

Oracle® Fusion Middleware
Developing Security Providers for Oracle WebLogic Server

12c (12.1.2)

E28137-02

January 2014

This document provides security vendors and application
developers with the information needed to develop new
security providers for use with Oracle WebLogic Server.

Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server, 12c (12.1.2)

E28137-02

Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xiii

Documentation Accessibility ... xiii
Conventions ... xiii

1 Introduction and Roadmap

1.1 Document Scope.. 1-1
1.2 Documentation Audience.. 1-1
1.3 Guide to this Document ... 1-1
1.4 Related Information.. 1-3
1.5 New and Changed Features in this Release.. 1-3

2 Introduction to Developing Security Providers for WebLogic Server

2.1 Prerequisites for This Guide.. 2-1
2.2 Overview of the Development Process.. 2-1
2.2.1 Designing the Custom Security Provider... 2-2
2.2.2 Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs.....

2-3
2.2.3 Generating an MBean Type to Configure and Manage the Custom Security Provider....

2-3
2.2.4 Writing Console Extensions ... 2-3
2.2.5 Configuring the Custom Security Provider ... 2-5
2.2.6 Providing Management Mechanisms for Security Policies, Security Roles, and

Credential Maps 2-5

3 Design Considerations

3.1 General Architecture of a Security Provider... 3-1
3.2 Security Services Provider Interfaces (SSPIs).. 3-2
3.2.1 Understand Two Important Restrictions ... 3-2
3.2.2 Understand the Purpose of the "Provider" SSPIs.. 3-3
3.2.3 Understand the Purpose of the Bulk Access Providers ... 3-4
3.2.4 Determine Which "Provider" Interface You Will Implement.. 3-4
3.2.4.1 The DeployableAuthorizationProviderV2 SSPI... 3-5
3.2.4.2 The DeployableRoleProviderV2 SSPI.. 3-5
3.2.4.3 The DeployableCredentialProvider SSPI .. 3-5

iv

3.2.5 Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two
Runtime Classes 3-6

3.2.6 SSPI Quick Reference .. 3-7
3.3 Security Service Provider Interface (SSPI) MBeans ... 3-8
3.3.1 Understand Why You Need an MBean Type ... 3-8
3.3.2 Determine Which SSPI MBeans to Extend and Implement .. 3-9
3.3.3 Understand the Basic Elements of an MBean Definition File (MDF)........................... 3-9
3.3.3.1 Custom Providers and Classpaths .. 3-10
3.3.3.2 Throwing Exceptions from MBean Operations ... 3-11
3.3.3.3 Specifying Non-Clear Text Values for MBean Attributes 3-11
3.3.4 Understand the SSPI MBean Hierarchy and How It Affects the Administration

Console 3-11
3.3.5 Understand What the WebLogic MBeanMaker Provides ... 3-13
3.3.5.1 About the MBean Information File ... 3-14
3.3.6 SSPI MBean Quick Reference.. 3-14
3.4 Security Data Migration.. 3-16
3.4.1 Migration Concepts .. 3-16
3.4.1.1 Formats.. 3-16
3.4.1.2 Constraints... 3-17
3.4.1.3 Migration Files ... 3-17
3.4.2 Adding Migration Support to Your Custom Security Providers 3-17
3.4.3 Administration Console Support for Security Data Migration.................................. 3-19
3.5 Management Utilities Available to Developers of Security Providers 3-20
3.6 Security Providers and WebLogic Resources .. 3-21
3.6.1 The Architecture of WebLogic Resources ... 3-21
3.6.2 Types of WebLogic Resources ... 3-22
3.6.3 WebLogic Resource Identifiers .. 3-23
3.6.3.1 The toString() Method... 3-23
3.6.3.2 Resource IDs and the getID() Method.. 3-23
3.6.4 Creating Default Groups for WebLogic Resources.. 3-24
3.6.5 Creating Default Security Roles for WebLogic Resources.. 3-24
3.6.6 Creating Default Security Policies for WebLogic Resources...................................... 3-25
3.6.7 Looking Up WebLogic Resources in a Security Provider's Runtime Class 3-26
3.6.8 Single-Parent Resource Hierarchies... 3-27
3.6.8.1 Pattern Matching for URL Resources ... 3-28
3.6.8.1.1 Example 1 .. 3-28
3.6.8.1.2 Example 2 .. 3-28
3.6.9 ContextHandlers and WebLogic Resources ... 3-28
3.6.9.1 Providers and Interfaces that Support Context Handlers 3-31
3.7 Initialization of the Security Provider Database.. 3-33
3.7.1 Best Practice: Create a Simple Database If None Exists .. 3-34
3.7.2 Best Practice: Configure an Existing Database ... 3-34
3.7.3 Best Practice: Delegate Database Initialization... 3-36
3.7.4 Best Practice: Use the JDBC Connection Security Service API to Obtain Database

Connections 3-36
3.7.4.1 Implementing a JDBC Connection Security Service: Main Steps 3-37
3.8 Differences In Attribute Validators .. 3-37
3.8.1 Differences In Attribute Validators for Custom Validators 3-38

v

4 Authentication Providers

4.1 Authentication Concepts ... 4-1
4.1.1 Users and Groups, Principals and Subjects ... 4-2
4.1.1.1 Providing Initial Users and Groups... 4-3
4.1.2 LoginModules .. 4-3
4.1.2.1 The LoginModule Interface... 4-3
4.1.2.2 LoginModules and Multipart Authentication.. 4-4
4.1.3 Java Authentication and Authorization Service (JAAS) .. 4-5
4.1.3.1 How JAAS Works With the WebLogic Security Framework................................. 4-5
4.1.3.2 Example: Standalone T3 Application .. 4-7
4.2 The Authentication Process... 4-8
4.3 Do You Need to Develop a Custom Authentication Provider? ... 4-9
4.4 How to Develop a Custom Authentication Provider ... 4-10
4.4.1 Create Runtime Classes Using the Appropriate SSPIs.. 4-10
4.4.1.1 Implement the AuthenticationProviderV2 SSPI ... 4-10
4.4.1.2 Implement the JAAS LoginModule Interface.. 4-12
4.4.1.3 Throwing Custom Exceptions from LoginModules... 4-14
4.4.1.3.1 Method 1: Make Custom Exceptions Available via the System and Compiler

Classpath 4-14
4.4.1.3.2 Method 2: Make Custom Exceptions Available via the Application Classpath ..

4-14
4.4.1.4 Example: Creating the Runtime Classes for the Sample Authentication Provider

4-15
4.4.2 Generate an MBean Type Using the WebLogic MBeanMaker 4-20
4.4.2.1 Create an MBean Definition File (MDF) .. 4-20
4.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type 4-21
4.4.2.2.1 No Optional SSPI MBeans and No Custom Operations............................... 4-21
4.4.2.2.2 Optional SSPI MBeans or Custom Operations... 4-21
4.4.2.2.3 About the Generated MBean Interface File .. 4-23
4.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 4-24
4.4.2.4 Install the MBean Type Into the WebLogic Server Environment....................... 4-24
4.4.3 Configure the Custom Authentication Provider Using the Administration Console

4-25
4.4.3.1 Managing User Lockouts ... 4-26
4.4.3.1.1 Rely on the Realm-Wide User Lockout Manager .. 4-26
4.4.3.1.2 Implement Your Own User Lockout Manager .. 4-26
4.4.3.2 Specifying the Order of Authentication Providers... 4-27

5 Identity Assertion Providers

5.1 Identity Assertion Concepts .. 5-1
5.1.1 Identity Assertion Providers and LoginModules ... 5-1
5.1.2 Identity Assertion and Tokens... 5-2
5.1.2.1 How to Create New Token Types.. 5-3
5.1.2.2 How to Make New Token Types Available for Identity Assertion Provider

Configurations 5-3
5.1.3 Passing Tokens for Perimeter Authentication... 5-4
5.1.4 Common Secure Interoperability Version 2 (CSIv2) .. 5-5

vi

5.2 The Identity Assertion Process.. 5-5
5.3 Do You Need to Develop a Custom Identity Assertion Provider?...................................... 5-6
5.4 How to Develop a Custom Identity Assertion Provider... 5-8
5.4.1 Create Runtime Classes Using the Appropriate SSPIs... 5-8
5.4.1.1 Implement the AuthenticationProviderV2 SSPI .. 5-8
5.4.1.2 Implement the IdentityAsserterV2 SSPI .. 5-10
5.4.1.3 Example: Creating the Runtime Class for the Sample Identity Assertion Provider...

5-11
5.4.2 Generate an MBean Type Using the WebLogic MBeanMaker 5-13
5.4.2.1 Create an MBean Definition File (MDF) .. 5-14
5.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type 5-14
5.4.2.2.1 No Optional SSPI MBeans and No Custom Operations............................... 5-15
5.4.2.2.2 Optional SSPI MBeans or Custom Operations... 5-15
5.4.2.2.3 About the Generated MBean Interface File .. 5-17
5.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 5-17
5.4.2.4 Install the MBean Type Into the WebLogic Server Environment....................... 5-18
5.4.3 Configure the Custom Identity Assertion Provider Using the Administration Console..

5-19
5.4.4 Challenge Identity Assertion .. 5-19
5.4.4.1 Challenge/Response Limitations in the Java Servlet API 2.3 Environment..... 5-20
5.4.4.2 Filters and The Role of the weblogic.security.services.Authentication Class .. 5-20
5.4.4.3 How to Develop a Challenge Identity Asserter .. 5-20
5.4.4.4 Implement the ChallengeIdentityAsserterV2 Interface 5-21
5.4.4.5 Implement the ProviderChallengeContext Interface ... 5-21
5.4.4.6 Invoke the weblogic.security.services Challenge Identity Methods.................. 5-22
5.4.4.7 Invoke the weblogic.security.services AppChallengeContext Methods........... 5-22
5.4.4.8 Implementing Challenge Identity Assertion from a Filter 5-23

6 Principal Validation Providers

6.1 Principal Validation Concepts .. 6-1
6.1.1 Principal Validation and Principal Types .. 6-1
6.1.2 How Principal Validation Providers Differ From Other Types of Security Providers

6-2
6.1.3 Security Exceptions Resulting from Invalid Principals.. 6-2
6.2 The Principal Validation Process.. 6-2
6.3 Do You Need to Develop a Custom Principal Validation Provider? 6-3
6.3.1 How to Use the WebLogic Principal Validation Provider... 6-4
6.4 How to Develop a Custom Principal Validation Provider ... 6-4
6.4.1 Implement the PrincipalValidator SSPI.. 6-4

7 Authorization Providers

7.1 Authorization Concepts ... 7-1
7.1.1 Access Decisions .. 7-1
7.1.2 Using the Java Authorization Contract for Containers.. 7-2
7.2 The Authorization Process .. 7-2
7.3 Do You Need to Develop a Custom Authorization Provider?... 7-4

vii

7.3.1 Does Your Custom Authorization Provider Need to Support Application Versioning? .
7-5

7.4 Is Your Custom Authorization Provider Thread Safe? ... 7-5
7.5 How to Develop a Custom Authorization Provider.. 7-5
7.5.1 Create Runtime Classes Using the Appropriate SSPIs... 7-6
7.5.1.1 Implement the AuthorizationProvider SSPI .. 7-6
7.5.1.2 Implement the DeployableAuthorizationProviderV2 SSPI 7-7
7.5.1.2.1 The ApplicationInfo Interface ... 7-8
7.5.1.3 Implement the AccessDecision SSPI.. 7-8
7.5.1.3.1 Developing Custom Authorization Providers That Are Compatible With the

Realm Adapter Authentication Provider 7-9
7.5.1.4 Example: Creating the Runtime Class for the Sample Authorization Provider..........

7-10
7.5.2 Policy Consumer SSPI.. 7-14
7.5.2.1 Required SSPI Interfaces .. 7-14
7.5.2.2 Implement the PolicyConsumerFactory SSPI Interface....................................... 7-15
7.5.2.3 Implement the PolicyConsumer SSPI Interface .. 7-15
7.5.2.4 Implement the PolicyCollectionHandler SSPI Interface...................................... 7-16
7.5.2.5 Supporting an Updated Policy Collection ... 7-16
7.5.2.6 The PolicyConsumerMBean .. 7-17
7.5.3 PolicyStoreMBean... 7-17
7.5.3.1 Examining the Format of a XACML Policy File.. 7-18
7.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean....................................... 7-18
7.5.3.3 Using WLST to Read a PolicySet as a String ... 7-19
7.5.4 Bulk Authorization Providers... 7-20
7.5.5 Generate an MBean Type Using the WebLogic MBeanMaker 7-21
7.5.5.1 Create an MBean Definition File (MDF) .. 7-21
7.5.5.2 Use the WebLogic MBeanMaker to Generate the MBean Type 7-22
7.5.5.2.1 No Optional SSPI MBeans and No Custom Operations............................... 7-22
7.5.5.2.2 Optional SSPI MBeans or Custom Operations... 7-23
7.5.5.2.3 About the Generated MBean Interface File .. 7-25
7.5.5.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 7-25
7.5.5.4 Install the MBean Type Into the WebLogic Server Environment....................... 7-25
7.5.6 Configure the Custom Authorization Provider Using the Administration Console

7-26
7.5.6.1 Managing Authorization Providers and Deployment Descriptors 7-27
7.5.6.2 Enabling Security Policy Deployment.. 7-28
7.5.7 Provide a Mechanism for Security Policy Management ... 7-28
7.5.7.1 Option 1: Develop a Stand-Alone Tool for Security Policy Management......... 7-28
7.5.7.2 Option 2: Integrate an Existing Security Policy Management Tool into the

Administration Console 7-29

8 Adjudication Providers

8.1 The Adjudication Process .. 8-1
8.2 Do You Need to Develop a Custom Adjudication Provider? .. 8-1
8.3 How to Develop a Custom Adjudication Provider ... 8-2
8.3.1 Create Runtime Classes Using the Appropriate SSPIs... 8-2

viii

8.3.1.1 Implement the AdjudicationProviderV2 SSPI ... 8-3
8.3.1.2 Implement the AdjudicatorV2 SSPI... 8-3
8.3.2 Bulk Adjudication Providers.. 8-3
8.3.3 Generate an MBean Type Using the WebLogic MBeanMaker 8-4
8.3.3.1 Create an MBean Definition File (MDF) ... 8-4
8.3.3.2 Use the WebLogic MBeanMaker to Generate the MBean Type 8-5
8.3.3.2.1 No Custom Operations... 8-5
8.3.3.2.2 Custom Operations ... 8-6
8.3.3.2.3 About the Generated MBean Interface File ... 8-7
8.3.3.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 8-7
8.3.3.4 Install the MBean Type Into the WebLogic Server Environment.......................... 8-8
8.3.4 Configure the Custom Adjudication Provider Using the Administration Console .. 8-9

9 Role Mapping Providers

9.1 Role Mapping Concepts... 9-1
9.1.1 Security Roles ... 9-1
9.1.2 Dynamic Security Role Computation ... 9-2
9.2 The Role Mapping Process .. 9-3
9.3 Is Your Custom Role Mapping Provider Thread Safe? ... 9-5
9.4 Do You Need to Develop a Custom Role Mapping Provider? .. 9-5
9.4.1 Does Your Custom Role Mapping Provider Need to Support Application Versioning? .

9-6
9.5 How to Develop a Custom Role Mapping Provider ... 9-6
9.5.1 Create Runtime Classes Using the Appropriate SSPIs... 9-6
9.5.1.1 Implement the RoleProvider SSPI.. 9-7
9.5.1.2 Implement the DeployableRoleProviderV2 SSPI .. 9-7
9.5.1.2.1 The ApplicationInfo Interface ... 9-8
9.5.1.3 Implement the RoleMapper SSPI ... 9-8
9.5.1.3.1 Developing Custom Role Mapping Providers That Are Compatible With the

Realm Adapter Authentication Provider 9-9
9.5.1.4 Implement the SecurityRole Interface ... 9-9
9.5.1.5 Example: Creating the Runtime Class for the Sample Role Mapping Provider

9-10
9.5.2 Role Consumer SSPI... 9-16
9.5.2.1 Required SSPI Interfaces .. 9-17
9.5.2.2 Implement the RoleConsumerFactory SSPI Interface.. 9-17
9.5.2.3 Implement the RoleConsumer SSPI Interface ... 9-17
9.5.2.4 Implement the RoleCollectionHandler SSPI Interface... 9-18
9.5.2.5 Supporting an Updated Role Collection .. 9-19
9.5.2.6 The RoleConsumerMBean ... 9-19
9.5.3 PolicyStoreMBean... 9-19
9.5.3.1 Examining the Format of a XACML Policy File.. 9-20
9.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean....................................... 9-20
9.5.3.3 Using WLST to Read a PolicySet as a String ... 9-22
9.5.4 Bulk Role Mapping Providers... 9-22
9.5.5 Generate an MBean Type Using the WebLogic MBeanMaker 9-23
9.5.5.1 Create an MBean Definition File (MDF) .. 9-23

ix

9.5.5.2 Use the WebLogic MBeanMaker to Generate the MBean Type 9-24
9.5.5.2.1 No Custom Operations.. 9-24
9.5.5.2.2 Custom Operations .. 9-24
9.5.5.2.3 About the Generated MBean Interface File .. 9-26
9.5.5.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 9-26
9.5.5.4 Install the MBean Type Into the WebLogic Server Environment....................... 9-27
9.5.6 Configure the Custom Role Mapping Provider Using the Administration Console

9-28
9.5.6.1 Managing Role Mapping Providers and Deployment Descriptors 9-28
9.5.6.2 Enabling Security Role Deployment... 9-29
9.5.7 Provide a Mechanism for Security Role Management .. 9-29
9.5.7.1 Option 1: Develop a Stand-Alone Tool for Security Role Management............ 9-30
9.5.7.2 Option 2: Integrate an Existing Security Role Management Tool into the

Administration Console 9-30

10 Auditing Providers

10.1 Auditing Concepts... 10-1
10.1.1 Audit Channels ... 10-1
10.1.2 Auditing Events From Custom Security Providers ... 10-1
10.2 The Auditing Process .. 10-2
10.3 Implementing the ContextHandler MBean.. 10-4
10.3.1 ContextHandlerMBean Methods ... 10-4
10.3.2 Example: Implementing the ContextHandlerMBean.. 10-5
10.3.3 Extend weblogic.management.security.audit.ContextHandlerImpl 10-5
10.4 Do You Need to Develop a Custom Auditing Provider? .. 10-6
10.5 How to Develop a Custom Auditing Provider... 10-7
10.5.1 Create Runtime Classes Using the Appropriate SSPIs.. 10-8
10.5.1.1 Implement the AuditProvider SSPI .. 10-8
10.5.1.2 Implement the AuditChannel SSPI... 10-8
10.5.1.3 Example: Creating the Runtime Class for the Sample Auditing Provider 10-9
10.5.2 Generate an MBean Type Using the WebLogic MBeanMaker 10-10
10.5.2.1 Create an MBean Definition File (MDF) .. 10-11
10.5.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type 10-11
10.5.2.2.1 No Custom Operations.. 10-11
10.5.2.2.2 Custom Operations .. 10-12
10.5.2.2.3 About the Generated MBean Interface File .. 10-13
10.5.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 10-13
10.5.2.4 Install the MBean Type Into the WebLogic Server Environment..................... 10-14
10.5.3 Configure the Custom Auditing Provider Using the Administration Console 10-15
10.5.3.1 Configuring Audit Severity ... 10-15
10.6 Security Framework Audit Events .. 10-16
10.6.1 Passing Additional Audit Information ... 10-16
10.6.2 Audit Event Interfaces and Audit Events ... 10-17
10.6.2.1 AuditApplicationVersionEvent... 10-17
10.6.2.2 AuditAtnEventV2.. 10-18
10.6.2.3 AuditAtzEvent ... 10-19
10.6.2.4 AuditCerPathBuilderEvent, AuditCertPathValidatorEvent............................. 10-20

x

10.6.2.5 AuditConfigurationEvent .. 10-20
10.6.2.6 AuditCredentialMappingEvent .. 10-21
10.6.2.7 AuditLifecycleEvent.. 10-22
10.6.2.8 AuditMgmtEvent... 10-22
10.6.2.9 AuditPolicyEvent .. 10-22
10.6.2.10 AuditRoleDeploymentEvent ... 10-23
10.6.2.11 AuditRoleEvent ... 10-24

11 Credential Mapping Providers

11.1 Credential Mapping Concepts ... 11-1
11.2 The Credential Mapping Process... 11-1
11.3 Do You Need to Develop a Custom Credential Mapping Provider?............................... 11-2
11.3.1 Does Your Custom Credential Mapping Provider Need to Support Application

Versioning? 11-3
11.4 How to Develop a Custom Credential Mapping Provider.. 11-4
11.4.1 Create Runtime Classes Using the Appropriate SSPIs.. 11-4
11.4.1.1 Implement the CredentialProviderV2 SSPI ... 11-4
11.4.1.2 Implement the DeployableCredentialProvider SSPI.. 11-5
11.4.1.3 Implement the CredentialMapperV2 SSPI .. 11-5
11.4.1.3.1 Developing Custom Credential Mapping Providers That Are Compatible With

the Realm Adapter Authentication Provider 11-6
11.4.2 Generate an MBean Type Using the WebLogic MBeanMaker 11-7
11.4.2.1 Create an MBean Definition File (MDF) .. 11-7
11.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type 11-8
11.4.2.2.1 No Optional SSPI MBeans and No Custom Operations............................... 11-8
11.4.2.2.2 Optional SSPI MBeans or Custom Operations... 11-9
11.4.2.2.3 About the Generated MBean Interface File .. 11-11
11.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 11-11
11.4.2.4 Install the MBean Type Into the WebLogic Server Environment..................... 11-11
11.4.3 Provide a Mechanism for Credential Map Management.. 11-12
11.4.3.1 Option 1: Develop a Stand-Alone Tool for Credential Map Management 11-13
11.4.3.2 Option 2: Integrate an Existing Credential Map Management Tool into the

Administration Console 11-13

12 Auditing Events From Custom Security Providers

12.1 Security Services and the Auditor Service .. 12-1
12.2 How to Audit From a Custom Security Provider ... 12-2
12.2.1 Create an Audit Event.. 12-3
12.2.1.1 Implement the AuditEvent SSPI ... 12-3
12.2.1.2 Implement an Audit Event Convenience Interface .. 12-4
12.2.1.2.1 The AuditAtnEventV2 Interface .. 12-4
12.2.1.2.2 The AuditAtzEvent and AuditPolicyEvent Interfaces 12-5
12.2.1.2.3 The AuditMgmtEvent Interface ... 12-6
12.2.1.2.4 The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces............. 12-6
12.2.1.3 Audit Severity .. 12-6
12.2.1.4 Audit Context... 12-7
12.2.1.5 Example: Implementation of the AuditRoleEvent Interface 12-7

xi

12.2.2 Obtain and Use the Auditor Service to Write Audit Events 12-8
12.2.2.1 Example: Obtaining and Using the Auditor Service to Write Role Audit Events

12-9
12.2.2.2 Auditing Management Operations from a Provider's MBean.......................... 12-10
12.2.2.3 Example: Auditing Management Operations from a Provider's MBean 12-11
12.2.3 Best Practice: Posting Audit Events from a Provider's MBean 12-12

13 Servlet Authentication Filters

13.1 Authentication Filter Concepts .. 13-1
13.1.1 Why Filters are Needed ... 13-1
13.1.2 Servlet Authentication Filter Design Considerations.. 13-2
13.2 How Filters Are Invoked .. 13-2
13.2.1 Do Not Call Servlet Authentication Filters From Authentication Providers 13-3
13.3 Example of a Provider that Implements a Filter ... 13-4
13.4 How to Develop a Custom Servlet Authentication Filter .. 13-4
13.4.1 Create Runtime Classes Using the Appropriate SSPIs.. 13-5
13.4.2 Implement the Servlet Authentication Filter SSPI ... 13-5
13.4.3 Implement the Filter Interface Methods.. 13-5
13.4.4 Implementing Challenge Identity Assertion from a Filter ... 13-6
13.4.5 Generate an MBean Type Using the WebLogic MBeanMaker 13-7
13.4.5.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 13-7
13.4.6 Configure the Authentication Provider Using Administration Console 13-8

14 Versionable Application Providers

14.1 Versionable Application Concepts .. 14-1
14.2 The Versionable Application Process ... 14-2
14.3 Do You Need to Develop a Custom Versionable Application Provider?........................ 14-2
14.4 How to Develop a Custom VersionableApplication Provider.. 14-2
14.4.1 Create Runtime Classes Using the Appropriate SSPIs.. 14-2
14.4.1.1 Implement the VersionableApplication SSPI ... 14-3
14.4.1.2 Example: Creating the Runtime Class for the Sample VersionableApplication

Provider 14-3
14.4.2 Generate an MBean Type Using the WebLogic MBeanMaker 14-4
14.4.2.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 14-4
14.4.3 Configure the Custom Versionable Application Provider Using the Administration

Console 14-5

15 CertPath Providers

15.1 Certificate Lookup and Validation Concepts .. 15-1
15.1.1 The Certificate Lookup and Validation Process... 15-2
15.1.2 Do You Need to Implement Separate CertPath Validators and Builders? 15-2
15.1.3 CertPath Provider SPI MBeans ... 15-3
15.1.4 WebLogic CertPath Validator SSPI .. 15-4
15.1.5 WebLogic CertPath Builder SSPI.. 15-4
15.1.6 Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI.......... 15-4
15.2 Do You Need to Develop a Custom CertPath Provider? ... 15-5

xii

15.3 How to Develop a Custom CertPath Provider .. 15-6
15.3.1 Create Runtime Classes Using the Appropriate SSPIs.. 15-6
15.3.1.1 Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces

15-7
15.3.1.2 Implement the CertPath Provider SSPI.. 15-7
15.3.1.3 Implement the JDK Security Provider SPI... 15-8
15.3.1.4 Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi

Implementation 15-9
15.3.1.5 Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi

Implementation 15-10
15.3.1.6 Returning the Builder or Validator Results ... 15-11
15.3.1.7 Example: Creating the Sample Cert Path Provider .. 15-12
15.3.2 Generate an MBean Type Using the WebLogic MBeanMaker 15-16
15.3.2.1 Create an MBean Definition File (MDF) .. 15-17
15.3.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type 15-17
15.3.2.2.1 No Optional SSPI MBeans and No Custom Operations............................. 15-17
15.3.2.2.2 Optional SSPI MBeans or Custom Operations... 15-18
15.3.2.2.3 About the Generated MBean Interface File .. 15-20
15.3.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) 15-20
15.3.2.4 Install the MBean Type Into the WebLogic Server Environment..................... 15-21
15.3.3 Configure the Custom CertPath Provider Using the Administration Console..... 15-22

A MBean Definition File (MDF) Element Syntax

A.1 The MBeanType (Root) Element.. A-1
A.2 The MBeanAttribute Subelement .. A-3
A.3 The MBeanConstructor Subelement ... A-6
A.4 The MBeanOperation Subelement .. A-7
A.5 MBean Operation Exceptions... A-9
A.6 Examples: Well-Formed and Valid MBean Definition Files (MDFs) A-10

xiii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Security Providers for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiv

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the content and organization of this document:

■ Section 1.1, "Document Scope"

■ Section 1.2, "Documentation Audience"

■ Section 1.3, "Guide to this Document"

■ Section 1.4, "Related Information"

■ Section 1.5, "New and Changed Features in this Release"

1.1 Document Scope
This document provides security vendors and application developers with the
information needed to develop new security providers for use with WebLogic Server.

