

[image: Oracle Corporation]

Oracle® Fusion Middleware

Interoperability Solutions Guide for Oracle Web Services Manager

12c (12.1.2)

E25200-02

February 2014

Documentation for software developers that describes how to implement the most common OWSM interoperability scenarios.

Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager, 12c (12.1.2)

E25200-02

Copyright © 2013, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Documentation Accessibility
	Conventions

What's New in This Guide

	New and Changed Features for 12c (12.1.2)

1 Overview of OWSM Interoperability

	1.1 About OWSM Policies
	1.2 OWSM Interoperability Scenarios

2 Interoperability with OWSM 10g Security Environments

	2.1 Overview of Interoperability with OWSM 10g Security Environments
	2.2 A Note About OWSM 10g Gateways
	2.3 A Note About Third-party Software
	2.4 Anonymous Authentication with Message Protection (WS-Security 1.0)
	2.4.1 Configuring OWSM 10g Client and OWSM 12c Web Service
	2.4.2 Configuring OWSM 12c Client and OWSM 10g Web Service

	2.5 Username Token with Message Protection (WS-Security 1.0)
	2.5.1 Configuring OWSM 10g Client and OWSM 12c Web Service
	2.5.2 Configuring OWSM 12c Client and OWSM 10g Web Service

	2.6 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	2.6.1 Configuring OWSM 10g Client and OWSM 12c Web Service
	2.6.2 Configuring OWSM 12c Client and OWSM 10g Web Service

	2.7 Mutual Authentication with Message Protection (WS-Security 1.0)
	2.7.1 Configuring OWSM 10g Client and OWSM 12c Web Service
	2.7.2 Configuring OWSM 12c Client and OWSM 10g Web Service

	2.8 Username Token Over SSL
	2.8.1 Configuring OWSM 10g Client and OWSM 12c Web Service
	2.8.2 Configuring OWSM 12c Client and OWSM 10g Web Service

	2.9 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)
	2.9.1 Configuring OWSM 10g Client and OWSM 12c Web Service
	2.9.2 Configuring OWSM 12c Client and OWSM 10g Web Service

3 Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments

	3.1 Overview of Interoperability with OC4J 10g Security Environments
	3.2 Anonymous Authentication with Message Protection (WS-Security 1.0)
	3.2.1 Configuring OC4J 10g Client and OWSM 12c Web Service
	3.2.2 Configuring OWSM 12c Client and OC4J 10g Web Service

	3.3 Username Token with Message Protection (WS-Security 1.0)
	3.3.1 Configuring OC4J 10g Client and OWSM 12c Web Service
	3.3.2 Configuring OWSM 12c Client and OC4J 10g Web Service

	3.4 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	3.4.1 Configuring OC4J 10g Client and OWSM 12c Web Service
	3.4.2 Configuring OWSM 12c Client and OC4J 10g Web Service

	3.5 Mutual Authentication with Message Protection (WS-Security 1.0)
	3.5.1 Configuring OC4J 10g Client and OWSM 12c Web Service
	3.5.2 Configuring OWSM 12c Client and OC4J 10g Web Service

	3.6 Username token over SSL
	3.6.1 Configuring OC4J 10g Client and OWSM 12c Web Service
	3.6.2 Configuring OWSM 12c Client and OC4J 10g Web Service

	3.7 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)
	3.7.1 Configuring OC4J 10g Client and OWSM 12c Web Service
	3.7.2 Configuring OWSM 12c Client and OC4J 10g Web Service

4 Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

	4.1 Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments
	4.2 Username Token With Message Protection (WS-Security 1.1)
	4.2.1 Interoperating with a WebLogic Web Service Policy
	4.2.2 Interoperating with a WebLogic Web Service Client Policy

	4.3 Username Token With Message Protection (WS-Security 1.1) and MTOM
	4.3.1 Interoperating with a WebLogic Web Service Policy
	4.3.2 Interoperating with a WebLogic Web Service Client Policy

	4.4 Username Token With Message Protection (WS-Security 1.0)
	4.4.1 Interoperability with a WebLogic Web Service Policy
	4.4.2 Interoperability with a WebLogic Web Service Client Policy

	4.5 Username Token Over SSL
	4.5.1 Interoperating with a WebLogic Web Service Client Policy

	4.6 Username Token Over SSL with MTOM
	4.6.1 Interoperating with a WebLogic Web Service Client Policy

	4.7 SAML Token (Sender Vouches) Over SSL
	4.7.1 Interoperating with a WebLogic Web Service Client Policy

	4.8 SAML Token (Sender Vouches) Over SSL with MTOM
	4.8.1 Interoperating with a WebLogic Web Service Client Policy

	4.9 SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)
	4.9.1 Interoperating with a WebLogic Web Service Policy
	4.9.2 Interoperating with a WebLogic Web Service Client Policy

	4.10 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)
	4.10.1 Interoperating with a WebLogic Web Service Policy
	4.10.2 Interoperating with a WebLogic Web Service Client Policy

	4.11 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and MTOM
	4.11.1 Interoperating with a WebLogic Web Service Policy
	4.11.2 Interoperating with a WebLogic Web Service Client Policy

	4.12 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	4.12.1 Interoperating with a WebLogic Web Service Policy
	4.12.2 Interoperating with a WebLogic Web Service Client Policy

	4.13 Mutual Authentication with Message Protection (WS-Security 1.0)
	4.13.1 Interoperating with a WebLogic Web Service Policy
	4.13.2 Interoperating with a WebLogic Web Service Client Policy

	4.14 Mutual Authentication with Message Protection (WS-Security 1.1)
	4.14.1 Interoperating with a WebLogic Web Service Policy
	4.14.2 Interoperating with a WebLogic Web Service Client Policy

5 Interoperability with Microsoft WCF/.NET 3.5 Security Environments

	5.1 Overview of Interoperability with Microsoft WCF/.NET 3.5 Security Environments
	5.2 Message Transmission Optimization Mechanism (MTOM)
	5.2.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service
	5.2.2 Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service

	5.3 Username Token With Message Protection (WS-Security 1.1)
	5.3.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service
	5.3.2 Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service

	5.4 Username Token Over SSL
	5.4.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

	5.5 Mutual Authentication with Message Protection (WS-Security 1.1)
	5.5.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service
	5.5.2 Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service

	5.6 Kerberos with Message Protection
	5.6.1 Configuration Prerequisites for Interoperability
	5.6.2 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

	5.7 Kerberos with Message Protection Using Derived Keys
	5.7.1 Configuration Prerequisites for Interoperability
	5.7.2 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

	5.8 Kerberos with SPNEGO Negotiation
	5.8.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

	5.9 Kerberos with SPNEGO Negotiation and Credential Delegation
	5.9.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

	5.10 WCF/.NET 3.5 client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS
	5.10.1 Install and Configure Active Directory Federation Services (ADFS) 2.0
	5.10.2 Configure ADFS 2.0 STS As Trusted SAML Token Issuer
	5.10.3 Configure Users in Oracle Internet Directory
	5.10.4 Attach the Policy
	5.10.5 Register the Web Service as a Relying Party in ADFS 2.0
	5.10.6 Secure WCF/.NET 3.5 Client with ADFS 2.0

6 Interoperability with Oracle Service Bus 10g Security Environments

	6.1 Overview of Interoperability with Oracle Service Bus 10g Security Environments
	6.2 Username Token with Message Protection (WS-Security 1.0)
	6.2.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service
	6.2.2 Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service

	6.3 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	6.3.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service
	6.3.2 Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service

	6.4 SAML or Username Token Over SSL
	6.4.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service

	6.5 Mutual Authentication with Message Protection (WS-Security 1.0)
	6.5.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service
	6.5.2 Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service

7 Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments

	7.1 Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security Environments
	7.2 Required Files for Interoperability With Axis and WSS4J
	7.3 Username Token with Message Protection (WS-Security 1.0)
	7.3.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service
	7.3.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

	7.4 SAML Token with Message Protection (WS-Security 1.0)
	7.4.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service
	7.4.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

	7.5 Username Token Over SSL
	7.5.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service
	7.5.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

	7.6 SAML Token (Sender Vouches) Over SSL
	7.6.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service
	7.6.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

8 Interoperability with Oracle GlassFish Server Release 3.0.1

	8.1 Overview of Interoperability With Oracle GlassFish Security Environments
	8.2 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)
	8.2.1 Configuring GlassFish Client and OWSM 12c Web Service
	8.2.2 Configuring OWSM 12c Client and GlassFish Web Service

Preface

This preface describes the document accessibility features and conventions used in this guide—Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide

The following topics introduce the new and changed features of Oracle Web Services Manager (OWSM) and other significant changes that are described in this guide, and provides pointers to additional information. This document is the new edition of the formerly titled Interoperability Guide for Oracle Web Services Manager.

New and Changed Features for 12c (12.1.2)

Oracle JDeveloper 12c (12.1.2) includes the following new and changed features for this document:

	
The following Microsoft WCF/.NET 3.5 security environment interoperability scenarios have been added for this release:

	
"Kerberos with Message Protection Using Derived Keys"

	
"Kerberos with SPNEGO Negotiation"

	
"Kerberos with SPNEGO Negotiation and Credential Delegation"

1 Overview of OWSM Interoperability

This guide describes interoperability of Oracle Web Services Manager (OWSM) with various security stacks.

Each chapter includes the following information:

	
Overview of each security stack

	
An explanation of the usage scenarios

For details regarding limitations and known problems, see Oracle Fusion Middleware Release Notes.

1.1 About OWSM Policies

You attach OWSM policies to Web service endpoints. Each policy consists of one or more assertions, defined at the domain-level, that define the security requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more details about the predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

For information about configuring and attaching policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

1.2 OWSM Interoperability Scenarios

Table 1-1 describes the most common OWSM interoperability scenarios.

Table 1-1 Common OWSM Interoperability Scenarios

	Security Stack	OWSM Policies	Interoperability Scenario
	
OWSM 10g

	
oracle/wss10_message_protection_service_policy

oracle/wss10_message_protection_client_policy

	
"Anonymous Authentication with Message Protection (WS-Security 1.0)"

	
OWSM 10g

	
oracle/wss10_username_token_with_message_protection_service_policy

oracle/wss10_username_token_with_message_protection_client_policy

	
"Username Token with Message Protection (WS-Security 1.0)"

	
OWSM 10g

	
oracle/wss10_saml_token_with_message_protection_service_policy

oracle/wss10_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
OWSM 10g

	
oracle/wss10_x509_token_with_message_protection_service_policy

oracle/wss10_x509_token_with_message_protection_client_policy

	
"Mutual Authentication with Message Protection (WS-Security 1.0)"

	
OWSM 10g

	
oracle/wss_username_token_over_ssl_service_policy

oracle/wss_username_token_over_ssl_client_policy

	
"Username Token Over SSL"

	
OWSM 10g

	
oracle/wss_saml_token_over_ssl_service_policy

oracle/wss_saml_token_over_ssl_client_policy

	
"SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)"

	
OC4J 10g

	
oracle/wss10_message_protection_service_policy

oracle/wss10_message_protection_client_policy

	
"Anonymous Authentication with Message Protection (WS-Security 1.0)"

	
OC4J 10g

	
oracle/wss10_username_token_with_message_protection_service_policy

oracle/wss10_username_token_with_message_protection_client_policy

	
"Username Token with Message Protection (WS-Security 1.0)"

	
OC4J 10g

	
oracle/wss10_saml_token_with_message_protection_service_policy

oracle/wss10_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
OC4J 10g

	
oracle/wss10_x509_token_with_message_protection_service_policy

oracle/wss10_x509_token_with_message_protection_client_policy

	
"Mutual Authentication with Message Protection (WS-Security 1.0)"

	
OC4J 10g

	
oracle/wss_username_token_over_ssl_service_policy

OR

oracle/wss_saml_or_username_token_over_ssl_service_policy

oracle/wss_username_token_over_ssl_client_policy

	
"Username token over SSL"

	
OC4J 10g

	
oracle/wss_saml_token_over_ssl_service_policy

OR

oracle/wss_saml_or_username_token_over_ssl_service_policy

oracle/wss_saml_token_over_ssl_client_policy

	
"SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)"

	
Oracle WebLogic Server 12c

	
oracle/wss11_username_token_with_message_protection_service_policy

oracle/wss11_username_token_with_message_protection_client_policy

	
"Username Token With Message Protection (WS-Security 1.1)"

	
Oracle WebLogic Server 12c

	
oracle/wss11_username_token_with_message_protection_service_policy

oracle/wss11_username_token_with_message_protection_client_policy

	
"Username Token With Message Protection (WS-Security 1.1) and MTOM"

	
Oracle WebLogic Server 12c

	
oracle/wss10_username_token_with_message_protection_service_policy

oracle/wss10_username_token_with_message_protection_client_policy

	
"Username Token With Message Protection (WS-Security 1.0)"

	
Oracle WebLogic Server 12c

	
oracle/wss_username_token_over_ssl_service_policy

	
"Username Token Over SSL"

	
Oracle WebLogic Server 12c

	
oracle/wss_username_token_over_ssl_service_policy

	
"Username Token Over SSL with MTOM"

	
Oracle WebLogic Server 12c

	
oracle/wss_saml_token_over_ssl_service_policy

	
"SAML Token (Sender Vouches) Over SSL"

	
Oracle WebLogic Server 12c

	
oracle/wss11_saml20_token_with_message_protection_service_policy

oracle/wss11_saml20_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) Over SSL with MTOM"

	
Oracle WebLogic Server 12c

	
oracle/wss11_saml20_token_with_message_protection_service_policy

oracle/wss11_saml20_token_with_message_protection_client_policy

	
"SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)"

	
Oracle WebLogic Server 12c

	
oracle/wss11_saml_token_with_message_protection_service_policy

oracle/wss11_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

	
Oracle WebLogic Server 12c

	
oracle/wss11_saml_token_with_message_protection_service_policy

oracle/wss11_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and MTOM"

	
Oracle WebLogic Server 12c

	
oracle/wss10_saml_token_with_message_protection_service_policy

oracle/wss10_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
Oracle WebLogic Server 12c

	
oracle/wss10_x509_token_with_message_protection_service_policy

oracle/wss10_x509_token_with_message_protection_client_policy

	
"Mutual Authentication with Message Protection (WS-Security 1.0)"

	
Oracle WebLogic Server 12c

	
oracle/wss11_x509_token_with_message_protection_service_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
"Mutual Authentication with Message Protection (WS-Security 1.1)"

	
Microsoft WCF/.NET 3.5

	
oracle/wsmtom_policy

	
"Message Transmission Optimization Mechanism (MTOM)"

	
Microsoft WCF/.NET 3.5

	
oracle/wss11_username_token_with_message_protection_service_policy

OR

oracle/wss11_saml_or_username_token_with_message_protection_service_policy

oracle/wss11_username_token_with_message_protection_client_policy

	
"Username Token With Message Protection (WS-Security 1.1)"

	
Microsoft WCF/.NET 3.5

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

OR

oracle/wss_username_token_over_ssl_service_policy

	
"Username Token Over SSL"

	
Microsoft WCF/.NET 3.5

	
oracle/wss11_x509_token_with_message_protection_service_policy

oracle/wss11_x509_token_with_message_protection_client_policy

	
"Mutual Authentication with Message Protection (WS-Security 1.1)"

	
Microsoft WCF/.NET 3.5

	
oracle/wss11_kerberos_with_message_protection_service_policy

	
"Kerberos with Message Protection"

	
Microsoft WCF/.NET 3.5

	
wss11_kerberos_token_with_message_protection_basic128_service_policy

	
"Kerberos with Message Protection Using Derived Keys"

	
Microsoft WCF/.NET 3.5

	
Policy created with http_spnego_token_service_template

	
"Kerberos with SPNEGO Negotiation"

	
Microsoft WCF/.NET 3.5

	
Policy created with http_spnego_token_service_template

	
"Kerberos with SPNEGO Negotiation and Credential Delegation"

	
Oracle Service Bus 10g

	
wss10_username_token_with_message_protection_client_policy

wss10_username_token_with_message_protection_service_policy

	
"Username Token with Message Protection (WS-Security 1.0)"

	
Oracle Service Bus 10g

	
oracle/wss10_saml_token_with_message_protection_service_policy

oracle/wss10_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
Oracle Service Bus 10g

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

	
"SAML or Username Token Over SSL"

	
Oracle Service Bus 10g

	
oracle/wss10_x509_token_with_message_protection_service_policy

oracle/wss10_x509_token_with_message_protection_client_policy

	
"Mutual Authentication with Message Protection (WS-Security 1.0)"

	
Axis 1.4 and WSS4J 1.5.8

	
oracle/wss10_username_token_with_message_protection_service_policy

oracle/wss10_username_token_with_message_protection_client_policy

	
"Username Token with Message Protection (WS-Security 1.0)"

	
Axis 1.4 and WSS4J 1.5.8

	
oracle/wss10_saml_token_with_message_protection_service_policy

oracle/wss10_saml_token_with_message_protection_client_policy

	
"SAML Token with Message Protection (WS-Security 1.0)"

	
Axis 1.4 and WSS4J 1.5.8

	
oracle/wss_username_token_over_ssl_service_policy

oracle/wss_username_token_over_ssl_client_policy

	
"Username Token Over SSL"

	
Axis 1.4 and WSS4J 1.5.8

	
oracle/wss_saml_token_over_ssl_service_policy

oracle/wss_saml_token_over_ssl_client_policy

	
"SAML Token (Sender Vouches) Over SSL"

	
GlassFish Enterprise Server

	
oracle/wss11_saml_token_with_message_protection_service_policy

oracle/wss11_saml_token_with_message_protection_client_policy

	
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

2 Interoperability with OWSM 10g Security Environments

This chapter describes interoperability of Oracle Web Services Manager (OWSM) with OWSM 10g security environments.

This chapter includes the following topics:

	
Section 2.1, "Overview of Interoperability with OWSM 10g Security Environments"

	
Section 2.2, "A Note About OWSM 10g Gateways"

	
Section 2.3, "A Note About Third-party Software"

	
Section 2.4, "Anonymous Authentication with Message Protection (WS-Security 1.0)"

	
Section 2.5, "Username Token with Message Protection (WS-Security 1.0)"

	
Section 2.6, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
Section 2.7, "Mutual Authentication with Message Protection (WS-Security 1.0)"

	
Section 2.8, "Username Token Over SSL"

	
Section 2.9, "SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)"

2.1 Overview of Interoperability with OWSM 10g Security Environments

With OWSM 10g, you specify policy steps at each policy enforcement point. The policy enforcement points in OWSM 10g include Gateways and Agents. Each policy step is a fine-grained operational task that addresses a specific security operation, such as authentication and authorization; encryption and decryption; security signature, token, or credential verification; and transformation. Each operational task is performed on either the Web service request or response. For more details about the OWSM 10g policy steps, see "Oracle Web Services Manager Policy Steps" in Oracle Web Services Manager Administrator's Guide 10g (10.1.3.4) at http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/policy_steps.htm#BABIAHEG.

With OWSM 12c, you attach policies to Web service endpoints. Each policy consists of one or more assertions, defined at the domain-level, that define the security requirements. A set of predefined policies and assertions are provided out-of-the-box.

Table 2-1 and Table 2-2 summarize the most common OWSM 10g interoperability scenarios based on the following security requirements: authentication, message protection, and transport.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
OWSM 10g policy steps, see "Oracle Web Services Manager Policy Steps" in Oracle Web Services Manager Administrator's Guide 10g (10.1.3.4) at http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/policy_steps.htm#BABIAHEG

	
Note:

In the following scenarios, ensure that you are using a keystore with v3 certificates.

Review "A Note About OWSM 10g Gateways" and "A Note About Third-party Software" for important information about your usage of OWSM 10g Gateways and third-party software.

Table 2-1 OWSM 10g Service Policy and OWSM 12c Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Anonymous

	
1.0

	
Yes

	
No

	
Request pipeline: Decrypt and Verify Signature

Response pipeline: Sign Message and Encrypt

	
oracle/wss10_message_protection_client_policy

	
Username

	
1.0

	
Yes

	
No

	
Request pipeline:

	
Decrypt and Verify Signature

	
Extract Credentials (configured as WS-BASIC)

	
File Authenticate

Response pipeline: Sign Message and Encrypt

	
oracle/wss10_username_token_with_message_protection_client_policy

	
SAML

	
1.0

	
Yes

	
No

	
Request pipeline:

	
XML Decrypt

	
SAML—Verify WSS 1.0 Token

Response pipeline: Sign Message and Encrypt

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
Request pipeline: Decrypt and Verify

Response pipeline: Sign Message and Encrypt

	
oracle/wss10_x509_token_with_message_protection_client_policy

	
Username over SSL

	
1.0 and 1.1

	
No

	
Yes

	
Request pipeline:

	
Extract Credentials

	
File Authenticate

	
wss_username_token_over_ssl_client_policy

	
SAML over SSL

	
1.0 and 1.1

	
No

	
Yes

	
Request pipeline:

	
Extract Credentials

	
File Authenticate

	
oracle/wss_saml_token_over_ssl_client_policy

Table 2-2 OWSM 12c Service Policy and OWSM 10g Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Anonymous

	
1.0

	
Yes

	
No

	
oracle/wss10_message_protection_service_policy

	
Request pipeline: Sign Message and Encrypt

Response pipeline: Decrypt and Verify Signature

	
Username

	
1.0

	
Yes

	
No

	
oracle/wss10_username_token_with_message_protection_service_policy

	
Request pipeline: Sign Message and Encrypt

Response pipeline: Decrypt and Verify Signature

	
SAML

	
1.0

	
Yes

	
No

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
Request pipeline:

	
Extract Credentials (configured as WS-BASIC

	
SAML—Insert WSS 1.0 Sender-Vouches Token

	
Sign and Encrypt

Response pipeline: Decrypt and Verify Signature

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
Request pipeline: Sign Message and Encrypt

Response pipeline: Decrypt and Verify Signature

	
Username over SSL

	
1.0 and 1.1

	
No

	
Yes

	
wss_username_token_over_ssl_service_policy

	
N/A

	
SAML over SSL

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_token_over_ssl_service_policy

	
Request pipeline:

	
Extract Credentials

	
SAML—Insert WSS 1.0 Sender-Vouches Token

The following sections provide additional interoperability information about using OWSM 10g Gateways and third-party software with OWSM 12c.

2.2 A Note About OWSM 10g Gateways

Oracle Fusion Middleware 12c (12.1.2) does not include a Gateway component. You can continue to use the OWSM 10g Gateway components with OWSM 10g policies in your applications.

2.3 A Note About Third-party Software

OWSM 10g supports policy enforcement for third-party application servers, such as IBM WebSphere and Red Hat JBoss. Oracle Fusion Middleware 12c (12.1.2) only supports Oracle WebLogic Server. You can continue to use the third-party application servers with OWSM 10g policies.

2.4 Anonymous Authentication with Message Protection (WS-Security 1.0)

The following sections describe how to implement anonymous authentication with message protection that conforms to the WS-Security 1.0 standard:

	
"Configuring OWSM 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OWSM 10g Web Service"

2.4.1 Configuring OWSM 10g Client and OWSM 12c Web Service

To configure OWSM 10g client and OWSM 12c Web service, perform the following steps:

2.4.1.1 Configuring OWSM 12c Web Service

	
Create a copy of the policy: oracle/wss10_message_protection_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

	
Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to a Web service.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

2.4.1.2 Configuring OWSM 10g Client

	
Register the Web service (above) with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy step to the request pipeline: Sign Message and Encrypt.

	
Configure the Sign Message and Encrypt policy step in the request pipeline, as follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

	
Attach the following policy step to the response pipeline: Decrypt and Verify Signature.

	
Configure the Decrypt and Verify Signature policy step in the response pipeline, as follows:

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Navigate to the OWSM Test page and enter the virtualized URL of the Web service.

	
Invoke the Web service.

2.4.2 Configuring OWSM 12c Client and OWSM 10g Web Service

To configure OWSM 12c client and OWSM 10g Web service, perform the following steps:

2.4.2.1 Configuring OWSM 10g Web Service

	
Register the Web service with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy step in the request pipeline: Decrypt and Verify Signature

	
Configure the Decrypt and Verify Signature policy step in the request pipeline, as follows:

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Attach the following policy step in the response pipeline: Sign Message and Encrypt

	
Configure the Sign Message and Encrypt policy response pipeline as follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

2.4.2.2 Configuring OWSM 12c Client

	
Create a client proxy using the virtualized URL of the Web service registered on the OWSM Gateway.

