divides it with value of
Cost Price column to generate a margin.

Example 6–1 An EL Expression for Calculated Data

=(("#{row.bindings.ListPrice.inputValue}"-"#{row.bindings.CostPrice.inputValue}")/
"#{row.bindings.CostPrice.inputValue}")

5. Click OK.

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

Note: If the Value property of an ADF Input Text component
contains a formula, the ADF Input Text component becomes read-only
at runtime regardless of the value of the ReadOnly property.

Using Navigation Buttons

Working with ADF Desktop Integration Form-Type Components 6-15

6.9 Using Navigation Buttons
You can create navigation buttons (Next, Previous, First, and Last) to navigate from
one record to another as shown in Figure 6–15. If the end user changes a record's data
before navigating to another record, you can choose to save those changes or ignore
them.

Figure 6–15 Navigation Buttons in an Integrated Excel Workbook

To save changes before navigating to another record, define the action sets of
the button in the following order:
1. Worksheet.UpSync

2. Commit

3. Navigation action (for example, Next)

4. Worksheet.DownSync

To ignore changes before navigating to another record, define the action sets of
the button in the following order:
1. Navigation action (for example, Next)

2. Worksheet.DownSync

Note: If you omit the Commit action from the action set, any
pending changes to multiple records are lost when the end user's web
application session ends.

Note: If you define button actions to ignore changes, then it is the
end user's responsibility to save changes before navigating to another
record.

Using Navigation Buttons

6-16 Developing Applications with Oracle ADF Desktop Integration

7

Working with ADF Desktop Integration Table-Type Components 7-1

7Working with ADF Desktop Integration
Table-Type Components

This chapter describes the table-type components that ADF Desktop Integration
provides, how to configure and use them, how to download data from Fusion web
application, how to insert, update, and delete data rows from the table-type
components in the integrated Excel workbook, how to track the changes, how to
configure special columns in the table-type components, and other tasks that you can
do with table-type components.

This chapter includes the following sections:

■ Section 7.1, "About ADF Desktop Integration Table-Type Components"

■ Section 7.2, "Page Definition Requirements for an ADF Table Component"

■ Section 7.3, "Inserting ADF Table Component into Excel Worksheet"

■ Section 7.4, "Configuring Oracle ADF Component to Download Data to an ADF
Table Component"

■ Section 7.5, "Configuring a Worksheet to Download Data as Pending Insert Rows
in an ADF Table component"

■ Section 7.6, "Configuring an ADF Table Component to Update Existing Data"

■ Section 7.7, "Configuring an ADF Table Component to Insert Data"

■ Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF
Table Component"

■ Section 7.9, "Configuring an ADF Table Component to Upload Changes Using
UploadAllOrNothing Action"

■ Section 7.10, "Configuring an ADF Table Component to Delete Rows in the Fusion
Web Application"

■ Section 7.11, "Batch Processing in an ADF Table Component"

■ Section 7.12, "Special Columns in the ADF Table Component"

■ Section 7.13, "Configuring ADF Table Component Key Column"

■ Section 7.14, "Creating a List of Values in an ADF Table Component Column"

■ Section 7.15, "Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component"

■ Section 7.16, "Adding a Dynamic Column to Your ADF Table Component"

■ Section 7.17, "Creating an ADF Read-Only Table Component"

About ADF Desktop Integration Table-Type Components

7-2 Developing Applications with Oracle ADF Desktop Integration

■ Section 7.18, "Limiting the Number of Rows Your Table-Type Component
Downloads"

■ Section 7.19, "Clearing the Values of Cached Attributes in an ADF Table
Component"

■ Section 7.20, "Tracking Changes in an ADF Table Component"

■ Section 7.21, "Evaluating EL Expression for ReadOnly Properties"

■ Section 7.22, "Using Explicit Worksheet Setup Action"

7.1 About ADF Desktop Integration Table-Type Components
ADF Desktop Integration provides the following table-type components to display
structured data:

■ ADF Table component

■ ADF Read-only Table component

The ADF Table and ADF Read-only Table components provide end users with the
functionality to download and upload rows of data. The ADF Table component also
enables end users to edit or delete downloaded data, or to insert new rows of data.
Figure 7–1 shows the ADF Table and the ADF Read-only Table components.

Figure 7–1 ADF Desktop Integration Table-Type Components

Each ADF Table component contains a Key column. Do not remove the Key column,
as it contains important information that is used by ADF Desktop Integration for the
proper functioning of the table. Removal of the Key column, or any modification in
the Key column cell, results in errors and data corruption. For more information about
the Key column, see Section 7.13, "Configuring ADF Table Component Key Column."

The other ADF Desktop Integration components that you can use with these table-type
components are described in Chapter 6, " Working with ADF Desktop Integration
Form-Type Components."

7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples
Tables are used to display the structured information. For example, Figure 7–2 shows
an ADF Table component of Summit sample application for ADF Desktop Integration
with data downloaded from the respective Fusion web application.

Page Definition Requirements for an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-3

Figure 7–2 ADF Table Component with Downloaded Data

7.1.2 Additional Functionality of Table-Type Components
After you have added a table component to your integrated Excel workbook, you may
find that you need to add additional functionality to configure your table. Following
are links to other functionalities that table components can use.

■ Change Tracking: You can enable the table component for tracking changes. For
more information, see Section 7.20, "Tracking Changes in an ADF Table
Component."

■ Dependent List of Values: You can add dependent list of values components in
your table component. For more information, see Section 8.8, "Creating Dependent
Lists of Values in an Integrated Excel Workbook."

■ Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Section 9.2, "Working with
Styles."

■ EL Expressions: You can use EL expressions with table-type components. For
more information, see Appendix B, "ADF Desktop Integration EL Expressions."

7.2 Page Definition Requirements for an ADF Table Component
The ADF Table component is one of the Oracle ADF components that ADF Desktop
Integration exposes. It appears in the components palette of the ADF Desktop
Integration Designer task pane and, after inserted into an Excel worksheet, allows the
following operations:

■ Read-only

■ Insert-only

■ Update-only

■ Insert and update

Review the following sections for information about page definition file requirements
specific to an ADF Table component.

Before you can configure an ADF Table component to provide data-entry functionality
to your end users, you must configure the underlying page definition file for the Excel
worksheet with ADF bindings. For general information about the page definition file
requirements for an integrated Excel workbook, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook."

Expose the following control bindings when you create a page definition file for
authoring an ADF Table component:

■ Tree binding that exposes the desired attribute bindings. Note that ADF Desktop
Integration only supports Scrollable access mode for a ViewObject. The other
access modes are not supported.

■ Method action bindings and action bindings if you intend to configure values for
the ADF Table component's RowActions and BatchOptions groups of

Inserting ADF Table Component into Excel Worksheet

7-4 Developing Applications with Oracle ADF Desktop Integration

properties. Examples of procedures where you set values for these groups of
properties include:

– Section 7.3, "Inserting ADF Table Component into Excel Worksheet"

– Section 7.7, "Configuring an ADF Table Component to Insert Data"

– Section 7.5, "Configuring a Worksheet to Download Data as Pending Insert
Rows in an ADF Table component"

■ (Optional) Update record action binding.

Figure 7–3 shows the bindings that the ExcelCustomers.xml page definition file
includes. This page definition file can support the use of an ADF Table component in
the Excel worksheet that it is associated with.

Figure 7–3 ADF Bindings Supporting Use of an ADF Table Component

7.3 Inserting ADF Table Component into Excel Worksheet
After you have configured a page definition file correctly, you can insert the ADF
Table component into the worksheet and configure its properties to achieve the
functionality you want. The ADF Table component enables you to download, edit, and
upload rows of data.

7.3.1 How to Insert ADF Table Component
You can insert the ADF Table component from the ADF Desktop Integration Designer
task pane.

Note: The previous list is not exhaustive.

Note: As Excel displays a flat list of bindings and iterators are not
displayed, use descriptive names for the attributes of different
iterators.

Inserting ADF Table Component into Excel Worksheet

Working with ADF Desktop Integration Table-Type Components 7-5

Before you begin:
It may be helpful to have an understanding of ADF Table component. For more
information, see Section 7.3, "Inserting ADF Table Component into Excel Worksheet."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To insert ADF Table component into Excel worksheet:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet into which you want to insert the ADF Table
component.

When inserting an ADF Table component, you must ensure that the data of two
tables does not overlap at runtime, and the selected cell is not a merged cell.

3. In the bindings palette of the ADF Desktop Integration Designer task pane, select
the tree binding to use and click Insert Binding.

Based on your selection, the Select Component dialog or the Insert Component
dialog appears.

4. In the dialog that appears, select ADF Table and click OK.

5. Configure properties for the ADF Table component using the property inspector
shown in Figure 7–4.

Notes:

■ You can also insert an ADF Table component by using the
components palette or the Oracle ADF tab. Select ADF Table and
click Insert Component. Alternatively, in the Oracle ADF tab,
select ADF Table from the Insert Component dropdown list. If
you use either the components palette or the Oracle ADF tab to
create the table component, you would have to add each column
manually to appear in the component at runtime.

■ You cannot insert an ADF Table component in a merged cell.

■ When you insert an ADF Table component using Insert Binding,
then by default, InputText is defined as the subcomponent type
for all columns.

If you want a column to have a different subcomponent type,
open the ADF Table property inspector (select any cell of the ADF
Table component and click the Edit Properties button in the
Oracle ADF tab), click the browse (...) icon of the Columns
property. In the Edit Columns dialog, select the column, and click
the browse (...) icon of the UpdateComponent property. In the
Select Component dialog, select the desired subcomponent type,
verify the binding and other properties, and click OK.

Inserting ADF Table Component into Excel Worksheet

7-6 Developing Applications with Oracle ADF Desktop Integration

Figure 7–4 ADF Table Property Inspector

6. Specify a binding expression for the attribute that uniquely identifies each row in
the iterator associated with the tree binding. The UniqueAttribute property
may be left blank if the binding's iterator supports row keys.

7. Configure the BatchOptions properties of the ADF Table component as
described in Table 7–1.

8. Optionally, configure the RowLimit group of properties to determine what
number of rows the ADF Table component can download.

For more information, see Section 7.18, "Limiting the Number of Rows Your
Table-Type Component Downloads."

9. Click OK.

Figure 7–5 shows the ADF Table component in EditCustomers-DT.xlsx in design
mode.

Figure 7–5 ADF Table Component in Design Mode

Figure 7–6 shows the ADF Table component in EditCustomers-DT.xlsx at
runtime.

Table 7–1 BatchOptions Properties of the ADF Table Component

Set this property to... This value...

CommitBatchActionID The Commit action binding that the page definition file exposes.

Inserting ADF Table Component into Excel Worksheet

Working with ADF Desktop Integration Table-Type Components 7-7

Figure 7–6 ADF Table Component at Runtime

For more information about the properties that you can set for the ADF Table
component, see Section A.9, "ADF Table Component Properties and Actions."

To remove the table component, use the Delete ribbon command. For more
information, see Section 5.14, "Removing ADF Desktop Integration Components."

7.3.2 How to Add a Column in an ADF Table Component
After inserting an ADF Table component in the worksheet of your integrated Excel
workbook, you may want to add a column that is not available in the tree binding. For
example, you may want to add a column that displays values calculated by an Excel
formula.

Before you begin:
It may be helpful to have an understanding of ADF Table component. For more
information, see Section 7.3, "Inserting ADF Table Component into Excel Worksheet."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To add a column in an ADF Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon of the
Columns property.

The Edit Columns dialog appears, listing all the columns of the selected ADF
Table component.

4. Click Add to add a new column. The new column is inserted at the end of the
Members list. To move the column to a specific position, select the column and use
the Up and Down arrow keys.

5. Configure the new column's properties in the right pane of the dialog.

6. Click OK.

ADF Desktop Integration does not limit the number of columns you can add in an
ADF Table component you can add as many columns as your version of Excel
supports. However, it has been observed that a very wide table gives slow
performance and poor user experience. If you experience the same, you must try
reducing the number of columns of the table before diagnosing other reasons for slow
performance.

Note: If you have not moved the new column as described in Step 4,
it appears as the last column of the table.

Configuring Oracle ADF Component to Download Data to an ADF Table Component

7-8 Developing Applications with Oracle ADF Desktop Integration

7.4 Configuring Oracle ADF Component to Download Data to an ADF
Table Component

After you add an ADF Table component to a worksheet, you configure it and the
worksheet that hosts it, so that the ADF Table component downloads data from the
Fusion web application. To achieve this, you configure an Oracle ADF component,
such as a worksheet ribbon command, to invoke an action set. The action set that is
invoked must include the ADF Table component Download action among the actions
that it invokes.

The number of rows that an ADF Table or an ADF Read-only Table component
contains expands or contracts based on the number of rows to download from a
Fusion web application. You should not place anything to the left or right of a
table-type component unless you want to replicate it when Excel inserts rows to
accommodate the data that one of the table-type components downloads. You can
place other components above or below a table-type component as they maintain their
position relative to the table-type component at runtime. End users who want to insert
new rows of data into an ADF Table component at runtime must insert full rows into
the Excel worksheet that hosts the ADF Table component.

7.4.1 How to Configure an ADF Component to Download Data to an ADF Table
Component

Configure an Oracle ADF component, a worksheet ribbon button, or a worksheet
event to invoke an action set that, in turn, invokes the ADF Table component
Download action.

Before you begin:
You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

It may be helpful to have an understanding of how to configure ADF component to
download data to an ADF Table data component. For more information, see
Section 7.4, "Configuring Oracle ADF Component to Download Data to an ADF Table
Component."

To configure an ADF component to download data to an ADF Table component:
1. Open the integrated Excel workbook.

2. Click the Worksheet Properties button in the Oracle ADF tab, and add a ribbon
command. For more information about adding a ribbon command in a worksheet,
see Section 8.3.1, "How to Define a Workbook Command Button for the Runtime
Ribbon Tab."

3. Open the Edit Action dialog to configure an action set. For more information
about invoking action sets, see Section 8.2, "Using Action Sets."

4. Add the ADF Table component Download action to the list of actions that the
action set invokes at runtime. Note that Download is a component action.

Note: Instead of adding a ribbon command, you can configure a
worksheet event or an Oracle ADF component (a button, for example)
to invoke the action set at runtime.

Configuring Oracle ADF Component to Download Data to an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-9

The ADF Table component Download action downloads the current state of the
binding referenced by the ADF Table component TreeID property. To ensure that
the state of this binding is up to date before download, add a query action that
refreshes the binding before the action set invokes the ADF Table component
Download action.

Figure 7–7 shows the Edit Action dialog in the EditCustomers-DT.xlsx
workbook where the action set invoked by the worksheet event Startup is
configured.

Figure 7–7 Action Set Downloading Data to an ADF Table Component

5. Click OK.

7.4.2 What Happens at Runtime: How the ADF Table Component Downloads Data
The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the Download
action of the ADF Table component. When invoked, the Download action downloads
all rows from the tree binding referenced by the ADF Table component TreeID
property.

Make a note of following key points when the Download action is invoked at runtime:

■ If there are any rows marked as changed when the Download action is invoked,
the end user is prompted to confirm the action and to continue (see Figure 7–8). If
the end user chooses No, the action and the action set are cancelled without error.

Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component

7-10 Developing Applications with Oracle ADF Desktop Integration

■ All existing Excel rows are removed from the table in Excel.

■ The status column is cleared of all messages.

Figure 7–8 Confirmation Prompt Before Downloading Data in ADF Table

The number of rows that the action downloads depends on the values set for the
RowLimit group of properties in the ADF Table component. For more information,
see Section 7.18, "Limiting the Number of Rows Your Table-Type Component
Downloads."

7.5 Configuring a Worksheet to Download Data as Pending Insert Rows
in an ADF Table component

A Pending Insert row is a worksheet table row with data that, on upload, is inserted as
a new data row in the iterator. For example, if the end user creates a new row in the
table by using the Insert option in the right click context menu, the new row is treated
as a pending insert row and is inserted to the iterator when being uploaded.

A Pending Update row is a worksheet table row with data that, on upload, updates an
existing data row in the iterator. For example, if the iterator of the tree binding
contains some rows retrieved from the database and when these rows are downloaded
to the ADF table, they are treated as pending update rows. If the end user makes
changes to these rows and uploads them, the existing rows in the iterator are updated
with new values from the ADF Table row.

In most cases, rows in the iterator of the tree binding are downloaded as pending
update rows into the ADF Table. If you want some rows to be downloaded as pending
inserts, you need to set the state of these rows to STATUS_INITIALIZED. For more
information about how to set a row's state as STATUS_INITIALIZED, see the
setNewRowState method in Oracle Fusion Middleware Java API Reference for Oracle ADF
Model.

Note the following differences between pending insert rows and pending update
rows:

■ Pending insert rows are populated with the value of the EL expression for the
insert component that is associated with each column in the ADF Table
component, while pending update rows are populated with the value of the EL

Note: Any filter criteria that has been applied to the worksheet
automatically gets cleared prior to the Download action.

Configuring an ADF Table Component to Update Existing Data

Working with ADF Desktop Integration Table-Type Components 7-11

expression for the update component that is associated with each column in the
ADF Table component.

■ When evaluated for pending insert rows, the EL expression
#{components.componentID.currentRowMode} returns Insert. In
contrast, the same EL expression returns Update for pending update rows.

Note that the componentID part of the EL expression
#{components.componentID.currentRowMode} references the ID of the
ADF Table component.

7.5.1 What Happens at Runtime: Download Action is Invoked
When the Download action is invoked, it examines the states of all rows in the
iterator. Rows of state STATUS_INITIALIZED are downloaded as pending insert
rows in the table, while rows of other states are downloaded as pending update rows.

7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts
You can use the STATUS_INITIALIZED rows to pre-populate values for some, or all,
attributes of the pending insert rows. As a STATUS_INITIALIZED row is not
validated, you can configure an action to populate the STATUS_INITIALIZED row
partially and insert it into the iterator before the Download action is invoked. The
Download action then treats this row as a pending insert row so that a new row, based
on the pre-populated row, can be inserted.

Note that after uploading the pending insert, a STATUS_NEW row is inserted into the
iterator, but the original STATUS_INITIALIZED row is not removed. If you want, you
can configure another action to remove STATUS_INITIALIZED rows. For example,
you can configure an action set with the following actions:

1. Create STATUS_INITIALIZED rows

2. Run Download action

3. Clean up STATUS_INITIALIZED rows

7.5.3 What You May Need to Know About DownloadForInsert Action
ADF Desktop Integration also supports a table action called DownloadForInsert.
DownloadForInsert is an obsolete action and can be replaced with the Download
action. DownloadForInsert continues to work as it always has worked in previous
releases.

The key difference, with respect to Download, is that DownloadForInsert only
considers rows in the iterator that are in the STATUS_INITIALIZED state.

7.6 Configuring an ADF Table Component to Update Existing Data
When you add the ADF Table component, by default, it allows end users to edit the
existing data, but it does not allow them to add new data rows or to delete existing
data rows.

Note: If InsertRowEnabled is set to False, any changes to the
downloaded STATUS_INITIALIZED rows are ignored when upload
is performed.

Configuring an ADF Table Component to Update Existing Data

7-12 Developing Applications with Oracle ADF Desktop Integration

7.6.1 How to Configure an ADF Table Component to Update Data
If you want the end user to be able to edit existing data, but would like to restrict the
addition or deletion of data rows, no additional configuration is required. Ensure that
the ADF Table component RowAction properties are set, as described in Table 7–2.
and shown in Figure 7–9.

Figure 7–9 ADF Table RowAction Properties to Update Data

7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data
When the end user changes data in a row, ADF Desktop Integration marks the row
and an upward pointing triangle appears in a row of the _ADF_ChangedColumn
column. After updating the existing data, the end user initiates the upload process to
save the changes. For more information about the ADF Table component's upload
process, see Section 7.8, "Configuring an ADF Component to Upload Changes from an
ADF Table Component."

Excel uploads modified rows from the integrated workbook in batches rather than row
by row. You can configure the size of batches and the actions an ADF Table
component invokes when it uploads a batch. For more information about batch
processing, see Section 7.11, "Batch Processing in an ADF Table Component."

For more information about the properties that you can set for the ADF Table
component, see Section A.9, "ADF Table Component Properties and Actions."

Table 7–2 RowAction Properties of ADF Table Component

Property Value

InsertRowEnabled False

DeleteRowEnabled False

UpdateRowEnabled True

Note: Any filter criteria that has been applied to the worksheet is
automatically cleared prior to the upload action.

Configuring an ADF Table Component to Insert Data

Working with ADF Desktop Integration Table-Type Components 7-13

7.7 Configuring an ADF Table Component to Insert Data
The primary purpose of an ADF Table component is to provide end users with an
interface where they can input or edit data which can then be uploaded to the
database that serves your Fusion web application. For this to happen, you must expose
methods on data controls, create action bindings in your page definition file, and set
properties for the ADF Table component that an Excel worksheet hosts. Note that a
full Excel row must be inserted for this functionality to work correctly.

7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's
Operations

If you want the changes that the end user makes in an ADF Table component to be
committed invoking the ADF Table component's Upload action, you must configure
some of the ADF Table component's properties.

Before you begin:
It may be helpful to have an understanding of how to configure ADF Table component
to insert data. For more information, see Section 7.7, "Configuring an ADF Table
Component to Insert Data."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To configure an ADF Table component to insert data using a view object's
operations:
1. Open the project in JDeveloper.

2. If not present, add a CreateInsert and a Commit action binding to the page
definition file that is associated with the Excel worksheet that hosts the ADF Table
component.

For more information, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook" and Section 7.2, "Page Definition Requirements for an
ADF Table Component."

3. Open the integrated Excel workbook.

4. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Properties button in the Oracle ADF tab.

5. In the Edit Component: ADF Table dialog, configure the RowActions properties
of the ADF Table component as described in the Table 7–3:

Table 7–3 RowActions properties of ADF Table component

Set this property to... This value...

InsertRowEnabled True

InsertBeforeRowAction
ID

The CreateInsert action binding that the page definition file
exposes.

InsertRowsAfterUpload
Enabled

True, to upload the inserted rows again regardless of whether
they have been previously uploaded. By default, this property is
set to False.

The property is ignored if InsertRowEnabled is set to False.

Configuring an ADF Table Component to Insert Data

7-14 Developing Applications with Oracle ADF Desktop Integration

6. Configure the BatchOptions properties of the ADF Table component as
described in the Table 7–4.

7. Configure the Columns property of the ADF Table component as described in the
Table 7–5.

8. Repeat Step 7 for each column that contains data to commit during invocation of
the Upload action.

For information about ADF Table component properties, see Section A.9, "ADF
Table Component Properties and Actions."

Table 7–4 BatchOptions Properties of the ADF Table Component

Set this property to... This value...

CommitBatchActionID The Commit action binding that the page definition file exposes.

Table 7–5 Columns property of ADF Table component

Set this property to... This value...

InsertUsesUpdate True

UpdateComponent ■ Set the Value field of the UpdateComponent property to
the update attribute from the page definition file. For
example, #{row.bindings.ProductId.inputValue}.

■ Verify that ReadOnly property of UpdateComponent is
set appropriately.

This property only appears if you selected InputText or
TreeNodeList as the subcomponent to associate with the
column. Set ReadOnly to False if you do want users to
edit the values in the column, set to True otherwise.

For more information about the components that you can
use as a subcomponent, see Chapter 6, " Working with ADF
Desktop Integration Form-Type Components."

ID Set a value in this field that uniquely identifies the column in the
ADF Table component's list of columns. A value for this
property is required. The ADF Table component generates an
initial value that you need not modify.

CellStyleName Set this property to a style defined in the workbook or to an EL
expression that applies a style to the cells in the column at
runtime. For more information about styles, see Chapter 9,
"Configuring the Appearance of an Integrated Excel Workbook."

HeaderLabel Set this property to a label or to an EL expression that evaluates
to a label which is rendered in the column header at runtime.
For more information about labels, see Section 9.4, "Using Labels
in an Integrated Excel Workbook."

HeaderStyleName Set this property to a style defined in the workbook or to an EL
expression that applies a style to the column's header cell at
runtime. For more information about styles, see Chapter 9,
"Configuring the Appearance of an Integrated Excel Workbook."

Configuring an ADF Component to Upload Changes from an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-15

7.8 Configuring an ADF Component to Upload Changes from an ADF
Table Component

You configure the ADF Table component and the worksheet that hosts it so that end
user can upload changes they make to data in the ADF Table component to the Fusion
web application. To configure this functionality, you decide what user gesture or
worksheet event invokes the action set that invokes the ADF Table component's
Upload action.

The Upload action commits all successful rows even when some rows have failures.
Use the UploadAllOrNothing action instead if you want no row changes to get
committed if one, or more, row failures occur (see Section 7.9, "Configuring an ADF
Table Component to Upload Changes Using UploadAllOrNothing Action"). To
provide upload options to end users in a web page from the Fusion web application
that differ from the default upload dialog, you must specify a Dialog action in the
action set before the action that invokes the ADF Table Component's Upload action.
For more information, see Section 7.8.5, "How to Create a Custom Upload Dialog."

7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table
Component

Configure an ADF component, such as a worksheet ribbon command, to invoke an
action set that, in turn, invokes the ADF Table component Upload action.

Before you begin:
It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table
Component."

Notes:

■ If you are using a polymorphic view object and want to insert a
new row, the default CreateInsert action binding is not
sufficient. You must create a custom method that also sets the
discriminator value in the newly created row.

While creating the custom method, you must expose the custom
method as an action binding in the page definition file. The action
binding must be specified as the InsertBeforeActionId
rather than CreateInsert.

■ If the InsertRowsAfterUploadEnabled property is set to
False and the end user tries to upload the inserted rows again,
an error message in the status column is displayed indicating that
the row cannot be inserted more than once.

Note: In a master-detail relationship, ADF Desktop Integration does
not support editing of the ViewLink source attributes, as the
selections in the child view object would change as a result. To
prevent any accidental editing, define the ViewLink source attributes
to be read-only, or use a model configuration that does not include a
view link between master and detail.

Configuring an ADF Component to Upload Changes from an ADF Table Component

7-16 Developing Applications with Oracle ADF Desktop Integration

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To configure an ADF component to upload changed data from an ADF Table
component:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog to configure the action set that invokes the ADF Table
component Upload action.

For more information about action sets, see Section 8.2, "Using Action Sets."

3. Add the ADF Table component Upload action to the list of actions that the action
set invokes at runtime.

Figure 7–10 shows the Edit Actions dialog in the EditCustomers-DT.xlsx
workbook, where the action set invoked by the ribbon command labeled Upload
at runtime is configured.

Figure 7–10 Action Set Uploading Data from an ADF Table Component

4. Click OK.

Note: The action set does not include a call to a commit-type action
as the ADF Table component's batch options already include calls to
Commit. For more information, see Section 7.11.1, "How to Configure
Batch Options for an ADF Table Component."

Configuring an ADF Component to Upload Changes from an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-17

7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data
At runtime, the end user invokes the action set through whatever mechanism you
configured (ADF component, worksheet ribbon button, worksheet event). This
triggers the following sequence of events:

1. If the ADF Table component contains dynamic columns, ADF Desktop Integration
verifies whether the dynamic columns that were expanded the last time the ADF
Table component's Download action was invoked are still present in the Fusion
web application. If the columns are not present, ADF Desktop Integration
prompts the end user to determine whether to continue upload process. If the end
user decides not to continue, ADF Desktop Integration returns an abort code to the
executing action set.

2. If the ADF Table component contains no pending changes to upload, the ADF
Table component's Upload action returns a success code to the executing action
set.

3. If you did not configure a custom upload dialog for the action set, as described in
Section 7.8.5, "How to Create a Custom Upload Dialog," ADF Desktop Integration
presents the default upload dialog shown in Figure 7–11.

Figure 7–11 Default Upload Dialog

If the end user clicks Cancel, ADF Desktop Integration returns an abort code to the
executing action set. If the end user clicks OK, the action set continues executing
with the options specified in the dialog for the upload operation.

4. The ADF Table component uploads modified rows in batches, rather than row by
row. You can configure the batch options using the BatchOptions group of
properties. For more information about batch options for the ADF Table
component, see Section 7.11, "Batch Processing in an ADF Table Component."

Each row of a batch is processed in the following way, and the process continues
until all changed rows of each batch are processed:

a. For inserted rows, invoke the InsertBeforeRowActionID action, if
specified.

b. Set attributes from the worksheet into the model, including any cached row
attribute values.

c. For edited rows, invoke the UpdateRowActionID action; and for inserted
rows, invoke the InsertAfterRowActionID action, if specified.

d. For each uploaded row, displays a status message in the Status column. For
more information, see Section 8.2.5, "How to Display a Status Message While
an Action Set Executes."

e. For any row failure, it verifies the value of AbortOnFail. If AbortOnFail is
set to False, it continues upload process, otherwise it stops uploading data
and invokes the commit action.

5. While uploading data, the ADF Table component returns a success or failure code
to the executing action set based on the following:

Configuring an ADF Component to Upload Changes from an ADF Table Component

7-18 Developing Applications with Oracle ADF Desktop Integration

■ If the ADF Table component uploads all batches successfully, it returns the
success status to the executing action set. If the end user has selected the
Download all rows after successful upload option in Step 3, the ADF Table
component then downloads all rows from the Fusion web application.

■ If the ADF Table component did not upload all batches successfully, the action
set invokes the action specified by the RowActions.FailureActionID
property, if an action is specified for this property. ADF Desktop Integration
returns a failure code to the action set.

If you selected On failure, continue to upload subsequent rows in the Upload
Options dialog of Step 3, the Upload action returns a success code to the action set
even if some individual rows encountered validation failures.

7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During
Upload

At runtime, if an ADF Table component column's ReadOnly property evaluates to
True, the ADF Table component's Upload action ignores all changes in the column's
cells.

For more information about change tracking, see Section 7.21, "Evaluating EL
Expression for ReadOnly Properties."

7.8.4 What Happens at Runtime: Upload Failure
When the ADF Table component starts uploading data, ADF Desktop Integration
creates a DataControlFrame savepoint before initiating the upload process (once
per batch of uploaded rows). In case of any failure, ADF Desktop Integration reverts
back to the same savepoint, ensuring the integrity of the server-side state of the Fusion
web application.

For each row in a batch of uploaded rows, ADF Desktop Integration does the
following:

1. Invokes configured actions, applies row attribute value changes, and performs
data validation.

2. In case of any error, reverts back to the savepoint state.

For more information about savepoints, see the "Using Trees to Display Master-Detail
Objects" section in the Developing Fusion Web Applications with Oracle Application
Development Framework.

Note: If an ADF Table component column's ReadOnly property
evaluates to True, the ADF Table component's Upload action ignores
changes in the column's cells.

For more information about an ADF Table component column's
properties, see Table A–10.

Note: A second iteration is performed, if required, to re-upload any
successfully uploaded rows whose changes were reverted due to a
subsequent upload error.

Configuring an ADF Component to Upload Changes from an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-19

7.8.5 How to Create a Custom Upload Dialog
You display a page from Fusion web application that offers end users different
options to those presented in the default upload dialog. You add a Dialog action
before the action that invokes the ADF Table component's Upload action in the action
set.

Before you begin:
It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Section 7.8, "Configuring an ADF Component to Upload Changes from an ADF Table
Component."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To create a custom upload dialog:
1. Create a page in the JDeveloper project where you develop the Fusion web

application. For information on how to create this page, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application."

2. In addition to the ADFdi_CloseWindow element (for example, a span element)
described in Section 8.4, "Displaying Web Pages from a Fusion Web Application,"
the page that you create in Step 1 must include the elements described in
Table 7–6.

3. Add a Dialog action to invoke the page you created in Step 1 before the action in
the action set that invokes the ADF Table component's Upload action.

For more information about displaying pages from a Fusion web application, see
Section 8.4, "Displaying Web Pages from a Fusion Web Application."

7.8.6 What Happens at Runtime: Custom Upload Dialog
When a custom dialog appears, the page from the Fusion web application that you
configure the Dialog action in the action set to display appears instead of the default
upload dialog.

Table 7–6 Span Elements Required for Custom Upload

Name Description

ADFdi_
AbortUploadOnFailure

If you set this element to True, the action set stops uploading if
it encounters a failure. If the element references False, the
action set attempts to upload all rows and indicates if each row
succeeded or failed to upload.

ADFdi_
DownLoadAfterUpload

Set this element to True so the action set downloads data from
the Fusion web application to the ADF Table component after
the action set uploads modified data.

Note: The page you create must include both elements to prevent
ADF Desktop Integration presenting the default upload dialog to end
users.

Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action

7-20 Developing Applications with Oracle ADF Desktop Integration

For more information about displaying a page from the Fusion web application, see
Section 8.4, "Displaying Web Pages from a Fusion Web Application." Otherwise, the
runtime behavior of the action set that you configure to upload data is as described in
Section 7.8.2, "What Happens at Runtime: How the ADF Table Component Uploads
Data."

7.9 Configuring an ADF Table Component to Upload Changes Using
UploadAllOrNothing Action

ADF Desktop Integration commits all row changes that are successfully uploaded
during a Table.Upload operation, even when one or more rows has failures. For
example, if 100 rows are uploaded and only three rows contain failures, 97 rows are
still committed to the database. For more information, see Section 7.8, "Configuring an
ADF Component to Upload Changes from an ADF Table Component."

Using the UploadAllOrNothing action, you can configure the upload process to
commit all changed rows only if all rows are successfully uploaded. For example, if
100 rows are uploaded, and if any row fails, no rows are committed to the database.

7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action
Configure an ADF component, such as a worksheet ribbon command, to invoke an
action set that, in turn, invokes the ADF Table component UploadAllOrNothing
action.

Before you begin:
It may be helpful to have an understanding of how to configure ADF component to
upload data from an ADF Table data component. For more information, see
Section 7.9, "Configuring an ADF Table Component to Upload Changes Using
UploadAllOrNothing Action."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To configure an ADF component to use UploadAllOrNothing action:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog to configure the action set that invokes the ADF Table
component actions.

For more information about action sets, see Section 8.2, "Using Action Sets."

3. Add the ADF Table component UploadAllOrNothing action to the list of
actions that the action set invokes at runtime.

4. Click OK.

Note: If there is no server connectivity when the end user tries to
upload data, the end user gets an error when the Dialog action fails
to find the custom upload page. ADF Desktop Integration does not
revert to the standard dialog when server connectivity is not available.

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

Working with ADF Desktop Integration Table-Type Components 7-21

7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked
If you have chosen the UploadAllOrNothing action, ADF Desktop Integration
commits row changes only when all rows are uploaded successfully.

During the UploadAllOrNothing action, ADF Desktop Integration uploads all
changed worksheet rows prior to invoking specified by CommitBatchActionID. If
one, or more, row-level failures occur, the action specified by FailureActionID is
invoked and the action specified by CommitBatchActionID is not invoked.

In the event of a failure, all changed column values remain unchanged. The status
column indicates failure for all row-level failures, but remains empty for all rows
without errors. When all rows succeed and are successfully committed, the changed
column values are cleared and the status column for the uploaded rows reports
success.

7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With
UploadAllOrNothing Action

Uploading a very large number of changed worksheet rows with the
UploadAllOrNothing action could result in significant memory consumption on the
application server. To prevent end users from uploading too much data during the
UploadAllOrNothing action, set the UploadAllOrNothing.ChangedDataLimit
servlet parameter (specified in Kb) to limit the total amount of changed data that can
get uploaded. If no parameter value is specified, a default limit of 10,240 Kb is used.

If the total amount of changed data uploaded exceeds the
UploadAllOrNothing.ChangedDataLimit value, an error message is reported to
the end user, and the UploadAllOrNothing action is aborted. Note that the action
specified by Table.RowActions.FailureActionID is invoked when the changed
data limit is exceeded.

7.10 Configuring an ADF Table Component to Delete Rows in the Fusion
Web Application

The ADF Table component exposes an action (DeleteFlaggedRows) that, when
invoked, deletes the rows in the Fusion web application that correspond to the flagged
rows in the ADF Table component. A flagged row in an ADF Table component is a row
where the end user has double-clicked or typed a character in the cell of the _ADF_
FlagColumn column as described in Section 7.11, "Batch Processing in an ADF Table

Note: The UploadAllOrNothing action uploads data in the same
way as the Upload action. For more information about how data gets
uploaded during Upload as well as UploadAllOrNothing, see
Section 7.8.2, "What Happens at Runtime: How the ADF Table
Component Uploads Data."

Notes:

■ The UploadAllOrNothing action is only supported for
DataControls that support database transactions.

■ If CommitBatchActionID is not configured and an action set
contains the UploadAllOrNothing action, a validation error is
reported.

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

7-22 Developing Applications with Oracle ADF Desktop Integration

Component." The _ADF_FlagColumn column must be present in the ADF Table
component to configure it to delete rows in the Fusion web application.

In addition, the page definition file that you associate with the worksheet that hosts
the ADF Table component must expose a Delete action binding.

7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web
Application

To delete rows from an ADF Table component, you must add the Delete action
binding to the page definition file, configure RowActions group of properties of the
ADF Table component, and configure an action set to invoke the
DeleteFlaggedRows action.

Before you begin:
It may be helpful to have an understanding of how to configure ADF Table component
to delete data rows in Fusion web application. For more information, see Section 7.10,
"Configuring an ADF Table Component to Delete Rows in the Fusion Web
Application."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To configure an ADF Table component to delete rows in a Fusion web
application:
1. Open your Fusion web application in JDeveloper.

2. If not present, add a Delete action binding to the page definition file that is
associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook."

3. Open the property inspector for the ADF Table component and set values for the
RowActions group of properties as described in Table 7–7.

For more information about ADF Table component properties, see Section A.9,
"ADF Table Component Properties and Actions."

4. Click OK.

5. Open the integrated Excel workbook.

6. Open the Edit Action dialog to configure an action set for the Oracle ADF
component, ribbon control, or worksheet event that the end user uses to invoke
the action set at runtime.

7. Add the ADF Table component's DeleteFlaggedRows action to the list of
actions that the action set invokes at runtime.

Table 7–7 RowActions Properties of ADF Table component

Set this property... To...

DeleteRowActionID The Delete action binding that the page definition file exposes.

DeleteRowEnabled True to enable the ADF Table component to delete rows in the
Fusion web application.

False is the default value.

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

Working with ADF Desktop Integration Table-Type Components 7-23

For more information about invoking action sets, see Section 8.2, "Using Action
Sets."

8. Click OK.

7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a
Fusion Web Application

The end user flags rows to delete, as described in Section 7.11.2, "Row Flagging in an
ADF Table Component." The end user then invokes the action set. The following
sequence of events occurs:

1. If specified, the action binding referenced by the
BatchOptions.StartBatchActionID property is invoked.

Failures from this step are treated as errors. An error stops the action set invoking.
It also returns the error condition to the action set. If an action binding is specified
for the ActionSet.FailureActionID property, the action set invokes the
specified action binding.

For more information about configuring batch options, see Section 7.11, "Batch
Processing in an ADF Table Component."

2. The action set invokes the Delete action binding specified by
RowActions.DeleteRowActionID.

3. If no errors occur during the invocation of the Delete action binding, a success
message entry appears in the _ADF_StatusColumn column. If a failure occurs,
the ADF Table component stops invocation of the Delete action binding and
continues to Step 4.

4. If an action binding is specified for the BatchOptions.CommitBatchActionID
property, the action set invokes it. If this step fails, the action set stops processing
batches. If no failures occur, the action set processes the next batch by invoking the
action binding specified by the BatchOptions.StartBatchActionID
property, and so on until the action set processes all batches.

5. If the action set processes all batches successfully, it invokes the action binding
specified by its ActionOptions.SuccessActionID property if an action
binding is specified for this property. It then removes the rows deleted in the
Fusion web application by invocation of the Delete action binding specified by
RowActions.DeleteRowActionID from the worksheet and returns a success
code to the action set.

If failures occur while the action set processes the batches, the action set invokes
the action binding specified by its ActionOptions.FailureActionID
property if an action binding is specified for this property. This action binding
returns a failure code to the action set.

Note: Add the DeleteFlaggedRows action in a separate action set
and do not include it with other table actions like Download or
Upload.

Note: Rows inserted since the last invocation of the ADF Table
component's Download action but not uploaded to the Fusion web
application are ignored even if flagged for deletion.

Batch Processing in an ADF Table Component

7-24 Developing Applications with Oracle ADF Desktop Integration

6. If an unexpected exception occurs while the action set invokes its actions, an error
code is returned to the action set. All row-level errors are displayed in the Status
column, and all batch-level errors can be tracked through Table.errors. For
more information about error handling, see Section 12.4, "Error Reporting in an
Integrated Excel Workbook."

7.11 Batch Processing in an ADF Table Component
The ADF Table component uploads modified rows from the Excel workbook in
batches rather than row-by-row. You can configure batch option properties that
determine the size of batches and what actions the ADF Table component invokes
when it uploads a batch.

7.11.1 How to Configure Batch Options for an ADF Table Component
The ADF Table component has a group of properties (BatchOptions) that allow you
to configure how the ADF Table component manages batches of rows. Information
about these properties can be found in Section A.9, "ADF Table Component Properties
and Actions."

Before you begin:
It may be helpful to have an understanding of batch processing in the ADF Table
component. For more information, see Section 7.11, "Batch Processing in an ADF Table
Component."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To configure batch options for an ADF Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Set values for the BatchOptions group of properties in the property inspector
that appears.

Table 7–8 RowData.BatchOptions Properties

Set this property... To...

BatchSize Specify how many rows to process before an ADF Table
component action (Upload or DeleteFlaggedRows) invokes
the action binding specified by CommitBatchActionID. Any
value other than a positive integer results in all rows being
processed in a single batch. The default value is 100 rows.

CommitBatchActionID The action binding to invoke after the ADF Table component
processes each batch. Typically, this is the Commit action
binding.

LimitBatchSize True

When True, the ADF Table component processes rows in
batches determined by the value of BatchSize. When False,
the ADF Table component uploads all modified rows in a single
batch.

True is the default value.

Batch Processing in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-25

4. Click OK.

Note that a failure at the entity-level is not considered a batch failure. A failure at the
commit level (for example, a wrong value for a foreign key attribute) is considered a
batch failure.

7.11.2 Row Flagging in an ADF Table Component
By default, the ADF Table component includes a column, _ADF_FlagColumn, that
facilitates the selection of rows for flagged-row processing. Double-clicking a cell of
the _ADF_FlagColumn column flags the corresponding row for processing by actions
invoked by a component action.

When the end user double clicks a cell of the _ADF_FlagColumn column, a solid
circle appears, or disappears, in the cell to indicate that the row is flagged, or not.
Figure 7–12 shows an example of a flagged column.

Figure 7–12 Flagged Column in ADF Table Component

The following component actions can be invoked on flagged rows:

■ DeleteFlaggedRows

■ DownloadFlaggedRows

You can use the FlagAllRows component action to flag all rows, and the
UnflagAllRows component action to unflag all rows of the ADF Table component.

StartBatchActionID Specify the action binding to invoke at the beginning of each
batch.

Note: By default, the solid circle character indicates a row flagged
for flagged-row processing. However, any nonempty cell in a _ADF_
FlagColumn column flags the corresponding row for flagged-row
processing.

Notes:

■ The ADF Table component's DownloadFlaggedRows action
does not support changes in table column structure after the last
invocation of the Download or DownloadForInsert action. The
table column structure usually changes if you are using dynamic
columns, or if the table contains columns with complex
expressions in the Visible property.

■ The DownloadFlaggedRows action is not applicable to inserted
rows.

Table 7–8 (Cont.) RowData.BatchOptions Properties

Set this property... To...

Special Columns in the ADF Table Component

7-26 Developing Applications with Oracle ADF Desktop Integration

Use of these component actions is dependent on the appearance of the _ADF_
FlagColumn column in the ADF Table component. If you remove the _ADF_
FlagColumn column from the ADF Table component, you cannot invoke any of these
component actions. For more information about these component actions, see
Section A.9.3, "ADF Table Component Actions."

At runtime, the end user can invoke any of the previously listed component actions
from an action set. The invoked component action processes all flagged rows. For
example, it downloads or deletes all flagged rows. For more information about
configuring an action set to invoke a component action, see Section 8.2.2, "How to
Invoke Component Actions in an Action Set."

7.11.3 Troubleshooting Errors While Uploading Data
End users might encounter unexpected reports of errors under certain circumstances
while uploading data from ADF Table components. After posting changes from a
batch, ADF Desktop Integration runs the action specified by the
CommitBatchActionID. Errors that occur during the commit action might continue
to be reported on subsequent batch commit actions, even though those batches of
records do not contain the error. This can happen when any pending model updates
are not automatically reverted when the CommitBatchActionID action fails.

To avoid any such error, you must explicitly revert pending model updates that exist
after a commit failure. For example, you could create a custom action for the
CommitBatchActionID that first attempts to commit the pending model changes.
However, if an exception occurs during commit, the custom method should first roll
back the pending model changes, so that any subsequent batch commit attempts can
succeed.

7.12 Special Columns in the ADF Table Component
By default, the ADF Table component includes some columns when you insert an
ADF Table component in a worksheet. You can retain or remove these columns, if
required. The following list describes the columns and the purpose they serve:

■ _ADF_ChangedColumn

The cells in this column track changes to the rows in the ADF Table component. If
a change has been made to data in a row of the ADF Table component since
download or the last successful upload, a character that resembles an upward
pointing arrow appears in the corresponding cell of the _ADF_ChangedColumn
column. This character toggles (appears or disappears) when a user double-clicks
a cell in this column. Figure 7–13 shows an example.

Figure 7–13 Changed Column in an ADF Table Component

Note: It is important that the commit exception gets thrown again
after rollback so that the commit errors are reported as expected on
the client.

Special Columns in the ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-27

A confirmation dialog appears to end users when the ADF Table component's
Download action is invoked, and one or more rows in this column are flagged as
changed. The end user clicks OK to allow the Download action to execute, or
Cancel to stop the execution of the Download action.

■ _ADF_FlagColumn

When the end user double-clicks a cell in this column, the corresponding row is
flagged for flagged-row processing. A solid circle character appears to indicate
that the row is flagged for flagged-row processing. For more information about
the use of this column, see Section 7.11.2, "Row Flagging in an ADF Table
Component."

A confirmation dialog appears to end users when the ADF Table component's
DownloadFlaggedRows action is invoked, and one or more rows in _
ADFChangedColumn and _ADF_FlagColumn are flagged. The end user clicks
OK to allow the action to execute or Cancel to stop the execution of the action.

■ _ADF_StatusColumn

This column reports the results of invocation of the following ADF Table
component actions:

– DeleteFlaggedRows

– Upload

A message appears in the cell of the _ADF_StatusColumn to indicate the result
of the invocation for the corresponding row. If the end user invokes a
DoubleClickActionSet defined in an ADF Table column and an error occurs,
the errors are also reported in the status column of the corresponding row.
Figure 7–14 shows an example of Status column message.

Figure 7–14 Status Column in an ADF Table Component

■ _ADF_RowKeyColumn

This column, also referred to as the Key column, contains important information
about the ADF Table component used by ADF Desktop Integration at runtime.
The column appears both at runtime and design time. You can remove the column
from the table at design time, but note that it automatically appears at runtime as
the last column of the table.

For more information about the _ADF_RowKeyColumn, see Section 7.13,
"Configuring ADF Table Component Key Column."