1.2 Documentation Audience
This document is written for independent software vendors (ISVs) who want to write
their own security providers for use with WebLogic Server. It is assumed that most
ISVs reading this documentation are sophisticated application developers who have a
solid understanding of security concepts, and that no basic security concepts require
explanation. It is also assumed that security vendors and application developers are
familiar with WebLogic Server and with Java (including Java Management eXtensions
(JMX)).

1.3 Guide to this Document
This document provides security vendors and application developers with the
information needed to develop new security providers for use with the WebLogic
Server.

The document is organized as follows:

■ Chapter 2, "Introduction to Developing Security Providers for WebLogic Server"
which prepares you to learn more about developing security providers for use
with WebLogic Server. It specifies the audience and prerequisites for this guide,
and provides an overview of the development process.

■ Chapter 3, "Design Considerations" which explains the general architecture of a
security provider and provides background information you should understand
about implementing SSPIs and generating MBean types. This section also includes
information about using optional management utilities and discusses how security
providers interact with WebLogic resources. Lastly, this section suggests ways in

Guide to this Document

1-2 Developing Security Providers for Oracle WebLogic Server

which your custom security providers might work with databases that contain
information security providers require.

■ Chapter 4, "Authentication Providers" which explains the authentication process
(for simple logins) and provides instructions about how to implement each type of
security service provider interface (SSPI) associated with custom Authentication
providers. This topic also includes a discussion about JAAS LoginModules.

■ Chapter 5, "Identity Assertion Providers" which explains the authentication
process (for perimeter authentication using tokens) and provides instructions
about how to implement each type of security service provider interface (SSPI)
associated with custom Identity Assertion providers.

■ Chapter 6, "Principal Validation Providers" which explains how Principal
Validation providers assist Authentication providers by signing and verifying the
authenticity of principals stored in a subject, and provides instructions about how
to develop custom Principal Validation providers.

■ Chapter 7, "Authorization Providers" which explains the authorization process
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Authorization providers.

■ Chapter 8, "Adjudication Providers" which explains the adjudication process and
provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Adjudication providers.

■ Chapter 9, "Role Mapping Providers" which explains the role mapping process
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Role Mapping providers.

■ Chapter 10, "Auditing Providers" which explains the auditing process and
provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Auditing providers. This topic
also includes information about how to audit from other types of security
providers.

■ Chapter 11, "Credential Mapping Providers" which explains the credential
mapping process and provides instructions about how to implement each type of
security service provider interface (SSPI) associated with custom Credential
Mapping providers.

■ Chapter 12, "Auditing Events From Custom Security Providers" which explains
how to add auditing capabilities to the custom security providers you develop.

■ Chapter 13, "Servlet Authentication Filters" which explains the Servlet
authentication filter process and provides instructions about how to implement
each type of security service provider interface (SSPI) associated with Servlet
authentication filters.

■ Chapter 14, "Versionable Application Providers" which explains the concept of
versionable applications and provides instructions about how to implement each
type of security service provider interface (SSPI) associated with custom
Versionable Application providers.

■ Chapter 15, "CertPath Providers" which explains the certificate lookup and
validation process and provides instructions about how to implement each type of
security service provider interface (SSPI) associated with custom CertPath
provider.

■ Appendix A, "MBean Definition File (MDF) Element Syntax" which describes all
the elements and attributes that are available for use in a valid MDF. An MDF is an

New and Changed Features in this Release

Introduction and Roadmap 1-3

XML file used to generate the MBean types, which enable the management of your
custom security providers.

1.4 Related Information
The Oracle corporate Web site provides all documentation for WebLogic Server. Other
WebLogic Server documents that may be of interest to security vendors and
application developers working with security providers are:

■ Understanding Security for Oracle WebLogic Server

■ Administering Security for Oracle WebLogic Server

■ Developing Applications with the WebLogic Security Service

■ Securing Resources Using Roles and Policies for Oracle WebLogic Server

■ Securing a Production Environment for Oracle WebLogic Server

Additional resources include:

■ JavaDocs for WebLogic Classes

1.5 New and Changed Features in this Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

New and Changed Features in this Release

1-4 Developing Security Providers for Oracle WebLogic Server

2

Introduction to Developing Security Providers for WebLogic Server 2-1

2Introduction to Developing Security
Providers for WebLogic Server

The following sections prepare you to learn more about developing security providers:

■ Section 2.1, "Prerequisites for This Guide"

■ Section 2.2, "Overview of the Development Process"

2.1 Prerequisites for This Guide
Prior to reading this guide, you should review the following sections in Understanding
Security for Oracle WebLogic Server:

■ "Security Providers"

■ "WebLogic Security Framework"

Additionally, WebLogic Server security includes many unique terms and concepts that
you need to understand. These terms and concepts—which you will encounter
throughout the WebLogic Server security documentation—are defined in "Security
Fundamentals" in Understanding Security for Oracle WebLogic Server.

2.2 Overview of the Development Process
This section is a high-level overview of the process for developing new security
providers, so you know what to expect. Details for each step are discussed later in this
guide.

The main steps for developing a custom security provider are:

■ Section 2.2.1, "Designing the Custom Security Provider"

■ Section 2.2.2, "Creating Runtime Classes for the Custom Security Provider by
Implementing SSPIs"

■ Section 2.2.3, "Generating an MBean Type to Configure and Manage the Custom
Security Provider"

■ Section 2.2.4, "Writing Console Extensions"

■ Section 2.2.5, "Configuring the Custom Security Provider"

■ Section 2.2.6, "Providing Management Mechanisms for Security Policies, Security
Roles, and Credential Maps"

Overview of the Development Process

2-2 Developing Security Providers for Oracle WebLogic Server

2.2.1 Designing the Custom Security Provider
The design process includes the following steps:

1. Review the descriptions of the WebLogic security providers to determine whether
you need to create a custom security provider.

Descriptions of the WebLogic security providers are available under "WebLogic
Security Providers" in Understanding Security for Oracle WebLogic Server and in later
sections of this guide under the "Do You Need to Create a Custom <Provider_Type>
Provider?" headings.

2. Determine which type of custom security provider you want to create.

The type may be Authentication, Identity Assertion, Principal Validation,
Authorization, Adjudication, Role Mapping, Auditing, Credential Mapping,
Versionable Application, or CertPath, as described in "Types of Security Providers"
in Understanding Security for Oracle WebLogic Server. Your custom security provider
can augment or replace the WebLogic security providers that are already supplied
with WebLogic Server.

3. Identify which security service provider interfaces (SSPIs) you must implement to
create the runtime classes for your custom security provider, based on the type of
security provider you want to create.

The SSPIs for the different security provider types are described in Section 3.2,
"Security Services Provider Interfaces (SSPIs)" and summarized in Section 3.2.6,
"SSPI Quick Reference."

4. Decide whether you will implement the SSPIs in one or two runtime classes.

These options are discussed in Section 3.2.5, "Understand the SSPI Hierarchy and
Determine Whether You Will Create One or Two Runtime Classes."

5. Identify which required SSPI MBeans you must extend to generate an MBean type
through which your custom security provider can be managed. If you want to
provide additional management functionality for your custom security provider
(such as handling of users, groups, security roles, and security policies), you also
need to identify which optional SSPI MBeans to implement.

The SSPI MBeans are described in Section 3.3, "Security Service Provider Interface
(SSPI) MBeans" and summarized in Section 3.3.6, "SSPI MBean Quick Reference."

6. Determine how you will initialize the database that your custom security provider
requires. You can have your custom security provider create a simple database, or
configure your custom security provider to use an existing, fully-populated
database.

These two database initialization options are explained in Section 3.7,
"Initialization of the Security Provider Database."

7. Identify any database "seeding" that your custom security provider will need to do
as part of its interaction with security policies on WebLogic resources. This seeding
may involve creating default groups, security roles, or security policies.

For more information, see Section 3.6, "Security Providers and WebLogic
Resources."

Overview of the Development Process

Introduction to Developing Security Providers for WebLogic Server 2-3

2.2.2 Creating Runtime Classes for the Custom Security Provider by Implementing
SSPIs

In one or two runtime classes, implement the SSPIs you have identified by providing
implementations for each of their methods. The methods should contain the specific
algorithms for the security services offered by the custom security provider. The
content of these methods describe how the service should behave.

Procedures for this task are dependent on the type of security provider you want to
create, and are provided under the "Create Runtime Classes Using the Appropriate
SSPIs" heading in the sections that discuss each security provider in detail.

2.2.3 Generating an MBean Type to Configure and Manage the Custom Security
Provider

Generating an MBean type includes the following steps:

1. Create an MBean Definition File (MDF) for the custom security provider that
extends the required SSPI MBean, implements any optional SSPI MBeans, and
adds any custom attributes and operations that will be required to configure and
manage the custom security provider.

Information about MDFs is available in Section 3.3.3, "Understand the Basic
Elements of an MBean Definition File (MDF)," and procedures for this task are
provided under the "Create an MBean Definition File (MDF)" heading in the
sections that discuss each security provider in detail.

2. Run the MDF through the WebLogic MBeanMaker to generate intermediate files
(including the MBean interface, MBean implementation, and MBean information
files) for the custom security provider's MBean type.

Information about the WebLogic MBeanMaker and how it uses the MDF to
generate Java files is provided in Section 3.3.5, "Understand What the WebLogic
MBeanMaker Provides," and procedures for this task are provided under the "Use
the WebLogic MBeanMaker to Generate the MBean Type" heading in the sections
that discuss each security provider in detail.

3. Edit the MBean implementation file to supply content for any methods inherited
from implementing optional SSPI MBeans, as well as content for the method stubs
generated as a result of custom attributes and operations added to the MDF.

4. Run the modified intermediate files (for the MBean type) and the runtime classes
for your custom security provider through the WebLogic MBeanMaker to generate
a JAR file, called an MBean JAR File (MJF).

Procedures for this task are provided under the "Use the WebLogic MBeanMaker
to Create the MBean JAR File (MJF)" heading in the sections that discuss each
security provider in detail.

5. Install the MBean JAR File (MJF) into the WebLogic Server environment.

Procedures for this task are provided under the "Install the MBean Type into the
WebLogic Server Environment" heading in the sections that discuss each security
provider in detail.

2.2.4 Writing Console Extensions
Console extensions allow you to add JavaServer Pages (JSPs) to the WebLogic Server
Administration Console to support additional management and configuration of
custom security providers. Console extensions allow you to include Administration

Overview of the Development Process

2-4 Developing Security Providers for Oracle WebLogic Server

Console support where that support does not yet exist, as well as to customize
administrative interactions as you see fit.

To get complete configuration and management support through the WebLogic Server
Administration Console for a custom security provider, you need to write a console
extension when:

■ You decide not to implement an optional SSPI MBean when you generate an
MBean type for your custom security provider, but still want to configure and
manage your custom security provider via the Administration Console. (That is,
you do not want to use the WebLogic Server Command-Line Interface instead.)

Generating an MBean type (as described in Section 2.2.3, "Generating an MBean
Type to Configure and Manage the Custom Security Provider") is the
Oracle-recommended way for configuring and managing custom security
providers. However, you may want to configure and manage your custom security
provider completely through a console extension that you write.

■ You implement optional SSPI MBeans for custom security providers that are not
custom Authentication providers.

When you implement optional SSPI MBeans to develop a custom Authentication
provider, you automatically receive support in the Administration Console for the
MBean type's attributes (inherited from the optional SSPI MBean). Other types of
custom security providers, such as custom Authorization providers, do not receive
this support.

■ You add a custom attribute that cannot be represented as a simple data type to your
MBean Definition File (MDF), which is used to generate the custom security
provider's MBean type.

The Details tab for a custom security provider will automatically display custom
attributes, but only if they are represented as a simple data type, such as a string,
MBean, boolean or integer value. If you have custom attributes that are
represented as atypical data types (for example, an image of a fingerprint), the
Administration Console cannot visualize the custom attribute without
customization.

■ You add a custom operation to your MBean Definition File (MDF), which is used
to generate the custom security provider's MBean type.

Because of the potential variety involved with custom operations, the
Administration Console does not know how to automatically display or process
them. Examples of custom operations might be a microphone for a voice print, or
import/export buttons. The Administration Console cannot visualize and process
these operations without customization.

Some other (optional) reasons for extending the Administration Console include:

■ Corporate branding—when, for example, you want your organization's logo or
look and feel on the pages used to configure and manage a custom security
provider.

■ Consolidation—when, for example, you want all the fields used to configure and
manage a custom security provider on one page, rather than in separate tabs or
locations.

For more information about console extensions, see Extending the Administration
Console for Oracle WebLogic Server.

Overview of the Development Process

Introduction to Developing Security Providers for WebLogic Server 2-5

2.2.5 Configuring the Custom Security Provider

The configuration process consists of using the WebLogic Server Administration
Console to supply the custom security provider with configuration information. If you
generated an MBean type for managing the custom security provider, "configuring"
the custom security provider in the Administration Console also means that you are
creating a specific instance of the MBean type.

For more information about configuring security providers using the Administration
Console, see Administering Security for Oracle WebLogic Server.

2.2.6 Providing Management Mechanisms for Security Policies, Security Roles, and
Credential Maps

Certain types of security providers need to provide administrators with a way to
manage the security data associated with them. For example, an Authorization
provider needs to supply administrators with a way to manage security policies.
Similarly, a Role Mapping provider needs to supply administrators with a way to
manage security roles, and a Credential Mapping provider needs to supply
administrators with a way to manage credential maps.

For the WebLogic Authorization, Role Mapping, and Credential Mapping providers,
there are already management mechanisms available for administrators in the
WebLogic Server Administration Console. However, do you not inherit these
mechanisms when you develop a custom version of one of these security providers;
you need to provide your own mechanisms to manage security policies, security roles,
and credential maps. These mechanisms must read and write the appropriate security
data to and from the custom security provider's database, but may or may not be
integrated with the Administration Console.

For more information, refer to one of the following sections:

■ Section 7.5.7, "Provide a Mechanism for Security Policy Management" (for custom
Authorization providers)

■ Section 9.5.7, "Provide a Mechanism for Security Role Management" (for custom
Role Mapping providers)

■ Section 11.4.3, "Provide a Mechanism for Credential Map Management" (for
custom Credential Mapping providers)

Note: The configuration process can be completed by the same
person who developed the custom security provider, or by a
designated administrator.

Overview of the Development Process

2-6 Developing Security Providers for Oracle WebLogic Server

3

Design Considerations 3-1

3Design Considerations

Careful planning of development activities can greatly reduce the time and effort you
spend developing custom security providers. The following sections describe security
provider concepts and functionality in more detail to help you get started:

■ Section 3.1, "General Architecture of a Security Provider"

■ Section 3.2, "Security Services Provider Interfaces (SSPIs)"

■ Section 3.3, "Security Service Provider Interface (SSPI) MBeans"

■ Section 3.4, "Security Data Migration"

■ Section 3.5, "Management Utilities Available to Developers of Security Providers"

■ Section 3.6, "Security Providers and WebLogic Resources"

■ Section 3.7, "Initialization of the Security Provider Database"

■ Section 3.8, "Differences In Attribute Validators"

3.1 General Architecture of a Security Provider
Although there are different types of security providers you can create (see "Types of
Security Providers" in Understanding Security for Oracle WebLogic Server), all security
providers follow the same general architecture. Figure 3–1 illustrates the general
architecture of a security provider, and an explanation follows.

Figure 3–1 Security Provider Architecture

Security Services Provider Interfaces (SSPIs)

3-2 Developing Security Providers for Oracle WebLogic Server

Figure 3–1 shows the relationship between a single runtime class
(MyFooProviderImpl) and an MBean type (MyFooMBean) you create when
developing a custom security provider. The process begins when a WebLogic Server
instance starts, and the WebLogic Security Framework:

1. Locates the MBean type associated with the security provider in the security
realm.

2. Obtains the name of the security provider's runtime class (the one that implements
the "Provider" SSPI, if there are two runtime classes) from the MBean type.

3. Passes in the appropriate MBean instance, which the security provider uses to
initialize (read configuration data).

Therefore, both the runtime class (or classes) and the MBean type form what is called
the "security provider."

3.2 Security Services Provider Interfaces (SSPIs)
As described in Section 2.2, "Overview of the Development Process," you develop a
custom security provider by first implementing a number of security services provider
interfaces (SSPIs) to create runtime classes. This section helps you:

■ Section 3.2.1, "Understand Two Important Restrictions"

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.3, "Understand the Purpose of the Bulk Access Providers"

■ Section 3.2.4, "Determine Which "Provider" Interface You Will Implement"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

Additionally, this section provides Section 3.2.6, "SSPI Quick Reference" that indicates
which SSPIs can be implemented for each type of security provider.

3.2.1 Understand Two Important Restrictions
Security providers must adhere to the following restrictions:

■ A custom security provider's runtime class implementation must not contain any
code that requires a security check to be performed by the WebLogic Security
Framework. Doing so causes infinite recursion, because the security providers are
the components of the WebLogic Security Framework that actually perform the
security checks and grant access to WebLogic resources.

Note: The SSPIs and the runtime classes (that is, implementations)
you will create using the SSPIs are shown on the left side of Figure 3–1
and are .java files.

Like the other files on the right side of Figure 3–1, MyFooMBean
begins as a .xml file, in which you will extend (and optionally
implement) SSPI MBeans. When this MBean Definition File (MDF) is
run through the WebLogic MBeanMaker utility, the utility generates
the .java files for the MBean type, as described in Section 2.2.3,
"Generating an MBean Type to Configure and Manage the Custom
Security Provider."

Security Services Provider Interfaces (SSPIs)

Design Considerations 3-3

■ No local (where local refers to the same server, cluster, or domain) Java Platform,
Enterprise Edition (Java EE) Version 5 services are available for use within a
security provider's implementation. Any attempt to use them is unsupported. For
example, this prohibits calling an EJB in the current domain from your security
provider.

Java EE services in other domains are accessible and can be used within a security
provider.

3.2.2 Understand the Purpose of the "Provider" SSPIs
Each SSPI that ends in the suffix "Provider" (for example, CredentialProvider)
exposes the services of a security provider to the WebLogic Security Framework. This
allows the security provider to be manipulated (initialized, started, stopped, and so
on).

Figure 3–2 "Provider" SSPIs

As shown in Figure 3–2, the SSPIs exposing security services to the WebLogic Security
Framework are provided by WebLogic Server, and all extend the SecurityProvider
interface, which includes the following methods:

■ initialize

public void initialize(ProviderMBean providerMBean, SecurityServices
securityServices)

The initialize method takes as an argument a ProviderMBean, which can be
narrowed to the security provider's associated MBean instance. The MBean
instance is created from the MBean type you generate, and contains configuration
data that allows the custom security provider to be managed in the WebLogic
Server environment. If this configuration data is available, the initialize
method should be used to extract it.

The securityServices argument is an object from which the custom security
provider can obtain and use the Auditor Service. For more information about the
Auditor Service and auditing, see Chapter 10, "Auditing Providers" and
Chapter 12, "Auditing Events From Custom Security Providers."

■ getDescription

public String getDescription()

This method returns a brief textual description of the custom security provider.

Security Services Provider Interfaces (SSPIs)

3-4 Developing Security Providers for Oracle WebLogic Server

■ shutdown

public void shutdown()

This method shuts down the custom security provider.

Because they extend SecurityProvider, a runtime class that implements any SSPI
ending in "Provider" must provide implementations for these inherited methods.

3.2.3 Understand the Purpose of the Bulk Access Providers
This release of WebLogic Server includes bulk access versions of the following
Authorization, Adjudication, and Role Mapping provider SSPI interfaces:

■ BulkAuthorizationProvider

■ BulkAccessDecision

■ BulkAdjudicationProvider

■ BulkAdjudicator

■ BulkRoleProvider

■ BulkRoleMapper

The bulk access SSPI interfaces allow Authorization, Adjudication, and Role Mapping
providers to receive multiple decision requests in one call rather than through multiple
calls, typically in a 'for' loop. The intent of the bulk SSPI variants is to allow
provider implementations to take advantage of internal performance optimizations,
such as detecting that many of the passed-in Resource objects are protected by the
same policy and will generate the same decision result.

See Section 7.5.4, "Bulk Authorization Providers," Section 8.3.2, "Bulk Adjudication
Providers," and Section 9.5.4, "Bulk Role Mapping Providers" for additional
information.

3.2.4 Determine Which "Provider" Interface You Will Implement
Implementations of SSPIs that begin with the prefix "Deployable" and end with the
suffix "Provider" (for example, DeployableRoleProviderV2) expose the services of
a custom security provider into the WebLogic Security Framework as explained in
Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs." However,
implementations of these SSPIs also perform additional tasks. These SSPIs also
provide support for security in deployment descriptors, including the servlet
deployment descriptors (web.xml, weblogic.xml), the EJB deployment descriptors
(ejb-jar.xml, weblogic-ejb.jar.xml) and the EAR deployment descriptors
(application.xml, weblogic-application.xml).

Authorization providers, Role Mapping providers, and Credential Mapping providers
have deployable versions of their "Provider" SSPIs.

Note: If your security provider database (which stores security
policies, security roles, and credentials) is read-only, you can
implement the non-deployable version of the SSPI for your
Authorization, Role Mapping, and Credential Mapping security
providers. However, you will still need to configure deployable
versions of these security provider that do handle deployment.

Security Services Provider Interfaces (SSPIs)

Design Considerations 3-5

3.2.4.1 The DeployableAuthorizationProviderV2 SSPI
An Authorization provider that supports deploying security policies on behalf of Web
application or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableAuthorizationProviderV2 SSPI instead of the
AuthorizationProvider SSPI. (However, because the
DeployableAuthorizationProviderV2 SSPI extends the
AuthorizationProvider SSPI, you actually will need to implement the methods
from both SSPIs.) This is because Web application and EJB deployment activities
require the Authorization provider to perform additional tasks, such as creating and
removing security policies. In a security realm, at least one Authorization provider
must support the DeployableAuthorizationProviderV2 SSPI, or else it will be
impossible to deploy Web applications and EJBs.

3.2.4.2 The DeployableRoleProviderV2 SSPI
A Role Mapping provider that supports deploying security roles on behalf of Web
application or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableRoleProviderV2 SSPI instead of the RoleProvider SSPI. (However,
because the DeployableRoleProviderV2 SSPI extends the RoleProvider SSPI,
you will actually need to implement the methods from both SSPIs.) This is because
Web application and EJB deployment activities require the Role Mapping provider to
perform additional tasks, such as creating and removing security roles. In a security
realm, at least one Role Mapping provider must support this SSPI, or else it will be
impossible to deploy Web applications and EJBs.

3.2.4.3 The DeployableCredentialProvider SSPI

A Credential Mapping provider that supports deploying security policies on behalf of
Resource Adapter (RA) deployments needs to implement the
DeployableCredentialProvider SSPI instead of the CredentialProvider
SSPI. (However, because the DeployableCredentialProvider SSPI extends the
CredentialProvider SSPI, you will actually need to implement the methods from
both SSPIs.) This is because Resource Adapter deployment activities require the
Credential Mapping provider to perform additional tasks, such as creating and
removing credentials and mappings. In a security realm, at least one Credential
Mapping provider must support this SSPI, or else it will be impossible to deploy
Resource Adapters.

Note: For more information about security policies, see "Security
Policies" in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

Note: For more information about security roles, see "Users, Groups,
and Security Roles" in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

Note: The DeployableCredentialProvider interface is deprecated in
this release of WebLogic Server.

Security Services Provider Interfaces (SSPIs)

3-6 Developing Security Providers for Oracle WebLogic Server

3.2.5 Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

Figure 3–3 uses a Credential Mapping provider to illustrate the inheritance hierarchy
that is common to all SSPIs, and shows how a runtime class you supply can
implement those interfaces. In this example, Oracle supplies the SecurityProvider
interface, and the CredentialProviderV2 and CredentialMapperV2 SSPIs.
Figure 3–3 shows a single runtime class called MyCredentialMapperProviderImpl
that implements the CredentialProviderV2 and CredentialMapperV2 SSPIs.

Figure 3–3 Credential Mapping SSPIs and a Single Runtime Class

However, Figure 3–3 illustrates only one way you can implement SSPIs: by creating a
single runtime class. If you prefer, you can have two runtime classes (as shown in
Figure 3–4): one for the implementation of the SSPI ending in "Provider" (for example,
CredentialProviderV2), and one for the implementation of the other SSPI (for
example, the CredentialMapperV2 SSPI).

When there are separate runtime classes, the class that implements the SSPI ending in
"Provider" acts as a factory for generating the runtime class that implements the other
SSPI. For example, in Figure 3–4, MyCredentialMapperProviderImpl acts as a
factory for generating MyCredentialMapperImpl.

Note: For more information about credentials, see Section 11.1,
"Credential Mapping Concepts." For more information about security
policies, see "Security Policies" in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Security Services Provider Interfaces (SSPIs)

Design Considerations 3-7

Figure 3–4 Credential Mapping SSPIs and Two Runtime Classes

3.2.6 SSPI Quick Reference
Table 3–1 maps the types of security providers (and their components) with the SSPIs
and other interfaces you use to develop them.