	
Create a copy of the following policy: oracle/wss10_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
Configure the policy, as described in "oracle/wss10_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

2.5 Username Token with Message Protection (WS-Security 1.0)

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.0 standard:

	
"Configuring OWSM 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OWSM 10g Web Service"

2.5.1 Configuring OWSM 10g Client and OWSM 12c Web Service

To configure OWSM 10g client and OWSM 12c Web service, perform the following steps:

2.5.1.1 Configuring OWSM 12c Web Service

	
Create a copy of the following policy: oracle/wss10_username_token_with_message_protection_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to a Web service.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

2.5.1.2 Configuring OWSM 10g Client

	
Register the Web service (above) with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy step to the request pipeline: Sign Message and Encrypt

	
Configure the Sign Message and Encrypt policy step in the request pipeline, as follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Set Encrypted Content to ENVELOPE.

	
Set Signed Content to ENVELOPE.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

	
Attach the following policy step to the response pipeline: Decrypt and Verify Signature.

	
Configure the Decrypt and Verify Signature policy step in the response pipeline, as follows:

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Navigate to the OWSM Test page and enter the virtualized URL of the Web service.

	
Select the Include Header checkbox against WS-Security and provide valid credentials.

	
Invoke the Web service.

2.5.2 Configuring OWSM 12c Client and OWSM 10g Web Service

To configure OWSM 12c client and OWSM 10g Web service, perform the following steps:

2.5.2.1 Configuring OWSM 10g Web Service

	
Register the Web service with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy steps in the request pipeline:

- Decrypt and Verify Signature

- Extract Credentials (configured as WS-BASIC)

- File Authenticate

	
Note:

You can substitute File Authenticate with LDAP Authenticate, Oracle Access Manager Authenticate, Active Directory Authenticate, or SiteMinder Authenticate.

	
Configure the Decrypt and Verify Signature policy step in the request pipeline, as follows:

	
Configure the keystore properties for extracting credentials. The configuration should be in accordance with the keystore used on the server side.

	
Configure the Extract Credentials policy step in the request pipeline, as follows:

	
Set the Credentials location to WS-BASIC.

	
Configure the File Authenticate policy step in the request pipeline to use valid credentials.

	
Attach the following policy step in the response pipeline: Sign Message and Encrypt.

	
Configure the Sign Message and Encrypt policy response pipeline, as follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

2.5.2.2 Configuring OWSM 12c Client

	
Create a client proxy using the virtualized URL of the Web service registered on the OWSM Gateway.

	
Create a copy of the following policy: oracle/wss10_username_token_with_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
Configure the policy, as described in "oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

2.6 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

The following sections describe how to implement SAML token (sender vouches) with message protection that conforms to the WS-Security 1.0 standard:

	
"Configuring OWSM 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OWSM 10g Web Service"

2.6.1 Configuring OWSM 10g Client and OWSM 12c Web Service

To configure OWSM 10g client and OWSM 12c Web service, perform the following steps:

2.6.1.1 Configuring OWSM 12c Web Service

	
Create a copy of the following policy: oracle/wss10_saml_token_with_message_protection_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

2.6.1.2 Configuring OWSM 10g Client

	
Register the Web service (above) with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy steps in the request pipeline:

- Extract Credentials (configured as WS-BASIC)

- SAML—Insert WSS 1.0 Sender-Vouches Token

- Sign Message and Encrypt

	
Configure the Extract Credentials policy step in the request pipeline, as follows:

	
Set the Credentials location to WS-BASIC.

	
Configure the SAML—Insert WSS 1.0 Sender-Vouches Token policy step in the request pipeline, as follows:

	
Set Subject Name Qualifier to www.oracle.com.

	
Set Assertion Issuer as www.oracle.com.

	
Set Subject Format as UNSPECIFIED.

	
Set other signing properties, as required.

	
Configure the Sign Message and Encrypt policy step in the request pipeline, as follows:

	
Set the Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Attach the following policy step in the response pipeline: Decrypt and Verify Signature.

	
Configure the Decrypt and Verify Signature policy step in the response pipeline, as follows:

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Navigate to the OWSM Test page and enter the virtualized URL of the Web service.

	
Select Include Header checkbox against WS-Security and provide valid credentials.

	
Invoke the Web service.

2.6.2 Configuring OWSM 12c Client and OWSM 10g Web Service

To configure OWSM 12c client and OWSM 10g Web service, perform the following steps:

2.6.2.1 Configuring OWSM 10g Web Service

	
Register the Web service with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy steps in the request pipeline:

- XML Decrypt

- SAML—Verify WSS 1.0 Token

	
Configure the XML Decrypt policy step in the request pipeline, as follows:

	
Configure the keystore properties for XML decryption. The configuration should be in accordance with the keystore used on the server side.

	
Configure the SAML—Verify WSS 1.0 Token policy step in the request pipeline, as follows:

	
Set the Trusted Issuer Name as www.oracle.com.

	
Attach the following policy step in the response pipeline: Sign Message and Encrypt.

	
Configure the Sign Message and Encrypt policy step in the response pipeline, follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

2.6.2.2 Configuring OWSM 12c Client

	
Create a client proxy using the virtualized URL of the Web service registered on the OWSM Gateway.

	
Create a copy of the following policy: oracle/wss10_saml_token_with_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss10_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

2.7 Mutual Authentication with Message Protection (WS-Security 1.0)

The following sections describe how to implement mutual authentication with message protection that conform to the WS-Security 1.0 standards:

	
"Configuring OWSM 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OWSM 10g Web Service"

2.7.1 Configuring OWSM 10g Client and OWSM 12c Web Service

To configure OWSM 10g client and OWSM 12c Web service, perform the following steps:

2.7.1.1 Configuring OWSM 12c Web Service

	
Create a copy of the following policy: oracle/wss10_x509_token_with_message_protection_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

2.7.1.2 Configuring OWSM 10g Client

	
Register the Web service (above) with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy step in the request pipeline: Sign Message and Encrypt.

	
Configure the Sign Message and Encrypt policy step in the request pipeline, as follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

	
Attach the following policy step in the response pipeline: Decrypt and Verify Signature.

	
Configure the Decrypt and Verify Signature policy step in the response pipeline, as follows:

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Update the following property in the gateway-config-installer.properties file located at ORACLE_HOME/j2ee/oc4j_instance/applications/gateway/gateway/WEB-INF:

pep.securitysteps.signBinarySecurityToken=true

	
Restart OWSM 10g Gateway.

	
Navigate to the OWSM Test page and enter the virtualized URL of the Web service.

	
Invoke the Web service.

2.7.2 Configuring OWSM 12c Client and OWSM 10g Web Service

To configure OWSM 12c client and OWSM 10g Web service, perform the following steps:

2.7.2.1 Configuring OWSM 10g Web Service

	
Register the Web service with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy steps in the request pipeline: Decrypt and Verify.

	
Configure the Decrypt and Verify Signature policy step in the request pipeline, as follows:

	
Configure the keystore properties for decryption and signature verification. The configuration should be in accordance with the keystore used on the server side.

	
Attach the following policy steps in the response pipeline: Sign Message and Encrypt.

	
Configure the Sign Message and Encrypt policy step in the response pipeline, as follows:

	
Set Encryption Algorithm to AES-128.

	
Set Key Transport Algorithm to RSA-OAEP-MGF1P.

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side.

2.7.2.2 Configuring OWSM 12c Client

	
Create a client proxy using the virtualized URL of the Web service registered on the OWSM Gateway.

	
Create a copy of the following policy: oracle/wss10_x509_token_with_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss10_x509_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

2.8 Username Token Over SSL

This section describes how to implement username token over SSL in the following scenarios:

	
"Configuring OWSM 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OWSM 10g Web Service"

For more information about:

	
Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring SSL on OC4J, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

2.8.1 Configuring OWSM 10g Client and OWSM 12c Web Service

To configure OWSM 10g client and OWSM 12c Web service, perform the following steps:

2.8.1.1 Configuring OWSM 12c Web Service

	
Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the following policy: wss_username_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

2.8.1.2 Configuring OWSM 10g Client

	
Configure the server for SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Register the Web service (above) with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Navigate to the OWSM Test page and enter the virtualized URL of the Web service.

	
Select the Include Header checkbox against WS-Security and provide valid credentials.

	
Invoke the Web service.

2.8.2 Configuring OWSM 12c Client and OWSM 10g Web Service

To configure OWSM 12c client and OWSM 10g Web service, perform the following steps:

2.8.2.1 Configuring OWSM 10g Web Service

	
Configure the server for SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Register the Web service with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy steps to the request pipeline:

- Extract Credentials

- File Authenticate

	
Note:

You can substitute File Authenticate with LDAP Authenticate, Oracle Access Manager Authenticate, Active Directory Authenticate, or SiteMinder Authenticate.

	
Configure the Extract Credentials policy step in the request pipeline, as follows:

	
Configure the Credentials Location as WS-BASIC.

	
Configure the File Authentication policy step in the request pipeline with the appropriate credentials.

2.8.2.2 Configuring OWSM 12c Client

	
Create a client proxy using the virtualized URL of the Web service registered on the OWSM Gateway.

Ensure that when generating the client, HTTP is specified in the URL along with the HTTP port number.

	
Create a copy of the following policy: oracle/wss_username_token_over_ssl_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss_username_token_over_ssl_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

2.9 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

The following sections describe how to implement SAML token (sender vouches) over SSL that conforms to the WS-Security 1.0 standard:

	
"Configuring OWSM 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OWSM 10g Web Service"

For more information about:

	
Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring SSL on OC4J, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

2.9.1 Configuring OWSM 10g Client and OWSM 12c Web Service

To configure OWSM 10g client and OWSM 12c Web service, perform the following steps:

2.9.1.1 Configuring OWSM 12c Web Service

	
Configure the server for two-way SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Create a copy of the following policy: oracle/wss_saml_token_over_ssl_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

2.9.1.2 Configuring OWSM 10g Client

	
Configure the server for two-way SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Register the Web service (above) with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the following policy steps to the request pipeline:

- Extract Credentials

- SAML—Insert WSS 1.0 Sender-Vouches Token

	
Configure the Extra Credentials policy step in the request pipeline, as follows:

	
Configure the Credentials Location as WS-BASIC.

	
Configure the SAML—Insert WSS 1.0 Sender-Vouches Token policy step in the request pipeline, as follows:

	
Configure the Subject Name Qualifier as www.oracle.com.

	
Configure the Assertion Issuer as www.oracle.com.

	
Configure the Subject Format as UNSPECIFIED.

	
Configure the Sign the assertion as false.

	
Navigate to the OWSM Test page and enter the virtualized URL of the Web service.

	
Select Include Header checkbox against WS-Security and provide valid credentials.

	
Invoke the Web service.

2.9.2 Configuring OWSM 12c Client and OWSM 10g Web Service

To configure OWSM 12c client and OWSM 10g Web service, perform the following steps:

2.9.2.1 Configuring OWSM 10g Web Service

	
Configure the server for two-way SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Register the Web service with the OWSM 10g Gateway. See "Registering Web Services to an OWSM Gateway" in the OWSM Administrator's Guide 10g at: http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.htm

	
Attach the policy step: SAML—Verify WSS 1.0 Token

	
Configure the SAML—Verify WSS 1.0 Token policy step in the request pipeline, as follows:

	
Under Signature Verification Properties, set Allow signed assertions only to false.

	
Set the Trusted Issuer Name to www.oracle.com.

2.9.2.2 Configuring OWSM 12c Client

	
Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Create a client proxy using the virtualized URL of the Web service registered on the OWSM gateway.

	
Create a copy of the following policy: oracle/wss_saml_token_over_ssl_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss_saml_token_over_ssl_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

3 Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments

This chapter describes the most common Oracle Containers for Java EE (OC4J) 10g interoperability scenarios based on the following security requirements: authentication, message protection, and transport.

This chapter contains the following sections:

	
Section 3.1, "Overview of Interoperability with OC4J 10g Security Environments"

	
Section 3.2, "Anonymous Authentication with Message Protection (WS-Security 1.0)"

	
Section 3.3, "Username Token with Message Protection (WS-Security 1.0)"

	
Section 3.4, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
Section 3.5, "Mutual Authentication with Message Protection (WS-Security 1.0)"

	
Section 3.6, "Username token over SSL"

	
Section 3.7, "SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)"

3.1 Overview of Interoperability with OC4J 10g Security Environments

In OC4J 10g, you configure your security environment.

	
For information about using Application Server Control to configure the Web service, see Oracle Application Server Advanced Web Services Developer's Guide at http://download.oracle.com/docs/cd/B31017_01/web.1013/b28975/toc.htm.

	
For information about using JDeveloper to develop and configure your client-side application, see Developing Applications with Oracle JDeveloper.

	
For information about how to modify the XML-based deployment descriptor files, see Oracle Application Server Web Services Security Guide 10g (10.1.3.1.0) at: http://download.oracle.com/docs/cd/B31017_01/web.1013/b28976/toc.htm

With OWSM 12c, you attach policies to Web service endpoints. Each policy consists of one or more assertions, defined at the domain-level, that define the security requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

Table 3-2 and Table 3-2 summarize the most common OC4J 10g interoperability scenarios based on the following security requirements: authentication, message protection, and transport.

	
Note:

In the following scenarios, ensure that you are using a keystore with v3 certificates.

Table 3-1 OWSM 12c Service Policy and Oracle OC4J 10g Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Anonymous

	
1.0

	
Yes

	
No

	
oracle/wss10_message_protection_service_policy

	
See "Configuring OC4J 10g Client"

	
Username

	
1.0

	
Yes

	
No

	
oracle/wss10_username_token_with_message_protection_service_policy

	
See "Configuring OC4J 10g Client"

	
SAML

	
1.0

	
Yes

	
No

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
See "Configuring OC4J 10g Client"

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
See "Configuring OC4J 10g Client"

	
Username over SSL

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_username_token_over_ssl_service_policy

OR

oracle/wss_saml_or_username_token_over_ssl_service_policy

	
See "Configuring OC4J 10g Client"

	
SAML over SSL

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_token_over_ssl_service_policy

OR

oracle/wss_saml_or_username_token_over_ssl_service_policy

	
See "Configuring OC4J 10g Client"

Table 3-2 Oracle OC4J 10g Service Policy and OWSM 12c Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Anonymous

	
1.0

	
Yes

	
No

	
See "Configuring OC4J 10g Web Service"

	
oracle/wss10_message_protection_client_policy

	
Username

	
1.0

	
Yes

	
No

	
See "Configuring OC4J 10g Web Service"

	
oracle/wss10_username_token_with_message_protection_client_policy

	
SAML

	
1.0

	
Yes

	
No

	
See "Configuring OC4J 10g Web Service"

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
See "Configuring OC4J 10g Web Service"

	
oracle/wss10_x509_token_with_message_protection_client_policy

	
Username over SSL

	
1.0 and 1.1

	
No

	
Yes

	
See "Configuring OC4J 10g Web Service"

	
oracle/wss_username_token_over_ssl_client_policy

	
SAML over SSL

	
1.0 and 1.1

	
No

	
Yes

	
See "Configuring OC4J 10g Web Service"

	
oracle/wss_saml_token_over_ssl_client_policy

3.2 Anonymous Authentication with Message Protection (WS-Security 1.0)

This section describes how to implement anonymous authentication with message protection that conforms to the WS-Security 1.0 standard in the following scenarios:

	
"Configuring OC4J 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OC4J 10g Web Service"

3.2.1 Configuring OC4J 10g Client and OWSM 12c Web Service

To configure OC4J 10g client and OWSM 12c Web service, perform the following steps:

3.2.1.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Attach the following policy to the entry point of the Web service: oracle/wss10_message_protection_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

3.2.1.2 Configuring OC4J 10g Client

	
Create a client proxy for the Web service (above) using Oracle JDeveloper.

	
Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the proxy project and selecting Secure Proxy.

	
Click Authentication in the Proxy Editor navigation bar and set the following options:

	
Select No Authentication.

	
Click Inbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Verify Inbound Signed Request Body.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Sign Outbound Messages.

	
Select Add Timestamp to Outbound Messages and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Inbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Decrypt Inbound Message Content.

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Encrypt Outbound Messages.

	
Set the Algorithm to AES-128.

	
Click Keystore Options in the Proxy Editor navigation bar and configure the keystore properties, as required.

Ensure that you are using keystore with v3 certificates.

	
Click OK to close the wizard.

	
In the Structure pane, click <appname>Binding_Stub.xml and edit the file as described in next section.

	
Invoke the Web service method from the client.

Editing the <appname>Binding_Stub.xml File

	
Provide the keystore password and sign and encryption key passwords.

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" local-part="Timestamp" />
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.2.2 Configuring OWSM 12c Client and OC4J 10g Web Service

To configure OWSM 12c client and OC4J 10g Web service, perform the following steps:

3.2.2.1 Configuring OC4J 10g Web Service

	
Create and deploy a Web service application.

	
Use Application Server Control to secure the deployed Web service.

	
Click Authentication tab and ensure that no options are selected.

	
Click Integrity tab of the Inbound Policies page and set the following options:

	
Select Require Message Body to Be Signed.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Integrity tab of the Outbound Policies page and set the following options:

	
Select Sign Body Element of Message.

	
Set the Signature Method to RSA-SHA1.

	
Select Add Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Confidentiality tab of the Inbound Policies page and set the following options:

	
Select Require Encryption of Message Body.

	
Click Confidentiality tab of the Outbound Policies page and set the following options:

	
Select Encrypt Body Element of Message.

	
Set the Encryption Method to AES-128.

	
Set the public key to encrypt.

	
Configure the keystore properties and identity certificates.

Ensure that you are using keystore with v3 certificates.

	
Edit the wsmgmt.xml deployment descriptor file, as described in "Editing the wsmgmt.xml File".

3.2.2.2 Configuring OWSM 12c Client

	
Create a client proxy for the OC4J 10g Web service.

	
Attach the following policy: oracle/wss10_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service method from the client.

Editing the wsmgmt.xml File

Edit the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config, as follows:

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.3 Username Token with Message Protection (WS-Security 1.0)

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.0 standard:

	
"Configuring OC4J 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OC4J 10g Web Service"

3.3.1 Configuring OC4J 10g Client and OWSM 12c Web Service

To configure OC4J 10g client and OWSM 12c Web service, perform the following steps:

3.3.1.1 Configuring OWSM 12c Web Service

	
Create an OWSM 12c Web service.

	
Attach the following policy to the Web service: oracle/wss10_username_token_with_message_protection_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

3.3.1.2 Configuring OC4J 10g Client

	
Create a client proxy for the Web service (above) using Oracle JDeveloper.

	
Specify the username and password in the client proxy, as follows:

port.setUsername(<username>)
port.setPassword(<password>)

	
Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the proxy project and selecting Secure Proxy.

	
Click Authentication in the Proxy Editor navigation bar and set the following options:

	
Select Use Username to Authenticate.

	
Deselect Add Nonce and Add Creation Time.

	
Click Inbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Verify Inbound Signed Request Body.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Sign Outbound Messages.

	
Select Add Timestamp to Outbound Messages and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Inbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Decrypt Inbound Message Content.

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Encrypt Outbound Messages.

	
Set the Algorithm to AES-128.

	
Click Keystore Options in the Proxy Editor navigation bar and configure the keystore properties, as required.

Ensure that you are using keystore with v3 certificates.

	
Click OK to close the wizard.

	
In the Structure pane, click <appname>Binding_Stub.xml and edit the file as described in "Editing the <appname>Binding_Stub.xml File".

	
Invoke the Web service.

Editing the <appname>Binding_Stub.xml File

Edit the <appname>Binding_Stub.xml file, as follows:

	
Provide the keystore password and sign and encryption key passwords.

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp" />
...

	
In the outbound signature, specify that the timestamp and UsernameToken should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" local-part="Timestamp"/>
 <tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" local-part="UsernameToken"/>
...

	
In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

	
In the outbound encryption, specify that the UsernameToken should be encrypted, as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.3.2 Configuring OWSM 12c Client and OC4J 10g Web Service

To configure OWSM 12c client and OC4J 10g Web service, perform the following steps:

3.3.2.1 Configuring OC4J 10g Web Service

	
Create and deploy a JAX-RPC Web service on OC4J.

	
Use Application Server Control to secure the deployed Web service.

	
Click Authentication tab and set the following options:

	
Select Use Username/Password Authentication.

	
Set Password to Plain Text.

	
Click Integrity tab in Inbound Policies page and set the following options:

	
Select Require Message Body to Be Signed.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Integrity tab in Outbound Policies page and set the following options:

	
Select Sign Body Element of Message.

	
Set the Signature Method to RSA-SHA1.

	
Select Add Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Confidentiality tab in the Inbound Policies page and set the following options:

	
Select Require Encryption of Message Body.

	
Click Confidentiality tab in the Outbound Policies page and set the following options:

	
Select Encrypt Body Element of Message.

	
Set the Encryption Method to AES-128.

	
Set the public key to encrypt.

	
Configure the keystore properties and identity certificates.

Ensure that you are using keystore with v3 certificates.

	
Edit the wsmgmt.xml deployment descriptor file, as described in Editing the wsmgmt.xml File.

3.3.2.2 Configuring OWSM 12c Client

	
Create a client proxy for the OC4J 10g Web service.

	
Attach the following policy: oracle/wss10_username_token_with_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service method from the client.

Editing the wsmgmt.xml File

Edit the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config, as follows:

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify that the UsernameToken should be encrypted, as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.4 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

The following sections describe how to implement SAML token sender vouches with message protection that conforms to the WS-Security 1.0 standard:

	
"Configuring OC4J 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OC4J 10g Web Service"

3.4.1 Configuring OC4J 10g Client and OWSM 12c Web Service

To configure OC4J 10g client and OWSM 12c Web service, perform the following steps:

3.4.1.1 Configuring OWSM 12c Web Service

	
Create an OWSM 12c Web service.

	
Attach the following policy to the Web service: oracle/wss10_saml_token__with_message_protection_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

3.4.1.2 Configuring OC4J 10g Client

	
Create a client proxy for the Web service (above) using Oracle JDeveloper.

	
Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the proxy project and selecting Secure Proxy.

	
Click Authentication in the Proxy Editor navigation bar and set the following options:

	
Select Use SAML Token.

	
Click SAML Details.

	
Select Sender Vouches Confirmation and Use Signature.

	
Enter the username that needs to be propagated as the Default Subject Name.

	
Enter www.oracle.com as the Default Issuer Name.

	
Click Inbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Verify Inbound Signed Request Body.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Sign Outbound Messages.

	
Select Add Timestamp to Outbound Messages and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Inbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Decrypt Inbound Message Content.

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Encrypt Outbound Messages.

	
Set the Algorithm to AES-128.

	
Click Keystore Options in the Proxy Editor navigation bar and configure the keystore properties, as required.

Ensure that you are using keystore with v3 certificates.

	
Click OK to close the wizard.

	
In the Structure pane, click <appname>Binding_Stub.xml and edit the file as described in "Editing the <appname>Binding_Stub.xml File".

	
Invoke the Web service method.

Editing the <appname>Binding_Stub.xml File

Edit the <appname>Binding_Stub.xml file, as follows:

	
Provide the keystore password and sign and encryption key passwords.

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp" />
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.4.2 Configuring OWSM 12c Client and OC4J 10g Web Service

To configure OWSM 12c client and OC4J 10g Web service, perform the following steps:

3.4.2.1 Configuring OC4J 10g Web Service

	
Create and deploy a JAX-RPC Web service on OC4J.

	
Use the Application Server Control to secure the deployed Web service.

	
Click Authentication in navigation bar and set the following options:

	
Select Use SAML Authentication.

	
Select Accept Sender Vouches.

	
Deselect Verify Signature.

	
Click Inbound Integrity in the navigation bar and set the following option:

	
Select Require Message Body To Be Signed.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Outbound Integrity in the navigation bar and select the following options:

	
Select Sign Body Element of Message.

	
Set the Signature Method to RSA-SHA1.

	
Select Add Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Inbound Confidentiality in the navigation bar and set the following option:

	
Deselect Require Encryption of Message Body.

	
Click Outbound Confidentiality in the navigation bar and set the following option:

	
Select Encrypt Body Element of Message.

	
Set the Encryption Method to AES-128.

	
Set the public key to encrypt.

	
Configure the keystore properties and identity certificates.

Ensure that you are using keystore with v3 certificates.

	
Edit the wsmgmt.xml deployment descriptor file, as described in "Editing the wsmgmt.xml File".

	
Invoke the Web service.

3.4.2.2 Configuring OWSM 12c Client

	
Create a client proxy for the OC4J 10g Web service.

	
Attach the following policy: oracle/wss10_saml_token_with_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss10_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service method from the client.