Note: If the end user does not want the ADF Table component's
Upload action to upload changes in the rows flagged by this column,
the user must clear the entry that appears in the corresponding cell.

Note: By default, the solid circle character indicates a row flagged
for flagged-row processing. However, any nonempty cell in a _ADF_
FlagColumn flags the corresponding row for flagged-row processing.

Configuring ADF Table Component Key Column

7-28 Developing Applications with Oracle ADF Desktop Integration

The ADF Table component treats the properties of the _ADF_ChangedColumn, _ADF_
FlagColumn, _ADF_RowKeyColumn, and _ADF_StatusColumn columns
differently from the properties of other columns that it references. It ignores the values
set for properties such as InsertComponent, InsertUsesUpdate, and
UpdateComponent unless it invokes the DisplayRowErrors action described in
Table A–11. It reads the values for properties related to style and appearance, for
example CellStyleName and HeaderStyleName.

7.13 Configuring ADF Table Component Key Column
When you add ADF Table to your integrated Excel workbook, the Key column
(column ID: _ADF_RowKeyColumn) appears automatically at design time. The Key
column contains important information that is used by ADF Desktop Integration for
proper functioning of the table. Note that you must not remove the Key column at
runtime.

7.13.1 How to Configure the Key Column
You can configure the Key column's position, style properties, and header label. By
default, the _ADFDI_TableKeyCellStyle style is applied to it.

Before you begin:
It may be helpful to have an understanding of the Key column in the ADF Table
component. For more information, see Section 7.13, "Configuring ADF Table
Component Key Column."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To configure the Key column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF
Table component.

4. Select the column with ID as _ADF_RowKeyColumn.

5. Change the column properties as desired, but do not change the following
properties:

■ DynamicColumn

■ InsertComponent

■ InsertUsesUpdate

■ UpdateComponent

■ ID

■ Visible

6. If desired, change the position of the column using the Up and Down arrow keys.

Configuring ADF Table Component Key Column

Working with ADF Desktop Integration Table-Type Components 7-29

7. Click OK to close Edit Columns dialog.

8. Click OK to close the Edit Component: ADF Table dialog.

7.13.2 How to Manually Add the Key Column At Design Time
If you are using the integrated Excel workbook prepared and configured using an
earlier version of ADF Desktop Integration, the Key column will not be available at
design time. It will appear only at runtime. To configure the Key column properties,
you can add it in the workbook at design time.

Before you begin:
It may be helpful to have an understanding of the Key column in the ADF Table
component. For more information, see Section 7.13, "Configuring ADF Table
Component Key Column."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To manually add the Key column at design time:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Add a new column in the ADF Table, and specify the properties as described in
Table 7–9. For more information about adding a column, see Section 7.3.2, "How to
Add a Column in an ADF Table Component."

If desired, you may change the position of the Key column using the Up and
Down arrow keys.

4. Click OK.

Table 7–9 Key Column Properties

Set this property... To ...

CellStyleName _ADFDI_TableKeyCellStyle

HeaderStyleName _ADFDI_HeaderStyle

DynamicColumn False

HeaderLabel #{_ADFDIres[COMPONENTS_TABLE_ROWKEY_COL_LABEL]}

ID _ADF_RowKeyColumn

InsertUsesUpdate True

UpdateComponent OutputText

The Value property must be empty.

Visible True

Note: You must specify the ID property of the new column as _
ADF_RowKeyColumn; otherwise, the column will not be considered to
be a Key column, and another Key column will automatically appear
at runtime.

Creating a List of Values in an ADF Table Component Column

7-30 Developing Applications with Oracle ADF Desktop Integration

7.14 Creating a List of Values in an ADF Table Component Column
Use the TreeNodeList subcomponent when you want to render a dropdown list of
values in an ADF Table component column. The list of values can display a maximum
of two hundred and fifty values at runtime. Unlike other ADF Desktop Integration
components, the TreeNodeList subcomponent does not appear in the components
palette described in Section 5.5, "Using the Components Palette." Instead, you invoke it
as a subcomponent when you specify values for the InsertComponent or
UpdateComponent properties of an ADF Table component column. For information
about the properties of an ADF Table component column, see Section A.9.2, "ADF
Table Component Column Properties."

After you invoke the TreeNodeList subcomponent, you must specify a tree binding
attribute associated with a model-driven list as a value for the TreeNodeList
subcomponent's List property. The tree binding attribute associated with a
model-driven list populates the dropdown menu in the Table component's column
with a list of values after invocation of the Table component's Download action.

For information about the properties of a TreeNodeList subcomponent, see
Section A.6, "TreeNodeList Subcomponent Properties."

7.14.1 How to Create a List of Values in an ADF Table Component Column
You add a column to the ADF Table component column and select TreeNodeList as
the subcomponent. You then specify a tree binding attribute as the value for the
TreeNodeList subcomponent's List property. A model-driven list must be
associated with the tree binding attribute that you specify.

Before you begin:
It may be helpful to have an understanding of how to create a list of values in ADF
Table component. For more information, see Section 7.14, "Creating a List of Values in
an ADF Table Component Column."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

Note: You can create a model-driven list of values in your ADF
Table component by choosing ModelDrivenColumnComponent as
the subcomponent type. For more information about creating a
model-driven list, see Section 7.15, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component."

Notes:

■ The TreeNodeList subcomponent does not support a
model-driven list whose control type is input_text_lov or
combo_lov.

■ ADF List of Values components using date values are not
supported.

■ The TreeNodeList subcomponent may not support model-driven
lists for EJB-based data controls in all cases.

Creating a List of Values in an ADF Table Component Column

Working with ADF Desktop Integration Table-Type Components 7-31

To create a list of values in an ADF Table component column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF
Table component.

4. Click Add to add a new column.

5. Choose the appropriate option for the newly created column:

■ Click the browse (...) icon beside the input field for InsertComponent to
configure the runtime list of values for insert operations.

■ Click the browse (...) icon beside the input field for UpdateComponent to
configure the runtime list of values for update and download operations.

In both options, the Select subcomponent to create dialog appears.

6. Select TreeNodeList and click OK.

7. Expand the property that you selected in Step 5 and configure values as follows:

■ Select a tree binding attribute associated with a model-driven list for the List
property.

■ Select a value for DependsOnList only if you intend to create a dependent
list of values as described in Section 8.8, "Creating Dependent Lists of Values
in an Integrated Excel Workbook." The tree binding attribute or list binding
you select for DependsOnList serves as the parent list of values in a
dependent list of values.

■ Configure the ReadOnly property as desired.

For information about these properties, see Section A.6, "TreeNodeList
Subcomponent Properties."

Figure 7–15 shows the property inspector for an ADF Table component column in
EditCustomers-DT.xlsx after TreeNodeList is selected as the
subcomponent for the column's UpdateComponent property.

Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component

7-32 Developing Applications with Oracle ADF Desktop Integration

Figure 7–15 ADF Table Component Column Configured to Display a List of Values

8. Click OK.

7.14.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values
At runtime, the ADF Table component invokes the Download action and populates
each column. This action also populates the list of values in the column that you
configure to render a list of values. Figure 7–16 shows an example from
EditCustomers-DT.xlsx of the Summit sample application for ADF Desktop
Integration, where Country is the column configured to display a list of values.

Figure 7–16 Runtime View of an ADF Table Component Column Displaying a List of
Values

7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component

You can add a ModelDrivenColumnComponent subcomponent to an ADF Table
component. The value of ModelDrivenColumnComponent is determined by the
Control Type hint specified for each attribute on the server.

At design time, for a column, specify the subcomponent type as
ModelDrivenColumnComponent for the UpdateComponent or
InsertComponent properties. At runtime, if there is a model-driven list associated

Adding a Dynamic Column to Your ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-33

with the attribute, then the column uses a dropdown list using the TreeNodeList
subcomponent.

For more information about creating a model-driven list, see the "How to Create a
Model-Driven List" section of the Developing Fusion Web Applications with Oracle
Application Development Framework.

Support for Dependent List of Values
When multiple ModelDrivenColumnComponent list subcomponents are exposed in
an ADF Table component, then for each list ADF Desktop Integration determines
whether it depends on another model-driven list. It verifies that the bind variable
specified for a list references an attribute bound to another list.

If the list depends on another model-driven list, the subcomponent's DependsOnList
value is set automatically at runtime.

As server-side list binding dependencies are determined only for lists in the same tree
node, the following tree node list bindings are not supported:

■ A binding that depends on a list binding in a different tree or tree node

■ A binding that depends on a list binding in the page definition file

7.16 Adding a Dynamic Column to Your ADF Table Component
You can add dynamic columns to an ADF Table component so that the ADF Table
component expands or contracts at runtime depending on the available attributes
returned by the view object. The DynamicColumn property of the Columns group in
the TableColumn array controls this behavior. To make a column dynamic, set the
DynamicColumn property to True. A dynamic column in the TableColumn array is
a column that is bound to a tree binding or a tree node binding whose attribute names
are not known at design time. A dynamic column can expand to more than a single
worksheet column at runtime.

The ADF Table component's dynamic column supports the following subcomponent
types:

■ InputText

■ OutputText

■ ModelDrivenColumnComponent

Support for Model-Driven List of Values
You can also configure a dynamic column to support the List of Values subcomponent
where the subcomponent type is determined from model configuration at runtime. At
design time, specify the subcomponent type as ModelDrivenColumnComponent for

Note: If there is no model-driven list associated with the attribute, or
if any non-list-based control type is specified, then the column uses an
InputText subcomponent. If there is a model-driven list whose control
type is input_text_lov or combo_lov, then the column uses an
InputText subcomponent.

Note: ADF Desktop Integration does not support the subcomponent
type TreeNodeList in a dynamic column.

Adding a Dynamic Column to Your ADF Table Component

7-34 Developing Applications with Oracle ADF Desktop Integration

the UpdateComponent or InsertComponent properties. At runtime, during
dynamic column expansion, the model-driven runtime component is determined
before caching the list of values. The remote servlet allows the client to retrieve Model
configuration, allowing the client to choose the desired column subcomponent type.
For more information about ModelDrivenColumnComponent, see Section 7.15,
"Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component."

7.16.1 How to Configure a Dynamic Column
You configure a dynamic column by specifying an EL expression with the following
format for the Value property of the component specified by the ADF Table
component column's InsertComponent property as a subcomponent:

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.inputValue}

or:

#{bindings.TreeID.AttributeNamePrefix*.inputValue}

where:

■ TreeID is the ID of the tree binding used by the ADF Table component

■ TreeNodeID is an optional value that specifies the tree node binding ID. If you
omit this value, all matching attributes from the tree binding display regardless of
which tree node binding the attribute belongs to.

■ AttributeNamePrefix identifies a subset of attributes that exist within the tree
binding's underlying iterator. If you do not specify a value for
AttributeNamePrefix, all attributes for the tree binding or tree binding node
are returned. Always use the * character.

The following example returns all attributes that begin with the name "period" in the
model.EmpView node of the EmpTree binding:

#{bindings.EmpTree.[model.EmpView].period*.inputValue}

7.16.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic
Column

When the ADF Table component's Download or DownloadForInsert action is
invoked, the ADF Table component automatically updates the dynamic columns so
that they contain an up-to-date set of matching attributes. For each invocation of
Download, ADF Desktop Integration requires that all rows must have the same set of
attributes for the dynamic column. It may generate errors if the set of attributes
changes from row to row during Download.

If a dynamic column supports both Insert and Update operations, you should
specify the same EL expression for the Value properties of the dynamic column's

Note: While adding a dynamic column, ensure that tree node
attribute names are not specified in the page definition file. At
runtime, the tree node object returns all attribute names from the
underlying iterator. If there are attribute names specified in the page
definition file, the tree node object limits the list of available attribute
names based on that list.

Adding a Dynamic Column to Your ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-35

InsertComponent and UpdateComponent subcomponents. At runtime, the ADF
Table component expands to include a dynamic column that displays the value of the
attribute binding returned by the EL expression.

When the ADF Table component's Upload action is invoked, the workbook prompts
the end user to determine if the end user wants to continue to upload data when the
previously downloaded attributes no longer exist in the tree binding.

Support for View Objects with Declarative SQL Mode
To support view objects that are configured with declarative SQL mode and
customized at runtime, expose a tree binding in the page definition file that has no
attributes defined. For example:

<tree IterBinding="DeclSQLModeIterator" id="DeclSQLModeTree">
 <nodeDefinition Name="DeclSQLModeTreeNode"/>
</tree>

At runtime, the tree binding will return the selected attributes from the underlying
declarative SQL mode view object to the integrated Excel worksheet.

7.16.3 How to Specify Header Labels for Dynamic Columns
Use the following syntax to write EL expressions for the HeaderLabel property of a
dynamic column:

#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*.label}

or:

#{bindings.TreeID.hints.AttributeNamePrefix*.label}

Specify the same tree binding ID, tree node binding ID, and attribute name prefix
values in the HeaderLabel property of the dynamic column as the values you specify
for the Value properties of the dynamic column's InsertComponent and
UpdateComponent if the dynamic column supports Insert and Update operations.

If you want the mandatory columns, where the end user must enter a value, to be
marked with a character or a string, you must configure the HeaderLabel property.
Use the following syntax to write EL expression to add a character or string to all
mandatory columns:

=IF(#{bindings.TreeID.[TreeNodeID].hints.*.mandatory}, "<prefix_
for_mandatory_cols>", "") &
"#{bindings.TreeID.[TreeNodeID].hints.*.label}"

For example, the following EL expression adds an asterisk (*) character to the
mandatory columns label:

Note: If an Excel AutoFilter is applied on a table with dynamic
columns, the AutoFilter is automatically removed every time the
dynamic columns are expanded, collapsed, or adjusted.

Note: The ADF Table component ignores the value of a column's
Visible property when you configure a column to be dynamic. For
more information about ADF Table component column properties, see
Table A–10.

Creating an ADF Read-Only Table Component

7-36 Developing Applications with Oracle ADF Desktop Integration

=IF(#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.mandator
y}, "* ", "") &
"#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.label}"

7.16.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type
You can specify different styles for each data type according to the data type of the
column. Use the following syntax to write EL expressions for the CellStyleName
property of a dynamic column:

=IF("#{bindings.TreeID.[TreeNodeID].hints.*.dataType}"="<data_
type>", <custom_style_expression1>, <custom_style_expression2>)

In the following example, the MyDateStyle style is applied to all date columns, and
MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataTyp
e}"="date", "MyDateStyle", "MyDefaultStyle")

The following example shows another scenario where the MyDateStyle style is
applied to all date data type columns, MyNumberStyle is applied to all number data
type columns, and MyDefaultStyle is applied to other data type columns:

=IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataTyp
e}"="date", "MyDateStyle",
IF("#{bindings.MyTree.[myapp.model.MyChildNode].hints.*.dataType
}"="number", "MyNumberStyle", "MyDefaultStyle"))

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

7.17 Creating an ADF Read-Only Table Component
At runtime, the ADF Read-only Table component renders a table across a continuous
range of cells that displays data from the tree binding that the ADF Read-only Table
component references. Use this component to display data that you do not want the
end user to edit.

This component supports several properties, such as RowLimit, that determine how
many rows the component downloads when it invokes its Download action. It also
includes a group of properties (Columns) that determine what columns from the tree
binding appear at runtime in the Excel worksheet. The TreeID property specifies the
tree binding that the component references. More information about these properties
and others that the ADF Read-only Table component supports can be found in
Section A.10, "ADF Read-only Table Component Properties and Actions."

ADF Desktop Integration uses the first column of a worksheet (column A) to store
some special information needed for the proper operation of Read-only Table
components. Therefore, at runtime, column A is hidden for any worksheet that
contains at least one instance of ADF Read-only Table component. The content of the
worksheet are shifted by one column in the right direction to compensate for the
hiding of column A, and maintain the visual layout from design time. Upon returning
to design time, column A is unhidden and the worksheet contents are shifted back one
column in the left direction.

Figure 7–17 shows the ADF Read-only Table component at design time with the
property inspector in the foreground.

Creating an ADF Read-Only Table Component

Working with ADF Desktop Integration Table-Type Components 7-37

Figure 7–17 ADF Read-only Table Component at Design Time

Figure 7–18 shows the columns that an ADF Read-only Table component which
references the Customers tree binding at runtime.

Figure 7–18 Columns in an ADF Read-only Table Component at Runtime

7.17.1 How to Insert an ADF Read-only Table Component
You use the ADF Desktop Integration Designer task pane to insert an ADF Read-only
Table component into a worksheet.

Notes:

■ At runtime, inserting a row into the ADF Read-only Table
component results in a new Excel row that behaves as if it is part
of the downloaded data set, but the new row exists only in Excel.
The data from the new row is not uploaded to the server, and
does not affect the Fusion web application data.

■ Read-only columns include double-click action sets. However,
these actions cannot reliably position on the current row. So, the
results of using row-level action sets with the ADF Read-only
Table component is not consistent.
If you need to use row-level action sets with reliable row
positioning, use the ADF Table component instead of the ADF
Read-only Table component.

Creating an ADF Read-Only Table Component

7-38 Developing Applications with Oracle ADF Desktop Integration

Before you begin:
It may be helpful to have an understanding of ADF Read-only Table component. For
more information, see Section 7.17, "Creating an ADF Read-Only Table Component."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To insert an ADF Read-only Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

When inserting a table component, you must ensure that the data of two tables
does not overlap at runtime, and the selected cell is not a merged cell

3. In the bindings palette, select the binding to create the ADF Read-only Table
component, and then click Insert Binding.

4. In the dialog that appears, select ADF Read-only Table.

5. Configure properties in the property inspector that appears to determine the
columns to appear and the actions the component invokes at runtime.

6. Click OK.

7.17.2 How to Manually Add a Column to the ADF Read-only Table Component
You can manually add additional columns to an ADF Read-only Table component or
re-add columns that you previously removed.

Before you begin:
It may be helpful to have an understanding of ADF Read-only Table component. For
more information, see Section 7.17, "Creating an ADF Read-Only Table Component."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To manually add a column to the ADF Read-only Table component:
1. Open the integrated Excel workbook.

Note: You can also insert an ADF Read-only Table component by
using the components palette or Oracle ADF tab. Select ADF
Read-only Table and click Insert Component. If you use the
components palette to create the component, you would have to add
each column to appear in the component at runtime.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector.

To remove the table component, use the Delete ribbon command. For
more information, see Section 5.14, "Removing ADF Desktop
Integration Components."

Limiting the Number of Rows Your Table-Type Component Downloads

Working with ADF Desktop Integration Table-Type Components 7-39

2. Select the cell in the worksheet that hosts the ADF Read-only Table component
and click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the browse (...) icon beside the
input field for Columns.

The Edit Columns dialog appears, listing all the columns of the selected ADF
Table component

4. Click Add to add a new column to the ADF Read-only Table component.

5. Set values for the properties of the new column.

For information about the properties of an ADF Read-only Table component
column, see Table A–13.

6. Click OK.

7.18 Limiting the Number of Rows Your Table-Type Component
Downloads

You can configure the number of rows that an ADF Table or ADF Read-only Table
component downloads by setting values for the component's RowLimit group of
properties. You can also display a warning message, if desired, that alerts the end user
when the number of rows available to download exceeds the number of rows specified
for download.

7.18.1 How to Limit the Number of Rows a Component Downloads
Specify the number of rows that the component downloads when it invokes its
Download action as a value for the RowLimit.MaxRows property. Optionally, write
an EL expression for the RowLimit.WarningMessage property so that the end user
receives a message if the number of rows available to download exceeds the number
specified by RowLimit.MaxRows.

Before you begin:
It may be helpful to have an understanding of how to limit the number of rows while
downloading data in your ADF Table component. For more information, see
Section 7.18, "Limiting the Number of Rows Your Table-Type Component Downloads."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To limit the number of rows a table-type component downloads:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the table-type component and
click the Edit Properties button in the Oracle ADF tab.

For more information, see Section 8.2, "Using Action Sets."

3. Configure properties for the RowLimit group of properties, as described
inTable 7–10. For more information about these properties, see Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

Limiting the Number of Rows Your Table-Type Component Downloads

7-40 Developing Applications with Oracle ADF Desktop Integration

4. Click OK.

Figure 7–19 shows the Edit Component dialog in the EditCustomers-DT.xlsx
workbook where the row limit of an ADF Table component is configured.

Figure 7–19 Limiting Number of Rows of an ADF Table Component

7.18.2 What Happens at Runtime: How the RowLimit Property Works
When invoked, the Table-type component's Download action downloads the number
of rows that you specified as the value for RowLimit.MaxRows from the Fusion web
application. A message dialog similar to the one in Figure 7–20 appears if you specify
an EL expression for RowLimit.MaxRows or do not modify its default value.

Figure 7–20 Row Limit Exceeded Warning Message

Table 7–10 RowLimit Group of Properties

Set this property to... This value...

RowLimit.Enabled Set to True to limit the number of rows downloaded to the
value specified by RowLimit.MaxRows.

RowLimit.MaxRows Specify an EL expression that evaluates to the maximum
number of rows to download.

RowLimit.WarningMessa
ge

Write an EL expression for this property to generate a message
for the end user if the number of rows available to download
exceeds the number specified by RowLimit.MaxRows.

If the value for this property is null, the Download action
downloads the number of rows specified by
RowLimit.MaxRows displaying the default warning message to
the end user.

Clearing the Values of Cached Attributes in an ADF Table Component

Working with ADF Desktop Integration Table-Type Components 7-41

7.19 Clearing the Values of Cached Attributes in an ADF Table
Component

The RowData group of properties described in Table A–9 allow you to specify data to
cache in the ADF Table component. For more information about this functionality, see
the following:

■ Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

■ Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions
and in Disconnected Mode"

The ADF Table component exposes an action (ClearCachedRowAttributes) that,
when invoked, clears the values of cached attributes for the current row of the ADF
Table component.

Do not configure a component (for example, an ADF Table component's column or an
ADF Input Text component) so that an end user can view or edit an attribute binding
that you have also specified for an element in the RowData.CachedAttributes
array. The RowData.CachedAttributes array caches the values retrieved by the
worksheet DownSync action. The worksheet UpSync action sends the values of the
RowData.CachedAttributes array to the Fusion web application. This may
override edits an end user makes to an attribute binding exposed through a
component in the worksheet.

7.19.1 How to Clear the Values of Cached Attributes in an ADF Table Component
Configure a DoubleClickActionSet that includes an action to invoke the ADF
Table component's ClearCachedRowAttributes action.

Before you begin:
It may be helpful to have an understanding of how to clear cached attributes in an
ADF Table component. For more information, see Section 7.19, "Clearing the Values of
Cached Attributes in an ADF Table Component."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To clear the values of cached attributes in an ADF Table component:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog for the Oracle ADF component that is going to invoke
the DoubleClickActionSet at runtime.

For more information about invoking action sets, see Chapter 8.2, "Using Action
Sets."

3. Add an action to the DoubleClickActionSet that invokes the ADF Table
component's ClearCachedRowAttributes action.

4. Click OK.

7.19.2 What Happens at Runtime: How the ADF Table Component Clears Cached
Values

The action set invokes the ADF Table component's ClearCachedRowAttributes
action. This action clears the cached values specified by the

Tracking Changes in an ADF Table Component

7-42 Developing Applications with Oracle ADF Desktop Integration

RowData.CachedAttributes property for the current row of the ADF Table
component.

7.20 Tracking Changes in an ADF Table Component
End users can create or modify data in the cells of an integrated Excel workbook that
hosts an ADF Table component.

If a column is updatable and not read-only, change tracking is activated. End users can
make the following changes to activate change tracking:

■ Edit cell values

■ Insert or delete cell values

■ Paste values to cells in the ADF Table component column that they copied
elsewhere

A character that resembles an upward pointing arrow appears in a row of the _ADF_
ChangedColumn column if the end user makes a change to data in a corresponding
row. Figure 7–21 shows an example.

Figure 7–21 Changed Column in an ADF Table Component

This character appears if the end user makes a change to data hosted by a component
where the component's ReadOnly property value is False. The ADF Input Text and
TreeNodeList subcomponents both have a ReadOnly property. You can write an EL
expression or a static string for this ReadOnly property that evaluates to True or
False. If you write a static string or an EL expression that evaluates to True, no
character appears in the _ADF_ChangedColumn column. For more information about
ReadOnly EL expressions and change tracking, see Section 7.21, "Evaluating EL
Expression for ReadOnly Properties."

7.21 Evaluating EL Expression for ReadOnly Properties
If a table column's ReadOnly EL expression contains a binding expression (for
example, #{row.bindings.color.inputValue}), the runtime evaluation of that
expression will be different depending on when the evaluation occurs. The evaluation
happens during the following:

■ downloading data (Download, DownloadFlaggedRows, DownloadForInsert)

■ uploading data (Upload), and change tracking

7.21.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data
During Download, the EL expression is evaluated with the current binding value as
expected.

Using Explicit Worksheet Setup Action

Working with ADF Desktop Integration Table-Type Components 7-43

7.21.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or
Tracking Changes

During Upload, or when the end user changes values in the editable table, the EL
expression is evaluated differently than Download. Specifically, an empty string is
substituted for the binding expression prior to evaluation of the EL expression.

For example, if you have the following EL expression in an editable cell:

=IF("#{row.bindings.color.inputValue}"="RED", True, False)

During Upload, or when the end user changes values in the editable table, the EL
expression evaluates to =IF(""="RED", True, False), and always returns
False.

7.21.3 What You May Need to Know About Evaluating EL Expression While Uploading
Data or Tracking Changes

During Upload and change tracking, an extra round trip to the server would be
required to retrieve the binding values, in order to evaluate the EL expression
properly. The extra round trip to the server would impact performance negatively,
and could even require a new login if the end user did not have a currently valid
session.

Due to the difference in behavior, if possible, you should avoid ReadOnly EL
Expressions that contain binding expressions. However, if it is important for a given
use case to use an attribute value in the ReadOnly expression, you should consider
setting the worksheet protection to Automatic. For more information about
worksheet protection, see Section 9.7, "Using Worksheet Protection."

For example, if you have the following EL expression in a cell:

=IF("#{row.bindings.color.inputValue}"="RED", True, False)

During Download, the RED cells in this column will be set to Locked and the end user
will not be able to edit those cells.

7.22 Using Explicit Worksheet Setup Action
ADF Desktop Integration provides several features for configuring or customizing a
worksheet after the binding container's metadata has been obtained from the server at
runtime. However, at times, you might want to customize the data or the binding
container before the client retrieves the binding container metadata. For example, at
design time, you might want to add a table to the worksheet, but without specifying
the View Object that will drive that table, until runtime. This would be desirable if the
View Object to be used depends on some parameter values or settings that are not
known until runtime. In addition, you might want to customize the View Object based
on runtime parameter values (such as add attributes, or indicate which attributes to
display). Similarly, you may also want to configure the binding container based on
runtime parameter values. Such use cases require performing setup tasks before the
binding container metadata is sent from the sever to the worksheet.

Note: The same EL expression evaluation behavior also applies to
the CellStyleName EL expression property when inserting new
worksheet rows during table change tracking.

Using Explicit Worksheet Setup Action

7-44 Developing Applications with Oracle ADF Desktop Integration

Using the Explicit Worksheet Setup Action feature of ADF Desktop Integration, you
can specify a setup action that is invoked before the client retrieves the binding
container metadata.

7.22.1 How to Configure Explicit Worksheet Setup Action
Using the SetupActionID property of the worksheet, you can specify a method that
is invoked before the binding container metadata is sent to the worksheet. In the
method, you can implement the logic necessary for any customization on the data and
binding container.

Before you begin:
It may be helpful to have an understanding of the Explicit Worksheet Setup Action
feature. For more information, see Section 7.22, "Using Explicit Worksheet Setup
Action."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 7.1.2, "Additional
Functionality of Table-Type Components."

To use SetupActionID property of the worksheet:
1. Open the worksheet in the integrated Excel workbook.

2. From the Excel Ribbon, click Workbook Properties.

3. In the Edit Worksheet Properties dialog, expand Data and click the browse icon
(...) beside the input field for the SetupActionID property, as shown in
Figure 7–22.

Figure 7–22 SetupActionID Property in Edit Worksheet Properties Dialog

4. In the Select Binding dialog, select the action that you want to invoke before the
binding container metadata is sent to the worksheet, and click OK.

Note: The SetupActionID property accepts ADFm actions only.
Validation error is reported if an invalid method is set for the
property.

Using Explicit Worksheet Setup Action

Working with ADF Desktop Integration Table-Type Components 7-45

5. Click OK to close the Edit Worksheet Properties dialog.

7.22.2 What You May Need to Know About Explicit Worksheet Setup Action
After the action specified in the SetupActionID property runs, the binding container
metadata that is sent to worksheet reflects the customization configured in the
method. ADF Desktop Integration ensures that the setup action runs only once for any
binding container instance. If, for any reason, a new binding container instance
becomes associated with the worksheet, the setup action will be invoked again, to
ensure it is configured.

If any kind of failure occurs during the invoking of the setup action, ADF Desktop
Integration is automatically disabled in the worksheet. Logging out, and then logging
in, will not enable ADF Desktop Integration in the worksheet. Running Clear All Data
command from the Excel Ribbon re-enables ADF Desktop Integration in the
worksheet, the setup action runs again on subsequent requests.

Using Explicit Worksheet Setup Action

7-46 Developing Applications with Oracle ADF Desktop Integration

8

Adding Interactivity to Your Integrated Excel Workbook 8-1

8 Adding Interactivity to Your Integrated Excel
Workbook

This chapter describes how to add interactivity options to your integrated Excel
workbook, how to configure the ribbon tab, creating databound search forms and
dependent list of values, and how to use EL expressions in Excel formula.

This chapter includes the following sections:

■ Section 8.1, "About Adding Interactivity to an Integrated Excel Workbook"

■ Section 8.2, "Using Action Sets"

■ Section 8.3, "Configuring the Runtime Ribbon Tab"

■ Section 8.4, "Displaying Web Pages from a Fusion Web Application"

■ Section 8.5, "Adding a Custom Popup Picker Dialog to an ADF Table Column"

■ Section 8.6, "Creating ADF Databound Search Forms in an Integrated Excel
Workbook"

■ Section 8.7, "Creating a Form in an Integrated Excel Workbook"

■ Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

■ Section 8.9, "Using EL Expression to Generate an Excel Formula"

■ Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook"

■ Section 8.11, "Using Macros in an Integrated Excel Workbook"

8.1 About Adding Interactivity to an Integrated Excel Workbook
You can make your integrated workbook interactive to the end user by using features
such as action sets, configuring the runtime ribbon tab, creating dependent list of
values, and so on. Figure 8–1 shows some of the interactive features.

About Adding Interactivity to an Integrated Excel Workbook

8-2 Developing Applications with Oracle ADF Desktop Integration

Figure 8–1 Interactivity Features in an Integrated Excel Workbook

Adding interactivity to an integrated Excel workbook permits end users to execute
action sets that invoke Oracle ADF functionality in the workbook. It also provides
status messages, alert messages, and error handling in the integrated Excel workbook
while these action sets execute. In addition to end-user gestures (double-click, click,
select) on the ADF Desktop Integration components that invoke action sets, you can
configure workbook and worksheet ribbon buttons that end users use at runtime to
invoke action sets.

8.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples
To make your integrated Excel workbook interactive, you can use action sets that are
invoked by the end user's gestures. For example, as shown in Figure 8–2, the Filter
Customers ribbon command in EditableCustomerSearch-DT.xlsx uses multiple
actions sets to filter data matching the search criteria.

Figure 8–2 Action Sets of Filter Customers Ribbon Command

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-3

Figure 8–3 shows an example of custom runtime ribbon tab implemented in
EditCustomerSearch.xlsx.

Figure 8–3 Runtime Ribbon Tab of EditCustomerSearch.xlsx

8.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook
In addition to action sets and runtime ribbon tab, you can add additional functionality
to configure your workbook. Following are links to other functionalities that you can
use:

■ Display Web Pages: You can display pages from the Fusion web application with
which you integrate your Excel workbook. For more information, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application."

■ Dependent List of Values: You can configure an ADF List of Values component
as a dependent list of values component whose values are determined by another
list of values component. For more information, see Section 8.8, "Creating
Dependent Lists of Values in an Integrated Excel Workbook."

■ Styles: You can configure the display of your form-type components using several
predefined Excel styles. For more information, see Section 9.2, "Working with
Styles."

■ Macros: Use macros and Excel formulas to manage the data that you want to
download from or upload to your Fusion web application. For more information,
see Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook," and
Section 8.11, "Using Macros in an Integrated Excel Workbook."

8.2 Using Action Sets
An action set is an ordered list of one or more actions that execute in a specified order.
The types of actions are as follows:

■ ADFmAction

■ ComponentAction

■ WorksheetMethod

■ Confirmation

■ Dialog

An action set can be invoked by an end-user's gesture (for example, clicking an ADF
Button) or an Excel worksheet event. Where an end-user gesture invokes an action set,
the name of the action set property in the ADF component's property inspector is
prefaced by the name of the gesture required. The following list describes the property
names that ADF Desktop Integration displays in property inspectors, and what user
gesture can invoke an action set:

■ ClickActionSet for an ADF Button component, as the end user clicks the
button to invoke the associated action set

Using Action Sets

8-4 Developing Applications with Oracle ADF Desktop Integration

■ DoubleClickActionSet for an ADF InputText or ADF Output Text component,
as the end user double-clicks these components to invoke the associated action set

■ SelectActionSet for a worksheet ribbon button, as the end user selects a
button to invoke the associated action set

■ ActionSet for a worksheet event, as no explicit end-user gesture is required to
invoke the action set

You invoke the Edit Action dialog from an ADF component, worksheet ribbon button,
or worksheet event to define or configure an action set. In addition to defining the
actions that an action set invokes, you can configure the action set's Alert properties
to provide feedback on the result of invocation of an action set. You configure the
Status properties for an action set to display a status message to end users while an
action set executes the actions you define. For information about opening the Edit
Action dialog, see Section 5.12, "Using the Collection Editors."

The Summit sample application for ADF Desktop Integration provides many
examples of action sets in use. One example is the ribbon command labeled Upload at
runtime in the EditCustomers-DT.xlsx workbook. An action set has been
configured for this ribbon command that invokes the ADF Table component's Upload
action illustrated by Figure 8–4 which shows the Edit Action dialog in design mode.

Figure 8–4 Action Set for Upload Data Button in the EditCustomers-DT.xlsx Workbook

Tip: Write a description in the Annotation field for each action that
you add to the Edit Action dialog. The description you write appears
in the Members list view and, depending on how you write it, may be
more meaningful than the default entry that ADF Desktop Integration
generates.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-5

8.2.1 How to Invoke a Method Action Binding in an Action Set
You can invoke multiple method action bindings in an action set. Page definition files
define what action bindings are available to invoke in a worksheet that you integrate
with your Fusion web application. For more information about page definition files
and action bindings in an integrated Excel workbook, see Section 4.3, "Working with
Page Definition Files for an Integrated Excel Workbook."

You use the Edit Action dialog to specify a method action binding to invoke.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a method action binding in an action set:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and invoke the dropdown list from the Add button
illustrated here.

3. Select ADFmAction and configure its properties as described in the following list:

■ ActionID

Click the browse (...) icon beside the input field for ActionID to invoke the
Binding ID picker and select the method action binding that the action set
invokes.

■ Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

4. Click OK.

8.2.2 How to Invoke Component Actions in an Action Set
The ADF Table and the ADF Read-only Table components in ADF Desktop
Integration expose actions that can be used to manage the transfer of data between
Excel worksheets that you integrate with a Fusion web application. The ADF
Read-only Table component exposes one component action, Download, while the
ADF Table component exposes many other actions. More information about the
actions for both components can be found in Appendix A, "ADF Desktop Integration
Component Properties and Actions."

You configure action sets to invoke one or more component actions by referencing the
component action in the array of actions. For example, Figure 8–5 shows the Choose
Component Action dialog where the actions exposed by the ADF Table and ADF

Note: ADF Desktop Integration invokes the actions in an action set
in the order that you specify in the Members list view.

Using Action Sets

8-6 Developing Applications with Oracle ADF Desktop Integration

Read-only Table components present in a worksheet can be invoked by a
SelectActionSet action set.

Figure 8–5 Choose Component Method Dialog

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a component action from an action set:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and invoke the dropdown list from the Add button
illustrated here.

3. Select ComponentAction and configure its properties as described in the
following list:

Note: An Excel worksheet must include an ADF Table or ADF
Read-only Table component before one or more of these components'
actions can be invoked by an action set.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-7

■ ComponentID

Click the browse (...) icon beside the input field for ComponentID to invoke
the Choose Component Method dialog and select the component action that
the action set invokes at runtime. This populates the ComponentID and
Method input fields.

■ Action

The component's action that the action set invokes at runtime.

■ Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

■ DetailStatusMessage

Specify an optional literal value or EL expression that appears in the Status
Message window (see Section 8.2.5, "How to Display a Status Message While
an Action Set Executes").

4. Click OK.

8.2.3 What You May Need to Know About an Action Set Invoking a Component Action
Note the following pieces of information about the behavior of action sets in
integrated Excel workbooks.

8.2.3.1 Verifying an Action Set Invokes the Correct Component Action
When creating an action set, ensure that you invoke the component action from the
correct instance of a component when a worksheet includes multiple instances of an
ADF Read-only Table or ADF Table component. Figure 8–6 shows the Choose
Component Action dialog displaying two instances of the ADF Read-only Table
component. Use the value of the ComponentID property described in Table A–1 to
correctly identify the instance of a component on which you want to invoke a
component action.

Figure 8–6 Choose Component Action Dialog

Using Action Sets

8-8 Developing Applications with Oracle ADF Desktop Integration

8.2.3.2 Invoking Action Sets in a Disconnected Workbook
End users can use integrated Excel workbooks while disconnected from a Fusion web
application, as described in Chapter 15, "Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected Mode." Some component actions, such as
the Download action of the ADF Table component, require a connection to the Fusion
web application to complete successfully. If the end user invokes an action set that
includes such a component action, the integrated Excel workbook attempts to connect
to the Fusion web application and, if necessary, invokes the authentication process
described in Section 11.2, "Authenticating the Excel Workbook User."

8.2.4 How to Invoke an Action Set from a Worksheet Event
ADF Desktop Integration provides several worksheet events that, when triggered, can
invoke an action set. The following worksheet events can invoke an action set:

■ Startup

■ Shutdown

Do not invoke a Dialog action from this event if the Dialog action's Target
property is set to TaskPane.

■ Activate

■ Deactivate

You add an element to the array of events (WorksheetEvent list) referenced by the
Events worksheet property. You specify an event and the action set that it invokes in
the element that you add. For more information about the Events worksheet
property and the worksheet events that can invoke an action set, see Table A–19. See
Table A–14 for more information about action sets.

Use the Edit Events dialog to specify an action set to be invoked by a worksheet event.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke an action set from a worksheet event:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input
field for the Events property.

4. In the Edit Events dialog, click Add to add a new element that specifies an event
and a corresponding action set that the event invokes.

Figure 8–7 shows an example from the EditCustomers-DT.xlsx file where the
worksheet event, Startup, invokes an action set that invokes the ADF Table
component's Download action.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-9

Figure 8–7 Worksheet Startup Event Invokes an Action Set

5. Click OK.

8.2.5 How to Display a Status Message While an Action Set Executes
You can display a status message and visual progress bars to end users while an action
set executes by specifying values for the Status properties in an action set.

While using the Status properties in an action set, you can provide visual indication of
the progress through progress bars. The Mode attribute of the Status properties
enables you to choose the visual appearance of the progress bars at runtime. There are
two types of progress bars available: main progress bar and detail progress bar. The
main progress bar indicates the progress through the actions in an action set, and the
detail progress bar indicates the progress of the current action.

You use the Edit Action dialog to configure values for the ActionSet.Status
properties.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To display a status message:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog of the component.

3. Set values for the properties in the Status group of properties as described in the
Table 8–1.

Using Action Sets

8-10 Developing Applications with Oracle ADF Desktop Integration

Figure 8–8 shows the property values, along with their corresponding visual
elements, configured for the Status group of properties of the Upload ribbon
command in the EditCustomers-DT.xlsx workbook.

Table 8–1 Status Group of Properties

For this property... Enter or select this value...

Enabled True to display a status message. True is the default value.

Message An optional EL expression or literal value that resolves to the
status message to display at runtime.

For example, the Upload button in the
EditCustomers-DT.xlsx file has the following EL expression
configured for the Message property:

#{res['excel.customers.ribbon.upload.message']}

Title An optional EL expression or literal value that resolves to the
title of the status message to display at runtime.

For example, the Upload button in the
EditCustomers-DT.xlsx file has the following EL expression
configured for the Title property:

#{res['excel.customers.ribbon.upload.title']}

Mode Choose the visual appearance of progress bars.

■ Automatic: ADF Desktop Integration analyzes the action
set to determine which progress bars to display.

■ BothBarsAlways: Shows both main and detail progress
bars.

■ MainBarOnly: Shows one progress bar only. The bar
displays progress through the list of actions.

■ DetailBarOnly: Shows one progress bar only. The bar
displays progress of the current action.

■ MainMessageOnly: None of the progress bars are shown.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-11

Figure 8–8 Status Message Properties in an Action Set

For more information about the Status group of properties, see the entry for
Status in Table A–14.

You can also use the optional DetailStatusMessage property to provide
additional information to the user. For more information about the
DetailStatusMessage property, see Section 8.2.2, "How to Invoke Component
Actions in an Action Set."

4. Click OK.

8.2.6 What Happens at Runtime: How the Action Set Displays a Status Message
When an action set is invoked, a status message appears if the Status properties are
configured to display a status message. Figure 8–9 shows the status message that
appears at runtime when the action set configured for the Upload ribbon command in
the EditCustomers-DT.xlsx workbook executes.

Using Action Sets

8-12 Developing Applications with Oracle ADF Desktop Integration

Figure 8–9 Runtime View of Status Message

At runtime, if the value of the Message property is empty, ADF Desktop Integration
provides a default, localized value. If the Title property is empty, the label from the
action set container (such as button or ribbon command) is used. If the label of the
container is also empty, then the default value provided by ADF Desktop Integration
is used.

8.2.7 What You May Need to Know About Progress Bars
Note the following pieces of information about the progress bars:

■ The progress bar window hides automatically when an action (such as alert,
confirm, dialog, or upload options) prompts for user input.

■ Some action types, such as ADFmAction, do not support the display of
incremental progress in the detail bar. For example, Figure 8–10 shows the
progress bar of the Commit action with Mode set to BothBarsAlways. Notice
that the detail bar appears, but does not show any progress.

Figure 8–10 Progress Bar for ADFmAction Type

■ In the Automatic mode, if the action set has less than three actions, the status
message dialog shows the detail progress bar only. If the action set has three or
more actions, the dialog always shows the main bar, but the detail progress bar is
shown only if any of the actions in the action set is capable of incremental
progress. If none of the actions is capable of incremental progress, the detail bar is
suppressed.

■ If required, you can display the detail progress bar without the displaying the
main progress bar. Such a configuration may be useful for an action set with a few
quick actions and one long action, for example, run a query and then download
data.

■ For very quick action sets (for example, DisplayWorksheetErrors), the best
practice is to disable the status message.

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-13

8.2.8 How to Provide an Alert After the Invocation of an Action Set
You can display an alert message to end users that notifies them when an action set
operation completes successfully or fails. For example, you can display a message
when all actions in an action set succeed or when there was at least one failure. The
ActionSet.Alert group of properties configures this behavior.

You use the Edit Action dialog to configure values for the ActionSet.Alert group
of properties.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To add an alert to an action set:
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog.

3. Set values for the properties in the ActionSet.Alert group of properties as
described in Table 8–2.

Note: An alert message does not appear if the end user cancels the
execution of an action set. For example, you configure an alert
message to appear after an action set that invokes a web page in a
popup dialog completes execution. At runtime, the end user cancels
execution of the action set by closing the popup dialog using the close
button of the Excel web browser control that hosts the popup dialog.
In this scenario, no alert message appears. For more information about
displaying web pages, see Section 8.4, "Displaying Web Pages from a
Fusion Web Application."

Table 8–2 ActionSet.Alert Group of Properties

For this property... Enter or select this value...

Enabled Select True from the dropdown list to display an alert message
once the action set completes. The default value is False.

FailureMessage Specify an optional EL expression or literal value that evaluates
to a message to appear in the dialog if errors occur during
execution of the action set. For example, the Download button
in the EditCustomers-DT.xlsx workbook has the following
value configured for the FailureMessage property:

#{res['excel.customers.ribbon.download.alert.fa
ilure']}

The Download button invokes an action set that, in turn,
invokes the ADF Table component's Download action. The EL
expression specified for FailureMessage retrieves error
messages if the Download action encounters errors. For more
information about error handling, see Section 12.4, "Error
Reporting in an Integrated Excel Workbook."

OKButtonLabel Specify an optional EL expression or literal value that evaluates
to a message to appear in the OK button of the dialog.

Using Action Sets

8-14 Developing Applications with Oracle ADF Desktop Integration

Figure 8–11 shows the values configured for a ribbon command's Alert group of
properties in the EditCustomers-DT.xlsx workbook. This ribbon command is
labeled Download at runtime.

Figure 8–11 Alert Message Properties in an Action Set

4. Click OK.

8.2.9 What Happens at Runtime: How the Action Set Provides an Alert
Figure 8–12 shows the alert message that appears at runtime when the action set
invoked by the ADF Button component labeled Download successfully completes
execution.

SuccessMessage Specify an optional EL expression or literal value that evaluates
to a message to appear in the dialog if no errors occur during the
execution of the action set.

For example, the Download button in the
EditCustomers-DT.xlsx workbook has the following value
configured for the SuccessMessage property:

#{res['excel.customers.ribbon.download.alert.su
ccess']}

Table 8–2 (Cont.) ActionSet.Alert Group of Properties

For this property... Enter or select this value...

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-15

Figure 8–12 Runtime View of an Alert Message

At runtime, if the value of the FailureMessage, OKButtonLabel, or
SuccessMessage property is empty, ADF Desktop Integration provides a default,
localized value.

8.2.10 How to Configure Error Handling for an Action Set
You specify values for an action set's ActionOptions properties to determine what
an action set does if one of the following events occurs:

■ An action in the action set fails

■ All actions in the action set complete successfully

For information about how to invoke these editors, or about an ADF component's
property inspector, see Chapter 5, "Getting Started with the Development Tools." More
information about action set properties can be found in Table A.11.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To configure error handling for an action set:
1. Open the integrated Excel workbook.

2. Open the appropriate editor or property inspector and configure values for the
action set's ActionOptions properties as described in the Table 8–3.

Table 8–3 ActionOptions Properties

Set this property... To...

AbortOnFailure True (default value) so that the action set does not execute any
further actions if the current action fails. When set to False, the
action set executes all actions regardless of the success or failure
of previous actions.

Using Action Sets

8-16 Developing Applications with Oracle ADF Desktop Integration

3. Click OK.

8.2.11 How to Invoke a Confirmation Action in an Action Set
The Confirmation action presents the end user with a simple message dialog that
displays the title and prompt message specified in the Confirmation action properties.

The execution of the action set pauses until the end user clicks one of the two buttons
provided. If the user clicks OK, the action sets proceed with the remaining actions in
the Action Set. If the user clicks Cancel, the action set is aborted at that point and the
remaining actions are not invoked. As there is no error or success, the
FailureActionID or SuccessActionID action is not invoked.