Note: If you decide to have two runtime implementation classes, you
need to remember to include both runtime implementation classes in
the MBean JAR File (MJF) when you generate the security provider's
MBean type. For more information, see Section 2.2.3, "Generating an
MBean Type to Configure and Manage the Custom Security Provider."

Table 3–1 Security Providers, Their Components, and Corresponding SSPIs

Type/Component SSPIs/Interfaces

Authentication provider AuthenticationProviderV2

LoginModule (JAAS) LoginModule

Identity Assertion provider AuthenticationProviderV2

Identity Asserter IdentityAsserterV2

Principal Validation provider PrincipalValidator

Authorization AuthorizationProvider

DeployableAuthorizationProviderV2

Access Decision AccessDecision

Adjudication provider AdjudicationProviderV2

Adjudicator AdjudicatorV2

Role Mapping provider RoleProvider

DeployableRoleProviderV2

Security Service Provider Interface (SSPI) MBeans

3-8 Developing Security Providers for Oracle WebLogic Server

3.3 Security Service Provider Interface (SSPI) MBeans
As described in Section 2.2, "Overview of the Development Process," the second step
in developing a custom security provider is generating an MBean type for the custom
security provider. This section helps you:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

Additionally, this section provides Section 3.3.6, "SSPI MBean Quick Reference" that
indicates which required SSPI MBeans must be extended and which optional SSPI
MBeans can be implemented for each type of security provider.

3.3.1 Understand Why You Need an MBean Type
In addition to creating runtime classes for a custom security provider, you must also
generate an MBean type. The term MBean is short for managed bean, a Java object
that represents a Java Management eXtensions (JMX) manageable resource.

An MBean type is a factory for instances of MBeans, the latter of which you or an
administrator can create using the WebLogic Server Administration Console. Once
they are created, you can configure and manage the custom security provider using
the MBean instance, through the Administration Console.

Role Mapper RoleMapper

Auditing provider AuditProvider

Audit Channel AuditChannel

Credential Mapping provider CredentialProviderV2

Credential Mapper CredentialMapperV2

Cert Path Provider CertPathProvider

Versionable Application
Provider

VersionableApplicationProvider

Note: The SSPIs you use to create runtime classes for custom security
providers are located in the weblogic.security.spi package. For more
information about this package, see the WebLogic Server API Reference
Javadoc.

Note: JMX is a specification that defines a standard management
architecture, APIs, and management services. See "Understanding
JMX" in Developing Manageable Applications Using JMX for Oracle
WebLogic Server.

Table 3–1 (Cont.) Security Providers, Their Components, and Corresponding SSPIs

Type/Component SSPIs/Interfaces

Security Service Provider Interface (SSPI) MBeans

Design Considerations 3-9

3.3.2 Determine Which SSPI MBeans to Extend and Implement
You use MBean interfaces called SSPI MBeans to create MBean types. There are two
types of SSPI MBeans you can use to create an MBean type for a custom security
provider:

■ Required SSPI MBeans, which you must extend because they define the basic
methods that allow a security provider to be configured and managed within the
WebLogic Server environment.

■ Optional SSPI MBeans, which you can implement because they define additional
methods for managing security providers. Different types of security providers are
able to use different optional SSPI MBeans.

For more information, see Section 3.3.6, "SSPI MBean Quick Reference."

3.3.3 Understand the Basic Elements of an MBean Definition File (MDF)
An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker
utility to generate the Java files that comprise an MBean type. All MDFs must extend a
required SSPI MBean that is specific to the type of the security provider you have
created, and can implement optional SSPI MBeans.

Example 3–1 shows a sample MBean Definition File (MDF), and an explanation of its
content follows. (Specifically, it is the MDF used to generate an MBean type for the
WebLogic Credential Mapping provider. Note that the DeployableCredentialProvider
interface is deprecated in this release of WebLogic Server.)

Example 3–1 DefaultCredentialMapper.xml

<MBeanType
 Name = "DefaultCredentialMapper"
 DisplayName = "DefaultCredentialMapper"
 Package = "weblogic.security.providers.credentials"
 Extends = "weblogic.management.security.credentials. DeployableCredentialMapper"
 Implements = "weblogic.management.security.credentials. UserPasswordCredentialMapEditor,
weblogic.management.security.credentials.UserPasswordCredentialMapExtendedReader,
weblogic.management.security.ApplicationVersioner,
weblogic.management.security.Import,
weblogic.management.security.Export"
PersistPolicy = "OnUpdate"
 Description = "This MBean represents configuration attributes for the WebLogic Credential
Mapping provider.<p>"
>
<MBeanAttribute
 Name = "ProviderClassName"
 Type = "java.lang.String"

Note: All MBean instances are aware of their parent type, so if you
modify the configuration of an MBean type, all instances that you or
an administrator may have created using the Administration Console
will also update their configurations. (For more information, see
Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It
Affects the Administration Console.")

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

Security Service Provider Interface (SSPI) MBeans

3-10 Developing Security Providers for Oracle WebLogic Server

 Writeable = "false"
 Default = ""weblogic.security.providers.credentials.
DefaultCredentialMapperProviderImpl""
 Description = "The name of the Java class that loads the WebLogic Credential Mapping
provider."
/>
<MBeanAttribute
 Name = "Description"
 Type = "java.lang.String"
 Writeable = "false"
 Default = ""Provider that performs Default Credential Mapping""
 Description = "A short description of the WebLogic Credential Mapping provider."
/>
<MBeanAttribute
 Name = "Version"
 Type = "java.lang.String"
 Writeable = "false"
 Default = ""1.0""
 Description = "The version of the WebLogic Credential Mapping provider."
/>
:
:
</MBeanType>

The bold attributes in the <MBeanType> tag show that this MDF is named
DefaultCredentialMapper and that it extends the required SSPI MBean called
DeployableCredentialMapper. It also includes additional management
capabilities by implementing the UserPasswordCredentialMapEditor optional
SSPI MBean.

The ProviderClassName, Description, and Version attributes defined in the
<MBeanAttribute> tags are required in any MDF used to generate MBean types for
security providers because they define the security provider's basic configuration
methods, and are inherited from the base required SSPI MBean called Provider (see
Figure 3–5). The ProviderClassName attribute is especially important. The value for
the ProviderClassName attribute is the Java filename of the security provider's
runtime class (that is, the implementation of the appropriate SSPI ending in
"Provider"). The example runtime class shown in Example 3–1 is
DefaultCredentialMapperProviderImpl.java.

While not shown in Example 3–1, you can include additional attributes and operations
in an MDF using the <MBeanAttribute> and <MBeanOperation> tags. Most
custom attributes will automatically appear in the Provider Specific tab for your
custom security provider in the WebLogic Server Administration Console. To display
custom operations, however, you need to write a console extension. (See Section 2.2.4,
"Writing Console Extensions.")

3.3.3.1 Custom Providers and Classpaths
Classes loaded from WL_HOME\server\lib\mbeantypes are not visible to other
JAR and EAR files deployed on WebLogic Server. If you have common utility classes
that you want to share, you must place them in the system classpath.

Note: The Sample Auditing provider provides an example of adding
a custom attribute.

Security Service Provider Interface (SSPI) MBeans

Design Considerations 3-11

3.3.3.2 Throwing Exceptions from MBean Operations
Your custom provider MBeans must throw only JDK exception types or
weblogic.management.utils exception types. Otherwise, JMX clients may not
include the code necessary to receive your exceptions.

■ For typed exceptions, you must throw only the exact types from the throw clause
of your MBean's method, as opposed to deriving and throwing your own
exception type from that type.

■ For nested exceptions, you must throw only JDK exception types or
weblogic.management.utils exceptions.

■ For runtime exceptions, you must throw or pass through only JDK exceptions.

3.3.3.3 Specifying Non-Clear Text Values for MBean Attributes
As described in Table A.2, you can use the Encrypted attribute to specify that the value
of an MBean attribute should not be displayed as clear text. For example, you encrypt
the value of the MBean attribute when getting input for a password. The following
code fragment shows an example of using the Encrypted attribute:

<MBeanAttribute
Name = "PrivatePassPhrase"
Type = "java.lang.String"
Encrypted = "true"
Default = """"
Description = "The Keystore password."
/>

3.3.4 Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console

All attributes and operations that are specified in the required SSPI MBeans that your
MBean Definition File (MDF) extends (all the way up to the Provider base SSPI
MBean) automatically appear in a WebLogic Server Administration Console page for
the associated security provider. You use these attributes and operations to configure
and manage your custom security providers.

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well. JAR
files loaded from the ...\domaindir\lib\mbeantypes directory
can be shared across applications. They do not need to be explicitly
placed in the system classpath.

Note: For Authentication security providers only, the attributes and
operations that are specified in the optional SSPI MBeans your MDF
implements are also automatically supported by the Administration
Console. For other types of security providers, you must write a
console extension in order to make the attributes and operations
inherited from the optional SSPI MBeans available in the
Administration Console. For more information, see Section 2.2.4,
"Writing Console Extensions."

Security Service Provider Interface (SSPI) MBeans

3-12 Developing Security Providers for Oracle WebLogic Server

Figure 3–5 illustrates the SSPI MBean hierarchy for security providers (using the
WebLogic Credential Mapping MDF as an example), and indicates what attributes and
operations will appear in the Administration Console for the WebLogic Credential
Mapping provider.

Figure 3–5 SSPI MBean Hierarchy for Credential Mapping Providers

Implementing the hierarchy of SSPI MBeans in the DefaultCredentialMapper
MDF (shown in Figure 3–5) produces the page in the Administration Console that is
shown in Figure 3–6. (A partial listing of the DefaultCredentialMapper MDF is
shown in Example 3–1.)

Figure 3–6 DefaultCredentialMapper Administration Console Page

The Name, Description, and Version fields come from attributes with these names
inherited from the base required SSPI MBean called Provider and specified in the
DefaultCredentialMapper MDF. Note that the DisplayName attribute in the
DefaultCredentialMapper MDF generates the value for the Name field, and that
the Description and Version attributes generate the values for their respective
fields as well. The Credential Mapping Deployment Enabled field is displayed (on the
Provider Specific page) because of the CredentialMappingDeploymentEnabled
attribute in the DeployableCredentialMapper required SSPI MBean, which the

Security Service Provider Interface (SSPI) MBeans

Design Considerations 3-13

DefaultCredentialMapper MDF extends. Notice that this Administration Console
page does not display a field for the DefaultCredentialMapper implementation of
the UserPasswordCredentialMapEditor optional SSPI MBean.

3.3.5 Understand What the WebLogic MBeanMaker Provides
The WebLogic MBeanMaker is a command-line utility that takes an MBean Definition
File (MDF) as input and outputs files for an MBean type. When you run the MDF you
created through the WebLogic MBeanMaker, the following occurs:

■ Any attributes inherited from required SSPI MBeans—as well as any custom
attributes you added to the MDF—cause the WebLogic MBeanMaker to generate
complete getter/setter methods in the MBean type's information file. (The MBean
information file is not shown in Figure 3–7.) For more information about the
MBean information file, see Section 3.3.5.1, "About the MBean Information File."

Necessary developer action: None. No further work must be done for these methods.

■ Any operations inherited from optional SSPI MBeans cause the MBean
implementation file to inherit their methods, whose implementations you must
supply from scratch.

Necessary developer action: Currently, the WebLogic MBeanMaker does not generate
method stubs for these inherited methods, so you will need to supply the
appropriate implementations.

■ Any custom operations you added to the MDF will cause the WebLogic
MBeanMaker to generate method stubs.

Necessary developer action: You must provide implementations for these methods.
(However, because the WebLogic MBeanMaker generates the stubs, you do not
need to look up the Java method signatures.)

This is illustrated in Figure 3–7.

Figure 3–7 What the WebLogic MBeanMaker Provides

Security Service Provider Interface (SSPI) MBeans

3-14 Developing Security Providers for Oracle WebLogic Server

3.3.5.1 About the MBean Information File
The MBean information file contains a compiled definition of the data in the MBean
Definition File in a form that JMX Model MBeans require. The format of this file is a
list of attributes, operations, and notifications, each of which also has a set of
descriptor tags that describe that entity. In addition, the MBean itself also has a set of
descriptor tags. An example of this format is as follows:

MBean + tags
attribute1 + tags, attribute2 + tags ...
operation1 + tags, operation2 + tags ...
notification1 + tags, notification2 + tags ...

If desired, you can access this information at runtime by calling the standard JMX
server getMBeanInfo method to obtain the ModelMBeanInfo.

3.3.6 SSPI MBean Quick Reference
Based on the list of SSPIs you need to implement as part of developing your custom
security provider, locate the required SSPI MBeans you need to extend in Table 3–2.
Using Table 3–3 through Table 3–5, locate any optional SSPI MBeans you also want to
implement for managing your security provider.

Note: Be sure to reference the JMX specification to determine how to
interpret the returned structure.

Table 3–2 Required SSPI MBeans

Type Package Name Required SSPI MBean

Authentication provider authentication Authenticator

Identity Assertion provider authentication IdentityAsserter

Authorization provider authorization Authorizer or
DeployableAuthorizer

Adjudication provider authorization Adjudicator

Role Mapping provider authorization RoleMapper or
DeployableRoleMapper

Auditing provider audit Auditor

Credential Mapping provider credentials CredentialMapper or
DeployableCredentialMapper

Cert Path Provider pk CertPathBuilder or
CertPathValidator

Note: The required SSPI MBeans shown in Table 3–2 are located in
the weblogic.management.security.<Package_Name>
package.

Table 3–3 Optional Authentication SSPI MBeans

Optional SSPI MBeans Purpose

GroupEditor Create a group. If the group already exists, an
exception is thrown.

Security Service Provider Interface (SSPI) MBeans

Design Considerations 3-15

GroupMemberLister List a group's members.

GroupReader Read data about groups.

GroupRemover Remove groups.

MemberGroupLister List the groups containing a user or a group.

UserEditor Create, edit and remove users.

UserPasswordEditor Change a user's password.

UserReader Read data about users.

UserRemover Remove users.

Note: The optional Authentication SSPI MBeans shown in Table 3–3
are located in the
weblogic.management.security.authentication package.
They are also supported in the WebLogic Server Administration
Console.

For an example of how to implement the optional Authentication SSPI
MBeans shown in Table 3–4, review the code for the Manageable
Sample Authentication Provider .

Table 3–4 Optional Authorization SSPI MBeans

Optional SSPI MBeans Purpose

PolicyConsumer Indicates that the provider supports policy
consumption.

PolicyEditor Create, edit and remove security policies.

PolicyLister List data about policies.

PolicyReader Read data about security policies.

PolicyStore Manages policies in a policy store.

RoleEditor Create, edit and remove security roles.

RoleReader Read data about security roles.

RoleLister List data about roles.

Note: The optional Authorization SSPI MBeans shown in Table 3–4
are located in the
weblogic.management.security.authorization package.

Table 3–5 Optional Credential Mapping SSPI MBeans

Optional SSPI MBeans Purpose

UserPasswordCredentialMapEditor Edit credential maps that map a WebLogic
user to a remote username and password.

UserPasswordCredentialMapExtende
dReader

Read credential maps that map a WebLogic
user to a remote username and password.

Table 3–3 (Cont.) Optional Authentication SSPI MBeans

Optional SSPI MBeans Purpose

Security Data Migration

3-16 Developing Security Providers for Oracle WebLogic Server

3.4 Security Data Migration
Several of the WebLogic security providers have been developed to support security
data migration. This means that administrators can export users and groups (for the
WebLogic Authentication provider), security policies (for the WebLogic Authorization
provider), security roles (for the WebLogic Role Mapping provider), or credential
mappings (for the Credential Mapping provider) from one security realm, and then
import them into another security realm. Administrators can migrate security data for
each of these WebLogic security providers individually, or migrate security data for all
the WebLogic security providers at once (that is, security data for the entire security
realm).

The migration of security data may be helpful to administrators when:

■ Transitioning from development mode to production mode

■ Proliferating production mode security configurations to security realms in new
WebLogic Server domains

■ Moving data to a new security realm in the same WebLogic Server domain or in a
different WebLogic Server domain.

■ Moving from one security realm to a new security realm in the same WebLogic
Server domain, where one or more of the WebLogic security providers will be
replaced with custom security providers. (In this case, administrators need to copy
security data for the security providers that are not being replaced.)

The following sections provide more information about security data migration:

■ Section 3.4.1, "Migration Concepts"

■ Section 3.4.2, "Adding Migration Support to Your Custom Security Providers"

■ Section 3.4.3, "Administration Console Support for Security Data Migration"

3.4.1 Migration Concepts
Before you start to work with security data migration, you need to understand the
following concepts:

■ Section 3.4.1.1, "Formats"

■ Section 3.4.1.2, "Constraints"

■ Section 3.4.1.3, "Migration Files"

3.4.1.1 Formats
A format is simply a data format that specifies how security data should be exported
or imported. Currently, WebLogic Server does not provide any standard, public

UserPasswordCredentialMapReader Read credential maps that map a WebLogic
user to a remote username and password.

Note: The optional Credential Mapping SSPI MBeans shown in
Table 3–5 are located in the
weblogic.management.security.credentials package.

Table 3–5 (Cont.) Optional Credential Mapping SSPI MBeans

Optional SSPI MBeans Purpose

Security Data Migration

Design Considerations 3-17

formats for developers of security providers. Therefore, the format you use is entirely
up to you. Keep in mind, however, that for data to be exported from one security
provider and later imported to another security provider, both security providers must
understand how to process the same format. Supported formats are the list of data
formats that a given security provider understands how to process.

3.4.1.2 Constraints
Constraints are key/value pairs used to specify options to the export or import
process. Constraints allow administrators to control which security data is exported or
imported from the security provider's database. For example, an administrator may
want to export only users (not groups) from an Authentication provider's database, or
a subset of those users. Supported constraints are the list of constraints that
administrators may specify during the migration process for a particular security
provider. For example, an Authentication provider's database can be used to import
users and groups, but not security policies.

3.4.1.3 Migration Files
Export files are the files to which security data is written (in the specified format)
during the export portion of the migration process. Import files are the files from
which security data is read (also in the specified format) during the import portion of
the migration process. Both export and import files are simply temporary storage
locations for security data as it is migrated from one security provider's database to
another.

3.4.2 Adding Migration Support to Your Custom Security Providers
If you want to develop custom security providers that support security data migration
like the WebLogic security providers do, you need to extend the
weblogic.management.security.ImportMBean and
weblogic.management.security.ExportMBean optional SSPI MBeans in the
MBean Definition File (MDF) that you use to generate MBean types for your custom
security providers, then implement their methods. These optional SSPI MBeans
include the attributes and operations described in Table 3–6 and Table 3–7,
respectively.

Note: Because the data format used for the WebLogic security
providers is unpublished, you cannot currently migrate security data
from a WebLogic security provider to a custom security provider, or
visa versa.

Additionally, security vendors wanting to exchange security data with
security providers from other vendors will need to collaborate on a
standard format to do so.

Caution: The migration files are not protected unless you take
additional measures to protect them. Because migration files may
contain sensitive data, take extra care when working with them.

Table 3–6 Attributes and Operations of the ExportMBean Optional SSPI MBean

Attributes/Operations Description

SupportedExportFormats A list of export data formats that the
security provider supports.

Security Data Migration

3-18 Developing Security Providers for Oracle WebLogic Server

SupportedExportConstraints A list of export constraints that the security
provider supports.

exportData Exports provider-specific security data in a
specified format.

format A parameter on the exportData
operation that specifies the format to use
for exporting provider-specific data.

filename A parameter on the exportData
operation that specifies the full path to the
filename used to export provider-specific
data.

Notes: The WebLogic security providers
that support security data migration are
implemented in a way that allows you to
specify a relative path (from the directory
relative to the server you are working on).
You must specify a directory that already
exists; WebLogic Server will not create one
for you.

 constraints A parameter on the exportData
operation that specifies the constraints to
be used when exporting provider-specific
data.

Note: For more information, see the Java API Reference for Oracle
WebLogic Server for the ExportMBean interface.

Table 3–7 Attributes and Operations of the ImportMBean Optional SSPI MBean

Attributes/Operations Description

SupportedImportFormats A list of import data formats that the
security provider supports.

SupportedImportConstraints A list of import constraints that the security
provider supports.

importData Imports provider-specific data from a
specified format.

format A parameter on the importData
operation that specifies the format to use
for importing provider-specific data.

filename A parameter on the importData
operation that specifies the full path to the
filename used to import provider-specific
data.

Note: The WebLogic security providers that
support security data migration are
implemented in a way that allows you to
specify a relative path (from the directory
relative to the server you are working on).
You must specify a directory that already
exists; WebLogic Server will not create one
for you.

Table 3–6 (Cont.) Attributes and Operations of the ExportMBean Optional SSPI MBean

Attributes/Operations Description

Security Data Migration

Design Considerations 3-19

3.4.3 Administration Console Support for Security Data Migration
Unlike other optional SSPI MBeans you may extend in the MDF for your custom
security providers, the attributes and operations inherited from the ExportMBean and
ImportMBean optional SSPI MBeans automatically appear in a WebLogic Server
Administration Console page for the associated security provider, under a Migration
tab (see Figure 3–8 for an example). This allows administrators to export and import
security data for each security provider individually.

Figure 3–8 Migration Tab for the WebLogic Authentication Provider

Additionally, if any of the security providers configured in your security realm have
migration capabilities, the Migration tab at the security realm level (see Figure 3–9 for
an example) allows administrators to export or import security data for all the security
providers configured in the security realm at once.

constraints A parameter on the importData
operation that specifies the constraints to
be used when importing provider-specific
data.

Note: For more information, see Java API Reference for Oracle
WebLogic Server for the ExportMBean interface and the ImportMBean
interface.

Note: If a security provider does not have migration capabilities, the
Migration tab for that security provider will not appear in the
Administration Console.

For instructions about how to migrate security data for individual
security providers using the Administration Console, see "Migrating
Security Data" in Administering Security for Oracle WebLogic Server.

Table 3–7 (Cont.) Attributes and Operations of the ImportMBean Optional SSPI MBean

Attributes/Operations Description

Management Utilities Available to Developers of Security Providers

3-20 Developing Security Providers for Oracle WebLogic Server

Figure 3–9 Migration Tab for a Security Realm

As always, if you add additional attributes or operations to your MDF, you must write
a console extension in order to make them available in the Administration Console.

3.5 Management Utilities Available to Developers of Security Providers
The weblogic.management.utils package contains additional management
interfaces and exceptions that developers might find useful, particularly when
generating MBean types for their custom security providers. Implementation of these
interfaces and exceptions is not required to develop a custom security provider (unless
you inherit them by implementing optional SSPI MBeans in your custom security
provider's MDF).

The weblogic.management.utils package contains the following utilities:

Note: The Migration tab at the security realm level always appears in
the Administration Console, whether or not any security providers
with migration capabilities are configured in the security realm.
However, it is only operational if one or more security providers have
migration capabilities.

For instructions about how to migrate security data for all security
providers at once, see "Migrating Security Data" in Administering
Security for Oracle WebLogic Server.

Note: Administrators can also use the WebLogic Scripting Tool
(WLST) (rather than the Administration Console) to migrate security
data when you extend the ExportMBean and ImportMBean optional
SSPI MBeans. For more information, see Understanding the WebLogic
Scripting Tool.

Note: The interfaces and classes are located in this package (rather
than in weblogic.management.security) because they are general
purpose utilities; in other words, these utilities can also be used for
non-security MBeans. The various types of MBeans are described in
"Overview of WebLogic Server Subsystem MBeans" in Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server.

Security Providers and WebLogic Resources

Design Considerations 3-21

■ Common exceptions.

■ Interfaces that provide methods for handling large lists of data.

■ An interface containing configuration attributes that are required to communicate
with an external LDAP server.

For more information, see the Java API Reference for Oracle WebLogic Server for the
ExportMBean interface for the weblogic.management.utils package.

3.6 Security Providers and WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic
Server entity that can be protected from unauthorized access. Developers of custom
Authorization, Role Mapping, and Credential Mapping providers need to understand
how these security providers interact with WebLogic resources and the security
policies used to secure those resources.

The following sections provide information about security providers and WebLogic
resources:

■ Section 3.6.1, "The Architecture of WebLogic Resources"

■ Section 3.6.2, "Types of WebLogic Resources"

■ Section 3.6.3, "WebLogic Resource Identifiers"

■ Section 3.6.4, "Creating Default Groups for WebLogic Resources"

■ Section 3.6.5, "Creating Default Security Roles for WebLogic Resources"

■ Section 3.6.6, "Creating Default Security Policies for WebLogic Resources"

■ Section 3.6.8, "Single-Parent Resource Hierarchies"

■ Section 3.6.9, "ContextHandlers and WebLogic Resources"

3.6.1 The Architecture of WebLogic Resources
The Resource interface, located in the weblogic.security.spi package, provides
the definition for an object that represents a WebLogic resource, which can be
protected from unauthorized access. The ResourceBase class, located in the
weblogic.security.service package, is an abstract base class for more specific
WebLogic resource types, and facilitates the model for extending resources. (See
Figure 3–10 and Section 3.6.2, "Types of WebLogic Resources" for more information.)

Note: The Manageable Sample Authentication provider uses the
weblogic.management.utils package for exceptions as well as to
handle lists of data.

Note: Security policies replace the access control lists (ACLs) and
permissions that were used to protect WebLogic resources in previous
releases of WebLogic Server.

Note: For more information, see Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Security Providers and WebLogic Resources

3-22 Developing Security Providers for Oracle WebLogic Server

Figure 3–10 Architecture of WebLogic Resources

The ResourceBase class includes the Oracle-provided implementations of the
getID, getKeys, getValues, and toString methods. For more information, see
the WebLogic Server API Reference Javadoc for the ResourceBase class.

This architecture allows you to develop security providers without requiring that they
be aware of any particular WebLogic resources. Therefore, when new resource types
are added, you should not need to modify the security providers.

3.6.2 Types of WebLogic Resources
As shown in Figure 3–10, "Architecture of WebLogic Resources", certain classes in the
weblogic.security.service package extend the ResourceBase class, and
therefore provide you with implementations for specific types of WebLogic resources.
WebLogic resource implementations are available for:

■ Administrative resources

■ Application resources

■ COM resources

■ Control resources

■ EIS resources

■ EJB resources

■ JDBC resources

■ JMS resources

■ JNDI resources

■ Remote resources

■ Server resources

■ URL resources

■ Web service resources

■ Work Context resources

Security Providers and WebLogic Resources

Design Considerations 3-23

3.6.3 WebLogic Resource Identifiers
Each WebLogic resource (described in Section 3.6.2, "Types of WebLogic Resources")
can identified in two ways: by its toString() representation or by an ID obtained
using the getID() method.