Editing the wsmgmt.xml File

Edit the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config, as follows:

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify that the UsernameToken should be encrypted, as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.5 Mutual Authentication with Message Protection (WS-Security 1.0)

The following sections describe how to implement mutual authentication with message protection that conforms to the WS-Security 1.0 standard:

	
"Configuring OC4J 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OC4J 10g Web Service"

3.5.1 Configuring OC4J 10g Client and OWSM 12c Web Service

To configure OC4J 10g client and OWSM 12c Web service, perform the following steps:

3.5.1.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Attach the following policy to the Web service: oracle/wss10_x509_token_with_message_protection_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

3.5.1.2 Configuring OC4J 10g Client

	
Create a client proxy for the Web service (above) using Oracle JDeveloper.

	
Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the proxy project and selecting Secure Proxy.

	
Click Authentication in the Proxy Editor navigation bar and set the following options:

	
Select Use X509 To Authenticate.

	
Click Inbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Verify Inbound Signed Request Body.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Integrity in the Proxy Editor navigation bar and set the following options:

	
Select Sign Outbound Messages.

	
Select Add Timestamp to Outbound Messages and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Inbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Decrypt Inbound Message Content.

	
Select all options under Acceptable Signature Algorithms.

	
Click Outbound Confidentiality in the Proxy Editor navigation bar and set the following options:

	
Select Encrypt Outbound Messages.

	
Set the Algorithm to AES-128.

	
Click Keystore Options in the Proxy Editor navigation bar and configure the keystore properties, as required.

Ensure that you are using keystore with v3 certificates.

	
Click OK to close the wizard.

	
In the Structure pane, click <appname>Binding_Stub.xml and edit the file as described in "Editing the <appname>Binding_Stub.xml File".

	
Invoke the Web service.

Editing the <appname>Binding_Stub.xml File

Edit the <appname>Binding_Stub.xml file, as follows:

	
Provide the keystore password and sign and encryption key passwords.

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp" />
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.5.2 Configuring OWSM 12c Client and OC4J 10g Web Service

To configure OWSM 12c client and OC4J 10g Web service, perform the following steps:

3.5.2.1 Configuring OC4J 10g Web Service

	
Create and deploy a JAX-RPC Web service on OC4J.

	
Use the Application Server Control to secure the deployed Web service.

	
Click Authentication tab and set the following options:

	
Select Use X509 Certificate Authentication.

	
Click Integrity tab of the Inbound Policies page and set the following options:

	
Select Require Message Body to Be Signed.

	
Select Verify Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Integrity tab of the Outbound Policies page and set the following options:

	
Select Sign Body Element of Message.

	
Set the Signature Method to RSA-SHA1.

	
Select Add Timestamp and Creation Time Required in Timestamp.

	
Enter the Expiration Time (in seconds).

	
Click Confidentiality tab of the Inbound Policies page and set the following options:

	
Select Require Encryption of Message Body.

	
Click Confidentiality tab of the Outbound Policies page and set the following options:

	
Select Encrypt Body Element of Message.

	
Set the Encryption Method to AES-128.

	
Set the public key to encrypt.

	
Configure the keystore properties and identity certificates.

Ensure that you are using keystore with v3 certificates.

	
Edit the wsmgmt.xml deployment descriptor file, as described in "Editing the wsmgmt.xml File".

3.5.2.2 Configuring OWSM 12c Client

	
Create a client proxy to the OC4J 10g Web service.

	
Attach the following policy: oracle/wss10_x509_token_with_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss10_x509_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

Editing the wsmgmt.xml File

Edit the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config, as follows:

	
In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound signature, specify that the timestamp should be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

	
In the outbound encryption, specify that the UsernameToken should be encrypted, as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.6 Username token over SSL

The following sections describe how to implement username token over SSL:

	
"Configuring OC4J 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OC4J 10g Web Service"

For information about:

	
Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring SSL on OC4J, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

3.6.1 Configuring OC4J 10g Client and OWSM 12c Web Service

To configure OC4J 10g client and OWSM 12c Web service, perform the following steps:

3.6.1.1 Configuring OWSM 12c Web Service

	
Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach one of the following policies to the Web service:

oracle/wss_username_token_over_ssl_service_policy

oracle/wss_username_or_saml_token_over_ssl_service_policy

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

3.6.1.2 Configuring OC4J 10g Client

	
Create a client proxy for the Web service (above) using Oracle JDeveloper.

Ensure that the Web service endpoint references the URL with HTTPS and SSL port configured on Oracle WebLogic Server.

	
Add the following code excerpt to initialize two-way SSL (at the beginning of the client proxy code):

HostnameVerifier hv = new HostnameVerifier()
httpsURLConnection.setDefaultHostnameVerifier(hv);
System.setProperty("javax.net.ssl.trustStore","<trust_store>");
System.setProperty("javax.net.ssl.trustStorePassword","<trust_store
_password>");
System.setProperty("javax.net.ssl.keyStore","<key_store>");
System.setProperty("javax.net.ssl.keyStorePassword","<key_store_password>");
System.setProperty("javax.net.ssl.keyStoreType","JKS");

	
Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the proxy project and selecting Secure Proxy.

	
Click Authentication in the Proxy Editor navigation bar and set the following options:

	
Select Use Username to Authenticate.

	
Deselect Add Nonce and Add Creation Time.

	
Click Inbound Integrity in the Proxy Editor navigation bar and deselect all options.

	
Click Outbound Integrity in the Proxy Editor navigation bar and deselect all options.

	
Click Inbound Confidentiality in the Proxy Editor navigation bar and deselect all options.

	
Click Outbound Confidentiality in the Proxy Editor navigation bar and deselect all options.

	
Click Keystore Options in the Proxy Editor navigation bar and configure the keystore properties, as required.

Ensure that you are using keystore with v3 certificates.

	
Click OK to close the wizard.

	
In the Structure pane, click <appname>Binding_Stub.xml and edit the file as described in "Editing the <appname>Binding_Stub.xml File".

	
Invoke the Web service.

Editing the <appname>Binding_Stub.xml File

Edit the <appname>Binding_Stub.xml file, as follows:

	
Provide the keystore password and sign and encryption key passwords.

	
In the outbound signature, specify that the timestamp should be signed, as follows (and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

3.6.2 Configuring OWSM 12c Client and OC4J 10g Web Service

To configure OWSM 12c client and OC4J 10g Web service, perform the following steps:

3.6.2.1 Configuring OC4J 10g Web Service

	
Configure the server for SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Use the Application Server Control to secure the deployed Web service.

	
Click Authentication tab and set the following options:

	
Select Use Username/Password Authentication.

	
Click Integrity tab of the Inbound Policies page and deselect all options.

	
Click Integrity tab of the Outbound Policies page and deselect all options.

	
Click Confidentiality tab of the Inbound Policies page and deselect all options.

	
Click Confidentiality tab of the Outbound Policies page and deselect all options.

	
Edit the wsmgmt.xml deployment descriptor file, as described in "Editing the wsmgmt.xml File".

3.6.2.2 Configuring OWSM 12c Client

	
Create a client proxy to the OC4J 10g Web service using clientgen.

Ensure that the Web service endpoint references the URL with HTTPS and SSL port configured on Oracle WebLogic Server.

	
Add the following code excerpt to initialize two-way SSL (at the beginning of the client proxy code):

HostnameVerifier hv = new HostnameVerifier()
httpsURLConnection.setDefaultHostnameVerifier(hv);
System.setProperty("javax.net.ssl.trustStore","<trust_store>");
System.setProperty("javax.net.ssl.trustStorePassword","<trust_store
_password>");
System.setProperty("javax.net.ssl.keyStore","<key_store>");
System.setProperty("javax.net.ssl.keyStorePassword","<key_store_password>");
System.setProperty("javax.net.ssl.keyStoreType","JKS");

	
Attach the following policy: oracle/wss_username_token_over_ssl_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss_username_token_over_ssl_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

Editing the wsmgmt.xml File

Edit the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config, as follows:

	
In the outbound signature, specify that the timestamp should be signed, as follows (and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

3.7 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

The following sections describe how to implement SAML token (sender vouches) over SSL that conforms to the WS-Security 1.0 standard:

	
"Configuring OC4J 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and OC4J 10g Web Service"

For information about:

	
Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring SSL on OC4J, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

3.7.1 Configuring OC4J 10g Client and OWSM 12c Web Service

To configure OC4J 10g client and OWSM 12c Web service, perform the following steps:

3.7.1.1 Configuring OWSM 12c Web Service

	
Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the following policy to the Web service:

oracle/wss_saml_token_over_ssl_service_policy

oracle/wss_username_or_saml_token_over_ssl_service_policy

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

3.7.1.2 Configuring OC4J 10g Client

	
Configure the server for two-way SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Create a client proxy for the Web service (above) using Oracle JDeveloper.

Ensure that the Web service endpoint references the URL with HTTPS and SSL port configured on Oracle WebLogic Server.

	
Add the following code excerpt to initialize two-way SSL (at the beginning of the client proxy code):

HostnameVerifier hv = new HostnameVerifier()
httpsURLConnection.setDefaultHostnameVerifier(hv);
System.setProperty("javax.net.ssl.trustStore","<trust_store>");
System.setProperty("javax.net.ssl.trustStorePassword","<trust_store
_password>");
System.setProperty("javax.net.ssl.keyStore","<key_store>");
System.setProperty("javax.net.ssl.keyStorePassword","<key_store_password>");
System.setProperty("javax.net.ssl.keyStoreType","JKS");

	
Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the proxy project and selecting Secure Proxy.

	
Click Authentication in the Proxy Editor navigation bar and set the following options:

	
Select Use SAML Token.

	
Click SAML Details.

	
Select Sender Vouches Confirmation.

	
Enter a valid username as the Default Subject Name.

	
Click Inbound Integrity in the Proxy Editor navigation bar and set the following option:

	
Deselect Verify Inbound Signed Message Body.

	
Click Outbound Integrity in the Proxy Editor navigation bar and deselect all options.

	
Click Inbound Confidentiality in the Proxy Editor navigation bar and set the following option:

	
Deselect Decrypt Inbound Message Content.

	
Click Outbound Confidentiality in the Proxy Editor navigation bar and set the following option:

	
Deselect Encrypt Outbound Message.

	
Provide required information for the keystore to be used.

	
Click OK to close the wizard.

	
In the Structure pane, click <appname>Binding_Stub.xml and edit the file as described in "Editing the <appname>Binding_Stub.xml File".

	
Invoke the Web service.

Editing the <appname>Binding_Stub.xml File

Edit the <appname>Binding_Stub.xml file, as follows:

	
Provide the keystore password and sign and encryption key passwords.

	
In the outbound signature, specify that the timestamp should be signed, as follows (and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

3.7.2 Configuring OWSM 12c Client and OC4J 10g Web Service

To configure OWSM 12c client and OC4J 10g Web service, perform the following steps:

3.7.2.1 Configuring OC4J 10g Web Service

	
Configure the server for two-way SSL.

For more information, see http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.htm.

	
Use the Application Server Control to secure the deployed Web service.

	
Click Authentication in navigation bar and set the following options:

	
Select Use SAML Authentication.

	
Select Accept Sender Vouches.

	
Deselect Verify Signature.

	
Click Integrity tab of the Inbound Policies page and deselect all options.

	
Click Integrity tab of the Outbound Policies page and deselect all options.

	
Click Confidentiality tab of the Inbound Policies page and deselect all options.

	
Click Confidentiality tab of the Outbound Policies page and deselect all options.

	
Edit the wsmgmt.xml deployment descriptor file, as described in "Edit the wsmgmt.xml File".

3.7.2.2 Configuring OWSM 12c Client

	
Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Create a client proxy to the OC4J 10g Web service.

Ensure that the Web service endpoint references the URL with HTTPS and SSL port configured on Oracle WebLogic Server.

	
Attach the following policy: oracle/wss_saml_token_over_ssl_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configure the policy, as described in "oracle/wss_saml_token_over_ssl_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service.

Edit the wsmgmt.xml File

Edit the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config, as follows:

	
In the outbound signature, specify that the timestamp should be signed, as follows (and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

4 Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

This chapter describes interoperability of Oracle Web Services Manager (OWSM) with Oracle WebLogic Server 12c Web service security environments.

This chapter contains the following sections:

	
Section 4.1, "Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments"

	
Section 4.2, "Username Token With Message Protection (WS-Security 1.1)"

	
Section 4.3, "Username Token With Message Protection (WS-Security 1.1) and MTOM"

	
Section 4.4, "Username Token With Message Protection (WS-Security 1.0)"

	
Section 4.5, "Username Token Over SSL"

	
Section 4.6, "Username Token Over SSL with MTOM"

	
Section 4.7, "SAML Token (Sender Vouches) Over SSL"

	
Section 4.8, "SAML Token (Sender Vouches) Over SSL with MTOM"

	
Section 4.9, "SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)"

	
Section 4.10, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

	
Section 4.11, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and MTOM"

	
Section 4.12, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
Section 4.13, "Mutual Authentication with Message Protection (WS-Security 1.0)"

	
Section 4.14, "Mutual Authentication with Message Protection (WS-Security 1.1)"

4.1 Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

In Oracle Fusion Middleware 12c, you can attach both OWSM and Oracle WebLogic Server 12c Web service policies to WebLogic Java EE Web services.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

For more details about the predefined Oracle WebLogic Server 12c Web service policies, see:

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
Securing WebLogic Web Services for Oracle WebLogic Server

Table 4-1 and Table 4-2 summarize the most common Oracle WebLogic Server 12c Web service policy interoperability scenarios based on the following security requirements: authentication, message protection, and transport. The tables are organized as follows:

	
Table 4-1 describes interoperability scenarios with WebLogic Web service policies and OWSM client policies.

	
Table 4-2 describes interoperability scenarios with OWSM Web service policies and WebLogic Web service client policies.

Table 4-1 WebLogic Web Service Policy and OWSM Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Username

	
1.1

	
Yes

	
No

	
	
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss11_username_token_with_message_protection_client_policy

	
Username and MTOM

	
1.1

	
Yes

	
No

	
	
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss11_username_token_with_message_protection_client_policy

wsmtom_policy

	
Username

	
1.0

	
Yes

	
No

	
	
Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss10_username_token_with_message_protection_client_policy

	
SAML 2.0

	
1.1

	
Yes

	
No

	
	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
SAML

	
1.1

	
Yes

	
No

	
	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
SAML and MTOM

	
1.1

	
Yes

	
No

	
	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss11_saml_token_with_message_protection_client_policy

wsmtom_policy

	
SAML

	
1.0

	
Yes

	
No

	
	
Wssp1.2-wss10_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
Mutual Authentication

	
1.1

	
Yes

	
No

	
	
Wssp1.2-wss11_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss11_x509_token_with_message_protection_client_policy

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
	
Wssp1.2-wss10_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
oracle/wss10_x509_token_with_message_protection_client_policy

Table 4-2 OWSM Service Policy and WebLogic Web Service Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Username

	
1.1

	
Yes

	
No

	
oracle/wss11_username_token_with_message_protection_service_policy

	
	
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
Username and MTOM

	
1.1

	
Yes

	
No

	
oracle/wss11_username_token_with_message_protection_service_policy

	
	
Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
Username

	
1.0

	
Yes

	
No

	
oracle/wss10_username_token_with_message_protection_service_policy

	
	
Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
Username over SSL

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_username_token_over_ssl_service_policy

	
Wssp1.2-2007-Https-UsernameToken-Plain.xml

	
Username over SSL with MTOM

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_username_token_over_ssl_service_policy

	
Wssp1.2-2007-Https-UsernameToken-Plain.xml

	
SAML over SSL

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_token_over_ssl_service_policy

	
Wssp1.2-2007-Saml1.1-SenderVouches-Https.xml

	
SAML over SSL with MTOM

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_token_over_ssl_service_policy

	
Wssp1.2-2007-Saml1.1-SenderVouches-Https.xml

	
SAML 2.0

	
1.1

	
Yes

	
No

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
SAML

	
1.1

	
Yes

	
No

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
SAML with MTOM

	
1.1

	
Yes

	
No

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
SAML

	
1.0

	
Yes

	
No

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
	
Wssp1.2-wss10_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
Mutual Authentication

	
1.1

	
Yes

	
No

	
oracle/wss11_x509_token_with_message_protection_service_policy

	
	
Wssp1.2-wss11_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
	
Wssp1.2-wss10_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

4.2 Username Token With Message Protection (WS-Security 1.1)

This section describes how to implement username token with message protection that conforms to the WS-Security 1.1 standard in the following interoperability scenarios:

	
Section 4.2.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.2.2, "Interoperating with a WebLogic Web Service Client Policy"

4.2.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.2.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.2.1.2, "Attaching and Configuring the OWSM Client Policy"

4.2.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-3 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Configure message-level security.

Note: You only need to configure the Confidentiality Key for a WS-Security 1.1 policy.

	
	
"Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

	
"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help

	
5

	
Deploy the Web service.

	
"Install a Web Service" in Oracle WebLogic Server Administration Console Online Help

4.2.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-4 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-3 using clientgen or some other mechanism.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service client: oracle/wss11_username_token_with_message_protection_client_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Configure the policy.

	
"oracle/wss11_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
4

	
Specify keystore.recipient.alias in the client configuration.

	
"oracle/wss11_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
5

	
Ensure that the keystore.recipient.alias keys specified for the client exist as trusted certificate entry in the trust store configured for the Web service.

	
"oracle/wss11_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
6

	
Provide a valid username and password as part of the configuration.

	
"oracle/wss11_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
7

	
Invoke the Web service method from the client.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.2.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.2.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.2.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.2.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-5 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create and deploy a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss11_username_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.2.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-6 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-5 using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Invoke the Web service method from the client.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.3 Username Token With Message Protection (WS-Security 1.1) and MTOM

This section describes how to implement username token with message protection that conforms to the WS-Security 1.1 standard and uses Message Transmission Optimization Mechanism (MTOM) in the following interoperability scenarios:

	
Section 4.3.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.3.2, "Interoperating with a WebLogic Web Service Client Policy"

4.3.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.3.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.3.1.2, "Attaching and Configuring the OWSM Client Policy"

4.3.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-7 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services.

	
2

	
Use the @MTOM annotation in the Web service.

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

4.3.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-8 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Configure the client proxy for the Web service in Table 4-7 using clientgen or some other mechanism.

	
Follow the steps described in "Username Token With Message Protection (WS-Security 1.1)".

	
2

	
If you did not use the @MTOM annotation in the Web service (as described in Table 4-7), attach wsmtom_policy from the Management tab.

	
Follow Step 2 of "Attaching and Configuring the OWSM Client Policy".

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.3.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.3.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.3.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.3.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-9 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Configure the OWSM Web service.

	
Follow the steps in Section 4.2, "Username Token With Message Protection (WS-Security 1.1)".

	
2

	
Attach wsmtom_policy from the Management tab.

	
Follow Step 2 of Section 4.2.1.2, "Attaching and Configuring the OWSM Client Policy".

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.3.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses a WebLogic Web service client policy, perform the following tasks.

Table 4-10 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-9 using clientgen.

	
Follow the steps in Section 4.2, "Username Token With Message Protection (WS-Security 1.1)".

	
2

	
If you did not attach the wsmtom_policy as described in Table 4-9, use the @MTOM annotation in the Web service client.

	
Follow Step 2 of "Attaching and Configuring the WebLogic Web Service Client Policy".

4.4 Username Token With Message Protection (WS-Security 1.0)

This section describes how to implement username token with message protection that conforms to the WS-Security 1.0 standard in the following interoperability scenarios:

	
Section 4.4.1, "Interoperability with a WebLogic Web Service Policy"

	
Section 4.4.2, "Interoperability with a WebLogic Web Service Client Policy"

	
Note:

WS-Security 1.0 policy is supported for legacy applications only. Use WS-Security 1.1 policy for maximum performance. For more information, see "Username Token With Message Protection (WS-Security 1.1)".

4.4.1 Interoperability with a WebLogic Web Service Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.0 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.4.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.4.1.2, "Attaching and Configuring the OWSM Client Policy"

4.4.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-11 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help.

	
4

	
Configure message-level security.

	
"Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help

	
5

	
Deploy the Web service.

	
Deploying Applications to Oracle WebLogic Server.

4.4.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-12 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy to the Web service created in Table 4-11 using clientgen or some other mechanism.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service client: oracle/wss10_username_token_with_message_protection_client_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Configure the policy.

	
"oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
4

	
Ensure that you use different keys for client (sign and decrypt key) and keystore recipient alias (server public key used for encryption). Ensure that the recipient alias is in accordance with the keys defined in the Web service policy security configuration.

	
"oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
5

	
Ensure that the signing and encryption keys specified for the client exist as trusted certificate entries in the trust store configured for the Web service.

	
"oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
6

	
Provide a valid username and password as part of the configuration.

	
"oracle/wss10_username_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
7

	
Invoke the Web service method from the client.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.4.2 Interoperability with a WebLogic Web Service Client Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.0 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.4.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.4.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.4.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-13 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss10_username_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

4.4.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-14 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-13 using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure the client for server (encryption key) and client certificates.

Note: Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Invoke the Web service method from the client.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.5 Username Token Over SSL

The following section describes how to implement username token over SSL, describing the following interoperability scenario:

	
Section 4.5.1, "Interoperating with a WebLogic Web Service Client Policy"

4.5.1 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement username token over SSL and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.5.1.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.5.1.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.5.1.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-15 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Configure the server for one-way SSL.

	
"Configuring SSL on WebLogic Server (One-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
2

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
3

	
Attach the following policy: oracle/wss_username_token_over_ssl_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.5.1.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-16 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-15 using clientgen. Provide a valid username and password as part of the configuration for this policy in the client proxy.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Configure WebLogic Server for SSL.

	
"Configuring SSL on WebLogic Server (One-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Attach Wssp1.2-2007-Https-UsernameToken-Plain.xml to the Web service client.

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
5

	
Provide the truststore and other required System properties in the SSL client.

	
"Using SSL Authentication in Java Clients" in Developing Applications with the WebLogic Security Service

	
6

	
Invoke the Web service.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.6 Username Token Over SSL with MTOM

The following section describes how to implement username token over SSL with Message Transmission Optimization Mechanism (MTOM) in the following interoperability scenario:

	
Section 4.6.1, "Interoperating with a WebLogic Web Service Client Policy"

4.6.1 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement username token over SSL with MTOM and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.6.1.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.6.1.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.6.1.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-17 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Configure the OWSM Web service.

	
Follow the steps in "Username Token With Message Protection (WS-Security 1.1)".

4.6.1.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses a WebLogic Web service client policy, perform the following tasks.

Table 4-18 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-17.

	
Follow the steps in "Username Token With Message Protection (WS-Security 1.1)".

	
2

	
Use the @MTOM annotation in the Web service client.

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

4.7 SAML Token (Sender Vouches) Over SSL

The following section describes how to implement SAML token sender vouches with SSL. It describes the following interoperability scenario:

	
Section 4.7.1, "Interoperating with a WebLogic Web Service Client Policy"

4.7.1 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement SAML token sender vouches with SSL and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.7.1.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.7.1.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.7.1.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-19 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Configure the oracle/wss_saml_token_over_ssl_service_policy policy for two-way SSL.

	
"oracle/wss_saml_token_over_ssl_service_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
2

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
3

	
Attach the following policy to the Web service: oracle/wss_saml_token_over_ssl_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

4.7.1.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-20 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-19 using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Configure Oracle WebLogic Server for two-way SSL.

	
"Configuring SSL on WebLogic Server (Two-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Attach Wssp1.2-2007-Saml1.1-SenderVouches-Https.xml to the Web service client.

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
5

	
Configure a SAML credential mapping provide.

In the WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAMLCredentialMapperV2.

Select the new provider, click on Provider Specific, and configure it as follows:

	
Set Issuer URI to www.oracle.com.

	
Set Name Qualifier to www.oracle.com.

	
"Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help

	
6

	
Restart Oracle WebLogic Server.

	
"Accessing Oracle WebLogic Administration Console" in Administering Web Services

	
7

	
Create a SAML relying party.

Set the Profile to WSS/Sender-Vouches.

	
"Create a SAML 1.1 Relying Party" and "Configure a SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console Online Help

	
8

	
Configure the SAML relying party.

Configure the SAML relying party as follows (leave other values set to the defaults):

	
Target URL: <url_used_to_access_Web_service>

	
Description: <your_description>

Select the Enabled checkbox and click Save.

Ensure the Target URL is set to the URL used for the client Web service.

	
"Create a SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console Online Help

	
9

	
Create a servlet and call the proxy code from the servlet.

	

	
10

	
Use BASIC authentication so that the authenticated subject can be created.

	

	
11

	
Provide the truststore and other required System properties in the SSL client.

	
"Using SSL Authentication in Java Clients" in Developing Applications with the WebLogic Security Service

	
12

	
Invoke the Web application client.