Before you begin:
It may be helpful to have an understanding of action sets. For more information, see
Section 8.2, "Using Action Sets."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a Confirmation action from a component
1. Open the integrated Excel workbook.

2. Open the Edit Action dialog and click the down arrow in the Add button to open a
dropdown list, as illustrated here.

3. Select Confirmation and configure its Data properties as described in the
following list:

■ CancelButtonLabel

FailureActionID Specify an ADF Model action to invoke if an action set does not
complete successfully.

For example, you can specify an ADF Model action that rolls
back changes made during the unsuccessful invocation of the
action set.

Note that calling an action set that changes a record set's
currency during the execution of FailureActionID methods
is not supported. The Rollback method also should not be
specified as the FailureActionID in an action set.

SuccessActionID Specify an ADF Model action to invoke if an action set
completes successfully.

For example, you can specify an action binding that executes a
commit action. A value for this property is optional and you can
specify a final action, such as an action binding that executes a
commit action, in the action set itself.

Note that calling an action set that changes a record set's
currency during the execution of SuccessActionID methods
is not supported.

Table 8–3 (Cont.) ActionOptions Properties

Set this property... To...

Using Action Sets

Adding Interactivity to Your Integrated Excel Workbook 8-17

Specify an optional EL expression or literal value that evaluates to a message
to appear in the Cancel button of the dialog.

■ OKButtonLabel

Specify an optional EL expression or literal value that evaluates to a message
to appear in the OK button of the dialog.

■ Prompt

Specify an optional EL expression or literal value that evaluates to a message
to appear as the prompt of the dialog.

■ Title

Specify an optional EL expression or literal value that evaluates to a title of the
confirmation dialog to display at runtime.

4. Optionally, enter a comment in the Annotation property about the purpose of
the action that you are configuring. The value you set for this property has no
functional impact.

5. Click OK.

Figure 8–13 shows the Edit Action dialog with default attribute values for the
Download ribbon command.

Figure 8–13 Confirmation Action Attributes

8.2.12 What Happens at Runtime: How the Action Set Provides a Confirmation
Once the action set is invoked, the user is prompted with a confirmation dialog. If the
user clicks OK, the next action operation is performed; and if the user clicks Cancel,
the Action Set execution terminates without an error.

Figure 8–14 shows a default Confirmation dialog with OK and Cancel buttons.

Note: If the user cancels a Confirmation action, the
FailureActionID binding does not run.

Configuring the Runtime Ribbon Tab

8-18 Developing Applications with Oracle ADF Desktop Integration

Figure 8–14 Confirmation Dialog

At runtime, if the value of the CancelButtonLabel, OKButtonLabel, or Prompt
property is empty, ADF Desktop Integration provides a default, localized value. If the
Title property is empty, the label from the action set container (such as button or
ribbon command) is used. If the label of the container is also empty, then the default
value provided by ADF Desktop Integration is used.

8.3 Configuring the Runtime Ribbon Tab
You can configure the runtime ribbon tab in the Excel Ribbon with items that invoke
Oracle ADF functionality in your integrated Excel workbook. In the Runtime Ribbon
Tab group, setting the Visible workbook property to True makes this tab appear at
runtime. The Title property determines the title of the tab that the end user sees at
runtime, as illustrated in Figure 8–15.

Figure 8–15 Workbook Properties for Runtime Ribbon Tab

At runtime, the tab appears as the last tab in the Ribbon and all your configured
commands appear in various groups of the tab, as illustrated by Figure 8–16.

Figure 8–16 Runtime View of the Ribbon Tab

Figure 8–17 illustrates the runtime ribbon tab in EditCustomers.xlsx with two
commands configured for worksheet. At runtime, the commands are divided into four

Configuring the Runtime Ribbon Tab

Adding Interactivity to Your Integrated Excel Workbook 8-19

groups: items that invoke commands on the workbook, items that invoke commands
on the current worksheet, a command group to clear all data, and a command
workgroup to display ADF Desktop Integration version information.

Figure 8–17 Runtime View of Ribbon Tab in EditCustomers.xlsx

You configure the Workbook Commands property in the properties of the workbook
so that the runtime ribbon tab contains commands that allow the end user to invoke
workbook actions. You configure the Ribbon Commands property in the properties of
the worksheet so that the ADF Desktop Integration tab contains items allowing a user
to invoke an action set. Worksheet command items appear when the worksheet is
active. If you remove a workbook command, it does not appear in the runtime tab for
that workbook. If you remove all the commands for a given group, the group does not
appear when that workbook is active.

Figure 8–18 shows the Worksheet group at runtime where the worksheet actions, that
invoke SelectActionSet action sets, appear.

Figure 8–18 Runtime Worksheet Group

8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab
To define a workbook command button for the runtime ribbon tab, you configure
some workbook properties. The following procedure shows how to create or remove
an item in the Workbook group by using the workbook action, Login, as an example.

Before you begin:
It may be helpful to have an understanding of the runtime ribbon tab in Excel. For
more information, see Section 8.3, "Configuring the Runtime Ribbon Tab."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To define a workbook command button:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, expand Runtime Ribbon Tab, and select
Workbook Commands. Click the browse (...) icon beside the Workbook
Commands to display the dialog as illustrated in Figure 8–19.

Configuring the Runtime Ribbon Tab

8-20 Developing Applications with Oracle ADF Desktop Integration

Figure 8–19 Edit Workbook Commands Dialog

4. Click Add and specify values for the properties of the workbook command
buttons as follows:

– Method

Specify the workbook action that you want the workbook command button to
invoke.

– Label

Enter a value in the input field that appears as the label at runtime.
Alternatively, invoke the expression builder by clicking the browse (...) icon
and write an EL expression that resolves to a string value in a resource bundle.

Note that the runtime value that appears in the label cannot exceed 1024
characters. A runtime value that exceeds 1024 characters is truncated so that
only 1024 characters appear.

For more information about using resource bundles, see Section 10.2, "Using
Resource Bundles in an Integrated Excel Workbook."

For more information about labels, see Section 9.4, "Using Labels in an
Integrated Excel Workbook."

5. Click OK.

8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab
To define a worksheet command, you configure properties for the worksheet using the
property inspector. By default, no command buttons are defined for the Worksheet

Note: The order of workbook commands in the Edit Workbook
Commands dialog is ignored at runtime. The order and grouping of
the workbook-level commands is always the same.

Configuring the Runtime Ribbon Tab

Adding Interactivity to Your Integrated Excel Workbook 8-21

group in the worksheet properties. You add members to the list that is referenced by
the Ribbon Commands property in the properties of the worksheet.

Before you begin:
It may be helpful to have an understanding of the runtime ribbon tab in Excel. For
more information, see Section 8.3, "Configuring the Runtime Ribbon Tab."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To define a worksheet command button:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Worksheet Properties dialog, click the browse (...) icon beside the input
field for the Ribbon Commands property to invoke the editor, as illustrated in
Figure 8–20. Figure 8–18 displays how the commands appear at runtime.

Figure 8–20 Edit Ribbon Commands Dialog

4. Click Add to add a new ribbon button in the Members list of the collection editor.

5. Configure the properties of SelectActionSet to specify the type of action(s)
that the ribbon button invokes.

6. Click OK.

CAUTION: Set the Runtime Ribbon Tab.Visible workbook
property to TRUE to display command buttons. If the Runtime
Ribbon Tab.Visible is set to FALSE, no command buttons
appear. For more information about workbook properties, see
Table A–18.

Displaying Web Pages from a Fusion Web Application

8-22 Developing Applications with Oracle ADF Desktop Integration

8.4 Displaying Web Pages from a Fusion Web Application
You configure a Dialog action in an action set to display pages from the Fusion web
application with which you integrate your Excel workbook. These pages provide
additional functionality for your integrated Excel workbook. Examples of additional
functionality that you can provide include search dialogs and display pick dialogs that
interact with your Fusion web application. You can also configure upload options.

The Dialog action in an action set can be configured to display in one of the following
two types of dialog:

■ Popup dialog

■ Runtime task pane

The value for the Dialog.Target property (Popup or TaskPane) of the
component's action set determines where a web page is rendered.

The value for the Dialog.Page property specifies the web page to display when the
action is invoked. Valid values include a URL relative to the value of the WebAppRoot
property or an absolute URL.

For example, the EditableCustomerSearch-DT.xlsx workbook specifies the
following relative URL as a value for the page to invoke when a user clicks the Filter
Customers ribbon command at runtime:

/faces/external/searchForm.jspx

Absolute URLs such as the following are also valid:

http://www.oracle.com/technetwork/middleware/fusion-middleware/overview/index.html

8.4.1 How to Display a Web Page in a Popup Dialog
You can configure a Dialog action in an action set to invoke a web page from your
Fusion web application in a modal popup dialog hosted by Excel's web browser
control. This feature provides end users with functionality that allows them to, for
example, input values displayed by a page from the Fusion web application into the
integrated Excel workbook.

The web page that the action set invokes must contain a reserved HTML
element that has a case-sensitive ID attribute set to ADFdi_CloseWindow.

Example 8–1 shows how you can automatically set the value of the span element in the
using the rendered property of the f:verbatim tag.

Notes:

■ At runtime, the worksheet commands appear in the same order as
they are defined in the Edit Ribbon Commands dialog.

■ The ribbon controls of the toolbar are shared among all open
integrated workbooks. If you open two, or more, workbooks
using different ribbon buttons occupying the same location in the
toolbar, Excel always shows the key tip of the first opened
workbook in all open workbooks. This is an Excel limitation.

Note: The Dialog action does not support ADF task flows.

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 8-23

Example 8–1 Use of Reserved HTML Element

<f:verbatim rendered="#{requestScope.searchAction eq 'search'}">
Continue
</f:verbatim>
<f:verbatim rendered="#{requestScope.searchAction eq 'cancel'}">
Abort
</f:verbatim>

Figure 8–21 shows the searchForm.jspx page hosted by the
EditableCustomerSearch-DT.xlsx workbook's browser control.

Figure 8–21 Search Popup Dialog

In scenarios where you cannot use the rendered property of the f:verbatim tag as
outlined in Example 8–1, you may need to:

1. Create a backing bean that exposes the Dialog action's result value as a property

2. Use an action listener to invoke the backing bean, and an EL expression in the
 element to set the value ADFdi_CloseWindow to the bean property
value.

Whichever approach you take, ADF Desktop Integration monitors the value of
ADFdi_CloseWindow to determine when to close the popup dialog. If ADFdi_
CloseWindow references:

■ An empty string or is not present, the popup dialog remains open.

■ "Continue", the popup dialog closes and the action set invokes its next action.

The following example shows ADFdi_CloseWindow assigned a value of
"Continue":

var closeWindowSpan = document.getElementById("ADFdi_
CloseWindow");

closeWindowSpan.innerHTML = "Continue";

■ Some other string value, the popup dialog remains open.

You set the Target property for a Dialog action to Popup to display a web page
from the Fusion web application in a modal popup dialog hosted by Excel's web
browser control. Displaying a web page in a modal popup dialog differs from
displaying a web page in Excel's task pane, because the Dialog action that the action
set invokes cannot continue execution until it receives user input. While the popup
dialog is open, the end user cannot interact with any other part of the integrated Excel
workbook, as the popup dialog retains focus.

End users can navigate between multiple web pages from the Fusion web application
within the browser control until they close the browser control, or ADF Desktop
Integration closes it.

Displaying Web Pages from a Fusion Web Application

8-24 Developing Applications with Oracle ADF Desktop Integration

To immediately synchronize the changes that the end user makes to a data control
through a popup dialog, specify the next action in the action set after the Dialog
action to download all modified bindings to the worksheet (use the DownSync
worksheet action) or ADF Table component (use the Download action). This scenario
assumes that you specify "Continue" as the value for ADFdi_CloseWindow.

8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
You can set the Dialog.Target property for an action to TaskPane to display a web
page specified by the Dialog.Page property in the ADF Desktop Integration task
pane. In contrast to displaying a web page in a popup dialog, displaying a web page in
the task pane allows an action set to continue executing actions while the web page
displays. End users can access and interact with other parts of the integrated Excel
workbook while the web page displays.

8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web
Application

You can keep the data an integrated Excel workbook contains synchronized with a
Fusion web application by specifying additional actions in the action set that invokes
the Dialog action. You can ensure that the Fusion web application page and the
integrated Excel worksheet both use the same data control frame by setting the
ShareFrame property of the Dialog action.

Notes:

■ If you configure the web page that appears in the popup dialog so
that the end user can download an integrated Excel workbook, the
Oracle ADF functionality in the integrated Excel workbook is
disabled when the end user opens the workbook after download.

■ If you are using the HTML <select> components, such as list
box or dropdown list, note that <select> components do not
follow z-order configuration when the page is displayed
through Dialog actions. In the .NET Web Browser control, on a
web page with layered and overlapping components, the
<select> components might appear on top of other components.

■ If the Title property is left blank, the web page's title will be used
as the dialog's window title.

Notes:

■ If the Title property is left blank, the task pane's title will also
remain blank.

■ If the Target property of a Dialog action is set to TaskPane,
ADF Desktop Integration ignores the value of ADFdi_
CloseWindow (and other elements).

Displaying Web Pages from a Fusion Web Application

Adding Interactivity to Your Integrated Excel Workbook 8-25

8.4.3.1 Keeping an Integrated Excel Workbook and a Fusion Web Application
Synchronized
To ensure that data in the integrated Excel workbook and the Fusion web application
remains synchronized while end users use pages from the Fusion web application,
configure the action set that invokes the Dialog action to:

■ Send changes from the integrated Excel workbook to the Fusion web application
before invoking the Dialog action.

Invoke the RowUpSync worksheet action to synchronize changes from the current
row in the ADF Table component.

■ Send changes from the Fusion web application to the integrated Excel workbook
after invoking the Dialog action.

Invoke the RowDownSync worksheet action to send changes from the Fusion web
application to the current row in the ADF Table component.

For DoubleClickActionSet, you must ensure that the server-side model is in the
same state after executing the action set as it was before executing the action set. In
most cases, it is sufficient to roll back any and all uncommitted changes at the end of
each DoubleClickActionSet, as there are no pending uncommitted changes when
the action set execution begins.

For more information about synchronizing data between an integrated Excel
workbook and a Fusion web application, see Chapter 15, "Using an Integrated Excel
Workbook Across Multiple Web Sessions and in Disconnected Mode." For information
about worksheet actions and ADF Table component actions, see Chapter A, "ADF
Desktop Integration Component Properties and Actions."

8.4.3.2 Sharing Data Control Frames Between Integrated Excel Worksheets and
Fusion Web Application Pages
Fusion web applications and integrated Excel workbooks both use data control frames
to manage the transactions and state of view objects and, by extension, the bindings
exposed in a page definition file. When you invoke a Fusion web application's page
from an integrated Excel worksheet, you can ensure that the page and the integrated
Excel worksheet both use the same data control frame by setting the ShareFrame
property of the Dialog action that invokes the page to True.

The Page property in the Dialog action specifies the page that the Dialog action
invokes. If the Dialog action invokes an absolute URL or a page that is not part of
your Fusion web application, ADF Desktop Integration ignores the value of
ShareFrame if ShareFrame is set to True.

Set ShareFrame to False in the following scenarios:

■ The Dialog.Page property in the action set references an absolute URL or a page
that is not part of your Fusion web application.

Notes:

■ If your custom web page is based on ADF Faces and opens a
popup window, the web page must be configured in a certain
way to work properly. On the command component, set the
windowEmbedStyle to inlineDocument. For more information,
see Developing Web User Interfaces with Oracle ADF Faces.

■ The Dialog.Page property does not accept EL expressions.

Adding a Custom Popup Picker Dialog to an ADF Table Column

8-26 Developing Applications with Oracle ADF Desktop Integration

■ The Dialog.Page property in the action set references a page that is part of your
Fusion web application, but that does not need to share information with the
integrated Excel worksheet. For example, a page that displays online help
information.

For more information about data control frames in a Fusion web application, see the
"Sharing Data Controls Between Task Flows" section of the Developing Fusion Web
Applications with Oracle Application Development Framework.

8.4.3.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame
Sharing
When you add the ADF Desktop Integration feature to your Fusion web application,
the application is automatically configured to support ADF Desktop Integration frame
sharing. Frame sharing allows each worksheet of an integrated Excel workbook to use
a dedicated DataControl frame. Web pages displayed in dialogs invoked from each
worksheet can then share the same DataControl frame as the integrated Excel
worksheet.

To verify that your Fusion web application is configured to support frame
sharing:
1. Open your Fusion web application project in JDeveloper.

2. In the Applications window, expand the Application Resources panel.

3. Open the adf-config.xml file available in Descriptors > ADF META-INF
node.

4. Click the Source tab to open the source editor.

5. Confirm that the following adf-desktopintegration-servlet-config
element is present in the file before the </adf-config> tag:

<adf-desktopintegration-servlet-config
xmlns="http://xmlns.oracle.com/adf/desktopintegration/servlet/config">
 <controller-state-manager-class>
 oracle.adf.desktopintegration.controller.impl.ADFcControllerStateManager
 </controller-state-manager-class>
</adf-desktopintegration-servlet-config>

6. Save the adf-config.xml file and close JDeveloper.

8.5 Adding a Custom Popup Picker Dialog to an ADF Table Column
You can configure the DoubleClickActionSet of an ADF Table component's
column subcomponent (UpdateComponent or InsertComponent) to invoke a
Fusion web application page that renders a pick dialog where the end user selects a
value to insert in the ADF Table component column.

This functionality is useful when you want to constrain the values that end users can
enter in an ADF Table component. For example, you may want a runtime ADF Table
component column to be read-only in the Excel worksheet so that end users cannot
manually modify values to prevent them from introducing errors. Invoking a pick
dialog rendered by a Fusion web application page allows the end user to change
values in the ADF Table component without entering incorrect data.

In addition to configuring the DoubleClickActionSet, you may configure the ADF
Table component's RowData.CachedAttributes property to reference attribute
binding values if you want:

Adding a Custom Popup Picker Dialog to an ADF Table Column

Adding Interactivity to Your Integrated Excel Workbook 8-27

■ End users to modify values in the Fusion web application's page that you do not
want to appear in the ADF Table component of the integrated Excel workbook

■ An ADF Table component's column to be read-only in the integrated Excel
workbook

■ Cache data in an ADF Table component over one or more user sessions that is not
visible to end users but is modified by a pick dialog

For example, an ADF Table component displays a list of product names to end
users. A pick dialog is invoked that refreshes the list of product names in the ADF
Table component and, as part of the process, sets the value of product IDs. In this
scenario, you specify the attribute binding value for the product ID in the ADF
Table component's RowData.CachedAttributes property. After the action set
executes, the ADF Table component displays the refreshed list of product names
in the rows of the Excel worksheet and references the associated product IDs in its
RowData.CachedAttributes property.

For information about populating values in the pick dialog, see the "Creating
Databound Selection Lists and Shuttles" chapter in the Developing Fusion Web
Applications with Oracle Application Development Framework.

To invoke a custom pick dialog from an ADF Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that anchors the ADF Table component and
click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

3. Configure the ADF Table component's RowData.CachedAttributes property
to reference attribute binding values.

4. Click the browse (...) icon beside the input field for Columns to display the Edit
Columns dialog.

5. In the Members list, select the column from which the end user invokes the pick
dialog at runtime.

6. Configure the Actions attribute of DoubleClickActionSet of the column
subcomponent (UpdateComponent or InsertComponent), as described in
Table 8–4.

Table 8–4 DoubleClickActionSet Properties

Add this action... To...

ADFmAction (InsertComponent only) Invoke the CreateInsert action
binding if the end user invokes the DoubleClickActionSet
from a newly created row in the Excel worksheet's ADF Table
component. In this scenario, the ADF Table component's
RowUpSync action (invoked in the next action) fails if the
Fusion web application does not contain a placeholder row.

ComponentAction Invoke the ADF Table component's Table.RowUpSync action
to synchronize any pending changes in the current row of the
ADF Table component to the Fusion web application.

Dialog Configure the Dialog action to invoke the pick dialog page
from the Fusion web application. Set the Dialog action's
ShareFrame property to True. For more information, see
Section 8.4, "Displaying Web Pages from a Fusion Web
Application."

Creating ADF Databound Search Forms in an Integrated Excel Workbook

8-28 Developing Applications with Oracle ADF Desktop Integration

Figure 8–22 shows the Edit Action dialog of DoubleClickActionSet properties.

Figure 8–22 DoubleClickActionSet Properties

7. Click OK.

8.6 Creating ADF Databound Search Forms in an Integrated Excel
Workbook

You can create forms in your integrated Excel workbooks using ADF Input Text and
ADF Button components. End users can use the forms you create to insert data or
query for information. This section uses the latter example to demonstrate how you
create forms.

End users can enter a search term in the ADF Input Text component and retrieve
matching results by clicking an ADF Button component. To present a more
sophisticated user interface to end users for a search operation, you can invoke search
forms from your Fusion web application. Results from these search operations can be
downloaded to the ADF Table or ADF Read-only Table components in your integrated
Excel workbook.

Figure 8–23 shows an example of design time view of the Oracle ADF components
used to configure search options where:

1. ADF Label component is used in a simple search form

ComponentAction Invoke the ADF Table component's Table.RowDownSync
action to synchronize data from the row in the ADF Table
component's iterator in the Fusion web application that
corresponds to the current ADF Table component row in the
worksheet.

ADFmAction (InsertComponent only) If you added a CreateInsert
action binding, you should also invoke the Delete action
binding to remove the placeholder row.

Table 8–4 (Cont.) DoubleClickActionSet Properties

Add this action... To...

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-29

2. ADF Input Text component is used in a simple search form

3. ADF Button component is used in a simple search form

4. ADF Button component is used to invoke an advanced search form

Figure 8–23 Oracle ADF Components Used for Search

8.6.1 How to Create a Search Form in an Integrated Excel Workbook
You insert an ADF Input Text component and configure it so that the end user can
enter a search term. Insert an ADF Button component and configure its action set to:

1. Take the value the end user enters in the ADF Input Text component.

2. Query for the value.

3. Download the results to an ADF Table or ADF Read-only Table component in the
integrated Excel workbook.

Before you begin:
It may be helpful to have an understanding of ADF databound search forms. For more
information, see Section 8.6, "Creating ADF Databound Search Forms in an Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a simple search form in an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Insert an ADF Input Text component in the Excel worksheet cell where you want
the end user to enter the search criteria.

3. Configure the ADF Input Text component so that it assigns the search term, that a
user enters, to an attribute binding.

Figure 8–24 shows an example where an ADF Input Text component assigns the
user-entered value to the searchTerm attribute binding. The searchTerm,
which is a part of variable iterator, is then passed as a NamedData argument to the
executeSimpleProductQuery method.

Note: ADF Desktop Integration does not support usage of the
FindMode attribute in page definition files. For more information
about the FindMode attribute, see the "pageNamePageDef.xml" section
of the Developing Fusion Web Applications with Oracle Application
Development Framework.

Creating ADF Databound Search Forms in an Integrated Excel Workbook

8-30 Developing Applications with Oracle ADF Desktop Integration

Figure 8–24 ADF Input Text Component for a Simple Search Form

4. Optionally, apply a style to the ADF Input Text component to indicate to end
users that they can enter a search term in the cell.

5. Optionally, create an ADF Label component in an adjoining cell to indicate to end
users that they can enter a search term in the ADF Input Text component you
created in Step 2.

6. Create an ADF Button component in the Excel worksheet.

7. Set the Label property of the ADF Button component so that it displays a string
at runtime to indicate to end users that they can start a search operation by
clicking the button.

8. Open the Edit Action dialog to configure the array of actions (Action list) in the
ClickActionSet properties of the ADF Button component. Table 8–5 describes
the actions to invoke in sequence.

9. Click OK.

Table 8–5 ClickActionSet Properties of the ADF Button Component

Add this action... To...

Worksheet Invoke the UpSync worksheet action to copy the value entered
in the cell that hosts an ADF Input Text or ADF List of Values
component to the Fusion web application. For more information
about worksheet actions, see Section A.13, "Worksheet Actions
and Properties."

ADFmAction Invoke an ADF Model action that is bound to the attribute
binding you specified in Step 3. The ADF Model action queries
for the end user's search term value referenced by the attribute
binding.

Worksheet Invoke the DownSync worksheet action to synchronize any
pending changes from the Fusion web application to the ADF
Input Text, ADF Output Text, and ADF List of Values
components in the worksheet. For more information about
worksheet actions, see Section A.13, "Worksheet Actions and
Properties."

Component Invoke a Download action from the ADF Table or ADF
Read-only Table components to download the results that match
the search criteria specified.

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-31

Figure 8–25 shows an example where an ADF Button component invokes the
executeSimpleProductQuery action binding using the search term the end
user entered in the ADF Input Text component.

Figure 8–25 ADF Button Component for Simple Search Form

8.6.2 How to Create a Search Form using a Web Page in an Integrated Excel Workbook
You can use the ADF Button component, or the ribbon command, to invoke a page
from the Fusion web application that displays a search form to the end user. Configure
the action set for the ADF Button component to invoke the Download action for the
ADF Table or ADF Read-only Table component so that the search results from the
search operation are downloaded to the integrated Excel workbook.

For information about creating a search form in a Fusion web application, see the
"Creating ADF Databound Search Forms" chapter in the Developing Fusion Web
Applications with Oracle Application Development Framework.

Before you begin:
It may be helpful to have an understanding of ADF databound search forms. For more
information, see Section 8.6, "Creating ADF Databound Search Forms in an Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To invoke a web page from an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Create an ADF Button component, or a ribbon command, in the Excel worksheet.

3. Set the Label property of the component so that it displays a string at runtime to
indicate to end users that they can start a search operation by clicking the button.

4. Use the Edit Action dialog to configure the array of actions (Action list) in the
ClickActionSet properties (SelectActionSet properties if you are
configuring a ribbon command) of the component. Table 8–6 describes the actions
to invoke in sequence.

Creating ADF Databound Search Forms in an Integrated Excel Workbook

8-32 Developing Applications with Oracle ADF Desktop Integration

5. Click OK.

Figure 8–26 shows an example from the EditableCustomerSearch-DT.xlsx
workbook where the ribbon command's SelectActionSet contains a Dialog
action followed by the ADF Table component's Download action. When the end user
invokes the ribbon command, the Dialog action will show the search page
(searchForm.jspx) in a browser window. After the end user specifies search criteria
in the search page and selects the Search button there, the ADF Table component's
Download action is executed. This will retrieve the rows matching the specified search
criteria into the integrated worksheet.

Figure 8–26 Ribbon Command Configured to open a Web Page

Figure 8–27 shows the web page search form at runtime.

Table 8–6 Actions to Invoke an Advanced Search Form

Add this action... To...

Dialog Display the page from your Fusion web application that
contains the search form. For more information about displaying
pages from a Fusion web application, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application."

ComponentAction Invoke a Download action from the ADF Table or ADF
Read-only Table components to download the results that match
the search criteria specified.

Creating a Form in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-33

Figure 8–27 Web Page Search Form

8.7 Creating a Form in an Integrated Excel Workbook
You can use the ADF Desktop Integration components described in Chapter 6,
" Working with ADF Desktop Integration Form-Type Components," to create forms in
your integrated Excel workbook. These components can be useful when you want to
provide end users with functionality that allows them to view and edit individual
fields rather than use the functionality provided by the table-type components to
download rows of data from the Fusion web application. Use one or more of the
following components to create a form:

■ ADF Button

Use this component to provide end users with a button that can invoke a
ClickActionSet. Figure 8–28 shows an ADF Button labeled Search that invokes
a search operation using the search term entered by the end user in the ADF Input
Text component.

■ ADF Input Text

Use this component to provide end users with a read/write field where the
current value of a binding appears. This component can also be used to input a
value, as in the example illustrated in Figure 8–28, where users enter a search term
in the ADF Input Text component.

■ ADF Output Text

Use this component to provide end users with a read-only field where the current
value of a binding appears.

■ ADF List of Values

Use this component to provide end users with a dropdown menu from which a
user can select a value from a list binding.

■ ADF Label

Use this component to provide end users with instructions or other information on
how to use the form you create. For example, the EditWarehouses-DT.xlsx
workbook uses ADF Label components to display the title of the form. Figure 8–28
shows the label with the title text Edit Summit Warehouses.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-34 Developing Applications with Oracle ADF Desktop Integration

Figure 8–28 Runtime View of a Form in an Integrated Excel Workbook

You use the ADF Desktop Integration task pane to insert the components you require
into a worksheet.

To create a form in an integrated Excel workbook:
1. Decide which ADF form components you require for the finalized form and insert

them in the Excel worksheet.

For more information about these components, see Chapter 6, " Working with ADF
Desktop Integration Form-Type Components."

2. Configure the layout and appearance of the components you insert.

For more information about configuring the appearance of components, see
Chapter 9, "Configuring the Appearance of an Integrated Excel Workbook."

3. Test your form.

For more information about testing an integrated Excel workbook, see Chapter 13,
"Testing Your Integrated Excel Workbook."

8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook
ADF Desktop Integration provides the following components that you use to create
lists of values in an integrated Excel workbook:

■ ADF List of Values

You configure properties for this component when you want to create a list of
values in the Excel worksheet.

■ TreeNodeList subcomponent

You configure properties for this component when you want to create a list of
values in an ADF Table component column.

Using these two components, you can create a dependent list of values in your
integrated Excel workbook. A dependent list of values is a list of values component
(referred to as a child list of values) whose values are determined by another list of
values component (referred to as a parent list of values).

The server-side list bindings must be defined such that when the selected item of the
parent list of values is changed, the available child list of values items are updated
properly. Figure 8–29 shows an example with two illustrations from the
EditWarehouses-DT.xlsx workbook, where the Country field (child list of values)
changes when the value in the Region field (parent list of values) changes.

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-35

Figure 8–29 List of Values and Dependent List of Values

Table 8–7 describes the dependent list of values implementations you can create using
the previously listed components and the requirements to achieve each
implementation.

Some of the implementations described in Table 8–7 require model-driven lists. For
information about creating a model-driven list, see the "How to Create a Model-Driven
List" section of the Developing Fusion Web Applications with Oracle Application
Development Framework.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-36 Developing Applications with Oracle ADF Desktop Integration

Note the following points if you plan to create a dependent list of values:

■ When the cell value referenced by DependsOnList or DependsOnListID is
changed, ADF Desktop Integration overrides any previous changes to the child
component list of values without warning the end user.

■ The dependent list of values does not work unless the list specified in the
DependsOnList (or DependsOnListID) property is referenced by a component
in the Excel worksheet.

■ If a circular dependency is defined (List A depends on List B, and List B depends
on List A), the first dependency (List A depends on List B) triggers the expected
behavior. ADF Desktop Integration considers other dependencies to be
misconfigurations.

■ You can create a chain of dependencies as follows:

– List A depends on List B

– List B depends on List C

In this scenario, a change in List C (grandparent list of values) updates both Lists
A (grandchild list of values) and B (child list of values). If you create a similar
scenario, you must ensure that both the grandchild list of values and the child list
of values, get refreshed whenever the parent list of values selection is changed.
You can do this by specifying the two bind variables on the grandchild list of
values to set up an implicit dependency between the view attributes. Another way

Table 8–7 Dependent List of Values Configuration Options

Configuration Requirements

Render both the parent and child list of
values in the Excel worksheet using
ADF List of Values components.

Both instances of the ADF List of Values component must reference a
list binding. One or both of the list bindings that you reference can be
model-driven lists.

Both list bindings can reference model-driven lists only if the
underlying iterator has at least one row of data. At runtime, if the
underlying iterator has zero rows of data and the end user selects a
value from the parent list of values (list binding referenced by the ADF
List of Values component's DependsOnListID property), the child list
of values (list binding referenced by the ADF List of Values
component's ListID property) does not get filtered based on the value
the end user selects.

To work around this scenario, choose one of the following options:

■ Ensure that the underlying iterator has at least one row of data

■ Use an alternative list binding configuration where you expose
multiple iterators and all necessary iterators get refreshed

For more information, see Section 8.8.1, "How to Create a Dependent
List of Values in an Excel Worksheet."

Render both the parent and child list of
values in ADF Table component
columns using TreeNodeList
subcomponents.

Both the parent and child list of values (TreeNodeList subcomponents)
must reference tree binding attributes associated with model-driven
lists.

For more information, see Section 8.8.3, "How to Create a Dependent
List of Values in an ADF Table Component's Columns."

Render the parent list of values in an
ADF List of Values component and the
child list of values in an ADF Table
component column using the
TreeNodeList subcomponent.

The child list of values (TreeNodeList subcomponent) must reference a
tree binding attribute associated with a model-driven list. The parent
list of values (ADF List of Values component) must reference a list
binding.

For more information, see Section 8.8.5, "Creating a Dependent List of
Values in an Excel Worksheet and an ADF Table Component Column."

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-37

is to declare explicit attribute dependencies between each of the view attributes
that have model-driven lists configured. For example, specify that attribute A
depends on attribute B and attribute C, and attribute B depends on attribute C.

■ Caching in a dependent list of values is discussed in Section 15.4, "Caching Lists of
Values for Use in Disconnected Mode."

■ ADF Desktop Integration caches the values that appear in a dependent list of
values. Hence, the dependent list item values for a given parent list selection must
remain constant across all rows of an ADF Table component.

■ ADF List of Values components using date values are not supported.

8.8.1 How to Create a Dependent List of Values in an Excel Worksheet
Use two instances of the ADF List of Values component to create a dependent list of
values in an Excel worksheet.

Specify the list binding referenced by the parent ADF List of Values component as a
value for the child ADF List of Values component's
ListOfValues.DependsOnListID property.

For more information about ADF List of Values, see Section A.5, "ADF List of Values
Component Properties."

Before you begin:
It may be helpful to have an understanding of dependent list of values. For more
information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a dependent list of values in an Excel worksheet:
1. If not present, add the required list bindings to your page definition file.

For more information about adding bindings to page definition files, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook."

2. Open the integrated Excel workbook.

3. Insert two ADF List of Values components into your integrated Excel workbook,
as described in Section 6.6, "Inserting an ADF List of Values Component."

4. In the property inspector for the ADF List of Values component that is to serve as
the parent in the dependent list of values, set the value of the
ListOfValues.ListID property to the list binding that is the parent.

5. In the property inspector for the ADF List of Values component that is to serve as
the child in the dependent list of values, set the following properties:

■ ListOfValues.ListID

Specify the list binding that is the child in the dependent list of values.

■ ListOfValues.DependsOnListID

Select the list binding that you specified for the ADF List of Values component
that serves as a parent in Step 4.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-38 Developing Applications with Oracle ADF Desktop Integration

Figure 8–30 shows the property inspector for the child ADF List of Values
where the RegionId list binding is specified as the parent list of values and
CountryId list is the dependent list of values.

Figure 8–30 Design Time Dependent List of Values in an Excel Worksheet

6. Click OK.

8.8.2 What Happens at Runtime: How the Excel Worksheet Renders a Dependent List
of Values

At runtime, ADF Desktop Integration renders both instances of the ADF List of Values
component. When the end user selects a value from the parent list of values, the
selected value determines the list of values in the child list.

Figure 8–31 shows an example where Country, a dependent list value, displays only
the states from the selected Region list value.

Figure 8–31 Runtime Dependent List of Values in an Excel Worksheet

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-39

8.8.3 How to Create a Dependent List of Values in an ADF Table Component's Columns
Use instances of the TreeNodeList subcomponent to render both lists of values in a
dependent list of values in ADF Table component columns at runtime.

Specify a tree binding attribute as a value for the parent TreeNodeList subcomponent's
List property. You also specify a tree binding attribute as a value for the child
TreeNodeList subcomponent's List property and the same tree binding attribute
referenced by the parent TreeNodeList subcomponent as a value for its
DependsOnList property.

Ensure that both tree binding attributes are associated with model-driven lists before
you add the tree binding to your page definition file. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of the
Developing Fusion Web Applications with Oracle Application Development Framework. For
information about adding a tree binding to your page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook."

For information about the TreeNodeList subcomponent, see Section A.6,
"TreeNodeList Subcomponent Properties."

Before you begin:
It may be helpful to have an understanding of dependent list of values. For more
information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a dependent list of values in an ADF Table component:
1. Open the integrated Excel workbook.

2. If not present, insert an ADF Table component.

For more information, see Section 7.3, "Inserting ADF Table Component into Excel
Worksheet."

3. In the property inspector for the ADF Table component, invoke the Edit Columns
dialog by clicking the browse (...) icon beside the input field for Columns.

4. Add a new column (or modify an existing column) to serve as the parent list of
values. Specify TreeNodeList as the column's subcomponent type. For more
information about creating a list of values, see Section 7.14, "Creating a List of
Values in an ADF Table Component Column."

5. Add a new column (or modify an existing column) to serve as the child list of
values. Specify TreeNodeList as the column's subcomponent type. For more
information about creating a list of values, see Section 7.14, "Creating a List of
Values in an ADF Table Component Column."

6. Specify the tree binding attribute of the parent list of values as a value for the
DependsOnList property in the child list of values column.

Figure 8–32 shows the property inspector for a dependent TreeNodeList
subcomponent, where the RegionId tree binding attribute is specified for the
parent list of values and the CountryId tree binding attribute is specified for the
child list of values.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-40 Developing Applications with Oracle ADF Desktop Integration

Figure 8–32 Design Time Dependent List of Values in an ADF Table Component's
Column

7. Click OK.

8.8.4 What Happens at Runtime: How the ADF Table Component Column Renders a
Dependent List of Values

At runtime, the ADF Table component renders both instances of the TreeNodeList
subcomponent in the columns that you configured to display these instances. When
the end user selects a value from the parent list of values, the selected value
determines the list of values in the child list.

Figure 8–33 shows an example where the value that the end user selects in the Region
column list of values results in the corresponding values for sub-category appearing in
the Country column list of values.

Figure 8–33 Runtime Dependent List of Values in an ADF Table Component's Columns

Note: If the child list and the parent list are bound to columns in the
same ADF Table component, the child list items are changed for the
current row only, when the end user changes the parent list selection.

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-41

8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table
Component Column

Use an instance of the ADF List of Values component and an instance of the
TreeNodeList subcomponent to create a dependent list of values where you render the
parent and the child list of values.

■ Parent list of values in the Excel worksheet

An instance of the ADF List of Values component renders the parent list of values
in the Excel worksheet.

■ Child list of values in an ADF Table component column

An instance of the TreeNodeList subcomponent renders the child list of values in
the ADF Table component column.

Specify a list binding as a value for the parent ADF List of Values component's
ListID property. You specify a tree binding attribute as a value for the child
TreeNodeList subcomponent's List property, and the same list binding referenced by
the parent ADF List of Values component as a value for its DependsOnList property.

Ensure that the tree binding attribute is associated with a model-driven list before you
add the tree binding to your page definition file. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of the
Developing Fusion Web Applications with Oracle Application Development Framework. For
information about adding a list and tree binding to your page definition file, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."

For more information about the ADF List of Values component, see Section A.5, "ADF
List of Values Component Properties." For information about the TreeNodeList
subcomponent, see Section A.6, "TreeNodeList Subcomponent Properties."

Before you begin:
It may be helpful to have an understanding of dependent list of values. For more
information, see Section 8.8, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To create a dependent list of values in an Excel worksheet and an ADF Table
component column:
1. Open the integrated Excel workbook.

2. Insert an ADF List of Values component into your integrated Excel workbook, as
described in Section 6.6, "Inserting an ADF List of Values Component."

3. In the property inspector for the ADF List of Values component, set the value of
the ListID property to the list binding that is to serve as the parent list of values
in the dependent list of values.

4. Click OK.

5. Open the property inspector for the ADF Table component and invoke the Edit
Columns dialog by clicking the browse (...) icon beside the input field for
Columns.

6. Click Add to add a new column to the ADF Table component to serve as the child
list of values in the runtime-dependent list of values.

Creating Dependent Lists of Values in an Integrated Excel Workbook

8-42 Developing Applications with Oracle ADF Desktop Integration

7. Choose the appropriate option for the newly created column:

■ Click the browse (...) icon beside the input field for InsertComponent to
configure the runtime list of values for insert operations.

■ Click the browse (...) icon beside the input field for UpdateComponent to
configure the runtime list of values for update and download operations.

In both options, the Select subcomponent to create dialog appears.

8. Select TreeNodeList and click OK.

9. Expand the property that you selected in Step 7 and configure values as follows:

■ Select the same list binding that you specified as a value for the ADF List of
Values component's ListID property in Step 3 as a value for the
DependsOnList property.

■ Select a tree binding attribute associated with a model-driven list for the List
property.

■ Configure the ReadOnly property as desired.

10. Click OK.

Figure 8–34 shows the ADF Table property inspector for a child ADF Desktop
Integration Tree Node component of WarehouseLocations-DT.xlsx where the
RegionList list binding is specified as the parent list of values.

Creating Dependent Lists of Values in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-43

Figure 8–34 Design Time Dependent List of Values in an Excel Worksheet and an ADF
Table Component's Column

8.8.6 What Happens at Runtime: How the Excel Worksheet and the ADF Table
Component Column Render a Dependent List of Values

At runtime, the ADF List of Values component renders the parent list of values and
the ADF Table component renders the child list of values in the column that you
configured to display the TreeNodeList subcomponent. When the end user selects a
value from the parent list of values, the selected value determines the list of values in
the child list.

Figure 8–35 shows an example from WarehouseLocations-DT.xlsx where the
value that the end user selects in the Region list of values determines the list of values
that appears in the Country column of the ADF Table component.

Using EL Expression to Generate an Excel Formula

8-44 Developing Applications with Oracle ADF Desktop Integration

Figure 8–35 Runtime-Dependent List of Values in an Excel Worksheet and an ADF Table
Component's Column

8.9 Using EL Expression to Generate an Excel Formula
You can use an EL expression to generate an Excel formula as the value of an ADF
component. For example, you can use an Excel HYPERLINK function in an EL
expression. If you use the Excel HYPERLINK function in an EL expression, you must
enclose the HYPERLINK function within an Excel T function if you want an Oracle
ADF component, such as an ADF Output Text component, to display a hyperlink at
runtime.

You enclose the HYPERLINK function because ADF Desktop Integration interprets the
Excel formula. To work around this, you wrap the T function around the HYERLINK
function so that the value of the HYPERLINK function is evaluated by the T function.
The resulting value is inserted into the Excel cell that the ADF component references.
Use the following syntax when writing an EL expression that invokes the HYPERLINK
Excel function:

=T("=HYPERLINK(""link_location"",""friendly_name"")")

The EL expression in Example 8–2 uses HYPERLINK function to navigate to
http://www.oracle.com/technetwork/developer-tools/adf/overview/i
ndex-085534.html when end user clicks the component.

Example 8–2 HYPERLINK Function

=T("=HYPERLINK(""http://www.oracle.com/technetwork/developer-tools/adf/overview/in
dex-085534.html"", ""#{res['excel.workbook.powerby']}"")")

If you write an EL expression using the HYPERLINK function, you should select the
Locked checkbox in the Protection tab of the Format Cells dialog for the custom style
that you apply to prevent error messages appearing.

Note: When the parent list is bound to a cell in the worksheet and
the child list is bound to an ADF Table Component column, the child
list items are updated for all rows in the table when the end user
changes the parent list selection.

Using EL Expression to Generate an Excel Formula

Adding Interactivity to Your Integrated Excel Workbook 8-45

8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
You write an EL expression that uses the Excel T function to evaluate the output of the
Excel HYERLINK function. The following task illustrates how you configure an ADF
Output Text component to display a hyperlink that opens the Oracle ADF Desktop
Integration home page.

Before you begin:
It may be helpful to have an understanding of dynamic hyperlink. For more
information, see Section 8.9, "Using EL Expression to Generate an Excel Formula."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To configure a cell to display a hyperlink using EL expression:
1. Open the integrated Excel workbook.

2. Insert an ADF Output Text component into the Excel worksheet.

3. Write an EL expression for the Value property of the ADF Output Text
component.

The EL expression that you write invokes the Excel HYPERLINK function and uses
the Excel T function to evaluate the output. In Example 8–2, you entered the
following EL expression for the Value property:

=T("=HYPERLINK(""http://www.oracle.com/technetwork/developer-tools/adf/overview
/index-085534.html"", ""#{res['excel.workbook.powerby']}"")")

4. Click OK.

8.9.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL
Expression

ADF Desktop Integration evaluates the EL expression that you write at runtime. In the
following example, ADF Desktop Integration:

■ Retrieves the value of the excel.workbook.powerby from the resource file

■ Inserts the result into a hyerlinked cell that a user can click

Figure 8–36 shows the runtime view of the example configured in Section 8.9.1, "How
to Configure a Cell to Display a Hyperlink Using EL Expression." When the end user
clicks the cell that hosts the ADF Output Text component, the Oracle ADF Desktop
Integration home page opens in the web browser.

Note: When using EL expressions in formulas, ensure that after the
EL expression is evaluated, the resulting Excel formula has no more
than 255 characters. This applies to formulas used to set conditional
values to component properties in the editor.

Note: Excel requires that you write double double quotes (for
example, ""#{res['excel.workbook.powerby']}"") in the EL
expression so that it can evaluate the expression correctly.

Using Calculated Cells in an Integrated Excel Workbook

8-46 Developing Applications with Oracle ADF Desktop Integration

Figure 8–36 ADF Output Text Component Configured to Display a Hyperlink

8.10 Using Calculated Cells in an Integrated Excel Workbook
You can write Excel formulas that perform calculations on values in an integrated
Excel workbook. Before you write an Excel formula that calculates values in an
integrated Excel workbook, note the following points:

■ Formulas can be entered in cells that reference Oracle ADF bindings and cells that
do not reference Oracle ADF bindings

■ End users of an integrated Excel workbook can enter formulas at runtime

■ You (developer of the integrated Excel workbook) can enter formulas at design
time

■ During invocation, the ADF Table component actions Upload and RowUpSync
send the results of a formula calculation to the Fusion web application and not the
formula itself

■ Excel recalculates formulas in cells that reference Oracle ADF bindings when these
cells are modified by:

– Invocation of the ADF Table component RowDownSync and Download
actions

– Rendering of Oracle ADF components

■ The ADF Table and ADF Read-only Table components insert or remove rows as
they expand or contract to accommodate data downloaded from the Fusion web
application. Formulas are replicated according to Excel's own rules.

■ You can enter formulas above or below a cell that references an ADF Table or ADF
Read-only Table component. A formula that you enter below one of these
components maintains its position relative to the component as the component
expands or contracts to accommodate the number of rows displayed.

For more information about Excel functions, see the Function reference section in
Excel's online help documentation.

Using Calculated Cells in an Integrated Excel Workbook

Adding Interactivity to Your Integrated Excel Workbook 8-47

8.10.1 How to Calculate the Sum of a Table-Type Component Column
The following task illustrates how you use the Excel functions SUM and OFFSET to
calculate the total of the column labeled Difference at runtime. You use the OFFSET
function in an Excel formula that you write where you want to reference a range of
cells that expands or contracts based on the number of rows that an ADF Table or ADF
Read-only Table component downloads. The SUM function calculates the total in a
range of Excel cells.

Before you begin:
It may be helpful to have an understanding of how to use calculated cells in an
integrated Excel workbook. For more information, see Section 8.10, "Using Calculated
Cells in an Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 8.1.2, "Additional
Functionality for Adding Interactivity to an Integrated Excel Workbook."