3.6.3.1 The toString() Method
If you use the toString() method of any WebLogic resource implementation, a
description of the WebLogic resource will be returned in the form of a String. First,
the type of the WebLogic resource is printed in pointy-brackets. Then, each key is
printed, in order, along with its value. The keys are comma-separated. Values that are
lists are comma-separated and delineated by open and close curly braces. Each value
is printed as is, except that commas (,), open braces ({), close braces (}), and back
slashes (\) are each escaped with a back slash. For example, the EJB resource:

EJBResource ('myApp",
 'MyJarFile",
 'myEJB",
 'myMethod",
 'Home",
 new String[] {'argumentType1", 'argumentType2"}
);

will produce the following toString output:

type=<ejb>, app=myApp, module="MyJarFile", ejb=myEJB, method="myMethod",
 methodInterface="Home", methodParams={argumentType1, argumentType2}

The format of the WebLogic resource description provided by the toString()
method is public (that is, you can construct one without using a Resource object) and
is reversible (meaning that you can convert the String form back to the original
WebLogic resource).

3.6.3.2 Resource IDs and the getID() Method
The getID() method on each of the defined WebLogic resource types returns a 64-bit
hashcode that can be used to uniquely identify the WebLogic resource in a security
provider. The resource ID can be effectively used for fast runtime caching, using the
following algorithm:

1. Obtain a WebLogic resource.

2. Get the resource ID for the WebLogic resource using the getID method.

3. Look up the resource ID in the cache.

4. If the resource ID is found, then return the security policy.

5. If the resource ID is not found, then:

Note: For more information about each of these WebLogic resources,
see Securing Resources Using Roles and Policies for Oracle WebLogic Server
and the WebLogic Server API Reference Javadoc for the
weblogic.security.service package.

Note: Example 3–2 illustrates how to use the toString() method to
identify a WebLogic resource.

Security Providers and WebLogic Resources

3-24 Developing Security Providers for Oracle WebLogic Server

a. Use the toString() method to look up the WebLogic resource in the security
provider database.

b. Store the resource ID and the security policy in cache.

c. Return the security policy.

Because it is not guaranteed stable across multiple runs, you should not use the
resource ID to store information about the WebLogic resource in a security provider
database. Instead, Oracle recommends that you store any resource-to-security policy
and resource-to-security role mappings in their corresponding security provider
database using the WebLogic resource's toString() method.

3.6.4 Creating Default Groups for WebLogic Resources
When writing a runtime class for a custom Authentication provider, there are several
default groups that you are required to create. Table 3–8 provides information to assist
you with this task.

3.6.5 Creating Default Security Roles for WebLogic Resources
When writing a runtime class for a custom Role Mapping provider, there are several
default global roles that you are required to create. Table 3–9 provides information to
assist you with this task.

Note: Example 3–3 illustrates how to use the getID() method to
identify a WebLogic resource in Authorization provider, and provides
a sample implementation of this algorithm.

Note: For more information about security provider databases, see
Section 3.7, "Initialization of the Security Provider Database." For more
information about the toString method, see Section 3.6.3.1, "The
toString() Method."

Table 3–8 Default Groups and Group Membership

Group Name Group Membership

Administrators Empty, or an administrative user.

Deployers Empty

Monitors Empty

Operators Empty

AppTesters Empty

OracleSystemGro
up

OracleSystemUser

Table 3–9 Default Global Roles and Group Associations

Global Role Name Group Association

Admin Administrators group

AdminChannelUser AdminChannelUsers, Administrators,
Deployers, Operators, Monitors, and
AppTesters groups

Security Providers and WebLogic Resources

Design Considerations 3-25

3.6.6 Creating Default Security Policies for WebLogic Resources
When writing a runtime class for a custom Authorization provider, there are several
default security policies that you are required to create. These default security policies
initially protect the various types of WebLogic resources. Table 3–10 provides
information to assist you with this task.

Anonymous weblogic.security.WLSPrincipals.get
EveryoneGroupname() group

CrossDomainConnector CrossDomainConnectors group

Deployer Deployers group

Monitor Monitors group

Operator Operators group

AppTester AppTesters group

OracleSystemRole OracleSystemGroup

Note: For more information about global and scoped security roles,
see "Users, Groups, and Security Roles" in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

Table 3–10 Default Security Policies for WebLogic Resources

WebLogic Resource Constructor Security Policy

new AdminResource(null, null,
null)

Admin global role

new AdminResource("Configuration",
null, null)

Admin, Deployer, Monitor, or
Operator global roles

new AdminResource('FileDownload",
null, null)

Admin or Deployer global role

new AdminResource('FileUpload",
null, null)

Admin or Deployer global role

New AdminResource('ViewLog", null,
null)

Admin or Deployer global role

new ControlResource(null, null,
null)

weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new EISResource(null, null, null) weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new EJBResource(null, null, null,
null, null, null)

weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new JDBCResource(null, null, null,
null, null)

weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new JNDIResource(null, null, null) weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new JMSResource(null, null, null,
null)

weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

Table 3–9 (Cont.) Default Global Roles and Group Associations

Global Role Name Group Association

Security Providers and WebLogic Resources

3-26 Developing Security Providers for Oracle WebLogic Server

3.6.7 Looking Up WebLogic Resources in a Security Provider's Runtime Class
Example 3–2 illustrates how to look up a WebLogic resource in the runtime class of an
Authorization provider. This algorithm assumes that the security provider database
for the Authorization provider contains a mapping of WebLogic resources to security
policies. It is not required that you use the algorithm shown in Example 3–2, or that
you utilize the call to the getParentResource method. (For more information about
the getParentResource method, see Section 3.6.8, "Single-Parent Resource
Hierarchies.")

Example 3–2 How to Look Up a WebLogic Resource in an Authorization Provider: Using
the toString Method

Policy findPolicy(Resource resource) {
 Resource myResource = resource;
 while (myResource != null) {
 String resourceText = myResource.toString();
 Policy policy = lookupInDB(resourceText);
 if (policy != null) return policy;
 myResource = myResource.getParentResource();
 }
 return null;
}

You can optimize the algorithm for looking up a WebLogic resource by using the
getID method for the resource. (Use of the toString method alone, as shown in
Example 3–2, may impact performance due to the frequency of string concatenations.)
The getID method may be quicker and more efficient because it is a hash operation
that is calculated and cached within the WebLogic resource itself. Therefore, when the
getID method is used, the toString value only needs to be calculated once per
resource (as shown in Example 3–3).

Example 3–3 How to Look Up a WebLogic Resource in an Authorization Provider: Using
the getID Method

Policy findPolicy(Resource resource) {
 Resource myResource = resource;
 while (myResource != null) {
 long id = myResource.getID();

new ServerResource(null, null,
null)

Admin or Operator global roles

new URLResource(null, null, null,
null, null)

weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new WebServiceResource(null, null,
null, null)

weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

new WorkContext(null, null) weblogic.security.WLSPrincipals
.getEveryoneGroupname() group

Note: Application and COM resources should not have default
security policies (that is, they should not grant permission to anyone
by default).

Table 3–10 (Cont.) Default Security Policies for WebLogic Resources

WebLogic Resource Constructor Security Policy

Security Providers and WebLogic Resources

Design Considerations 3-27

 Policy policy = lookupInCache(id);
 if (policy != null) return policy;
 String resourceText = myResource.toString();
 Policy policy = lookupInDB(resourceText);
 if (policy != null) {
 addToCache(id, policy);
 return policy;
 }
 myResource = myResource.getParentResource();
 }
 return null;
}

3.6.8 Single-Parent Resource Hierarchies
The level of granularity for WebLogic resources is up to you. For example, you can
consider an entire Web application, a particular Enterprise JavaBean (EJB) within that
Web application, or a single method within that EJB to be a WebLogic resource.

WebLogic resources are arranged in a hierarchical structure ranging from most specific
to least specific. You can use the getParentResource method for each of the
WebLogic resource types if you like, but it is not required.

The WebLogic security providers use the single-parent resource hierarchy as follows: If
a WebLogic security provider attempts to access a specific WebLogic resource and that
resource cannot be located, the WebLogic security provider will call the
getParentResource method of that resource. The parent of the current WebLogic
resource is returned, and allows the WebLogic security provider to move up the
resource hierarchy to protect the next (less-specific) resource. For example, if a caller
attempts to access the following URL resource:

type=<url>, application=myApp, contextPath="/mywebapp", uri=foo/bar/my.jsp

and that exact URL resource cannot be located, the WebLogic security provider will
progressively attempt to locate and protect the following resources (in order):

type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/bar/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=*.jsp
type=<url>, application=myApp, contextPath="/mywebapp", uri=/*
type=<url>, application=myApp, contextPath="/mywebapp"
type=<url>, application=myApp
type=<app>, application=myApp
type=<url>

Note: The getID method is not guaranteed between patch sets or
future WebLogic Server releases. Therefore, you should not store
getID values in your security provider database.

Note: For more information about the getParentResource method,
see the Java API Reference for Oracle WebLogic Server for any of the
predefined WebLogic resource types or the Resource interface.

Security Providers and WebLogic Resources

3-28 Developing Security Providers for Oracle WebLogic Server

3.6.8.1 Pattern Matching for URL Resources
Sections SRV.11.1 and SRV.11.2 of the Java Servlet 2.3 Specification
(http://jcp.org/aboutJava/communityprocess/first/jsr053/index.ht
ml) describe the servlet container's pattern matching rules. These rules are used for
URL resources as well. The following examples illustrate some important concepts
with regard to URL resource pattern matching.

3.6.8.1.1 Example 1 For the URL resource type=<url>, application=myApp,
contextPath=/mywebapp, uri=/foo/my.jsp, httpMethod=GET, the resource
hierarchy used is as follows. (Note lines 3 and 4, which contain URL patterns that may
be different from what is expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp,
httpMethod=GET

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp

3. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*,
httpMethod=GET

4. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*

5. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*,
httpMethod=GET

6. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

7. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp, httpMethod=GET

8. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp

9. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*, httpMethod=GET

10. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

11. type=<url>, application=myApp, contextPath=/mywebapptype=<url>,
application=myApp

12. type=<app>, application=myApp

13. type=<url>

3.6.8.1.2 Example 2 For the URL resource type=<url>, application=myApp,
contextPath=/mywebapp, uri=/foo, the resource hierarchy used is as follows.
(Note line 2, which contains a URL pattern that may be different from what is
expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

3. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

4. type=<url>, application=myApp, contextPath=/mywebapp

5. type=<url>, application=myApp

6. type=<app>, application=myApp

7. type=<url>

3.6.9 ContextHandlers and WebLogic Resources
A ContextHandler is a high-performing WebLogic class that obtains additional
context and container-specific information from the resource container, and provides
that information to security providers making access or role mapping decisions. The
ContextHandler interface provides a way for an internal WebLogic resource
container to pass additional information to a WebLogic Security Framework call, so
that a security provider can obtain contextual information beyond what is provided by

Security Providers and WebLogic Resources

Design Considerations 3-29

the arguments to a particular method. A ContextHandler is essentially a name/value
list and as such, it requires that a security provider know what names to look for. (In
other words, use of a ContextHandler requires close cooperation between the
WebLogic resource container and the security provider.) Each name/value pair in a
ContextHandler is known as a context element, and is represented by a
ContextElement object.

Resource types have different context elements whose values you can inspect as part
of developing a custom provider. That is, not all containers pass all context elements.

Table 3–11 lists the available ContextHandler entries.

Note: For more information about the ContextHandler interface and
ContextElement class, see the WebLogic Server API Reference Javadoc for
the weblogic.security.service package.

Table 3–11 Context Handler Entries

Context Element Name Description and Type

com.bea.contextelement.

servlet.HttpServletReques
t

A servlet access request or SOAP message via HTTP

javax.http.servlet.HttpServletRequest

com.bea.contextelement.

servlet.HttpServletRespon
se

A servlet access response or SOAP message via
HTTP

javax.http.servlet.HttpServletResponse

com.bea.contextelement.

wli.Message

A WebLogic Integration message. The message is
streamed to the audit log.

java.io.InputStream

com.bea.contextelement.

channel.Port

The internal listen port of the network channel
accepting or processing the request

java.lang.Integer

com.bea.contextelement.

channel.PublicPort

The external listen port of the network channel
accepting or processing the request

java.lang.Integer

com.bea.contextelement.

channel.RemotePort

The port of the remote end of the TCP/IP
connection of the network channel accepting or
processing the request

java.lang.Integer

com.bea.contextelement.

channel.Protocol

The protocol used to make the request of the
network channel accepting or processing the request

java.lang.String

com.bea.contextelement.

channel.Address

The internal listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.

channel.PublicAddress

The external listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.

channel.RemoteAddress

The remote address of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.String

Security Providers and WebLogic Resources

3-30 Developing Security Providers for Oracle WebLogic Server

Example 3–4 illustrates how you can access HttpServletRequest and
HttpServletResponse context element objects via a URL (Web) resource's
ContextHandler. For example, you might use this code in the isAccessAllowed()

com.bea.contextelement.

channel.ChannelName

The name of the network channel accepting or
processing the request

java.lang.String

com.bea.contextelement.

channel.Secure

Is the network channel accepting or processing the
request using SSL?

java.lang.Boolean

com.bea.contextelement.

ejb20.Parameter[1-N]

Object based on parameter

com.bea.contextelement.

wsee.SOAPMessage

javax.xml.rpc.handler.MessageContext

com.bea.contextelement.

entitlement.EAuxiliaryID

Used by WebLogic Server internal process.

weblogic.entitlement.expression.EAuxil
iary

com.bea.contextelement.

security.ChainPrevalidate
dBySSL

The SSL framework has validated the certificate
chain, meaning that the certificates in the chain have
signed each other properly; the chain terminates in a
certificate that is one of the server's trusted CAs; the
chain honors the basic constraints rules; and the
certificates in the chain have not expired.

java.lang.Boolean

com.bea.contextelement.

xml.SecurityToken

Not used in this release of WebLogic Server.

weblogic.xml.crypto.wss.provider.Secur
ityToken

com.bea.contextelement.

xml.SecurityTokenAssertio
n

Not used in this release of WebLogic Server.

java.util.Map

com.bea.contextelement.

webservice.Integrity{id:X
XXXX}

javax.security.auth.Subject

com.bea.contextelement.

saml.SSLClientCertificate
Chain

The SSL client certificate chain obtained from the
SSL connection over which a sender-vouches SAML
assertion was received.

java.security.cert.X509Certificate[]

com.bea.contextelement.

saml.MessageSignerCertifi
cate

The certificate used to sign a Web service message.

java.security.cert.X509Certificate

com.bea.contextelement.

saml.subject.Confirmation
Method

The type of SAML assertion: bearer, artifact,
sender-vouches, or holder-of-key.

java.lang.String

com.bea.contextelement.

saml.subject.dom.KeyInfo

The <ds:KeyInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.

org.w3c.dom.Element

Table 3–11 (Cont.) Context Handler Entries

Context Element Name Description and Type

Security Providers and WebLogic Resources

Design Considerations 3-31

method of your AccessDecision SSPI implementation. (For more information, see
Section 7.5.1.3, "Implement the AccessDecision SSPI.")

Example 3–4 Example: Accessing Context Elements in the URL Resource
ContextHandler

static final String SERVLETREQUESTNAME =
'com.bea.contextelement.servlet.HttpServletRequest";
if (resource instanceof URLResource) {
 HttpServletRequest req =
 (HttpServletRequest)handler.getValue(SERVLETREQUESTNAME);
}

3.6.9.1 Providers and Interfaces that Support Context Handlers
The ContextHandler interface provides a way to pass additional information to a
WebLogic Security Framework call, so that a security provider or interface can obtain
additional context information beyond what is provided by the arguments to a
particular method.

Table 3–12 describes the context handler support.

Note: You might also want to access these context elements in the
getRoles() method of the RoleMapper SSPI implementation or the
getContext() method of the AuditContext interface implementation.
(For more information, see Section 9.5.1.3, "Implement the
RoleMapper SSPI" and Section 12.2.1.4, "Audit Context," respectively.)

Table 3–12 Methods and Classes that Support Context Handlers

Method Description

AccessDecision.isAccessAl
lowed()

The isAccessAllowed() method accepts a
ContextHandler object that can optionally be used
by an Access Decision to obtain additional
information that may be used in making the
authorization decision. If the caller is unable to
provide additional information, a null value should
be specified.

AdjudicatorV2.adjudicate(
)

An implementation of the AdjudicatorV2 SSPI
interface is the part of an Adjudication provider that
is called after all the Access Decisions'
isAccessAllowed methods have been called and
returned successfully (that is, without throwing
exceptions). The AdjudicatorV2 SSPI accepts the
resource and ContextHandler as additional
arguments. When the AuthorizationManager calls
the Adjudicator, it passes the same resource and
ContextHandler as it passed to AccessDecision. This
allows the Adjudicator to have all of the information
that is available to AccessDecision.

Security Providers and WebLogic Resources

3-32 Developing Security Providers for Oracle WebLogic Server

AuditAtnEventV2.getContex
t()

Because the JAAS LoginModule.login() method
and the
IdentityAsserter.assertIdentity()
method have access to the ContextHandler, the
AuditAtnEventV2 interface also gets this data so it
can audit relevant information. The getContext()
method is inherited from
weblogic.security.spi.AuditContext. The
getContext() method gets a ContextHandler
object from which additional audit information can
be obtained.

AuditCertPathBuilderEvent
.getContext(),
AuditCertPathValidatorEve
nt.getContext()

The getContext method gets an optional
ContextHandler object that may specify additional
data on how to look up and validate the CertPath.

AuditConfigurationEvent.g
etContext()

The
AuditConfigurationEvent.getContext()
method gets a ContextHandler object from which
additional audit information can be obtained.

AuditContext.getContext() The AuditContext.getContext() method gets
a ContextHandler object from which additional
audit information can be obtained.

AuditCredentialMappingEve
nt.getContext()

The getContext method gets an optional
ContextHandler object that may specify additional
information about the credential mapping audit
event.

CertPathBuilderParameterS
pi.getContext and
CertPathValidatorParamete
rSpi.getContext

The CertPathBuilderParameterSpi and
CertPathValidatorParameterSpi interfaces
include a getContext() method to get a
ContextHandler that may pass in extra parameters
that can be used for building and validating the Cert
Path.

ChallengeIdentityAsserter
V2.assertChallengeIdentit
y(),
ChallengeIdentityAsserter
V2.continueChallengeIdent
ity(), and
ChallengeIdentityAsserter
V2.getChallengeIdentity()

The ChallengeIdentityAsserterV2 methods
accept a ContextHandler object that can optionally
be user by the Identity assertion provider to obtain
additional information that may be used in asserting
the challenge identity.

CredentialMapperV2.getCre
dentials()

The CredentialMapper.getCredentials()
and CredentialMapper.getCredential()
methods include a ContextHandler parameter with
optional extra data.

IdentityAsserterV2.assert
Identity()

The IdentityAsserterV2 provider allows the Security
Framework to pass a ContextHandler in the
assertIdentity method. The ContextHandler object
can optionally be used to obtain additional
information that may be used in asserting the
identity. For example, the ContextHandler allows
users to extract extra information from the
HttpServletRequest and to set cookies in the
HttpServletResponse.

Table 3–12 (Cont.) Methods and Classes that Support Context Handlers

Method Description

Initialization of the Security Provider Database

Design Considerations 3-33

3.7 Initialization of the Security Provider Database

At minimum, you must initialize security providers' databases with the default users,
groups, security policies, security roles, or credentials that your Authentication,
Authorization, Role Mapping, and Credential Mapping providers expect. You will
need to initialize a given security provider's database before the security provider can
be used, and should think about how this will work as you are writing the runtime
classes for your custom security providers. The method you use to initialize a security

LoginModule.login() A ContextHandler can be passed to the JAAS
CallbackHandler parameter. A
CallbackHandler is a variable-argument data
structure that is passed to the login() method.
Adding the ContextHandler in this manner allows
users to extract extra information from the
HttpServletRequest and to set cookies in the
HttpServletResponse, for example. The
implementation includes LoginModules used both
for authentication and identity assertion.

The EJB and Servlet containers must add the
ContextHandler to the CallbackHandler when
calling the Principal Authenticator. Specifically, they
must instantiate and pass a
weblogic.security.auth.callback.Contex
tHandlerCallback to the invokeCallback
method of a CallbackHandler to retrieve the
ContextHandler related to this security operation. If
no ContextHandler is associated with this operation,
javax.security.auth.callback.Unsupporte
dCallbackException is thrown.

RoleMapper.getRoles() The getRoles() method accepts a
ContextHandler object that can optionally be
used by the Role Mapping provider to obtain
additional information that may be used in making
the authorization decision. If the caller is unable to
provide additional information, a null value should
be specified.

URLCallbackHandler and
SimpleCallbackHandler
Classes

As of WebLogic Server version 9.0, the
weblogic.security.URLCallbackHandler
and
weblogic.security.SimpleCallbackHandle
r classes were updated to handle the
ContextHandler.

URLCallbackHandler is a CallbackHandler used
by application developers for returning a username,
password, URL, and ContextHandler as part of the
Authenticate API.

SimpleCallbackHandler is a simple
CallbackHandler used by application developers for
returning a username, password and
ContextHandler as part of the Authenticate API.

Note: Prior to reviewing this section, be sure you have read "Security
Provider Databases" in the Understanding Security for Oracle WebLogic
Server.

Table 3–12 (Cont.) Methods and Classes that Support Context Handlers

Method Description

Initialization of the Security Provider Database

3-34 Developing Security Providers for Oracle WebLogic Server

provider's database depends upon many factors, including whether or not an
externally administered database will be used to store the user, group, security policy,
security role, or credential information, and whether or not the database already exists
or needs to be created.

The following sections explain some best practices for initializing a security provider
database:

■ Section 3.7.1, "Best Practice: Create a Simple Database If None Exists"

■ Section 3.7.2, "Best Practice: Configure an Existing Database"

■ Section 3.7.3, "Best Practice: Delegate Database Initialization"

■ Section 3.7.4, "Best Practice: Use the JDBC Connection Security Service API to
Obtain Database Connections"

3.7.1 Best Practice: Create a Simple Database If None Exists
The first time an Authentication, Authorization, Role Mapping, or Credential Mapping
provider is used, it attempts to locate a database with the information it needs to
provide its security service. If the security provider fails to locate the database, you can
have it create one and automatically populate it with the default users, groups,
security policies, security roles, and credentials. This option may be useful for
development and testing purposes.

Both the WebLogic security providers and the sample security providers follow this
practice. The WebLogic Authentication, Authorization, Role Mapping, and Credential
Mapping providers store the user, group, security policy, security role, and credential
information in the embedded LDAP server. If you want to use any of these WebLogic
security providers, you will need to follow the "Configuring the Embedded LDAP
Server" instructions in Administering Security for Oracle WebLogic Server.

3.7.2 Best Practice: Configure an Existing Database
If you already have a database (such as an external LDAP server), you can populate
that database with the users, groups, security policies, security roles, and credentials
that your Authentication, Authorization, Role Mapping, and Credential Mapping
providers require. (Populating an existing database is accomplished using whatever
tools you already have in place for performing these tasks.)

Once your database contains the necessary information, you must configure the
security providers to look in that database. You accomplish this by adding custom
attributes in your security provider's MBean Definition File (MDF). Some examples of
custom attributes are the database's host, port, password, and so on. After you run the
MDF through the WebLogic MBeanMaker and complete a few other steps to generate
the MBean type for your custom security provider, you or an administrator use the
WebLogic Server Administration Console to set these attributes to point to the
database.

Note: The sample security providers simply create and use a
properties file as their database. For example, the sample
Authentication provider creates a file called
SampleAuthenticatorDatabase.java that contains the
necessary information about users and groups.

Initialization of the Security Provider Database

Design Considerations 3-35

As an example, Example 3–5 shows some custom attributes that are part of the
WebLogic LDAP Authentication provider's MDF. These attributes enable an
administrator to specify information about the WebLogic LDAP Authentication
provider's database (an external LDAP server), so it can locate information about users
and groups.

Example 3–5 LDAPAuthenticator.xml

...
<MBeanAttribute
 Name = "UserObjectClass"
 Type = "java.lang.String"
 Default = ""person""
 Description = "The LDAP object class that stores users."
/>
<MBeanAttribute
 Name = "UserNameAttribute"
 Type = "java.lang.String"
 Default = ""uid""
 Description = "The attribute of an LDAP user object that specifies the name of
 the user."
/>
<MBeanAttribute
 Name = "UserDynamicGroupDNAttribute"
 Type = "java.lang.String"
 Description = "The attribute of an LDAP user object that specifies the
 distinguished names (DNs) of dynamic groups to which this user belongs.
 If such an attribute does not exist, WebLogic Server determines if a
 user is a member of a group by evaluating the URLs on the dynamic group.
 If a group contains other groups, WebLogic Server evaluates the URLs on
 any of the descendents of the group."
/>
<MBeanAttribute
 Name = "UserBaseDN"
 Type = "java.lang.String"
 Default = ""ou=people, o=example.com""
 Description = "The base distinguished name (DN) of the tree in the LDAP directory
 that contains users."
/>
<MBeanAttribute
 Name = "UserSearchScope"
 Type = "java.lang.String"
 Default = ""subtree""
 LegalValues = "subtree,onelevel"
 Description = "Specifies how deep in the LDAP directory tree to search for Users.
 Valid values are <code>subtree</code>
 and <code>onelevel</code>."
/>
...

Note: For more information about MDFs, MBean types, and the
WebLogic MBeanMaker, see Section 2.2.3, "Generating an MBean Type
to Configure and Manage the Custom Security Provider."

Initialization of the Security Provider Database

3-36 Developing Security Providers for Oracle WebLogic Server

3.7.3 Best Practice: Delegate Database Initialization
If possible, initialization calls between a security provider and the security provider's
database should be done by an intermediary class, referred to as a database delegator.
The database delegator should interact with the runtime class and the MBean type for
the security provider, as shown in Figure 3–11.