Enter the credentials of the user whose identity is to be propagated using the SAML token.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.8 SAML Token (Sender Vouches) Over SSL with MTOM

The following section describes how to implement SAML token sender vouches over SSL with MTOM. It describes the following interoperability scenario:

	
Section 4.8.1, "Interoperating with a WebLogic Web Service Client Policy"

4.8.1 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement SAML token vouches over SSL with MTOM and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.8.1.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.8.1.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.8.1.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-21 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Configure the OWSM Web service.

	
"SAML Token (Sender Vouches) Over SSL"

4.8.1.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses a WebLogic Web service client policy, perform the following tasks.

Table 4-22 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Configure the Oracle WebLogic Web service client policy.

	
"SAML Token (Sender Vouches) Over SSL"

	
2

	
Use the @MTOM annotation in the Web service client.

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server.

4.9 SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)

This section describes how to implement SAML 2.0 token sender vouches with message protection that conforms to the WS-Security 1.1 standard in the following interoperability scenarios:

	
Section 4.9.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.9.2, "Interoperating with a WebLogic Web Service Client Policy"

4.9.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement SAML 2.0 token sender vouches with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.9.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.9.1.2, "Attaching and Configuring the OWSM Client Policy"

4.9.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-23 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure the keystore properties for message signing and encryption. The configuration should be in accordance with the keystore used on the server side. Create the trust store out of the keystore by exporting both keys, and trust both of them while importing into trust store. Configure identity and trust stores.

	
See "Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help.

	
4

	
Configure message-level security.

	
See "Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help

	
5

	
Attach new configuration using the annotation:

@WssConfiguration(value="<my_security_configuration>") where <my_security_configuration> is the name of the Web Security Configuration created in Step 4.

	
"Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

	
6

	
Deploy the Web service.

	
See Deploying Applications to Oracle WebLogic Server.

	
7

	
Create a SAML Identity Asserter.

In the WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAML2IdentityAsserter.

	
"Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help

	
8

	
Restart WebLogic Server.

	
"Start and stop servers" in the Oracle WebLogic Server Administration Console Online Help.

	
9

	
To add the identity provider to the identity asserter created in Step 7, perform the following steps:

	
Select the identity asserter created in Step 7 in the WebLogic Administration Console.

	
Create a new identity provider partner, select New, and then select New Webservice Identity Provider Partner.

	
Provide a name, and select Finish.

	

	
10

	
Configure the identity provider as follows:

	
Select the identity provide partner created in Step 9.

	
Select the Enabled check box.

	
Provide the Audience URI. For example: target:*:/saml20WLSWS-Project1-context-root/Class1Port

	
Set Issuer URI to www.oracle.com.

	
Set Target URL to <url_used_to_access_Web_service>.

	
Set Profile to WSS/Sender-Vouches.

	

4.9.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-24 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Generate a client using JDeveloper for the Web service created in Table 4-23. Create a Web project and then select New, and create a client proxy using the WSDL.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Add a servlet in the above project.

	

	
3

	
Attach the following policy to the Web service client: oracle/wss11_saml20_token_with_message_protection_client_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
4

	
Specify keystore.recipient.alias in the client configuration.

Ensure that keystore.recipient.alias is the same as the decryption key specified for the Web service.

	
"oracle/wss11_saml20_token_with_message_protection_cient_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
5

	
Ensure that the keystore.recipient.alias keys specified for the client exist as trusted certificate entry in the trust store configured for the Web service.

	
"oracle/wss11_saml20_token_with_message_protection_cient_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
6

	
In JDeveloper, secure web project with Form-based authentication using the Configure ADF Security Wizard.

	
Developing Applications with Oracle JDeveloper

	
7

	
Invoke the Web application client.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.9.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement SAML 2.0 token sender vouches with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the WebLogic Web service client policy and the OWSM policy:

	
Section 4.9.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.9.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.9.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-25 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss11_saml20_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.9.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-26 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a Java EE client for the deployed Web service using JDeveloper. Create a Web project and create a proxy using WSDL proxy.

	
"Creating JAX-WS Web Services and Clients" in Developing Applications with Oracle JDeveloper

	
2

	
Attach the following policies:

	
Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

Extract weblogic.jar to a folder and provide the absolute path to the above policies files.

	
"Attaching Policies" in Developing Applications with Oracle JDeveloper

	
3

	
Add servlet to above web project.

	

	
4

	
Configure the client for server (encryption key) and client certificates.

Ensure that the encryption key specified is in accordance with the decryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
5

	
Secure the Web application client using BASIC Authentication.

	
"Developing BASIC Authentication Web Applications" in Developing Applications with the WebLogic Security Service

	
6

	
Deploy the Java EE Web application client.

	
"Deploying Web Services Applications" in Administering Web Services

	
7

	
Configure a SAML credential mapping provider.

In the Oracle WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAML2CredentialMapper.

Select the new provider, click on Provider Specific, and configure it as follows:

	
Set Issuer URI to www.oracle.com.

	
Set Name Qualifier to www.oracle.com.

	
"Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help

	
8

	
Restart WebLogic Server.

	
"Start and stop servers" in the Oracle WebLogic Server Administration Console Online Help.

	
9

	
To create a new service provider partner, perform the following steps:

	
Select the credential mapper created in Step 7 in the WebLogic Administration Console, and then select the Management tab.

	
Select New, and then select New Webservice Service Provider Partner.

	
Provide a name, and select Finish.

	

	
10

	
Configure the service provider partner as follows:

	
Select the service provide partner created in Step 9.

	
Select the Enabled check box.

	
Provide the Audience URI.

	
Set Issuer URI to www.oracle.com.

	
Set Target URL to <url_used_to_access_Web_service>.

	
Set Profile to WSS/Sender-Vouches.

	

	
11

	
Invoke the Web application client.

Enter the credentials of the user whose identity is to be propagated using SAML token.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.10 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

This section describes how to implement SAML token sender vouches with message protection that conforms to the WS-Security 1.1 standard in the following interoperability scenarios:

	
Section 4.10.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.10.2, "Interoperating with a WebLogic Web Service Client Policy"

4.10.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement SAML token sender vouches with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.10.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.10.1.2, "Attaching and Configuring the OWSM Client Policy"

4.10.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-27 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server.

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Configure message-level security.

Since this is a WS-Security 1.1 policy, you need to configure Confidentiality Key only.

	
	
"Configure Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

	
"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help.

	
5

	
Deploy the Web service.

	
Deploying Applications to Oracle WebLogic Server.

	
6

	
Create a SAMLIdentityAsserterV2 authentication provider.

In the WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAMLCredentialMapperV2.

	
"Configuring Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help

	
7

	
Restart WebLogic Server.

	
"Start and stop servers" in the Oracle WebLogic Server Administration Console Online Help.

	
8

	
Select the authentication provider created in step 5.

	

	
9

	
Create a SAML asserting party.

Set Profile to WSS/Sender-Vouches.

	
"Create a SAML 1.1 Asserting Party" in Oracle WebLogic Server Administration Console Online Help

	
10

	
Configure the SAML asserting party.

Configure the SAML asserting party as follows:

	
Set Issuer URI to www.oracle.com.

	
Set Target URL to <url_used_to_access_Web_service>.

	
"Create a SAML 1.1 Asserting Party" in Oracle WebLogic Server Administration Console Online Help

4.10.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-28 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy to the Web service created in Table 4-27 using clientgen or some other mechanism.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service client: oracle/wss11_saml_token_with_message_protection_client_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Configure the policy, as described in oracle/wss11_saml_token_with_message_protection_client_policy.

	
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
4

	
Specify keystore.recipient.alias in the client configuration.

Ensure that keystore.recipient.alias is the same as the decryption key specified for the Web service.

	
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
5

	
Ensure that the keystore.recipient.alias keys specified for the client exist as trusted certificate entry in the trust store configured for the Web service.

	
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
6

	
Provide a valid username whose identity needs to be propagated using SAML token in the client configuration.

	
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
7

	
Invoke the Web application client.

Enter the credentials of the user whose identity is to be propagated using SAML token.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.10.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement SAML 2.0 sender vouches with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.10.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.10.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.10.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-29 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss11_saml_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.10.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-30 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service (above) using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure the client for server (encryption key) and client certificates.

Ensure that the encryption key specified is in accordance with the decryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Secure the Web application client using BASIC Authentication.

	
"Developing BASIC Authentication Web Applications" in Developing Applications with the WebLogic Security Service.

	
5

	
Deploy the Web service client.

	
"Deploying Web Services Applications" in Administering Web Services

	
6

	
Configure a SAML credential mapping provider.

In the Oracle WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAMLCredentialMapperV2.

Select the new provider, click on Provider Specific, and configure it as follows:

	
Set Issuer URI to www.oracle.com.

	
Set Name Qualifier to www.oracle.com.

	
"Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help

	
7

	
Restart WebLogic Server.

	
"Start and stop servers" in the Oracle WebLogic Server Administration Console Online Help.

	
8

	
Create a SAML relying party.

Set the Profile to WSS/Sender-Vouches.

	
"Create a SAML 1.1 Relying Party" and "Configure a SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console Online Help

	
9

	
Configure the SAML relying party.

Ensure the Target URL is set to the URL used for the client Web service.

	
"Configure a SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console Online Help

	
10

	
Invoke the Web application client.

Enter the credentials of the user whose identity is to be propagated using SAML token.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.11 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and MTOM

This section describes how to implement SAML token with sender vouches and message protection that conforms to the WS-Security 1.1 standard and uses Message Transmission Optimization Mechanism (MTOM) in the following interoperability scenarios:

	
Section 4.11.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.11.2, "Interoperating with a WebLogic Web Service Client Policy"

4.11.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement SAML token sender vouches with message protection that conforms to the WS-Security 1.1 standard and MTOM and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.11.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.11.1.2, "Attaching and Configuring the OWSM Client Policy"

4.11.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-31 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service, as described in Section 4.10, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Use the @MTOM annotation in the Web service in Step 2 of "Attaching and Configuring the WebLogic Web Service Policy".

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

4.11.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-32 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy to the Web service created in Table 4-31, as described in Section 4.10, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach wsmtom_policy from the Management tab.

	
Step 2 of Section 4.10.1.2, "Attaching and Configuring the OWSM Client Policy".

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.11.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement SAML token sender vouches with message protection that conforms to the WS-Security 1.1 standard and MTOM and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.11.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.11.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.11.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-33 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create and deploy a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss11_username_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.11.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-34 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-5 using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Invoke the Web service method from the client.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.12 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

This section describes how to implement SAML token with sender vouches and message protection that conforms to the WS-Security 1.0 standard in the following interoperability scenarios:

	
Section 4.12.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.12.2, "Interoperating with a WebLogic Web Service Client Policy"

	
Note:

WS-Security 1.0 policy is supported for legacy applications only. Use WS-Security 1.1 policy for maximum performance. For more information, see "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)".

4.12.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement SAML token with sender vouches and message protection that conforms to the WS-Security 1.0 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.12.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.12.1.2, "Attaching and Configuring the OWSM Client Policy"

4.12.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-35 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-wss10_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Configure message-level security.

	
	
"Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

	
"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help

	
5

	
Deploy the Web service.

	
Deploying Applications to Oracle WebLogic Server.

	
6

	
Create a SAMLIdentityAsserterV2 authentication provider.

In the WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAMLCredentialMapperV2.

	
"Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help

	
7

	
Restart WebLogic Server.

	
"Start and stop servers" in the Oracle WebLogic Server Administration Console Online Help.

	
8

	
Select the authentication provider created in step 5.

	

	
9

	
Create a SAML asserting party.

Set Profile to WSS/Sender-Vouches.

	
"Create a SAML 1.1 Asserting Party" in Oracle WebLogic Server Administration Console Online Help

	
10

	
Configure a SAML asserting party.

Configure the SAML asserting party as follows (leave other values set to the defaults):

	
Set Issuer URI to www.oracle.com.

	
Set Target URL to <url_used_by_client>.

	
"Configure a SAML 1.1 Asserting Party" in Oracle WebLogic Server Administration Console Online Help

4.12.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-36 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy to the Web service created in Table 4-35 using clientgen or some other mechanism.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service client: oracle/wss10_saml_token_with_message_protection_client_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Configure the policy.

	
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
4

	
Ensure that you use different keys for client (sign and decrypt key) and keystore recipient alias (server public key used for encryption). Ensure that the recipient alias is in accordance with the keys defined in the Web service policy security configuration.

	
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
5

	
Ensure that the signing and encryption keys specified for the client exist as trusted certificate entries in the trust store configured for the Web service.

	
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
6

	
Provide valid username whose identity needs to be propagated using SAML token in the client configuration.

	
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
7

	
Invoke the Web service method.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.12.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement SAML token with message protection that conforms to the WS-Security 1.0 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.12.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.12.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.12.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-37 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss10_saml_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.12.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-38 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service (above) using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-wss10_saml_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure the client for server (encryption key) and client certificates.

Ensure that the encryption key specified is in accordance with the decryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Secure the Web application client using BASIC Authentication.

	
"Developing BASIC Authentication Web Applications" in Developing Applications with the WebLogic Security Service

	
5

	
Deploy the Web service client.

	
"Deploying Web Services Applications" in Administering Web Services

	
6

	
Configure a SAML credential mapping provider.

In the WebLogic Server Administration Console, navigate to Security Realms > RealmName > Providers > Credential Mapping page and create a New Credential Mapping Provider of type SAMLCredentialMapperV2.

	
"Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help

	
7

	
Select the SAMLCredentialMapperV2, click on Provider Specific, and configure it as follows:

	
Set Issuer URI to www.oracle.com.

	
Set Name Qualifier to www.oracle.com.

	

	
8

	
Restart WebLogic Server.

	
"Start and stop servers" in the Oracle WebLogic Server Administration Console Online Help.

	
9

	
Create a SAML relying party.

Set the profile to WSS/Sender-Vouches.

	
"Create a SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console Online Help

	
10

	
Configure the SAML relying party.

Ensure the target URL is set to the URL used for the client Web service.

	
"Configure a SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console Online Help

	
11

	
Invoke the Web application client and enter the appropriate credentials.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.13 Mutual Authentication with Message Protection (WS-Security 1.0)

The following sections describe how to implement mutual authentication with message protection that conform to the WS-Security 1.0 standards:

	
Section 4.13.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.13.2, "Interoperating with a WebLogic Web Service Client Policy"

4.13.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to mutual authentication with message protection that conforms to the WS-Security 1.0 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.13.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.13.1.2, "Attaching and Configuring the OWSM Client Policy"

4.13.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-39 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-wss10_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Configure message-level security.

	
	
"Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

	
"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help

	
5

	
Create and configure token handlers for X.509 and for username token. In WebLogic Administration Console, navigate to the Web Service Security page of the domain and create the token handlers as described below.

Create a token handle for username token and configure the following:

	
Name: <name>

	
Class name: weblogic.xml.crypto.wss.UsernameTokenHandler

	
Token Type: ut

	
Handling Order: 1

Create a token handler for X.509 and configure the following:

	
Name: <name>

	
Class name: weblogic.xml.crypto.wss.BinarySecurityTokenHandler

	
Token Type: x509

	
Handling Order: 0

For the X.509 token handler, add the following properties:

	
Name: UserX509ForIdentity

	
Value: true

	
IsEncrypted: False

	
"Create a token handler of a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help.

	
6

	
Configure a credential mapping provider.

Create a PKICredentialMapper and configure it as follows (leave all other values set to the defaults):

	
Keystore Provider: N/A

	
Keystore Type: jks

	
Keystore File Name: default_keystore.jks

	
Keystore Pass Phrase: <password>

	
Confirm Keystore Pass Phrase: <password>

	
"Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help

	
7

	
Configure Authentication.

Select the Authentication tab and configure as follows:

	
Click DefaultIdentityAsserter and add X.509 to Chosen active types

	
Click Provider Specific and configure the following:

Default User Name Mapper Attribute Type: CN

Active Types: X.509

Use Default User Name Mapper: True

	
"Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help

	
8

	
If the users are not added, add the Common Name (CN) user specified in the certificate.

	
"Create users" in Oracle WebLogic Server Administration Console Online Help

	
9

	
Restart Oracle WebLogic Server.

	

	
10

	
Deploy the Web service.

	
"Install a Web Service" in Oracle WebLogic Server Administration Console Online Help

4.13.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-40 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy to the Web service created in Table 4-39 using clientgen or some other mechanism.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the client: wss10_x509_token_with_message_protection_client_policy

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Provide the configuration for the server (encryption key) in the client.

Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Invoke the Web service method from the client.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.13.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement username token with message protection that conforms to the WS-Security 1.0 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.13.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.13.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.13.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-41 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss10_x509_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.13.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-42 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-41 using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-wss10_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Provide the configuration for the server (encryption key) in the client.

Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Invoke the Web service method from the client.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.14 Mutual Authentication with Message Protection (WS-Security 1.1)

The following sections describe how to implement mutual authentication with message protection that conform to the WS-Security 1.1 standards:

	
Section 4.13.1, "Interoperating with a WebLogic Web Service Policy"

	
Section 4.13.2, "Interoperating with a WebLogic Web Service Client Policy"

4.14.1 Interoperating with a WebLogic Web Service Policy

The following sections describe how to implement mutual authentication with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the WebLogic Web service policy and the OWSM client policy:

	
Section 4.14.1.1, "Attaching and Configuring the WebLogic Web Service Policy"

	
Section 4.14.1.2, "Attaching and Configuring the OWSM Client Policy"

4.14.1.1 Attaching and Configuring the WebLogic Web Service Policy

To configure a Web service with a WebLogic Web service policy, perform the following tasks.

Table 4-43 Attaching and Configuring the WebLogic Web Service Policy

	Task	Description	More Information
	
1

	
Create a WebLogic Web service.

	
"Roadmap for Implementing WebLogic (Java EE) Web Services" in Understanding Web Services

	
2

	
Attach the following policies:

	
Wssp1.2-wss11_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Configure identity and trust stores.

	
"Configure identity and trust" in Oracle WebLogic Server Administration Console Online Help

	
4

	
Configure message-level security.

	
	
"Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server

	
"Create a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help

	
5

	
Create and configure token handlers for X.509 and for username token. In WebLogic Administration Console, navigate to the Web Service Security page of the domain and create the token handlers as described below.

Create a token handle for username token and configure the following:

	
Name: <name>

	
Class name: weblogic.xml.crypto.wss.UsernameTokenHandler

	
Token Type: ut

	
Handling Order: 1

	
Create a token handle for username token and configure the following:

Create a token handler for X.509 and configure the following:

	
Name: <name>

	
Class name: weblogic.xml.crypto.wss.BinarySecurityTokenHandler

	
Token Type: x509

	
Handling Order: 0

For the X.509 token handler, add the following properties:

	
Name: UserX509ForIdentity

	
Value: true

	
IsEncrypted: False

	
"Create a token handler of a Web Service security configuration" in Oracle WebLogic Server Administration Console Online Help.

	
6

	
Configure a credential mapping provider.

Create a PKICredentialMapper and configure it as follows (leave all other values set to the defaults):

	
Keystore Provider: N/A

	
Keystore Type: jks

	
Keystore File Name: default_keystore.jks

	
Keystore Pass Phrase: <password>

	
Confirm Keystore Pass Phrase: <password>

	
"Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help

	
7

	
Configure Authentication.

Select the Authentication tab and configure as follows:

	
Click DefaultIdentityAsserter and add X.509 to Chosen active types

	
Click Provider Specific and configure the following:

Default User Name Mapper Attribute Type: CN

Active Types: X.509

Use Default User Name Mapper: True

	
"Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help

	
8

	
If the users are not added, add the Common Name (CN) user specified in the certificate.

	
"Create users" in Oracle WebLogic Server Administration Console Online Help

	
9

	
Restart Oracle WebLogic Server.

	

	
10

	
Deploy the Web service.

	
"Install a Web Service" in Oracle WebLogic Server Administration Console Online Help

4.14.1.2 Attaching and Configuring the OWSM Client Policy

To configure the client with an OWSM client policy, perform the following tasks.

Table 4-44 Attaching and Configuring the OWSM Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-43 using clientgen or some other mechanism.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the client: wss11_x509_token_with_message_protection_client_policy

Edit the policy as follows:

<orasp:x509-token
 orasp:sign-key-ref-mech="thumbprint"
 orasp:enc-key-ref-mech="thumbprint"/>

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
3

	
Provide the configuration for the server (encryption key) in the client.

Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server.

	
4

	
Invoke the Web service method from the client.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

4.14.2 Interoperating with a WebLogic Web Service Client Policy

The following sections describe how to implement mutual authentication with message protection that conforms to the WS-Security 1.1 standard and ensure interoperability between the OWSM Web service policy and the WebLogic Web service client policy:

	
Section 4.14.2.1, "Attaching and Configuring the OWSM Policy"

	
Section 4.14.2.2, "Attaching and Configuring the WebLogic Web Service Client Policy"

4.14.2.1 Attaching and Configuring the OWSM Policy

To configure a Web service with an OWSM Web service policy, perform the following tasks.

Table 4-45 Attaching and Configuring the OWSM Policy

	Task	Description	More Information
	
1

	
Create and deploy a Web service.

	
"Roadmap for Implementing Oracle Fusion Middleware Web Services" in Understanding Web Services

	
2

	
Attach the following policy to the Web service: oracle/wss11_x509_token_with_message_protection_service_policy.

	
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

4.14.2.2 Attaching and Configuring the WebLogic Web Service Client Policy

To configure a client that uses WebLogic Web service client policy, perform the following tasks.

Table 4-46 Attaching and Configuring the WebLogic Web Service Client Policy

	Task	Description	More Information
	
1

	
Create a client proxy for the Web service created in Table 4-45 using clientgen.

	
"Using the clientgen Ant Task to Generate Client Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

	
2

	
Attach the following policies:

	
Wssp1.2-wss11_x509_token_with_message_protection_owsm_policy.xml

	
Wssp1.2-2007-SignBody.xml

	
Wssp1.2-2007-EncryptBody.xml

	
"Updating the JWS File with @Policy and @Policies Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

	
3

	
Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with the encryption key configured for the Web service.

	
"Updating a Client Application to Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for Oracle WebLogic Server

	
4

	
Invoke the Web service method from the client.

	
"Writing the Java Client Application Code to Invoke a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

5 Interoperability with Microsoft WCF/.NET 3.5 Security Environments

This chapter describes interoperability of Oracle Web Services Manager (OWSM) with Microsoft WCF/.NET 3.5 security environments.

	
Note:

A subset of the interoperability scenarios within this chapter employ SOA applications which will be supported in a future release of Oracle Fusion Middleware 12c. For this release, you can substitute an ADF or Java EE application in these scenarios.

This chapter contains the following sections:

	
Section 5.1, "Overview of Interoperability with Microsoft WCF/.NET 3.5 Security Environments"

	
Section 5.2, "Message Transmission Optimization Mechanism (MTOM)"

	
Section 5.3, "Username Token With Message Protection (WS-Security 1.1)"

	
Section 5.4, "Username Token Over SSL"

	
Section 5.5, "Mutual Authentication with Message Protection (WS-Security 1.1)"

	
Section 5.6, "Kerberos with Message Protection"

	
Section 5.7, "Kerberos with Message Protection Using Derived Keys"

	
Section 5.8, "Kerberos with SPNEGO Negotiation"

	
Section 5.9, "Kerberos with SPNEGO Negotiation and Credential Delegation"

	
Section 5.10, "WCF/.NET 3.5 client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS"

5.1 Overview of Interoperability with Microsoft WCF/.NET 3.5 Security Environments

In conjunction with Microsoft, Oracle has performed interoperability testing to ensure that the Web service security policies created using OWSM 12c can interoperate with Web service policies configured using Microsoft Windows Communication Foundation (WCF)/.NET 3.5 Framework and vice versa.

For more information about Microsoft WCF/.NET 3.5 Framework, see http://msdn.microsoft.com/en-us/netframework/aa663324.aspx.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

Table 5-1 and Table 5-2 summarize the most common Microsoft .NET 3.5 interoperability scenarios based on the following security requirements: authentication, message protection, and transport.

	
Note:

In the following scenarios, ensure that you are using a keystore with v3 certificates.

In addition, ensure that the keys use the proper extensions, including DigitalSignature, Non_repudiation, Key_Encipherment, and Data_Encipherment.