To calculate the sum of a column in an ADF Table component:
1. In design mode, select the cell in which you want to write the Excel formula. For

example, H16.

2. Write the Excel formula that performs a calculation on a range of cells at runtime.
For example:

=SUM(OFFSET(G14,1,0):OFFSET(G15,-1,0))

where SUM calculates the total of values in the range of cells currently referenced
by G14 and G15.

Figure 8–37 shows the design time view of the Excel formula in the integrated
Excel workbook.

Figure 8–37 Design Time View of Excel Formula in an Integrated Excel Workbook

3. Save your changes and switch to runtime mode to test that the Excel formula you
entered evaluates correctly.

8.10.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type
Component Column

Figure 8–38 shows the runtime view in the integrated Excel workbook when the Excel
formula shown in Figure 8–37 is evaluated. The Excel formula calculates the total of
the values in the range of cells that you specified in design mode.

Using Macros in an Integrated Excel Workbook

8-48 Developing Applications with Oracle ADF Desktop Integration

Figure 8–38 Runtime View of Excel Formula in an Integrated Excel Workbook

8.11 Using Macros in an Integrated Excel Workbook
You can define and execute macros based on Excel events in an integrated Excel
workbook.

Note the following points:

■ Macros triggered by an Excel event do not get triggered if the Excel event is
invoked by ADF Desktop Integration.

■ ADF Desktop Integration code invoked by an Excel event is executed when the
Excel event is triggered by a macro.

9

Configuring the Appearance of an Integrated Excel Workbook 9-1

9 Configuring the Appearance of an Integrated
Excel Workbook

This chapter describes how to configure the appearance of an integrated Excel
workbook using predefined and custom styles in Excel, how to use EL expressions to
dynamically apply styles to Oracle ADF components in a workbook at runtime, how
to use labels and brand the Excel workbook, and how to use Worksheet Protection
feature.

This chapter includes the following sections:

■ Section 9.1, "About Configuring the Appearance of an Integrated Excel Workbook"

■ Section 9.2, "Working with Styles"

■ Section 9.3, "Applying Styles Dynamically Using EL Expressions"

■ Section 9.4, "Using Labels in an Integrated Excel Workbook"

■ Section 9.5, "Using Styles to Improve the User Experience"

■ Section 9.6, "Branding Your Integrated Excel Workbook"

■ Section 9.7, "Using Worksheet Protection"

9.1 About Configuring the Appearance of an Integrated Excel Workbook
You can configure the appearance of an integrated Excel workbook using both Excel
functionality and Oracle ADF functionality. Configuring the appearance of a
workbook may make the workbook more usable for end users. For example, applying
a particular style to cells that render ADF Output Text components at runtime may
indicate to end users that the cell is read-only. You may also want to configure the
appearance of an integrated Excel workbook so that it aligns with your company's
style sheet or the color scheme of the Fusion web application that the Excel workbook
integrates with.

Using styles to configure your data in your integrated Excel workbook gives you
many benefits. For example, you can use a particular style for ADF Output Text
components, and a different style for ADF Input Text components.

ADF Desktop Integration provides several predefined Excel styles to apply to the ADF
Desktop Integration components you configure in a workbook. You may want to
define additional styles to meet the needs of your desktop integration project. If you
do, familiarize yourself with the formats in an Excel workbook that render differently
depending on the locale, region, and language.

Working with Styles

9-2 Developing Applications with Oracle ADF Desktop Integration

9.1.1 Integrated Excel Workbook Configuration Use Cases and Examples
You can customize the appearance of ADF Desktop Integration components using
styles. For example,Figure 9–1 shows various styles applied to the columns of ADF
Table in EditCustomers-DT.xlsx. Note that some styles shown in Figure 9–1 are
predefined styles (for example, _ADFDI_TableCellStyle) and others are created by
Excel (for example, Explanatory Text).

Figure 9–1 Styles Applied to Columns of ADF Table in EditCustomers-DT.xlsx

9.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel
Workbook

After you have applied styles to configure the appearance of your integrated Excel
workbook, you may find that you need to add additional functionality to configure
your workbook. Following are links to other functionalities that you can use:

■ Branding: In addition to styles, ADF Desktop Integration provides a collection of
properties (BrandingItems) that enable you to brand your integrated Excel
workbook with application name, application version details, and copyright
information. For more information, see Section 9.6, "Branding Your Integrated
Excel Workbook."

■ Localization: You can customize the integrated Excel workbook as part of the
process to internationalize and localize with the Fusion web application. For more
information, see Chapter 10, "Internationalizing Your Integrated Excel Workbook."

9.2 Working with Styles
ADF Desktop Integration provides a mechanism to apply Excel-defined styles to some
Oracle ADF components at runtime. The Oracle ADF components that support the
application of styles have properties with StyleName in their name. For example, the
column properties of the ADF Table and ADF Read-only Table components both
support the properties HeaderStyleName and CellStyleName that determine
styles to apply at runtime.

9.2.1 Predefined Styles in ADF Desktop Integration
Many properties have default values that are drawn from a predefined list of ADF
Desktop Integration module styles. For example, the HeaderStyleName property's
default value is _ADFDI_HeaderStyle, one of the predefined styles in ADF Desktop
Integration. ADF Desktop Integration automatically adds these predefined styles to
the Excel workbook once when it is enabled for use with ADF Desktop Integration.

The following is the list of predefined styles:

■ _ADFDI_FormBottomStyle

Working with Styles

Configuring the Appearance of an Integrated Excel Workbook 9-3

■ _ADFDI_FormDoubleClickCellStyle

■ _ADFDI_FormTopStyle

■ _ADFDI_HeaderStyle

■ _ADFDI_InputTextStyle

■ _ADFDI_LabelStyle

■ _ADFDI_OutputTextStyle

■ _ADFDI_ReadOnlyTableStyle

■ _ADFDI_TableCellROStyle

■ _ADFDI_TableCellStyle

■ _ADFDI_TableChangedColumnStyle

■ _ADFDI_TableDoubleClickCellStyle

■ _ADFDI_TableFlagColumnStyle

■ _ADFDI_TableKeyCellStyle

■ _ADFDI_TriangleHeaderStyle

You can merge these styles and other styles that you define yourself from an
integrated Excel workbook into another Excel workbook that you intend to integrate
with a Fusion web application. You may create additional styles for use in your Excel
workbook. For example, to add a date-specific formatting, you can duplicate _ADFDI_
TableCellStyle, call it MyTableCellDateStyle, and add your date-specific
formatting.

Once you have decided what styles to apply to the ADF Desktop Integration
components at runtime, you can write EL expressions to associate a style with a
component. The ADF Desktop Integration component properties that include
StyleName in their name take an EL expression as a value. The ADF Label component
and the Label property of other ADF components also support EL expressions. These
EL expressions can retrieve the values of string keys defined in resource bundles or
the values of attribute control hints defined in your Fusion web application.

For more information about creating new styles and merging styles into a workbook,
see Excel's documentation.

9.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options
Some formats in the Date category of the Number styles that Excel can apply to cells
change if a user changes the locale of the local system using the Regional and
Language Options dialog that is accessible from the Microsoft Windows Control
Panel. The * character precedes these formats in the Type list. Figure 9–2 shows an
example of a Date type that formats dates in a cell using French (France) conventions.

Working with Styles

9-4 Developing Applications with Oracle ADF Desktop Integration

Figure 9–2 French Date Formats in Excel

If the end user changes the regional options of a system to use English (United
States), as illustrated in Figure 9–3, the cells that are formatted with the style in
Figure 9–2 use the English (United States) conventions.

Figure 9–3 US English Date Formats in Excel

9.2.3 How to Apply a Style to an Oracle ADF Component
To apply a style to an Oracle ADF component, use the property inspector to set values
for properties with StyleName in their name.

Before you begin:
It may be helpful to have an understanding of styles. For more information, see
Section 9.2, "Working with Styles."

Note: In order for Excel to properly format and manipulate date
values with no time component, the form or table attributes must use
the java.sql.Date data type in the application's model definition.

Working with Styles

Configuring the Appearance of an Integrated Excel Workbook 9-5

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To apply a style:
1. In the integrated Excel workbook, select the cell that references the Oracle ADF

component you want to modify and then click the Edit Properties button in the
Oracle ADF tab.

2. Select the StyleName property and click the browse (...) icon to display the Edit
Expression dialog.

3. Expand the Styles node and select the style to apply to cell at runtime.

For example, apply a heading style (Heading 4 style) to the Binding Warehouse
ID output text field. Applying the Heading 4 style rather than a general style to
the field results in data appearing as bold and in blue color.

4. Click Insert Into Expression to insert the selected style into the Expression field.

Figure 9–4 shows the Edit Expression dialog.

Figure 9–4 Edit Expression Dialog Applying a Style

5. Click OK.

9.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component
The EL expression that you entered as a value for the property with StyleName in its
name is evaluated at runtime. If it corresponds to one of the predefined styles or one
that you defined, the style is applied to the ADF component that you set the property
for.

Applying Styles Dynamically Using EL Expressions

9-6 Developing Applications with Oracle ADF Desktop Integration

If a cell that references an ADF component has a style applied to it that differs from the
style defined in the properties of the ADF component, the ADF component overwrites
the existing style at runtime and applies the style defined by its properties.

For example, Figure 9–5 shows the runtime values of Binding Warehouse ID after the
Heading 4 style is applied, overriding the default _ADFDI_OutputTextStyle
style.

Figure 9–5 Runtime Values After Applying Another Style

9.3 Applying Styles Dynamically Using EL Expressions
Oracle ADF component properties that include StyleName in their name can take an EL
expression as a value. The EL expressions that you write can resolve to a named Excel
style at runtime that is applied to the ADF component. The EL expressions that you
write are Excel formulas that may include ADF data binding expressions. ADF
Desktop Integration does not evaluate or apply results when a user navigates between
cells or during upload.

The following examples show different contexts where you can use EL expressions to
determine the behavior and appearance of ADF components at runtime. Example 9–1
applies a style dynamically during download. If the status value for binding is
Closed, apply a read-only style (MyReadOnlyStyle). Otherwise apply another style
(MyReadWriteStyle).

Example 9–1 Applying a Style Dynamically During Download

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Example 9–2 uses a mixture of Excel formulas and ADF binding expressions to handle
errors and type conversion.

Example 9–2 EL Expressions to Handle Errors and Type Conversion

=IF(ISERROR(VALUE("#{bindings.DealSize}")), "BlackStyle",
IF(VALUE("#{bindings.DealSize}") > 300, "RedStyle", "BlackStyle"))

9.3.1 What Happens at Runtime: How an EL Expression Is Evaluated
When evaluating EL expressions at runtime, ADF Desktop Integration determines the
value that the EL expression references. It then replaces the EL expression in the Excel
formula with the value. In Example 9–1, ADF Desktop Integration first determines that
value of the EL expression, #{bindings.Status}, in the following Excel formula:

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

It then replaces the EL expression with the runtime value, as in the following example,
where the expression evaluated to Closed:

=IF("Closed" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Applying Styles Dynamically Using EL Expressions

Configuring the Appearance of an Integrated Excel Workbook 9-7

Excel evaluates the formula and, in this example, applies the MyReadOnlyStyle
style.

9.3.2 How to Write an EL Expression That Applies a Style at Runtime
You write EL expressions for the Oracle ADF component properties that support EL
expressions in the Edit Expression dialog that is accessible from the Oracle ADF
component's property inspector. Figure 9–6 displays an Edit Expression dialog
launched from the property inspector window of an ADF Button component.

Figure 9–6 Edit Expression Dialog

Before you begin:
It may be helpful to have an understanding of how to apply styles dynamically. For
more information, see Section 9.3, "Applying Styles Dynamically Using EL
Expressions."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To write an EL expression that applies a style at runtime:
1. Open the integrated Excel workbook.

2. Select a cell in the Excel worksheet that references the Oracle ADF component for
which you want to write an EL expression.

3. Click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

4. Select the property in the property inspector with which you want to associate an
EL expression and click the browse (...) icon to display the Edit Expression dialog.

Using Labels in an Integrated Excel Workbook

9-8 Developing Applications with Oracle ADF Desktop Integration

The Edit Expression dialog, as illustrated in Figure 9–6, displays a hierarchical list
of the Oracle ADF components, bindings, styles, resources, and Excel functions
that you can reference in EL expressions. For more information about the syntax of
EL expressions that you enter in this dialog, see Appendix B, "ADF Desktop
Integration EL Expressions."

9.3.3 What You May Need to Know About EL Expressions That Apply Styles
EL expressions that evaluate to styles are applied when:

■ An ADF Table component invokes its Download or DownloadForInsert
actions

■ Rows are inserted into an ADF Table component

■ A worksheet invokes its DownSync action

EL expressions that evaluate to styles are not applied when:

■ An ADF Table component invokes its RowDownSync action

■ The end user edits the format properties of a cell

Note also that an EL expression that evaluates to a style is not reevaluated when
the end user edits a cell's value.

■ The runtime value of an EL expression does not match a style defined in the end
user's integrated Excel workbook

In this scenario the style formats of the targeted cells do not change. Instead, they
retain their existing style formats. If you configured client-side logging, ADF
Desktop Integration generates an entry in the log file when an EL expression
evaluates to a style that is not defined in the end user's integrated Excel workbook.
For more information about client-side logging, see Section C.3, "Generating Log
Files for an Integrated Excel Workbook."

9.4 Using Labels in an Integrated Excel Workbook
Use labels to provide end users with information about how they use the functionality
in an integrated Excel workbook. You can write EL expressions that retrieve the value
of string keys defined in a resource bundle or that retrieve the values of attribute
control hints. An integrated Excel workbook evaluates the value of a Label property
only when the workbook is initialized.

9.4.1 Retrieving the Values of String Keys from a Resource Bundle
Figure 9–7 shows a portion of the design time view of the
EditWarehouses-DT.xlsx workbook in the Summit sample application for ADF
Desktop Integration. It shows examples of ADF Label components and ADF Input
Text components that have EL expressions specified for their Label properties.

Note: The Edit Expression dialog appears only if the Oracle ADF
component that you selected in Step 2 supports EL expressions.
Depending on the context, the browse (...) icon can launch other
editors such as the Edit Action dialog.

Using Labels in an Integrated Excel Workbook

Configuring the Appearance of an Integrated Excel Workbook 9-9

Figure 9–7 Design Time View of an ADF Label Component and an ADF Input Text
Component with Label Property

At runtime, these EL expressions resolve to string keys defined in the res resource
bundle that is registered with the Summit sample application for ADF Desktop
Integration. You define resource bundles in the workbook properties dialog. For
information about referencing string keys from a resource bundle, see Section 10.2,
"Using Resource Bundles in an Integrated Excel Workbook."

Figure 9–8 shows the corresponding runtime view of the ADF Label component and
ADF Input Text component illustrated in design mode in Figure 9–7.

Figure 9–8 Runtime View of an ADF Label Component and an ADF Button Component
with Label Property

9.4.2 Retrieving the Values of Attribute Control Hints
In addition to string keys from resource bundles, the ADF Label component and the
Label property of other ADF components can reference attribute control hints that
you define for entity objects and view objects in your JDeveloper project. Figure 9–9
shows the expression builder for the Phone column in the
EditCustomers-DT.xlsx workbook's ADF Table component. The expression
builder contains an EL expression for the HeaderLabel property of the Phone
column that retrieves the value (Phone) defined for an attribute control hint at
runtime.

Using Styles to Improve the User Experience

9-10 Developing Applications with Oracle ADF Desktop Integration

Figure 9–9 EL Expression That Retrieves the Value of an Attribute Control Hint for a
Label Property

Attribute control hints can be configured for both view objects and entity objects.
Information about how to add an attribute control hint to an entity object can be found
in the "Defining Attribute Control Hints for Entity Objects" section of the Developing
Fusion Web Applications with Oracle Application Development Framework. Information
about how to define a UI hint for a view object can be found in the "Defining UI Hints
for View Objects" section of the Developing Fusion Web Applications with Oracle
Application Development Framework.

9.4.3 How an Integrated Excel Workbook Evaluates a Label Property
An integrated Excel workbook evaluates the Label properties of ADF components
when the workbook is initialized after you or the end user opens the workbook for the
first time. The integrated Excel workbook saves the retrieved values for the Label
properties when the workbook itself is saved to a directory on the system.

The retrieved values for the Label properties do not get refreshed during invocation
of actions such as the worksheet's DownSync action or the ADF Table component's
Download action. You indirectly refresh the retrieved values of the Label properties
if you invoke the workbook actions ClearAllData or EditOptions described in
Table A–17.

9.5 Using Styles to Improve the User Experience
It is good practice to provide end users of integrated Excel workbooks with
information that helps them understand how to use the ADF components that you
provide to integrate with a Fusion web application. You can do this by:

■ Providing end users with instructions on how to use Oracle ADF components such
as ADF Button and ADF Input Text components.

Using Styles to Improve the User Experience

Configuring the Appearance of an Integrated Excel Workbook 9-11

The ADF Label component and the Label property of other ADF components is
useful for this task, as you can write labels that instruct the end user on how to use
the component.

■ Apply styles that indicate if an ADF component is read-only or read-write.

9.5.1 Using ADF Label Components to improve the User Experience
You can use ADF Label components to provide end users of an integrated Excel
workbook information about how to use other ADF components in the workbook. For
example, many forms, by convention, use an * to indicate to end users that they must
enter a value in an input field. Figure 9–10 shows two ADF Input Text components
with ADF Label components in adjoining cells. Each ADF Label component references
an EL expression that retrieves the value of a string key from a resource bundle at
runtime. Each string key includes the * character to indicate to end users that they
must supply a value.

Figure 9–10 ADF Label Components Providing End-User Instruction

For information about using resource bundles, see Section 10.2, "Using Resource
Bundles in an Integrated Excel Workbook."

9.5.2 What You May Need to Know About the Read-Only Property in an Integrated
Excel Workbook

Note the following points about the read-only property in an integrated Excel
workbook:

■ ADF Output Text, ADF Label, and ADF Table header row do not have read-only
properties. However, these components have implied read-only behavior. In
addition, end users can enter values in the cells that host these components and
temporarily change the values that appear in these cells. ADF Desktop Integration
ignores these changes when uploading from the worksheet and overwrites them
when it downloads data from the Fusion web application.

■ The ADF Input Text component, ADF List of Values component, and
TreeNodeList subcomponent each have a read-only property (ReadOnly).

■ To protect the values of read-only cells at runtime, set the worksheet protection to
automatic. When an attempt is made to edit a read-only cell after enabling
worksheet protection, Excel displays a warning message and the edit is blocked.
For more information about worksheet protection, see Section 9.7, "Using
Worksheet Protection."

■ Do not use the Excel's Protect Sheet or Protect Workbook features directly in an
integrated Excel workbook. Also, ensure that end users do not use these features.

Note: If you specify an Excel formula in the Value property of an
ADF Input Text component, the component behaves as if its
ReadOnly property were True. The component ignores the actual
value of the ReadOnly property.

Branding Your Integrated Excel Workbook

9-12 Developing Applications with Oracle ADF Desktop Integration

To prevent end-user confusion, apply styles to components, such as the ADF Output
Text component, that indicate to end users whether a component is read-only or can
be edited. By default, the ADF Output Text component uses the predefined style, _
ADFDI_OutputTextStyle. You can define your own styles and apply them to
components as described in this chapter.

For more information about the properties that ADF Desktop Integration components
support, see Appendix A, "ADF Desktop Integration Component Properties and
Actions."

9.6 Branding Your Integrated Excel Workbook
ADF Desktop Integration provides several features that you can configure to brand
your integrated Excel workbook with information such as application name, version
information, and copyright information. You can use the workbook BrandingItems
group of properties to associate this information with an integrated Excel workbook.
You must configure a Ribbon tab as described in Section 8.3, "Configuring the Runtime
Ribbon Tab" so that the end user can view this branding information by clicking a
ribbon button that invokes the ViewAboutDialog workbook action at runtime. For
more information about workbook actions, see Table A–17.

You can also define string keys in a resource bundle to define information, such as
titles, in one location that can then be used in multiple locations in an integrated Excel
workbook at runtime when EL expressions retrieve the values of these string keys. For
information about defining string keys, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook."

9.6.1 How to Brand an Integrated Excel Workbook
You define values for the workbook BrandingItems group of properties.

Before you begin:
It may be helpful to have an understanding of how to customize brand of your
integrated Excel workbook. For more information, see Section 9.6, "Branding Your
Integrated Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To brand an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the browse (...) icon beside the input
field for BrandingItems.

4. In the Edit BrandingItems dialog, click Add and specify values for the new
element as follows:

■ Name

Specify the name, or the EL expression, of the branding item to define.

■ Value

Specify a literal string or click the browse (...) icon to invoke the expression
builder and write an EL expression that retrieves a value at runtime.

Branding Your Integrated Excel Workbook

Configuring the Appearance of an Integrated Excel Workbook 9-13

BrandingItems must use literal strings or resource expressions, and must
not contain any binding expression.

Figure 9–11 shows the design time view of branding items in the Summit sample
application for ADF Desktop Integration.

Figure 9–11 Design Time View of Branding Items in the Summit Sample Application for
ADF Desktop Integration

5. Click OK.

9.6.2 What Happens at Runtime: the BrandingItems Group of Properties
At runtime, the name-value pairs that you define for the BrandingItems group of
properties appear in a dialog that the end user invokes from the About button of the
Oracle ADF tab, which you configured to appear, as described in Section 8.3,
"Configuring the Runtime Ribbon Tab." Figure 9–12 shows the runtime view of
branding items in the EditCustomers.xlsx workbook.

Using Worksheet Protection

9-14 Developing Applications with Oracle ADF Desktop Integration

Figure 9–12 Runtime View of Branding Items in the Summit Sample Application for ADF
Desktop Integration

9.7 Using Worksheet Protection
By default, the end user can edit the values of locked cells and ADF Desktop
Integration read-only components, such as ADF Label and ADF Output Text, at
runtime. While uploading data, ADF Desktop Integration ignores these changes and
overwrites them when it downloads data from the Fusion web application.

To prevent editing of locked cells at runtime, you must enable worksheet protection.
Optionally, you can also provide a password to prevent the end user from turning off
worksheet protection.

9.7.1 How to Enable Worksheet Protection
Worksheet protection enables true read-only mode for locked and read-only cells, and
prevents any editing at runtime.

Before you begin:
It may be helpful to have an understanding worksheet protection. For more
information, see Section 9.7, "Using Worksheet Protection."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 9.1.2, "Additional
Functionality for Configuring the Appearance of an Integrated Excel Workbook."

To enable Worksheet Protection:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Worksheet Properties dialog, expand the Protection property and
configure values as follows:

■ To enable worksheet protection at runtime, set the Mode to Automatic.

■ If desired, provide a value in the Password field. The end user cannot turn off
sheet protection at runtime without knowing this value.

Note that the password is not encrypted and that the maximum password
length allowed by Excel is 255 characters. If you specify a longer password, it
will be truncated silently at runtime when sheet protection is toggled.

Using Worksheet Protection

Configuring the Appearance of an Integrated Excel Workbook 9-15

Figure 9–13 shows the design time view of worksheet protection in the Summit
sample application for ADF Desktop Integration.

Figure 9–13 Design Time View of Worksheet Protection in the Summit Sample
Application for ADF Desktop Integration

4. Click OK.

9.7.2 What Happens at Runtime: How the Locked Property Works
At runtime, if the end user tries to edit a read-only cell or a ADF Desktop Integration
read-only component, Excel displays the warning message, as shown in Figure 9–14.

Figure 9–14 Worksheet Protection Warning at Runtime

When worksheet protection is enabled, ADF Desktop Integration controls the Locked
property for cells that are within the bounds of ADF Desktop Integration components.
The Locked property of cells outside the bounds of ADF Desktop Integration
components is not affected.

At runtime, ADF Desktop Integration evaluates the read-only behavior of its
components. Some components such as ADF Label and ADF Output Text, are always
read-only, and other components, such as ADF Input Text, have a read-only property.
At runtime, the Locked property is set to true when read-only for the component
evaluates to true. The header labels of ADF Table components are always read-only,
but column subcomponents might be ADF Output Text or ADF Input Text. At
runtime, each components read-only behavior is evaluated and the corresponding
cell's Locked property is set to the appropriate value.

Using Worksheet Protection

9-16 Developing Applications with Oracle ADF Desktop Integration

9.7.3 What You May Need to Know About Worksheet Protection
Worksheet protection is not enabled by default, you need to enable it at design time if
you want to use it for a particular worksheet. Also, after worksheet protection is
enabled, the Locked property for cells is set at runtime, not at design time.

It is important to note that the password used for worksheet protection is itself not
encrypted or stored in a safe location. Worksheet protection is used to improve
worksheet usability, not to protect sensitive data.

After worksheet protection is enabled, Excel behaves differently. Here are some
differences that you can expect:

■ The ADF Table components cannot be sorted, as they include read-only cells in the
Key column.

■ The end user can insert a full row or column. However, once inserted, they cannot
be deleted.

■ The end user cannot insert partial rows or columns.

10

Internationalizing Your Integrated Excel Workbook 10-1

10Internationalizing Your Integrated Excel
Workbook

This chapter describes internationalization issues to consider when developing an
integrated Excel workbook, how to use resource bundles, and how to localize the
integrated Excel workbook.

This chapter includes the following sections:

■ Section 10.1, "About Internationalizing Your Integrated Excel Workbook"

■ Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook"

■ Section 10.3, "Localization in ADF Desktop Integration"

10.1 About Internationalizing Your Integrated Excel Workbook
ADF Desktop Integration provides several features that allow you to deliver
integrated Excel workbooks as part of an internationalized Fusion web application.
One of the principal features is the use of resource bundles to manage the localization
of user-visible strings that appear in Oracle ADF components at design time. It also
uses resource bundles to manage the user-visible strings that appear in these
components at runtime. This chapter also describes the use of resource bundles.

Note the following points about internationalization and localization in an integrated
Excel workbook:

■ Internationalized Data

ADF Desktop Integration supports both single- and double-byte character sets. It
marshals data transmitted between an Excel worksheet and a Fusion web
application into XML payloads. These XML payloads use UTF-8 encoding with
dates, times, and numbers in canonical formats.

■ Locale

The locale of the system where the Excel workbook is used determines the format
for dates, times, and numbers. These settings (formats and the locale of the
system) may differ from the settings used by the Fusion web application. ADF
Desktop Integration does not attempt to synchronize these settings, but it ensures
that the data retains its integrity. ADF Desktop Integration does not provide a
mechanism for end users to change the language or display settings of the Oracle
ADF components in an integrated Excel workbook at runtime.

When configuring or applying styles to ADF components in an integrated Excel
workbook, configure or choose styles that are locale-sensitive. For more
information, see Section 9.2, "Working with Styles."

About Internationalizing Your Integrated Excel Workbook

10-2 Developing Applications with Oracle ADF Desktop Integration

For more information about internationalizing Fusion web applications, see the
"Internationalizing and Localizing Pages" chapter in the Developing Web User Interfaces
with Oracle ADF Faces.

10.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples
You can create integrated Excel workbooks for your internationalized Fusion web
application. Designing your integrated Excel workbook as part of the internationalized
Fusion web application helps in its easy adaptation to specific local languages and
cultures. Using resource bundles and other components, you can configure your
integrated Excel workbook for a specific local language or culture by translating text
and adding locale-specific components at design time, and also at runtime. For more
information, see Section 10.3, "Localization in ADF Desktop Integration."

Figure 10–1 shows an example of an integrated Excel workbook configured for the
Japanese language.

Figure 10–1 Integrated Excel Workbook in Japanese

10.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook
After you have internationalized your integrated Excel workbook, you may find that
you need to add additional functionality to configure your workbook. Following are
links to other functionalities that you can use:

■ Security: Whether you are using a secure Fusion web application or not, you must
be aware of security implementations in your integrated Excel workbook. For
more information, see Chapter 11, "Securing Your Integrated Excel Workbook."

■ Validating integrated Excel workbook: You can configure server-side and
client-side validation for the Fusion web application and the integrated Excel
workbook. For more information, see Chapter 12, "Adding Validation to an
Integrated Excel Workbook."

■ Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Chapter 14, "Deploying Your Integrated Excel
Workbook."

Using Resource Bundles in an Integrated Excel Workbook

Internationalizing Your Integrated Excel Workbook 10-3

10.2 Using Resource Bundles in an Integrated Excel Workbook
ADF Desktop Integration uses resource bundles to manage user-visible strings that
appear in the ADF components of an integrated Excel workbook at design time and
runtime. JDeveloper stores resource bundles in the ADF Desktop Integration project.

You can register up to twenty resource bundles containing string values you define
with an integrated Excel workbook. A resource bundle must not exceed 1 megabyte. If
you attempt to register more than twenty resource bundles or a resource bundle that
exceeds 1 megabyte, ADF Desktop Integration writes a warning to the client-side log
file and stops registration of additional resource bundles or resource bundle data after
the 1 megabyte limit is reached.

For example, if resource bundle A measures 2 megabyte and resource bundle B
measures 1 megabyte, ADF Desktop Integration registers the first megabyte of data in
resource bundle A and all of the data in resource bundle B. For information about
client-side logging, see Section C.3.2, "About Client-Side Logging."

The Resources workbook property specifies what resource bundles an integrated
Excel workbook can use. This property specifies an array of resource bundles
(Resources list) in the integrated Excel workbook. Each element in the array has a
property that uniquely identifies a resource bundle (Alias) and a property that
identifies the path to the resource bundle in the JDeveloper desktop integration project
(Class). For example, EditCustomers-DT.xlsx in the Summit sample application
for ADF Desktop Integration references the res resource bundle that has the
following value for the Class property:

oracle.summitdi.resources.UIResources

More information about the Resources workbook property can be found in
Section A.12, "Workbook Actions and Properties."

By default, ADF Desktop Integration provides a reserved resource bundle that supplies
string key values used by many component properties at runtime. When you enable
an Excel workbook to integrate it with a Fusion web application, the reserved resource
bundle is registered by default with the workbook. ADF Desktop Integration uses the
value _ADFDIres to uniquely identify this resource bundle. Many EL expressions
reference string values in this resource bundle.

If you register another resource bundle, you can replace default string key values
assigned from the _ADFDIres resource bundle to many of the ADF component
properties.

10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
You register a resource bundle by adding an element to the Resources list using the
Edit Resources dialog.

Before you begin:
It may be helpful to have an understanding of how to use resource bundles. For more
information, see Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Internationalizing Integrated Excel Workbook."

To register a resource bundle:
1. Open the integrated Excel workbook.

Using Resource Bundles in an Integrated Excel Workbook

10-4 Developing Applications with Oracle ADF Desktop Integration

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the browse (...) icon beside the input
field for Resources to display the Edit Resources dialog shown in Figure 10–2.

Figure 10–2 Edit Resources Dialog

4. Specify values for the resource bundle and then click OK.

For information about the values to specify for a resource bundle, see the entry for
Resources in Table A–18.

10.2.2 How to Override Resources That Are Not Configurable
The overridable resources contains several user-visible runtime strings that you cannot
replace by configuring the properties of the ADF Desktop Integration components.
Examples include the strings that appear in the default upload dialog illustrated in
Figure 7–11.

To replace these user-visible runtime strings, you create a resource bundle in your
Fusion web application that contains the string keys from the overridable resource that
ADF Desktop Integration supports. Appendix E, "String Keys in the Overridable
Resources" lists these string keys. You define values for the string keys listed in
Appendix E to override in the resource bundle you create.

Before you begin:
It may be helpful to have an understanding of how to use resource bundles. For more
information, see Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook."

Tip: While registering a resource bundle class, do not include the file
extension.

Using Resource Bundles in an Integrated Excel Workbook

Internationalizing Your Integrated Excel Workbook 10-5

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Internationalizing Integrated Excel Workbook."

To override resources that are not configurable:
1. Create a resource bundle in your Fusion web application.

For information about creating a resource bundle, see the "Manually Defining
Resource Bundles and Locales" section in the Developing Web User Interfaces with
Oracle ADF Faces.

2. Define the string key values you want to appear at runtime in the resource bundle
for the string keys listed in Appendix E, "String Keys in the Overridable
Resources."

3. Set _ADFDIres as the value of the Alias property when you register the resource
bundle you created in Step 1.

For information about how to register a resource bundle, see Section 10.2.1, "How
to Register a Resource Bundle in an Integrated Excel Workbook."

Table E–1 describes the string keys in the overridable resources that ADF Desktop
Integration supports. Supply an alternative value to the value listed in the English
value column for each string key in the overridable resource. Note that override
resources should not be used in component properties, they are only intended for the
original usages.

10.2.3 What Happens at Runtime: Override Resources That Are Not Configurable
ADF Desktop Integration retrieves the values of string keys listed in Table E–1 that
you defined in the resource bundle you created. It retrieves the values of other string
keys that you did not define in the resource bundle you created from the reserved
resource bundle.

10.2.4 What You May Need to Know About Resource Bundles
See the following sections for additional information about resource bundles in an
integrated Excel workbook.

10.2.4.1 Resource Bundle Types
ADF Desktop Integration supports use of the following types of resource bundle:

■ Properties bundle (.properties)

■ List resource bundle (.rts)

■ Xliff resource bundle (.xlf)

For more information about resource bundles, see the "Manually Defining Resource
Bundles and Locales" section in the Developing Web User Interfaces with Oracle ADF
Faces.

10.2.4.2 Caching of Resource Bundles in an Integrated Excel Workbook
ADF Desktop Integration caches the values of string keys from the resource bundles
that an integrated Excel workbook retrieves when it first connects to the Fusion web
application. If you change a string key value in a resource bundle after an integrated
Excel workbook has cached the previous value, the modified value does not appear in
the workbook unless the ClearAllData workbook action is invoked and the end

Localization in ADF Desktop Integration

10-6 Developing Applications with Oracle ADF Desktop Integration

user closes and reopens the workbook so that it retrieves the modified value from the
Fusion web application. For more information about the ClearAllData workbook
action, see Table A–17.

10.2.4.3 EL Expression Syntax for Resource Bundles
ADF Desktop Integration requires that you enclose the string key name in EL
expressions using the [] characters, as in the following example:

 #{res['StringKey']}

Note that ADF Desktop Integration does not support the following syntax:

 #{res.StringKey}

10.3 Localization in ADF Desktop Integration
ADF Desktop Integration integrates several diverse sets of technologies. Each of these
technologies provides various options for controlling the choice of natural human
language when you localize your Fusion web application.

When the end user interacts with an integrated Excel workbook, various elements are
involved. Each of these elements has its own set of supported languages and resource
translations. In such a scenario, the translation of language is the responsibility of the
respective publisher.

Table 10–1 presents a summary of elements involved and their role in translation:

Figure 10–3 illustrates how various elements involved in a Fusion web application
play their role in translation.

Table 10–1 Summary of Localization

Area subject to
localization Determination of language to use

Microsoft operating system Operating system language settings. You can choose the
language through Regional Settings on Control Panel.

Microsoft Office Microsoft Office language settings

Web pages displayed in
ADF Desktop Integration
Dialog actions

Usually controlled by Microsoft Internet Explorer's Language
Preferences.

ADF Desktop Integration
client resources

Microsoft Office language settings

ADF Desktop Integration
server resources

Microsoft Internet Explorer language preferences

ADF Desktop Integration
custom resource bundles

Microsoft Internet Explorer language preferences

Localization in ADF Desktop Integration

Internationalizing Your Integrated Excel Workbook 10-7

Figure 10–3 Localization in ADF Desktop Integration

For more information about localization in ADF Desktop Integration, see the "Oracle
ADF Desktop Integration Localization whitepaper" on OTN at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/i
ndex-085534.html

10.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings
The server-side localization comprises of ADF Desktop Integration server resources
and Application Custom Resources. By default, ADF Desktop Integration uses the
client-side Internet Explorer's language preference to determine server-side
localization, but you can configure the Fusion web application to determine the
server-side locale. To do that, you would need to create a user preference handler and
register it by adding a UserPreferences.Handler initialization parameter for ADF
Desktop Integration servlet.

10.3.1.1 How to Create a User Preference Handler
To create a user preference handler, create a public java class with a public method of
java.util.Locale getLocale() signature that determines the ADF Desktop
Integration server-side resources locale and returns the locale as a
java.util.Locale object.

Example 10–1 shows a sample implementation of a user preference handler.

Example 10–1 Implementation of a User Preference Handler

public class CustomUserPrefsHandler
{
 public Locale getLocale ()
 {
 UserPref info = (UserPref)
 ADFContext.getCurrent().getSessionScope().map.get("User_Pref_Info");
 return info.getLocale();
 }

Localization in ADF Desktop Integration

10-8 Developing Applications with Oracle ADF Desktop Integration

}

10.3.1.2 How to Register the User Preference Handler
To register a user preference handler, add the UserPreferences.Handler
initialization parameter for ADF Desktop Integration in web.xml.

Before you begin:
It may be helpful to have an understanding of how to use resource bundles. For more
information, see Section 10.3, "Localization in ADF Desktop Integration."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 10.1.2,
"Additional Functionality for Internationalizing Integrated Excel Workbook."

To register a User Preference Handler:
1. Open the web.xml file of your Fusion web application.

2. Add an initialization parameter to configure the user preference handler, as
described in Table 10–2.

3. Save the web.xml file.

4. Rebuild and restart your Fusion web application.

Example 10–2 shows the web.xml file with UserPreferences.Handler.

Example 10–2 web.xml File With UserPreferences.Handler

<servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>
 oracle.adf.desktopintegration.servlet.DIRemoteServlet
 </servlet-class>
 <init-param>
 <param-name>UserPreferences.Handler</param-name>
 <param-value>myCompany.XYZ.CustomUserPrefsHandler</param-value>
 </init-param>
</servlet>

In Example 10–2, myCompany.XYZ.CustomUserPrefsHandler is the complete
path of the handler class.

Note: The handler class must have a constructor with no arguments,
or uses the default Java constructor.

Table 10–2 Configuring Locale User Preference

Property Value

Name Enter the name of the initialization parameter as follows

UserPreferences.Handler

Value Complete path of the handler class.

11

Securing Your Integrated Excel Workbook 11-1

11 Securing Your Integrated Excel Workbook

This chapter describes security related features in ADF Desktop Integration.

This chapter includes the following sections:

■ Section 11.1, "About Security In Your Integrated Excel Workbook"

■ Section 11.2, "Authenticating the Excel Workbook User"

■ Section 11.3, "Checking the Integrity of an Integrated Excel Workbook's Metadata"

■ Section 11.4, "What You May Need to Know About Securing an Integrated Excel
Workbook"

■ Section 11.5, "Authorizing the Excel Workbook User"

11.1 About Security In Your Integrated Excel Workbook
If you are using a Fusion web application that does not enforce authentication, the
integrated Excel workbook verifies and creates a valid user session when it connects to
the Fusion web application before downloading any data. The session that is
established is used for each and every data transfer between the integrated Excel
workbook and Fusion web application. The session is also used for web pages
displayed from the integrated Excel workbook.

In a Fusion web application that is enforcing authentication, the integrated Excel
workbook ensures that a valid, authenticated user session is established before
transferring data to or from the web application.

For both authenticated and non-authenticated Fusion web applications, ADF Desktop
Integration relies on the establishment of cookie-based sessions. With no
authentication mechanism in place, your Fusion web application is not completely
safe. Hence, you should enable ADF Security in your Fusion web application before
you deploy your web application with integrated Excel workbooks. For information
about ADF Security, see the "Enabling ADF Security in a Fusion Web Application"
chapter in the Developing Fusion Web Applications with Oracle Application Development
Framework.

When you open the integrated Excel workbook, ADF Desktop Integration detects if
the Fusion web application that the workbook runs against is a secure application and
enforces authentication automatically. For authenticated web applications, the end
user will always be prompted for credentials, even though the workbooks are
downloaded from an authenticated web browser. Since the web browser and Excel are
different operating system processes, they cannot share credentials (unless Windows
native authentication is used).

About Security In Your Integrated Excel Workbook

11-2 Developing Applications with Oracle ADF Desktop Integration

11.1.1 Integrated Excel Workbook Security Use Cases and Examples
When you open the integrated Excel workbook of a secure Fusion web application
opens, a Login dialog appears and prompts you to connect to the Fusion web
application, as shown in Figure 11–1. Note that the Login dialog also appears when the
Fusion web application is not secure.

Figure 11–1 Dialog to verify Connection

If you click Yes to connect, another dialog prompts you to enter the credentials, as
shown by the example in Figure 11–2.

Figure 11–2 Dialog to verify End User's Credentials

The dialog that is shown in Figure 11–2 might be different as it depends on how the
Fusion web application is configured to enforce authentication. For example, if
Form-based authentication is being used by the web application, then the end-user
will see a browser dialog with a web page with fields for user name and password.

11.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web
Application

After you have secured your integrated Excel workbook, you may find that you need
to add additional functionality for your workbook. Following are links to other
functionalities that you can use:

■ Validating integrated Excel workbook: You can configure server-side and
client-side validation for the Fusion web application and the integrated Excel
workbook. For more information, see Chapter 12, "Adding Validation to an
Integrated Excel Workbook."

Authenticating the Excel Workbook User

Securing Your Integrated Excel Workbook 11-3

■ Testing integrated Excel workbook: Before publishing and deploying your
integrated Excel workbook, you must test it. For more information, see Chapter 13,
"Testing Your Integrated Excel Workbook."

■ Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Chapter 14, "Deploying Your Integrated Excel
Workbook."

11.2 Authenticating the Excel Workbook User
The integration of an Excel workbook with a secure Fusion web application requires
an authenticated web session established between the integrated Excel workbook and
the server that hosts the Fusion web application. ADF Security determines the
mechanism used to authenticate the user.

If the end user opens an Excel workbook without a valid authenticated session, a login
mechanism is invoked to authenticate the end user.

11.2.1 What Happens at Runtime: How the Login Method Is Invoked
After the login method is invoked, a new session between the integrated Excel
workbook and the Fusion web application is created, and a modal dialog appears that
contains a web browser control. This web browser control displays whatever login
mechanism the Fusion web application uses. For example, if the Fusion web
application uses HTTP Basic Authentication, the web browser control displays the
simple dialog shown in Figure 11–3.

Figure 11–3 Dialog That Appears When a Fusion Web Application Uses Basic
Authentication

The end user enters user credentials and, assuming these are valid, an authenticated
session is created and assigned to the client (the web browser control hosted by the
Excel workbook).

Note: If the Login method is invoked when a session has already
been established, it first invokes the Logout action internally to free
that session.

Checking the Integrity of an Integrated Excel Workbook's Metadata

11-4 Developing Applications with Oracle ADF Desktop Integration

11.2.2 What Happens at Runtime: How the Logout Method Is Invoked
After the logout method is invoked, a dialog appears informing users that they have
logged out of the current session. The user is automatically logged out when the
workbook is closed, or when the Clear All Data option is selected from the runtime
custom tab in Excel ribbon.

Figure 11–4 Dialog That Appears When a User Logs Out

After logging out, the user must log in again to upload or download data.

If two or more workbooks are open (in test or runtime mode) and running against the
same Fusion web application, closing one workbook does not initiate the logout
mechanism. The user continues to stay logged in and may continue to work on
remaining open workbooks, and can open the closed workbook without being asked
for credentials again. The user is logged out when all workbooks running against the
same Fusion web application are closed.

11.3 Checking the Integrity of an Integrated Excel Workbook's Metadata
ADF Desktop Integration provides a mechanism to verify that the metadata it uses to
integrate an Excel workbook with a Fusion web application is not tampered with after
you publish the Excel workbook for end users. It generates a hash code value and
inserts the value into the ADF Desktop Integration client registry file
(adfdi-client-registry.xml) that it also creates when you publish the
integrated Excel workbook as described in Section 14.3, "Publishing Your Integrated
Excel Workbook." ADF Desktop Integration stores the
adfdi-client-registry.xml file in the WEB-INF directory of the Fusion web
application.

If you republish the integrated Excel workbook, ADF Desktop Integration generates a
new hash code value and replaces the value in the adfdi-client-registry.xml
file. ADF Desktop Integration creates the adfdi-client-registry.xml file if it
does not exist.

The ApplicationHomeFolder and WebPagesFolder workbook properties allow
the integrated Excel workbook to identify the location of the Fusion web application's
WEB-INF directory. You must set valid values for these properties before you can
publish the integrated Excel workbook and ADF Desktop Integration can generate a
hash code value.

ADF Desktop Integration generates the hash code value using most of the elements in
the metadata for the workbook and the value of the WorkbookID workbook property.
The WorkbookID workbook property is read-only and uniquely identifies the
integrated Excel workbook. You must reset the WorkbookID workbook property if
you create a new integrated Excel workbook by copying an existing integrated Excel
workbook. ADF Desktop Integration excludes the WebAppRoot property from the
hash code calculation since its value is expected to change at runtime.

For more information about the workbook properties discussed here, see Table A–18.

Checking the Integrity of an Integrated Excel Workbook's Metadata

Securing Your Integrated Excel Workbook 11-5

11.3.1 How to Reset the Workbook ID
The value of the WorkbookID workbook property is unique to each workbook and
cannot be modified by you. You can, however, reset the WorkbookID workbook
property. You must do this when you create a new integrated Excel workbook by
copying an existing integrated Excel workbook.

Before you begin:
It may be helpful to have an understanding of how to verify the integrity of integrated
Excel workbook's metadata. For more information, see Section 11.3, "Checking the
Integrity of an Integrated Excel Workbook's Metadata."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 11.1.2,
"Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web
Application."

To reset a workbook ID:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the Reset WorkbookID link.

4. Click Yes to confirm and reset the WorkbookID workbook property in the dialog
that appears., as shown in Figure 11–5.

Figure 11–5 Reset Workbook ID Dialog

5. Click OK.

11.3.2 What Happens When the Metadata Tamper-Check Is Performed
At runtime, the integrated Excel workbook regenerates the metadata hash code and
provides it to the Fusion web application with the first server request. If the Fusion
web application cannot get a match on this hash code, it returns an error to the
integrated Excel workbook. On receiving an error from the tamper check process, the
integrated Excel workbook reports this failure to the end user and closes the
integration framework.

What You May Need to Know About Securing an Integrated Excel Workbook

11-6 Developing Applications with Oracle ADF Desktop Integration

11.4 What You May Need to Know About Securing an Integrated Excel
Workbook

Note the following points about securing an integrated Excel workbook with a Fusion
web application:

■ Data security

If you save an Excel workbook containing data downloaded from a Fusion web
application to a location, such as a network directory, where other users can access
the Excel workbook, the data stored in the Excel workbook is accessible to other
users.

■ Security in Microsoft Excel

You can enhance the security of an integrated Excel workbook using Excel's
functionality to set a password on a workbook. It prevents unauthorized users
from opening or modifying the workbook. For more information about Excel
security features, see Excel's documentation.

■ Integrated Excel workbooks can be configured to cache data, as described in
Section 15.2, "Restore Server Data Context Between Sessions." Make sure that you
do not cache sensitive data in the integrated Excel workbook.

■ If the Fusion web application is running on the https protocol, you may receive a
certificate error while connecting from an integrated Excel workbook. You can
either install the required certificate using Microsoft Internet Explorer, or choose
to continue to log in and connect to the web application.