Figure 3–11 Positioning of the Database Delegator Class

A database delegator is used by the WebLogic Authentication and Credential Mapping
providers. The WebLogic Authentication provider, for example, calls into a database
delegator to initialize the embedded LDAP server with default users and groups,
which it requires to provide authentication services for the default security realm.

Use of a database delegator is suggested as a convenience to application developers
and security vendors who are developing custom security providers, because it hides
the security provider's database and centralizes calls into the database.

3.7.4 Best Practice: Use the JDBC Connection Security Service API to Obtain Database
Connections

As an alternative to the best practices for creating or configuring a database for your
custom security provider, you can use the JDBCConnectionService SSPI only
during provider initialization to access the JDBC data sources that are configured for
your WebLogic domain.

This capability enables your custom security providers to take advantage of full
database access and database connection management capabilities provided through
JDBC data sources, including multi data sources. See
http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.htm
l for information about how SQL statements are executed and how the results are
returned within the context of a connection.

When you use the JDBCConnectionService SSPI, note the following:

■ Obtain the JDBCConnectionService in the initialize() method of your
custom provider.

■ Data sources are identified by name (sqlConnectionName), not JNDI path.

■ During initialization, JDBC resources may not be available. Direct connections are
returned until the JNDI and JDBC subsystems are fully initialized and available.

■ When finished with the database connection returned by the JDBC data source, the
security provider must invoke the releaseConnection method (and specify the
Connection object) to release the connection.

Differences In Attribute Validators

Design Considerations 3-37

Example 3–6 shows using the JDBCConnectionService SSPI to obtain a database
connection from a named JDBC data source.

Although not shown in the example, JDBCConnectionService.getConnection
can throw JDBCConnectionServiceException if the named JDBC data source is
unavailable, or SQLException if the database connection is unavailable.
JDBCConnectionService.releaseConnection can throw SQLException if the
database connection is unavailable.

Example 3–6 Using the JDBCConnectionService API to Access JDBC Data Sources

JDBCConnectionService dbService = null;
if (services instanceof SecurityServicesJDBC) {
 try {

 dbService = ((SecurityServicesJDBC)services).getJDBCConnectionService();

 System.out.println("Obtained the JDBCConnectionService, " + dbService);

 Connection conn = dbService.getConnection("oracle-database");

 PreparedStatement statement = conn.prepareStatement("select sysdate from dual");
 ResultSet rs= statement.executeQuery();

 while (rs.next()) {
 String s1 = rs.getString(1);
 System.out.println("Sys date =" + s1);
 }

 dbService.releaseConnection(conn);
 } catch(Exception e) {
 e.printStackTrace();
 }

3.7.4.1 Implementing a JDBC Connection Security Service: Main Steps
To implement a security service for obtaining access to JDBC data sources:

1. In your provider's initialize() method, invoke the
getJDBCConnectionService method of the SecurityServicesJDBC
interface to obtain the JDBC connection service.

2. Invoke the getConnection method on the JDBC connection service instance,
passing the name of a JDBC data source that is configured in your WebLogic
domain.

3. Add appropriate database commands, such as prepared statements, queries, and
so on.

4. You must invoke the releaseConnection method on the JDBC connection
service instance to release the connection instance.

3.8 Differences In Attribute Validators
A validator is an interface that is implemented by a class that can validate various
types of expressions. In this release of WebLogic Server, the inheritance rules for
security provider attribute validator methods differ from the rules that existed in 8.1.

In 8.1, a derived MBean had only to customize an attribute validator method in its
MBean implementation file to make it take effect. As of version 9.0, the derived MBean
must also explicitly declare the attribute validator in its MDF file to make it take effect.
Otherwise, the customized method code is ignored.

Differences In Attribute Validators

3-38 Developing Security Providers for Oracle WebLogic Server

Consider the following example of the base class of all identity assert MBean
implementations,
weblogic.management.security.authentication.IdentityAsserterImpl
.

IdentityAsserterImpl extends the authentication provider MBean implementation and
gives the authenticator's MBean implementation access to its configuration attributes.

In 8.1, you could do the following:

1. Write an Identity Asserter provider called IdentityAsserter1. In its MDF file,
indicate that it extends
weblogic.management.security.authentication.IdentityAsserter.

2. Use the WebLogic MBeanMaker to generate the MBean type. The implementation
file created by the MBeanMaker, typically named
IdentityAsserter1Impl.java, extends
weblogic.management.security.authentication.IdentityAsserterI
mpl.

Therefore, the MBean inherits the activeTypes attribute, which has an attribute
validator method. The validateActiveTypes(String[] activeTypes)
method ensures that activeTypes includes only supported types).

3. Modify the implementation file and specify a different implementation for the
validateActiveTypes method. For example, it could further restrict the active
types or loosen the rules.

4. In 8.1, IdentityAsserter1's validateActiveTypes implementation is used.

As of version 9.0, the base IdentityAsserter's validateActiveTypes
implementation is used instead. That is, IdentityAsserter1's
validateActiveTypes implementation is silently ignored.

To work around this difference in version 9.0 and later, redeclare the attribute validator
in IdentityAsserter1's MDF file in an MBeanOperation subelement.

3.8.1 Differences In Attribute Validators for Custom Validators
The difference in inheritance rules for security provider attribute validators also
applies to custom validators. You could have a provider declare an attribute with a
custom validator. Then you could derive another provider from that one and write
another implementation of the validator. In 8.1, the derived provider's validator would
be used. As of version 9.0, the base provider's validator is used instead, and the
derived one is silently ignored.

4

Authentication Providers 4-1

4Authentication Providers

This chapter describes Authentication provider concepts and functionality, and
provides step-by-step instructions for developing a custom Authentication provider.

Authentication is the mechanism by which callers prove that they are acting on behalf
of specific users or systems. Authentication answers the question, "Who are you?"
using credentials such as username/password combinations.

In WebLogic Server, Authentication providers are used to prove the identity of users
or system processes. Authentication providers also remember, transport, and make
that identity information available to various components of a system (via subjects)
when needed. During the authentication process, a Principal Validation provider
provides additional security protections for the principals (users and groups)
contained within the subject by signing and verifying the authenticity of those
principals. (For more information, see Chapter 6, "Principal Validation Providers.")

The following sections describe Authentication provider concepts and functionality,
and provide step-by-step instructions for developing a custom Authentication
provider:

■ Section 4.1, "Authentication Concepts"

■ Section 4.2, "The Authentication Process"

■ Section 4.3, "Do You Need to Develop a Custom Authentication Provider?"

■ Section 4.4, "How to Develop a Custom Authentication Provider"

4.1 Authentication Concepts
Before delving into the specifics of developing custom Authentication providers, it is
important to understand the following concepts:

■ Section 4.1.1, "Users and Groups, Principals and Subjects"

■ Section 4.1.2, "LoginModules"

■ Section 4.1.3, "Java Authentication and Authorization Service (JAAS)"

Note: An Identity Assertion provider is a specific form of
Authentication provider that allows users or system processes to
assert their identity using tokens. For more information, see
Chapter 5, "Identity Assertion Providers."

Authentication Concepts

4-2 Developing Security Providers for Oracle WebLogic Server

4.1.1 Users and Groups, Principals and Subjects
A user is similar to an operating system user in that it represents a person. A group is
a category of users, classified by common traits such as job title. Categorizing users
into groups makes it easier to control the access permissions for large numbers of
users. For more information about users and groups, see "Users, Groups, and Security
Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Both users and groups can be used as principals by application servers like WebLogic
Server. A principal is an identity assigned to a user or group as a result of
authentication. The Java Authentication and Authorization Service (JAAS) requires
that subjects be used as containers for authentication information, including
principals. Each principal stored in the same subject represents a separate aspect of the
same user's identity, much like cards in a person's wallet. (For example, an ATM card
identifies someone to their bank, while a membership card identifies them to a
professional organization to which they belong.) For more information about JAAS,
see Section 4.1.3, "Java Authentication and Authorization Service (JAAS)."

Figure 4–1 illustrates the relationships among users, groups, principals, and subjects.

Figure 4–1 Relationships Among Users, Groups, Principals and Subjects

As part of a successful authentication, principals are signed and stored in a subject for
future use. A Principal Validation provider signs principals, and an Authentication
provider's LoginModule actually stores the principals in the subject. Later, when a
caller attempts to access a principal stored within a subject, a Principal Validation
provider verifies that the principal has not been altered since it was signed, and the
principal is returned to the caller (assuming all other security conditions are met).

Any principal that is going to represent a WebLogic Server user or group needs to
implement the WLSUser and WLSGroup interfaces, which are available in the
weblogic.security.spi package.

Note: Subjects replace WebLogic Server 6.x users.

Note: For more information about Principal Validation providers
and LoginModules, see Chapter 6, "Principal Validation Providers"
and Section 4.1.2, "LoginModules," respectively.

Authentication Concepts

Authentication Providers 4-3

4.1.1.1 Providing Initial Users and Groups
Authentication providers need a list of users and groups before they can be used to
perform authentication in a running WebLogic Server. Some Authentication providers
let the administrator configure an external database (for example, add the users and
groups to an LDAP server or a DBMS) and then configure the provider to use that
database. These providers don't have to worry about how the users and groups are
populated because the administrator does that first, using the external database's tools.

However, some Authentication providers create and manage their own list of users
and groups. This is the case for the ManageableSampleAuthenticator provider. These
providers need to worry about how their initial set of users and groups is populated.
One way to handle this is for the provider's "initialize" method to notice that the users
and groups don't exist yet, and then populate the list with an initial set of users and
groups.

Note that some providers have a separate list of users and groups for each security
realm, and therefore need to create an initial set of users and groups the first time the
list is used in a new realm. For example, the ManageableSampleAuthenticator
provider creates a separate properties file of users and groups for each realm. Its
initialize method gets the realm name, determines whether the properties file for
that realm exists and, if not, creates one, populating it with its initial set of users and
groups.

4.1.2 LoginModules
A LoginModule is a required component of an Authentication provider, and can be a
component of an Identity Assertion provider if you want to develop a separate
LoginModule for perimeter authentication.

LoginModules are the work-horses of authentication: all LoginModules are
responsible for authenticating users within the security realm and for populating a
subject with the necessary principals (users/groups). LoginModules that are not used
for perimeter authentication also verify the proof material submitted (for example, a
user's password).

If there are multiple Authentication providers configured in a security realm, each of
the Authentication providers' LoginModules will store principals within the same
subject. Therefore, if a principal that represents a WebLogic Server user (that is, an
implementation of the WLSUser interface) named "Joe" is added to the subject by one
Authentication provider's LoginModule, any other Authentication provider in the
security realm should be referring to the same person when they encounter "Joe". In
other words, the other Authentication providers' LoginModules should not attempt to
add another principal to the subject that represents a WebLogic Server user (for
example, named "Joseph") to refer to the same person. However, it is acceptable for a
another Authentication provider's LoginModule to add a principal of a type other than
WLSUser with the name "Joseph".

4.1.2.1 The LoginModule Interface
LoginModules can be written to handle a variety of authentication mechanisms,
including username/password combinations, smart cards, biometric devices, and so
on. You develop LoginModules by implementing the

Note: For more information about Identity Assertion providers and
perimeter authentication, see Chapter 5, "Identity Assertion
Providers."

Authentication Concepts

4-4 Developing Security Providers for Oracle WebLogic Server

javax.security.auth.spi.LoginModule interface, which is based on the Java
Authentication and Authorization Service (JAAS) and uses a subject as a container for
authentication information. The LoginModule interface enables you to plug in
different kinds of authentication technologies for use with a single application, and the
WebLogic Security Framework is designed to support multiple LoginModule
implementations for multipart authentication. You can also have dependencies across
LoginModule instances or share credentials across those instances. However, the
relationship between LoginModules and Authentication providers is one-to-one. In
other words, to have a LoginModule that handles retina scan authentication and a
LoginModule that interfaces to a hardware device like a smart card, you must develop
and configure two Authentication providers, each of which include an implementation
of the LoginModule interface. For more information, see Section 4.4.1.2, "Implement
the JAAS LoginModule Interface."

4.1.2.2 LoginModules and Multipart Authentication
The way you configure multiple Authentication providers (and thus, multiple
LoginModules) can affect the overall outcome of the authentication process, which is
especially important for multipart authentication. First, because LoginModules are
components of Authentication providers, they are called in the order in which the
Authentication providers are configured. Generally, you configure Authentication
providers using the WebLogic Server Administration Console. (For more information,
see Section 4.4.3.2, "Specifying the Order of Authentication Providers.") Second, the
way each LoginModule's control flag is set specifies how a failure during the
authentication process should be handled. Figure 4–2 illustrates a sample flow
involving three different LoginModules (that are part of three Authentication
providers), and illustrates what happens to the subject for different authentication
outcomes.

Figure 4–2 Sample LoginModule Flow

If the control flag for Custom Authentication Provider #1 had been set to Required, the
authentication failure in its User Authentication step would have caused the entire
authentication process to have failed. Also, if the user had not been authenticated by
the WebLogic Authentication provider (or custom Authentication provider #2), the
entire authentication process would have failed. If the authentication process had

Note: You can also obtain LoginModules from third-party security
vendors instead of developing your own.

Authentication Concepts

Authentication Providers 4-5

failed in any of these ways, all three LoginModules would have been rolled back and
the subject would not contain any principals.

4.1.3 Java Authentication and Authorization Service (JAAS)
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that
requires authentication, WebLogic Server uses the Java Authentication and
Authorization Service (JAAS) classes to reliably and securely authenticate to the client.
JAAS implements a Java version of the Pluggable Authentication Module (PAM)
framework, which permits applications to remain independent from underlying
authentication technologies. Therefore, the PAM framework allows the use of new or
updated authentication technologies without requiring modifications to your
application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and
developers of remote fat client applications need to be involved with JAAS directly.
Users of thin clients or developers of within-container fat client applications (for
example, those calling an Enterprise JavaBean (EJB) from a servlet) do not require the
direct use or knowledge of JAAS.

4.1.3.1 How JAAS Works With the WebLogic Security Framework
Generically, authentication using the JAAS classes and WebLogic Security Framework
is performed in the following manner:

1. A client-side application obtains authentication information from a user or system
process. The mechanism by which this occurs is different for each type of client.

2. The client-side application can optionally create a CallbackHandler containing
the authentication information.

a. The client-side application passes the CallbackHandler to a local
(client-side) LoginModule using the LoginContext class. (The local
LoginModule could be UsernamePasswordLoginModule, which is
provided as part of WebLogic Server.)

b. The local LoginModule passes the CallbackHandler containing the
authentication information to the appropriate WebLogic Server container (for
example, RMI, EJB, servlet, or IIOP).

Note: For more information about the LoginModule control flag
setting and the LoginModule interface, see the Java Authentication
and Authorization Service (JAAS) LoginModule Developer's Guide
(http://docs.oracle.com/javase/7/docs/technotes/guid
es/security/jaas/JAASLMDevGuide.html) and the
LoginModule interface
(http://docs.oracle.com/javase/7/docs/api/javax/secu
rity/auth/spi/LoginModule.html), respectively.

Authentication Concepts

4-6 Developing Security Providers for Oracle WebLogic Server

3. The WebLogic Server container calls into the WebLogic Security Framework. If
there is a client-side CallbackHandler containing authentication information,
this is passed into the WebLogic Security Framework.

4. For each of the configured Authentication providers, the WebLogic Security
Framework creates a CallbackHandler using the authentication information
that was passed in. (These are internal CallbackHandlers created on the
server-side by the WebLogic Security Framework, and are not related to the
client's CallbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the
Authentication provider (that is, the LoginModule that is specifically designed to
handle the authentication information).

The LoginModule attempts to authenticate the client using the authentication
information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a Principal Validation provider to
ensure their authenticity between programmatic server invocations. For more

Note: A CallbackHandler is a highly-flexible JAAS standard that
allows a variable number of arguments to be passed as complex
objects to a method. There are three types of CallbackHandlers:
NameCallback, PasswordCallback, and TextInputCallback, all of
which reside in the javax.security.auth.callback package.
The NameCallback and PasswordCallback return the username and
password, respectively. TextInputCallback can be used to access the
data users enter into any additional fields on a login form (that is,
fields other than those for obtaining the username and password).
When used, there should be one TextInputCallback per additional
form field, and the prompt string of each TextInputCallback must
match the field name in the form. WebLogic Server only uses the
TextInputCallback for form-based Web application login. For more
information about CallbackHandlers, see the CallbackHandler
interface
(http://docs.oracle.com/javase/7/docs/api/javax/secu
rity/auth/callback/CallbackHandler.html).

For more information about the LoginContext class, see the
LoginContext class
(http://docs.oracle.com/javase/7/docs/api/javax/secu
rity/auth/login/LoginContext.html).

For more information about the UsernamePasswordLoginModule, see
the WebLogic Server API Reference Javadoc for the
UsernamePasswordLoginModule class.

If you do not want to use a client-side LoginModule, you can specify
the username and password in other ways: for example, as part of the
initial JNDI lookup.

Note: For more information about LoginModules, see Section 4.1.2,
"LoginModules."

Authentication Concepts

Authentication Providers 4-7

information about Principal Validation providers, see Chapter 6, "Principal
Validation Providers."

b. The LoginModule associates the signed principals with a subject, which
represents the user or system process being authenticated. For more
information about subjects and principals, see Section 4.1.1, "Users and
Groups, Principals and Subjects."

4.1.3.2 Example: Standalone T3 Application
Figure 4–3 illustrates how the JAAS classes work with the WebLogic Security
Framework for a standalone, T3 application, and an explanation follows.

Figure 4–3 Authentication Using JAAS Classes and WebLogic Server

For this example, authentication using the JAAS classes and WebLogic Security
Framework is performed in the following manner:

1. The T3 application obtains authentication information (username, password, and
URL) from a user or system process.

2. The T3 application creates a CallbackHandler containing the authentication
information.

a. The T3 application passes the CallbackHandler to the
UsernamePasswordLoginModule using the LoginContext class.

Note: For authentication performed entirely on the server-side, the
process would begin at step 3, and the WebLogic Server container
would call the
weblogic.security.services.authentication.login
method prior to step 4.

The Authentication Process

4-8 Developing Security Providers for Oracle WebLogic Server

b. The UsernamePasswordLoginModule passes the CallbackHandler
containing the authentication information (that is, username, password, and
URL) to the WebLogic Server RMI container.

3. The WebLogic Server RMI container calls into the WebLogic Security Framework.
The client-side CallbackHandler containing authentication information is
passed into the WebLogic Security Framework.

4. For each of the configured Authentication providers, the WebLogic Security
Framework creates a CallbackHandler containing the username, password, and
URL that was passed in. (These are internal CallbackHandlers created on the
server-side by the WebLogic Security Framework, and are not related to the
client's CallbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the
Authentication provider (that is, the LoginModule that is specifically designed to
handle the authentication information).

The LoginModule attempts to authenticate the client using the authentication
information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a Principal Validation provider to
ensure their authenticity between programmatic server invocations.

b. The LoginModule associates the signed principals with a subject, which
represents the user or system being authenticated.

c. The WebLogic Security Framework returns the authentication status to the T3
client application, and the T3 client application retrieves the authenticated
subject from the WebLogic Security Framework.

4.2 The Authentication Process
Figure 4–4 shows a behind-the-scenes look of the authentication process for a fat-client
login. JAAS runs on the server to perform the login. Even in the case of a thin-client
login (that is, a browser client) JAAS is still run on the server.

Note: The
weblogic.security.auth.login.UsernamePasswordLoginMo
dule implements the standard JAAS
javax.security.auth.spi.LoginModule interface and uses
client-side APIs to authenticate a WebLogic client to a WebLogic
Server instance. It can be used for both T3 and IIOP clients. Callers of
this LoginModule must implement a CallbackHandler to pass the
username (NameCallback), password (PasswordCallback), and a URL
(URLCallback).

Do You Need to Develop a Custom Authentication Provider?

Authentication Providers 4-9

Figure 4–4 The Authentication Process

When a user attempts to log into a system using a username/password combination,
WebLogic Server establishes trust by validating that user's username and password,
and returns a subject that is populated with principals per JAAS requirements. As
Figure 4–4 also shows, this process requires the use of a LoginModule and a Principal
Validation provider, which are discussed in detail in Section 4.1.2, "LoginModules" and
Chapter 6, "Principal Validation Providers" respectively.

After successfully proving a caller's identity, an authentication context is established,
which allows an identified user or system to be authenticated to other entities.
Authentication contexts may also be delegated to an application component, allowing
that component to call another application component while impersonating the
original caller.

4.3 Do You Need to Develop a Custom Authentication Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authentication provider.

The WebLogic Authentication provider supports delegated username/password
authentication, and utilizes an embedded LDAP server to store user and group
information. The WebLogic Authentication provider allows you to edit, list, and
manage users and group membership.

WebLogic Server also provides the following additional Authentication providers that
you can use instead of or in conjunction with the WebLogic Authentication provider in
the default security realm:

■ A set of LDAP Authentication providers that access external LDAP stores
(including Open LDAP, iPlanet, Microsoft Active Directory, and Novell NDS).

Note: Only developers of custom Authentication providers will be
involved with this JAAS process directly. The client application could
either use JNDI initial context creation or JAAS to initiate the passing
of the username and password.

Note: In conjunction with the WebLogic Authorization provider, the
WebLogic Authentication provider replaces the functionality of the
File realm that was available in 6.x releases of WebLogic Server.

How to Develop a Custom Authentication Provider

4-10 Developing Security Providers for Oracle WebLogic Server

■ A set of Database Base Management System (DBMS) authentication providers that
access user, password, group, and group membership information stored in
databases for authentication

■ A Windows NT Authentication provider that uses Windows NT users and groups
for authentication purposes.

■ An LDAP X509 Identity Assertion provider.

By default, these additional Authentication providers are available but not configured
in the WebLogic default security realm.

If you want to perform additional authentication tasks, then you need to develop a
custom Authentication provider.

4.4 How to Develop a Custom Authentication Provider
If the WebLogic Authentication provider does not meet your needs, you can develop a
custom Authentication provider by following these steps:

1. Section 4.4.1, "Create Runtime Classes Using the Appropriate SSPIs"

2. Section 4.4.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

3. Section 4.4.3, "Configure the Custom Authentication Provider Using the
Administration Console"

4.4.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Authentication provider by following these steps:

■ Section 4.4.1.1, "Implement the AuthenticationProviderV2 SSPI"

■ Section 4.4.1.2, "Implement the JAAS LoginModule Interface"

For an example of how to create a runtime class for a custom Authentication provider,
see Section 4.4.1.4, "Example: Creating the Runtime Classes for the Sample
Authentication Provider."

4.4.1.1 Implement the AuthenticationProviderV2 SSPI

Note: If you want to perform perimeter authentication using a token
type that is not supported out of the box (for example, a new, custom,
or third party token type), you might need to develop a custom
Identity Assertion provider. For more information, see Chapter 5,
"Identity Assertion Providers."

Note: The AuthenticationProvider SSPI is deprecated in this
release of WebLogic Server. Use the AuthenticationProviderV2
SSPI instead.

How to Develop a Custom Authentication Provider

Authentication Providers 4-11

To implement the AuthenticationProviderV2 SSPI, provide implementations for
the methods described in Section 3.2.2, "Understand the Purpose of the "Provider"
SSPIs" and the following methods:

■ getLoginModuleConfiguration

public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the
Authentication provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a Java
Authentication and Authorization Service (JAAS) class that contains the classname
of the LoginModule; the LoginModule's control flag (which was passed in via the
Authentication provider's associated MBean); and a configuration options map for
the LoginModule (which allows other configuration information to be passed into
the LoginModule).

For more information about the AppConfigurationEntry class (located in the
javax.security.auth.login package) and the control flag options for
LoginModules, see the AppConfigurationEntry class
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/login/AppConfigurationEntry.html) and the Configuration class
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/login/Configuration.html). For more information about LoginModules,
see Section 4.1.2, "LoginModules." For more information about security providers
and MBeans, see Section 3.3.1, "Understand Why You Need an MBean Type."

■ getAssertionModuleConfiguration

public AppConfigurationEntry
getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about
an Identity Assertion provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that
contains the classname of the LoginModule; the LoginModule's control flag
(which was passed in via the Identity Assertion provider's associated MBean); and
a configuration options map for the LoginModule (which allows other
configuration information to be passed into the LoginModule).

How to Develop a Custom Authentication Provider

4-12 Developing Security Providers for Oracle WebLogic Server

■ getPrincipalValidator

public PrincipalValidator getPrincipalValidator()

The getPrincipalValidator method obtains a reference to the Principal
Validation provider's runtime class (that is, the PrincipalValidator SSPI
implementation). In most cases, the WebLogic Principal Validation provider can be
used (see Example 4–1 for an example of how to return the WebLogic Principal
Validation provider). For more information about Principal Validation providers,
see Chapter 6, "Principal Validation Providers."

■ getIdentityAsserter

public IdentityAsserterV2 getIdentityAsserter()

The AuthenticationProviderV2 getIdentityAsserter method obtains a
reference to the new Identity Assertion provider's runtime class (that is, the
IdentityAsserterV2 SSPI implementation).

In most cases, the return value for this method will be null (see Example 4–1 for
an example). For more information about Identity Assertion providers, see
Chapter 5, "Identity Assertion Providers."

For more information about the AuthenticationProviderV2 SSPI and the
methods described above, see the Java API Reference for Oracle WebLogic Server.

4.4.1.2 Implement the JAAS LoginModule Interface
To implement the JAAS javax.security.auth.spi.LoginModule interface,
provide implementations for the following methods:

■ initialize

public void initialize (Subject subject, CallbackHandler callbackHandler, Map
sharedState, Map options)

The initialize method initializes the LoginModule. It takes as arguments a
subject in which to store the resulting principals, a CallbackHandler that the

Notes: The implementation of the
getAssertionModuleConfiguration method can be to return
null, if you want the Identity Assertion provider to use the same
LoginModule as the Authentication provider.

The assertIdentity() method of an Identity Assertion provider is called
every time identity assertion occurs, but the LoginModules may not
be called if the Subject is cached. The
-Dweblogic.security.identityAssertionTTL flag can be
used to affect this behavior (for example, to modify the default TTL of
5 minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the Identity Assertion provider to ensure not
just that the token is valid, but also that the user is still valid (for
example, the user has not been deleted).