Table 5-1 OWSM 12c Service Policy and Microsoft WCF/.NET 3.5 Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
MTOM

	
NA

	
NA

	
NA

	
oracle/wsmtom_policy

	
See "Configuring Microsoft WCF/.NET 3.5 Client"

	
Username or SAML

	
1.1

	
Yes

	
No

	
oracle/wss11_username_token_with_message_protection_service_policy

OR

oracle/wss11_saml_or_username_token_with_message_protection_service_policy

	
See "Configuring Microsoft WCF/.NET 3.5 Client"

	
Username

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

OR

oracle/wss_username_token_over_ssl_service_policy

	
See "Configuring Microsoft WCF/.NET 3.5 Client"

	
Mutual Authentication

	
1.1

	
Yes

	
No

	
oracle/wss11_x509_token_with_message_protection_service_policy

	
See "Configuring Microsoft WCF/.NET 3.5 Client"

	
Kerberos

	
1.1

	
Yes

	
No

	
oracle/wss11_kerberos_with_message_protection_service_policy

	
See "Configuring Microsoft WCF/.NET 3.5 Client"

Table 5-2 Microsoft WCF/.NET 3.5 Service Policy and OWSM 12c Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
MTOM

	
NA

	
NA

	
NA

	
See "Configuring Microsoft WCF/.NET 3.5 Web Service"

	
oracle/wsmtom_policy

	
Username

	
1.1

	
Yes

	
No

	
See "Configuring Microsoft WCF/.NET 3.5 Web Service"

	
oracle/wss11_username_token_with_message_protection_client_policy

	
Mutual Authentication

	
1.1

	
Yes

	
No

	
See "Configuring Microsoft WCF/.NET 3.5 Web Service"

	
oracle/wss11_x509_token_with_message_protection_client_policy

5.2 Message Transmission Optimization Mechanism (MTOM)

This section describes how to implement MTOM in the following interoperability scenarios:

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service"

5.2.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.2.1.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Attach the following policy to the Web service: oracle/wsmtom_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the application.

5.2.1.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Use the SVCUtil utility to create a client proxy and configuration file from the deployed Web service. See "Example app.config File for MTOM Interoperability".

	
Run the client program.

Example app.config File for MTOM Interoperability

The following provides an example of the app.config file:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="CustomBinding_IMTOMService">
 <mtomMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" maxBufferSize="65536"
 writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength=
 "8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </mtomMessageEncoding>
 <httpTransport manualAddressing="false" maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="<endpoint_url>"
 binding="customBinding" bindingConfiguration="CustomBinding_IMTOMService"
 contract="IMTOMService" name="CustomBinding_IMTOMService" >
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

5.2.2 Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service

To configure OWSM 12c client and Microsoft WCF/.NET 3.5 Web service, perform the steps described in the following sections:

5.2.2.1 Configuring Microsoft WCF/.NET 3.5 Web Service

	
Create a .NET Web service.

For more information, see "How to: Define a Windows Communication Foundation Service Contract" at http://msdn.microsoft.com/en-us/library/ms731835.aspx.

For an example of a .NET Web service, see "Example of .NET Web Service for MTOM Interoperability".

	
Deploy the application.

5.2.2.2 Configuring OWSM 12c Client

	
Using JDeveloper, create a SOA composite that consumes the .NET Web service. For more information, see the Developer's Guide for SOA Suite.

	
Attach the following policy to the Web service client: oracle/wsmtom_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

Example of .NET Web Service for MTOM Interoperability

The following provides an example of the .NET Web service for MTOM interoperability.

static void Main(string[] args)
{
 string uri = "http://host:port/TEST/MTOMService/SOA/MTOMService";
 // Step 1 of the address configuration procedure: Create a URI to serve as the base address.
 Uri baseAddress = new Uri(uri);

 // Step 2 of the hosting procedure: Create ServiceHost
 ServiceHost selfHost = new ServiceHost(typeof(MTOMService), baseAddress);

 try {
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 2147483647;
 hb.MaxReceivedMessageSize = 2147483647;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 2147483647;
 hb.ProxyAuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 MtomMessageEncodingBindingElement me = new MtomMessageEncodingBindingElement();
 me.MaxReadPoolSize=64;
 me.MaxWritePoolSize=16;
 me.MessageVersion=System.ServiceModel.Channels.MessageVersion.Soap12;
 me.WriteEncoding = System.Text.Encoding.UTF8;
 me.MaxWritePoolSize = 2147483647;
 me.MaxBufferSize = 2147483647;
 me.ReaderQuotas.MaxArrayLength = 2147483647;
 CustomBinding binding1 = new CustomBinding();
 binding1.Elements.Add(me);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(IMTOMService), binding1,
 "MTOMService");
 EndpointAddress myEndpointAdd = new EndpointAddress(new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);
 using (ServiceHost host = new ServiceHost(typeof(MTOMService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc =
 selfHost.Description;
 ServiceDebugBehavior svcDebug =
 svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The service " + uri + " is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 // Close the ServiceHostBase to shutdown the service.
 selfHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

5.3 Username Token With Message Protection (WS-Security 1.1)

This section describes how to implement username token with message protection that conforms to WS-Security 1.1 in the following interoperability scenarios:

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service"

5.3.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.3.1.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Attach one of the following policies to the Web service:

oracle/wss11_username_token_with_message_protection_service_policy

oracle/wss11_saml_or_username_token_with_message_protection_service_policy

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager

	
Export the X.509 certificate file from the keystore on the service side to a .cer file (for example, alice.cer) using the following command:

keytool -export -alias alice -file C:\alice.cer -keystore default-keystore.jks

5.3.1.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Import the certificate file (exported previously) to the keystore on the client server using Microsoft Management Console (mmc). For information, see "How to: View Certificates with the MMC Snap-in" at http://msdn.microsoft.com/en-us/library/ms788967.aspx.

	
Open a command prompt.

	
Type mmc and press ENTER.

	
Select File > Add/Remove snap-in.

	
Select Add and Choose Certificates.

	
Note:

To view certificates in the local machine store, you must be in the Administrator role.

	
Select Add.

	
Select My user account and finish.

	
Click OK.

	
Expand Console Root > Certificates -Current user > Personal > Certificates.

	
Right-click on Certificates and select All tasks > Import to launch Certificate import Wizard.

	
Click Next, select Browse, and navigate to the .cer file that was exported previously.

	
Click Next and accept defaults and finish the wizard.

	
Generate a .NET client using the WSDL of the Web service.

For more information, see "How to: Create a Windows Communication Foundation Client" at http://msdn.microsoft.com/en-us/library/ms733133.aspx.

	
Note:

SVCUtil does not support some security policy assertions such as <sp:SignedParts>. As a workaround:

	
Detach the policy

	
Generate proxy using SVCUtil

	
Attach the policy back

	
In the Solution Explorer of the client project, add a reference by right-clicking on references, selecting Add reference, and browsing to C:\Windows\Microsoft .NET framework\v3.0\Windows Communication Framework\System.Runtime.Serialization.dll.

	
Edit the app.config file in the .NET project to update the certificate file and disable replays, as described in "Edit the app.config File".

	
Compile the project.

	
Open a command prompt and navigate to the project's Debug folder.

	
Enter <client_project_name>.exe and press Enter.

Edit the app.config File

Edit the app.config file to update the certificate file and disable replays, as shown in the following example (changes are identified in bold). If you follow the default key setup, then <certificate_cn> should be set to alice.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser" storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <customBinding>
 <binding name="HelloWorldSoapHttp">
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="UserNameForCertificate"
 requireDerivedKeys="false" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion=
"WSSecurity11WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true">
 <localClientSettings
 cacheCookies="true"
 detectReplays="false"
 replayCacheSize="900000"
 maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128"
 replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00"
 replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap /></security>
 <textMessageEncoding
 maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap11"
 writeEncoding="utf-8">
 <readerQuotas
 maxDepth="32"
 maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096"
 maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <HttpTransport
 manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536"
 allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true"
 maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm=""
 transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="<endpoint_url>"
 binding="customBinding"
 bindingConfiguration="HelloWorldSoapHttp"
 contract="HelloWorld"
 name="HelloWorldPort"
 behaviorConfiguration="secureBehaviour" >
 <identity>
 <dns value="<certificate_cn>"/>
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

5.3.2 Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service

To configure OWSM 12c client and Microsoft WCF/.NET 3.5 Web service, perform the steps described in the following sections:

5.3.2.1 Configuring Microsoft WCF/.NET 3.5 Web Service

	
Create a .NET Web service.

For more information, see "How to: Define a Windows Communication Foundation Service Contract" at http://msdn.microsoft.com/en-us/library/ms731835.aspx.

Be sure to create a custom binding for the Web service using the SymmetricSecurityBindingElement. For an example, see "Example .NET Web Service Client".

	
Create and import a certificate file to the keystore on the Web service server.

Using VisualStudio, the command would be similar to the following:

makecert -r -pe -n "CN=wsmcert3" -sky exchange -ss my C:\wsmcert3.cer

This command creates and imports a certificate in mmc.

If the command does not provide expected results, then try the following sequence of commands. You need to download Windows Developer Kit (WDK) at http://www.microsoft.com/whdc/devtools/WDK/default.mspx.

makecert -r -pe -n "CN=wsmcert3" -sky exchange -ss my -sv wscert3.pvk C:\wsmcert3.cer
pvk2pfx.exe -pvk wscert3.pvk -spc wsmcert3.cer -pfx PRF_WSMCert3.pfx -pi welcome1

Then, in mmc, import PRF_WSMCert3.pfx.

	
Import the certificate created on the Web service server to the client server using the keytool command. For example:

keytool -import -alias wsmcert3 -file C:\wsmcert3.cer -keystore <owsm_client_keystore>

	
Right-click on the Web service Solution project in Solutions Explorer and click Open Folder In Windows Explorer.

	
Navigate to the bin/Debug folder.

	
Double-click on the <project>.exe file. This command will run the Web service at the URL provided.

5.3.2.2 Configuring OWSM 12c Client

	
Using JDeveloper, create a SOA composite that consumes the .NET Web service. For more information, see the Developer's Guide for SOA Suite.

	
In JDeveloper, create a partner link using the WSDL of the .NET service.

	
Attach the following policy to the Web service client: oracle/wss11_username_token_with_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Provide configurations for the csf-key and keystore.recipient.alias.

You can specify this information when attaching the policy, by overriding the policy configuration. For more information, see "Overriding Policy Configuration Properties" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

Ensure that you configure the keystore.recipient.alias as the alias of the certificate imported in step 1 (wsmcert3). For example:

<wsp:PolicyReference URI="oracle/wss11_username_token_with_message_protection_client_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <property name="csf-key" type="xs:string"
 many="false">basic.credentials</property>
 <property name="keystore.recipient.alias" type="xs:string"
 many="false">wsmcert3</property>

5.3.2.3 Example .NET Web Service Client

static void Main(string[] args)
{
 // Step 1 of the address configuration procedure: Create a URI to serve as the
 // base address.
 // Step 2 of the hosting procedure: Create ServiceHost
 string uri = "http://<host>:<port>/TEST/NetService";
 Uri baseAddress = new Uri(uri);

 ServiceHost selfHost = new ServiceHost(typeof(CalculatorService), baseAddress);

 try
 {
 SymmetricSecurityBindingElement sm =
 SymmetricSecurityBindingElement.CreateUserNameForCertificateBindingElement();
 sm.DefaultAlgorithmSuite = System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;
 sm.SetKeyDerivation(false);
 sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;
 sm.IncludeTimestamp = true;
 sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
 sm.MessageProtectionOrder = MessageProtectionOrder.SignBeforeEncrypt;
 sm.MessageSecurityVersion =
 MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversationFebruary2005
 WSSecurityPolicy11BasicSecurityProfile10;
 sm.RequireSignatureConfirmation = true;
 sm.LocalClientSettings.CacheCookies = true;
 sm.LocalClientSettings.DetectReplays = true;
 sm.LocalClientSettings.ReplayCacheSize = 900000;
 sm.LocalClientSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalClientSettings.MaxCookieCachingTime = TimeSpan.MaxValue;
 sm.LocalClientSettings.ReplayWindow = new TimeSpan(00, 05, 00); ;
 sm.LocalClientSettings.SessionKeyRenewalInterval = new TimeSpan(10, 00, 00);
 sm.LocalClientSettings.SessionKeyRolloverInterval = new TimeSpan(00, 05, 00); ;
 sm.LocalClientSettings.ReconnectTransportOnFailure = true;
 sm.LocalClientSettings.TimestampValidityDuration = new TimeSpan(00, 05, 00); ;
 sm.LocalClientSettings.CookieRenewalThresholdPercentage = 60;
 sm.LocalServiceSettings.DetectReplays = false;
 sm.LocalServiceSettings.IssuedCookieLifetime = new TimeSpan(10, 00, 00);
 sm.LocalServiceSettings.MaxStatefulNegotiations = 128;
 sm.LocalServiceSettings.ReplayCacheSize = 900000;
 sm.LocalServiceSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.NegotiationTimeout = new TimeSpan(00, 01, 00);
 sm.LocalServiceSettings.ReplayWindow = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.InactivityTimeout = new TimeSpan(00, 02, 00);
 sm.LocalServiceSettings.SessionKeyRenewalInterval = new TimeSpan(15, 00, 00);
 sm.LocalServiceSettings.SessionKeyRolloverInterval = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.ReconnectTransportOnFailure = true;
 sm.LocalServiceSettings.MaxPendingSessions = 128;
 sm.LocalServiceSettings.MaxCachedCookies = 1000;
 sm.LocalServiceSettings.TimestampValidityDuration = new TimeSpan(15, 00, 00);
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 524288;
 hb.MaxReceivedMessageSize = 65536;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 65536;
 hb.ProxyAuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 TextMessageEncodingBindingElement tb1 = new TextMessageEncodingBindingElement();
 tb1.MaxReadPoolSize = 64;
 tb1.MaxWritePoolSize = 16;
 tb1.MessageVersion = System.ServiceModel.Channels.MessageVersion.Soap12;
 tb1.WriteEncoding = System.Text.Encoding.UTF8;
 CustomBinding binding1 = new CustomBinding(sm);
 binding1.Elements.Add(tb1);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(ICalculator), binding1,
 "CalculatorService");

 EndpointAddress myEndpointAdd = new EndpointAddress(
 new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);
 selfHost.Credentials.ServiceCertificate.SetCertificate(StoreLocation.CurrentUser,
 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");
 selfHost.Credentials.ClientCertificate.Authentication.CertificateValidationMode =
 X509CertificateValidationMode.PeerOrChainTrust;
 selfHost.Credentials.UserNameAuthentication.UserNamePasswordValidationMode =
 UserNamePasswordValidationMode.Custom;
 CustomUserNameValidator cu = new CustomUserNameValidator();
 selfHost.Credentials.UserNameAuthentication.CustomUserNamePasswordValidator = cu;
 using (ServiceHost host = new ServiceHost(typeof(CalculatorService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc = selfHost.Description;
 ServiceDebugBehavior svcDebug = svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The Calculator service is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 selfHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

5.4 Username Token Over SSL

This section describes how to implement username token over SSL in the following interoperability scenario:

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

5.4.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.4.1.1 Configuring OWSM 12c Web Service

	
Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Create a copy of one of the following policies:

oracle/wss_username_token_over_ssl_service_policy

oracle/wss_saml_or_username_token_over_ssl_service_policy

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Disable the Creation Time Required configuration setting.

	
Disable the Nonce Required configuration setting.

	
Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

5.4.1.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Generate a .NET client using the WSDL of the Web service.

For more information, see "How to: Create a Windows Communication Foundation Client" at http://msdn.microsoft.com/en-us/library/ms733133.aspx.

	
In the Solution Explorer of the client project, add a reference by right-clicking on references, selecting Add reference, and browsing to C:\Windows\Microsoft .NET framework\v3.0\Windows Communication Framework\System.Runtime.Serialization.dll.

	
Edit the app.config file, as described in "Edit the app.config File".

	
Compile the project.

	
Open a command prompt and navigate to the project's Debug folder.

	
Type <client_project_name>.exe and press Enter.

Edit the app.config File

Edit the app.config file to update the certificate file and disable replays, as shown in the following example (changes are identified in bold):

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="BPELProcess1Binding">
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="UserNameOverTransport"
 requireDerivedKeys="false" securityHeaderLayout="Lax" includeTimestamp="true"
 keyEntropyMode="CombinedEntropy" messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversation
 February2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00" sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00" reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60"/>
 <localServiceSettings detectReplays="true" issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true" maxPendingSessions="128"
 maxCachedCookies="1000" timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <textMessageEncoding maxReadPoolSize="64" maxWritePoolSize="16"
 messageVersion="Soap11" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <httpsTransport manualAddressing="false" maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" requireClientCertificate="false"/>
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="
 https://host:port/soa-infra/services/default/IO_NET6/bpelprocess1_client_ep"
 binding="customBinding" bindingConfiguration="BPELProcess1Binding"
 contract="BPELProcess1" name="BPELProcess1_pt" />
 </client>
 </system.serviceModel>
</configuration>

5.5 Mutual Authentication with Message Protection (WS-Security 1.1)

The following sections describe how to implement mutual authentication with message protection that conform to the WS-Security 1.1 standards:

	
"Configuration Prerequisites for Interoperability"

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service"

Configuration Prerequisites for Interoperability

	
Export the X.509 certificate file from the keystore on the service side to a .cer file (for example, alice.cer) using the following command:

keytool -export -alias alice -file C:\alice.cer -keystore default-keystore.jks

	
Import the certificate file (exported previously) to the keystore on the client server using Microsoft Management Console (mmc). For information, see "How to: View Certificates with the MMC Snap-in" at http://msdn.microsoft.com/en-us/library/ms788967.aspx.

	
Open a command prompt.

	
Type mmc and press ENTER.

	
Select File > Add/Remove snap-in.

	
Select Add and Choose Certificates.

	
Note:

To view certificates in the local machine store, you must be in the Administrator role.

	
Select Add.

	
Select My user account and finish.

	
Click OK.

	
Expand Console Root > Certificates -Current user > Personal > Certificates.

	
Right-click on Certificates and select All tasks > Import to launch Certificate import Wizard.

	
Click Next, select Browse, and navigate to the .cer file that was exported previously.

	
Click Next and accept defaults and finish the wizard.

5.5.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web Service, perform the steps described in the following sections:

5.5.1.1 Configuring OWSM 12c Web Service

	
Create a SOA composite and deploy it.

	
In Enterprise Manager, clone the following policy:

oracle/wss11_x509_token_with_message_protection_service_policy

Rename it as follows: wss11_x509_token_with_message_protection_service_policy_net

	
Export wss11_x509_token_with_message_protection_service_policy_net. Change encrypted="true" to "false", and import it back.

<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="false" orasp:is-signed="false" orasp:sign-key-ref-mech="direct"/>

	
Using Enterprise Manager, attach the policy to the Web service.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

5.5.1.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Use the SVCUtil utility to create a client proxy (see "Sample Client Program") and configuration file from the deployed Web service.

	
In the Solution Explorer of the client project, add a reference by right-clicking on references, selecting Add reference, and browsing to C:\Windows\Microsoft .NET framework\v3.0\Windows Communication Framework\System.Runtime.Serialization.dll.

	
Create a configuration file: app.config. Add the following code after the <system.serviceModel> element.

 <configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser" storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <customBinding>

	
Modify the endpoint behavior as follows:

<endpoint address="http://<server>:<port>//MyWebService1SoapHttpPort"
 binding="customBinding"
 bindingConfiguration="MyWebService1SoapHttp"
 contract="MyWebService1" name="MyWebService1SoapHttpPort"
 behaviorConfiguration="secureBehaviour" >
 <identity>
 <dns value="<certificate_cn>"/>
 </identity>
 </endpoint>

	
Disable the message replay detection as follows:

<localClientSettings cacheCookies="true" detectReplays="false"
 replayCacheSize="900000"
 maxClockSkew="00:05:00" maxCookieCachingTime="Infinite"

	
Create a custom binding as shown below:

<security defaultAlgorithmSuite="Basic128"
 authenticationMode="MutualCertificate"

	
"Sample app.config File" provides an example of the configuration file.

	
Compile the project.

	
Open a command prompt and navigate to the project's Debug folder.

	
Enter <client_project_name>.exe and press Enter.

Sample app.config File

The following provides an example of the app.config file:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>

 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>

 <customBinding>
 <binding name="BPELProcess1Binding">
 <security defaultAlgorithmSuite="Basic128" authenticationMode="MutualCertificate"
 requireDerivedKeys="false" securityHeaderLayout="Lax" includeTimestamp="true"
 keyEntropyMode="CombinedEntropy" messageProtectionOrder="SignBeforeEncrypt"

 messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversation
 February2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="false"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00" sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00" reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00" cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true" issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000" maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00" sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true" maxPendingSessions="128"
 maxCachedCookies="1000" timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <textMessageEncoding maxReadPoolSize="64" maxWritePoolSize="16"
 messageVersion="Soap11" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <httpTransport manualAddressing="false" maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered" unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>

 </bindings>
 <client>
 <endpoint address="<endpoint_url>"
 binding="customBinding" bindingConfiguration="BPELProcess1Binding"
 contract="BPELProcess1" name="BPELProcess1_pt" >
 <identity>
 <dns value=<certificate_cn>/>
 </identity>
 </endpoint>
 </client>

 </system.serviceModel>
</configuration>

Sample Client Program

 namespace IO_NET10_client
{
 class Program
 {
 static void Main(string[] args)
 {

 BPELProcess1Client client = new BPELProcess1Client();

 client.ClientCredentials.ClientCertificate.SetCertificate(
 StoreLocation.CurrentUser,
 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");

 client.ClientCredentials.ServiceCertificate.SetDefaultCertificate(
 StoreLocation.CurrentUser,
 StoreName.My,
 X509FindType.FindBySubjectName, "Alice");

 process proc = new process();
 proc.input = "Test wss11_x509_token_with_message_protection_policy - ";
 Console.WriteLine(proc.input);
 processResponse response = client.process(proc);

 Console.WriteLine(response.result.ToString());
 Console.WriteLine("Press <ENTER> to terminate Client.");
 Console.ReadLine();
 }
 }
}

5.5.2 Configuring OWSM 12c Client and Microsoft WCF/.NET 3.5 Web Service

To configure OWSM 12c client and Microsoft WCF/.NET 3.5 Web Service, perform the steps described in the following sections:

	
"Configuring Microsoft WCF/.NET 3.5 Web Service"

	
"Configuring OWSM 12c Client"

5.5.2.1 Configuring Microsoft WCF/.NET 3.5 Web Service

	
Create a .NET Web service.

For more information, see "How to: Define a Windows Communication Foundation Service Contract" at http://msdn.microsoft.com/en-us/library/ms731835.aspx.

For an example of a .NET Web service, see "Example .NET Web Service Client".

	
Create a custom binding for the Web service using the SymmetricSecurityBindingElement.

For more information, see "How to: Create a Custom Binding Using the SecurityBindingElement" at http://msdn.microsoft.com/en-us/library/ms730305.aspx.

	
The following is a sample of the SymmetricSecurityBindingElement object:

SymmetricSecurityBindingElement sm =
(SymmetricSecurityBindingElement)SecurityBindingElement.CreateMutualCertificate
BindingElement();

sm.DefaultAlgorithmSuite =
System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;sm.SetKeyDerivati
on(false);
sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;sm.IncludeTimestamp =
true;
sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
sm.MessageProtectionOrder =
MessageProtectionOrder.SignBeforeEncrypt;sm.MessageSecurityVersion =
MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversation
February2005WSSecurityPolicy11BasicSecurityProfile10;
sm.RequireSignatureConfirmation =
true;

	
Deploy the application.

5.5.2.2 Configuring OWSM 12c Client

	
Using JDeveloper, create a SOA composite that consumes the .NET Web service. For more information, see the Developer's Guide for SOA Suite.

	
In JDeveloper, create a partner link using the WSDL of the .NET service and add the import as follows:

<wsdl:import namespace="<namespace>" location="<WSDL location>"/>

	
In Enterprise Manager, clone the policy: wss11_x509_token_with_message_protection_service_policy. Rename it as follows: wss11_x509_token_with_message_protection_service_policy_net

	
Export wss11_x509_token_with_message_protection_service_policy_net. Change encrypted="true" to "false", and import it back

<orasp:x509-token orasp:enc-key-ref-mech="thumbprint" orasp:is-encrypted="true"
 orasp:is-signed="false" orasp:sign-key-ref-mech="direct"/>

	
Attach the policy to the Web service client.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Provide configurations for the keystore.recipient.alias.

You can specify this information when attaching the policy, by overriding the policy configuration. For more information, see "Overriding Policy Configuration Properties" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

Ensure that you configure the keystore.recipient.alias as the alias of the certificate imported in step 4 (wsmcert3).

	
Invoke the Web service method from the client.

5.6 Kerberos with Message Protection

This section describes how to implement kerberos with message protection in the following interoperability scenarios:

	
"Configuration Prerequisites for Interoperability"

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

5.6.1 Configuration Prerequisites for Interoperability

Perform the following prerequisite steps:

	
Configure the Key Distribution Center (KDC) and Active Directory (AD). For more information, see the section "To Configure Windows Active Directory and Domain Controller" (the domain controller can serve as KDC) at http://download.oracle.com/docs/cd/E19316-01/820-3746/gisdn/index.html.