■ End users that download integrated Excel workbooks using Microsoft Internet
Explorer may be prompted unexpectedly for credentials before the Excel
application is visible, and then prompted again once the workbook opens. This
may occur when the web application is configured to use certain authentication
methods like Basic or Digest. The extra prompt is due to Excel making an
OPTIONS request on the web directory containing the workbook.

To avoid the extra login prompt, end users can choose to save the workbook
locally instead of opening it directly from the browser.

■ For a non-authenticated Fusion web application, end-users will not be prompted
to log in. However if the application uses the https protocol, then end users may
briefly see a login dialog appear when the first connection is established to the
web application. Workbook developers can control the size of the dialog with the
Workbook.Login.WindowSize property.

If you are an administrator, you should also see the "What You May Need to Know
About Configuring Security in a Fusion Web Application" section in Administering
Oracle ADF Applications.

11.5 Authorizing the Excel Workbook User
ADF Desktop Integration enforces view permission for integrated Excel worksheets
through page definition authorization. At runtime, end users without proper
permissions for a page definition (binding container) are prevented from interacting
with the associated integrated Excel worksheet. Any attempt to interact with an
unauthorized binding container (for example, download or submit data) is aborted,
the end user is informed of the authorization failure, and all ADF Desktop Integration
activity on the worksheet is disabled. No further interaction with the ADF Desktop
Integration-disabled worksheet is possible until a new user session is established. To

Authorizing the Excel Workbook User

Securing Your Integrated Excel Workbook 11-7

allow end users to interact with the integrated Excel worksheet, assign them the roles
that have been granted access to the page definition.

If you have upgraded ADF Desktop Integration from an old version, you may need to
review the resource grants for all of the page definitions that are used with integrated
Excel worksheets. For example, if your Fusion web application supports authorization,
and you have a page definition myWorksheetPageDef.xml that has no resource
grants and is used by one (or more) integrated Excel worksheets, then you need to
assign end users the roles that have been granted access to the page definition. When
transitioning to the new version of ADF Desktop Integration, you may find it helpful
to temporarily create resource grants for the worksheet page definitions that are
granted to authenticated-role, or some other generic role, allowing you to run those
worksheets as before while you fine tune your roles and resource associations.

For more information about authorization, roles, and resource grants, see the
"Enabling ADF Security in a Fusion Web Application" chapter in the Developing Fusion
Web Applications with Oracle Application Development Framework.

You can configure resources and grants from the Resource Grants page of the
overview editor for the jazn-data.xml file. For more information, see the "Defining
ADF Security Policies" section in the Developing Fusion Web Applications with Oracle
Application Development Framework.

On an authorization failure, the end user receives an error message, such as the
following, and ADF Desktop Integration in the worksheet is disabled:

ADFDI-05589 You are not authorized to use this worksheet for
interacting with the Fusion web application.

11.5.1 What You May Need to Know About ADF Desktop Integration-Disabled
Worksheet

The following limitations apply to an ADF Desktop Integration-disabled worksheet:

■ All ADF buttons, worksheet-level ribbon commands, and worksheet-level events
are disabled.

■ If the authorization failure occurs during worksheet initialization, no form labels,
table column headers, or buttons are drawn on the worksheet.

■ If the authorization failure occurs for an initialized worksheet, all ADF buttons are
disabled, but other worksheet components (such as ADF Input Text and ADF
Table) are not affected and are left visually unchanged.

■ End user can perform standard Excel interactions on the disabled worksheet. The
user may alter the data in an ADF Table component in the worksheet, but the
Changed column will not be updated.

■ There is no impact on workbook-level commands. End users can continue to use
the following commands: Login, Logout, About, Edit Options, and Clear All Data.

An ADF Desktop Integration-disabled worksheet is automatically enabled when the
end user reopens the integrated Excel workbook and establishes a new session,

Note: ADF Desktop Integration does not enforce authorization of
other resource types, such as entity object-level, entity attribute-level,
ADF Method, Insert while New, Panel Tab, and Task Flow
authorization.

Authorizing the Excel Workbook User

11-8 Developing Applications with Oracle ADF Desktop Integration

provided the new session is authorized. Logging out, and then logging in again, also
re-enables ADF Desktop Integration in a disabled integrated Excel worksheet.

12

Adding Validation to an Integrated Excel Workbook 12-1

12Adding Validation to an Integrated Excel
Workbook

This chapter describes how to provide server-side and client-side validation for your
integrated Excel workbook, how to report errors such as validation failures and data
conflict, and how to configure error reports using custom error handler.

This chapter includes the following sections:

■ Section 12.1, "About Adding Validation to an Integrated Excel Workbook"

■ Section 12.2, "Providing Server-Side Validation for an Integrated Excel Workbook"

■ Section 12.3, "Providing Client-Side Validation for an Integrated Excel Workbook"

■ Section 12.4, "Error Reporting in an Integrated Excel Workbook"

■ Section 12.5, "Providing a Row-by-Row Status on an ADF Table Component"

■ Section 12.6, "Adding Detail to Error Messages in an Integrated Excel Workbook"

■ Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

12.1 About Adding Validation to an Integrated Excel Workbook
You configure server-side and client-side validation for the Fusion web application
and the integrated Excel workbook to make use of the validation options offered by
the ADF Model layer and Microsoft Excel. In addition to these validation options, you
can make use of components in ADF Desktop Integration to return error messages
from the Fusion web application, to provide status on the results of component
actions, and to manage errors that may occur when data is changed in an integrated
Excel workbook conflict with data hosted by the Fusion web application.

Adding validation to your integrated Excel workbook gives you several benefits. You
can create validation rules in your Fusion web application and in your integrated
Excel workbook to validate data entry by the end user.

12.1.1 Integrated Excel Workbook Validation Use Cases and Examples
Validation rules protects the server by stopping invalid data to get uploaded. For
example, using worksheet and table validation rules, you can capture invalid data
when you upload it to the server, as shown in Figure 12–1.

Providing Server-Side Validation for an Integrated Excel Workbook

12-2 Developing Applications with Oracle ADF Desktop Integration

Figure 12–1 Workbook and Table Validation Errors at Runtime

12.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook
After you have applied validation rules in your integrated Excel workbook, you may
find that you need to add additional functionality to configure your workbook.
Following are links to other functionalities that you can use:

■ Testing integrated Excel workbook: Before publishing and deploying your
integrated Excel workbook, you must test it. For more information, see Chapter 13,
"Testing Your Integrated Excel Workbook."

■ Publishing and deploying integrated Excel workbook: The final step after you
design and validate your integrated Excel workbook is to publish and deploy it.
For more information, see Chapter 14, "Deploying Your Integrated Excel
Workbook."

12.2 Providing Server-Side Validation for an Integrated Excel Workbook
ADF Desktop Integration uses the validation rules that the ADF Model layer sets for a
binding's attributes. Data that the end user enters or edits in one of the ADF Desktop
Integration components, such as the ADF Table component, can be validated against
set rules and conditions in the Fusion web application. For general information about
defining validation rules in Oracle ADF, see the "Defining Validation and Business
Rules Declaratively" chapter in the Developing Fusion Web Applications with Oracle
Application Development Framework.

For information about adding ADF Model layer validation, see the "Defining
Validation Rules in the ADF Model Layer" section in the Developing Fusion Web
Applications with Oracle Application Development Framework.

12.3 Providing Client-Side Validation for an Integrated Excel Workbook
ADF Desktop Integration does not provide client-side validation. However, you can
use Excel's data validation features to control the type of data or the values that end
users enter into a cell. These features allow you to restrict data entry to a certain range
of dates, limit choices by using a list, or ensure that only positive whole numbers are
entered in a cell. For example, you could configure the ZipCode field in the
EditWarehouses-DT.xlsx workbook so that users can enter only whole numbers
in the cells of this field.

If you apply custom validation to columns within an ADF Table component, the
validation is propagated when the ADF Table component's columns are populated at
runtime. Note, however, that ADF Desktop Integration overwrites at runtime any
custom validation applied to columns that reference the TreeNodeList
subcomponent at design time. This is because ADF Desktop Integration applies its
own list-constraint validation, which is invoked at runtime.

Error Reporting in an Integrated Excel Workbook

Adding Validation to an Integrated Excel Workbook 12-3

For more information about data validation in Excel, see Excel's documentation.

12.4 Error Reporting in an Integrated Excel Workbook
The server that hosts the Fusion web application you integrate your Excel workbook
with can return error messages to end users that provide feedback on the results of
operations. The error messages returned can be one many types: validation failures,
conflict errors, deleted records, and so on.

12.4.1 Error Reporting Using EL Expressions
To return error message summaries to end users, you must set an EL expression for
the Value property of an ADF Output Text component. At runtime, the ADF Output
Text component displays the error message summary to the end user if an error
occurs.

The type of EL expression that you set for the Value property of the ADF Output Text
component depends on whether you want to return error message summaries
generated by action sets invoked on a worksheet, or by actions invoked by other
components such as the ADF Table and ADF Read-only Table components. The
following EL expression displays error message summaries which are returned during
the invocation of an action set on a worksheet:

#{worksheet.errors}

At runtime, the previous error message summary is cleared (if one existed) when the
action set starts the invocation. If no errors occur during invocation, error message
remains blank. If an error occurs, the ADF Output Text component displays the error
message summary.

An alternative approach to returning error message summaries generated by action
sets invoked on a worksheet is to set #{worksheet.errors} as the value for an
action set's Alert.FailureMessage property. This approach displays the generated
error message summary in a dialog.

Components such as the ADF Table and ADF Read-only Table components that have
actions which interact with the Fusion web application can also return error message
summaries. Set the following EL expression for the Value property of the ADF
Output Text component or for an action set's Alert.FailureMessage property:

#{components.componentID.errors}

where componentID refers to the ID of the component (ADF Table or ADF Read-only
Table component) that invokes the action.

The EditCustomers-DT.xlsx file in the Summit sample application for ADF
Desktop Integration demonstrates how to return error message summaries generated

Note:

■ Excel displays error messages when a validation fails; these error
messages cannot be localized.

■ ADF Desktop Integration does not support server-side validation
warnings. Validation warnings, set for rules defined in the Fusion
web application, are not displayed by the integrated Excel
workbook.

Error Reporting in an Integrated Excel Workbook

12-4 Developing Applications with Oracle ADF Desktop Integration

by action sets invoked on a worksheet and by the actions of an ADF Table component.
Figure 12–2 shows these EL expressions in design mode.

Figure 12–2 EL Expressions to Return Error Messages in an ADF Output Text
Component

12.4.2 Error Reporting Using Component Actions
ADF Desktop Integration provides actions that display error details generated by an
ADF Table component or an integrated Excel worksheet.

The action set in which you invoke one of these actions must include only one action.
In general, action sets clear error labels and message lists when invoked. An action set
that invokes one of the following actions returns error labels and message lists to the
end user:

■ Worksheet's DisplayWorksheetErrors action

To display a worksheet's error messages, configure the action set of a component
on the worksheet or the worksheet ribbon button to invoke this action. For
example, Figure 12–3 shows the Edit Component: ADF Output Text dialog
configuring the DisplayWorksheetErrors action as a
DoubleClickActionSet item for an ADF Output Text component on the
worksheet.

Figure 12–3 DisplayWorksheetErrors Action

At runtime, double-clicking the ADF OutputText component invokes the
DisplayWorksheetErrors action as shown in Figure 12–4.

Error Reporting in an Integrated Excel Workbook

Adding Validation to an Integrated Excel Workbook 12-5

Figure 12–4 Runtime View of DisplayWorksheetErrors action

For more information about the Worksheet's DisplayWorksheetErrors action,
see Section A.13, "Worksheet Actions and Properties."

■ ADF Table component's DisplayRowErrors action

To display row-level failures that occur in an ADF Table component, invoke this
action. Row-level failures occur when end user invokes the following actions:

– Upload

– DeleteFlaggedRows

– DoubleClickActionSet invoked from an ADF Table component column

For more information about using this action, see Section 12.5, "Providing a
Row-by-Row Status on an ADF Table Component."

■ ADF Table component's DisplayTableErrors action

To display table-level failures that occur in an ADF Table component, invoke this
action. It is not intended that an ADF Table component column's
DoubleClickActionSet invoke this action. Instead add this action to an action
set that returns error messages to end users when failures occur during invocation
of the action binding specified by an ADF Table component's
BatchOptions.CommitBatchActionID property.

At runtime, double-clicking the ADF OutputText component invokes the
DisplayTableErrors action as shown in Figure 12–5.

Figure 12–5 Runtime View of DisplayTableErrors action

For more information about ADF Table component actions, see Section A.9, "ADF
Table Component Properties and Actions."

Providing a Row-by-Row Status on an ADF Table Component

12-6 Developing Applications with Oracle ADF Desktop Integration

12.5 Providing a Row-by-Row Status on an ADF Table Component
The ADF Table component provides a mechanism to indicate to end users whether
rows from the ADF Table component have been processed successfully or not after
invocation of following ADF Table component actions:

■ DeleteFlaggedRows

■ Upload

■ DoubleClickActionSet invoked from an ADF Table component's column

The ADF Table component populates the _ADF_StatusColumn column with the
status for each row following the invocation of the ADF Table component action. For
example, it populates the _ADF_StatusColumn column with the upload status for
each row following the invocation of the ADF Table component's Upload action.

Figure 12–6 shows rows in an ADF Table component where the values in those rows
have been changed, as indicated by the upward pointing arrows in the Changed
column. In the ZipCode column, a text value has been entered where a number value
is expected.

Figure 12–6 ADF Table Component with Changed Rows Before Upload

Figure 12–7 shows the same rows in the ADF Table component after invocation of the
ADF Table component's Upload action. The ADF Table component populates the _
ADF_StatusColumn column (labeled Status in this example at runtime) with a
message indicating whether the row updated successfully or not.

Figure 12–7 ADF Table Component with Changed Rows After Upload

By default, the _ADF_StatusColumn column's DoubleClickActionSet is
configured to invoke the ADF Table component's DisplayRowErrors action. When
end users double-click a row in this column at runtime, the ADF Table component
invokes the DisplayRowErrors action. This action displays a dialog with a list of
errors for that row if errors exist. If no errors exist, the dialog displays a message to
indicate that no errors occurred. Figure 12–8 shows the dialog that appears if the end
user double-clicks the cell in Figure 12–7 that displays Update failed in the Status
column.

Handling Data Conflicts When Uploading Data from a Workbook

Adding Validation to an Integrated Excel Workbook 12-7

Figure 12–8 Dialog Displaying Row Error Message

For more information about the _ADF_StatusColumn column, see Section 7.12,
"Special Columns in the ADF Table Component."

12.6 Adding Detail to Error Messages in an Integrated Excel Workbook
You can configure your Fusion web application to report errors using a custom error
handler to provide more detail to the error messages displayed to end users in an
integrated Excel workbook.

To implement this functionality, the custom error handler must override the
getDetailedDisplayMessage method to return a DCErrorMessage object. At
runtime, ADF Desktop Integration detects the custom error handler and invokes the
getHtmlText method on the DCErrorMessage object. ADF Desktop Integration
includes the HTML returned by the getHtmlText method in the error message list as
detail.

For more information about creating a custom error handler, see the "Customizing
Error Handling" section of the Developing Fusion Web Applications with Oracle
Application Development Framework.

12.7 Handling Data Conflicts When Uploading Data from a Workbook
If one of your end users (User X) makes changes to a row of data downloaded from a
Fusion web application to an Excel workbook, and another end user (User Y) in a
different session modifies the same row in the Fusion web application after User X
downloads the row, User X may encounter an error while uploading the modified row,
as the changes conflict with those that User Y made. Depending on the configuration
of your Fusion web application, User X may receive RowInconsistentException
type error messages. For information about how to configure your Fusion web
application to protect your data, see the "How to Protect Against Losing
Simultaneously Updated Data" section in the Developing Fusion Web Applications with
Oracle Application Development Framework.

To resolve this conflict in the integrated Excel workbook, User X needs to download
the most recent version of data from the Fusion web application. However, invoking
the ADF Table component's Download action causes the component to refresh all data
that the component hosts in the Excel workbook. This may overwrite other changes
that User X made that do not generate conflict error messages. To resolve this scenario,
you can expose the ADF Table component's DownloadFlaggedRows action. When
invoked, this action downloads data only for the rows that the end user flags for
download. Using this action, User X can resolve the conflict issues and upload his
modified data.

Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and
in Disconnected Mode" provides information about using an integrated Excel

Handling Data Conflicts When Uploading Data from a Workbook

12-8 Developing Applications with Oracle ADF Desktop Integration

workbook across multiple sessions. For information about flagging rows, see
Section 7.11.2, "Row Flagging in an ADF Table Component." For information about
invoking component actions, see Section 8.2.2, "How to Invoke Component Actions in
an Action Set." For more information about the components that the ADF Table
component supports, see Section A.9, "ADF Table Component Properties and Actions."

12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
You specify a row-specific attribute of the tree binding for the
RowData.ChangeIndicatorAttribute property to determine whether a row has
been modified by another user since the row was last downloaded by the ADF Table
component.

To configure a workbook to handle data conflicts:
1. Open the integrated Excel workbook.

2. Select any cell of the ADF Table component and click Edit Properties in the Oracle
ADF tab.

3. In Edit Component: ADF Table dialog, for the
RowData.ChangeIndicatorAttribute property, specify the row-specific
attribute of the tree binding that you use to determine whether a row has been
modified by another user since the row was last downloaded by the ADF Table
component in your integrated Excel workbook.

4. Click OK.

12.7.2 What Happens at Runtime: How Data Conflicts Are Handled
The ADF Table component caches the original value of the row-specific attribute of the
tree binding that you specified as a value for
RowData.ChangeIndicatorAttribute when it invokes the RowDownSync action.
When the ADF Table component invokes the RowUpSync action, it checks if the value
of the binding hosted by the Fusion web application and the original value cached by
the ADF Table component differ. If they differ, it indicates data conflict, as changes
have been made to the value of the binding hosted by the Fusion web application since
the ADF Table component downloaded the value of the binding.

13

Testing Your Integrated Excel Workbook 13-1

13 Testing Your Integrated Excel Workbook

This chapter describes how to test and validate the integrated Excel workbooks as you
configure it, and how to run a server ping test.

This chapter includes the following sections:

■ Section 13.1, "About Testing Your Integrated Excel Workbook"

■ Section 13.2, "Testing Your Fusion Web Application"

■ Section 13.3, "Validating the Integrated Excel Workbook Configuration"

■ Section 13.4, "Testing Your Integrated Excel Workbook"

■ Section 13.5, "Running a Server Ping Test"

13.1 About Testing Your Integrated Excel Workbook
Testing an integrated Excel workbook before you publish and deploy it to your end
users enables you to verify that the functionality you configure behaves as you intend.
Before you test your integrated Excel workbook, test the Fusion web application with
which you integrate the Excel workbook.

Before you deploy the integrated Excel workbook, you should validate it and test its
integration with your Fusion web application. Testing an integrated Excel workbook
includes the following processes:

■ Validating the integrated Excel workbook

■ Running the integrated Excel workbook in test mode

13.1.1 Integrated Excel Workbook Testing Use Cases and Examples
To test your integrated Excel Workbook, click the Run button on the Oracle ADF tab,
and click the Stop button to return to the design mode. Figure 13–1 shows the buttons
of the Oracle ADF tab in design mode and in test mode.

Figure 13–1 Run and Stop buttons in Oracle ADF tab

Testing Your Fusion Web Application

13-2 Developing Applications with Oracle ADF Desktop Integration

13.1.2 Additional Functionality of Testing an Integrated Excel Workbook
After you have validated and tested your integrated Excel workbook, you may find
that you need to add additional functionality for your workbook. Following are links
to other functionalities that you can use:

■ Publishing your integrated Excel workbook: After you test and validate your
workbook, you must publish it. For more information see, Section 14.3,
"Publishing Your Integrated Excel Workbook."

■ Deploying your integrated Excel workbook: After you publish your workbook,
you may wish to deploy it with your Fusion web application. For more
information, see Section 14.4, "Deploying a Published Workbook with Your Fusion
Web Application."

■ Working in disconnected mode: After downloading data to the integrated Excel
workbook, sometimes end users may need to use the workbook when a server
connection may not be available, or after the server session has expired. For more
information, see Section 15.1, "About Disconnected Workbooks."

13.2 Testing Your Fusion Web Application
Test the Fusion web application that you integrate your Excel workbook with before
you start testing the integrated Excel workbook. For information about testing a
Fusion web application, see the Developing Fusion Web Applications with Oracle
Application Development Framework. Verify that the Fusion web application you want to
integrate an Excel workbook with, supports ADF Desktop Integration by carrying out
the procedure described in Section C.1, "Verifying That Your Fusion Web Application
Supports ADF Desktop Integration." You may also want to test the view instances of
the ADF application module before you test the Fusion web application. For more
information about testing ADF application module, see the "Using the Oracle ADF
Model Tester for Testing and Debugging" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

If the integrated Excel workbooks are not saved in Application Sources directory of the
Fusion web application, then before you run the Fusion web application in JDeveloper,
ensure that all integrated Excel workbooks and the Excel application are closed. The
application deployment may fail if it encounters locked files as Excel locks the files
that it opens.

If you make changes to the Fusion web application to resolve problems identified by
testing the application, you need to:

■ Close Excel and all integrated Excel workbooks. The application deployment may
fail if it encounters locked files, as Excel locks the files that it opens.

■ Rebuild the JDeveloper project where you develop the Fusion web application.

■ Run the Fusion web application.

■ Reload the page definition files that are associated with the integrated Excel
workbook. Click the Refresh Bindings button in Oracle ADF tab of the integrated
Excel workbook to reload the page definition files.

Tip: If you plan to test integrated Excel workbooks that you
downloaded from web pages of the Fusion web application, you
should republish them before redeploying the application.
Republishing the workbooks ensures that you have their latest
versions.

Validating the Integrated Excel Workbook Configuration

Testing Your Integrated Excel Workbook 13-3

These steps make sure that the changes in the Fusion web application are available to
the integrated Excel workbook. For information about how to reload a page definition
file, see Section 4.3.3, "How to Reload a Page Definition File in an Excel Workbook."

13.3 Validating the Integrated Excel Workbook Configuration
ADF Desktop Integration provides a set of validation rules for the integrated Excel
workbook configuration. After creating your integrated Excel workbook, you may
validate the workbook before you proceed for testing or deployment.

13.3.1 How to Validate the Integrated Excel Workbook Configuration
You should validate the integrated Excel workbook configuration before testing or
deploying the workbook.

To validate the integrated Excel workbook configuration:
1. Open the integrated Excel workbook.

2. In your integrated Excel workbook, click the Oracle ADF tab.

3. In the Test group, click Validate.

The Configuration Validation dialog appears listing all your warnings and errors.

4. If any warning or error is displayed, click to select it. A description of the warning
or error message is displayed in the dialog.

For example, Figure 13–2 illustrates a validation failure message of an invalid EL
expression.

Figure 13–2 Invalid EL Expression Resulting in a Validation Failure

If no warning or error appears, click Close to close the dialog.

Note: You may continue to keep the Configuration Validation dialog
open while you resolve the validation failures. To verify whether you
have resolved an error or a warning, click Revalidate to run the
validation rules again.

Validating the Integrated Excel Workbook Configuration

13-4 Developing Applications with Oracle ADF Desktop Integration

13.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration
When you validate the workbook at design time, ADF Desktop Integration validates
all workbook configuration properties, including worksheet and worksheet
component properties, against defined validation rules. Any and all validation failures
(errors and warnings) are listed in the Configuration Validation dialog. Each
validation failure, when selected, provides contextual information about the failure,
and provides enough detail to locate and fix each validation failure.

The Configuration Validation dialog provides the following information for each
validation failure:

■ Severity type (error or warning)

■ Name of the worksheet. The word Workbook is displayed if the validation failure
does not correspond to a particular worksheet.

■ Worksheet component ID ("Workbook" or "Worksheet" if the validation failure
does not correspond to a particular worksheet component)

■ Property containing the validation failure

■ Description of the validation failure (error or warning)

When you select a specific failure entry in the dialog, the dialog displays additional
details about the failure including:

■ Full property context path

■ Property value

Certain validation rules may result in multiple distinct failures. For example, when an
expression is being validated, different validation failures occur based on expression
type, expression syntax, or the location in which the property is exposed in the
workbook configuration.

For example, consider the following expression value:

#{bindings.EmpView1.hints.Empno.label}

The expression value is legal when used within a column header label inside of a table
component, but the same expression value is illegal when specified as part of the
Worksheet.Title expression.

13.3.3 How to Fix Validation Failures
When you validate your workbook, you might get validation failures or warning
messages, which you can fix easily by following these steps:

1. Identify the component that gave the error or warning message.

In Figure 13–2, note that the ADF Output Text component generated the error. In
the worksheet, search for Output Text component that uses #{worksheet.error
s} expression.

2. Open the property editor of the component.

3. Navigate to the invalid property value identified by the full property context path.

4. Edit the property value to resolve the validation failure.

Note: If Enabled is set to False for a group of workbook
configuration properties, validation of other property values within
the same group is skipped.

Validating the Integrated Excel Workbook Configuration

Testing Your Integrated Excel Workbook 13-5

Figure 13–3 illustrates the ADF OutputText component property editor and its
invalid EL expression.

Figure 13–3 Resolving Validation Failure

5. Revalidate the workbook to verify whether the validation failure has been
resolved. Click Revalidate to run the validation rules again.

6. After fixing all validation failures, click Close to close the Configuration
Validation dialog.

Figure 13–4 illustrates the Configuration Validation dialog with no warnings or
error messages.

Figure 13–4 Configuration Validation Dialog with No Validation Failure Messages

13.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at
Runtime

By default, there is no runtime validation of integrated Excel workbook configuration.
However, you may log validation failures at runtime by setting the client log level to

Testing Your Integrated Excel Workbook

13-6 Developing Applications with Oracle ADF Desktop Integration

Error or Warning. For more information about enabling client-side logging, see
Section C.3.2, "About Client-Side Logging."

13.4 Testing Your Integrated Excel Workbook
As you configure your Excel workbook to integrate with a Fusion web application,
you can switch to test mode from design mode to test the functionality that you add to
the workbook. You use the Oracle ADF tab to switch to test mode from design mode
and from design mode to test mode.

Test mode enables you to test the functionality of your integrated Excel workbook as
you configure it incrementally. It also enables you to view the integrated Excel
workbook from the end user's perspective, as test mode corresponds to what end users
see when they view and execute the published integrated Excel workbook. The
difference between an integrated Excel workbook in test mode and a published
integrated Excel workbook is that the ADF Desktop Integration task pane is not
available to users of the published integrated Excel workbook.

For more information about test mode and design mode, see Section 5.1, "About
Development Tools."

There are some differences between the test mode and the runtime mode when you
run the integrated Excel workbook. Table 13–1 lists these differences.

ADF Desktop Integration can generate log files that capture information based on
events triggered by an integrated Excel workbook. For more information about these
log files, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

To run an integrated Excel workbook in test mode:
■ To test and run an integrated Excel workbook, click the Run button on the Oracle

ADF tab.

Table 13–1 Differences between Test mode and Runtime mode

Test mode Runtime mode

Does not perform tamper check Performs tamper check

Does not display the connection confirmation
dialog

Displays the connection confirmation dialog

Displays the Oracle ADF ribbon tab Does not display Oracle ADF tab

Allows you to switch back to design mode Does not allow you to switch back to design
mode

Note: Before you start testing the integrated Excel workbook, ensure
that:

■ The Fusion web application is running.

■ The ping to server is successful, and the server is configured for
ADF Desktop Integration.

■ The ADF Desktop Integration version of the server and the client
are same, or compatible. Note that an older client (version X)
works fine with the newer server (version X+1) during the
transition period, but an older server (version X) may not work
with a newer client (version X+1).

Running a Server Ping Test

Testing Your Integrated Excel Workbook 13-7

The integrated Excel workbook switches to test mode from design mode. Before
starting the test mode, ADF Desktop Integration clears all design time component
placeholders.

To stop test mode and return the integrated Excel workbook to design mode:
■ In the integrated Excel workbook that you are testing, click the Stop button on the

Oracle ADF tab.

The integrated Excel workbook switches to design mode from test mode. Before
switching back to design mode, ADF Desktop Integration removes all visible and
cached data from all parts of the workbook, and then redraws the design time
component placeholders.

13.5 Running a Server Ping Test
The server ping test enables you to check the version of ADF Desktop Integration
Remote Servlet in a running system. It also helps to confirm that the remote servlet is
loaded and responding. For Fusion web applications that enforce authentication, you
can use the ping test to confirm that the proper authentication configuration is in place
for the ADF Desktop Integration servlet URL.

After running the Fusion web application and logging in as a valid user, open a URL
in the following format to verify whether the remote servlet is running:

http://<hostname>:<portnumber>/<context-root>/adfdiRemoteServlet

For example, if you run the Summit sample application for ADF Desktop Integration,
open the following URL:

http://127.0.0.1:7101/summit/adfdiRemoteServlet

Figure 13–5 shows the remote servlet response page.

Figure 13–5 Remote Servlet Response

Note: When the end user tries to close the integrated Excel
workbook, Microsoft Excel prompts a dialog to save the workbook
even if the end user has not modified it after opening it. This behavior
is expected because ADF Desktop Integration modifies an integrated
Excel workbook each time the end user opens it.

Running a Server Ping Test

13-8 Developing Applications with Oracle ADF Desktop Integration

Note: A valid user session is required to run the server ping test. If
authentication is enabled for the web application, you will be
prompted for valid credentials to log in.

14

Deploying Your Integrated Excel Workbook 14-1

14Deploying Your Integrated Excel Workbook

This chapter describes how to publish and deploy a workbook integrated with a
Fusion web application to end users, and how to pass parameters from the Fusion web
application to the integrated Excel workbook.

This chapter includes the following sections:

■ Section 14.1, "About Deploying Your Integrated Excel Workbook"

■ Section 14.2, "Making ADF Desktop Integration Available to End Users"

■ Section 14.3, "Publishing Your Integrated Excel Workbook"

■ Section 14.4, "Deploying a Published Workbook with Your Fusion Web
Application"

■ Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a
Workbook"

14.1 About Deploying Your Integrated Excel Workbook
After you finish development of your integrated Excel workbook, you make the final
integrated Excel workbook available to end users by deploying the resulting Fusion
web application to an application server. Before you deploy a finalized Excel
workbook that integrates with the Fusion web application, you must publish it as
described in Section 14.3, "Publishing Your Integrated Excel Workbook." After you
have published the Excel workbook, you can deploy it using one of the methods
outlined in the "Deploying Fusion Web Applications" chapter of the Developing Fusion
Web Applications with Oracle Application Development Framework.

The end users that you deploy an integrated Excel workbook to must do the following:

■ Set up ADF Desktop Integration on their systems.

Make the ADF Desktop Integration setup.exe tool available to end users from,
for example, a directory on your network. For more information, see Section 14.2,
"Making ADF Desktop Integration Available to End Users."

■ If required, configure the security settings for their Excel application.

When you deploy your integrated Excel workbook with your Fusion web application,
you are not required to provide the download URL of workbooks explicitly. The end
users can download the integrated Excel workbooks from the Fusion web application's
user interface. For more information, see Section 14.4, "Deploying a Published
Workbook with Your Fusion Web Application."

Making ADF Desktop Integration Available to End Users

14-2 Developing Applications with Oracle ADF Desktop Integration

14.1.1 Integrated Excel Workbook Deployment Use Cases and Examples
You use the Publish button of the Oracle ADF tab to save a copy of the workbook,
which is ready for publishing. Figure 14–1 shows the Publish button and the Publish
Workbook dialog that opens when you click the Publish button to save a copy of the
integrated Excel workbook ready to be published and deployed with the Fusion web
application.

Figure 14–1 Publish Workbook Dialog

14.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook
After you have published and deployed your integrated Excel workbook, you may
find that you need to add additional functionality for your workbook. Following are
links to other functionalities that you can use:

■ Passing Parameters: You can configure a page in your Fusion web application to
pass parameter values to an integrated Excel workbook when the end user
downloads the workbook from the page. For more information, see Section 14.5,
"Passing Parameter Values from a Fusion Web Application Page to a Workbook."

■ Disconnected Workbooks: End users can use your integrated Excel workbooks
when there is no connectivity with the Fusion web application. For more
information, see Chapter 15, "Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected Mode."

14.2 Making ADF Desktop Integration Available to End Users
End users who want to use the functionality that you configure in an integrated Excel
workbook must install the Runtime edition of ADF Desktop Integration. The
installation program (setup.exe) is located in the
adfdi-excel-runtime-client-installer.zip file available in MW_
HOME\oracle_common\modules\oracle.adf.desktopintegration_12.1.2
directory, where MW_HOME is the Middleware Home directory.

Publishing Your Integrated Excel Workbook

Deploying Your Integrated Excel Workbook 14-3

For information about using the installation program, see the "Making the Runtime
Edition of ADF Desktop Integration Available to Multiple End Users" section in
Administering Oracle ADF Applications.

14.3 Publishing Your Integrated Excel Workbook
After you finish configuring the Excel workbook with Oracle ADF functionality, you
must publish it. Publishing a workbook makes it available to the end users for whom
you configured the integrated Excel workbook.

ADF Desktop Integration also provides you with two methods to publish your
workbook. You can publish your integrated Excel workbook directly from Excel, or
you can use the publish tool available in JDeveloper to publish the workbook from the
command line. The command-line publish tool enables you to use ANT build scripts
to publish an integrated Excel workbook from your Fusion web application.

14.3.1 How to Publish an Integrated Excel Workbook from Excel
You publish a workbook by clicking a button on the Oracle ADF tab and specifying
values in the dialogs that appear, or by using the command-line publish tool. You can
use the command line publish tool to publish a workbook from your Fusion web
application.

Before you begin:
It may be helpful to have an understanding about how to publish your integrated
Excel workbook. For more information, see Section 14.3, "Publishing Your Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 14.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

To publish a workbook from Excel:
1. Open the integrated Excel workbook.

2. Ensure that the ApplicationHomeFolder and WebPagesFolder properties in
the Edit Workbook Properties dialog are correct. If these properties are not set,
ADF Desktop Integration prompts to set them when you publish the integrated
Excel workbook.

For more information, see Section 4.2.2, "How to Configure a New Integrated
Excel Workbook."

3. In the Oracle ADF tab, click the Publish button.

4. Specify the directory and file name for the published workbook in the Publish
Workbook dialog that appears, as shown in Figure 14–1. The directory and file

Note: After publishing one or more workbooks, you should restart
the Fusion web application in order for those workbooks to be
downloaded and opened successfully in Microsoft Excel. If the web
application is not restarted, you might get errors, such as the
following:

TampercheckErrorException: ADFDI-05537: The
integrity of the workbook integration could not be
determined.

Publishing Your Integrated Excel Workbook

14-4 Developing Applications with Oracle ADF Desktop Integration

name that you specify for the published workbook must be different from the
directory and file name for the design time workbook.

5. Click Save to save changes.

14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish
Tool

The publish tool is run from the command line, and is available in the MW_
HOME\jdeveloper\adfdi\bin\excel\tools\publish directory as
publish-workbook.exe. Before you run the publish tool, open the source
integrated Excel workbook and ensure that the ApplicationHomeFolder and
WebPagesFolder properties in the Edit Workbook Properties dialog are correct.

Before you begin:
It may be helpful to have an understanding about how to publish your integrated
Excel workbook. For more information, see Section 14.3, "Publishing Your Integrated
Excel Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 14.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

Now, navigate to MW_HOME\jdeveloper\adfdi\bin\excel\tools\publish
directory and run the publish tool using the following syntax:

publish-workbook -workbook (-w) <source-workbook-path> -out (-o)
<destination-workbook-path>

where source-workbook-path is the full path of the source workbook, and
destination-workbook-path is the full path where the published workbook is
saved.

For example:

publish-workbook -workbook
D:\Application1\Project1\ViewController\src\oracle\sampledemo\ex
cel\workbook-src.xlsx -out
D:\Application1\Project1\ViewController\public_
html\excel\published\workbook.xlsx

Note: You cannot publish a workbook that is already published, or is
in runtime mode.

Tip: For more information about the arguments required by the
publish tool, run the following command:

publish-workbook -help (-h)

Notes:

■ Always specify the absolute paths of the source and destination
workbooks. The publish tool does not support relative paths of
the workbooks.

■ The destination workbook cannot have the same name as the
source, even if the workbook paths are different.

Deploying a Published Workbook with Your Fusion Web Application

Deploying Your Integrated Excel Workbook 14-5

After publishing the integrated Excel workbook successfully, the publish tool displays
a success message. If there is any error while publishing the workbook, the publish
tool aborts the process and the error messages are displayed on the command line
console.

If you are using the command line publish tool, note that by default the publish tool
logs messages to the command line console at information level.

Using the Publish Tool with ANT
You can create ANT scripts to run the publish tool from JDeveloper when you build
your Fusion web application. You can use either of the following methods to run the
utility using ANT:

■ Generate an ANT build script for the project and add a target to run the workbook
command line publish tool

■ Generate or create a separate ANT build script for running the workbook
command line publish tool

A sample ANT build script (publish-workbook.xml) to run the publish tool is
available in the MW_HOME\jdeveloper\adfdi\bin\excel\samples directory.
The sample ANT script demonstrates the invocation of the command-line workbook
publishing tool.

14.3.3 What Happens When You Publish an Integrated Excel Workbook
When you click the Publish button in design mode, ADF Desktop Integration
performs the following actions:

1. Validates the mandatory workbook settings.

2. Updates the client registry. For more information, see Section 11.3, "Checking the
Integrity of an Integrated Excel Workbook's Metadata."

3. Creates the published workbook with the specified file name in the specified
directory.

Publish also exports the workbook definition. The published workbook definition
XML file is saved at the same location as the design-time copy of the workbook.
For more information about workbook definition, see Section 5.15, "Exporting and
Importing Excel Workbook Integration Metadata."

4. Clears the ApplicationHomeFolder, WebAppRoot, and WebPagesFolder
properties from the workbook settings of the published workbook.

5. Removes binding expressions that are visible in the worksheet while the
workbook is in design mode.

6. Changes the mode of the workbook to runtime mode.

7. Inserts a Publishing Timestamp property into the workbook. This property is
visible in the Properties tab of About dialog.

14.4 Deploying a Published Workbook with Your Fusion Web Application
Add the integrated Excel workbook to the JDeveloper project for your Fusion web
application if it is not packaged with the other files that constitute your JDeveloper
project. This makes sure that the Excel workbooks you integrate with your Fusion web
application get deployed when you deploy your finalized Fusion web application. For
example, the Summit sample application for ADF Desktop Integration stores the
deployed Excel workbooks that it integrates at the following location:

Deploying a Published Workbook with Your Fusion Web Application

14-6 Developing Applications with Oracle ADF Desktop Integration

<Summit_HOME>\ViewController\public_html\excel

where Summit_HOME is the installation directory for the Summit sample application
for ADF Desktop Integration.

After you decide on a location to store your integrated Excel workbooks, you can
configure web pages in your Fusion web application allowing end users to access
the integrated Excel workbooks. For example, Figure 14–2 shows Internet Explorer's
File Download dialog, which was invoked by clicking the Available Demos >
Editable Table Sample menu option on the index.jspx page of the Summit sample
application for ADF Desktop Integration.

Figure 14–2 Invoking an Integrated Excel Workbook from a Fusion Web Application

To enable the functionality illustrated in Figure 14–2, the HTTP filter parameters for
your Fusion web application must be configured to recognize Excel workbooks.
JDeveloper automatically configures these parameters for you ADF Desktop
Integration is enabled in the Fusion web application. If you want to manually
configure the HTTP filter parameters, see Appendix D, "ADF Desktop Integration
Settings in the Web Application Deployment Descriptor."

After you have configured the HTTP filter for your Fusion web application, you
configure the web pages that the Fusion web application displays to end users to allow
them to invoke Excel workbooks. A basic method of invoking an Excel workbook that
you have integrated with a Fusion web application is to provide a hyperlink that
invokes the workbook. For example, you could write the following HTML in a web
page:

Editable Table Sample

where excel is a subdirectory of the directory specified by the WebPagesFolder
workbook property and EditCustomers.xlsx is the Excel workbook that the end
user invokes.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-7

You can provide functionality that allows end users to invoke Excel workbooks from
buttons, lists, and ribbon commands. The following list provides some examples:

■ Button

Display a button on the web page that, when clicked, invokes the integrated Excel
workbook.

■ Selection list

Use the ADF Faces selectOneChoice component with a button to invoke an
integrated Excel workbook.

■ Menu

Use the ADF Faces goMenuItem component.

The Available Demos menu, as illustrated in Figure 14–2, uses the goMenuItem
component. The following entry appears in the index.jspx page of the Summit
sample application for ADF Desktop Integration and demonstrates the
goMenuItem component:

<af:goMenuItem text="Editable Table Sample" id="gmi1"
 destination="/excel/EditCustomers.xlsx"/>

For more information about creating web pages for a Fusion web application, see the
Developing Web User Interfaces with Oracle ADF Faces.

14.4.1 What Happens at Runtime: Deploying a Published Workbook
When web.xml is configured for a Fusion web application that uses ADF Desktop
Integration, the following happens:

■ The DIExcelDownloadFilter filter is defined.

■ Filter mappings are defined for *.xlsx files.

When the end user makes an http request for a workbook (for example, user clicks a
link in a web page from the application), the DIExcelDownloadFilter filter
embeds the WebAppRoot property into the workbook as it gets streamed back as the
http response. The WebAppRoot property is later used by the ADF Desktop
Integration client to connect to the Fusion web application, establish a user session,
and send data back and forth.

The DIExcelDownloadFilter filter constructs the WebAppRoot value from the
current HttpServletRequest object that is passed in to the doFilter() entry
point. The filter code calls HttpServletRequest.getRequestURL()and gets the
"root" portion of the full URL by removing everything after the context path portion
(uses HttpServletRequest.getContextPath()).

14.5 Passing Parameter Values from a Fusion Web Application Page to a
Workbook

You can configure a page in your Fusion web application to pass parameter values to
an integrated Excel workbook when the end user downloads the workbook from the
page. For example, if the end user attempts to download a workbook from a page that
displays a list of products, the list of products that appears in the workbook
corresponds to the list of products displayed in the page when the end user invoked
the download. Subsequent changes that the end user makes to data in one location
(the worksheet or the Fusion web application's page) do not affect data in the other
location.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-8 Developing Applications with Oracle ADF Desktop Integration

To configure this functionality, you must:

■ Verify that the HTTP filter is configured to allow end users to download
integrated Excel workbooks from the Fusion web application. By default,
JDeveloper configures the HTTP filter with appropriate values when you enable
ADF Desktop Integration in a project. To verify the parameter values of the HTTP
filter, see Section D.2, "Configuring the ADF Desktop Integration Excel Download
Filter."

■ Configure the page in your Fusion web application from which the end user
downloads the integrated Excel workbook so that it passes its parameters through
URL arguments to the integrated Excel workbook when the end user downloads
it.

■ Configure the page definition file associated with the worksheet in the integrated
Excel workbook so that the worksheet is initialized with the parameters from the
page in the Fusion web application from which the end user downloads the
workbook.

■ Configure workbook and worksheet properties in the integrated Excel workbook
that end users download so that the workbook contains the parameters from the
page in the Fusion web application from which the end user invokes download.

14.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters
You insert an <af:link> tag and specify property values for it that reference the
integrated Excel workbook the end user downloads and the values to download. You
also specify the commands on the page that, when invoked, require the Fusion web
application to refresh the values referenced by the <af:link> tag and its property
values.

Before you begin:
It may be helpful to have an understanding of how to pass parameter values from the
Fusion web application to the integrated Excel workbook. For more information, see
Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a
Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 14.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

To configure the page in the Fusion web application:
1. In JDeveloper, insert the af:link tag into the page from which the end user

downloads the integrated Excel workbook.

2. In the Structure window, right-click the af:link node and choose Go to Properties.

3. Expand the Common section and set values for the properties, as described in
Table 14–1.

Table 14–1 Properties for af:link Tag

Property Value

Text Write the text that appears to end users at runtime.

For example, write text such as the following to appear at
runtime:

Download to Excel

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-9

4. Optionally, expand the Behavior section and specify component IDs for the
partialTriggers property that, when invoked, update the values of the
af:link tag and its Destination property.

For example, if you have navigation buttons with the IDs NextButton,
PreviousButton, FirstButton, and LastButton, specify them as follows:

:NextButton :PreviousButton :FirstButton :LastButton

5. Save the page.

The following example shows the entries that JDeveloper generates in a JSF page
using the examples in this procedure:

<af:link text="Download to Excel"
destination="/excel/workbook.xlsx?productName=#{bindings.productName.attributeV
alue}"
partialTriggers=":NextButton :PreviousButton :FirstButton :LastButton"/>

14.5.2 How to Configure the Page Definition File for the Worksheet to Receive
Parameters

You configure the page definition file associated with the worksheet in the integrated
Excel workbook as follows:

■ Add one or more parameter elements that initialize the worksheet with the
values specified by the workbook Parameters property that you configure in
Section 14.5.3, "How to Configure Parameters Properties in the Integrated Excel
Workbook."

Destination Invoke the expression builder to write an EL expression that
specifies the integrated Excel workbook and the values to
download as a URL argument:

For example, write an EL expression such as the following:

"/excel/workbook.xlsx?productName=#{bindings.productNam
e.attributeValue}"

Note that the runtime URL-encoded value of the entire query
string to the right of ? must be less than 2048 bytes. If the
runtime value exceeds 2048 bytes, the integrated Excel
workbook will contain only the URL arguments that fit in 2048
bytes. Subsequent URL arguments do not get included with the
integrated Excel workbook. Instead, the Fusion web application
writes log entries for these URL arguments identifying them as
having not been included.

For example, the total size of the result when the following EL
expression is evaluated and then URL-encoded must be less
than 2048 bytes.

productName=#{bindings.productName.attributeVal
ue}&productType=#{bindings.productType.attribut
eValue}.

Also note that if the URL contains more than 256 characters, an
exception is raised when the end user downloads and opens the
integrated Excel workbook without saving it. To resolve this
problem, you must limit your URL length to 256 characters, or
instruct the end user to save the workbook before opening it.

Table 14–1 (Cont.) Properties for af:link Tag

Property Value

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-10 Developing Applications with Oracle ADF Desktop Integration

The following example shows a parameter element in a page definition file that is
associated with a worksheet in an integrated Excel workbook:

<parameters>
 <parameter id="ProductNameParam" />
</parameters>

■ Add an invokeAction and a method action binding so that the page definition
file associated with the worksheet initializes correctly.

The following example shows the initializeProductTable invokeAction
invoking the filterByProductName method action binding. The
invokeAction is refreshed only when a value for ProductNameParam is
supplied.

<executables>
 <invokeAction Binds="filterByProductName" id="initializeProductTable"
 Refresh="deferred"
 RefreshCondition="${bindings.ProductNameParam != null}"/>
...
</executables>

The method action binding invokes a view object method
(filterByProductName). The view object method takes a single String
argument (ProductNameArg) that references the value of ProductNameParam.

<bindings>
 <methodAction id="filterByProductName" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="filterByProductName"
 IsViewObjectMethod="true" DataControl="AppModuleDataControl"
 InstanceName="AppModuleDataControl.ProductVO1">
 <NamedData NDName="ProductNameArg" NDValue="${bindings.ProductNameParam}"
 NDType="java.lang.String"/>
 </methodAction>
. . .
</bindings>

For more information about configuring a page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook."