To use the EJB <run-as-principal> element with a custom
Authentication provider, use the
getAssertionModuleConfiguration() method. This method
performs the identity assertion that validates the principal specified in
the <run-as-principal>element.

How to Develop a Custom Authentication Provider

Authentication Providers 4-13

Authentication provider will use to call back to the container for authentication
information, a map of any shared state information, and a map of configuration
options (that is, any additional information you want to pass to the LoginModule).

A CallbackHandler is a highly-flexible JAAS standard that allows a variable
number of arguments to be passed as complex objects to a method. For more
information about CallbackHandlers, see the Java SE 6.0 API Specification for the
CallbackHandler interface
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/callback/CallbackHandler.html).

■ login

public boolean login() throws LoginException

The login method attempts to authenticate the user and create principals for the
user by calling back to the container for authentication information. If multiple
LoginModules are configured (as part of multiple Authentication providers), this
method is called for each LoginModule in the order that they are configured.
Information about whether the login was successful (that is, whether principals
were created) is stored for each LoginModule.

■ commit

public boolean commit() throws LoginException

The commit method attempts to add the principals created in the login method
to the subject. This method is also called for each configured LoginModule (as part
of the configured Authentication providers), and executed in order. Information
about whether the commit was successful is stored for each LoginModule.

■ abort

public boolean abort() throws LoginException

The abort method is called for each configured LoginModule (as part of the
configured Authentication providers) if any commits for the LoginModules failed
(in other words, the relevant REQUIRED, REQUISITE, SUFFICIENT and
OPTIONAL LoginModules did not succeed). The abort method will remove that
LoginModule's principals from the subject, effectively rolling back the actions
performed. For more information about the available control flag settings, see the
LoginModule interface
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/spi/LoginModule.html).

■ logout

public boolean logout() throws LoginException

The logout method attempts to log the user out of the system. It also resets the
subject so that its associated principals are no longer stored.

How to Develop a Custom Authentication Provider

4-14 Developing Security Providers for Oracle WebLogic Server

For more information about the JAAS LoginModule interface and the methods
described above, see the Java Authentication and Authorization Service (JAAS)
Developer's Guide
(http://docs.oracle.com/javase/7/docs/technotes/guides/security/
jaas/JAASLMDevGuide.html), and the LoginModule interface
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth/sp
i/LoginModule.html).

4.4.1.3 Throwing Custom Exceptions from LoginModules
You may want to throw a custom exception from a LoginModule you write. The
custom exception can then be caught by your application and appropriate action
taken. For example, if a PasswordChangeRequiredException is thrown from your
LoginModule, you can catch that exception within your application, and use it to
forward users to a page that allows them to change their password.

When you throw a custom exception from a LoginModule and want to catch it within
your application, you must ensure that:

1. The application catching the exception is running on the server. (Fat clients cannot
catch custom exceptions.)

2. Your servlet has access to the custom exception class at both compile time and
deploy time. You can do this using either of the following methods, depending on
your preference:

■ Section 4.4.1.3.1, "Method 1: Make Custom Exceptions Available via the
System and Compiler Classpath"

■ Section 4.4.1.3.2, "Method 2: Make Custom Exceptions Available via the
Application Classpath"

4.4.1.3.1 Method 1: Make Custom Exceptions Available via the System and Compiler Classpath
1. Write an exception class that extends LoginException.

2. Use the custom exception class in your classes that implement the LoginModule
and AuthenticationProvider interfaces.

3. Put the custom exception class in both the system and compiler classpath when
compiling the security provider's runtime class.

4. Section 4.4.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

4.4.1.3.2 Method 2: Make Custom Exceptions Available via the Application Classpath

1. Write an exception class that extends LoginException.

Note: The LoginModule.logout method is never called for the
WebLogic Authentication providers or custom Authentication
providers. This is simply because once the principals are created and
placed into a subject, the WebLogic Security Framework no longer
controls the lifecycle of the subject. Therefore, the developer-written,
user code that creates the JAAS LoginContext to login and obtain the
subject should also call the LoginContext.logout method. When the
user code runs in a Java client that uses JAAS directly, that code has
the option of calling the LoginContext.logout method, which clears
the subject. When the user code runs in a servlet, the servlet has the
ability to logout a user from a servlet session, which clears the subject.

How to Develop a Custom Authentication Provider

Authentication Providers 4-15

2. Use the custom exception class in your classes that implement the LoginModule
and AuthenticationProvider interfaces.

3. Put the custom exception's source in the classpath of the application's build, and
include it in the classpath of the application's JAR/WAR file.

4. Section 4.4.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

5. Add the custom exception class to the MJF (MBean JAR File) generated by the
WebLogic MBeanMaker.

6. Include the MJF when compiling your application.

4.4.1.4 Example: Creating the Runtime Classes for the Sample Authentication
Provider
Example 4–1 shows the SimpleSampleAuthenticationProviderImpl.java
class, which is one of two runtime classes for the sample Authentication provider. This
runtime class includes implementations for:

■ The three methods inherited from the SecurityProvider interface:
initialize, getDescription and shutdown (as described in Section 3.2.2,
"Understand the Purpose of the "Provider" SSPIs.")

■ The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,
getPrincipalValidator, and getIdentityAsserter methods (as described
in Section 4.4.1.1, "Implement the AuthenticationProviderV2 SSPI").

Example 4–1 SimpleSampleAuthenticationProviderImpl.java

package examples.security.providers.authentication.simple;
import java.util.HashMap;
import javax.security.auth.login.AppConfigurationEntry;
import javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag;
import weblogic.management.security.ProviderMBean;
import weblogic.security.provider.PrincipalValidatorImpl;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.IdentityAsserterV2;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;
public final class SimpleSampleAuthenticationProviderImpl implements AuthenticationProviderV2
{
 private String description;
 private SimpleSampleAuthenticatorDatabase database;
 private LoginModuleControlFlag controlFlag;
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleAuthenticationProviderImpl.initialize");
 SimpleSampleAuthenticatorMBean myMBean = (SimpleSampleAuthenticatorMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 database = new SimpleSampleAuthenticatorDatabase(myMBean);
 String flag = myMBean.getControlFlag();
 if (flag.equalsIgnoreCase("REQUIRED")) {
 controlFlag = LoginModuleControlFlag.REQUIRED;

Note: The bold face code in Example 4–1 highlights the class
declaration and the method signatures.

How to Develop a Custom Authentication Provider

4-16 Developing Security Providers for Oracle WebLogic Server

 } else if (flag.equalsIgnoreCase("OPTIONAL")) {
 controlFlag = LoginModuleControlFlag.OPTIONAL;
 } else if (flag.equalsIgnoreCase("REQUISITE")) {
 controlFlag = LoginModuleControlFlag.REQUISITE;
 } else if (flag.equalsIgnoreCase("SUFFICIENT")) {
 controlFlag = LoginModuleControlFlag.SUFFICIENT;
 } else {
 throw new IllegalArgumentException("invalid flag value" + flag);
 }
 }
 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SimpleSampleAuthenticationProviderImpl.shutdown");
 }
 private AppConfigurationEntry getConfiguration(HashMap options)
 {
 options.put("database", database);
 return new
 AppConfigurationEntry(
 "examples.security.providers.authentication.Simple.Simple.SampleLoginModuleImpl",
 controlFlag,
 options
);
 }
 public AppConfigurationEntry getLoginModuleConfiguration()
 {
 HashMap options = new HashMap();
 return getConfiguration(options);
 }
 public AppConfigurationEntry getAssertionModuleConfiguration()
 {
 HashMap options = new HashMap();
 options.put("IdentityAssertion","true");
 return getConfiguration(options);
 }
 public PrincipalValidator getPrincipalValidator()
 {
 return new PrincipalValidatorImpl();
 }
 public IdentityAsserterV2 getIdentityAsserter()
 {
 return null;
 }
}

Example 4–2 shows the SampleLoginModuleImpl.java class, which is one of two
runtime classes for the sample Authentication provider. This runtime class implements
the JAAS LoginModule interface (as described in Section 4.4.1.2, "Implement the JAAS
LoginModule Interface"), and therefore includes implementations for its initialize,
login, commit, abort, and logout methods.

Note: The bold face code in Example 4–2 highlights the class
declaration and the method signatures.

How to Develop a Custom Authentication Provider

Authentication Providers 4-17

Example 4–2 SimpleSampleLoginModuleImpl.java

package examples.security.providers.authentication.simple;
import java.io.IOException;
import java.util.Enumeration;
import java.util.Map;
import java.util.Vector;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.spi.LoginModule;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.WLSGroup;
import weblogic.security.spi.WLSUser;
import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;
final public class SimpleSampleLoginModuleImpl implements LoginModule
{
 private Subject subject;
 private CallbackHandler callbackHandler;
 private SimpleSampleAuthenticatorDatabase database;
 // Determine whether this is a login or assert identity
 private boolean isIdentityAssertion;
 // Authentication status
 private boolean loginSucceeded;
 private boolean principalsInSubject;
 private Vector principalsForSubject = new Vector();
 public void initialize(Subject subject, CallbackHandler callbackHandler, Map
 sharedState, Map options)
 {
 // only called (once!) after the constructor and before login
 System.out.println("SimpleSampleLoginModuleImpl.initialize");
 this.subject = subject;
 this.callbackHandler = callbackHandler;
 // Check for Identity Assertion option
 isIdentityAssertion =
 "true".equalsIgnoreCase((String)options.get("IdentityAssertion"));
 database = (SimpleSampleAuthenticatorDatabase)options.get("database");
 }
 public boolean login() throws LoginException
 {
 // only called (once!) after initialize
 System.out.println("SimpleSampleLoginModuleImpl.login");
 // loginSucceeded should be false
 // principalsInSubject should be false

 Callback[] callbacks = getCallbacks();
 String userName = getUserName(callbacks);
 if (userName.length() > 0) {
 if (!database.userExists(userName)) {
 throwFailedLoginException("Authentication Failed: User " + userName
 + " doesn't exist.");
 }
 if (!isIdentityAssertion) {
 String passwordWant = null;
 try {

How to Develop a Custom Authentication Provider

4-18 Developing Security Providers for Oracle WebLogic Server

 passwordWant = database.getUserPassword(userName);
 } catch (NotFoundException shouldNotHappen) {}
 String passwordHave = getPasswordHave(userName, callbacks);
 if (passwordWant == null || !passwordWant.equals(passwordHave)) {
 throwFailedLoginException(
 "Authentication Failed: User " + userName + " bad password."
);
 }
 }
 } else {
 // anonymous login - let it through?
 System.out.println("\tempty userName");
 }
 loginSucceeded = true;
 principalsForSubject.add(new WLSUserImpl(userName));
 addGroupsForSubject(userName);
 return loginSucceeded;
 }
 public boolean commit() throws LoginException
 {
 // only called (once!) after login
 // loginSucceeded should be true or false
 // principalsInSubject should be false
 // user should be null if !loginSucceeded, null or not-null otherwise
 // group should be null if user == null, null or not-null otherwise

 System.out.println("SimpleSampleLoginModule.commit");
 if (loginSucceeded) {
 subject.getPrincipals().addAll(principalsForSubject);
 principalsInSubject = true;
 return true;
 } else {
 return false;
 }
 }
 public boolean abort() throws LoginException
 {
 // The abort method is called to abort the authentication process. This is
 // phase 2 of authentication when phase 1 fails. It is called if the
 // LoginContext's overall authentication failed.
 // loginSucceeded should be true or false
 // user should be null if !loginSucceeded, otherwise null or not-null
 // group should be null if user == null, otherwise null or not-null
 // principalsInSubject should be false if user is null, otherwise true
 // or false

 System.out.println("SimpleSampleLoginModule.abort");
 if (principalsInSubject) {
 subject.getPrincipals().removeAll(principalsForSubject);
 principalsInSubject = false;
 }
 return true;
 }
 public boolean logout() throws LoginException
 {
 // should never be called
 System.out.println("SimpleSampleLoginModule.logout");
 return true;
 }
 private void throwLoginException(String msg) throws LoginException

How to Develop a Custom Authentication Provider

Authentication Providers 4-19

 {
 System.out.println("Throwing LoginException(" + msg + ")");
 throw new LoginException(msg);
 }
 private void throwFailedLoginException(String msg) throws FailedLoginException
 {
 System.out.println("Throwing FailedLoginException(" + msg + ")");
 throw new FailedLoginException(msg);
 }
 private Callback[] getCallbacks() throws LoginException
 {
 if (callbackHandler == null) {
 throwLoginException("No CallbackHandler Specified");
 }
 if (database == null) {
 throwLoginException("database not specified");
 }
 Callback[] callbacks;
 if (isIdentityAssertion) {
 callbacks = new Callback[1];
 } else {
 callbacks = new Callback[2];
 callbacks[1] = new PasswordCallback("password: ",false);
 }
 callbacks[0] = new NameCallback("username: ");
 try {
 callbackHandler.handle(callbacks);
 } catch (IOException e) {
 throw new LoginException(e.toString());
 } catch (UnsupportedCallbackException e) {
 throwLoginException(e.toString() + " " + e.getCallback().toString());
 }
 return callbacks;
 }
 private String getUserName(Callback[] callbacks) throws LoginException
 {
 String userName = ((NameCallback)callbacks[0]).getName();
 if (userName == null) {
 throwLoginException("Username not supplied.");
 }
 System.out.println("\tuserName\t= " + userName);
 return userName;
 }
 private void addGroupsForSubject(String userName)
 {
 for (Enumeration e = database.getUserGroups(userName);
 e.hasMoreElements();) {
 String groupName = (String)e.nextElement();
 System.out.println("\tgroupName\t= " + groupName);
 principalsForSubject.add(new WLSGroupImpl(groupName));
 }
 }
 private String getPasswordHave(String userName, Callback[] callbacks) throws
 LoginException
 {
 PasswordCallback passwordCallback = (PasswordCallback)callbacks[1];
 char[] password = passwordCallback.getPassword();
 passwordCallback.clearPassword();
 if (password == null || password.length < 1) {
 throwLoginException("Authentication Failed: User " + userName + ".

How to Develop a Custom Authentication Provider

4-20 Developing Security Providers for Oracle WebLogic Server

 Password not supplied");
 }
 String passwd = new String(password);
 System.out.println("\tpasswordHave\t= " + passwd);
 return passwd;
 }
}

4.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom Authentication provider by following these steps:

1. Section 4.4.2.1, "Create an MBean Definition File (MDF)"

2. Section 4.4.2.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 4.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

4. Section 4.4.2.4, "Install the MBean Type Into the WebLogic Server Environment"

4.4.2.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Authentication provider.

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

Note: The MDF for the sample Authentication provider is called
SimpleSampleAuthenticator.xml.

How to Develop a Custom Authentication Provider

Authentication Providers 4-21

4.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Authentication provider. Follow the instructions that are appropriate to your
situation:

■ Section 4.4.2.2.1, "No Optional SSPI MBeans and No Custom Operations"

■ Section 4.4.2.2.2, "Optional SSPI MBeans or Custom Operations"

4.4.2.2.1 No Optional SSPI MBeans and No Custom Operations If the MDF for your custom
Authentication provider does not implement any optional SSPI MBeans and does not
include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
 weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. Proceed to Section 4.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

4.4.2.2.2 Optional SSPI MBeans or Custom Operations If the MDF for your custom
Authentication provider does implement some optional SSPI MBeans or does include
custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Authentication providers).

How to Develop a Custom Authentication Provider

4-22 Developing Security Providers for Oracle WebLogic Server

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleAuthenticator, the MBean implementation file to be edited is
named SampleAuthenticatorImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement
each method. Be sure to also provide implementations for any methods that
the optional SSPI MBean inherits.

4. If you included any custom attributes/operations in your MDF, implement the
methods using the method stubs.

5. Save the file.

6. Proceed to Section 4.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Authentication providers).

How to Develop a Custom Authentication Provider

Authentication Providers 4-23

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named <MBeanName>Impl.java. For example, for the MDF named
SampleAuthenticator, the MBean implementation file to be edited is
named SampleAuthenticatorImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated MBean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in
the original MDF, implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

8. Proceed to Section 4.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

4.4.2.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Authentication providers).

How to Develop a Custom Authentication Provider

4-24 Developing Security Providers for Oracle WebLogic Server

text "MBean" appended to it. For example, the result of running the
SimpleSampleAuthenticator MDF through the WebLogic MBeanMaker will yield
an MBean interface file called SimpleSampleAuthenticatorMBean.java.

4.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Authentication provider into an
MBean JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Authentication provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

4.4.2.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
installation directory for WebLogic Server. This "deploys" your custom Authentication
provider—that is, it makes the custom Authentication provider manageable from the
WebLogic Server Administration Console.

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

How to Develop a Custom Authentication Provider

Authentication Providers 4-25

You can create instances of the MBean type by configuring your custom
Authentication provider (see Section 4.4.3, "Configure the Custom Authentication
Provider Using the Administration Console"), and then use those MBean instances
from a GUI, from other Java code, or from APIs. For example, you can use the
WebLogic Server Administration Console to get and set attributes and invoke
operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that
you back up these MBean instances.

4.4.3 Configure the Custom Authentication Provider Using the Administration Console
Configuring a custom Authentication provider means that you are adding the custom
Authentication provider to your security realm, where it can be accessed by
applications requiring authentication services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
Authentication providers:

■ Section 4.4.3.1, "Managing User Lockouts"

■ Section 4.4.3.2, "Specifying the Order of Authentication Providers"

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension). For example, if
-Dweblogic.alternateTypesDirectory = dirX,dirY,
WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

Note: The steps for configuring a custom Authentication provider
using the WebLogic Server Administration Console are described in
"Configuring WebLogic Security Providers" in Administering Security
for Oracle WebLogic Server.

How to Develop a Custom Authentication Provider

4-26 Developing Security Providers for Oracle WebLogic Server

4.4.3.1 Managing User Lockouts
As part of using a custom Authentication provider, you need to consider how you will
configure and manage user lockouts. You have two choices for doing this:

■ Section 4.4.3.1.1, "Rely on the Realm-Wide User Lockout Manager"

■ Section 4.4.3.1.2, "Implement Your Own User Lockout Manager"

4.4.3.1.1 Rely on the Realm-Wide User Lockout Manager The WebLogic Security
Framework provides a realm-wide User Lockout Manager that works directly with the
WebLogic Security Framework to manage user lockouts.

If you decide to rely on the realm-wide User Lockout Manager, then all you must do to
make it work with your custom Authentication provider is use the WebLogic Server
Administration Console to:

1. Ensure that User Lockout is enabled. (It should be enabled by default.)

2. Modify any parameters for User Lockout (as necessary).

4.4.3.1.2 Implement Your Own User Lockout Manager If you decide to implement your own
User Lockout Manager as part of your custom Authentication provider, then you
must:

1. Disable the realm-wide User Lockout Manager to prevent double lockouts from
occurring. (When you create a new security realm using the WebLogic Server
Administration Console, a User Lockout Manager is always created.) Instructions
for performing this task are provided in "Protecting User Accounts" in
Administering Security for Oracle WebLogic Server.

2. Because you cannot borrow anything from the WebLogic Security Framework's
realm-wide implementation, you must also perform the following tasks:

a. Provide the implementation for your User Lockout Manager. Note that there is
no security service provider interface (SSPI) provided for User Lockout
Managers.

b. Modify an MBean by which the User Lockout Manager can be managed.

c. If you plan to manage your User Lockout Manager from the console,
incorporate the User Lockout Manager into the Administration Console using
console extensions. For more information, see Extending the Administration
Console for Oracle WebLogic Server.

Note: Both the realm-wide User Lockout Manager and a WebLogic
Server 6.1 PasswordPolicyMBean (at the Realm Adapter level) may be
active. For more information, see the WebLogic Server API Reference
Javadoc.

Note: Changes to the User Lockout Manager do not take effect until
you reboot the server. Instructions for using the Administration
Console to perform these tasks are described in "Protecting User
Accounts" in Administering Security for Oracle WebLogic Server.

How to Develop a Custom Authentication Provider

Authentication Providers 4-27

4.4.3.2 Specifying the Order of Authentication Providers
As described in Section 4.1.2.2, "LoginModules and Multipart Authentication," the
order in which you configure multiple Authentication providers (and thus
LoginModules) affects the outcome of the authentication process.

You can configure Authentication providers in any order. However, if you need to
reorder your configured Authentication providers, follow the steps described in
"Changing the Order of Authentication Providers" in Administering Security for Oracle
WebLogic Server.

How to Develop a Custom Authentication Provider

4-28 Developing Security Providers for Oracle WebLogic Server

5

Identity Assertion Providers 5-1

5Identity Assertion Providers

This chapter describes Identity Assertion provider concepts and functionality, and
provides step-by-step instructions for developing a custom Identity Assertion
provider.

An Identity Assertion provider is a specific form of Authentication provider that
allows users or system processes to assert their identity using tokens (in other words,
perimeter authentication). Identity Assertion providers enable perimeter
authentication and support single sign-on. You can use an Identity Assertion provider
in place of an Authentication provider if you create a LoginModule for the Identity
Assertion provider, or in addition to an Authentication provider if you want to use the
Authentication provider's LoginModule.

If you want to allow the Identity Assertion provider to be configured separately from
the Authentication provider, write two providers. If your Identity Assertion provider
and Authentication provider cannot work independently, then write one provider.

The following sections describe Identity Assertion provider concepts and functionality,
and provide step-by-step instructions for developing a custom Identity Assertion
provider:

■ Section 5.1, "Identity Assertion Concepts"

■ Section 5.2, "The Identity Assertion Process"

■ Section 5.3, "Do You Need to Develop a Custom Identity Assertion Provider?"

■ Section 5.4, "How to Develop a Custom Identity Assertion Provider"

5.1 Identity Assertion Concepts
Before you develop an Identity Assertion provider, you need to understand the
following concepts:

■ Section 5.1.1, "Identity Assertion Providers and LoginModules"

■ Section 5.1.2, "Identity Assertion and Tokens"

■ Section 5.1.3, "Passing Tokens for Perimeter Authentication"

■ Section 5.1.4, "Common Secure Interoperability Version 2 (CSIv2)"

5.1.1 Identity Assertion Providers and LoginModules
When used with a LoginModule, Identity Assertion providers support single sign-on.
For example, an Identity Assertion provider can generate a token from a digital
certificate, and that token can be passed around the system so that users are not asked
to sign on more than once.

Identity Assertion Concepts

5-2 Developing Security Providers for Oracle WebLogic Server

The LoginModule that an Identity Assertion provider uses can be:

■ Part of a custom Authentication provider you develop. For more information, see
Chapter 4, "Authentication Providers."

■ Part of the WebLogic Authentication provider Oracle developed and packaged
with WebLogic Server. For more information, see Section 4.3, "Do You Need to
Develop a Custom Authentication Provider?."

■ Part of a third-party security vendor's Authentication provider.

Unlike in a simple authentication situation (described in Section 4.2, "The
Authentication Process"), the LoginModules that Identity Assertion providers use do
not verify proof material such as usernames and passwords; they simply verify that
the user exists.

The LoginModules in this configuration must:

■ Populate the Subject with required Principals, such as those of type WLSGroup.

■ Must trust that the user has submitted sufficient proof to login and not require a
password or some other proof material.

You must implement the
AuthenticationProviderV2.getAssertionModuleConfiguration method in
your custom Authentication provider, as described in Section 5.4.1.1, "Implement the
AuthenticationProviderV2 SSPI." This method is called for identity assertion, such as
when an X.509 certificate is being used, and to process the run-as tag in deployment
descriptors. Other single signon strategies use it as well.

5.1.2 Identity Assertion and Tokens
You develop Identity Assertion providers to support the specific types of tokens that
you will be using to assert the identities of users or system processes. You can develop
an Identity Assertion provider to support multiple token types, but you or an
administrator configure the Identity Assertion provider so that it validates only one
"active" token type. While you can have multiple Identity Assertion providers in a
security realm with the ability to validate the same token type, only one Identity
Assertion provider can actually perform this validation.

The following sections will help you work with new token types:

■ Section 5.1.2.1, "How to Create New Token Types"

■ Section 5.1.2.2, "How to Make New Token Types Available for Identity Assertion
Provider Configurations"

Note: For more information about LoginModules, see Section 4.1.2,
"LoginModules."

Note: "Supporting" token types means that the Identity Assertion
provider's runtime class (that is, the IdentityAsserter SSPI
implementation) can validate the token type in its assertIdentity
method. For more information, see Section 5.4.1.2, "Implement the
IdentityAsserterV2 SSPI."

Identity Assertion Concepts

Identity Assertion Providers 5-3

5.1.2.1 How to Create New Token Types
If you develop a custom Identity Assertion provider, you can also create new token
types. A token type is simply a piece of data represented as a string. The token types
you create and use are completely up to you. The token types currently defined for the
WebLogic Identity Assertion provider include: AuthenticatedUser, X.509,
CSI.PrincipalName, CSI.ITTAnonymous, CSI.X509CertChain,
CSI.DistinguishedName, and wsse:PasswordDigest.

To create new token types, you create a new Java file and declare any new token types
as variables of type String., as shown in Example 5–1. The
PerimeterIdentityAsserterTokenTypes.java file defines the names of the
token types Test 1, Test 2, and Test 3 as strings.

Example 5–1 PerimeterIdentityAsserterTokenTypes.java

package sample.security.providers.authentication.perimeterATN;
public class PerimeterIdentityAsserterTokenTypes
{
 public final static String TEST1_TYPE = 'Test 1";
 public final static String TEST2_TYPE = 'Test 2";
 public final static String TEST3_TYPE = 'Test 3";
}

5.1.2.2 How to Make New Token Types Available for Identity Assertion Provider
Configurations
When you or an administrator configure a custom Identity Assertion provider (see
Section 5.4.3, "Configure the Custom Identity Assertion Provider Using the
Administration Console"), the Supported Types field displays a list of the token types
that the Identity Assertion provider supports. You enter one of the supported types in
the Active Types field, as shown in Figure 5–1.

Figure 5–1 Configuring the Sample Identity Assertion Provider

The content for the Supported Types field is obtained from the SupportedTypes
attribute of the MBean Definition File (MDF), which you use to generate your custom
Identity Assertion provider's MBean type. An example from the sample Identity
Assertion provider is shown in Example 5–2. (For more information about MDFs and
MBean types, see Section 5.4.2, "Generate an MBean Type Using the WebLogic
MBeanMaker.")