	
Set up the Kerberos configuration file krb5.conf in c:\winnt as shown in Example 5-1.

Example 5-1 Sample Kerberos Configuration File

[logging]
default = c:\log\krb5libs.log
kdc = c:\log\krb5kdc.log
admin_server = c:\log\kadmind.log
[libdefaults]
default_realm = MYCOMPANY.LOCAL
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac
kdc = <hostname>
[realms]
MYCOMPANY.LOCAL =
{ kdc = <hostname>:<portnumber> admin_server = <hostname>:<portnumber>
 default_domain = <domainname>
}
 [domain_realm]
.<domainname> = MYCOMPANY.LOCAL
 <domainname> = MYCOMPANY.LOCAL
[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000 forwardable =
 true krb4_convert = false }

5.6.2 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.6.2.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Copy the following policy: wss11_kerberos_with_message_protection_service_policy.

	
Edit the policy settings to set Algorithm Suite to Basic128Rsa15.

	
Attach the policy to the web service. For more information about attaching the policy at deployment time using Fusion Middleware Control, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the application.

5.6.2.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Create a user in AD to represent the host where the web service is hosted. By default the user account is created with RC4-HMAC encryption. For example, foobar with user name as "HTTP/foobar".

	
Use the following ktpass command to create a keytab file on the Windows AD machine where the KDC is running:

ktpass -princ HTTP/foobar@MYCOMPANY.LOCAL -pass Oracle123 -mapuser foobar -out foobar.keytab -ptype KRB5_NT_PRINCIPAL -kvno 4

where HTTP/foobar is the SPN, mapped to a user "foobar". Do not set "/desonly or cyrpto as "des-cbc-crc". MYCOMPANY.LOCAL is the default Realm for the KDC and is available in the krb5.ini file. The pass password must match the password created during the user creation.

Use FTP binary mode to move the generated keytab file to the machine where the SOA Composite Web service is hosted.

	
Use the following setSpn command to map the service principal to the user:

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

setSpn -L foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to the user, remove them using the command setSpn -D <spname> <username>.

	
Use the SVCUtil utility to create a client proxy and configuration file from the deployed Web service.

Add the files generatedProxy.cs and app.config by right clicking the application (in the Windows Explorer) and selecting Add Existing Item.

In the endpoint element of the app.config, add an "identity" element with service principal name as "HTTP/foobar@MYCOMPANY.LOCAL" (the same value used for creating keytab).

<client>
 <endpoint address="http://host:port/HelloServicePort"
 binding="customBinding" bindingConfiguration="NewHelloSoap12HttpPortBinding"
 contract="NewHello" name="HelloServicePort">
 <identity>
 <servicePrincipalName value ="HTTP/foobar@MYCOMPANY.LOCAL"/>
 </identity>
 </endpoint>

 </client>

A sample binding is provided in Example 5-2.

Example 5-2 Sample Binding

<customBinding>
 <binding name="NewHelloSoap12HttpPortBinding">
 <!--Added by User: Begin-->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="Kerberos"
 requireDerivedKeys="false" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005
 WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurity
 Profile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <!--Added by User: End-->
 <textMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384"
 />
 </textMessageEncoding>
 <!--Added by User: Begin-->
 <httpTransport manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 <!--Added by User: End-->
 </binding>
</customBinding>

The svcutil.exe utility will not work if the Web service has an OWSM policy attached to it. Detach the policy from the service before running this utility to generate the proxy and re-attach once all artifacts are generated successfully.

	
Run the client program.

5.7 Kerberos with Message Protection Using Derived Keys

This section describes how to implement kerberos with message protection in the following interoperability scenarios:

	
"Configuration Prerequisites for Interoperability"

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

5.7.1 Configuration Prerequisites for Interoperability

Perform the following prerequisite steps:

	
Configure the Key Distribution Center (KDC) and Active Directory (AD). For more information, see the section "To Configure Windows Active Directory and Domain Controller" (the domain controller can serve as KDC) at http://download.oracle.com/docs/cd/E19316-01/820-3746/gisdn/index.html.

	
Set up the Kerberos configuration file krb5.conf in c:\winnt as shown in Example 5-1.

Example 5-3 Sample Kerberos Configuration File

[logging]
default = c:\log\krb5libs.log
kdc = c:\log\krb5kdc.log
admin_server = c:\log\kadmind.log
[libdefaults]
default_realm = MYCOMPANY.LOCAL
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac
kdc = <hostname>
[realms]
MYCOMPANY.LOCAL =
{ kdc = <hostname>:<portnumber> admin_server = <hostname>:<portnumber>
 default_domain = <domainname>
}
 [domain_realm]
.<domainname> = MYCOMPANY.LOCAL
 <domainname> = MYCOMPANY.LOCAL
[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000 forwardable =
 true krb4_convert = false }

5.7.2 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.7.2.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Copy the following policy: wss11_kerberos_token_with_message_protection_basic128_service_policy.

	
Edit the policy settings to enable the Derived Keys option.

	
Attach the policy to the web service. For more information about attaching the policy at deployment time using Fusion Middleware Control, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the application.

5.7.2.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Create a user in AD to represent the host where the web service is hosted. By default the user account is created with RC4-HMAC encryption. For example, foobar with user name as "HTTP/foobar".

	
Use the following ktpass command to create a keytab file on the Windows AD machine where the KDC is running:

ktpass -princ HTTP/foobar@MYCOMPANY.LOCAL -pass Oracle123 -mapuser foobar -out foobar.keytab -ptype KRB5_NT_PRINCIPAL -kvno 4

where HTTP/foobar is the SPN, mapped to a user "foobar". Do not set "/desonly or cyrpto as "des-cbc-crc". MYCOMPANY.LOCAL is the default Realm for the KDC and is available in the krb5.ini file. The pass password must match the password created during the user creation.

Use FTP binary mode to move the generated keytab file to the machine where the SOA Composite Web service is hosted.

	
Use the following setSpn command to map the service principal to the user:

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

setSpn -L foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to the user, remove them using the command setSpn -D <spname> <username>.

	
Use the SVCUtil utility to create a client proxy and configuration file from the deployed Web service.

	
Note:

The SVCUtil utility will not work if the Web service has an OWSM policy attached to it. Detach the policy from the service before running this utility to generate the proxy and re-attach once all artifacts are generated successfully.

Add the files generatedProxy.cs and app.config by right clicking the application (in the Windows Explorer) and selecting Add Existing Item.

In the endpoint element of the app.config, add an "identity" element with service principal name as "HTTP/foobar@MYCOMPANY.LOCAL" (the same value used for creating keytab).

<client>
 <endpoint address="http://host:port/HelloServicePort"
 binding="customBinding" bindingConfiguration="NewHelloSoap12HttpPortBinding"
 contract="NewHello" name="HelloServicePort">
 <identity>
 <servicePrincipalName value ="HTTP/foobar@MYCOMPANY.LOCAL"/>
 </identity>
 </endpoint>

 </client>

A sample binding is provided in Example 5-2.

Example 5-4 Sample Binding

<customBinding>
 <binding name="NewHelloSoap12HttpPortBinding">
 <!--Added by User: Begin-->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="Kerberos"
 requireDerivedKeys="true" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005
 WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurity
 Profile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <!--Added by User: End-->
 <textMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384"
 />
 </textMessageEncoding>
 <!--Added by User: Begin-->
 <httpTransport manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 <!--Added by User: End-->
 </binding>
</customBinding>

	
Run the client program.

5.8 Kerberos with SPNEGO Negotiation

This section describes how to implement Kerberos with SPNEGO negotiation in the following interoperability scenario:

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

5.8.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.8.1.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Deploy the Web service application.

	
Create a policy that uses the http_spnego_token_service_template assertion template.

	
Attach the policy to the Web service.

5.8.1.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Use the SVCUtil utility to create a client proxy and configuration file from the deployed Web service.

	
Note:

The SVCUtil utility will not work if the Web service has an OWSM policy attached to it. Detach the policy from the service before running this utility to generate the proxy and re-attach once all artifacts are generated successfully.

	
Add the files generatedProxy.cs and app.config by right clicking the application (in the Windows Explorer) and selecting Add Existing Item.

	
Edit the app.config file as follows.

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BPELProcessBinding">
 <security mode= "TransportCredentialOnly">
 <transport clientCredentialType="Windows"/>
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address="http://host:port/soa-infra/services/default/SOAProxy/bpelpro
cess_client_ep"
 binding="basicHttpBinding"
 bindingConfiguration="BPELProcessBinding"
 contract="BPELProcess" name="BPELProcess_pt"
 <identity>
 <servicePrincipalName value ="HTTP/host:port@MYCOMPANY.LOCAL" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

In this listing, note that the values of the contract and name attributes of the endpoint element are obtained from the generatedProxy.cs file.

	
Compile the client.

	
After attaching the OWSM policy to the deployed Web service, run the client.

5.9 Kerberos with SPNEGO Negotiation and Credential Delegation

This section describes how to implement Kerberos with SPNEGO negotiation and credential delegation in the following interoperability scenario:

	
"Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service"

5.9.1 Configuring Microsoft WCF/.NET 3.5 Client and OWSM 12c Web Service

To configure Microsoft WCF/.NET 3.5 client and OWSM 12c Web service, perform the steps described in the following sections:

5.9.1.1 Configuring OWSM 12c Web Service

	
Create a Web service application.

	
Deploy the Web service application.

	
Create a policy that uses the http_spnego_token_service_template assertion template.

	
Attach the policy to the web service.

	
Set the value of the credential.delegation configuration setting to true.

You can specify this information when attaching the policy, by overriding the policy configuration. For more information, see "Overriding Policy Configuration Properties" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

5.9.1.2 Configuring Microsoft WCF/.NET 3.5 Client

	
Use the SVCUtil utility to create a client proxy and configuration file from the deployed Web service.

	
Note:

The SVCUtil utility will not work if the Web service has an OWSM policy attached to it. Detach the policy from the service before running this utility to generate the proxy and re-attach once all artifacts are generated successfully.

	
Add the files generatedProxy.cs and app.config by right clicking the application (in the Windows Explorer) and selecting Add Existing Item.

	
Edit the app.config file as follows.

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BPELProcess1Binding">
 <security mode= "TransportCredentialOnly">
 <transport clientCredentialType="Windows"/>
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address="http://host:port/soa-infra/services/default/SOAProxy/bpelpro
cess1_client_ep"
 binding="basicHttpBinding"
 bindingConfiguration="BPELProcess1Binding"
 contract="BPELProcess1" name="BPELProcess1_pt"
 behaviorConfiguration="CredentialDelegation">
 <identity>
 <servicePrincipalName value ="HTTP/host:port@MYCOMPANY.LOCAL" />
 </identity>
 </endpoint>
 </client>
 <behaviors>
 <endpointBehaviors>
 <behavior name="CredentialDelegation">
 <clientCredentials>
 <windows allowedImpersonationLevel="Delegation"
 allowNtlm="false"/>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

In this listing, note that the values of the contract and name attributes of the endpoint element are obtained from the generatedProxy.cs file.

	
Compile the client.

	
After attaching the OWSM policy to the deployed Web service, run the client.

5.10 WCF/.NET 3.5 client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

This section describes securing a WCF/.NET 3.5 client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) secure token service (STS), using a policy utilizing SAML bearer token over one-way SSL.

	
Note:

The SAML sender vouches token is not supported in this use case.

This procedure described in this section assumes that you install and configure ADFS 2.0 on a Windows Server 2008 or Windows Server 2008 R2 system. This system is set up in the STS role.

The following topics are described:

	
Section 5.10.1, "Install and Configure Active Directory Federation Services (ADFS) 2.0"

	
Section 5.10.2, "Configure ADFS 2.0 STS As Trusted SAML Token Issuer"

	
Section 5.10.3, "Configure Users in Oracle Internet Directory"

	
Section 5.10.4, "Attach the Policy"

	
Section 5.10.5, "Register the Web Service as a Relying Party in ADFS 2.0"

	
Section 5.10.6, "Secure WCF/.NET 3.5 Client with ADFS 2.0"

5.10.1 Install and Configure Active Directory Federation Services (ADFS) 2.0

This section describes how to install and configure ADFS 2.0.

The following topics are described:

	
Section 5.10.1.1, "Install and Configure Active Directory"

	
Section 5.10.1.2, "Install ADFS 2.0"

	
Section 5.10.1.3, "Create and Configure a Self-Signed Server Authentication Certificate"

	
Section 5.10.1.4, "Configure the System as a Standalone Federation Server"

	
Section 5.10.1.5, "Export ADFS 2.0 Token-Signing Certificate"

	
Section 5.10.1.6, "Create Users with Email Address"

5.10.1.1 Install and Configure Active Directory

Install and configure Active Directory. See http://technet.microsoft.com/en-us/windowsserver for related links and information.

5.10.1.2 Install ADFS 2.0

Install ADFS 2.0 and configure it using the wizard. See http://technet.microsoft.com/en-us/windowsserver/dd448613 for related links and information. See http://go.microsoft.com/fwlink/?linkid=151338 for download information.

As you configure ADFS 2.0 using the wizard, on the Server Role page be sure to click Federation server.

5.10.1.3 Create and Configure a Self-Signed Server Authentication Certificate

Create and configure a self-signed server authentication certificate in IIS and bind it to the default Web site using the Internet Information Services (IIS) Manager console. When done, enable SSL server authentication.

The AD FS 2.0 Setup Wizard automatically installed the Web server (IIS) server role on the system.

Creating a self-signed server authentication certificate is described generally in http://technet.microsoft.com/en-us/library/cc771041%28v=ws.10%29.aspx. The steps in this section provides use case-specific information.

	
Open the Internet Information Services (IIS) Manager console.

	
On the Start menu, click All Programs, point to Administrative Tools, and then click Internet Information Services (IIS) Manager.

	
In the console tree, click the root node that contains the name of the system, and then, in the details pane, double-click the icon named Server Certificates in the IIS grouping.

	
In the Actions pane, click Create Self-Signed Certificate.

	
In the console tree, click Default Web Site.

	
In the Actions pane, click Bindings.

	
In the Site Bindings dialog box, click Add.

	
In the Add Site Binding dialog box, select https in the Type drop-down list. Select the certificate you just created in the SSL certificate drop-down list, click OK, and then click Close.

	
Close the Internet Information Services (IIS) Manager console. Enable SSL Server Authentication.

5.10.1.4 Configure the System as a Standalone Federation Server

Configure the system as a standalone federation server, as described in http://technet.microsoft.com/en-us/library/ee913579%28v=ws.10%29.aspx.

5.10.1.5 Export ADFS 2.0 Token-Signing Certificate

Export the ADFS 2.0 token-signing certificate, as described in http://technet.microsoft.com/en-us/library/dd378922%28v=ws.10%29.aspx#BKMK_4.

For a self-signed certificate, select DER encoded binary X.509 (.cer).

If the signing certificate is not self-signed, select Cryptographic Message Syntax Standard – PKCS 7 certificates (.p7b) and check Include all the certificates in the certification path if possible.

5.10.1.6 Create Users with Email Address

Create users and include an email address. You later enable the STS to send the email address as the subject name id in the outgoing SAML assertions for the service.

Follow these steps to add a sample user to Active Directory. Make sure to set the email address for each user.

	
Log in to the system with domain administrator credentials.

	
Click Start, click Administrative Tools, and then click Active Directory Users and Computers.

	
In the console tree, right-click the Users folder. Click New, and then click User.

	
On the New Object – User page, add the user, and then click Next.

	
Provide a password, clear the User must change password at next logon check box, and then click Next.

	
Click Finish.

	
In the right-most pane of Active Directory Users and Computers, right-click the new user object, and then click Properties.

	
On the General tab, in the E-mail box, type the email address of the user, and then click OK.

5.10.2 Configure ADFS 2.0 STS As Trusted SAML Token Issuer

Perform the following steps to configure OWSM to trust the SAML assertions issued by an ADFS 2.0 STS:

	
Get the STS signing certificates you exported in Section 5.10.1.5, "Export ADFS 2.0 Token-Signing Certificate".

For a .p7b file for a certificate chain, open the file in IE and copy each certificate in the chain in a .cer file.

	
Import the certificates into the location of the default keystore using keytool.

keytool –importcert –file <sts-signing-certs-file> –trustcacerts –alias <alias> –keystore default-keystore.jks

	
Add http://domain-name/adfs/services/trust as a SAML trusted issuer.

See "Configuring SAML Trusted Issuers and DN Lists" in Securing Web Services and Managing Policies with Oracle Web Services Manager for the steps to follow.

	
Add the Subject DN (as defined in RFC 2253) of the STS certificate in the Trusted STS Servers section. Use a string that conforms to RFC 2253, such as CN=abc. You can use the mechanism of your choice, such as keytool, to view the certificate and determine the Subject DN.

See "Configuring SAML Trusted Issuers and DN Lists" in Securing Web Services and Managing Policies with Oracle Web Services Manager for the steps to follow.

5.10.3 Configure Users in Oracle Internet Directory

For each user, configure the mail attribute to match the user email address set in ADFS.

See Managing Directory Entries for Creating a User in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory for information on configuring users in Oracle Internet Directory.

5.10.4 Attach the Policy

Attach the OWSM oracle/wss11_saml_or_username_token_with_message_protection_service_policy or oracle/wss_saml_token_bearer_over_ssl_service_policy policy to the Web service.

These policies enforce message protection (integrity and confidentiality) and SAML-based authentication using credentials provided in SAML tokens with the bearer confirmation method in the WS-Security SOAP header. They also verify that the transport protocol provides SSL message protection.

See "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager for information on attaching policies.

5.10.5 Register the Web Service as a Relying Party in ADFS 2.0

Configure ADFS 2.0 to issue the SAML assertion to the Web service with the email address or the name ID (SAM-Account-Name) as the subject name id.

See http://technet.microsoft.com/en-us/library/dd807108%28v=ws.10%29.aspx for general information on relying parties.

This section provides use case-specific information.

Add the Web Service as a Relying Party

	
In the AD FS 2.0 Management console, click AD FS 2.0.

	
In the details pane, click Add a trusted relying party to start the Add Relying Party Wizard.

	
On the Welcome page, click Start to begin.

	
Select Enter data about the relying party manually.

	
Provide a display name and enter any notes you want.

	
Select ADFS 2.0 Profile.

	
On the Configure Certificate page, click Next.

Configuring a token encryption certificate on this page is optional. Configure one on this page if you require that the token be encrypted. If you do not configure a token encryption certificate, the token issued by STS is not encrypted for the service.

	
WS-Trust is always enabled. Click Next.

	
For the Relying Party Trust Identifier, enter the service URL and click Add.

	
Permit all users to access this relying party.

	
Click Next and then Close.

Configure the Claim Rules for the Service

To enable the STS to send the email address or the name ID as the subject name id in the outgoing SAML assertions for the service, use the steps in this section to create a chain of two claim rules with different templates.

See http://technet.microsoft.com/en-us/library/ee913578%28v=ws.10%29.aspx for general information on claim rules. See http://technet.microsoft.com/en-us/library/dd807115%28v=ws.10%29.aspx to create a rule to send LDAP attributes as claims.

This section provides use case-specific information.

	
Right-click on the Relying Party for the service and select Edit Claim Rules.

	
On the Issuance Transform Rules tab select Add Rule.

	
Select Send LDAP Attribute as Claims as the claim rule template to use.

	
Give the Claim a name, such as Get LDAP Attributes.

	
Set the Attribute Store to Active Directory, the LDAP Attribute to E-Mail-Addresses, and the Outgoing Claim Type to E-mail Address.

If you want to instead use the name ID as the subject name ID, under LDAP Attribute, select SAM-Account-Name.

	
Select Finish.

	
If you use the name ID as the subject name ID, click OK to close the property page and save the changes to the relying party trust.

If you use the email address as the subject name ID, continue to add a rule.

	
Select Add Rule.

	
Select Transform an Incoming Claim as the claim rule template to use.

	
Give it a name, such as Email to Name ID.

	
Set the Incoming claim type as E-mail Address. (It must match the Outgoing Claim Type in the previous rule.)

	
Set the Outgoing claim type as Name ID and the Outgoing name ID format as Email (urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress).

	
Pass through all claim values and click Finish.

	
Click OK to close the property page and save the changes to the relying party trust.

5.10.6 Secure WCF/.NET 3.5 Client with ADFS 2.0

Perform the following steps to secure WCF/.NET 3.5 Client with ADFS 2.0:

	
Install .NET 3.5 and Visual Studio 2008.

	
Import the SSL server certificates for STS and the service into Windows.

If the SSL server certificate for STS or the service is not issued from a trusted CA, or self-signed, then it needs to be imported with MMC tool, as described in Section 5.6.1, "Configuration Prerequisites for Interoperability".

	
Create and Configure the WCF Client.

ADFS 2.0 STS supports multiple security and authentication mechanisms for token insurance. Each is exposed as a separate endpoint. For username/password authentication, two endpoints are provided:

	
http://<adfs.domain>/adfs/services/trust/13/username — This endpoint is for username token with message protection.

	
https://<adfs.domain>/adfs/services/trust/13/usernamemixed — This endpoint is for username token with transport protection (SSL).

The WCF client uses the https://<adfs.domain>/adfs/services/trust/13/usernamemixed endpoint for username token on SSL to obtain the SAML bearer token for the service.

	
Generate the WCF Client with the service WSDL.

See http://msdn.microsoft.com/en-us/library/ms733133(v=vs.90) for information on creating a Windows Communication Foundation client.

	
Note:

SVCUtil does not support the security policy with policy alternatives as advertised for the OWSM policy oracle/wss11_saml_or_username_token_with_message_protection_service_policy, or the oracle/wss_saml_bearer_token_over_ssl_service_policy policy. To work around this:

	
Detach the policy for the service.

	
Generate a proxy using SVCUtil.

	
Attach the policy back to the service.

	
Configure the client with ws2007FederationHttpBinding:

In the Solution Explorer of the client project, add a reference by right-clicking on references, selecting Add reference, and browsing to C:\Windows\Microsoft .NET framework\v3.0\Windows Communication Framework\System.Runtime.Serialization.dll.

Edit the app.config file. (See http://msdn.microsoft.com/en-us/library/bb472490.aspx for information on WS 2007 Federation HTTP Binding.) Consider the following sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="weblogic"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <ws2007FederationHttpBinding>
 <binding name="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLSoapHttp">
 <security mode="TransportWithMessageCredential">
 <message negotiateServiceCredential="false"
 algorithmSuite="Basic128"
 issuedTokenType ="http://docs.oasis-open.org/wss/oasis-wss-saml-token-

profile-1.1#SAMLV1.1"
 issuedKeyType="BearerKey">
 <issuer address ="https://domain-name/adfs/services/trust/13/usernamemixed"
 binding ="ws2007HttpBinding"

bindingConfiguration="ADFSUsernameMixed"/>
 </message>
 </security>
 </binding>
 </ws2007FederationHttpBinding>
 <ws2007HttpBinding>
 <binding name="ADFSUsernameMixed">
 <security mode="TransportWithMessageCredential">
 <message clientCredentialType="UserName" establishSecurityContext="false" />
 </security>
 </binding>
 </ws2007HttpBinding>
 </bindings>
 <client>
 <endpoint

address="https://adc2170989:8002/JaxWsWss11SamlOrUsernameOrSamlBearerOverSSL/JaxWsWss11Sam

lOrUsernameOrSamlBearerOverSSLService"
 binding="ws2007FederationHttpBinding"

bindingConfiguration="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLSoapHttp"
 contract="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSL"

name="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLPort">
 <identity>
 <dns value="weblogic" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

	
Edit the program.cs file to make the service call.

If not already present, create a .cs file in the project and name it program.cs (or any name of your choice.) Edit it to match the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace Client
{
 class Program
 {
 static void Main(string[] args)
 {
 JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLClient client =
 New JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLClient();

 client.ClientCredentials.UserName.UserName = "joe";
 client.ClientCredentials.UserName.Password = "eoj";

System.Net.ServicePointManager.ServerCertificateValidationCallback =
 ((sender, certificate, chain, sslPolicyErrors) => true);

 Console.WriteLine(client.echo("Hello"));
 Console.Read();
 }

 }
}

In this sample program.cs file:

joe is the username and eoj is the password used by the client to authenticate to the STS.

System.Net.ServicePointManager.ServerCertificateValidationCallback = ((sender, certificate, chain, sslPolicyErrors) => true); has been added to validate the server side self-signed certificate. This is not required if the server certificate is issued by a trusted CA. If using a self-signed certificate for testing, add this method to validate the certificate on the client side.

6 Interoperability with Oracle Service Bus 10g Security Environments

This chapter describes interoperability of Oracle Web Services Manager (OWSM) with Oracle Service Bus 10g security environments.