14.5.3 How to Configure Parameters Properties in the Integrated Excel Workbook
You configure the workbook Parameters property and the worksheet Parameters
property so that the integrated Excel workbook that the end user downloads from the
Fusion web application receives parameter values included in the query string of the
workbook download URL.

Note: When a page definition file that has an invokeAction is
used with an integrated Excel workbook, the method that is used in
the invokeAction may be invoked multiple times. If needed, the
method should be coded to handle these multiple invocations. The
Refresh and RefreshCondition properties of the
<invokeAction> element can also be configured to manage the
frequency of invocation.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-11

Before you begin:
It may be helpful to have an understanding of how to pass parameter values from the
Fusion web application to the integrated Excel workbook. For more information, see
Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a
Workbook."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 14.1.2,
"Additional Functionality for Deploying Your Integrated Excel Workbook."

To configure the workbook Parameters property:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. Click the browse (...) icon beside the input field for Parameters to invoke the Edit
Parameters dialog.

4. Click Add to add a new workbook initialization parameter and configure its
properties as follows:

■ (Optional) In the Annotation field, enter a description of the workbook
initialization parameter.

■ In the Parameter field, specify the name of the URL argument that you
configured for the af:link tag's Destination property as described in
Section 14.5.1, "How to Configure the Fusion Web Application's Page to Pass
Parameters."

For example, if you added the af:link URL argument as described in
Table 14–1, the Parameter property value would be productName, as
illustrated in Figure 14–3.

Figure 14–3 Workbook Parameters

5. Repeat Step 4 as necessary to add other workbook initialization parameters.

6. Click OK.

For more information about the workbook Parameters property, see Table A–18.

To configure the worksheet Parameters property:
1. Open the integrated Excel workbook.

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-12 Developing Applications with Oracle ADF Desktop Integration

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. Click the browse (...) icon beside the input field for Parameters to invoke the Edit
Parameters dialog.

4. Click Add to add a new worksheet parameter and configure it as in Figure 14–4:

■ (Optional) In the Annotation field, enter a description of the worksheet
parameter.

■ In the Parameter field, specify a parameter element that you added to the page
definition file associated with the worksheet, as described in Section 14.5.2,
"How to Configure the Page Definition File for the Worksheet to Receive
Parameters."

■ In the Value field, write an EL expression that references the value of the
Parameter property you specified for the workbook initialization parameter
(workbook Parameters array). Use the following syntax when writing the
EL expression:

#{workbook.params.parameter}

where parameter references the value of the Parameter property you
specified for the workbook initialization parameter.

Figure 14–4 Worksheet Parameters

5. Repeat Step 4 as necessary to add other workbook initialization parameters.

6. Click OK.

For more information about the worksheet Parameters property, see Table A–19.

By default, the workbook parameters are not sent every time the workbook connects to
the server to request metadata, the end user logs out, or the session expires. If
required, you can configure the workbook to send the initialization parameters by
configuring the SendParameters property.

To configure the worksheet SendParameters property:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, set the value of SendParameters as
shown in the Table 14–2 and Figure 14–5:

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Deploying Your Integrated Excel Workbook 14-13

Figure 14–5 SendParameters Property

4. Click OK.

14.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web
Application to the Integrated Excel Workbook

When the end user downloads the integrated Excel workbook from the Fusion web
application, the af:link tag is evaluated and the current product name is captured
and included on the URL. The adfdiExcelDownload filter embeds the names and
values of all the parameters from the URL into the downloaded integrated Excel
workbook.

After downloading the workbook, when the end user opens it for the first time, the
active worksheet of the integrated Excel workbook is initialized. The initialization
process includes fetching metadata from the web application. As part of retrieving the
worksheet metadata, the stored workbook parameters (if any) are sent to the ADF
Desktop Integration remote servlet and are available for application logic such as
<invokeAction> executables. Specifically, the parameters are set into
BindingContainer DCParameters before the binding container is refreshed. The
action set in the worksheet Startup event is also executed during initialization. After
initialization, the initialization status for each worksheet is recorded when the
integrated Excel workbook is saved to disk.

After the integrated Excel workbook has been saved, closed, and reopened , the
first-time initialization is skipped for any worksheets that were previously initialized.
If workbook parameters were captured when the integrated Excel workbook was first
downloaded, and those parameters are required to set up server context, then the
Worksheet.ServerContext.SendParameters property should be set to True.
When the SendParameters property is True, workbook parameters are sent on
every request for metadata, and also on the first request for data in each user session.

Table 14–2 SendParameters Property

Set this property to... This value...

SendParameters True to send workbook parameters when the workbook
connects to the server to request metadata or data. When set to
True, parameters are sent every time when the metadata is
requested and the first time when data is requested, during each
user session. False is the default value.

For more information, see Section 15.2, "Restore Server Data
Context Between Sessions."

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-14 Developing Applications with Oracle ADF Desktop Integration

To reset the initialization state for all worksheets in the workbook, invoke the
ClearAllData action. For more information about the ClearAllData action, see
Table A–17.

Note: Parameter values passed to the server might reset when a web
dialog is invoked in an action set where the ShareFrame property is
True. Custom code, which uses the parameters and requires that
values be maintained across the invocation of a web dialog, should
ensure that those values are saved in the user session data structures.

15

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-1

15 Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected

Mode

This chapter describes how to configure the integrated Excel workbook so that your
use cases work properly across multiple web application sessions.

This chapter includes the following sections:

■ Section 15.1, "About Disconnected Workbooks"

■ Section 15.2, "Restore Server Data Context Between Sessions"

■ Section 15.3, "Caching of Static Information in an Integrated Excel Workbook"

■ Section 15.4, "Caching Lists of Values for Use in Disconnected Mode"

15.1 About Disconnected Workbooks
End users can open an integrated Excel workbook and log on to a Fusion web
application from the workbook ribbon command that you configure. The Fusion web
application assigns a session to the user. After a connection to the Fusion web
application is established and a valid session assigned, end users can download data
from the Fusion web application to the workbook. They can then log off from the
Fusion web application using the workbook ribbon command or otherwise disconnect
from the Fusion web application by, for example, disconnecting from the network that
hosts the Fusion web application.

How the Fusion web application terminates the session assigned to the user depends
on how the user disconnects from the Fusion web application. If the user logs off from
the Fusion web application using a workbook command, the Fusion web application
terminates the session immediately. If the user disconnects from the Fusion web
application by some other means (for example, closing the workbook), the Fusion web
application terminates the session assigned to the user after session timeout expires.

Using integrated Excel workbooks disconnected from the Fusion web application, end
users can perform the following actions:

■ Modify data downloaded from the Fusion web application

■ Insert new data into the appropriate ADF Table component contained in the
workbook

■ Save changes to data and close and reopen the workbook without having to
upload data to the Fusion web application

■ Track and update changes in the ADF Table component

Restore Server Data Context Between Sessions

15-2 Developing Applications with Oracle ADF Desktop Integration

15.1.1 Disconnected Workbooks Use Cases and Examples
When end users open a published integrated Excel workbook, the workbook
downloads required data. Then, if they disconnect from the server, they can continue
to edit and update the data in the integrated Excel workbook, and save and close it.

The integrated Excel workbook, when opened after saving, detects the updates and
prompts the end user to discard the changes, as shown in Figure 15–1. If the end user
clicks No, the changes would appear in the workbook. If the end user clicks Yes, the
integrated Excel workbook prompts to connect to the server to download data.

Figure 15–1 Discard Pending Changes Dialog of a Disconnected Workbook

15.1.2 Additional Functionality for Disconnected Workbooks
After you have validated and tested your integrated Excel workbook in disconnected
mode, you may find that you need to add additional functionality for your workbook.
Following are links to other functionalities that you can use:

■ Troubleshooting integrated Excel workbook: You might encounter some
problems while developing or deploying an integrated Excel workbook. For more
information, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

■ Installing runtime edition of ADF Desktop Integration: You must install the
runtime edition of ADF Desktop Integration to enable end users to use ADF
Desktop Integration and integrated Excel workbooks. For more information, see
Appendix H, "End User Actions."

15.2 Restore Server Data Context Between Sessions
You must configure the page definition file so that the correct view object state is
restored if the Fusion web application assigns the end user a new session after one of
the following events occurs:

■ The end user makes changes to data in a workbook, saves and closes the
workbook, reopens the workbook at a later time, and attempts to upload the
changes he or she made before saving and closing the workbook.

■ The time between invocation of an ADF Table component's Download and
Upload actions (or some other ADF Table component action that contacts the
Fusion web application) exceeds the session timeout value specified for a
Fusion web application session.

Both the scenarios described in the previous list involve two sessions. The first session
is assigned when the end user opens an integrated Excel workbook and logs on to the
Fusion web application. The Fusion web application terminates this session when the
end user logs off from the Fusion web application or when the session expires. The
Fusion web application assigns a second session when the end user reopens the

Restore Server Data Context Between Sessions

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-3

integrated Excel workbook or invokes an action that interacts with the Fusion web
application.

In addition to configuring the page definition file, configure the functionality in an
integrated Excel workbook so that pending changes are not lost if the end user logs off
from the Fusion web application or a session expires before changes are committed
to the Fusion web application. For example, you configure the worksheet Startup
event to invoke a CreateInsert action binding and a worksheet DownSync action.
You also configure an ADF Button component labeled Save to invoke the worksheet
UpSync action and the Commit action binding. If the end user's session ends, no
record is saved even if the end user clicks the Save button after the Fusion web
application assigns a new session. To prevent this scenario occurring, it is better to
invoke the CreateInsert action binding from the ADF Button component labeled
Save.

Another example is the behavior of the ADF Table component's
DownloadForInsert action. If you create a custom method in the Fusion web
application that creates temporary records to support the invocation by the ADF Table
component of the DownloadForInsert action, make sure to remove these temporary
records after successful invocation of the DownloadForInsert action. For more
information about the use of the DownloadForInsert action, see Section 7.5,
"Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table
component."

15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
You specify the attribute bindings that you want to cache in an integrated Excel
workbook between sessions as values for the worksheet's ServerContext group of
properties. This group of properties also enables you to specify the action binding that
uses the cached attribute binding data to restore server-side context when a Fusion
web application assigns a new session to the integrated Excel workbook.

Before you can specify values for the ServerContext group of properties, the page
definition file that is associated with the worksheet must expose the attribute bindings
and action bindings for which you want to restore server context. For information
about adding attribute bindings and action bindings to a page definition file, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."
For information about the ServerContext group of properties, see the entry for
ServerContext in Table A–19.

Before you begin:
It may be helpful to have an understanding of how to restore server data context. For
more information, see Section 15.2, "Restore Server Data Context Between Sessions."

You may also find it helpful to understand functionality that can be added using other
ADF Desktop Integration features. For more information, see Section 15.1.2,
"Additional Functionality for Disconnected Workbooks."

To configure an integrated Excel workbook to restore server data context:
1. Open the integrated Excel workbook.

2. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, configure values for the ServerContext
group of properties as described by Table 15–1.

Caching of Static Information in an Integrated Excel Workbook

15-4 Developing Applications with Oracle ADF Desktop Integration

If your integrated Excel workbook uses parameters and you have deployed it by
downloading it from your Fusion web application, see Section 14.5.3, "How to
Configure Parameters Properties in the Integrated Excel Workbook."

4. Click OK.

15.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server
Data Context

During the session that is assigned the initial session (for example, session ID 1),
the worksheet caches data using the ServerContext group of properties. In a later
session with a different session ID (for example, session ID 2), where the ADF
Table component's Upload action is invoked, the data cached in the ServerContext
group of properties is sent to the Fusion web application.

15.3 Caching of Static Information in an Integrated Excel Workbook
Certain types of relatively static data are cached in the integrated Excel workbook to
allow end users to use the workbook while disconnected from the Fusion web
application. Table 15–2 describes the types of data that an integrated Excel workbook
caches. It also describes when the integrated Excel workbook refreshes the data.

Table 15–1 ServerContext Properties to Restore Server Data Context

For this property... Enter or select this value...

CacheDataContexts Add an element to the collection of CacheDataContexts.
Configure the element you add as follows:

■ RestoreDataContextActionID

Specify the action binding (for example, the Execute action
binding) that connects to the Fusion web application to
restore the data specified by CachedServerContexts.

■ CachedServerContexts

An array that identifies the attribute binding values to cache
and set before the action binding specified by
RestoreDataContextActionID is invoked. Each
element in the array (CachedServerContext) supports
the CachedAttributeID and RestoredAttributeID
properties.

For more information about the CacheDataContexts property
and its subproperties, see Section A–19, " Worksheet Properties."

IDAttributeID Specify the attribute binding that uniquely identifies the row
displayed in the current worksheet. At runtime, the value that
this property references is used to determine if the server data
context has been correctly restored.

For more information about this property and its subproperties,
see Section A–19, " Worksheet Properties."

Note: For integrated Excel workbooks that use Parameters and
<invokeAction> executable, you may not need to configure
RestoreDataContextActionID and CachedServerContexts, if
Parameters and <invokeAction> can restore server data context
when a new session is created.

Caching Lists of Values for Use in Disconnected Mode

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-5

15.4 Caching Lists of Values for Use in Disconnected Mode
ADF Desktop Integration caches the values referenced by the ADF List of Values and
the TreeNodeList subcomponents that you use to create lists of values and dependent
lists of values so that these components do not send a request to the Fusion web
application when the end user selects a value at runtime. For more information about
using these components to create lists of values, see the following sections:

■ Section 6.6, "Inserting an ADF List of Values Component"

■ Section 7.14, "Creating a List of Values in an ADF Table Component Column"

■ Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

ADF Desktop Integration caches up to two hundred and fifty values for each
component. If a component references a list of values with more than two hundred
and fifty values, ADF Desktop Integration caches the first two hundred and fifty
values and writes a warning message to the client-side log file for subsequent values.
Consider configuring your integrated Excel workbook to invoke a pick dialog from a
page in your Fusion web application where a list of values references more than two
hundred and fifty values. For more information about client-side log files, see
Section C.3, "Generating Log Files for an Integrated Excel Workbook." For more
information about invoking a pick dialog from a Fusion web application page, see

Table 15–2 Types of Data an Integrated Excel Workbook Caches

This type of data... Is cached when... And refreshed when...

Page definition configuration
that is not runtime specific
such as control binding types,
IDs, and labels.

An integrated Excel
worksheet bound to a page
definition file is activated and
no cache of the page
definition file's configuration
exists.

The page definition
configuration is not refreshed
unless you download a new
copy of the integrated Excel
workbook or invoke the
workbook actions
ClearAllData and
EditOptions described in
Table A–17.

ADF List of Values
component list items

The ADF List of Values
component first downloads
the list items from the Fusion
web application.

The values of the list items
hosted by the Fusion web
application differ from those
cached by the integrated Excel
workbook. The cached list
items are refreshed only once
per workbook session and
only if a workbook session
exists.

Invoking the workbook
actions ClearAllData and
EditOptions described in
Table A–17 also clears cached
list items.

Resource bundle strings The integrated Excel
workbook is first initialized. A
workbook is initialized when
it is opened for the first time
after conversion, or after
ClearAllData is invoked.

The cache of resource bundle
strings is not refreshed unless
you download a new copy of
the integrated Excel
workbook or invoke the
workbook actions
ClearAllData and
EditOptions described in
Table A–17.

Caching Lists of Values for Use in Disconnected Mode

15-6 Developing Applications with Oracle ADF Desktop Integration

Section 8.4, "Displaying Web Pages from a Fusion Web Application" and Section 8.5,
"Adding a Custom Popup Picker Dialog to an ADF Table Column."

Cached list of values in an integrated Excel workbook get refreshed once per
workbook session. This refresh occurs after the user reestablishes a web session with
the Fusion web application and if the values referenced by the Fusion web application
have changed since the integrated Excel workbook last cached the list of values.

The upload of a selected value from a list of values causes the upload to fail if the
selected value no longer exists in the Fusion web application. This may occur if, for
example, one end user deletes the value in the Fusion web application while another
end user modifies the selected value in the cached list of values of an integrated Excel
workbook and attempts to upload the modified value to the Fusion web application.
For more information about handling data conflict, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook."

Note that if you change the Fusion web application configuration after you have
deployed the Fusion web application and the end users have started using the
published integrated Excel workbooks, you must inform the end users to download a
fresh copy of the integrated Excel workbook, or run the ClearAllData command.
For more information about the ClearAllData action, see Table A–17

The changes in your Fusion web application might include changing the definitions of
the list bindings associated with the ADF List of Values and TreeNodeList
subcomponents exposed in the worksheet. Changing list binding configuration can
cause unexpected exceptions in workbooks that have been downloaded and run prior
to the change.

A

ADF Desktop Integration Component Properties and Actions A-1

AADF Desktop Integration Component
Properties and Actions

This appendix lists and describes the properties of ADF Desktop Integration
components. It also describes the actions that certain components (such as ADF Input
Text, ADF Output Text, ADF List of Values, ADF Button, ADF Table, Workbook, and
Worksheet) expose.

This appendix includes the following sections:

■ Section A.1, "Frequently Used Properties in the ADF Desktop Integration"

■ Section A.2, "ADF Input Text Component Properties"

■ Section A.3, "ADF Output Text Component Properties"

■ Section A.4, "ADF Label Component Properties"

■ Section A.5, "ADF List of Values Component Properties"

■ Section A.6, "TreeNodeList Subcomponent Properties"

■ Section A.7, "ModelDrivenColumnComponent Subcomponent Properties"

■ Section A.8, "ADF Button Component Properties"

■ Section A.9, "ADF Table Component Properties and Actions"

■ Section A.10, "ADF Read-only Table Component Properties and Actions"

■ Section A.11, "Action Set Properties"

■ Section A.12, "Workbook Actions and Properties"

■ Section A.13, "Worksheet Actions and Properties"

A.1 Frequently Used Properties in the ADF Desktop Integration
Table A–1 lists alphabetically properties in ADF Desktop Integration that many
components reference.

Frequently Used Properties in the ADF Desktop Integration

A-2 Developing Applications with Oracle ADF Desktop Integration

Table A–1 Frequently Used Properties in ADF Desktop Integration

Name Type EL Description

ActionSet N For information about action sets, see Section A.11,
"Action Set Properties."

Annotation String N Use this field to enter a comment about the
component's use in the worksheet. Comments you
enter have no effect on the behavior of the
workbook. They are the equivalent of code
comments.

ComponentID String N ADF Desktop Integration generates this string to
uniquely identify each instance of an ADF
component in an integrated Excel workbook.

Label String Y Specify an EL expression that is evaluated at
runtime. For information about EL expressions in
ADF Desktop Integration, see Appendix B, "ADF
Desktop Integration EL Expressions." For
information about using labels, see Section 9.4,
"Using Labels in an Integrated Excel Workbook."

Position N This property defines the upper-left corner of the
Oracle ADF component in the integrated Excel
workbook.

ADF Input Text Component Properties

ADF Desktop Integration Component Properties and Actions A-3

Many label-type properties are optional and default to empty. At runtime, if the value
of the property is empty, ADF Desktop Integration provides a default, localized value.
If you want the value of the property to appear as empty, set its value to a single space
character, or provide an EL expression that evaluates to an empty string.

A.2 ADF Input Text Component Properties
Table A–2 lists alphabetically the properties of the ADF Input Text component.

ReadOnly Boolean Y Set this property to TRUE so that ADF Desktop
Integration ignores changes a user makes to a cell
that references a component which uses this
property. This property is independent of Excel's
workbook and worksheet protection functionality.
Setting ReadOnly to TRUE does not prevent a user
from modifying a cell. When TRUE, the behavior for
cells that reference Oracle ADF components is as
follows:

■ ADF Desktop Integration overwrites changes
without warning when a worksheet is refreshed.

■ No changes are sent to the Fusion web
application when the integrated Excel workbook
is synchronized with the Fusion web
application.

To avoid end user confusion, apply styles to the cells
where you set ReadOnly to TRUE that provide a
visual clue to users that they cannot modify the cell's
contents. For information about applying styles, see
Section 9.2, "Working with Styles."

You can also use the Worksheet Protection feature of
ADF Desktop Integration to prevent editing of
locked cells at runtime. For more information, see
Section 9.7, "Using Worksheet Protection."

Setting the ReadOnly property to True for an ADF
List of Values component, a TreeNodeList
subcomponent, or a ModelDrivenColumn
component which renders a list binding may confuse
end users. To avoid any confusion, consider using an
ADF Output Text component or subcomponent.

StyleName String Y Specifies the style in the current Excel workbook to
apply when the Oracle ADF component is rendered.
For more information, see Section 9.2, "Working with
Styles."

Value Varies Y This property references an EL expression that is
evaluated after the invocation of the ADF Table
component's RowDownSync action or a worksheet's
DownSync action. The resulting value is typically the
primary value seen in the selected component.

Table A–1 (Cont.) Frequently Used Properties in ADF Desktop Integration

Name Type EL Description

ADF Output Text Component Properties

A-4 Developing Applications with Oracle ADF Desktop Integration

A.3 ADF Output Text Component Properties
Table A–3 lists alphabetically the properties of the ADF Output Text component.

A.4 ADF Label Component Properties
The ADF Label component displays a static string value at runtime. ADF Desktop
Integration generates the value when the EL expression that the Label property
references is evaluated. For information about using labels, see Section 9.4, "Using
Labels in an Integrated Excel Workbook."

Table A–4 lists alphabetically the properties that the ADF Label component references.

Table A–2 ADF Input Text Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

InputText.DoubleClickAction
Set

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Section A.11, "Action Set Properties."

InputText.ReadOnly For information about this property, see Table A–1.

InputText.Value For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–3 ADF Output Text Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

OutputText.DoubleClickActio
nSet

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Section A.11, "Action Set Properties."

OutputText.Value For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–4 ADF Label Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

Label For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

TreeNodeList Subcomponent Properties

ADF Desktop Integration Component Properties and Actions A-5

A.5 ADF List of Values Component Properties
Table A–5 lists the properties of the ADF List of Values component. For information
about creating an ADF List of Values component, see Section 6.6, "Inserting an ADF
List of Values Component."

A.6 TreeNodeList Subcomponent Properties
The TreeNodeList is an ADF Table subcomponent that renders dropdown menus in
columns of the ADF Table component at runtime. It provides the same functionality to
end users as the ADF List of Values component.

The TreeNodeList subcomponent does not appear in the components palette of the
ADF Desktop Integration task pane. Instead, you configure properties for this
subcomponent when you specify TreeNodeList as the subcomponent to invoke for
the ADF Table component's UpdateComponent or InsertComponent table column
properties described in Section A.9.2, "ADF Table Component Column Properties."

Table A–6 describes the properties that you configure for the TreeNodeList
subcomponent.

Table A–5 ADF List of Values Component Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

ComponentID For information about this property, see Table A–1.

ListOfValues.DependsOnLis
tID

List
binding

N Select the list binding whose value at runtime determines the
choices available in the dependent list of values at runtime.

The list binding that you select can be a model-driven list.

For more information about dependent list of values, see
Section 8.8, "Creating Dependent Lists of Values in an
Integrated Excel Workbook."

ListOfValues.ListID List
binding

N Select the list binding that defines the values available in the
list of values. The list binding that you select can be a
model-driven list.

ListOfValues.ReadOnly Boolean N For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

StyleName For information about this property, see Table A–1.

Table A–6 TreeNodeList Subcomponent Properties

Name Type EL Description

DependsOnList Tree
binding
attribute
or List
binding

Y Specify the tree binding attribute or list binding that serves as the
parent list of values in a dependent list of values.

Note that the tree binding attribute you specify must be associated
with a model-driven list.

For more information about dependent list of values, see
Section 8.8, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

List Tree
binding
attribute

Y Specify the tree binding attribute associated with a model-driven
list that defines the values available in the runtime dropdown
menu to appear in the ADF Table component's column.

ReadOnly Boolean Y For information about this property, see Table A–1.

ModelDrivenColumnComponent Subcomponent Properties

A-6 Developing Applications with Oracle ADF Desktop Integration

A.7 ModelDrivenColumnComponent Subcomponent Properties
The ModelDrivenColumnComponent subcomponent, like the TreeNodeList
subcomponent, does not appear in the components palette of the ADF Desktop
Integration task pane. Instead, you configure properties for this subcomponent when
you specify ModelDrivenColumnComponent as the subcomponent to invoke for the
ADF Table component's UpdateComponent or InsertComponent table column
properties described in Section A.9.2, "ADF Table Component Column Properties."

Table A–7 describes the properties that you configure for the
ModelDrivenColumnComponent subcomponent.

A.8 ADF Button Component Properties
Table A–8 lists alphabetically the properties of the ADF Button component.

A.9 ADF Table Component Properties and Actions
The ADF Table component uses the properties and component actions listed here.

A.9.1 ADF Table Component Properties
Table A–9 lists alphabetically the properties the ADF Table component uses.

Table A–7 ModelDrivenColumnComponent Subcomponent Properties

Name Type EL Description

DoubleClickActionSet Specifies the action set invoked when a user
double-clicks the cell. For information about action sets,
see Section A.11, "Action Set Properties."

ReadOnly Boolean Y For information about this property, see Table A–1.

Value Varies Y For information about this property, see Table A–1.

Table A–8 ADF Button Component Properties

Name Description

Annotation For information about this property, see Table A–1.

ClickActionSet Specify the action set to invoke when a user clicks the button. For information about action
sets, see Section A.11, "Action Set Properties."

ComponentID For information about this property, see Table A–1.

Label For information about this property, see Table A–1.

LowerRightCorn
er

This property is an Excel cell reference. Used with Position, it specifies the area that the
button occupies on the Excel worksheet.

Position For information about this property, see Table A–1.

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-7

Table A–9 ADF Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

BatchOptions This group of properties enables you to configure
batch options for the ADF Table component. For
more information about how you use these
properties, see Section 7.11, "Batch Processing in an
ADF Table Component."

BatchOptions.BatchSize Integer N Specifies how many rows to process before an
ADF Table component action (Upload or
DeleteFlaggedRows) invokes
CommitBatchActionID. Any value other than a
positive integer results in all rows being processed
in a single batch. The default value is 100 rows.

A value for this property is required.

BatchOptions.CommitBatchAction
ID

Action
binding

N Specify an action binding to invoke when the
number of rows specified by BatchSize have
been processed. The action binding is expected to
be a commit-type action.

BatchOptions.LimitBatchSize Boolean N Set this property to TRUE to process rows in
batches where each batch contains the number of
rows specified by BatchSize. If set to FALSE, all
rows are processed in a single batch.

BatchOptions.StartBatchActionI
D

Action
binding

N Specify an action binding to invoke at the
beginning of each batch. For example, this
property might be used for an operation like "start
transaction", if required by a particular database.

A value for this property is optional.

Columns An array of columns. For information about the
properties that each column in the array supports,
see Section A.9.2, "ADF Table Component Column
Properties."

ComponentID For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

RowActions This group of properties allows you specify which
actions are enabled and can be invoked.

RowActions.DeleteRowActionID Action
binding

N Specify an action binding to invoke for each row
flagged for deletion.

A value for this property is optional.

RowActions.DeleteRowEnabled Boolean N Set to TRUE to allow a user to delete existing rows.
FALSE is the default value.

A value for this property is required.

RowActions.FailureActionID Action
binding

N Specify an action binding to invoke if failures
occur during the processing of rows.

A value for this property is optional.

RowActions.InsertAfterRowActio
nID

Action
binding

N Specify an action binding to invoke for each row
inserted using the ADF Table component Upload
action. The action binding is invoked after the
attributes are set. Use of this property is suitable
with a custom action where a variable iterator is
employed along with the main iterator.

A value for this property is optional.

ADF Table Component Properties and Actions

A-8 Developing Applications with Oracle ADF Desktop Integration

RowActions.InsertBeforeRowActi
onID

Action
binding

N Specify an action binding to invoke for each row
inserted using the Upload component action. The
action binding specified is invoked before the
attributes are set.

A value for this property is optional.

RowActions.InsertRowEnabled Boolean N Set to TRUE to allow the end user insert new rows
in the ADF Table component. FALSE is the default
value.

If you set this property to TRUE, you must specify
values for one or both of the following properties:

■ RowActions.InsertAfterRowActionID

■ RowActions.InsertBeforeRowActionID

Which property (InsertAfterRowActionID or
InsertBeforeRowActionID) you specify a
value for depends on how your Fusion web
application creates new rows. Typically, a Fusion
web application uses the CreateInsert action
binding to create and insert a new row. In this
scenario, you specify the CreateInsert action
binding as the value for
InsertBeforeRowActionID.

For more information about inserting rows in an
ADF Table component, see Section 7.7,
"Configuring an ADF Table Component to Insert
Data."

RowActions.InsertRowsAfterUplo
adEnabled

Boolean N Set to TRUE to allow the end user to reinsert
changed rows regardless of whether they have
been previously uploaded. FALSE is the default
value.

The property is ignored if InsertRowEnabled is
set to FALSE.

RowActions.UpdateRowActionID Action
binding

N Specify an action binding to invoke for each row
updated.

A value for this property is optional.

RowActions.UpdateRowEnabled Boolean N Set to TRUE to allow a user update an existing row.
TRUE is the default value.

A value for this property is required.

RowData Set values for the CachedAttributes property
when you want to cache data in an integrated
Excel workbook across multiple sessions with the
Fusion web application.

Set a value for the
ChangeIndicatorAttributeID property to
determine whether a row has been modified by
another user since you downloaded it from the
Fusion web application.

Table A–9 (Cont.) ADF Table Component Properties

Name Type EL Description

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-9

RowData.CachedAttributes Array N Specify values for the properties in this array to
determine the attributes for which data is cached.
Each CachedTreeAttribute element in this
array supports the following properties:

■ Value

Select the tree binding attribute for which data
is to be cached.

■ Annotation

For more information about this property, see
Table A–1.

Do not configure a component (for example, an
ADF Table component's column or an ADF Input
Text component) so the end user can view or edit
an attribute binding that you have also specified
for an element in the
RowData.CachedAttributes array. The
RowData.CachedAttributes array caches the
values retrieved by the worksheet DownSync
action. The worksheet UpSync action sends the
values cached by the
RowData.CachedAttributes array to the
Fusion web application. This may override
edits the end user makes to an attribute binding
exposed through a component in the worksheet.

For information about using the
RowData.CachedAttributes array to cache
data in an ADF Table component, see Section 8.5,
"Adding a Custom Popup Picker Dialog to an ADF
Table Column."

RowData.ChangeIndicatorAttribu
teID

Attribute
Binding

Y Specify an EL expression that evaluates to a
row-specific tree attribute binding value. The
attribute value is used to determine if a row has
been modified by another user since the row was
last downloaded to your integrated Excel
workbook.

For more information, see Section 12.7, "Handling
Data Conflicts When Uploading Data from a
Workbook."

RowLimit This group of properties allows you configure the
number of rows that the ADF Table component or
ADF Read-only Table component download and
display.

For more information, see Section 7.18, "Limiting
the Number of Rows Your Table-Type Component
Downloads."

RowLimit.Enabled Boolean N Set to TRUE to limit the number of rows
downloaded to the value specified by
RowLimit.MaxRows. TRUE is the default value.

A value for this property is required.

Table A–9 (Cont.) ADF Table Component Properties

Name Type EL Description

ADF Table Component Properties and Actions

A-10 Developing Applications with Oracle ADF Desktop Integration

RowLimit.MaxRows Integer Y Specify an EL expression that evaluates to the
maximum number of rows to download. The
component evaluates the EL expression when it
invokes its Download action. The default value is
500. If MaxRows is not a positive integer, the
component attempts to download as many rows as
possible. An invalid expression such as "ABC" is
interpreted as -1 (negative integer). As a result,
the component attempts to download as many
rows as possible.

Note that setting the value of MaxRows to 0 results
in a message where the user is asked if they want
to download the first 0 rows. To avoid this, set
MaxRows to a positive integer other than 0.

Table A–9 (Cont.) ADF Table Component Properties

Name Type EL Description

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-11

A.9.2 ADF Table Component Column Properties
Table A–10 describes the properties that a column in the TableColumn array can use.

RowLimit.WarningMessage String Y (Optional) Write an EL expression to generate a
message to display to the end user if the number of
rows available to download exceeds the number
specified by RowLimit.MaxRows. This expression
is evaluated each time the Table's Download
action is invoked. The maximum number of rows
that a Excel 2007, or a higher version, worksheet
can contain is approximately 1 million. If this
property is left blank, ADF Desktop Integration
displays a message similar to "Too many rows
available. Do you want to download
the first {0} rows?" that is translated for the
current culture settings.

You can specify a string key from a custom
resource bundle to use, instead of the default
value. If desired, you may supply a custom
message to replace the default one. Any custom
message must contain {0}. {0} will be replaced
by the MaxRows value.

For more information about resource bundles, see
Section 10.2, "Using Resource Bundles in an
Integrated Excel Workbook."

TreeID Binding N Specify a tree binding from the current
worksheet's page definition file. You must specify
a value for this property so that row downloads
and uploads function properly. For more
information about the page definition
requirements for an integrated Excel workbook,
see Table 4–1.

UniqueAttribute Attribute
binding

Y Specify an EL expression that evaluates to a
unique row-specific tree attribute binding value.
The value of this attribute is cached in the
integrated Excel workbook during the ADF Table
component's Download action. ADF Desktop
Integration uses this value to ensure that the tree
binding's iterator is positioned correctly before
setting or getting data for a given ADF Table
component row.

Note that this value is required only when the
underlying tree binding iterator does not expose a
rowKey.

This value is optional when:

■ The tree binding iterator exposes a rowKey, in
which case the rowKey value is used for
positioning

OR

■ The ADF Table component is configured to be
insert-only
(RowActions.InsertRowEnabled is set to
True and
RowActions.UpdateRowEnabled is set
False)

Table A–9 (Cont.) ADF Table Component Properties

Name Type EL Description

ADF Table Component Properties and Actions

A-12 Developing Applications with Oracle ADF Desktop Integration

Table A–10 ADF Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column.

DynamicColumn Boolean N Set to True to make a column dynamic. False is the default
value. For more information about dynamic columns, see
Section 7.16, "Adding a Dynamic Column to Your ADF Table
Component."

HeaderLabel String Y Write an EL expression that, when evaluated at runtime,
displays a label in the column header.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column header.

ID String N Assign a name to the column to identify it and its purpose. The
value that you assign for this property has no functional
impact. However, you must specify a value and the value that
you specify must be unique within the list of columns. It serves
to help you keep track of columns in the ADF Table
component. The following IDs are reserved to the three default
columns in the ADF Table component:

■ _ADF_ChangedColumn

■ _ADF_FlagColumn

■ _ADF_StatusColumn

For more information about these columns, see Section 7.12,
"Special Columns in the ADF Table Component."

InsertComponent ADF
component

N Specifies the properties of the component that represents the
binding for insert operations. This component can be one of the
following:

■ InputText component

For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties."

■ OutputText component

For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties."

■ TreeNodeList component

For information about the properties that this component
supports, see Section A.6, "TreeNodeList Subcomponent
Properties."

■ ModelDrivenColumnComponent

For information about the properties that this component
supports, see Section A.7,
"ModelDrivenColumnComponent Subcomponent
Properties."

When InsertUsesUpdate is set to True, the ADF Table
component ignores the value of the InsertComponent
property.

ADF Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-13

A.9.3 ADF Table Component Actions
Table A–11 describes the component actions available for use with the ADF Table
component.

InsertUsesUpdate Boolean N Set to True if insert and update operations use the same
component type. When True, the ADF Table component
ignores the values of the InsertComponent property and
reads the value of the UpdateComponent property.

The default value is True.

UpdateComponent ADF
component

N Specifies the properties of the component that represents the
binding for update and download operations. This component
can be one of the following:

■ InputText component

For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties."

■ OutputText component

For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties."

■ TreeNodeList component

For information about the properties that this component
supports, see Section A.6, "TreeNodeList Subcomponent
Properties."

■ ModelDrivenColumnComponent

For information about the properties that this component
supports, see Section A.7,
"ModelDrivenColumnComponent Subcomponent
Properties."

Visible Boolean Y Write an EL expression that resolves to True or False. If
True, the column appears in the ADF Table component. If
False, the column does not appear. True is the default value.

If you make a column dynamic, the ADF Table component
ignores the value of the Visible property. For more
information about dynamic columns, see Section 7.16, "Adding
a Dynamic Column to Your ADF Table Component."

Table A–11 ADF Table Component Actions

Component Action Description

ClearCachedRowAttributes Clears the values of cached attributes for the current row of the ADF Table
component. Only a DoubleClickActionSet in an ADF Table component's
column should invoke this action.

DeleteFlaggedRows Invokes a specified action on each of a set of flagged rows in the ADF Table
component and then removes these rows from the ADF Table component.

For more information, see Section 7.10, "Configuring an ADF Table Component
to Delete Rows in the Fusion Web Application."

DisplayRowErrors Displays error details for the current row in the ADF Table component if error
details are available. This action should only be invoked from a column's action
set in an ADF Table component. By default, the _ADF_StatusColumn
described in Table 7.12 is configured with an action set that invokes this action.

Table A–10 (Cont.) ADF Table Component Column Properties

Name Type EL Description

ADF Table Component Properties and Actions

A-14 Developing Applications with Oracle ADF Desktop Integration

DisplayTableErrors Displays a detailed list of errors in a message dialog for the ADF Table
component if any errors are available. Do not invoke this action from a
column's action set in an ADF Table component. Instead configure an action set
for an ADF Button, ADF Output Text component, or worksheet ribbon button
to invoke this action.

Download Download the rows corresponding to the current state of TreeID. For
information about TreeID, see Section A.9.1, "ADF Table Component
Properties."

DownloadFlaggedRows Downloads the flagged rows from the tree binding specified by TreeID. For
information about TreeID, see Table A–9.

This action applies to the downloaded rows only, and inserted rows are
ignored.

DownloadForInsert This action is obsolete. For more information, see Section 7.4, "Configuring
Oracle ADF Component to Download Data to an ADF Table Component."

FlagAllRows Sets the flag for all rows.

Invoke this action to set a flag character in all rows of the _ADF_FlagColumn
column. The flag character has the following properties:

Character Code 25CF, Unicode(hex)

It appears as a solid circle.

For more information about the _ADF_FlagColumn column, see Section 7.11.2,
"Row Flagging in an ADF Table Component" and Section 7.12, "Special
Columns in the ADF Table Component."

Initialize This action performs the following actions:

■ Removes all rows of data from the ADF Table component

■ Clears the values of cached attributes from rows in the ADF Table
component

■ Creates the placeholder row

■ Recalculates how many dynamic columns to render in the ADF Table
component

■ Redraws column headers

If the ADF Table component contains pending changes that have not been
saved in the integrated Excel workbook, a dialog appears to the end user that
allows cancellation of invocation of this action.

MarkAllRowsChanged Specify this component action to mark all rows in the table as changed in _
ADF_ChangeColumn.

MarkAllRowsUnchanged Specify this component action to clear all flags from the _ADF_
ChangedColumn column.

RowDownSync Synchronizes data from the row in the ADF Table component's iterator in the
Fusion web application that corresponds to the current worksheet row to the
worksheet. As this action acts upon the current worksheet row, only a
DoubleClickActionSet associated with a column in the ADF Table
component should invoke this action.

The ADF Table component does not evaluate or apply the value of a column's
Visible property when invoking RowDownSync. The ADF Table component
evaluates and applies the value of a column's CellStyleName property when
invoking RowDownSync. For more information about column properties, see
Section A.9.2, "ADF Table Component Column Properties."

Table A–11 (Cont.) ADF Table Component Actions

Component Action Description

ADF Read-only Table Component Properties and Actions

ADF Desktop Integration Component Properties and Actions A-15

A.10 ADF Read-only Table Component Properties and Actions
The ADF Read-only Table component exposes one action, Download. This action
downloads the current rows in the table identified by the ADF Read-only Table
property, TreeID. Table A–12 describes TreeID and the other properties that the ADF
Read-only Table component supports.

Table A–13 lists alphabetically the properties that a column in the ReadOnlyColumn
array can use.

RowUpSync Synchronizes any pending changes in the current worksheet row that the ADF
Table component references to the Fusion web application. RowUpSync
acts upon the current worksheet row so only a DoubleClickActionSet
associated with a column in the ADF Table component should invoke this
action. The DoubleClickActionSet that invokes RowUpSync also changes
the position of the ADF Table component's iterator on the Fusion web
application to the current worksheet row (assuming it exists in the Fusion web
application).

UnflagAllRows Removes flags from cells in the _ADF_FlagColumn column.

For more information about the _ADF_FlagColumn, see Section 7.11.2, "Row
Flagging in an ADF Table Component" and Section 7.12, "Special Columns in
the ADF Table Component."

Upload Uploads pending changes to the Fusion web application. Commits successful
rows even if row failures occur.

For more information, see Section 7.8, "Configuring an ADF Component to
Upload Changes from an ADF Table Component."

For more information about resolving data conflict between the Excel
workbook and the Fusion web application, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook".

UploadAllOrNothing Uploads pending changes to the Fusion web application. Commits successful
rows only if none of the rows fail.

For more information about Upload action, see Section 7.8, "Configuring an
ADF Component to Upload Changes from an ADF Table Component." For
more information about UploadAllOrNothing action, see Section 7.9,
"Configuring an ADF Table Component to Upload Changes Using
UploadAllOrNothing Action."

Table A–12 ADF Read-only Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

Columns Array N References an array of read-only columns. For information about the properties
that a column in this array can support, see Table A–13.

ComponentI
D

For information about this property, see Table A–1.

Position For information about this property, see Table A–1.

RowLimit For information about this group of properties, see Table A–9.

TreeID Tree
binding

N References a tree binding ID from the page definition file associated with the
current worksheet if the ADF Read-only Table component was created by inserting
a tree binding into the worksheet.

Table A–11 (Cont.) ADF Table Component Actions

Component Action Description

Action Set Properties

A-16 Developing Applications with Oracle ADF Desktop Integration

A.11 Action Set Properties
Table A–14 lists alphabetically the properties that you can configure for an action set.

Table A–13 ADF Read-only Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A–1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column.

HeaderLabel String Y Write an EL expression that resolves to a label for the column header.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column header.

ID String N Assign a name to the column to identify it and its purpose. The value
that you assign for this property has no functional impact. However,
you must specify a value and the value that you specify must be
unique within the list of columns. It serves to help you keep track of
columns in the ADF Read-only Table component.

OutputText ADF
Component

For information about the properties that this component supports, see
Section A.3, "ADF Output Text Component Properties."

Table A–14 Action Set Properties

Name Type EL Description

ActionOptions This group of properties specifies options for invoking local and
remote actions.

ActionOptions.AbortOnFailu
re

Boolea
n

N When set to TRUE, the remaining actions in the array are not
invoked if an action fails. If FALSE, all actions are invoked
regardless of the success or failure of previous actions. The
default value is TRUE.

ActionOptions.FailureActio
nID

Action
bindin
g

N Specify the action binding to invoke if an action set does not
complete successfully. For example, you could specify an action
binding that rolls back changes made during the unsuccessful
invocation of the action set.

ActionOptions.SuccessActio
nID

Action
bindin
g

N Specify an action binding to invoke if an action set completes
successfully. For example, you could specify an action binding
that executes a commit action.

A value for this property is optional.

Action Set Properties

ADF Desktop Integration Component Properties and Actions A-17

Actions Array N Specifies an ordered array of actions. An action can be one of
the following:

■ ADFmAction

Invokes an action binding or method action binding in the
underlying page definition file. The
ADFmAction.ActionID property identifies the action
binding or method action binding to invoke. For
information about page definition files, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel
Workbook."

■ ComponentAction

Invokes an action that a component on the worksheet
exposes. ComponentAction.ComponentID identifies the
component that exposes the action while
ComponentAction.Method identifies the action to
invoke.

The ADF Table and ADF Read-only Table components are
the only components in ADF Desktop Integration that
expose actions. For information about these actions, see
Section A.9, "ADF Table Component Properties and
Actions" and Section A.10, "ADF Read-only Table
Component Properties and Actions." For information about
invoking component actions, see Section 8.2.2, "How to
Invoke Component Actions in an Action Set."

■ WorksheetMethod

Invokes a worksheet action. For information about
worksheet actions, see Section A.13, "Worksheet Actions
and Properties."

■ Confirmation

Invokes a confirmation dialog. For more information about
the properties that this action uses, see Section A.11.1,
"Confirmation Action Properties."

■ Dialog

Invokes a web page in a popup dialog or Excel's task pane.
For more information, see Section 8.4, "Displaying Web
Pages from a Fusion Web Application."

Alert This group of properties determines if and how an alert-style
dialog appears to the user to indicate that the requested action
is complete. The dialog that appears contains one button that
allows the user to acknowledge the message and dismiss the
dialog. For information about how to display an alert message,
see Section 8.2.8, "How to Provide an Alert After the Invocation
of an Action Set."

Many properties in this group make use of EL expressions to
retrieve string values from resource bundles. For more
information about using EL expressions, see Section 10.2,
"Using Resource Bundles in an Integrated Excel Workbook."

Alert.Enabled Boolea
n

N Set to TRUE to display an alert message to end users that
notifies them when an action set operation completes
successfully or includes one or more failures.

For more information, see Section 8.2.8, "How to Provide an
Alert After the Invocation of an Action Set."

Alert.FailureMessage String Y Specify an EL expression that evaluates to a message to appear
in the dialog if errors occur during execution of the action set.

Table A–14 (Cont.) Action Set Properties

Name Type EL Description

Action Set Properties

A-18 Developing Applications with Oracle ADF Desktop Integration

A.11.1 Confirmation Action Properties
Table A–15 lists alphabetically the properties that the Confirmation action in the
array of Actions of an action set supports. For information about the other properties
the array of Actions and action sets use, see Table A–14.

Alert.OKButtonLabel String Y Specify an EL expression that evaluates to a message to appear
in the OK button of the dialog.

Alert.SuccessMessage String Y Specify an EL expression that evaluates to a message to appear
in the dialog if no errors occur during the execution of the
action set.

Alert.Title String Y Specify an EL expression that evaluates to a message to appear
in the title area of the dialog.

Annotation For information about Annotation, see Table A–1.

Status This group of properties determines if and how a status
message appears during the execution of an action set. For
information about how to display a status message, see
Section 8.2.5, "How to Display a Status Message While an
Action Set Executes."

Many properties in this group make use of EL expressions that
reference string keys defined in resource bundles. For more
information, see Section 10.2, "Using Resource Bundles in an
Integrated Excel Workbook."

Status.Enabled Boolea
n

N If TRUE (default), a status window appears during the execution
of the action set. If FALSE, no status window appears.

Status.Message String Y Specify an EL expression to evaluate and display in the status
window while the action set executes.

Status.Title String Y Specify an EL expression to evaluate and display in the title
area of the status window while the action set executes.

Status.Mode String N Choose the visual appearance of progress bars. The valid values
are Automatic, BothBarsAlways, MainBarOnly,
DetailBarOnly, and MainMessageOnly.

Status.DetailStatusMessage String Y Specify an optional EL expression or literal value that evaluates
to a status message to appear as the associated action
progresses.

Table A–15 Confirmation Action Properties

Name Type EL Description

Annotation For information about Annotation, see Table A–1.