Note: If you are defining only one new token type, you can also do it
right in the Identity Assertion provider's runtime class, as shown in
Example 5–4.

Identity Assertion Concepts

5-4 Developing Security Providers for Oracle WebLogic Server

Example 5–2 SampleIdentityAsserter MDF: SupportedTypes Attribute

<MBeanType>
...
 <MBeanAttribute
 Name = "SupportedTypes"
 Type = "java.lang.String[]"
 Writeable = "false"
 Default = "new String[] {"SamplePerimeterAtnToken"}"
 />
...
</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes
attribute of the MBean Definition File (MDF). You or an administrator can default the
ActiveTypes attribute in the MDF so that it does not have to be set manually with
the WebLogic Server Administration Console. An example from the sample Identity
Assertion provider is shown in Example 5–3.

Example 5–3 SampleIdentityAsserter MDF: ActiveTypes Attribute with Default

<MBeanAttribute
 Name= "ActiveTypes"
 Type= "java.lang.String[]"
 Default = "new String[] { "SamplePerimeterAtnToken" }"
/>

While defaulting the ActiveTypes attribute is convenient, you should only do this if
no other Identity Assertion provider will ever validate that token type. Otherwise, it
would be easy to configure an invalid security realm (where more than one Identity
Assertion provider attempts to validate the same token type). Best practice dictates
that all MDFs for Identity Assertion providers turn off the token type by default; then
an administrator can manually make the token type active by configuring the Identity
Assertion provider that validates it.

5.1.3 Passing Tokens for Perimeter Authentication
An Identity Assertion provider can pass tokens from Java clients to servlets for the
purpose of perimeter authentication. Tokens can be passed using HTTP headers,
cookies, SSL certificates, or other mechanisms. For example, a string that is base
64-encoded (which enables the sending of binary data) can be sent to a servlet through
an HTTP header. The value of this string can be a username, or some other string
representation of a user's identity. The Identity Assertion provider used for perimeter
authentication can then take that string and extract the username.

If the token is passed through HTTP headers or cookies, the token is equal to the
header or cookie name, and the resource container passes the token to the part of the
WebLogic Security Framework that handles authentication. The WebLogic Security
Framework then passes the token to the Identity Assertion provider, unchanged.

WebLogic Server is designed to extend the single sign-on concept all the way to the
perimeter through support for identity assertion. Identity assertion allows WebLogic

Note: If an Identity Assertion provider is not developed and
configured to validate and accept a token type, the authentication
process will fail. For more information about configuring an Identity
Assertion provider, see Section 5.4.3, "Configure the Custom Identity
Assertion Provider Using the Administration Console."

The Identity Assertion Process

Identity Assertion Providers 5-5

Server to use the authentication mechanism provided by perimeter authentication
schemes such as the Security Assertion Markup Language (SAML), the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO), or enhancements to protocols
such as Common Secure Interoperability (CSI) v2 to achieve this functionality.

5.1.4 Common Secure Interoperability Version 2 (CSIv2)
WebLogic Server provides support for an Enterprise JavaBean (EJB) interoperability
protocol based on Internet Inter-ORB (IIOP) (GIOP version 1.2) and the CORBA
Common Secure Interoperability version 2 (CSIv2) specification. CSIv2 support in
WebLogic Server:

■ Interoperates with the Java 2 Enterprise Edition (Java EE) version 1.4 reference
implementation.

■ Allows WebLogic Server IIOP clients to specify a username and password in the
same manner as T3 clients.

■ Supports Generic Security Services Application Programming Interface (GSSAPI)
initial context tokens. For this release, only usernames and passwords and GSSUP
(Generic Security Services Username Password) tokens are supported.

The external interface to the CSIv2 implementation is a JAAS LoginModule that
retrieves the username and password of the CORBA object. The JAAS LoginModule
can be used in a WebLogic Java client or in a WebLogic Server instance that acts as a
client to another Java EE application server. The JAAS LoginModule for the CSIv2
support is called UsernamePasswordLoginModule, and is located in the
weblogic.security.auth.login package.

CSIv2 works in the following manner:

1. When creating a Security Extensions to Interoperable Object Reference (IOR),
WebLogic Server adds a tagged component identifying the security mechanisms
that the CORBA object supports. This tagged component includes transport
information, client authentication information, and identity token/authorization
token information.

2. The client evaluates the security mechanisms in the IOR and selects the
mechanism that supports the options required by the server.

3. The client uses the SAS protocol to establish a security context with WebLogic
Server. The SAS protocol defines messages contained within the service context of
requests and replies. A context can be stateful or stateless.

For information about using CSIv2, see "Common Secure Interoperability Version 2" in
Understanding Security for Oracle WebLogic Server. For more information about JAAS
LoginModules, see Section 4.1.2, "LoginModules."

5.2 The Identity Assertion Process
In perimeter authentication, a system outside of WebLogic Server establishes trust via
tokens (as opposed to the type of authentication described in Section 4.2, "The
Authentication Process," where WebLogic Server establishes trust via usernames and

Note: The CSIv2 implementation in WebLogic Server passed Java 2
Enterprise Edition (Java EE) Compatibility Test Suite (CTS)
conformance testing.

Do You Need to Develop a Custom Identity Assertion Provider?

5-6 Developing Security Providers for Oracle WebLogic Server

passwords). Identity Assertion providers are used as part of perimeter authentication
process, which works as follows (see Figure 5–2):

1. A token from outside of WebLogic Server is passed to an Identity Assertion
provider that is responsible for validating tokens of that type and that is
configured as "active".

2. If the token is successfully validated, the Identity Assertion provider maps the
token to a WebLogic Server username, and sends that username back to WebLogic
Server, which then continues the authentication process as described in Section 4.2,
"The Authentication Process." Specifically, the username is sent via a Java
Authentication and Authorization Service (JAAS) CallbackHandler and passed
to each configured Authentication provider's LoginModule, so that the
LoginModule can populate the subject with the appropriate principals.

Figure 5–2 Perimeter Authentication

As Figure 5–2 also shows, perimeter authentication requires the same components as
the authentication process described in Section 4.2, "The Authentication Process," but
also adds an Identity Assertion provider.

5.3 Do You Need to Develop a Custom Identity Assertion Provider?
The WebLogic Identity Assertion providers support certificate authentication using
X509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common
Secure Interoperability version 2 (CSIv2) identity assertion.

The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the
LDAP object for the user associated with that certificate, ensures that the certificate in
the LDAP object matches the presented certificate, and then retrieves the name of the
user from the LDAP object for the purpose of authentication.

The Negotiate Identity Assertion provider is used for SSO with Microsoft clients that
support the SPNEGO protocol. The Negotiate Identity Assertion provider decodes
SPNEGO tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users. The Negotiate Identity Assertion provider utilizes
the Java Generic Security Service (GSS) Application Programming Interface (API) to
accept the GSS security context via Kerberos. The Negotiate Identity Assertion
provider is for Windows NT Integrated Login.

The SAML Identity Assertion providers handle SAML assertion tokens when
WebLogic Server acts as a SAML destination site. The SAML Identity Assertion
providers consume and validate SAML assertion tokens and determines if the
assertion is to be trusted (using either the proof material available in the SOAP
message, the client certificate, or some other configuration indicator).

Do You Need to Develop a Custom Identity Assertion Provider?

Identity Assertion Providers 5-7

The default WebLogic Identity Assertion provider validates the token type, then maps
X509 digital certificates and X501 distinguished names to WebLogic usernames. It also
specifies a list of trusted client principals to use for CSIv2 identity assertion. The
wildcard character (*) can be used to specify that all principals are trusted. If a client is
not listed as a trusted client principal, the CSIv2 identity assertion fails and the invoke
is rejected.

The WebLogic Identity Assertion providers support the following token types:

■ AU_TYPE, for a WebLogic AuthenticatedUser used as a token.

■ X509_TYPE, for an X509 client certificate used as a token.

■ CSI_PRINCIPAL_TYPE, for a CSIv2 principal name identity used as a token.

■ CSI_ANONYMOUS_TYPE, for a CSIv2 anonymous identity used as a token.

■ CSI_X509_CERTCHAIN_TYPE, for a CSIv2 X509 certificate chain identity used as
a token.

■ CSI_DISTINGUISHED_NAME_TYPE, for a CSIv2 distinguished name identity
used as a token.

■ AUTHORIZATION_NEGOTIATE, for a SPNEGO internal token used as a token.

■ SAML_ASSERTION_B64_TYPE, for a Base64 encoded SAML.assertion used as a
token.

■ SAML_ASSERTION_DOM_TYPE, for a SAML DOM element used as a token.

■ SAML_ASSERTION_TYPE, for a SAML string XML form used as a token.

■ SAML2_ASSERTION_DOM_TYPE, for a SAML2 DOM element used as a token.

■ SAML2_ASSERTION_TYPE, for a SAML2 string XML form used as a token.

■ SAML_SSO_CREDENTIAL_TYPE, for a SAML string consisting of the TARGET
parameter concatenated with the assertion itself and used as a token.

■ WSSE_PASSWORD_DIGEST_TYPE, for a username token with a password type of
password digest used as a token.

■ WWW_AUTHENTICATE_NEGOTIATE, for a SPNEGO internal token used as a token.

If you want to perform additional identity assertion tasks or create new token types,
then you need to develop a custom Identity Assertion provider.

Note: To use the WebLogic Identity Assertion provider for X.501 and
X.509 certificates, you have the option of using the default user name
mapper that is supplied with the WebLogic Server product
(weblogic.security.providers.authentication.DefaultU
serNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameM
apper interface.

This interface maps a X.509 certificate to a WebLogic Server user name
according to whatever scheme is appropriate for your needs. You can
also use this interface to map from an X.501 distinguished name to a
user name. You specify your implementation of this interface when
you use the Administration Console to configure an Identity Assertion
provider.

How to Develop a Custom Identity Assertion Provider

5-8 Developing Security Providers for Oracle WebLogic Server

5.4 How to Develop a Custom Identity Assertion Provider
If the WebLogic Identity Assertion provider does not meet your needs, you can
develop a custom Identity Assertion provider by following these steps:

1. Section 5.4.1, "Create Runtime Classes Using the Appropriate SSPIs"

2. Section 5.4.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

3. Section 5.4.3, "Configure the Custom Identity Assertion Provider Using the
Administration Console"

4. Consider whether you need to implement Challenge Identity Assertion, as
described in Section 5.4.4, "Challenge Identity Assertion."

5.4.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Identity Assertion provider by following these
steps:

■ Section 5.4.1.1, "Implement the AuthenticationProviderV2 SSPI"

■ Section 5.4.1.2, "Implement the IdentityAsserterV2 SSPI"

For an example of how to create a runtime class for a custom Identity Assertion
provider, see Section 5.4.1.3, "Example: Creating the Runtime Class for the Sample
Identity Assertion Provider."

5.4.1.1 Implement the AuthenticationProviderV2 SSPI

To implement the AuthenticationProviderV2 SSPI, provide implementations for
the methods described in Section 3.2.2, "Understand the Purpose of the "Provider"
SSPIs" and the following methods:

■ getLoginModuleConfiguration

public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the
Authentication provider's associated LoginModule, which is returned as an

Note: If you want to create a separate LoginModule for your custom
Identity Assertion provider (that is, not use the LoginModule from
your Authentication provider), you also need to implement the JAAS
LoginModule interface, as described in Section 4.4.1.2, "Implement
the JAAS LoginModule Interface."

Note: The AuthenticationProvider SSPI is deprecated in this
release of WebLogic Server. Use the AuthenticationProviderV2
SSPI instead.

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-9

AppConfigurationEntry. The AppConfigurationEntry is a Java
Authentication and Authorization Service (JAAS) class that contains the classname
of the LoginModule; the LoginModule's control flag (which was passed in via the
Authentication provider's associated MBean); and a configuration options map for
the LoginModule (which allows other configuration information to be passed into
the LoginModule).

For more information about the AppConfigurationEntry class (located in the
javax.security.auth.login package) and the control flag options for
LoginModules, see the AppConfigurationEntry class
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/login/AppConfigurationEntry.html) and the Configuration class
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/login/Configuration.html). For more information about LoginModules,
see Section 4.1.2, "LoginModules." For more information about security providers
and MBeans, see Section 3.3.1, "Understand Why You Need an MBean Type."

■ getAssertionModuleConfiguration

public AppConfigurationEntry
getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about
an Identity Assertion provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that
contains the classname of the LoginModule; the LoginModule's control flag
(which was passed in via the Identity Assertion provider's associated MBean); and
a configuration options map for the LoginModule (which allows other
configuration information to be passed into the LoginModule).

The LoginModules in this configuration must populate the Subject with required
Principals, such as those of type WLSGroup, and must trust that the user has
submitted sufficient proof to login and not require a password or some other proof
material.

■ getPrincipalValidator

public PrincipalValidator getPrincipalValidator()

The getPrincipalValidator method obtains a reference to the Principal
Validation provider's runtime class (that is, the PrincipalValidator SSPI
implementation). For more information, see Chapter 6, "Principal Validation
Providers."

■ getIdentityAsserter

public IdentityAsserterV2 getIdentityAsserter()

Note: The assertIdentity() method of an Identity Assertion
provider is called every time identity assertion occurs, but the
LoginModules may not be called if the Subject is cached. The
-Dweblogic.security.identityAssertionTTL flag can be
used to affect this behavior (for example, to modify the default TTL of
5 minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the Identity Assertion provider to ensure not
just that the token is valid, but also that the user is still valid (for
example, the user has not been deleted).

How to Develop a Custom Identity Assertion Provider

5-10 Developing Security Providers for Oracle WebLogic Server

The getIdentityAsserter method obtains a reference to the Identity Assertion
provider's runtime class (that is, the IdentityAsserterV2 SSPI
implementation). For more information, see Section 5.4.1.2, "Implement the
IdentityAsserterV2 SSPI."

For more information about the AuthenticationProvider SSPI and the methods
described above, see the Java API Reference for Oracle WebLogic Server.

5.4.1.2 Implement the IdentityAsserterV2 SSPI

To implement the IdentityAsserterV2 SSPI, provide implementations for the
following method:

■ assertIdentity

public CallbackHandler assertIdentity(String type, Object token, ContextHandler
handler) throws IdentityAssertionException;

The assertIdentity method asserts an identity based on the token identity
information that is supplied. In other words, the purpose of this method is to
validate any tokens that are not currently trusted against trusted client principals.
The type parameter represents the token type to be used for the identity
assertion. Note that identity assertion types are case insensitive. The token
parameter contains the actual identity information. The handler parameter is a
ContextHandler object that can optionally be used to obtain additional
information that may be used in asserting the identity. The CallbackHandler
returned from the assertIdentity method is passed to all configured
Authentication providers' LoginModules to perform principal mapping, and
should contain the asserted username. If the CallbackHandler is null, this
signifies that the anonymous user should be used.

A CallbackHandler is a highly-flexible JAAS standard that allows a variable
number of arguments to be passed as complex objects to a method. For more
information about CallbackHandlers, see the CallbackHandler interface
(http://docs.oracle.com/javase/7/docs/api/javax/security/auth
/callback/CallbackHandler.html).

Note: When the LoginModule used for the Identity Assertion
provider is the same as that used for an existing Authentication
provider, implementations for the methods in the
AuthenticationProviderV2 SSPI (excluding the
getIdentityAsserter method) for Identity Assertion providers
can just return null. An example of this is shown in Example 5–4.

Note: The IdentityAsserterV2 SSPI includes additional token
types and a handler parameter to the assertIdentity method
that can optionally be used to obtain additional information when
asserting the identity. Although the IdentityAsserter SSPI is still
supported, you should consider using the IdentityAsserterV2
SSPI instead.

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-11

For more information about the IdentityAsserterV2 SSPI and the method
described above, see the Java API Reference for Oracle WebLogic Server.

5.4.1.3 Example: Creating the Runtime Class for the Sample Identity Assertion
Provider
Example 5–4 shows the SampleIdentityAsserterProviderImpl.java class,
which is the runtime class for the sample Identity Assertion provider. This runtime
class includes implementations for:

■ The three methods inherited from the SecurityProvider interface:
initialize, getDescription, and shutdown (as described in Section 3.2.2,
"Understand the Purpose of the "Provider" SSPIs.")

■ The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,
getPrincipalValidator, and getIdentityAsserter methods (as described
in Section 5.4.1.1, "Implement the AuthenticationProviderV2 SSPI."

■ The method in the IdentityAsserterV2 SSPI: the assertIdentity method
(described in Section 5.4.1.2, "Implement the IdentityAsserterV2 SSPI").

Example 5–4 SampleIdentityAsserterProviderImpl.java

package examples.security.providers.identityassertion.simple;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.AppConfigurationEntry;
import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.IdentityAsserterV2;
import weblogic.security.spi.IdentityAssertionException;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;
public final class SimpleSampleIdentityAsserterProviderImpl implements AuthenticationProviderV2,
IdentityAsserterV2
{
 final static private String TOKEN_TYPE = "SamplePerimeterAtnToken";
 final static private String TOKEN_PREFIX = "username=";
 private String description;
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleIdentityAsserterProviderImpl.initialize");

Notes: The assertIdentity() method of an Identity Assertion
provider is called every time identity assertion occurs, but the
LoginModules may not be called if the Subject is cached. The
-Dweblogic.security.identityAssertionTTL flag can be
used to affect this behavior (for example, to modify the default TTL of
5 minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the Identity Assertion provider to ensure not
just that the token is valid, but also that the user is still valid (for
example, the user has not been deleted).

Note: The bold face code in Example 5–4 highlights the class
declaration and the method signatures.

How to Develop a Custom Identity Assertion Provider

5-12 Developing Security Providers for Oracle WebLogic Server

 SimpleSampleIdentityAsserterMBean myMBean = (SimpleSampleIdentityAsserterMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 }
 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SimpleSampleIdentityAsserterProviderImpl.shutdown");
 }
 public IdentityAsserterV2 getIdentityAsserter()
 {
 return this;
 }
 public CallbackHandler assertIdentity(String type, Object token, ContextHandler context) throws
 IdentityAssertionException
 {
 System.out.println("SimpleSampleIdentityAsserterProviderImpl.assertIdentity");
 System.out.println("\tType\t\t= " + type);
 System.out.println("\tToken\t\t= " + token);
 if (!(TOKEN_TYPE.equals(type))) {
 String error = "SimpleSampleIdentityAsserter received unknown token type \""
 + type + "\"." + " Expected " + TOKEN_TYPE;
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 if (!(token instanceof byte[])) {
 String error = "SimpleSampleIdentityAsserter received unknown token class \""
 + token.getClass() + "\"." + " Expected a byte[].";
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 byte[] tokenBytes = (byte[])token;
 if (tokenBytes == null || tokenBytes.length < 1) {
 String error = "SimpleSampleIdentityAsserter received empty token byte array";
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 String tokenStr = new String(tokenBytes);
 if (!(tokenStr.startsWith(TOKEN_PREFIX))) {
 String error = "SimpleSampleIdentityAsserter received unknown token string \""
 + type + "\"." + " Expected " + TOKEN_PREFIX + "username";
 System.out.println("\tError: " + error);
 throw new IdentityAssertionException(error);
 }
 String userName = tokenStr.substring(TOKEN_PREFIX.length());
 System.out.println("\tuserName\t= " + userName);
 return new SimpleSampleCallbackHandlerImpl(userName);
 }
 public AppConfigurationEntry getLoginModuleConfiguration()
 {
 return null;
 }
 public AppConfigurationEntry getAssertionModuleConfiguration()
 {
 return null;
 }
 public PrincipalValidator getPrincipalValidator()
 {

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-13

 return null;
 }
}

Example 5–5 shows the sample CallbackHandler implementation that is used along
with the SampleIdentityAsserterProviderImpl.java runtime class. This
CallbackHandler implementation is used to send the username back to an
Authentication provider's LoginModule.

Example 5–5 SampleCallbackHandlerImpl.java

package examples.security.providers.identityassertion.simple;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
/*package*/ class SimpleSimpleSampleCallbackHandler implements CallbackHandler
{
 private String userName;
 /*package*/ SimpleSampleCallbackHandlerImpl(String user)
 {
 userName = user;
 }
 public void handle(Callback[] callbacks) throws UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++) {
 Callback callback = callbacks[i];
 if (!(callback instanceof NameCallback)) {
 throw new UnsupportedCallbackException(callback, "Unrecognized
 Callback");
 }
 NameCallback nameCallback = (NameCallback)callback;
 nameCallback.setName(userName);
 }
 }
}

5.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom Identity Assertion provider by following these steps:

1. Section 5.4.2.1, "Create an MBean Definition File (MDF)"

2. Section 5.4.2.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 5.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

How to Develop a Custom Identity Assertion Provider

5-14 Developing Security Providers for Oracle WebLogic Server

4. Section 5.4.2.4, "Install the MBean Type Into the WebLogic Server Environment"

5.4.2.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Identity Assertion provider to a text file.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Identity Assertion
provider. For example, consider the following fragment to set the
Base64DecodingRequired attribute to false:

<MBeanAttribute
 Name = "Base64DecodingRequired"
 Type = "boolean"
 Writeable = "false"
 Default = "false"
 Description = "See MyIdentityAsserter-doc.xml."
/>

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

5.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Identity Assertion provider. Follow the instructions that are appropriate to
your situation:

■ Section 5.4.2.2.1, "No Optional SSPI MBeans and No Custom Operations"

■ Section 5.4.2.2.2, "Optional SSPI MBeans or Custom Operations"

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

Note: The MDF for the sample Identity Assertion provider is called
SampleIdentityAsserter.xml.

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-15

5.4.2.2.1 No Optional SSPI MBeans and No Custom Operations If the MDF for your custom
Identity Assertion provider does not implement any optional SSPI MBeans and does
not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. Proceed to Section 5.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

5.4.2.2.2 Optional SSPI MBeans or Custom Operations If the MDF for your custom Identity
Assertion provider does implement some optional SSPI MBeans or does include
custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Identity Assertion providers).

How to Develop a Custom Identity Assertion Provider

5-16 Developing Security Providers for Oracle WebLogic Server

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is
named SampleIdentityAsserterImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement
each method. Be sure to also provide implementations for any methods that
the optional SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods
using the method stubs.

5. Save the file.

6. Proceed to Section 5.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Identity Assertion providers).

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Identity Assertion providers).

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-17

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is
named SampleIdentityAsserterImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated MBean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in
the original MDF, implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

8. Proceed to Section 5.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

5.4.2.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the
SampleIdentityAsserter MDF through the WebLogic MBeanMaker will yield an
MBean interface file called SampleIdentityAsserterMBean.java.

5.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Identity Assertion provider into an
MBean JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Identity Assertion provider, follow these steps:

1. Create a new DOS shell.

How to Develop a Custom Identity Assertion Provider

5-18 Developing Security Providers for Oracle WebLogic Server

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

5.4.2.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
installation directory for WebLogic Server. This "deploys" your custom Identity
Assertion provider—that is, it makes the custom Identity Assertion provider
manageable from the WebLogic Server Administration Console.

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-19

You can create instances of the MBean type by configuring your custom Identity
Assertion provider (see Section 5.4.3, "Configure the Custom Identity Assertion
Provider Using the Administration Console"), and then use those MBean instances
from a GUI, from other Java code, or from APIs. For example, you can use the
WebLogic Server Administration Console to get and set attributes and invoke
operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that
you back up these MBean instances.

5.4.3 Configure the Custom Identity Assertion Provider Using the Administration
Console

Configuring a custom Identity Assertion provider means that you are adding the
custom Identity Assertion provider to your security realm, where it can be accessed by
applications requiring identity assertion services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

5.4.4 Challenge Identity Assertion
The Challenge Identity Asserter interface supports challenge response schemes in
which multiple challenges, responses messages, and state are required. The Challenge
Identity Asserter interface allows Identity Assertion providers to support
authentication protocols such as Microsoft's Windows NT Challenge/Response

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension). For example, if
-Dweblogic.alternateTypesDirectory = dirX,dirY,
WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

Note: The steps for configuring a custom Identity Assertion provider
using the WebLogic Server Administration Console are described
under "Configuring WebLogic Security Providers" in Administering
Security for Oracle WebLogic Server.

How to Develop a Custom Identity Assertion Provider

5-20 Developing Security Providers for Oracle WebLogic Server

(NTLM), Simple and Protected GSS-API Negotiation Mechanism (SPNEGO), and
other challenge/response authentication mechanisms.

5.4.4.1 Challenge/Response Limitations in the Java Servlet API 2.3 Environment
The WebLogic Security Framework allows you to provide a custom Authentication
and Identity Assertion provider. However, due to the nature of the Java Servlet API 2.3
specification, the interaction between the Authentication provider and the client or
other servers is architecturally limited during the authentication process. This restricts
authentication mechanisms to those that are compatible with the authentication
mechanisms the Servlet container offers: basic, form, and certificate.

Servlet authentication filters, which are described in Chapter 13, "Servlet
Authentication Filters" have fewer architecturally-dependence limitations; that is, they
are not dependent on the authentication mechanisms offered by the servlet container.
By allowing filters to be invoked prior to the container beginning the authentication
process, a security realm can implement a wider scope of authentication mechanisms.
For example, a servlet authentication filter could redirect the user to a SAML provider
site for authentication.

Servlet authentication filters provide a convenient way to implement a
challenge/response protocol in your environment. Filters allow your Challenge
Identity Assertion interface to loop through your challenge/response mechanism as
often as needed to complete the challenge.

5.4.4.2 Filters and The Role of the weblogic.security.services.Authentication Class
Servlet authentication filters allow you to implement a challenge/response protocol
without being limited to the authentication mechanisms compatible with the Servlet
container. However, because servlet authentication filters operate outside of the
authentication environment provided by the Security Framework, they cannot depend
on the Security Framework to determine provider context, and require an API to drive
the multiple-challenge Identity Assertion process.

The weblogic.security.services.Authentication class has been extended to
allow multiple challenge/response identity assertion from a servlet authentication
filter. The methods and interface provide a wrapper for the
ChallengeIdentityAsserterV2 and ProviderChallengeContext interfaces
so that you can invoke them from a servlet authentication filter.