	
Note:

A subset of the interoperability scenarios within this chapter employ SOA applications which will be supported in a future release of Oracle Fusion Middleware 12c. For this release, you can substitute an ADF or Java EE application in these scenarios.

This chapter contains the following sections:

	
Section 6.1, "Overview of Interoperability with Oracle Service Bus 10g Security Environments"

	
Section 6.2, "Username Token with Message Protection (WS-Security 1.0)"

	
Section 6.3, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)"

	
Section 6.4, "SAML or Username Token Over SSL"

	
Section 6.5, "Mutual Authentication with Message Protection (WS-Security 1.0)"

6.1 Overview of Interoperability with Oracle Service Bus 10g Security Environments

In Oracle Service Bus 10g, you attach policies to configure your security environment for inbound and outbound requests. Oracle Service Bus uses the underlying WebLogic security framework as building blocks for its security services. For information about configuring and attaching policies, see "Using WS-Policy in Oracle Service Bus Proxy and Business Services" in Oracle Service Bus Security Guide at http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_policy.html.

	
Note:

Ensure that you have downloaded and applied the TYBN and U37Z patches released for Oracle Service Bus 10.3 using the patch tool.

With OWSM 12c, you attach policies to Web service endpoints. Each policy consists of one or more assertions, defined at the domain-level, that define the security requirements. A set of predefined policies and assertions are provided out-of-the-box.

Table 6-1 and Table 6-2 summarize the most common Oracle Service Bus 10g interoperability scenarios based on the following security requirements: authentication, message protection, and transport.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching Oracle Service Bus 10g policies, see "Using WS-Policy in Oracle Service Bus Proxy and Business Services" in Oracle Service Bus Security Guide at http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_policy.html.

	
Note:

In the following scenarios, ensure that you are using a keystore with v3 certificates.

In addition, ensure that the keys use the proper extensions, including DigitalSignature, Non_repudiation, Key_Encipherment, and Data_Encipherment.

Table 6-1 OWSM 12g Service Policy and Oracle Service Bus 10g Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Username

	
1.0

	
Yes

	
No

	
oracle/wss10_username_token_with_message_protection_service_policy

	
Encrypt.xml

Sign.xml

	
SAML

	
1.0

	
Yes

	
No

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
Encrypt.xml

Sign.xml

	
SAML or Username

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_or_username_token_over_ssl_service_policy

	
Auth.xml

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
oracle/wss10_x509_token_with_message_protection_service_policy

	
Encrypt.xml

Sign.xml

Table 6-2 Oracle Service Bus 10g Service Policy and OWSM 12c Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Username

	
1.0

	
Yes

	
No

	
Encrypt.xml

Sign.xml

	
oracle/wss10_username_token_with_message_protection_client_policy

	
SAML

	
1.0

	
Yes

	
	
Encrypt.xml

Sign.xml

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
Mutual Authentication

	
1.0

	
Yes

	
No

	
Encrypt.xml

Sign.xml

	
oracle/wss10_x509_token_with_message_protection_client_policy

6.2 Username Token with Message Protection (WS-Security 1.0)

This section describes how to implement username token with message protection that conforms to the WS-Security 1.0 standard in the following interoperability scenarios:

	
"Configuration Prerequisites for Interoperability"

	
"Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service"

Configuration Prerequisites for Interoperability

Perform the following prerequisite steps for the WebLogic Server on which Oracle Service Bus is running:

	
Copy the default-keystore.jks and trust.jks files to your domain directory.

The default-keystore.jks is used to store public and private keys for SOAP messages within the WebLogic Domain. The trust.jks is used to store private keys, digital certificates, and trusted certificate authority certificates that are used to establish and verify identity and trust in the WebLogic Server environment.

	
Invoke the WebLogic Administration Console, as described in "Accessing Oracle WebLogic Administration Console" in Administering Web Services.

	
Configure the Custom Identity and Custom Trust keystores, as described in "Configure keystores" in Oracle WebLogic Server Administration Console Online Help.

	
Configure SSL, as described in "Set up SSL" in Oracle WebLogic Server Administration Console Online Help.

Specify the private key alias, as required. For example: oratest.

	
Configure a credential mapping provider, as described in "Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help.

Create a PKICredentialMapper and configure it as follows (leave all other values set to the defaults):

	
Keystore Provider: N/A

	
Keystore Type: jks

	
Keystore File Name: default_keystore.jks

	
Keystore Pass Phrase: <password>

	
Confirm Keystore Pass Phrase: <password>

	
Restart Oracle WebLogic Server.

	
Invoke the OSB Console. For example:

http://<host name>:<port number>/sbconsole

	
Create a ServiceKeyProvider.

	
Specify Encryption Key and Digital Signature Key, as required.

You must use different keys on the OWSM and Oracle Service Bus servers. You can use the same key for encryption and signing, if desired.

6.2.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service

To configure Oracle Service Bus 10g client and OWSM 12c Web Service, perform the steps described in the following sections:

6.2.1.1 Configuring OWSM 12c Web Service

	
Create a copy of the following policy: wss10_username_token_with_message_protection_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Set Encryption Key Reference Mechanism to issuerserial.

	
Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for Oracle Service Bus.

	
Enable the Include Timestamp configuration setting.

	
Set Is Encrypted to false for the Username token element only.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

6.2.1.2 Configuring Oracle Service Bus 10g Client

	
Create a copy of the Encrypt.xml and Sign.xml policy files.

For example, copy the files to myEncrypt.xml and mySign.xml. It is not recommended to edit the predefined policy files directly.

	
Edit the encryption algorithm in myEncrypt.xml file to prevent encryption compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

	
Edit the mySign.xml policy file attached to the Oracle Service Bus business service request only to sign the Username token by including the following target:

<wssp:Target>
 <wssp:DigestAlgorithm URI=
 "http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts Dialect=
 "http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsse:UsernameToken)
 </wssp:MessageParts>
</wssp:Target>

	
Edit the mySign.xml policy file attached to the Oracle Service Bus business service response only to specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

	
Invoke the Web service method from the client.

6.2.2 Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service

To configure OWSM 12c client and Oracle Service Bus 10g Web Service, perform the steps described in the following sections:

6.2.2.1 Configuring Oracle Service Bus 10g Web Service

	
Create a copy of the Encrypt.xml and Sign.xml policy files.

For example, copy the files to myEncrypt.xml and mySign.xml. It is not recommended to edit the predefined policy files directly.

	
Edit the encryption algorithm in the myEncrypt.xml file to prevent encryption compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

	
Edit the mySign.xml policy file attached to the proxy service request only to specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

	
Create a Web service application that invokes the Oracle Service Bus routing service.

6.2.2.2 Configuring OWSM 12c Client

	
Create a copy of the following policy: wss10_username_token_with_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Set Encryption Key Reference Mechanism to issuerserial.

	
Set Recipient Encryption Key Reference Mechanism to issuerserial.

	
Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for Oracle Service Bus.

	
Disable the Include Timestamp configuration setting.

	
Set Is Encrypted to false.

	
Leave the default configuration set for message signing and encryption.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service from the client.

6.3 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

This section describes how to implement SAML token (sender vouches) with message protection that conforms to the WS-Security 1.0 standard in the following interoperability scenarios:

	
"Configuration Prerequisites for Interoperability"

	
"Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service"

Configuration Prerequisites for Interoperability

Perform the following prerequisite steps for the WebLogic Server on which Oracle Service Bus is running:

	
Copy the default-keystore.jks and trust.jks files to your domain directory.

The default-keystore.jks is used to store public and private keys for SOAP messages within the WebLogic Domain. The trust.jks is used to store private keys, digital certificates, and trusted certificate authority certificates that are used to establish and verify identity and trust in the WebLogic Server environment.

	
Invoke the WebLogic Administration Console, as described in "Accessing Oracle WebLogic Administration Console" in Administering Web Services.

	
Create a SAMLIdentityAsserterV2 authentication provider, as described in "Configuring Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help.

	
Restart WebLogic Server to add the new provider to the Administration Server's Runtime MBean server.

	
Select the authentication provider created in step 3.

	
Create and configure a SAML asserting party, as described in "SAML Identity Asserter V2: Create an Asserting Party" and "SAML Identity Asserter V2: Asserting Party: Configuration" in Oracle WebLogic Server Administration Console Online Help.

Configure the SAML asserting party as follows (leave other values set to the defaults):

	
Profile: WSS/Sender-Vouches

	
Target URL: <OSB Proxy Service Endpoint URI>

	
Issuer URI: www.oracle.com

Select the Enabled checkbox and click Save.

	
Create a SamlCredentialMapperV2 credential mapping provider, as described in "Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help.

Select SamlCredentialMapperV2 from the drop-down list and name the credential mapper, for example, UC2_SamlCredentialMapperV2.

	
Restart WebLogic Server.

	
Configure the credential mapper as follows (leave other values set to the defaults):

	
Issuer URI: www.oracle.com

Note: This value is specified in the policy file.

	
Name Qualifier: oracle.com

	
Create and configure a SAML relying party, as described in "SAML Credential Mapping Provider V2: Create a Relying Party" and "SAML Credential Mapping Provider V2: Relying Party: Configuration" in Oracle WebLogic Server Administration Console Online Help.

Configure the SAML relying party as follows (leave other values set to the defaults):

	
Profile: WSS/Sender-Vouches

	
Target URL: <OWSM 12c Web Service>

	
Description: <your_description>

Select the Enabled checkbox and click Save.

	
Restart WebLogic Server.

6.3.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service

To configure Oracle Service Bus 10g client and OWSM 12c Web Service, perform the steps described in the following sections:

6.3.1.1 Configuring OWSM 12c Web Service

	
Create a copy of the following policy: oracle/wss10_saml_token_with_message_protection_service_policy.

	
Set Encryption Key Reference Mechanism to issuerserial.

	
Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for Oracle Service Bus.

	
Set Is Encrypted to false for the Username token element only.

	
Leave the default configuration set for message signing and encryption.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

6.3.1.2 Configuring Oracle Service Bus 10g Client

	
Create a copy of the Encrypt.xml and Sign.xml policy files.

For example, to myEncrypt.xml and mySign.xml. It is not recommended to edit the predefined policy files directly.

	
Edit the encryption algorithm in the myEncrypt.xml file to prevent encryption compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

	
Edit the mySign.xml file attached to the Oracle Service Bus business service request only to sign the SAML assertion by including the following target:

<wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts Dialect=
 "http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsse:Assertion)
 </wssp:MessageParts>
</wssp:Target>

	
Edit the mySign.xml file attached to the Oracle Service Bus business service response only to specify that the security token is unsigned, as follows:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

	
Use the custom SAML policy file defined in Example 6-1.

	
Invoke the Web service from the client.

The following defines the custom SAML policy to be used:

Example 6-1 Custom SAML Policy

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="custom_saml">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType=
"http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>
 sender-vouches
 </wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:Policy>

6.3.2 Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service

To configure OWSM 12c client and Oracle Service Bus 10g Web Service, perform the steps described in the following sections:

6.3.2.1 Configuring Oracle Service Bus 10g Web Service

	
Create a copy of the Encrypt.xml and Sign.xml policy files.

For example, to myEncrypt.xml and mySign.xml. It is not recommended to edit the predefined policy files directly.

	
Edit the encryption algorithm in the myEncrypt.xml policy file to prevent encryption compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

	
Edit the mySign.xml policy file attached to the proxy service request only to specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

	
Use the custom SAML policy file defined in Example 6-1.

6.3.2.2 Configuring OWSM 12c Client

	
Create a copy of the following policy: wss10_saml_token_with_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Set Encryption Key Reference Mechanism to issuerserial.

	
Set Recipient Encryption Key Reference Mechanism to issuerserial.

	
Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for Oracle Service Bus.

	
Disable the Include Timestamp configuration setting.

	
Leave the default configuration set for message signing and encryption.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service client.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service from the client.

6.4 SAML or Username Token Over SSL

This section describes how to implement the SAML or username token over SSL policy in the following interoperability scenario:

	
"Configuration Prerequisites for Interoperability"

	
"SAML Prerequisites for Interoperability"

	
"Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service"

	
Note:

The interoperability scenario described in this section also applies to the SAML Token Over SSL and Username Token Over SSL policies.

Configuration Prerequisites for Interoperability

See "Configuration Prerequisites for Interoperability" for configuration information on the username token.

See "Configuration Prerequisites for Interoperability" for configuration information on the SAML token.

SAML Prerequisites for Interoperability

For SAML, perform the following prerequisite steps for the WebLogic Server on which Oracle Service Bus is running:

	
Create a SamlCredentialMapperV2 credential mapping provider, as described in "Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help.

Select SamlCredentialMapperV2 from the drop-down list and name the credential mapper; for example, UC2_SamlCredentialMapperV2.

	
Restart WebLogic Server.

	
Configure the credential mapper as follows (leave other values set to the defaults):

	
Issuer URI: www.oracle.com

Note: This value is specified in the policy file.

	
Name Qualifier: oracle.com

	
Create and configure a SAML relying party, as described in "SAML Credential Mapping Provider V2: Create a Relying Party" and "SAML Credential Mapping Provider V2: Relying Party: Configuration" in Oracle WebLogic Server Administration Console Online Help.

Configure the SAML relying party as follows (leave other values set to the defaults):

	
Profile: WSS/Sender-Vouches

	
Target URL: <OWSM 12c Web Service>

	
Description: <your_description>

Select the Enabled checkbox and click Save.

	
Restart WebLogic Server.

6.4.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service

To configure Oracle Service Bus 10g client and OWSM 12c Web Service, perform the steps described in the following sections:

6.4.1.1 Configuring OWSM 12c Web Service

	
Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
If the service policy is Username Token Over SSL, set Two Way Client Cert Behavior to "Client Certs Requested and Not Enforced."

	
If the service policy is SAML Token Over SSL, set Two Way Client Cert Behavior to "Client Certs Requested and Enforced."

	
Create a copy of the following policy: wss_saml_or_username_token_over_ssl_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

	
For wss_username_token_over_ssl_service_policy, disable the Create Element and Nonce configuration settings.

	
For wss_saml_token_over_ssl_service_policy, disable the Include Timestamp configuration setting.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Use Fusion Middleware Control to import the policy.

	
Use JDeveloper to create a simple SOA composite.

	
Attach the copy of the wss_saml_or_username_token_over_ssl_service_policy policy to the composite and deploy it.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

6.4.1.2 Configuring Oracle Service Bus 10g Client

Both the SAML token client and the username token client are supported.

	
Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
If the client policy is the equivalent of Username Token Over SSL, then set Two Way Client Cert Behavior to "Client Certs Requested and Not Enforced."

	
If the client policy is the equivalent of SAML Token Over SSL, then set Two Way Client Cert Behavior to "Client Certs Requested and Enforced."

	
In the Oracle Service Bus console, import the WSDL for the relying party. Make sure that there is no policy attached. (Policy assertions are not allowed on this service.)

	
For SAML token, create a business service.

	
Attach the policy shown in Example 6-1, "Custom SAML Policy" to the request.

	
Change the WSDL from HTTP to HTTPS.

	
For username token, create a business service.

	
Attach the auth.xml policy to the request.

	
Change the WSDL from HTTP to HTTPS.

	
Create a service key provider.

	
Create a proxy service, and create a route to the business service.

In HTTP Transport Configuration, set Authentication to "basic."

On the Security page, associate the Service key provider. This is needed for Oracle Service Bus to send the client cert to SOA.

	
Run the proxy service from the Oracle Service Bus console with the username and password.

6.5 Mutual Authentication with Message Protection (WS-Security 1.0)

The following sections describe how to implement mutual authentication with message protection that conform to the WS-Security 1.0 standards:

	
"Configuration Prerequisites for Oracle WebLogic Server"

	
"Configuration Prerequisites for OWSM"

	
"Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service"

Configuration Prerequisites for Oracle WebLogic Server

Perform the following prerequisite steps for the Oracle WebLogic Server on which Oracle Service Bus is running:

	
Copy the default-keystore.jks and trust.jks files to your domain directory.

The default-keystore.jks is used to store public and private keys for SOAP messages within the WebLogic Domain. The trust.jks is used to store private keys, digital certificates, and trusted certificate authority certificates that are used to establish and verify identity and trust in the Oracle WebLogic Server environment.

	
Invoke the WebLogic Administration Console, as described in "Accessing Oracle WebLogic Administration Console" in Administering Web Services.

	
Configure the Custom Identity and Custom Trust keystores, as described in "Configure keystores" in Oracle WebLogic Server Administration Console Online Help.

	
Configure SSL, as described in "Set up SSL" in Oracle WebLogic Server Administration Console Online Help.

Specify the private key alias, as required. For example: oratest.

	
Configure a credential mapping provider, as described in "Configure Credential Mapping Providers" in Oracle WebLogic Server Administration Console Online Help.

Create a PKICredentialMapper and configure it as follows (leave all other values set to the defaults):

	
Keystore Provider: N/A

	
Keystore Type: jks

	
Keystore File Name: default_keystore.jks

	
Keystore Pass Phrase: <password>

	
Confirm Keystore Pass Phrase: <password>

	
Configure Authentication, as described in "Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help.

Select the Authentication tab and configure as follows:

	
Click DefaultIdentityAsserter and add X.509 to Chosen active types

	
Click Provider Specific and configure the following:

	
Default User Name Mapper Attribute Type: CN

	
Active Types: X.509

	
Use Default User Name Mapper: True

	
Configure a token handler to specify that a client invoking a message-secured Web service uses an X.509 certificate to establish their identity. In WebLogic Administration Console, navigate to the Web Service Security page of the domain and configure the inbound and outbound messages as follows:

	
Note:

Only username token with message protection or mutual authentication with message protection is available at any given time. Once you enable mutual authentication with message protection, username authentication will fail.

	
Click _SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEAN_ and select the Token Handler tab.

	
Click X.509 token handler and configure the following:

	
Name: UseX509ForIdentity

	
Value: True

	
Perform the same steps for the outbound Oracle Service Bus MBean: _SERVICE_BUS_OUTBOUND_WEB_SERVICE_SECURITY_MBEAN_

	
If the users are not added, add the Common Name (CN) user specified in the certificate as described in "Create users" in Oracle WebLogic Server Administration Console Online Help.

	
Restart Oracle WebLogic Server.

Configuration Prerequisites for OWSM

Perform the following prerequisite steps for the OWSM using Oracle WebLogic Server Administration Console:

	
Configure Authentication, as described in "Configure Authentication and Identity Assertion providers" in Oracle WebLogic Server Administration Console Online Help.

Select the Authentication tab and configure as follows:

	
Click DefaultIdentityAsserter and add X.509 to Chosen active types

	
Click Provider Specific and configure the following:

	
Default User Name Mapper Attribute Type: CN

	
Active Types: X.509

	
Use Default User Name Mapper: True

	
If the users are not added, add the Common Name (CN) user specified in the certificate as described in "Create users" in Oracle WebLogic Server Administration Console Online Help.

	
Restart Oracle WebLogic Server.

6.5.1 Configuring Oracle Service Bus 10g Client and OWSM 12c Web Service

To configure Oracle Service Bus 10g client and OWSM 12c Web service, perform the steps described in the following sections:

	
"Configuring OWSM 12c Web Service"

	
"Configuring Oracle Service Bus 10g Client"

6.5.1.1 Configuring OWSM 12c Web Service

	
Create and deploy a SOA composite.

	
Create a copy of the following policy: wss10_x509_token_with_message_protection_service_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

Edit the policy settings, as follows:

	
Set Encryption Key Reference Mechanism to issuerserial.

	
Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for Oracle Service Bus.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the policy to the Web service.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

6.5.1.2 Configuring Oracle Service Bus 10g Client

	
Create an Oracle Service Bus business service.

	
Create a copy of the Encrypt.xml and Sign.xml policy files.

For example, copy the files to myEncrypt.xml and mySign.xml. It is not recommended to edit the predefined policy files directly.

	
Attach the X.509 policy to the Oracle Service Bus business service request.

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 s0:Id="X509Auth">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

	
Attach the Sign.xml policy file to the Oracle Service Bus business service request.

	
Edit the myEncrypt.xml policy and attach it to the Oracle Service Bus business service request.

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="X509Encrypt">
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

	
Edit the mySign.xml policy file attached to the Oracle Service Bus business service response to specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

 <?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="X509Sign">
 <wssp:Integrity SignToken="false">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <!--wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target-->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 </wssp:Integrity>
 <wssp:MessageAge/>
</wsp:Policy>

	
Attach the myEncrypt.xml policy file from Step 6 to the Oracle Service Bus business service response.

	
Create a ServiceKeyProvider.

	
Specify Encryption Key and Digital Signature Key, as required.

You must use different keys on the OWSM and Oracle Service Bus servers. You can use the same key for encryption and signing, if desired.

	
Create a proxy service, and create a route to the business service.

On the Security page, associate the Service key provider. This is needed for Oracle Service Bus to send the client certificate to SOA.

	
Run the proxy service from the Oracle Service Bus console.

6.5.2 Configuring OWSM 12c Client and Oracle Service Bus 10g Web Service

To configure OWSM 12g client and Oracle Service Bus 10g Web Service, perform the steps described in the following sections:

	
"Configuring Oracle Service Bus 10g Web Service"

	
"Configuring OWSM 12c Client"

6.5.2.1 Configuring Oracle Service Bus 10g Web Service

	
Create a Oracle Service Bus proxy service.

	
Create a copy of the Encrypt.xml and Sign.xml policy files.

For example, to myEncrypt.xml and mySign.xml. It is not recommended to edit the predefined policy files directly.

	
Attach the X.509 policy as described in "Configuring Oracle Service Bus 10g Client" to the proxy service request.

	
Edit the mySign.xml policy file attached to the proxy service request and comment out the target for system headers and timestamp, as shown:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 s0:Id="X509SignRequest">
 <wssp:Integrity
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <wssp:CanonicalizationAlgorithm URI="http://www.w3.org/2001/10/xml-exc-c14n#"
 />
 <!-- wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/security/policy/wsee#part">wls:SystemHeaders
()</wssp:MessageParts>
 </wssp:Target -->
 <!-- wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">wls:SecurityHeader
(wsu:Timestamp)</wssp:MessageParts>
 </wssp:Target -->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:MessageParts>
 </wssp:Target>
</wsp:Policy>

	
Edit the encryption algorithm in the myEncrypt.xml file attached to the proxy service request as follows:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="X509Encrypt">
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>

</wsp:Policy>

	
Attach mySign.xml and myEncrypt.xml policy files from the previous steps to the proxy service response.

	
Create a Service Key Provider.

6.5.2.2 Configuring OWSM 12c Client

	
Create a copy of the following policy: wss10_x509_token_with_message_protection_client_policy.

	
Note:

Oracle recommends that you do not change the predefined policies so that you will always have a known set of valid policies to work with.

In Enterprise Manager, edit the policy settings, as follows:

	
Set Encryption Key Reference Mechanism to issuerserial.

	
Set Recipient Encryption Key Reference Mechanism to issuerserial.

	
Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for Oracle Service Bus.

	
Disable the Include Timestamp configuration setting.

For more information, see "Cloning a Web Service Policy" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
In Enterprise Manager, specify keystore.recipient.alias in the client configuration. Ensure that the keystore.recipient.alias keys specified for the client exist as trusted certificate entry in the trust store configured for the Web service.

	
Attach the policy to the Web service client.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Invoke the Web service from the client.

7 Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments

This chapter describes interoperability of Oracle Web Services Manager (OWSM) with Axis 1.4 and WSS4J 1.5.8 security environments.

	
Note:

A subset of the interoperability scenarios within this chapter employ SOA applications which will be supported in a future release of Oracle Fusion Middleware 12c. For this release, you can substitute an ADF or Java EE application in these scenarios.

This chapter contains the following sections:

	
Section 7.1, "Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security Environments"

	
Section 7.2, "Required Files for Interoperability With Axis and WSS4J"

	
Section 7.3, "Username Token with Message Protection (WS-Security 1.0)"

	
Section 7.4, "SAML Token with Message Protection (WS-Security 1.0)"

	
Section 7.5, "Username Token Over SSL"

	
Section 7.6, "SAML Token (Sender Vouches) Over SSL"

7.1 Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security Environments

In Axis 1.4 and WSS4J 1.5.8, you configure your security environment for inbound and outbound requests using handlers and deployment descriptors. For more information, see the Axis Deployment Tutorial at http://ws.apache.org/wss4j/axis.html.

With OWSM 12c, you attach policies to Web service endpoints. Each policy consists of one or more assertions, defined at the domain-level, that define the security requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching policies on Axis and WSS4J, see the Axis Deployment Tutorial at http://ws.apache.org/wss4j/axis.html.