CancelButtonLabel String Y An EL expression that is evaluated and displayed in the Cancel button at
runtime.

OKButtonLabel String Y An EL expression that is evaluated and displayed in the OK button at
runtime.

Prompt String Y An EL expression that is evaluated and displayed in the main area of the
confirmation dialog at runtime.

Title String Y An EL expression that is evaluated and displayed in the title area of the
confirmation dialog at runtime.

Table A–14 (Cont.) Action Set Properties

Name Type EL Description

Workbook Actions and Properties

ADF Desktop Integration Component Properties and Actions A-19

A.11.2 Dialog Action Properties
Table A–16 describes the properties that the Dialog action in the array of Actions of
an action set supports. For information about the other properties the array of
Actions and action sets use, see Table A–14.

For information about how to use the properties in Table A–16 to invoke a web page
from a Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion
Web Application."

A.12 Workbook Actions and Properties
Table A–17 describes the actions that a workbook can invoke. For information about
configuring ribbon buttons to invoke these actions, see Section 8.3.1, "How to Define a
Workbook Command Button for the Runtime Ribbon Tab."

Table A–16 Dialog Action Properties

Name Type EL Description

Annotation String N For information about this property, see Table A–1.

Page String N Specify the web page that the action invokes. Relative and absolute URLs are valid
values.

ShareFrame Boolean N Set to TRUE (default) to execute the web page specified by the Dialog.Page
property in the same data control frame as the Excel worksheet. If you specify an
absolute URL, ADF Desktop Integration ignores the value of the
Dialog.ShareFrame property.

Target List N Specifies how the web page the action invokes is rendered. Select:

■ Popup to render the web page in a modal dialog within an embedded web
browser.

■ TaskPane to render the web page in runtime task pane.

Title String Y Write an EL expression that resolves to the title of the Dialog at runtime or write a
literal string.

WindowSize Integer N Specify the initial size in pixels of the dialog that appears to the user. Valid values
range from 0 to 2147483647. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or too small. The default
value for Height is 625 and 600 for Width.

Workbook Actions and Properties

A-20 Developing Applications with Oracle ADF Desktop Integration

Table A–17 Workbook Actions

Action Description

Login When invoked, this action creates a new session between the integrated Excel workbook
and the Fusion web application.

If invoked when a session has already been established, it first invokes the Logout action
internally to free that session. For a workbook running against a web application that is
enforcing authentication, the Login action prompts the end user to provide valid user
credentials.

Logout When invoked, ADF Desktop Integration sends a request to the Fusion web application to
invalidate the session between the integrated Excel workbook and the Fusion web
application. After invoking this action, the end user must be authenticated the next time the
Excel workbook accesses the Fusion web application.

ClearAllData When invoked, this action clears all data entered by the user from cells that reference Oracle
ADF bindings. Tables, such as those created by the ADF Table and ADF Read-only Table
components, will be truncated so that they only display header rows with labels cleared.
Values in cells that reference the Input Text or Output Text components are cleared. Column
headers and labels are cleared as well. References to all resource bundles that the integrated
Excel workbook uses are cleared. Worksheets that do not contain bindings or reference a
page definition file remain unchanged. A dialog prompts the end user to confirm invocation
of this action. Once the end user confirms invocation, ADF Desktop Integration executes the
following events after invocation of the action:

■ Invokes the integrated Excel workbook's Logout action

■ Terminates the runtime session and clears all data from the integrated Excel workbook
and all caches

■ Reinitializes the integrated Excel workbook and invokes the workbook's Login action

Invocation of the ClearAllData action does not change data hosted by the Fusion web
application. One or more of the following actions must be invoked to change data hosted by
the Fusion web application:

■ A worksheet's UpSync action

This action synchronizes all data referenced by non-table type components. For more
information, see Section A.13, "Worksheet Actions and Properties."

■ An ADF Table component's RowUpSync action can be used to synchronize any
pending changes in a row to the Fusion web application. The ADF Table component's
DeleteFlaggedRows action can be invoked to delete flagged rows. For more
information about ADF Table component actions, see Section A.9.3, "ADF Table
Component Actions."

EditOptions When invoked, this action launches a dialog that shows the current value of the
WebAppRoot property and allows the end user to enter a new value.

If the end user chooses to change the value of WebAppRoot, a confirmation dialog appears
after the end user clicks OK. Once the change is confirmed, the following events occur:

■ Workbook ClearAllData action is invoked

■ Workbook Logout action is invoked

■ All data referenced by bindings in the workbook is removed

■ References to WebAppRoot are updated in the Excel workbook's configuration

■ Workbook Login action is invoked to authenticate the user with the Fusion web
application that is specified as the value for WebAppRoot

The ClearAllData workbook action clears all resource bundles referenced by the
integrated Excel workbook. After WebAppRoot is changed, the integrated Excel
workbook attempts to retrieve resource bundles from the Fusion web application as
part of the reinitialization process. This request to the Fusion web application triggers
the authentication process.

ViewAboutDialog When invoked, this action launches a dialog called About that displays information defined
in the BrandingItems workbook property and other information such as the versions of
supporting software.

Workbook Actions and Properties

ADF Desktop Integration Component Properties and Actions A-21

Table A–18 lists alphabetically the ADF Desktop Integration properties that an Excel
workbook can use.

Table A–18 Workbook Properties

Name Type EL Description

ApplicationHomeFolder String N Specify the absolute path to the directory that is the root for
the JDeveloper application workspace (.jws) where you
developed the desktop integration project.

For example, the value of this property in a workbook
integrated with the Summit sample application for ADF
Desktop Integration could be something similar to the
following:

D:\Oracle\Applications\Summit_ADFdi

ADF Desktop Integration prompts you to specify a value for
this property the first time that you open an integrated Excel
workbook.

For more information, see Section 4.2.2, "How to Configure a
New Integrated Excel Workbook."

BrandingItems Array N An array of name-value pairs that resolve to resource bundle
references (for example, #{res['myAppName']}) or a literal
string. Each pair in the array consists of a name and a value.
Each name and value can reference a literal string or an EL
expression.

For information about branding your integrated Excel
workbook, see Section 9.6, "Branding Your Integrated Excel
Workbook."

Login.WindowSize Integer N Specify the initial size in pixels of the login dialog that appears
to the user. Valid values range from 0 to screen width or
height. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or
too small. The default value for Height is 625 and Width is
600.

Parameters Array N An array of workbook initialization parameters that you
configure to pass the parameters from a page in a Fusion web
application to an integrated Excel workbook. You can define
multiple workbook initialization parameters in the Fusion
web application's page. Each workbook initialization
parameter (parameter that references a URL argument) that
you define in a page must be specified in a Parameter
property of this array, otherwise it is ignored.

Each element in the array supports the following properties:

■ Annotation

For more information about this property, see Table A–1.

■ Parameter

You specify the name of the workbook initialization
parameter you defined in the page of the Fusion web
application from which the end user downloads the
integrated Excel workbook.

For information about using this property, see Section 14.5,
"Passing Parameter Values from a Fusion Web Application
Page to a Workbook."

Workbook Actions and Properties

A-22 Developing Applications with Oracle ADF Desktop Integration

Project String N Specify the name of a JDeveloper project in the current
JDeveloper workspace. ADF Desktop Integration attempts to
load the .jpr file that corresponds to the project that you
specify. An error appears if the .jpr file is not available or is
not in the expected format.

When you open an integrated Excel workbook for the first
time in design mode, ADF Desktop Integration searches for a
.jpr file in the parent folder hierarchy. If it finds a .jpr file,
it sets the value of Project to the name of the project that
corresponds to the .jpr file.

ADF Desktop Integration loads the names of the available
projects from the application_name.jws file specified by
ApplicationHomeFolder.

RemoteServletPath String N Specify the path to the ADF Desktop Integration remote
servlet. This path must be relative to the value specified for
WebAppRoot. Note that the value you specify for
RemoteServletPath must match the value that is specified
in the web application's deployment descriptor file
(web.xml). The default value for this property is:

/adfdiRemoteServlet

Resources Array N Specifies an array of resource bundles to register with the
workbook. Each element in the array supports the following
properties:

■ Alias

Specify a string value that is unique within
Workbook.Resources. EL expressions use this string to
reference the resource bundle.

■ Annotation

For more information about this property, see Table A–1.

■ Class

Specify a fully qualified class name, but do not include
the file extension. The class name that you specify is
expected to be a Java resource bundle class that the
Fusion web application you integrate your workbook
with uses.

For example, the EditCustomers-DT.xlsx workbook
in the Summit sample application for ADF Desktop
Integration references the following resource bundle:

oracle.summitdi.resources.UIStrings

For more information, see Section 10.2, "Using Resource
Bundles in an Integrated Excel Workbook."

Runtime Ribbon Tab - - This group of properties defines whether and how a Ribbon
tab appears in Excel at runtime. The following entries in this
table describe the properties in the Runtime Ribbon Tab
group. For more information about Ribbon tab and its
commands, see Section 8.3, "Configuring the Runtime Ribbon
Tab."

Runtime Ribbon
Tab.Annotation

String N For information about this property, see Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

Runtime Ribbon Tab.Visible Boolean N If TRUE,the Ribbon tab appears at runtime. The Ribbon tab
does not appear if you set Enabled to FALSE. TRUE is the
default value.

Table A–18 (Cont.) Workbook Properties

Name Type EL Description

Worksheet Actions and Properties

ADF Desktop Integration Component Properties and Actions A-23

A.13 Worksheet Actions and Properties
An Excel worksheet with ADF Desktop Integration can invoke the following actions:

■ UpSync

Synchronizes any pending changes from the ADF Input Text and ADF List of
Values components in the worksheet to the Fusion web application.

■ DownSync

Runtime Ribbon Tab.Title String Y Specify an EL expression that evaluates to the title that
appears for the Ribbon tab in the title area. Excel imposes a
maximum limit of 1024 characters for Ribbon tab titles. Ensure
that the runtime value of the EL expression you specify does
not exceed 1024 characters as ADF Desktop Integration
truncates the value so that Excel does not generate an error
message.

If you choose to assign a key tip character using the &
character, consider avoiding the letter K for the Runtime
Ribbon Tab.Title. Excel does not allow the letter K to be
used here when the workbook is running in the ar_SA
culture.

Runtime Ribbon
Tab.Workbook Commands

Array N Each element in this array corresponds to a workbook
command at runtime. Each element in the array uses the
following properties:

■ Annotation

For more information about this property, see Table A–1.

■ Label

For more information about this property, see Table A–1.

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
workbook command at runtime.

■ Method

Specify the workbook action that the workbook ribbon
button invokes. For more information about workbook
actions, see Table A–17.

WebAppRoot String N A fully qualified URL to the Fusion web application's root.

WebPagesFolder String N Specify the path to the directory that contains the web pages
that you intend to use with your integrated Excel workbooks.
The value that you specify for the path most be relative to the
value of ApplicationHomeFolder.

WorkbookID String N A unique identifier for the integrated Excel workbook. ADF
Desktop Integration generates the unique identifier when you
open the workbook for the first time in design mode.

The value cannot be modified. However, ADF Desktop
Integration can generate a new value if you use the Reset
WorkbookID link in the Edit Workbook Properties dialog.

The value of this property is used during tamper check, as
described in Section 11.3, "Checking the Integrity of an
Integrated Excel Workbook's Metadata."

Table A–18 (Cont.) Workbook Properties

Name Type EL Description

Worksheet Actions and Properties

A-24 Developing Applications with Oracle ADF Desktop Integration

Downloads any changes from the Fusion web application to the ADF Input Text,
ADF Output Text, and ADF List of Values components in the worksheet.

■ DisplayWorksheetErrors

Displays a detailed list of errors in a message dialog for the integrated Excel
worksheet if any errors are available. Invoke this action in an action set that is
invoked by an ADF component (other than the ADF Table-type components) or a
worksheet ribbon button.

When you configure an ADF Button component to invoke an action binding or
method action binding, the action set to invoke when a user clicks the ADF Button
component at runtime is populated as follows by default:

1. UpSync

2. Action or method action binding that you specify for the ADF Button component

3. DownSync

If the first action that you invoke on a worksheet with an empty form is the UpSync
worksheet action, you may encounter errors. For this reason, ensure that the first
action invoked is the DownSync worksheet action. You can configure the ADF Button
component's action set or one of the worksheet events (Startup or Activate)
described in Table A–19 to invoke the DownSync worksheet action first.

Table A–19 describes the ADF Desktop Integration properties that an Excel worksheet
can use.

Table A–19 Worksheet Properties

Name Type EL Description

Annotation String N For information about this property, see Table A–1.

Events Array N Each element in this array specifies an action set to
invoke if the associated worksheet event occurs. For
information about action sets, see Section A.11, "Action
Set Properties." For information about worksheet
events, see the entry in this table for Events.n.Event.

The following entries in this table prefaced by Events.n
describe the properties that an element in this array
supports where n refers to a specific element in the
array.

Events.n.ActionSet ActionSe
t

N For more information about the properties of action
sets, see Section A.11, "Action Set Properties."

Events.n.InvokeOnceOnly Boolean N The default value of this property is FALSE.

When set to TRUE, the workbook stores information
about whether the worksheet invoked the action set for
this event and, if so, prevents the worksheet from
invoking the action set a second time. Note that if the
workbook is not saved, this information is lost. This
means that the worksheet can invoke the event again
the next time that the workbook opens.

Events.n.Annotation String N For information about the annotation property, see
Table A–1.

Worksheet Actions and Properties

ADF Desktop Integration Component Properties and Actions A-25

Events.n.Event List N The worksheet supports the following events that you
can configure to invoke an action set:

■ Startup

Excel workbook opens and the worksheet is
activated for the first time.

■ Shutdown

Excel workbook closes or Excel application exits.

■ Activate

User navigates to the current worksheet.

■ Deactivate

User navigates away from the current worksheet or
Shutdown event triggered.

Note that the worksheet events complete execution
even if the action sets that they invoke fail.

For more information about worksheet events and
action sets, see Section 8.2.4, "How to Invoke an Action
Set from a Worksheet Event."

Protection.Mode List N The worksheet provides two options:

■ Off

Worksheet protection is not used at runtime.

■ Automatic

Worksheet protection is enabled automatically at
runtime.

The default value for this property is Off.

Protection.Password String N Specify a password to prevent end-users from turning
off sheet protection at runtime. The maximum
password length allowed by Excel is 255 characters.

Ribbon Commands Array N Specify one or more workbook actions that appear as
commands at runtime. Each command is an element in
the WorksheetMenuItem array. Entries in this array
support the following properties:

■ Annotation

■ Label

■ SelectActionSet

For more information about the Annotation and
Label properties, see Table A–1. For more information
about the SelectActionSet property, see
Section A.11, "Action Set Properties."

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
worksheet command at runtime.

Page Definition String N Specify the page definition file to associate with the
worksheet. For information about page definition files,
see Section 4.3, "Working with Page Definition Files for
an Integrated Excel Workbook."

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

Worksheet Actions and Properties

A-26 Developing Applications with Oracle ADF Desktop Integration

Parameters Array N An array of worksheet parameters that you configure to
pass the parameters from a workbook Parameters
property to a worksheet in an integrated Excel
workbook. Each element in the array supports the
following properties:

■ Annotation

For more information about this property, see
Table A–1.

■ Parameter

Specify the ID of a parameter element that you
added to the page definition file associated with
the worksheet.

■ Value

Write an EL expression that references the value of
the Parameter property you specified for the
workbook initialization parameter (workbook
Parameters.Parameter property). The
workbook Parameters.Parameter property
supplies this value the first time that the page
definition file associated with this worksheet is
initialized.

For information about using this property, see
Section 14.5, "Passing Parameter Values from a Fusion
Web Application Page to a Workbook."

RowData Set values for the CachedAttributes property when
you want to cache data in an integrated Excel
workbook across a multiple sessions with the Fusion
web application.

Set a value for the ChangeIndicatorAttributeID
property to determine if a row has been modified by
another user since you downloaded it from the Fusion
web application.

RowData.CachedAttributes Array N Specify values for the properties in this array to
determine the attributes for which data is cached. Each
CachedAttribute element in this array supports the
following properties:

■ AttributeID

This property references the attribute binding for
which data is to be cached. Do not specify an
attribute binding for AttributeID and as an
editable field in a form (for example, in an ADF
Input Text component) in the same worksheet.

■ Annotation

For more information about this property, see
Table A–1.

For more information about clearing the values of
cached attributes, see Section 7.19, "Clearing the Values
of Cached Attributes in an ADF Table Component."

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

Worksheet Actions and Properties

ADF Desktop Integration Component Properties and Actions A-27

RowData.ChangeIndicatorAttribu
teID

Binding N Specify the row-specific attribute of the tree binding
used to determine if a row has been modified by
another user since the row was last downloaded by to
your integrated Excel workbook.

For more information, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook."

ServerContext This group of properties references the attribute
bindings that uniquely identify the row displayed in
the current worksheet so that you can reestablish server
data context across multiple sessions.

For more information, see Section 15.2, "Restore Server
Data Context Between Sessions."

ServerContext.CacheDataContext
s

Array N Add elements to the CacheDataContexts array for
cases where there is more than one iterator defined in
the binding container whose server-side context must
be reestablished. The CacheDataContexts array
supports the following properties to store the
worksheet's cached data context:

■ RestoreDataContextActionID

References an action binding to invoke.

■ CachedServerContexts

An array that identifies the attribute binding
values to cache and set before the action binding
specified by RestoreDataContextActionID is
invoked. Each element in the
CachedServerContext array supports the
CachedAttributeID and
RestoredAttributeID properties.
CachedAttributeID identifies the attribute
binding value to cache in the worksheet.
RestoredAttributeID is an optional property
for which you specify a value when the destination
attribute binding value is different from the source
attribute binding value. If you do not specify a
value for RestoredAttributeID, the value of
CachedAttributeID is used as the destination
attribute binding value and its value is set before
invoking the action set.

■ Annotation

For more information about this property, see
Section A.1, "Frequently Used Properties in the
ADF Desktop Integration."

ServerContext.IDAttributeID Binding N Specifies an attribute binding that uniquely identifies
the row displayed in the current worksheet. This
property is used at runtime to determine whether the
server context has been reestablished properly for
non-table type components in the worksheet.

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

Worksheet Actions and Properties

A-28 Developing Applications with Oracle ADF Desktop Integration

ServerContext.SendParameters Boolean N The default value of this property is FALSE.

When set to TRUE, the workbook sends initialization
parameters for this worksheet when reestablishing
context across multiple sessions.

SetupActionID Binding N Specify the ADFm action binding to be invoked before
the binding container metadata is retrieved.

A value for this property is optional.

If two, or more, worksheets are using the same page
definition, the action binding specified for the last
worksheet will be invoked. Hence, create a page
definition for each worksheet and do not specify a page
definition to multiple worksheets.

Title String Y Specifies an EL expression that resolves to a string and
sets the name of the worksheet. At design time, the EL
expression can be of any length and can include the
following special characters:

[] \ / * ?

At runtime, the evaluated string can display a
maximum of 31 characters and ignores the above
special characters. If the length of the evaluated string
exceeds 31 characters, the extra characters are truncated
and are not displayed.

Note that the Title property does not support binding
parts in the EL expression. The expected usage is a
resource-type expression.

Ensure that the EL expressions you write for the Title
property generate unique values for each worksheet at
runtime and contain fewer than 31 characters.

Table A–19 (Cont.) Worksheet Properties

Name Type EL Description

B

ADF Desktop Integration EL Expressions B-1

BADF Desktop Integration EL Expressions

This appendix describes the syntax for EL expressions in ADF Desktop Integration,
provides guidelines for writing EL expressions, and how to use attribute control hints
in EL expressions.

This appendix includes the following sections:

■ Section B.1, "Guidelines for Creating EL Expressions"

■ Section B.2, "EL Syntax for ADF Desktop Integration Components"

■ Section B.3, "Attribute Control Hints in ADF Desktop Integration"

B.1 Guidelines for Creating EL Expressions
The following list describes the characteristics that EL expressions for your integrated
Excel workbook can have and provides suggestions for writing EL expressions:

■ Literal values that evaluate correctly to the type expected for the Oracle ADF
component property. The following list describes some examples:

– Boolean values true and false

– Integer values such as -1, 0, and 100

– String values such as hello world

■ Strings that contain one or more valid EL expression parts. The following list
shows examples of valid syntax:

– #{row.bindings.ProductId.inputValue}

– #{components.TAB416222534.errors}

– #{res['excel.saveButton.label']}

■ A valid Excel formula. An Excel formula string must start with the = character. If
the literal string includes an #{...} expression, ADF Desktop Integration
evaluates this expression first and inserts the resulting value into the Excel
formula string. Excel then evaluates the Excel formula.

Note the following points if you write an EL expression:

– Excel formula elements must not be used inside an #{...} expression.

– EL expressions should not contain references to Excel cells because EL
expressions are managed within ADF configuration. Excel cannot update the
ADF configuration if the referenced cell moves. A workaround is to define a
named cell reference or range using the Name box in the Excel Formula Bar.
You can reference the named cell reference or named cell range reference from

EL Syntax for ADF Desktop Integration Components

B-2 Developing Applications with Oracle ADF Desktop Integration

an EL expression. For information about defining named cell references or
ranges, see Excel's documentation.

■ EL expressions in a page definition file

For information about the syntax that you use to write EL expressions in a page
definition file, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook."

■ EL expressions that include Excel formulas

Ensure that any Excel formula included in an EL expression has no more than 255
characters. This also applies to formulas used to set conditional values to
component properties.

B.2 EL Syntax for ADF Desktop Integration Components
Table B–1 lists supported expression properties for the ADF Desktop Integration
components that support EL expressions.

The EL expressions use the following syntax to reference these properties:

#{components.componentID.property}

where componentID references the ID of the component and property references
the property (for example, rowCount).

Write EL expressions with the following syntax to retrieve:

■ Worksheet errors at runtime

#{worksheet.errors}

For more information about worksheet errors, see Section 12.4, "Error Reporting in
an Integrated Excel Workbook."

■ Workbook initialization parameters

#{workbook.params.parameterName}

where parameterName is the name of the workbook initialization parameter. For
information about using these parameters, see Section 14.5, "Passing Parameter
Values from a Fusion Web Application Page to a Workbook."

■ Resource bundle string key values

Table B–1 Expression Properties for ADF Desktop Integration Components

Property Component Type Property Type Expected Runtime Values Value at Design Time

rowCount Table

ROTable

Int >=0 0

currentRowIndex Table

ROTable

Int >= 0 AND < RowCount
(zero based index)

-1

currentRowMode Table String "insert"

"update"

"unknown"

errors Table String N/A N/A

readOnly Table.Column Boolean TRUE

FALSE

FALSE

EL Syntax for ADF Desktop Integration Components

ADF Desktop Integration EL Expressions B-3

#{resourceBundleAlias['resourceBundleKey']}

where resourceBundleAlias is the alias of the resource bundle and
resourceBundleKey is the string key value. For more information about
resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook."

Table B–2 describes the supported syntax and properties for Oracle ADF control
bindings. For information about the attribute control hints (controlHint) that ADF
Desktop Integration supports, see Table B–3.

You can use the expression builder described in Section 5.8, "Using the Expression
Builder" to generate some of the EL expressions described in Table B–2. You have to
write some other EL expressions as indicated in Table B–2.

Table B–2 Expression Properties and Syntax for Oracle ADF Control Bindings

Syntax
Component
Type Object Property

Value at
Design
Time

Use the expression builder to generate EL expressions with the
following syntax:

#{bindings.attributeID}
#{bindings.attributeID.label}
#{bindings.attributeID.hints.controlHint}

You can also write the previous EL expressions in addition to the
following EL expression:

#{bindings.attributeID.inputValue}

Attribute Attribute control
hint

""

Use the expression builder to generate EL expressions with the
following syntax:

#{bindings.ListID}
#{bindings.ListID.label}
#{bindings.ListID.hints.controlHint}

List Attribute control
hint

""

Write EL expressions with the following syntax for a column in a
table-type component

#{row.bindings.attributeID.inputValue}

Write an EL expression with the following syntax when adding a
dynamic column to an ADF Table component as described in
Section 7.16, "Adding a Dynamic Column to Your ADF Table
Component":

#{bindings.TreeID.[TreeNodeID].AttributeNamePrefix*.input
Value}
#{bindings.TreeID.AttributeNamePrefix*.inputValue}
#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*
.controlHint}
#{bindings.TreeID.[TreeNodeID].hints.AttributeNamePrefix*
.label}

A value for AttributeNamePrefix and [TreeNodeID] is
optional while * is required.

Table.Colum
n

inputValue ""

Attribute Control Hints in ADF Desktop Integration

B-4 Developing Applications with Oracle ADF Desktop Integration

B.3 Attribute Control Hints in ADF Desktop Integration
ADF Desktop Integration can read the values of the attribute control hint names
described in Table B–3. You write EL expressions that ADF Desktop Integration uses to
retrieve the value of an attribute control hint from your Fusion web application.
Table B–2 describes the EL expression syntax that retrieves the values of attribute
control hints at runtime.

You configure attribute control hints in your Fusion web application. Information
about how to add an attribute control hint to an entity object can be found in the
"Defining Attribute Control Hints for Entity Objects" section of the Developing Fusion
Web Applications with Oracle Application Development Framework. Information about how
to add an attribute control hint to a view object can be found in the "Defining UI Hints
for View Objects" section of the Developing Fusion Web Applications with Oracle
Application Development Framework.

The ADF Desktop Integration attribute control hints are based on information
available in the web application's model configuration. ADF Desktop Integration
supports view object or entity object hint values, but does not support programmatic
overrides of hint values if they are calculated at a row-by-row level at runtime.

Table B–3 Attribute Control Hints Used by ADF Desktop Integration

Attribute Control
Hint Type Value to configure in the Fusion web application

label String References the value of the label attribute control hint configured for an entity
or view object.

updateable Boolean Returns true if the associated attribute binding is updatable.

readOnly Boolean This attribute control hint is unique to ADF Desktop Integration. Returns true
if the associated attribute binding is not updatable.

To optimize the performance of an integrated Excel workbook when it evaluates
Excel formulas in EL expressions, you should write an EL expression with the
following syntax for a component's ReadOnly property:

#{bindings.attributeID.hints.readOnly}

rather than:

=NOT(#{bindings.attributeID.hints.updateable})

Note that the attribute control hint readOnly property differs to the ReadOnly
property of ADF Desktop Integration components described in Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

mandatory Boolean Returns true if a value for the associated attribute binding is required.

dataType String Returns the data type of the attribute control hint. A Fusion web application can
support many data types with complex names. The dataType attribute control
hint was introduced in ADF Desktop Integration to simplify the writing of EL
expressions. It maps the data types that a Fusion web application supports to
the values supported by ADF Desktop Integration listed here:

■ string

■ number

■ date

■ boolean

■ other

C

Troubleshooting an Integrated Excel Workbook C-1

CTroubleshooting an Integrated Excel
Workbook

This appendix provides describes how to troubleshoot an integrated Excel workbook
and generate log files when you encounter problems during development. It also
describes possible solutions for a number of errors and problems (such as version
mismatch, 404 error, and Oracle ADF tab not visible in integrated Excel workbook)
that you may encounter.

This appendix includes the following sections:

■ Section C.1, "Verifying That Your Fusion Web Application Supports ADF Desktop
Integration"

■ Section C.2, "Verifying End-User Authentication for Integrated Excel Workbooks"

■ Section C.3, "Generating Log Files for an Integrated Excel Workbook"

■ Section C.4, "Common ADF Desktop Integration Error Messages and Problems"

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop
Integration

Using a specific URL, you can verify that the Fusion web application is running the
ADF Desktop Integration remote servlet (adfdiRemote), and the version of ADF
Desktop Integration. This information can be useful if you encounter errors with an
integrated Excel workbook. For example, you can determine whether the ADF
Desktop Integration remote servlet is running when you are troubleshooting an
integrated Excel workbook.

To verify that the ADF Desktop Integration remote servlet is running:
1. Log on to the Fusion web application.

2. Type the concatenated values of the workbook properties WebAppRoot and
RemoteServletPath into the address bar of your web browser. This
corresponds to a URL similar to the following:

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector. For more
information about the property inspector, see Section 5.6, "Using the
Property Inspector."

Verifying End-User Authentication for Integrated Excel Workbooks

C-2 Developing Applications with Oracle ADF Desktop Integration

http://hostname:7101/FusionApp/adfdiRemoteServlet

If the ADF Desktop Integration remote servlet is running, a web page returns
displaying a message similar to Figure C–1.

Figure C–1 ADF Desktop Integration Remote Servlet

C.2 Verifying End-User Authentication for Integrated Excel Workbooks
If end users of an integrated Excel workbook do not get prompted for user credentials
when they invoke an action that interacts with the Fusion web application configured
with ADF security, it may mean that security is not configured correctly for either the
integrated Excel workbook or the Fusion web application. You can verify that your
secure Fusion web application authenticates end users and that it is security-enabled
by carrying out the following procedure.

To verify that a secure Fusion web application authenticates end users, in the web
browser's address bar, enter the URL that you used to verify whether ADF Desktop
Integration remote servlet is running. For more information, see Section C.1, "Verifying
That Your Fusion Web Application Supports ADF Desktop Integration." If the Fusion
web application is security-enabled, it will request that you enter user credentials.

For more information about securing your integrated Excel workbook, see Chapter 11,
"Securing Your Integrated Excel Workbook."

C.3 Generating Log Files for an Integrated Excel Workbook
ADF Desktop Integration can generate log files that capture information based on
events triggered by the following pieces of software within ADF Desktop Integration:

■ HTTP filter and the ADF Desktop Integration remote servlet on the web server
(server-side logging)

For more information about server-side logging, see Section C.3.1, "About
Server-Side Logging."

■ Excel workbook which you integrate with your Fusion web application (client-side
logging)

For more information about client-side logging, see Section C.3.2, "About
Client-Side Logging."

C.3.1 About Server-Side Logging
To know more about server-side logging, see the "Server-Side Logging" section in
Administering Oracle ADF Applications.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-3

C.3.2 About Client-Side Logging
You can configure ADF Desktop Integration to save logs of triggered events on the
client. By default, no log files are generated. For more information about how to
configure ADF Desktop Integration module to save logs, see Section C.3.2.1, "How to
Configure ADF Desktop Integration to Save Logs.".

C.3.2.1 How to Configure ADF Desktop Integration to Save Logs
ADF Desktop Integration provides logging tools to generate event logs and make
them easily accessible. The logging tools are located in the Logging group of the
Oracle ADF tab, and are available in both the design mode and the test mode.

Figure C–2 shows the logging tools in the Oracle ADF tab.

Figure C–2 Logging Tools in Oracle ADF Tab

The Logging group provides the following buttons:

■ Console

Displays the Logging Console window, which enables you to review the recent log
entries while you are developing and testing the integrated Excel workbook. The
console displays entries that are logged while the console is open. Figure C–3
illustrates the Logging Console window with error log entries.

The console is a resizable, non-modal window with a buffer size of 64,000
characters. When the buffer is full, the old entries are removed. To save log entries,
select and copy them to a text file.

Figure C–3 Logging Console Window

The dialog has the following buttons:

– Set Level: Click to set the log output level. The button opens the Logging
Output Level dialog, where you can choose the desired log output level.

– Clear: Click to clear the log buffer.

Generating Log Files for an Integrated Excel Workbook

C-4 Developing Applications with Oracle ADF Desktop Integration

– Close: Click to close the dialog.

■ Set Output Level

Prompts you to choose the log output level. Table C–1 describes the log levels that
client-side logging supports.

Figure C–4 Logging Output Level Dialog

■ Add Log Output File

Creates a new temporary logging listener to direct logging output to the specified
file or format. In the Add New Temporary Logging Output File dialog, choose the
desired file output type (text or XML), and specify the path and file name of the
log output file.

Figure C–5 Add New Temporary Logging Output File Dialog

Note: A common Logging Console window logs entries for all open
integrated Excel workbooks.

Table C–1 Client-Side Logging Levels

Level Description

Critical Captures critical information.

Error Captures information about severe errors and exceptions.

Warning Captures irrecoverable conditions.

Information Captures lifecycle and control flow events.

Verbose Captures detailed information about the execution flow of the
application.

Off No logs are captured. This is the default value.

Note: The log output level applies to all listeners for a given logger.

Generating Log Files for an Integrated Excel Workbook

Troubleshooting an Integrated Excel Workbook C-5

The temporary listener directs the logging output for the current Excel session
only, and is not registered in the ADF Desktop Integration configuration file. After
you close the integrated Excel workbook, the temporary listener is removed.

■ Refresh Config

Reloads the ADF Desktop Integration configuration file. The ADF Desktop
Integration configuration file determines the type of information logged by ADF
Desktop Integration. It also determines the location and the output format of the
log file.

For more information about the creation and configuration of the ADF Desktop
Integration configuration file, see Section C.3.2.2, "About the ADF Desktop
Integration Configuration File."

C.3.2.2 About the ADF Desktop Integration Configuration File
The ADF Desktop Integration configuration file is saved as
adfdi-excel-addin.dll.config in the Designer edition, and as
adfdi-excel-addin-runtime.dll.config in the Runtime edition. To determine
the correct file name and location, click the About button in the Workbook group of
the Oracle ADF tab. In the dialog that opens, click the Properties tab, and consult the
Configuration entry for file name and location of configuration file.

For more information about elements of the configuration file, see the "Configuration
File Schema for the .NET Framework" section in Microsoft Developer Network
documentation. For more information about trace and debug settings, see the "Trace
and Debug Settings Schema" section in Microsoft Developer Network documentation.

Example C–1 shows a sample configuration file, one of many valid ways to configure
client-side logging, that generates two different log files with different formats (.txt
and .xml). The file captures different types of information such as ThreadId,
ProcessId, and DateTime at a Verbose logging level.

Example C–1 Sample Configuration File

<?xml version="1.0"?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="adfdi-common" switchValue="Verbose">
 <listeners>
 <add type="System.Diagnostics.DelimitedListTraceListener"
 name="adfdi-common-excel.txt"
 initializeData="c:\logs\adfdi-common-excel.txt"
 delimiter="|"
 traceOutputOptions="ThreadId, ProcessId, DateTime"/>
 <add type="System.Diagnostics.XmlWriterTraceListener"
 name="adfdi-common-excel.xml"
 initializeData="c:\logs\adfdi-common-excel.xml"
 traceOutputOptions="None"/>
 </listeners>
 </source>

Note: When you click the Add Log Output File button, a new
listener is created. The new listener does not replace any existing
listener defined in the ADF Desktop Integration configuration file, or
any other temporary listener.

Common ADF Desktop Integration Error Messages and Problems

C-6 Developing Applications with Oracle ADF Desktop Integration

 </sources>
 </system.diagnostics>
</configuration>

C.3.2.3 How to Configure Logging Using User Environment Variables
Users who do not have access to the directory that stores the ADF Desktop Integration
configuration file can change the location where log files are saved, and the logging
level by setting values for user environment variables. You can add two user
environment variables to configure the logging level and location for XML log files.

To add or configure user environment variables on Windows:
1. Click the Windows Start button and then click Control Panel.

2. In the Control Panel, click System, and then Advanced System Settings.

3. In the Advanced tab of System Properties dialog, click Environment Variables.

4. In the Environment Variables dialog, click New under the User variables for
username input field, and add variables as described in the Table C–2.

5. Click OK.

C.3.2.4 What You May Need to Know About the adfdi-common Object
The adfdi-common object is an instance of the TraceSource class from the
System.Diagnostics namespace in the Microsoft .NET Framework. This object is
used to generate log files that capture information about events triggered by the Excel
workbook that you integrate with your Fusion web application. To know the location
of the log file, check the Log Files attribute in the Properties tab of the About dialog.

For more information about the TraceSource class, see Microsoft Developer
Network documentation.

C.4 Common ADF Desktop Integration Error Messages and Problems
While using or configuring the ADF Desktop Integration enabled Fusion web
application or workbooks, you might see error messages or have some problems. The
following list describes the most common error messages, their cause, and solutions.

Error message: [ADFDI-00127] A version mismatch was detected for
SyncServletResponse. Version x was found, version y was expected
Cause: The client version of ADF Desktop Integration does not match the ADF
Desktop Integration version in the web application.

Action: Uninstall client ADF Desktop Integration, and install the web application
specific ADF Desktop Integration version. For more information about installing

Table C–2 User Environment Variables to Configure Logging

Enter a variable named... With a value...

adfdi-common-file That defines the directory path and file name for the XML file
that captures logging information.

The directory that you specify here must exist before you add
the adfdi-common-file variable. The generated log file will
be in XML format.

adfdi-common-level That specifies the level of logging. Table C–1 lists valid values.

Common ADF Desktop Integration Error Messages and Problems

Troubleshooting an Integrated Excel Workbook C-7

ADF Desktop Integration client, see Section 3.4, "Installing ADF Desktop
Integration."

Error message: 404 Error - servlet not found
Cause: The web.xml deployment descriptor settings are not in sync with
Workbook.RemoteServletPath property value.

Action: Open Workbook Properties editor and verify the
Workbook.RemoteServletPath property value.

Error message: Programmatic access to Visual Basic Project is not trusted
Cause: Macro settings in Excel are not enabled.

Action: Verify that the Trust access to the VBA project object model checkbox in
the Trust Center dialog is enabled. For more information, see Section 3.3,
"Configuring Excel to work with ADF Desktop Integration."

Problem: Oracle ADF tab is not visible in your integrated Excel Workbook after
installing ADF Desktop Integration
Cause: The ADF Desktop Integration add-in is not enabled in Excel.

Action: Enable the ADF Desktop Integration add-in in the Excel Options dialog.
In Excel, click the Microsoft Office button, and then click Excel Options to open
the Excel Options dialog. In the Add-Ins tab, open the Manage dropdown list,
choose COM Add-ins, and click Go. In the COM Add-ins dialog, select the Oracle
ADF Desktop Integration Add-in for Excel checkbox and click OK.

For information about all ADF Desktop Integration error messages, see Oracle Fusion
Middleware Error Messages Reference.

If you are a system administrator, you should also see the "Common ADF Desktop
Integration Error Messages and Problems" section in Administering Oracle ADF
Applications.

Common ADF Desktop Integration Error Messages and Problems

C-8 Developing Applications with Oracle ADF Desktop Integration

D

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-1

DADF Desktop Integration Settings in the Web
Application Deployment Descriptor

This appendix describes the values that you set for the ADF Desktop Integration
servlet (adfdiRemote) so that the Fusion web application can use it. The appendix
also describes the values in the deployment descriptor file that determine the behavior
of the HTTP filter that ADF Desktop Integration provides, and provides a code sample
from a deployment descriptor file that shows these values in use.

This appendix includes the following sections:

■ Section D.1, "Configuring the ADF Desktop Integration Servlet"

■ Section D.2, "Configuring the ADF Desktop Integration Excel Download Filter"

■ Section D.3, "Examples in a Deployment Descriptor File"

D.1 Configuring the ADF Desktop Integration Servlet
A Fusion web application with integrated Excel workbooks must contain entries in its
deployment descriptor file (web.xml) to use the adfdiRemote servlet. The Excel
workbooks that you integrate with a Fusion web application call this servlet to
synchronize data with the Fusion web application. The
adf-desktop-integration.jar file stores the servlet in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_
12.1.2

where MW_HOME is the Middleware Home directory.

When you add ADF Desktop Integration to your project as described in Section 4.2,
"Adding an Integrated Excel Workbook to a Fusion Web Application," ADF Desktop
Integration automatically configures your deployment descriptor with the necessary
entries to enable the servlet (DIRemoteServlet) on your Fusion web application. If
required, then you can configure the servlet manually.

To configure the ADF Desktop Integration servlet:
1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your

ADF Desktop Integration project.

Note: Adding ADF Desktop Integration and ADF Library Web
Application Support to your desktop integration project automatically
generates the entries in the web.xml file discussed in this appendix.
For more information, see Section 4.2, "Adding an Integrated Excel
Workbook to a Fusion Web Application."

Configuring the ADF Desktop Integration Servlet

D-2 Developing Applications with Oracle ADF Desktop Integration

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Servlets page, and then click the Add icon to create a row entry in the
Servlets table. The icon is in the top-right corner of the servlets table.

Enter the values as described in Table D–1 to enable the adfdiRemote servlet on
the Fusion web application.

3. In Servlets page, click the Servlet Mappings tab, and then click the Add icon to
create a row in the Servlet Mapping table.

Enter the value as described in Table D–2 to add a URL pattern for the
adfdiRemote servlet in the Fusion web application. The value that you enter
must match the value that you specify in the integrated Excel workbook for the
RemoteServletPath workbook property. Note that values are case sensitive.

Figure D–1 displays the Servlets page of web.xml of Summit sample application
for ADF Desktop Integration.

Figure D–1 Servlets Page of Deployment Descriptor

4. Click the Filters page, and verify that whether a adfBindings filter exists in the
Filters table. If an entry exists, select it and proceed to the next step. If there is no
such entry, then click the Add icon to create a row entry in the Filters table. The
icon is available in the top-right corner of the filters table.

Table D–1 Values to Enable adfdiRemote Servlet

For this property... Enter this value...

Name adfdiRemote

Type Servlet Class

Servlet Class/JSP file oracle.adf.desktopintegration.servlet.DIRemoteS
ervlet

Table D–2 Values to Add A URL Pattern to adfdiRemote Servlet

For this property... Enter this value...

URL Patterns /adfdiRemoteServlet

Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-3

Enter the values as described in Table D–3 to add the ADF binding filter to the
adfdiRemote servlet.

5. In Filters page, click the Filter Mappings tab, and then click the Add icon to create
a row in the Filter Mapping table.

Enter the values as described in Table D–4 to add the mapping filter to the
adfdiRemote servlet. The filter mapping must match with the Servlet name in
Step 2.

Figure D–2 displays the Filters page of web.xml of Summit sample application for
ADF Desktop Integration.

Figure D–2 Filters Page of Deployment Descriptor

6. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

D.2 Configuring the ADF Desktop Integration Excel Download Filter
ADF Desktop Integration includes an HTTP filter in the
adf-desktop-integration.jar stored in the following directory:

Table D–3 Values to Add Binding Filter to adfdiRemote Servlet

For this property... Enter this value...

Name adfBindings

Class oracle.adf.model.servlet.ADFBindingFilter

Table D–4 Values to Add Mapping Filter to adfdiRemote Servlet

For this property... Enter this value...

Mapping Type Servlet

Mapping adfdiRemote

Configuring the ADF Desktop Integration Excel Download Filter

D-4 Developing Applications with Oracle ADF Desktop Integration

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_
12.1.2

where MW_HOME is the Middleware Home directory.

You configure an entry in the deployment descriptor file (web.xml) of your Fusion
web application so that the application invokes the HTTP filter to make changes in an
integrated Excel workbook before the integrated Excel workbook is downloaded by
the end user from the Fusion web application. These changes ensure that the
integrated Excel workbook functions correctly when the end user opens it. The HTTP
filter makes the following changes:

■ WebAppRoot

Sets the value for this property to the fully qualified URL for the Fusion web
application from which the end user downloads the integrated Excel workbook.

■ Workbook mode

Changes the integrated Excel workbook mode to runtime mode in case the
workbook was inadvertently left in design mode or test mode.

By default, JDeveloper adds the HTTP filter to your ADF Desktop Integration project
when ADF Desktop Integration is enabled in your project.

To configure the HTTP filter:
1. In JDeveloper, locate and open the deployment descriptor file (web.xml) for your

ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

2. Click the Filters page, and verify that an adfBindings filter exists in the Filters
table. If an entry exists, select it and proceed to the next step. If there is no such
entry, then click the Add icon to create a row entry in the Filters table.

Enter the values as described in Table D–5 to create a filter, or configure the values
to modify the existing HTTP filter.

3. In the Filters page, click the Filter Mappings tab, and then click the Add icon to
create a row in Filter Mapping table.

Note: If you choose not to use the adfdiExcelDownload filter, you
can instead use the workbook administration tool to set the
WebAppRoot property on your workbooks. For more information, see
the "Using the Workbook Administration Tool" in Administering Oracle
ADF Applications.

Table D–5 Properties to Configure HTTP Filter

For this property... Enter this value...

Name adfdiExcelDownload

Class oracle.adf.desktopintegration.filter.DIExcelDow
nloadFilter

Display Name (Optional) In General Filter tab, enter a display name for the
filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the filter.

Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-5

Add a filter mapping for integrated Excel workbooks that use the default file
format (.xlsx) by entering values as described in Table D–6.

4. Add another filter mapping for integrated Excel workbooks that use the
macro-enabled workbook format (.xlsm) by entering values as described in
Table D–7.

Figure D–3 displays the Filters page of web.xml of Summit sample application for
ADF Desktop Integration.

Figure D–3 Filters Page of Deployment Descriptor

5. Click the Application page, expand MIME Mappings section, and click the Add
icon.

Add a MIME type for integrated Excel workbooks that use the default file format
(.xlsx) by entering values as described inTable D–8.

Table D–6 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsx

Dispatcher Type No value is required for this property.

Table D–7 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsm

Dispatcher Type No value is required for this property.

Table D–8 Properties to Add MIME Mappings

For this property... Enter this value...

Extension *.xlsx

Configuring the ADF Desktop Integration Excel Download Filter

D-6 Developing Applications with Oracle ADF Desktop Integration

6. Add another MIME type for integrated Excel workbooks that use the
macro-enabled workbook format (.xlsm) by entering values as described in
Table D–9.

Figure D–4 displays the Application page of web.xml of Summit sample
application for ADF Desktop Integration.

Figure D–4 Application Page of Deployment Descriptor

7. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

While updating filter and filter mapping information in the web.xml file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

MIME Type application/vnd.openxmlformats-officedocument.s
preadsheetml.sheet

Table D–9 Properties to Add MIME Mappings

For this property... Enter this value...

Extension *.xlsm

MIME Type application/vnd.ms-excel.sheet.macroEnabled.12

Table D–8 (Cont.) Properties to Add MIME Mappings

For this property... Enter this value...

Examples in a Deployment Descriptor File

ADF Desktop Integration Settings in the Web Application Deployment Descriptor D-7

D.3 Examples in a Deployment Descriptor File
The following extracts from the web.xml file of a Fusion web application with ADF
Desktop Integration shows the entries that you configure for a desktop integration
project. For more information ordering of filters, see Section 4.4.4, "What Happens
When You Add ADF Desktop Integration to Your JDeveloper Project."

 <filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>
 oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 </filter>
 <filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>
 oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
 </filter-mapping>
 <servlet>
 <servlet-name>adfdiRemote</servlet-name>
 <servlet-class>
 oracle.adf.desktopintegration.servlet.DIRemoteServlet
 </servlet-class>
 <init-param>
 <param-name>ClientServerVersionCheck.Precision</param-name>
 <param-value>2</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>adfdiRemote</servlet-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
 </servlet-mapping>
 <mime-mapping>
 <extension>xlsx</extension>
 <mime-type>
 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
 </mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>xlsm</extension>
 <mime-type>
 application/vnd.ms-excel.sheet.macroEnabled.12
 </mime-type>
 </mime-mapping>

Examples in a Deployment Descriptor File

D-8 Developing Applications with Oracle ADF Desktop Integration

E

String Keys in the Overridable Resources E-1

EString Keys in the Overridable Resources

This appendix describes the string keys in the reserved resource bundle that you can
override.

Table E–1 lists the string keys and their current English values. Create a resource
bundle where you define the string keys in Table E–1 and the values that you want to
appear at runtime. For information about how to override the reserved resource
bundle, see Section 10.2.2, "How to Override Resources That Are Not Configurable."

Table E–1 String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears
at runtime String key

English value in the ADF
Desktop Integration reserved
resource bundle Comments

Upload Options UPLOAD_OPTIONS_TITLE Upload Options

Upload Options UPLOAD_OPTIONS_PROMPT Specify options to use during the
Upload operation

Upload Options UPLOAD_OPTIONS_CONTINUE_ON_
FAIL_LABEL

On failure, continue to upload
subsequent rows

Upload Options UPLOAD_OPTIONS_DOWNLOAD_AFTER_
LABEL

Download all rows after
successful upload

Table.Download DOWNLOAD_OVERWRITE_TITLE Download

Table.Download DOWNLOAD_OVERWRITE_PROMPT Do you wish to discard the
pending changes?

Table.Download ROWLIMIT_WARNINGS_TITLE Row limit exceeded

Table.Initialize INITIALIZE_OVERWRITE_TITLE Initialize

Table.Initialize INITIALIZE_OVERWRITE_PROMPT Do you wish to discard the
pending changes?

Workbook.ClearAl
lData

CLEARDATA_CONFIRM_TITLE Clear all data

Workbook.ClearAl
lData

CLEARDATA_CONFIRM_PROMPT This command will log you out
of your current session and clear
all the data from all worksheets
in the workbook. Are you sure?

Workbook.Logout LOGOUT_STATUS_TITLE Logout

Workbook.Logout LOGOUT_STATUS_PROMPT You have been logged out from
your current session.

Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_
AVAIL_TITLE

Upload

E-2 Developing Applications with Oracle ADF Desktop Integration

Table.Upload COMPONENTS_TABLE_DYN_COLS_NOT_
AVAIL_PROMPT

One or more dynamic columns
is no longer available, do you
wish to continue?

Table status UPLOAD_STATUS_NO_UPDATES No updates detected

Table status TABLE_UPLOAD_RECORD_NOT_FOUND Record not found

Table status TABLE_UPLOAD_CANNOT_INSERT_
MORE_THAN_ONCE

Cannot insert record more than
once

Table status TABLE_COMMIT_FAILED_1 See Error Detail {0} {0} is a
batch
number

Table status TABLE_COMMIT_FAILURE_DETAILS_2 Error Detail {0}:{1} {0} is a
batch
number

{1} is an
error
message

Table status TABLE_UPLOAD_ROW_UPDATE_SUCCESS Row updated successfully

Table status TABLE_UPLOAD_ROW_INSERT_SUCCESS Row inserted successfully

Table status TABLE_UPLOAD_ROW_UPDATE_FAILURE Update failed

Table status TABLE_UPLOAD_ROW_INSERT_FAILURE Insert failed

Table status TABLE_DELETE_ROW_FAILURE Delete failed

Table status TABLE_ROW_KEY_VALUE_INVALID Key value invalid

Table status TABLE_DOWNLOAD_FAILURE Download failed

Table status TABLE_DOWNLOAD_ROW_FAILURE Row download failed

Table status TABLE_DOWNLOAD_FLAGGED_FAILURE Download flagged rows failed

Table status TABLE_DOWNLOAD_FOR_INSERT_
FAILURE

Download for insert failed

Table status MESSAGE_DETAILS_NONE No error details available

Table status MESSAGE_DETAILS_ROW_TITLE Row Errors

Table status MESSAGE_DETAILS_ROW_PROMPT Errors for this row:

Table status MESSAGE_DETAILS_TABLE_TITLE Table Errors

Table status MESSAGE_DETAILS_TABLE_PROMPT Error details for this table:

Table status

Table errors

Worksheet errors

MESSAGE_DETAILS_HELP_LABEL Click on each error to reveal
additional information

Appears in
the error
list.

Table status

Table errors

Worksheet errors

MESSAGE_LABEL_DEFAULT_CONTEXT Action

Worksheet errors MESSAGE_DETAILS_WORKSHEET_TITLE Worksheet Errors

Worksheet errors MESSAGE_DETAILS_WORKSHEET_
PROMPT

Error details for this worksheet:

Table E–1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears
at runtime String key

English value in the ADF
Desktop Integration reserved
resource bundle Comments

String Keys in the Overridable Resources E-3

Worksheet errors MESSAGE_DETAILS_PARSE_FAILURE A problem has occurred while
retrieving the error details. The
information is no longer
available.

Worksheet errors MESSAGE_LABEL_FAILED_1 {0} failed {0} is a
context
label

Workbook.EditOpt
ions

SETTINGS_EDIT_TITLE Edit Options

Workbook.EditOpt
ions

SETTINGS_EDIT_PROMPT Enter a value for WebAppRoot.
For example:
http://localhost:1234/My
App.

Workbook.EditOpt
ions

SETTINGS_CONFIRM_TITLE Web App Root

Workbook.EditOpt
ions

SETTINGS_CONFIRM_PROMPT Changing the Web App Root
will log you out of your current
session and clear all the data
from all worksheets in the
workbook. Are you sure?

Note: The keys listed in Table E–1 cannot be used in EL expressions
of the following syntax:

#{_ADFDIres['key']}

Table E–1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears
at runtime String key

English value in the ADF
Desktop Integration reserved
resource bundle Comments

E-4 Developing Applications with Oracle ADF Desktop Integration

F

Java Data Types Supported By ADF Desktop Integration F-1

FJava Data Types Supported By ADF Desktop
Integration

This appendix lists the Java data types that an ADF Desktop Integration project
supports.

Primitive Java Types
■ boolean

■ double

■ float

■ int

■ long

■ short

Object Java Types
■ java.lang.Boolean

■ java.lang.Double

■ java.lang.Float

■ java.lang.Integer

■ java.lang.Long

■ java.lang.Short

■ java.lang.String

■ java.math.BigDecimal

■ java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

■ java.util.Date

■ oracle.jbo.domain.Date

■ oracle.jbo.domain.Number

■ oracle.jbo.domain.RowID

■ oracle.jbo.domain.Timestamp

■ oracle.jbo.domain.TimestampLTZ

F-2 Developing Applications with Oracle ADF Desktop Integration

■ oracle.jbo.domain.TimestampTZ

Note: Using data types not listed in this appendix will generate error
at runtime.

G

Using the ADF Desktop Integration Model API G-1

GUsing the ADF Desktop Integration Model
API

There may be certain use cases where you want to allow uploading ADF Table data
even when there are no rows available in a tree binding. This appendix describes how
to use the ADF Desktop Integration Model API library in custom Java code to access
the attribute values sent from the client during the upload process when there are no
actual rows available.

This appendix includes the following sections:

■ Section G.1, "About the Temporary Row Object"

■ Section G.2, "About ADF Desktop Integration Model API"

■ Section G.3, "ADF Desktop Integration Model API Classes and Methods"

G.1 About the Temporary Row Object
Each ADF Table component is bound to a tree binding defined within a page
definition. Each tree control binding has one (or more) tree nodes defined. For
parent-child relationships, the tree binding has two nodes, one for parent table and
another for child table. At runtime, the ADF Table component displays both parent
and child attributes within each worksheet row. On upload, ADF Desktop Integration
sets attribute values to both the parent and child nodes.

In certain situations, a particular tree node may not have actual data rows available
during Table.Upload request processing. Two common scenarios where a tree node
may not have data are:

■ The tree node's iterator result set does not have any data rows available. This
could be because of a query returning zero rows.

■ In a parent-child relationship, if the foreign key has not been populated in the
parent table, the link between parent and child tree node may not contain actual
rows.

There may be certain cases when, even though there is no actual row available on the
server, you still want to allow the end user to enter values in the worksheet and
upload them to the server. During upload, ADF Desktop Integration creates a
temporary row object and stores the values uploaded from the worksheet row. Using
the ADF Desktop Integration Model API, you can write custom Java code to access the
temporary row object and collect its values.

To call your custom Java code during upload, you must expose your custom Java code
through a pageDef action binding and then configure the ADF Table component's

About ADF Desktop Integration Model API

G-2 Developing Applications with Oracle ADF Desktop Integration

UpdateRowActionID or InsertAfterRowActionID to point to the pageDef
action binding.

G.2 About ADF Desktop Integration Model API
While data is being uploaded, if a tree node of the ADF Table component contains no
actual rows, the ADF Desktop Integration remote servlet creates a temporary row
object to store the attribute values. If you want to access the temporary row object and
its attribute values, you must write custom Java code that uses the ADF Desktop
Integration Model API library.

For more information about the classes and methods available in the API, see
Section G.3, "ADF Desktop Integration Model API Classes and Methods."

G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper
Project

You typically add the ADF Desktop Integration Model API Library to your
application's data model project. The library is an independent library, not included
with any feature. You can add it through Project Properties dialog box.

To add ADF Desktop Integration Model API library to your project:
1. In the Applications window, right-click the data model project and choose Project

Properties.

2. In the Project Properties dialog, select Libraries and Classpath to view the list of
libraries available.

3. Click Add Library and in the Add Library dialog, select the ADF Desktop
Integration Model API library.

Note: The ADF Desktop Integration Model API is not supported for
EJB or Toplink data controls.

ADF Desktop Integration Model API Classes and Methods

Using the ADF Desktop Integration Model API G-3

Figure G–1 Add Library Dialog

4. Click OK. The library name adds to the Classpath Entries list.

5. Click OK to close the Project Properties dialog box.

G.3 ADF Desktop Integration Model API Classes and Methods
The ADF Desktop Integration Model API library contains one public class that
contains APIs for retrieving temporary row objects.

G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
The ModelHelper class is a public class that exposes Model APIs. The following
sections describe the methods available in the class.

G.3.1.1 The getAdfdiTempChildRow Method
The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular master row. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax
public static final ViewRowImpl getAdfdiTempChildRow(ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
■ masterRow – master row object

■ childAccessor – child attribute name

ADF Desktop Integration Model API Classes and Methods

G-4 Developing Applications with Oracle ADF Desktop Integration

G.3.1.2 The getAdfdiTempRowForView Method
The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular view. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax
public static final ViewRowImpl getAdfdiTempRowForView(ApplicationModuleImpl am,
java.lang.String viewDefName)

Parameters
■ am – application module instance

■ viewDefName – view definition name

G.3.1.3 The getChildViewDef Method
The method is used to lookup polymorphic child view definition if the view link
destination attributes specify one or more child discriminator attributes. The master
row source attributes lookup the correct polymorphic child view definition through
ViewObjectImpl.findViewDefFromDiscrValues API. If no child discriminator
attributes are defined, or the child view is non-polymorphic, the default child
ViewDefImpl object is returned.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet, or returns null if the object is not found.

Method Syntax
public static final ViewDefImpl getChildViewDef(ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
■ masterRow – master row object

■ childAccessor – child attribute name

H

End User Actions H-1

HEnd User Actions

This appendix describes the actions the end user would be performing while using
your application and integrated Excel workbook, such as installing runtime edition of
ADF Desktop Integration, importing data from non-integrated Excel workbook,
making changes in the workbook at runtime, and handling time zone conversion of
date-time values in the workbook.

The actions described in this appendix assume that you have developed a functioning
Fusion web application.

This appendix includes the following sections:

■ Section H.1, "Installing, Upgrading, and Removing the Runtime Edition of ADF
Desktop Integration"

■ Section H.2, "Importing Data from a Non-Integrated Excel Worksheet"

■ Section H.3, "Removing Personal Information"

■ Section H.4, "Editing an Integrated Excel Workbook at Runtime"

■ Section H.5, "Limitations of an Integrated Excel Workbook at Runtime"

■ Section H.6, "Using An Integrated Excel Workbook"

■ Section H.7, "Handling Time Zone Conversion"

H.1 Installing, Upgrading, and Removing the Runtime Edition of ADF
Desktop Integration

End users can install the runtime edition of ADF Desktop Integration using the client
installer.

When the ADF Desktop Integration client installer runs, it verifies whether the
required software is installed on the system. For more information about the required
software, see the following:

■ Section 3.2, "Required Oracle ADF Modules and Third-Party Software"

■ Section 3.3, "Configuring Excel to work with ADF Desktop Integration"

Notes:

■ You cannot install the Runtime edition of ADF Desktop
Integration from JDeveloper.

■ JDeveloper is not required to install the runtime edition of ADF
Desktop Integration.

Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration

H-2 Developing Applications with Oracle ADF Desktop Integration

H.1.1 How to Install Runtime Edition of ADF Desktop Integration
To install the runtime edition, the client installer must be made available to the end
user on the end user's local system. Ask your system administrator to make the client
installer files available to the end user.

To install the Runtime edition of ADF Desktop Integration:
1. Navigate to the MW_HOME\oracle_

common\modules\oracle.adf.desktopintegration_12.1.2 directory,
where MW_HOME is the Middleware Home directory.

2. Extract the contents of adfdi-excel-runtime-client-installer.zip to a
temporary directory on the end user's local file system (for example,
D:\Oracle\ADFDI_Client).

Note that the fully qualified path of the temporary directory must be less than 248
characters.

3. Run the setup.exe file located in the extracted directory of the
adfdi-excel-runtime-client-installer.zip file.

Figure H–1 shows an example of the setup.exe file location on a local system,
and the installation of runtime edition.

Figure H–1 Installing Runtime Edition of ADF Desktop Integration

4. Follow the instructions that appear in the dialog boxes launched by setup.exe to
successfully install the required components.

5. If prompted, click Yes to restart the system and complete the setup of ADF
Desktop Integration.

Importing Data from a Non-Integrated Excel Worksheet

End User Actions H-3

H.1.2 How to Remove the Runtime Edition of ADF Desktop Integration
Use the Microsoft Windows Control Panel to remove the runtime edition of ADF
Desktop Integration from the system.

To remove the ADF Desktop Integration add-in:
1. Click the Windows Start button, and then choose Control Panel.

2. In the Control Panel, select and open Programs and Features.

3. Select the Oracle ADF Desktop Integration Runtime add-in for Excel entry in the
Uninstall or change a program window, and click Uninstall.

H.1.3 How to Upgrade the Runtime Edition of ADF Desktop Integration On a Local
System

To upgrade the runtime edition of ADF Desktop Integration, uninstall the old client
version, and install the new version. For more information about uninstalling the
runtime edition, see Section H.1.2, "How to Remove the Runtime Edition of ADF
Desktop Integration," and for more information about installing the runtime edition,
see Section H.1.1, "How to Install Runtime Edition of ADF Desktop Integration."

If the runtime edition of ADF Desktop Integration is installed from a shared file server
or a web server, by default, Excel checks the server for ADF Desktop Integration
updates when it is launched and if 24 hours have elapsed since the last check for
updates. If you do not wish to wait 24 hours and want to check the update manually,
you can do so from the Microsoft Windows Control Panel.

To upgrade the Runtime edition of ADF Desktop Integration manually:
1. Click the Windows Start button, and then choose Control Panel.

2. In the Control Panel, select and open Programs and Features.

3. Select the Oracle ADF Desktop Integration Runtime Add-in for Excel entry in
the Uninstall or change a program window.

4. With the entry selected, click the Update Information link.

5. Follow the instructions that appear in the dialog boxes to successfully upgrade
ADF Desktop Integration.

H.2 Importing Data from a Non-Integrated Excel Worksheet
End users who use the ADF Table component in an integrated Excel workbook to
upload large batches of data rows to the Fusion web application can prepare these
rows of data in a non-integrated Excel worksheet. They can then insert the data into

WARNING: After you install the runtime edition of ADF Desktop
Integration, do not delete the directory where you copied the client
installer files. You can delete the files after removing the runtime
edition of ADF Desktop Integration from the system.

Note: If the runtime edition of ADF Desktop Integration is installed
from a web server, open the Update Information link in Internet
Explorer to run the installer. Other browsers are not supported.

Removing Personal Information

H-4 Developing Applications with Oracle ADF Desktop Integration

the ADF Table component prior to invoking the ADF Table component's Upload
action.

To prepare data in a non-integrated Excel workbook:
1. Arrange the layout of data in a non-integrated Excel worksheet to match the

layout of the ADF Table component in the integrated Excel workbook.

For example, if an ADF Table component contains columns such as Product,
Price, and Description, reproduce this layout in the non-integrated Excel
worksheet.

2. Use functionality of Excel to import the rows of data into the non-integrated Excel
worksheet in rows under the columns arranged in Step 1.

3. Row values that will be inserted into ADF Table component columns that use the
TreeNodeList subcomponent must match a choice from the list of values.

To insert data into the ADF Table component from a non-integrated Excel
workbook:
1. In the ADF Table component, highlight n existing downloaded rows or new rows

at the end of the ADF Table component where n is the number of rows to insert.

2. Right-click and choose Insert from the context menu.

3. In the non-integrated Excel worksheet, select the cells to insert into the rows of the
ADF Table component created in Step 2.

4. In the Excel Ribbon, choose Home > Copy.

5. In the ADF Table component, select the upper left corner cell of the rows inserted
in Step 2.

6. In the Excel Ribbon, choose Home > Paste.

7. End users can now invoke the ADF Table component's Upload action using
whatever functionality you configured for them as described in Section 7.8,
"Configuring an ADF Component to Upload Changes from an ADF Table
Component."

H.3 Removing Personal Information
If the Fusion web application that you integrate an Excel workbook with uses a
security mechanism, such as single sign-on, personally identifying information may be
stored in cookies on the system where the end user accesses the integrated Excel
workbook. End users can remove this information using Microsoft Internet Explorer.
End users must log out and close all integrated Excel workbooks to invalidate all
active cookie-based web sessions.

Tip: Copy the column headers from the ADF Table component to the
non-integrated Excel worksheet.

Tip: Copy an ADF Table component row from the integrated Excel
workbook to another worksheet of the same workbook, as the proper
constraints will be defined for such a row and can be reproduced.

WARNING: Select the cells in the non-integrated Excel worksheet
and not the rows or columns.

Limitations of an Integrated Excel Workbook at Runtime

End User Actions H-5

For information about removing personal information, see Microsoft Internet Explorer
documentation.

H.4 Editing an Integrated Excel Workbook at Runtime
Once you publish and deploy a finalized integrated Excel workbook, as described in
Chapter 14, "Deploying Your Integrated Excel Workbook." end users can make the
following changes to a workbook at runtime:

■ Delete a column from an ADF Table or ADF Read-only Table component.

■ Drag and drop cells to move ADF components other than an ADF Button
component.

■ Insert new rows into an ADF Table component.

■ Change the order of columns in an ADF Table or ADF Read-only Table
component.

■ Insert non-integrated columns between the columns of an ADF Table or ADF
Read-only Table component.

However, some changes to a workbook at runtime can corrupt the integration and are
not supported. For more information about what changes are not allowed at runtime,
see Section H.5, "Limitations of an Integrated Excel Workbook at Runtime."

H.5 Limitations of an Integrated Excel Workbook at Runtime
There are some known limitations on changing ADF Desktop Integration components
at runtime.

■ Moving a column in ADF Table and ADF Read-only Table components – If the
end user moves a column (for example, using native Excel cut-insert operations) to
the right of the last table column, the column is considered to be outside of the
table boundaries. ADF Desktop Integration will no longer recognize the column as
being part of the table component during subsequent table operations.

Instead, to change the last column of a table component at runtime, the end user
can perform either of the following actions:

– Move all columns that are to the right of the desired last column to the left of
the desired last column.

– First, move the desired last column to the immediate left of the current last
column, and then move the current last column to the left of the desired last
column.

Similar actions should be performed to move a column so that it becomes the
left-most column of the table.

■ Deleting an integrated Excel worksheet – If the end user deletes an integrated
Excel worksheet, ADF Desktop Integration generates an exception when the end
user tries to save the integrated Excel workbook.

To resolve the problem, the end user must close and reopen the workbook without
saving changes.

Additional known limitations:
■ Excel's Conditional Formatting feature cannot be used effectively with ADF

Desktop Integration table components.

Using An Integrated Excel Workbook

H-6 Developing Applications with Oracle ADF Desktop Integration

■ The ADF Button components are disabled when the end user zooms in or out on
an integrated Excel worksheet. The ADF Button components are active at 100%
zoom only.

■ Due to native Excel behavior, sorting a dependent List of Values column at
runtime does not sort the cell list validations properly.

H.6 Using An Integrated Excel Workbook
End users who are new to the ADF Desktop Integration technology and integrated
Excel workbook must be made aware of the following common actions:

■ To download all rows after uploading the changed data, ensure that Download all
rows after successful upload checkbox is selected in Upload Options dialog box.

■ Before uploading the changes, ensure that the Changed column of all modified
rows is marked with an upward pointing triangle. A double-click on the upward
pointing triangle character removes it, and the data of the relevant row is not
uploaded.

■ To have Excel retain the format of a numeric or date value in a cell formatted with
a text style while uploading data, add an apostrophe symbol (') before entering the
value. The apostrophe symbol acts as an escape character and is not displayed
with the value.

■ Do not delete, edit, or clear any cells in the Key column of the table. Any change to
these values can lead to upload failures and data corruption.

■ Do not change Excel's settings for Protect Sheet or Protect Workbook. These
settings are available in the Changes group of the Review tab.

■ To erase a value from a cell that is integrated with the web application, clear the
cell value instead of deleting the Excel cell.

■ If the Fusion web application is running on the https protocol and you have not
installed the security certificate on the client, the integrated Excel workbook gives
an error on login and the connection is not established. To establish a connection,
you must install the security certificate. If you cannot install the certificate from
Excel, open Internet Explorer and navigate to the same website. You will be
prompted to install the certificate.

■ Some ADF components may have cells that are configured to respond to a
double-click to perform some action. For example, the Status column cells of the
ADF Table component. You can also right-click in these cells and select Invoke
Action.

Some common actions, such as inserting or deleting a row, and sorting data in ADF
Table, are described in the subsequent sections.

H.6.1 How to Insert a Row in an ADF Table Component of an Integrated Excel
Workbook

To insert a row in an ADF Table component, insert a full row in the worksheet, and
add data in all mandatory columns. For more information, see Section 7.7,
"Configuring an ADF Table Component to Insert Data."

An ADF Table, with one or more data rows, does not have a placeholder row after the
last row of the table. Hence, any data inserted in the cells of the workbook after the last
row of the table is not uploaded. To upload data of the row after the last row, you
must insert a full Excel row.

Handling Time Zone Conversion

End User Actions H-7

To insert a row in an ADF Table component:
1. In the ADF Table component, click the row header, and select the entire row above

which you want to insert the new row.

2. With the row selected, right-click and choose Insert.

A new row is inserted above the selected row.

H.6.2 How to Sort ADF Table Data in an Integrated Excel Workbook
To sort table data, choose Excel's Sort and Filter command.

To sort ADF Table data based on a particular column:
1. Select the header, or any cell, of the column you want to sort.

2. In the Editing group of the Home tab, click Sort and Filter. Choose the desired
sort order from the dropdown list options.

To sort table data based on multiple columns:
1. Select any cell of the table.

2. In the Editing group of the Home tab, click Sort and Filter, and choose Custom
Sort.

3. In the Sort dialog, add the columns, and their order preference. Ensure that the
My data has headers checkbox is enabled.

4. Click OK.

H.6.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook
Clearing the cell values of a row does not remove the row, and deleting the row from
the Excel worksheet does not delete the row from the web application.

To delete a row in an ADF Table component, flag the row by double-clicking the
respective cell of the Flagged column, and click the respective delete button. For more
information about row flagging, see Section 7.11.2, "Row Flagging in an ADF Table
Component."

H.7 Handling Time Zone Conversion
You can configure integrated Excel workbooks to retrieve, edit, and submit data
values that represent dates and times. As Excel does not provide native support for
managing date or time data when the system time zone changes, ADF Desktop
Integration tracks and detects the time zone changes for a workbook. It informs the

Notes:

■ Insert a full Excel row between the table headers and the last row
of the table. Do not insert the new row after the last row of the
table.

■ If the ADF Table has no data rows, the first row of the table acts as
a placeholder row.

Note: If your table does not contain a Flagged column, you will not
be able to delete rows from that table.

Handling Time Zone Conversion

H-8 Developing Applications with Oracle ADF Desktop Integration

end user about the time zone update when the workbook is opened, and then converts
the date-time data of the workbook to the current time zone setting of the system.

For example, an end user in Arizona (GMT -07:00) downloads the data from the server
to the integrated Excel workbook, edits the date-time data in the workbook, saves the
data, but does not upload it. Later, the end user travels to Seoul and changes the time
zone preference of the computer to GMT +09:00. When the workbook is opened after
changing to the Seoul time zone, the end user receives a message, and then all
date-time data values in the ADF components are converted from GMT -07:00
(Arizona) to GMT +09:00 (Seoul).

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.2)
	Other Significant Changes in this Document for 12c (12.1.2)

	1 Introduction to ADF Desktop Integration
	1.1 About ADF Desktop Integration
	1.2 About ADF Desktop Integration with Microsoft Excel
	1.2.1 Overview of Creating an Integrated Excel Workbook
	1.2.2 Advantages of Integrating Excel with a Fusion Web Application

	2 Introduction to the ADF Desktop Integration Sample Application
	2.1 About the Summit Sample Application for ADF Desktop Integration
	2.2 Setting Up and Running the Summit Sample Application for ADF Desktop Integration
	2.3 Overview of the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.1 About the Fusion Web Application in the Summit Sample Application for ADF Desktop Integration
	2.3.2 Downloading Integrated Excel Workbooks

	2.4 Overview of the Integrated Excel Workbooks in the Summit Sample Application for ADF Desktop Integration
	2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
	2.4.2 Downloading Data Rows
	2.4.3 Modify Customers and Warehouses Information in the Workbooks
	2.4.4 Upload Modified Information to the Fusion Web Application

	3 Setting Up Your Development Environment
	3.1 About Setting Up Your Development Environment
	3.2 Required Oracle ADF Modules and Third-Party Software
	3.3 Configuring Excel to work with ADF Desktop Integration
	3.4 Installing ADF Desktop Integration
	3.4.1 How to Set Up ADF Desktop Integration

	3.5 Removing ADF Desktop Integration
	3.6 Upgrading ADF Desktop Integration
	3.6.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF Desktop Integration

	3.7 Using an Integrated Excel Workbook with Older Versions of ADF Desktop Integration
	3.8 Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper

	4 Preparing Your Integrated Excel Workbook
	4.1 About Preparing Your Integrated Excel Workbooks
	4.2 Adding an Integrated Excel Workbook to a Fusion Web Application
	4.2.1 How to Add an Integrated Excel Workbook to a Fusion Web Application
	4.2.2 How to Configure a New Integrated Excel Workbook
	4.2.3 How to Add Additional Worksheets to an Integrated Excel Workbook
	4.2.4 What Happens When You Deploy an ADF Desktop Integration-Enabled Fusion Web Application from JDeveloper
	4.2.4.1 Fusion Web Application is Deployed on Oracle WebLogic Server

	4.3 Working with Page Definition Files for an Integrated Excel Workbook
	4.3.1 How to Create ADF Desktop Integration Page Definition File
	4.3.2 What Happens When You Create a Page Definition File
	4.3.3 How to Reload a Page Definition File in an Excel Workbook
	4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

	4.4 Enabling ADF Desktop Integration Manually
	4.4.1 How to Manually Add ADF Desktop Integration In Fusion Web Application
	4.4.2 How to Enable ADF Desktop Integration in an Existing Workbook
	4.4.3 How to Manually Configure a New Integrated Excel Workbook
	4.4.4 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project
	4.4.5 Adding ADF Library Web Application Support

	5 Getting Started with the Development Tools
	5.1 About Development Tools
	5.1.1 ADF Desktop Integration Development Tools Use Cases and Examples
	5.1.2 Additional Functionality for ADF Desktop Integration Development Tools

	5.2 Designer Ribbon Tab
	5.3 ADF Desktop Integration Designer Task Pane
	5.4 Using the Bindings Palette
	5.5 Using the Components Palette
	5.6 Using the Property Inspector
	5.7 Using the Binding ID Picker
	5.8 Using the Expression Builder
	5.9 Using the Web Page Picker
	5.10 Using the File System Folder Picker
	5.11 Using the Page Definition Picker
	5.12 Using the Collection Editors
	5.13 Using the Cell Context Menu
	5.14 Removing ADF Desktop Integration Components
	5.15 Exporting and Importing Excel Workbook Integration Metadata
	5.15.1 How to Export Workbook Integration Metadata
	5.15.2 How to Import Workbook Integration Metadata
	5.15.3 What You May Need to Know About Exporting and Importing Excel Workbook Integration Metadata

	6 Working with ADF Desktop Integration Form-Type Components
	6.1 About ADF Desktop Integration Form-Type Components
	6.1.1 ADF Desktop Integration Form-Type Components Use Cases and Examples
	6.1.2 Additional Functionality for ADF Desktop Integration Form-Type Components

	6.2 Inserting an ADF Button Component
	6.3 Inserting an ADF Label Component
	6.4 Inserting an ADF Input Text Component
	6.5 Inserting an ADF Output Text Component
	6.6 Inserting an ADF List of Values Component
	6.7 Displaying Output from a Managed Bean in an ADF Component
	6.7.1 How to Display Output from a Managed Bean
	6.7.2 What Happens at Runtime: How an ADF Component Displays Output from a Managed Bean

	6.8 Displaying Concatenated or Calculated Data in Components
	6.8.1 How to Configure a Component to Display Calculated Data

	6.9 Using Navigation Buttons

	7 Working with ADF Desktop Integration Table-Type Components
	7.1 About ADF Desktop Integration Table-Type Components
	7.1.1 ADF Desktop Integration Table-Type Components Use Cases and Examples
	7.1.2 Additional Functionality of Table-Type Components

	7.2 Page Definition Requirements for an ADF Table Component
	7.3 Inserting ADF Table Component into Excel Worksheet
	7.3.1 How to Insert ADF Table Component
	7.3.2 How to Add a Column in an ADF Table Component

	7.4 Configuring Oracle ADF Component to Download Data to an ADF Table Component
	7.4.1 How to Configure an ADF Component to Download Data to an ADF Table Component
	7.4.2 What Happens at Runtime: How the ADF Table Component Downloads Data

	7.5 Configuring a Worksheet to Download Data as Pending Insert Rows in an ADF Table component
	7.5.1 What Happens at Runtime: Download Action is Invoked
	7.5.2 Using STATUS_INITIALIZED Rows for Pending Inserts
	7.5.3 What You May Need to Know About DownloadForInsert Action

	7.6 Configuring an ADF Table Component to Update Existing Data
	7.6.1 How to Configure an ADF Table Component to Update Data
	7.6.2 What Happens at Runtime: How the ADF Table Component Updates Data

	7.7 Configuring an ADF Table Component to Insert Data
	7.7.1 How to Configure an ADF Table Component to Insert Data Using a View Object's Operations

	7.8 Configuring an ADF Component to Upload Changes from an ADF Table Component
	7.8.1 How to Configure an ADF Component to Upload Data from an ADF Table Component
	7.8.2 What Happens at Runtime: How the ADF Table Component Uploads Data
	7.8.3 What Happens at Runtime: How the ReadOnly EL Expression Is Evaluated During Upload
	7.8.4 What Happens at Runtime: Upload Failure
	7.8.5 How to Create a Custom Upload Dialog
	7.8.6 What Happens at Runtime: Custom Upload Dialog

	7.9 Configuring an ADF Table Component to Upload Changes Using UploadAllOrNothing Action
	7.9.1 How to Configure an ADF Component to use UploadAllOrNothing Action
	7.9.2 What Happens at Runtime: UploadAllOrNothing Action is Invoked
	7.9.3 Limiting the Amount of Changed Data That Can Be Uploaded With UploadAllOrNothing Action

	7.10 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application
	7.10.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application
	7.10.2 What Happens at Runtime: How the ADF Table Component Deletes Rows in a Fusion Web Application

	7.11 Batch Processing in an ADF Table Component
	7.11.1 How to Configure Batch Options for an ADF Table Component
	7.11.2 Row Flagging in an ADF Table Component
	7.11.3 Troubleshooting Errors While Uploading Data

	7.12 Special Columns in the ADF Table Component
	7.13 Configuring ADF Table Component Key Column
	7.13.1 How to Configure the Key Column
	7.13.2 How to Manually Add the Key Column At Design Time

	7.14 Creating a List of Values in an ADF Table Component Column
	7.14.1 How to Create a List of Values in an ADF Table Component Column
	7.14.2 What Happens at Runtime: How the ADF Table Column Renders a List of Values

	7.15 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component
	7.16 Adding a Dynamic Column to Your ADF Table Component
	7.16.1 How to Configure a Dynamic Column
	7.16.2 What Happens at Runtime: How Data Is Downloaded or Uploaded In a Dynamic Column
	7.16.3 How to Specify Header Labels for Dynamic Columns
	7.16.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type

	7.17 Creating an ADF Read-Only Table Component
	7.17.1 How to Insert an ADF Read-only Table Component
	7.17.2 How to Manually Add a Column to the ADF Read-only Table Component

	7.18 Limiting the Number of Rows Your Table-Type Component Downloads
	7.18.1 How to Limit the Number of Rows a Component Downloads
	7.18.2 What Happens at Runtime: How the RowLimit Property Works

	7.19 Clearing the Values of Cached Attributes in an ADF Table Component
	7.19.1 How to Clear the Values of Cached Attributes in an ADF Table Component
	7.19.2 What Happens at Runtime: How the ADF Table Component Clears Cached Values

	7.20 Tracking Changes in an ADF Table Component
	7.21 Evaluating EL Expression for ReadOnly Properties
	7.21.1 What Happens at Runtime: Evaluating EL Expression While Downloading Data
	7.21.2 What Happens at Runtime: Evaluating EL Expression While Uploading Data or Tracking Changes
	7.21.3 What You May Need to Know About Evaluating EL Expression While Uploading Data or Tracking Changes

	7.22 Using Explicit Worksheet Setup Action
	7.22.1 How to Configure Explicit Worksheet Setup Action
	7.22.2 What You May Need to Know About Explicit Worksheet Setup Action

	8 Adding Interactivity to Your Integrated Excel Workbook
	8.1 About Adding Interactivity to an Integrated Excel Workbook
	8.1.1 Adding Interactivity to Integrated Excel Workbook Use Cases and Examples
	8.1.2 Additional Functionality for Adding Interactivity to an Integrated Excel Workbook

	8.2 Using Action Sets
	8.2.1 How to Invoke a Method Action Binding in an Action Set
	8.2.2 How to Invoke Component Actions in an Action Set
	8.2.3 What You May Need to Know About an Action Set Invoking a Component Action
	8.2.3.1 Verifying an Action Set Invokes the Correct Component Action
	8.2.3.2 Invoking Action Sets in a Disconnected Workbook

	8.2.4 How to Invoke an Action Set from a Worksheet Event
	8.2.5 How to Display a Status Message While an Action Set Executes
	8.2.6 What Happens at Runtime: How the Action Set Displays a Status Message
	8.2.7 What You May Need to Know About Progress Bars
	8.2.8 How to Provide an Alert After the Invocation of an Action Set
	8.2.9 What Happens at Runtime: How the Action Set Provides an Alert
	8.2.10 How to Configure Error Handling for an Action Set
	8.2.11 How to Invoke a Confirmation Action in an Action Set
	8.2.12 What Happens at Runtime: How the Action Set Provides a Confirmation

	8.3 Configuring the Runtime Ribbon Tab
	8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab
	8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab

	8.4 Displaying Web Pages from a Fusion Web Application
	8.4.1 How to Display a Web Page in a Popup Dialog
	8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
	8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web Application
	8.4.3.1 Keeping an Integrated Excel Workbook and a Fusion Web Application Synchronized
	8.4.3.2 Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion Web Application Pages
	8.4.3.3 Configuring a Fusion Web Application for ADF Desktop Integration Frame Sharing

	8.5 Adding a Custom Popup Picker Dialog to an ADF Table Column
	8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook
	8.6.1 How to Create a Search Form in an Integrated Excel Workbook
	8.6.2 How to Create a Search Form using a Web Page in an Integrated Excel Workbook

	8.7 Creating a Form in an Integrated Excel Workbook
	8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook
	8.8.1 How to Create a Dependent List of Values in an Excel Worksheet
	8.8.2 What Happens at Runtime: How the Excel Worksheet Renders a Dependent List of Values
	8.8.3 How to Create a Dependent List of Values in an ADF Table Component's Columns
	8.8.4 What Happens at Runtime: How the ADF Table Component Column Renders a Dependent List of Values
	8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table Component Column
	8.8.6 What Happens at Runtime: How the Excel Worksheet and the ADF Table Component Column Render a Dependent List of Values

	8.9 Using EL Expression to Generate an Excel Formula
	8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
	8.9.2 What Happens at Runtime: How a Cell Displays a Hyperlink using an EL Expression

	8.10 Using Calculated Cells in an Integrated Excel Workbook
	8.10.1 How to Calculate the Sum of a Table-Type Component Column
	8.10.2 What Happens at Runtime: How Excel Calculates the Sum of a Table-Type Component Column

	8.11 Using Macros in an Integrated Excel Workbook

	9 Configuring the Appearance of an Integrated Excel Workbook
	9.1 About Configuring the Appearance of an Integrated Excel Workbook
	9.1.1 Integrated Excel Workbook Configuration Use Cases and Examples
	9.1.2 Additional Functionality for Configuring the Appearance of an Integrated Excel Workbook

	9.2 Working with Styles
	9.2.1 Predefined Styles in ADF Desktop Integration
	9.2.2 Excel's Date Formats and Microsoft Windows' Regional and Language Options
	9.2.3 How to Apply a Style to an Oracle ADF Component
	9.2.4 What Happens at Runtime: How Style Is Applied to an ADF Component

	9.3 Applying Styles Dynamically Using EL Expressions
	9.3.1 What Happens at Runtime: How an EL Expression Is Evaluated
	9.3.2 How to Write an EL Expression That Applies a Style at Runtime
	9.3.3 What You May Need to Know About EL Expressions That Apply Styles

	9.4 Using Labels in an Integrated Excel Workbook
	9.4.1 Retrieving the Values of String Keys from a Resource Bundle
	9.4.2 Retrieving the Values of Attribute Control Hints
	9.4.3 How an Integrated Excel Workbook Evaluates a Label Property

	9.5 Using Styles to Improve the User Experience
	9.5.1 Using ADF Label Components to improve the User Experience
	9.5.2 What You May Need to Know About the Read-Only Property in an Integrated Excel Workbook

	9.6 Branding Your Integrated Excel Workbook
	9.6.1 How to Brand an Integrated Excel Workbook
	9.6.2 What Happens at Runtime: the BrandingItems Group of Properties

	9.7 Using Worksheet Protection
	9.7.1 How to Enable Worksheet Protection
	9.7.2 What Happens at Runtime: How the Locked Property Works
	9.7.3 What You May Need to Know About Worksheet Protection

	10 Internationalizing Your Integrated Excel Workbook
	10.1 About Internationalizing Your Integrated Excel Workbook
	10.1.1 Internationalizing Integrated Excel Workbook Use Cases and Examples
	10.1.2 Additional Functionality for Internationalizing Integrated Excel Workbook

	10.2 Using Resource Bundles in an Integrated Excel Workbook
	10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
	10.2.2 How to Override Resources That Are Not Configurable
	10.2.3 What Happens at Runtime: Override Resources That Are Not Configurable
	10.2.4 What You May Need to Know About Resource Bundles
	10.2.4.1 Resource Bundle Types
	10.2.4.2 Caching of Resource Bundles in an Integrated Excel Workbook
	10.2.4.3 EL Expression Syntax for Resource Bundles

	10.3 Localization in ADF Desktop Integration
	10.3.1 Configuring Fusion Web Application to Override Server-Side Locale Settings
	10.3.1.1 How to Create a User Preference Handler
	10.3.1.2 How to Register the User Preference Handler

	11 Securing Your Integrated Excel Workbook
	11.1 About Security In Your Integrated Excel Workbook
	11.1.1 Integrated Excel Workbook Security Use Cases and Examples
	11.1.2 Additional Functionality for Integrated Excel Workbook in a Secure Fusion Web Application

	11.2 Authenticating the Excel Workbook User
	11.2.1 What Happens at Runtime: How the Login Method Is Invoked
	11.2.2 What Happens at Runtime: How the Logout Method Is Invoked

	11.3 Checking the Integrity of an Integrated Excel Workbook's Metadata
	11.3.1 How to Reset the Workbook ID
	11.3.2 What Happens When the Metadata Tamper-Check Is Performed

	11.4 What You May Need to Know About Securing an Integrated Excel Workbook
	11.5 Authorizing the Excel Workbook User
	11.5.1 What You May Need to Know About ADF Desktop Integration-Disabled Worksheet

	12 Adding Validation to an Integrated Excel Workbook
	12.1 About Adding Validation to an Integrated Excel Workbook
	12.1.1 Integrated Excel Workbook Validation Use Cases and Examples
	12.1.2 Additional Functionality for Adding Validation to an Integrated Excel Workbook

	12.2 Providing Server-Side Validation for an Integrated Excel Workbook
	12.3 Providing Client-Side Validation for an Integrated Excel Workbook
	12.4 Error Reporting in an Integrated Excel Workbook
	12.4.1 Error Reporting Using EL Expressions
	12.4.2 Error Reporting Using Component Actions

	12.5 Providing a Row-by-Row Status on an ADF Table Component
	12.6 Adding Detail to Error Messages in an Integrated Excel Workbook
	12.7 Handling Data Conflicts When Uploading Data from a Workbook
	12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
	12.7.2 What Happens at Runtime: How Data Conflicts Are Handled

	13 Testing Your Integrated Excel Workbook
	13.1 About Testing Your Integrated Excel Workbook
	13.1.1 Integrated Excel Workbook Testing Use Cases and Examples
	13.1.2 Additional Functionality of Testing an Integrated Excel Workbook

	13.2 Testing Your Fusion Web Application
	13.3 Validating the Integrated Excel Workbook Configuration
	13.3.1 How to Validate the Integrated Excel Workbook Configuration
	13.3.2 What Happens When You Validate the Integrated Excel Workbook Configuration
	13.3.3 How to Fix Validation Failures
	13.3.4 How to Log the Integrated Excel Workbook Configuration Validation Failures at Runtime

	13.4 Testing Your Integrated Excel Workbook
	13.5 Running a Server Ping Test

	14 Deploying Your Integrated Excel Workbook
	14.1 About Deploying Your Integrated Excel Workbook
	14.1.1 Integrated Excel Workbook Deployment Use Cases and Examples
	14.1.2 Additional Functionality for Deploying Your Integrated Excel Workbook

	14.2 Making ADF Desktop Integration Available to End Users
	14.3 Publishing Your Integrated Excel Workbook
	14.3.1 How to Publish an Integrated Excel Workbook from Excel
	14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
	14.3.3 What Happens When You Publish an Integrated Excel Workbook

	14.4 Deploying a Published Workbook with Your Fusion Web Application
	14.4.1 What Happens at Runtime: Deploying a Published Workbook

	14.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook
	14.5.1 How to Configure the Fusion Web Application's Page to Pass Parameters
	14.5.2 How to Configure the Page Definition File for the Worksheet to Receive Parameters
	14.5.3 How to Configure Parameters Properties in the Integrated Excel Workbook
	14.5.4 What Happens at Runtime: How Parameters Are Passed from a Fusion Web Application to the Integrated Excel Workbook

	15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode
	15.1 About Disconnected Workbooks
	15.1.1 Disconnected Workbooks Use Cases and Examples
	15.1.2 Additional Functionality for Disconnected Workbooks

	15.2 Restore Server Data Context Between Sessions
	15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
	15.2.2 What Happens at Runtime: How the Integrated Excel Workbook Restores Server Data Context

	15.3 Caching of Static Information in an Integrated Excel Workbook
	15.4 Caching Lists of Values for Use in Disconnected Mode

	A ADF Desktop Integration Component Properties and Actions
	A.1 Frequently Used Properties in the ADF Desktop Integration
	A.2 ADF Input Text Component Properties
	A.3 ADF Output Text Component Properties
	A.4 ADF Label Component Properties
	A.5 ADF List of Values Component Properties
	A.6 TreeNodeList Subcomponent Properties
	A.7 ModelDrivenColumnComponent Subcomponent Properties
	A.8 ADF Button Component Properties
	A.9 ADF Table Component Properties and Actions
	A.9.1 ADF Table Component Properties
	A.9.2 ADF Table Component Column Properties
	A.9.3 ADF Table Component Actions

	A.10 ADF Read-only Table Component Properties and Actions
	A.11 Action Set Properties
	A.11.1 Confirmation Action Properties
	A.11.2 Dialog Action Properties

	A.12 Workbook Actions and Properties
	A.13 Worksheet Actions and Properties

	B ADF Desktop Integration EL Expressions
	B.1 Guidelines for Creating EL Expressions
	B.2 EL Syntax for ADF Desktop Integration Components
	B.3 Attribute Control Hints in ADF Desktop Integration

	C Troubleshooting an Integrated Excel Workbook
	C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration
	C.2 Verifying End-User Authentication for Integrated Excel Workbooks
	C.3 Generating Log Files for an Integrated Excel Workbook
	C.3.1 About Server-Side Logging
	C.3.2 About Client-Side Logging
	C.3.2.1 How to Configure ADF Desktop Integration to Save Logs
	C.3.2.2 About the ADF Desktop Integration Configuration File
	C.3.2.3 How to Configure Logging Using User Environment Variables
	C.3.2.4 What You May Need to Know About the adfdi-common Object

	C.4 Common ADF Desktop Integration Error Messages and Problems

	D ADF Desktop Integration Settings in the Web Application Deployment Descriptor
	D.1 Configuring the ADF Desktop Integration Servlet
	D.2 Configuring the ADF Desktop Integration Excel Download Filter
	D.3 Examples in a Deployment Descriptor File

	E String Keys in the Overridable Resources
	F Java Data Types Supported By ADF Desktop Integration
	G Using the ADF Desktop Integration Model API
	G.1 About the Temporary Row Object
	G.2 About ADF Desktop Integration Model API
	G.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

	G.3 ADF Desktop Integration Model API Classes and Methods
	G.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
	G.3.1.1 The getAdfdiTempChildRow Method
	G.3.1.2 The getAdfdiTempRowForView Method
	G.3.1.3 The getChildViewDef Method

	H End User Actions
	H.1 Installing, Upgrading, and Removing the Runtime Edition of ADF Desktop Integration
	H.1.1 How to Install Runtime Edition of ADF Desktop Integration
	H.1.2 How to Remove the Runtime Edition of ADF Desktop Integration
	H.1.3 How to Upgrade the Runtime Edition of ADF Desktop Integration On a Local System

	H.2 Importing Data from a Non-Integrated Excel Worksheet
	H.3 Removing Personal Information
	H.4 Editing an Integrated Excel Workbook at Runtime
	H.5 Limitations of an Integrated Excel Workbook at Runtime
	H.6 Using An Integrated Excel Workbook
	H.6.1 How to Insert a Row in an ADF Table Component of an Integrated Excel Workbook
	H.6.2 How to Sort ADF Table Data in an Integrated Excel Workbook
	H.6.3 How to Delete a Row in ADF Table of an Integrated Excel Workbook

	H.7 Handling Time Zone Conversion