Table 7-1 OWSM 12c Service Policy and Axis WSS4J Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Username

	
1.0

	
Yes

	
No

	
oracle/wss10_username_token_with_message_protection_service_policy

	
UsernameToken Timestamp Signature Encrypt

	
SAML

	
1.0

	
Yes

	
No

	
oracle/wss10_saml_token_with_message_protection_service_policy

	
SAMLTokenUnsigned Timestamp Signature Encrypt

	
Username

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_username_token_over_ssl_service_policy

	
UsernameToken Timestamp

	
SAML

	
1.0 and 1.1

	
No

	
Yes

	
oracle/wss_saml_token_over_ssl_service_policy

	
SAMLTokenUnsigned Timestamp

Table 7-2 Axis WSS4J Service Policy and OWSM 12c Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
Username

	
1.0

	
Yes

	
No

	
UsernameToken Timestamp Signature Encrypt

	
oracle/wss10_username_token_with_message_protection_client_policy

	
SAML

	
1.0

	
Yes

	
No

	
SAMLTokenUnsigned Timestamp Signature Encrypt

	
oracle/wss10_saml_token_with_message_protection_client_policy

	
Username

	
1.0 and 1.1

	
No

	
Yes

	
Timestamp UsernameToken

	
oracle/wss_username_token_over_ssl_client_policy

	
SAML

	
1.0 and 1.1

	
No

	
Yes

	
Timestamp SAMLTokenUnsigned

	
oracle/wss_saml_token_over_ssl_client_policy

7.2 Required Files for Interoperability With Axis and WSS4J

Perform the following steps to create the handler and property files that are required in each of the Axis and WSS4J interoperability scenarios:

	
Create and compile a password callback class, PWCallback.java, that can resolve passwords required by username and keystore aliases.

The deployment descriptors defined in the following sections, contain username information, but not password information. As a best practice, you should not store sensitive information such as passwords in clear text within the deployment descriptor. To obtain the password, the Axis handler calls the password callback class. This mechanism is similar to JAAS. For more information, see the WSS4J documentation at http://ws.apache.org/wss4j.

	
Create the keystore properties file, crypto.properties, as shown below. Include this file in the classes directory.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=welcome1
org.apache.ws.security.crypto.merlin.file=default-keystore.jks

	
Create the saml.properties file, required for SAML interoperability scenarios only, as shown below.

org.apache.ws.security.saml.issuerClass=org.apache.ws.security.saml.SAMLIssuerImpl
org.apache.ws.security.saml.issuer.cryptoProp.file=crypto.properties
org.apache.ws.security.saml.issuer.key.name=orakey
org.apache.ws.security.saml.issuer.key.password=orakey
org.apache.ws.security.saml.issuer=www.oracle.com
org.apache.ws.security.saml.subjectNameId.name=weblogic
org.apache.ws.security.saml.authenticationMethod=password
org.apache.ws.security.saml.confirmationMethod=senderVouches

7.3 Username Token with Message Protection (WS-Security 1.0)

This section describes how to implement username token with message protection that conforms to the WS-Security 1.0 standard in the following interoperability scenarios:

	
"Configuring Axis and WSS4J Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Axis and WSS4J Web Service"

7.3.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service

To configure Axis and WSS4J client and OWSM 12c Web Service, perform the steps described in the following sections:

7.3.1.1 Configuring OWSM 12c Web Service

	
Attach the following policy to the Web service: oracle/wss10_username_token_with_message_protection_service_policy.

For more information about attaching the policy, "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the Web service.

7.3.1.2 Configuring Axis and WSS4J Client

	
Build your Web service client proxy.

	
Create the password callback class, PWCallback.java, and keystore properties file, crypto.properties, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Include the keystore file (for example, default-keystore.jks) and crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates.

	
Edit the deployment descriptor, client_deploy.wsdd, similar to Example 7-1.

In the example, the receiver decrypts, verifies, and validates the username token; the sender inserts a username token, timestamp, signs the body, username token, and timestamp, and encrypts the body and username token. As shown in the example, the encryption key transport is overridden to match the OWSM default requirements

	
Set the following property within the client code to use the deployment descriptor defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

	
Deploy the Web service client.

The following shows an example of the client_deploy.wsdd deployment descriptor.

Example 7-1 client_deploy.wsdd Deployment Descriptor

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
 <!-- wss10_username_token_with_message_protection -->
 <requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass"
 value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="action" value="UsernameToken Timestamp Signature Encrypt"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 <parameter name="encryptionPropFile" value="crypto.properties" />
 <parameter name="encryptionUser" value="orakey" />
 <parameter name="encryptionParts" value=
 "{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd}
 UsernameToken;{Content}{http://schemas.xmlsoap.org/soap/envelope/}Body" />
 <parameter name="signatureUser" value="orakey" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts" value=
 "{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd}
UsernameToken;{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd}
Timestamp;{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body" />
 </handler>
 </requestFlow>
 <responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="com.oracle.xmlns.ConfigOverride_jws.CO
_SOA.BPELProcess1.PWCallback"/>
 <parameter name="action" value="Timestamp Signature Encrypt" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 <parameter name="enableSignatureConfirmation" value="false" />
 </handler>
 </responseFlow>
 </globalConfiguration >
</deployment>

7.3.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

To configure OWSM 12c client and Axis and WSS4J Web Service, perform the steps described in the following sections:

7.3.2.1 Configuring Axis and WSS4J Web Service

	
Build your Web service.

	
Create the password callback class, PWCallback.java, and keystore properties file, crypto.properties, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Include the keystore file (for example, default-keystore.jks) and crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates.

	
Edit the deployment descriptor, server_deploy.wsdd, as shown in Example 7-2.

In the example, the receiver decrypts, verifies, and validates the username token; the sender inserts a username token, timestamp, signs the body, username token, and timestamp, and encrypts the body and username token. As shown in the example, the encryption key transport is overridden to match the OWSM default requirements.

	
Note:

WSS4J enforces an order to the elements in the header. Ensure action ordering is updated in server_deploy.wsdd as shown in Example 7-2.

	
Deploy the Web service.

7.3.2.2 Configuring OWSM 12c Client

	
Attach the following policy to the Web service: oracle/wss10_username_token_with_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
For Java SE clients only, configure the Web service client properties, as follows:

Note: This step is not required for Java EE clients.

myPort.setProperty(ClientConstants.WSS_KEYSTORE_TYPE,"JKS");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_LOCATION,
 "/keystore-path/default-keystore.jks");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_PASSWORD, "welcome1");
myPort.setProperty(ClientConstants.WSS_RECIPIENT_KEY_ALIAS,"orakey");
...

Where setProperty is defined as follows:

public void setProperty(String name, String value) {
 ((Stub) _port)._setProperty(name, value);
}

	
Deploy the Web service client.

The following shows an example of the server_deploy.wsdd deployment descriptor.

Example 7-2 server_deploy.wsdd Deployment Descriptor

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped" use="literal">
<!-- wss10_username_token_with_message_protection -->
<requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="wss4j"/>
 <parameter name="action" value="Signature UsernameToken Timestamp Encrypt"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="orakey"/>
 <parameter name="action" value="Timestamp Signature Encrypt"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts"
value="{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body;{Element}
{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd}Timestamp" />
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 </handler>
</responseFlow>
</ns1:service>

7.4 SAML Token with Message Protection (WS-Security 1.0)

This section describes how to implement username token with message protection that conforms to the WS-Security 1.0 standard in the following interoperability scenarios:

	
"Configuring Axis and WSS4J Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Axis and WSS4J Web Service"

7.4.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service

To configure Axis and WSS4J client and OWSM 12c Web service, perform the steps described in the following sections:

7.4.1.1 Configuring OWSM 12c Web Service

	
Attach the following policy to the Web service: oracle/wss10_saml_token_with_message_protection_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the Web service.

7.4.1.2 Configuring Axis and WSS4J Client

	
Build your Web service client proxy.

	
Create the password callback class, PWCallback.java, keystore properties file, crypto.properties file, and saml.properties file, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Include the keystore file (for example, default-keystore.jks) and crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates.

	
Edit the deployment descriptor, client_deploy.wsdd, similar to Example 7-3.

In the example, the receiver decrypts, verifies, and validates the SAML token; the sender inserts a SAML token, timestamp, signs the body, SAML token, and timestamp, and encrypts the body. As shown in the example, the encryption key transport is overridden to match the OWSM default requirements.

	
Set the following property within the client code to use the deployment descriptor defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

	
Deploy the Web service client.

The following shows an example of the client_deploy.wsdd deployment descriptor.

Example 7-3 client_deploy.wsdd Deployment Descriptor

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
<!-- wss10_saml_token_with_message_protection -->
 <requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass"
 value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="action" value="Timestamp Signature SAMLTokenSigned Encrypt"/>
 <parameter name="samlPropFile" value="saml.properties"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 <parameter name="encryptionPropFile" value="crypto.properties" />
 <parameter name="encryptionUser" value="orakey" />
 <parameter name="encryptionParts"
 value="{Content}{http://schemas.xmlsoap.org/soap/envelope/}Body" />
 <parameter name="signatureUser" value="orakey" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts" value="{Element}
 {http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd}
 Timestamp;{Element}
 {http://schemas.xmlsoap.org/soap/envelope/}Body" />
 </handler>
 </requestFlow>
 <responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass"
 value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback" />
 <parameter name="action" value="Timestamp Signature Encrypt" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 <parameter name="enableSignatureConfirmation" value="false" />
 </handler>
 </responseFlow>
 </globalConfiguration >
</deployment>

7.4.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

To configure OWSM 12c client and Axis and WSS4J Web Service, perform the steps described in the following sections:

7.4.2.1 Configuring Axis and WSS4J Web Service

	
Build your Web service.

	
Create the password callback class, PWCallback.java, keystore properties file, crypto.properties file, and saml.properties file as described in "Required Files for Interoperability With Axis and WSS4J".

	
Include the keystore file (for example, default-keystore.jks) and crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates.

	
Edit the deployment descriptor, server_deploy.wsdd, as shown in Example 7-4.

In the example, the receiver decrypts, verifies, and validates the SAML token; the sender inserts a SAML token, timestamp, signs the body, SAML token, and timestamp, and encrypts the body. As shown in the example, the encryption key transport is overridden to match the OWSM default requirements.

	
Note:

WSS4J enforces an order to the elements in the header. Ensure action ordering is updated in server_deploy.wsdd as shown in Example 7-4.

	
Deploy the Web service.

7.4.2.2 Configuring OWSM 12c Client

	
Attach the following policy to the Web service: oracle/wss10_saml_token_with_message_protection_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
For JSE clients only, configure the Web service client properties, as follows:

Note: This step is not required for Java EE clients.

myPort.setProperty(ClientConstants.WSS_KEYSTORE_TYPE,"JKS");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_LOCATION,
 "/keystore-path/default-keystore.jks");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_PASSWORD, "welcome1");
myPort.setProperty(ClientConstants.WSS_RECIPIENT_KEY_ALIAS,"orakey");
...

Where setProperty is defined as follows:

public void setProperty(String name, String value) {
 ((Stub) _port)._setProperty(name, value);
}

	
Deploy the Web service client.

The following shows an example of the server_deploy.wsdd deployment descriptor.

Example 7-4 server_deploy.wsdd Deployment Descriptor

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped" use="literal">
<!-- wss10_username_token_with_message_protection -->
<requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="wss4j"/>
 <parameter name="action" value="Signature SAMLTokenUnsigned Timestamp Encrypt"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="orakey"/>
 <parameter name="action" value="Timestamp Signature Encrypt"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts"
value="{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body;{Element}
{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd}Timestamp" />
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 </handler>
</responseFlow>
</ns1:service>

7.5 Username Token Over SSL

This section describes how to implement username token over SSL in the following interoperability scenarios:

	
"Configuring Axis and WSS4J Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Axis and WSS4J Web Service"

7.5.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service

To configure Axis and WSS4J client and OWSM 12g Web service, perform the steps described in the following sections:

7.5.1.1 Configuring OWSM 12c Web Service

	
Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the following policy to the Web service: oracle/wss_username_token_over_ssl_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the Web service.

7.5.1.2 Configuring Axis and WSS4J Client

	
Build your Web service client proxy.

	
Create the password callback class, PWCallback.java, and keystore properties file, crypto.properties, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Edit the deployment descriptor, client_deploy.wsdd, similar the example below. In the example, the receiver validates the username token and timestamp; the sender inserts a timestamp.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
<globalConfiguration >
<!-- wss_username_token -->
<requestFlow >
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="UsernameToken Timestamp"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="passwordCallbackClass"
 value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 </handler>
</requestFlow >
</globalConfiguration >
</deployment>

	
Set the following property within the client code to use the deployment descriptor defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

	
Deploy the Web service client.

7.5.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

To configure OWSM 12c client and Axis and WSS4J Web service, perform the steps described in the following sections:

7.5.2.1 Configuring Axis and WSS4J Web Service

	
Configure the server for SSL.

	
Build your Web service.

	
Create the password callback class, PWCallback.java, and crypto.properties file, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Edit the deployment descriptor, server_deploy.wsdd, similar to the example below. In the example, the receiver validates the username token and the timestamp; the sender inserts a timestamp.

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped"
 use="literal">
<!-- wss_username_token_over_ssl -->
 <requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="action" value="Timestamp UsernameToken"/>
 </handler>
 </requestFlow>
 <responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="Timestamp"/>
 </handler>
 </responseFlow>
</ns1:service>

	
Deploy the Web service.

7.5.2.2 Configuring OWSM 12c Client

	
Attach the following policy to the Web service client: wss_username_token_over_ssl_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
For JSE clients only, configure the Web service client properties, as shown below. The username and password must be set by the client for generating the username token.

Note: This step is not required for Java EE clients.

myPort.setUsername("wss4j");
myPort.setPassword("security"););

	
Deploy the Web service client.

When running the client, include the following client system property, where default-keystore.jks specifies the keystore that contains the certificate corresponding to the server certificate.

-Djavax.net.ssl.trustStore=default-keystore.jks

7.6 SAML Token (Sender Vouches) Over SSL

This section describes how to implement SAML token (sender vouches) over SSL in the following interoperability scenarios:

	
"Configuring Axis and WSS4J Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and Axis and WSS4J Web Service"

7.6.1 Configuring Axis and WSS4J Client and OWSM 12c Web Service

To configure Axis and WSS4J client and OWSM 12c Web service, perform the steps described in the following sections:

7.6.1.1 Configuring OWSM 12c Web Service

	
Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Attach the following policy to the Web service: wss_saml_token_over_ssl_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Deploy the Web service.

7.6.1.2 Configuring Axis and WSS4J Client

	
Build your Web service client proxy.

	
Create the password callback class, PWCallback.java; keystore properties file, crypto.properties; and SAML properties file, saml.properties, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Edit the deployment descriptor, client_deploy.wsdd, similar the example below. In the example, the receiver validates the SAML token and timestamp; the sender inserts a timestamp.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
<!-- wss_saml_token -->
<requestFlow >
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="SAMLTokenSigned Timestamp"/>
 <parameter name="samlPropFile" value="saml.properties"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="passwordCallbackClass"
 value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="signatureUser" value="orakey" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 </handler>
</requestFlow >
</globalConfiguration >
</deployment>

	
Set the following property within the client code to use the deployment descriptor defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

	
Deploy the Web service client.

7.6.2 Configuring OWSM 12c Client and Axis and WSS4J Web Service

To configure OWSM 12c client and Axis and WSS4J Web service, perform the steps described in the following sections:

7.6.2.1 Configuring Axis and WSS4J Web Service

	
Configure the server for SSL.

	
Build your Web service.

	
Create the password callback class, PWCallback.java, and crypto.properties file, as described in "Required Files for Interoperability With Axis and WSS4J".

	
Edit the deployment descriptor, server_deploy.wsdd, similar to the example below.

In the example, the receiver validates the SAML token and the timestamp; the sender inserts a timestamp.

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped"
 use="literal">
<!-- wss_saml_token_over_ssl -->
<requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="action" value="Timestamp SAMLTokenUnsigned"/>
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="Timestamp"/>
 </handler>
</responseFlow>
</ns1:service>

	
Deploy the Web service.

7.6.2.2 Configuring OWSM 12c Client

	
Attach the following policy to the Web service client: wss_saml_token_over_ssl_client_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
For JSE clients, configure the Web service client properties, as shown below. The username must be set by the client for generating the SAML assertion.

	
Note:

This step is not required for Java EE clients.v

myPort.setUsername("wss4j");

	
Deploy the Web service client.

When running the client, include the following client system property, where default-keystore.jks specifies the keystore that contains the certificate corresponding to the server certificate.

-Djavax.net.ssl.trustStore=default-keystore.jks

8 Interoperability with Oracle GlassFish Server Release 3.0.1

This chapter describes interoperability of Oracle Web Services Manager (OWSM) with Oracle Glassfish Server Release 3.0.1.

This chapter contains the following sections:

	
Section 8.1, "Overview of Interoperability With Oracle GlassFish Security Environments"

	
Section 8.2, "SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

8.1 Overview of Interoperability With Oracle GlassFish Security Environments

Oracle GlassFish Server Release 3.0.1 is an open source application server for the Java EE platform. Metro is an open-source Web service stack that is a part of Oracle GlassFish Server.

With OWSM 12c, you attach policies to Web service endpoints. Each policy consists of one or more assertions, defined at the domain-level, that define the security requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more information about:

	
OWSM predefined policies, see "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring and attaching OWSM 12c policies, see "Securing Web Services" and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Configuring Oracle GlassFish, see http://download.oracle.com/docs/cd/E18930_01/index.html.

	
Configuring Metro Web services, see http://metro.java.net/guide/

Table 8-1 and Table 8-2 summarize the most common GlassFish Server interoperability scenarios based on the following security requirements: authentication, message protection, and transport.

Table 8-1 OWSM 11g Service Policy and GlassFish Client Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
SAML

	
1.1

	
Yes

	
No

	
oracle/wss11_saml_token_with_message_protection_service_policy

	
See "Configuring GlassFish Client and OWSM 12c Web Service"

Table 8-2 GlassFish Service and OWSM 11g Client Policy Interoperability

	Identity Token	WS-Security Version	Message Protection	Transport Security	Service Policy	Client Policy
	
SAML

	
1.1

	
Yes

	
No

	
See "Configuring OWSM 12c Client and GlassFish Web Service"

	
oracle/wss11_saml_token_with_message_protection_client_policy

8.2 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

The following sections describe how to implement SAML token (sender vouches) with message protection that conforms to the WS-Security 1.1 standard:

	
"Configuring GlassFish Client and OWSM 12c Web Service"

	
"Configuring OWSM 12c Client and GlassFish Web Service"

8.2.1 Configuring GlassFish Client and OWSM 12c Web Service

To configure GlassFish client and OWSM 12c Web Service, perform the steps described in the following sections:

8.2.1.1 Configuration Prerequisites for Interoperability

Perform the following prerequisite steps:

	
Create a default-keystore.jks file with the following command:

$JAVA_HOME/bin/keytool -genkeypair -alias orakey -keypass welcome -keyalg RSA
 -dname "CN=orakey, O=oracle C=us" -keystore default-keystore.jks -storepass
 welcome

	
Copy default-keystore.jks to the domain's fmwconfig directory.

	
Create a file user in GlassFish with the following command:

$<GLASSFISHV3_HOME>/glassfish/bin/asadmin create-file-user

For more information, see http://download.oracle.com/docs/cd/E18930_01/html/821-2433/create-file-user-1.html.

	
Add the user as described in "Create users" in Oracle WebLogic Server Administration Console Online Help.

	
Import orakey from default-keystore.jks into GlassFish keystore and truststore. These are located in the directory <domain-dir>/config

$JAVA_HOME/bin/keytool -importkeystore -srckeystore
 <path-to>/default-keystore.jks -destkeystore
 <path-to-gf-domain>/config/cacerts.jks -srcalias orakey -destalias orakey
 -srckeypass welcome -destkeypass changeit

	
Copy jps-config.xml and default-keystore.jks from the domain's fmwconfig directory into a local folder.

8.2.1.2 Configuring OWSM 11g Web Service

	
Create a Web service.

	
Attach the following policy to the Web service: oracle/wss11_saml_token_with_message_protection_service_policy.

For more information about attaching the policy, see "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web Services Manager.

8.2.1.3 Configuring GlassFish/Metro Client

	
Using NetBeans, create a Metro client by selecting New Project > Java > Java Application.Provide a project name and location. Select the server to deploy and select Finish.

	
Right click on the project. Select New > Web service Client. Follow the wizard and provide WSDL URL for service deployed in WebLogic.

	
Create a SAML CallbackHandler that can be used with WSIT SAML Security Mechanisms supported by NetBeans.

	
Place the file in the source folder of the project.

	
Ensure issuer variable value is the same as in the jps-config.xml file created in Step 5 of "Configuration Prerequisites for Interoperability".

	
Set the urn reference to urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified.

	
Set the user created in Step 3 and Step 4 of "Configuration Prerequisites for Interoperability". For example, to set the user to wlsuser, modify the file as follows:

CN=wlsuser,OU=SU,O=wlsuser,L=Los Angeles,ST=CA,C=US

	
To configure the JVM, log on to the GlassFish Administration Console. For more information, see the Oracle GlassFish Server 3.1 Administration Guide at: http://download.oracle.com/docs/cd/E18930_01/html/821-2416/gepzd.html.

	
In the left pane, expand Configuration and click JVM Setting.

	
In the right pane, click JVM Option tab.

	
Click Add JVM Option. A new text field is displayed. Enter -DWSIT_HOME=${com.sun.aas.installRoot}.

	
Click Enterprise Server in left pane.

	
Click Restart in the right pane to restart the server.

	
Expand Web Services Reference node. Using NetBeans, right click Service Reference and select Edit Web Services Attributes.

	
For SAML Callback Handler option, click Browse and select the file from Step 3.

	
Set the alias in Keystore and Truststore.

	
Open index.jsp file. Right click and select Web Service Client Reference. Select Operation in Select Operation to Invoke dialog box and click ok.

	
Run the project.

8.2.2 Configuring OWSM 12c Client and GlassFish Web Service

To configure OWSM 12c client and GlassFish Web Service, perform the steps described in the following sections:

8.2.2.1 Configuration Prerequisites for Interoperability

Perform the following prerequisite steps:

	
Create a default-keystore.jks file with the following command:

$JAVA_HOME/bin/keytool -genkeypair -alias orakey -keypass welcome -keyalg RSA
 -dname "CN=orakey, O=oracle C=us" -keystore default-keystore.jks -storepass
 welcome

	
Copy default-keystore.jks to the domain's fmwconfig directory.

	
Save the credentials in credential store using WLST commands. For example:

$<ORACLE_HOME>/common/bin/wlst.sh
> connect()
> createCred(map="oracle.wsm.security", key="keystore-csf-key",
 user="keystore", password="welcome")
> createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey",
 password="welcome")
> createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey",
 password="welcome")
>createCred(map="oracle.wsm.security", key="glassfish.credentials" ,
 user="wlsUser" , password="welcome1" , description="Glassfish user
 credentials");

A file cwallet.sso is created in the directory DOMAIN_HOME/config/fmwconfig

	
Create a file user in GlassFish with the following command:

$<GLASSFISHV3_HOME>/glassfish/bin/asadmin create-file-user

For more information, see http://download.oracle.com/docs/cd/E18930_01/html/821-2433/create-file-user-1.html.

	
Import orakey from default-keystore.jks into GlassFish keystore and truststore. These are located in the directory <domain-dir>/config

$JAVA_HOME/bin/keytool -importkeystore -srckeystore
 <path-to>/default-keystore.jks -destkeystore
 <path-to-gf-domain>/config/keystore.jks -srcalias orakey -destalias orakey
 -srckeypass welcome -destkeypass changeit

	
Copy cwallet.sso, jps-config.xml and default-keystore.jks from the domain's fmwconfig directory into a local folder.

8.2.2.2 Configuring GlassFish/Metro Web Service

	
Create a Metro Web service. For more information, see http://metro.java.net/guide/ch02.html#using_metro-developing_with_nb.

	
Configure the appropriate security mechanism. For more information, see http://metro.java.net/guide/ch12.html#ahicu.

8.2.2.3 Configuring OWSM 11g Client

	
Using JDeveloper, create a Web service proxy for the GlassFish service. Select the policy oracle/wss11_saml_token_with_message_protection_client_policy in the wizard.

	
Set the path to jps-config.xml created in Step 6 of "Configuration Prerequisites for Interoperability".

	
Set the USERNAME_PROPERTY as follows: ((BindingProvider) sAMLTokenEchoService).getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "wlsUser");

	
Invoke the Web service.

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/dcommon/oracle-logo.jpg

OEBPS/dcommon/oracle.gif