There is no other documented way to perform a multiple challenge/response dialog
from a servlet authentication filter within the context of the Security Framework. Your
servlet authentication filter cannot directly invoke the
ChallengeIdentityAsserterV2 and ProviderChallengeContext interfaces.

Therefore, you need to implement the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and
AppChallengeContext interface to invoke them from a servlet authentication filter.

5.4.4.3 How to Develop a Challenge Identity Asserter
To develop a Challenge Identity Asserter:

■ Section 5.4.1.1, "Implement the AuthenticationProviderV2 SSPI"

■ Section 5.4.1.2, "Implement the IdentityAsserterV2 SSPI"

■ Section 5.4.4.4, "Implement the ChallengeIdentityAsserterV2 Interface"

■ Section 5.4.4.6, "Invoke the weblogic.security.services Challenge Identity Methods"

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-21

■ Section 5.4.4.7, "Invoke the weblogic.security.services AppChallengeContext
Methods"

5.4.4.4 Implement the ChallengeIdentityAsserterV2 Interface
The ChallengeIdentityAsserterV2 interface extends the
IdentityAsserterV2 SSPI. You must implement the
ChallengeIdentityAsserterV2 interface in addition to the
IdentityAsserterV2 SSPI.

Provide an implementation for all of the IdentityAsserterV2 methods, and the
following methods:

■ assertChallengeIdentity

ProviderChallengeContext assertChallengeIdentity(String tokenType, Object
token, ContextHandler handler)

Use the supplied client token to establish client identity, possibly with multiple
challenges. This method returns your implementation of the
ProviderChallengeContext interface. The ProviderChallengeContext
interface provides a means to query the state of the challenges.

■ continueChallengeIdentity

void continueChallengeIdentity(ProviderChallengeContext context, String
tokenType, Object token,
ContextHandler handler)

Use the supplied provider context and client token to continue establishing client
identity.

■ getChallengeToken

Object getChallengeToken(String type, ContextHandler handler)

This method returns the Identity Assertion provider's challenge token.

5.4.4.5 Implement the ProviderChallengeContext Interface
The ProviderChallengeContext interface provides a means to query the state of
the challenges. It allows the assertChallengeIdentity and
continueChallengeIdentity methods of the ChallengeIdentityAsserterV2
interface to return either the callback handler or a new challenge to which the client
must respond.

To implement the ProviderChallengeContext interface, provide implementations
for the following methods:

■ getCallbackHandler

CallbackHandler getCallbackHandler()

This method returns the callback handler for the challenge identity assertion. Call
this method only when the hasChallengeIdentityCompleted method
returns true.

■ getChallengeToken

Object getChallengeToken()

How to Develop a Custom Identity Assertion Provider

5-22 Developing Security Providers for Oracle WebLogic Server

This method returns the challenge token for the challenge identity assertion. Call
this method only when the hasChallengeIdentityCompleted method
returns false.

■ hasChallengeIdentityCompleted

boolean hasChallengeIdentityCompleted

This method returns whether the challenge identity assertion has completed. It
returns true if the challenge identity assertion has completed, false if not. If true,
the caller should use the getCallbackHandler method. If false, then the caller
should use the getChallengeToken method.

5.4.4.6 Invoke the weblogic.security.services Challenge Identity Methods
Have your servlet authentication filter invoke the following
weblogic.security.services.Authentication methods instead of calling the
ChallengeIdentityAsserterV2 SSPI directly:

■ assertChallengeIdentity

AppChallengeContext assertChallengeIdentity(String tokenType, Object token,
AppContext appContext)

Use the supplied client token to establish client identity, possibly with multiple
challenges. This method returns the context of the challenge identity assertion.
This result may contain either the authenticated subject or an additional challenge
to which the client must respond. The AppChallengeContext interface provides
a means to query the state of the challenges.

■ continueChallengeIdentity

void continueChallengeIdentity(AppChallengeContext context, String tokenType,
 Object token, AppContext appContext)

Use the supplied provider context and client token to continue establishing client
identity.

■ getChallengeToken

Object getChallengeToken

This method returns the initial challenge token for the challenge identity assertion.

5.4.4.7 Invoke the weblogic.security.services AppChallengeContext Methods
Have your servlet authentication filter invoke the following AppChallengeContext
methods instead of invoking the ProviderChallengeContext interface directly:

■ getAuthenticatedSubject

Subject getAuthenticatedSubject()

Returns the authenticated subject for the challenge identity assertion. Call this
method only when the hasChallengeIdentityCompleted method returns
true.

■ getChallengeToken

Object getChallengeToken()

How to Develop a Custom Identity Assertion Provider

Identity Assertion Providers 5-23

This method returns the challenge token for the challenge identity assertion. Call
this method only when the hasChallengeIdentityCompleted method
returns false.

■ hasChallengeIdentityCompleted

boolean hasChallengeIdentityCompleted()

This method returns whether the challenge identity assertion has completed. It
returns true if the challenge identity assertion has completed, false if not. If true,
the caller should use the getCallbackHandler method. If false, then the caller
should use the getChallengeToken method.

5.4.4.8 Implementing Challenge Identity Assertion from a Filter
In the following code flow, assume that the servlet authentication filter, which is
described in Chapter 13, "Servlet Authentication Filters" handles the HTTP level
interactions (Authorization and WWW-Authenticate) and is also responsible for
calling the weblogic.security.services.Authentication methods and
interfaces to drive the Challenge Identity Assertion process.

1. Browser sends a request

2. Filter sees requests and no Authorization header, so it calls the
weblogic.security.services.Authentication getChallengeToken
method to get an initial token and sends a 401 response with a
WWW-Authenticate negotiate header back

3. Browser sees 401 with WWW-Authenticate and responds with a new request and a
Authorization Negotiate token.

a. Filter sees this and calls the weblogic.security.services.Authentication
assertChallengeIdentity method. assertChallengeIdentity takes
the token as input, processes it according to whatever rules it needs to follow
for the assertion process it is following (for example, if NTLM, then do
whatever NTLM requires to process the token), and determine if that
succeeded or not. assertChallengeIdentity returns your
implementation of the AppChallengeContext interface.

b. Filter calls appChallengeContext hasChallengeCompleted method. Use
the AppChallengeContext hasChallengeIdentityCompleted method to
see if the challenge has completed. For example, it can determine if the
callback handler is not null, meaning that it contains a username, and return
true. In this use it returns false, so it must issue another challenge to the client.
The filter then calls AppChallengeContext getChallengeToken to get the
token to challenge back with.

c. Filter likely stores the AppChallengeContext somewhere such as a session
attribute.

d. Filter sends a 401 response with an WWW-Authenticate negotiate and the new
token.

4. Browser sees the new challenge and responds again with an Authorization header.

a. Filter sees this and calls the weblogic.security.services.Authentication
continueChallengeIdentity method.

b. Filter calls the AppChallengeContext hasChallengeCompleted method. If
it returns false another challenge is in order, so call the AppChallengeContext
getChallengeToken method to get the token to challenge back with, and so
forth. If it returned true, then the challenge has completed and the filter would

How to Develop a Custom Identity Assertion Provider

5-24 Developing Security Providers for Oracle WebLogic Server

then call AppChallengeContext getAuthenticatedSubject method and
perform a runAs(subject, request).

6

Principal Validation Providers 6-1

6Principal Validation Providers

This chapter describes Principal Validation provider concepts and functionality, and
provides step-by-step instructions for developing a custom Principal Validation
provider.

Authentication providers rely on Principal Validation providers to sign and verify the
authenticity of principals (users and groups) contained within a subject. Such
verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. Verification of the subject's principals takes place
during the WebLogic Server's demarshalling of RMI client requests for each
invocation. The authenticity of the subject's principals is also verified when making
authorization decisions.

The following sections describe Principal Validation provider concepts and
functionality, and provide step-by-step instructions for developing a custom Principal
Validation provider:

■ Section 6.1, "Principal Validation Concepts"

■ Section 6.2, "The Principal Validation Process"

■ Section 6.3, "Do You Need to Develop a Custom Principal Validation Provider?"

■ Section 6.4, "How to Develop a Custom Principal Validation Provider"

6.1 Principal Validation Concepts
Before you develop a Principal Validation provider, you need to understand the
following concepts:

■ Section 6.1.1, "Principal Validation and Principal Types"

■ Section 6.1.2, "How Principal Validation Providers Differ From Other Types of
Security Providers"

■ Section 6.1.3, "Security Exceptions Resulting from Invalid Principals"

6.1.1 Principal Validation and Principal Types
Like Identity Assertion providers support specific types of tokens, Principal Validation
providers support specific types of principals. For example, the WebLogic Principal
Validation provider (described in Section 6.3, "Do You Need to Develop a Custom
Principal Validation Provider?") signs and verifies the authenticity of WebLogic Server
principals.

The Principal Validation provider that is associated with the configured
Authentication provider (as described in Section 6.1.2, "How Principal Validation

The Principal Validation Process

6-2 Developing Security Providers for Oracle WebLogic Server

Providers Differ From Other Types of Security Providers") will sign and verify all the
principals stored in the subject that are of the type the Principal Validation provider is
designed to support.

6.1.2 How Principal Validation Providers Differ From Other Types of Security Providers
A Principal Validation provider is a special type of security provider that primarily
acts as a "helper" to an Authentication provider. The main function of a Principal
Validation provider is to prevent malicious individuals from tampering with the
principals stored in a subject.

The AuthenticationProvider SSPI (as described in Section 4.4.1.1, "Implement the
AuthenticationProviderV2 SSPI") includes a method called
getPrincipalValidator. In this method, you specify the Principal Validation
provider's runtime class to be used with the Authentication provider. The Principal
Validation provider's runtime class can be the one Oracle provides (called the
WebLogic Principal Validation provider) or one you develop (called a custom Principal
Validation provider). An example of using the WebLogic Principal Validation provider
in an Authentication provider's getPrincipalValidator method is shown in
Example 4–1, "Relationships Among Users, Groups, Principals and Subjects".

Because you generate MBean types for Authentication providers and configure
Authentication providers using the WebLogic Server Administration Console, you do
not have to perform these steps for a Principal Validation provider.

6.1.3 Security Exceptions Resulting from Invalid Principals
When the WebLogic Security Framework attempts an authentication (or authorization)
operation, it checks the subject's principals to see if they are valid. If a principal is not
valid, the WebLogic Security Framework throws a security exception with text
indicating that the subject is invalid. A subject may be invalid because:

■ A principal in the subject does not have a corresponding Principal Validation
provider configured (which means there is no way for the WebLogic Security
Framework to validate the subject).

■ A principal was signed in another WebLogic Server security domain (with a
different credential from this security domain) and the caller is trying to use it in
the current domain.

■ A principal with an invalid signature was created as part of an attempt to
compromise security.

■ A subject never had its principals signed.

6.2 The Principal Validation Process
As shown in Figure 6–1, a user attempts to log into a system using a
username/password combination. WebLogic Server establishes trust by calling the
configured Authentication provider's LoginModule, which validates the user's
username and password and returns a subject that is populated with principals per
Java Authentication and Authorization Service (JAAS) requirements.

Note: Because you can have multiple principals in a subject, each
stored by the LoginModule of a different Authentication provider, the
principals can have different Principal Validation providers.

Do You Need to Develop a Custom Principal Validation Provider?

Principal Validation Providers 6-3

Figure 6–1 The Principal Validation Process

WebLogic Server passes the subject to the specified Principal Validation provider,
which signs the principals and then returns them to the client application via
WebLogic Server. Whenever the principals stored within the subject are required for
other security operations, the same Principal Validation provider will verify that the
principals stored within the subject have not been modified since they were signed.

6.3 Do You Need to Develop a Custom Principal Validation Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Principal Validation provider. Much like an Identity Assertion provider supports a
specific type of token, a Principal Validation provider signs and verifies the
authenticity of a specific type of principal. The WebLogic Principal Validation provider
signs and verifies WebLogic Server principals. In other words, it signs and verifies
principals that represent WebLogic Server users or WebLogic Server groups.

The WebLogic Principal Validation provider includes implementations of the WLSUser
and WLSGroup interfaces, named WLSUserImpl and WLSGroupImpl. These are
located in the weblogic.security.principal package. It also includes an
implementation of the PrincipalValidator SSPI called
PrincipalValidatorImpl (located in the weblogic.security.provider
package). The sign() method in the PrincipalValidatorImpl class generates a

Note: You can use the WLSPrincipals class (located in the
weblogic.security package) to determine whether a principal
(user or group) has special meaning to WebLogic Server. (That is,
whether it is a predefined WebLogic Server user or WebLogic Server
group.) Furthermore, any principal that is going to represent a
WebLogic Server user or group needs to implement the WLSUser and
WLSGroup interfaces (available in the weblogic.security.spi
package).

WLSPrincipals is used only by PrincipalValidatorImpl, not
by the Security Framework. An Authentication provider can
implement its own principal validator, or it can use the
PrincipalValidatorImpl. If you configure an Authentication
provider with custom principal validators, then the WLSPrincipals
interface is not used.

An Authentication provider needs to implement the WLSPrincipals
interface if the provider is going to use PrincipalValidatorImpl.

How to Develop a Custom Principal Validation Provider

6-4 Developing Security Providers for Oracle WebLogic Server

random seed and computes a digest based on that random seed. (For more
information about the PrincipalValidator SSPI, see Section 6.4.1, "Implement the
PrincipalValidator SSPI.")

6.3.1 How to Use the WebLogic Principal Validation Provider
If you have simple user and group principals (that is, they only have a name), and you
want to use the WebLogic Principal Validation provider:

■ Use the weblogic.security.principal.WLSUserImpl and
weblogic.security.principal.WLSGroupImpl classes.

■ Use the weblogic.security.provider.PrincipalValidatorImpl class.

If you have user or group principals with extra data members (that is, in addition to a
name), and you want to use the WebLogic Principal Validation provider:

■ Write your own UserImpl and GroupImpl classes.

■ Extend the weblogic.security.principal.WLSAbstractPrincipal class.

■ Implement the weblogic.security.spi.WLSUser and
weblogic.security.spi.WLSGroup interfaces.

■ Implement the equals() method to include your extra data members. Your
implementation should call the super.equals() method when complete so the
WLSAbstractPrincipal can validate the remaining data.

■ Use the weblogic.security.provider.PrincipalValidatorImpl class.

If you have your own validation scheme and do not want to use the WebLogic
Principal Validation provider, or if you want to provide validation for principals other
than WebLogic Server principals, then you need to develop a custom Principal
Validation provider.

6.4 How to Develop a Custom Principal Validation Provider
To develop a custom Principal Validation provider:

■ Write your own UserImpl and GroupImpl classes by:

– Implementing the weblogic.security.spi.WLSUser and
weblogic.security.spi.WLSGroup interfaces.

– Implementing the java.io.Serializable interfaces.

■ Write your own PrincipalValidationImpl class by implementing the
weblogic.security.spi.PrincipalValidator SSPI. (See Section 6.4.1,
"Implement the PrincipalValidator SSPI.")

6.4.1 Implement the PrincipalValidator SSPI
To implement the PrincipalValidator SSPI, provide implementations for the
following methods:

■ validate

Note: By default, only the user or group name will be validated. If
you want to validate your extra data members as well, then
implement the getSignedData() method.

How to Develop a Custom Principal Validation Provider

Principal Validation Providers 6-5

public boolean validate(Principal principal) throws SecurityException;

The validate method takes a principal as an argument and attempts to validate
it. In other words, this method verifies that the principal was not altered since it
was signed.

■ sign

public boolean sign(Principal principal);

The sign method takes a principal as an argument and signs it to assure trust.
This allows the principal to later be verified using the validate method.

Your implementation of the sign method should be a secret algorithm that
malicious individuals cannot easily recreate. You can include that algorithm
within the sign method itself, have the sign method call out to a server for a
token it should use to sign the principal, or implement some other way of signing
the principal.

■ getPrincipalBaseClass

public Class getPrincipalBaseClass();

The getPrincipalBaseClass method returns the base class of principals that
this Principal Validation provider knows how to validate and sign.

For more information about the PrincipalValidator SSPI and the methods
described above, see the Java API Reference for Oracle WebLogic Server.

How to Develop a Custom Principal Validation Provider

6-6 Developing Security Providers for Oracle WebLogic Server

7

Authorization Providers 7-1

7Authorization Providers

This chapter describes Authorization provider concepts and functionality, and
provides step-by-step instructions for developing a custom Authorization provider.

Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, "What can you access?" In WebLogic Server, an
Authorization provider is used to limit the interactions between users and WebLogic
resources to ensure integrity, confidentiality, and availability.

The following sections describe Authorization provider concepts and functionality,
and provide step-by-step instructions for developing a custom Authorization
provider:

■ Section 7.1, "Authorization Concepts"

■ Section 7.2, "The Authorization Process"

■ Section 7.3, "Do You Need to Develop a Custom Authorization Provider?"

■ Section 7.4, "Is Your Custom Authorization Provider Thread Safe?"

■ Section 7.5, "How to Develop a Custom Authorization Provider"

7.1 Authorization Concepts
Before you develop an Authorization provider, you need to understand the following
concepts:

■ Section 7.1.1, "Access Decisions"

■ Section 7.1.2, "Using the Java Authorization Contract for Containers"

■ Section 3.6, "Security Providers and WebLogic Resources"

7.1.1 Access Decisions
Like LoginModules for Authentication providers, an Access Decision is the
component of an Authorization provider that actually answers the "is access allowed?"
question. Specifically, an Access Decision is asked whether a subject has permission to
perform a given operation on a WebLogic resource, with specific parameters in an
application. Given this information, the Access Decision responds with a result of
PERMIT, DENY, or ABSTAIN.

Note: For more information about Access Decisions, see
Section 7.5.1.3, "Implement the AccessDecision SSPI."

The Authorization Process

7-2 Developing Security Providers for Oracle WebLogic Server

7.1.2 Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) is part of Java EE. JACC
extends the permission-based security model to EJBs and Servlets. JACC is defined by
JSR-115 (http://www.jcp.org/en/jsr/detail?id=115).

JACC provides an alternate authorization mechanism for the EJB and Servlet
containers in a WebLogic Server domain. When JACC is configured, the WebLogic
Security framework access decisions, adjudication, and role mapping functions are not
used for EJB and Servlet authorization decisions.

WebLogic Server implements a JACC provider which, although fully compliant with
JSR-115, is not as optimized as the WebLogic Authentication provider. The Java JACC
classes are used for rendering access decisions. Because JSR-115 does not define how to
address role mapping, WebLogic JACC classes are used for role-to-principal mapping.
See
http://docs.oracle.com/javaee/6/api/javax/security/jacc/package-
frame.html for information on developing a JACC provider.

7.2 The Authorization Process
Figure 7–1 illustrates how Authorization providers (and the associated Adjudication
and Role Mapping providers) interact with the WebLogic Security Framework during
the authorization process, and an explanation follows.

Note: You cannot use the JACC framework in conjunction with the
WebLogic Security framework. The JACC classes used by WebLogic
Server do not include an implementation of a Policy object for
rendering decisions but instead rely on the java.security.Policy
(http://docs.oracle.com/javase/7/docs/api/java/secur
ity/Policy.html) object.

The Authorization Process

Authorization Providers 7-3

Figure 7–1 Authorization Providers and the Authorization Process

Generally, authorization is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to
perform a given operation.

2. The resource container that handles the type of WebLogic resource being
requested receives the request (for example, the EJB container receives the request
for an EJB resource).

3. The resource container constructs a ContextHandler object that may be used by
the configured Role Mapping providers and the configured Authorization
providers' Access Decisions to obtain information associated with the context of
the request.

The resource container calls the WebLogic Security Framework, passing in the
subject, the WebLogic resource, and optionally, the ContextHandler object (to
provide additional input for the decision).

Note: The resource container could be the container that handles any
one of the WebLogic Resources described in Section 3.6, "Security
Providers and WebLogic Resources."

Note: For more information about ContextHandlers, see
Section 3.6.9, "ContextHandlers and WebLogic Resources." For more
information about Access Decisions, see Section 7.1.1, "Access
Decisions." For more information about Role Mapping providers, see
Chapter 9, "Role Mapping Providers."

Do You Need to Develop a Custom Authorization Provider?

7-4 Developing Security Providers for Oracle WebLogic Server

4. The WebLogic Security Framework calls the configured Role Mapping providers.

5. The Role Mapping providers use the ContextHandler to request various pieces
of information about the request. They construct a set of Callback objects that
represent the type of information being requested. This set of Callback objects is
then passed as an array to the ContextHandler using the handle method.

The Role Mapping providers use the values contained in the Callback objects,
the subject, and the resource to compute a list of security roles to which the subject
making the request is entitled, and pass the list of applicable security roles back to
the WebLogic Security Framework.

6. The WebLogic Security Framework delegates the actual decision about whether
the subject is entitled to perform the requested action on the WebLogic resource to
the configured Authorization providers.

The Authorization providers' Access Decisions also use the ContextHandler to
request various pieces of information about the request. They too construct a set of
Callback objects that represent the type of information being requested. This set
of Callback objects is then passed as an array to the ContextHandler using the
handle method. (The process is the same as described for Role Mapping
providers in Step 5.)

7. The isAccessAllowed method of each configured Authorization provider's
Access Decision is called to determine if the subject is authorized to perform the
requested access, based on the ContextHandler, subject, WebLogic resource,
and security roles. Each isAccessAllowed method can return one of three
values:

■ PERMIT, indicates that the requested access is permitted.

■ DENY, indicates that the requested access is explicitly denied.

■ ABSTAIN, indicates that the Access Decision was unable to render an explicit
decision.

This process continues until all Access Decisions are used.

8. The WebLogic Security Framework delegates the job of reconciling any
discrepancies among the results rendered by the configured Authorization
providers' Access Decisions to the Adjudication provider. The Adjudication
provider determines the ultimate outcome of the authorization decision.

9. The Adjudication provider returns either a TRUE or FALSE verdict, which is
forwarded to the resource container through the WebLogic Security Framework.

■ If the decision is TRUE, the resource container dispatches the request to the
protected WebLogic resource.

■ If the decision is FALSE, the resource container throws a security exception
that indicates that the requestor was not authorized to perform the requested
access on the protected WebLogic resource.

7.3 Do You Need to Develop a Custom Authorization Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authorization provider. The WebLogic Authorization provider supplies the default

Note: For more information about the Adjudication provider, see
Chapter 8, "Adjudication Providers."

How to Develop a Custom Authorization Provider

Authorization Providers 7-5

enforcement of authorization for this version of WebLogic Server. The WebLogic
Authorization provider returns an access decision using a policy-based authorization
engine to determine if a particular user is allowed access to a protected WebLogic
resource. The WebLogic Authorization provider also supports the deployment and
undeployment of security policies within the system. If you want to use an
authorization mechanism that already exists within your organization, you could
create a custom Authorization provider to tie into that system.

7.3.1 Does Your Custom Authorization Provider Need to Support Application
Versioning?

All Authorization, Role Mapping, and Credential Mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for Authorization, Role
Mapping, or Credential Mapping and need to support versioned applications, you
must implement the Versionable Application SSPI, as described in Chapter 14,
"Versionable Application Providers."

7.4 Is Your Custom Authorization Provider Thread Safe?
For the best performance, and by default, Weblogic Server supports parallel
modification to security policy and roles during application and module deployment.
For this reason, deployable Authorization and Role Mapping providers configured in
the security realm should support parallel calls. The WebLogic deployable XACML
Authorization and Role Mapping providers meet this requirement.

However, custom deployable Authorization and Role Mapping providers may or may
not support parallel calls. If your custom deployable Authorization or Role Mapping
providers do not support parallel calls, you need to disable the parallel security policy
and role modification and instead enforce a synchronization mechanism that results in
each application and module being placed in a queue and deployed sequentially.

See Administering Security for Oracle WebLogic Server for information on how to turn on
this synchronization enforcement mechanism.

7.5 How to Develop a Custom Authorization Provider
If the WebLogic Authorization provider does not meet your needs, you can develop a
custom Authorization provider by following these steps:

1. Section 7.5.1, "Create Runtime Classes Using the Appropriate SSPIs," or, optionally,
implement the Section 7.5.4, "Bulk Authorization Providers"

2. Optionally, implement the Section 7.5.2, "Policy Consumer SSPI"

3. Optionally, implement the Section 7.5.3, "PolicyStoreMBean"

4. Section 7.5.5, "Generate an MBean Type Using the WebLogic MBeanMaker"

5. Section 7.5.6, "Configure the Custom Authorization Provider Using the
Administration Console"

Note: Enabling the synchronization mechanism affects every
deployable provider configured in the realm, including the predefined
WebLogic Server providers. Enabling the synchronization mechanism
may negatively impact the performance of these providers.

How to Develop a Custom Authorization Provider

7-6 Developing Security Providers for Oracle WebLogic Server

6. Section 7.5.7, "Provide a Mechanism for Security Policy Management"

7.5.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.4, "Determine Which "Provider" Interface You Will Implement"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Authorization provider by following these steps:

■ Section 7.5.1.1, "Implement the AuthorizationProvider SSPI" or Section 7.5.1.2,
"Implement the DeployableAuthorizationProviderV2 SSPI"

■ Section 7.5.1.3, "Implement the AccessDecision SSPI"

For an example of how to create a runtime class for a custom Authorization provider,
see Section 7.5.1.4, "Example: Creating the Runtime Class for the Sample Authorization
Provider."

7.5.1.1 Implement the AuthorizationProvider SSPI
To implement the AuthorizationProvider SSPI, provide implementations for the
methods described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"
and the following method:

■ getAccessDecision

public AccessDecision getAccessDecision();

The getAccessDecision method obtains the implementation of the
AccessDecision SSPI. For a single runtime class called
MyAuthorizationProviderImpl.java, the implementation of the
getAccessDecision method would be:

return this;

If there are two runtime classes, then the implementation of the
getAccessDecision method could be:

return new MyAccessDecisionImpl;

This is because the runtime class that implements the AuthorizationProvider
SSPI is used as a factory to obtain classes that implement the AccessDecision
SSPI.

For more information about the AuthorizationProvider SSPI and the
getAccessDecision method, see the Java API Reference for Oracle WebLogic Server.

Note: At least one Authorization provider in a security realm must
implement the DeployableAuthorizationProvider SSPI, or else
it will be impossible to deploy Web applications and EJBs.

How to Develop a Custom Authorization Provider

Authorization Providers 7-7

7.5.1.2 Implement the DeployableAuthorizationProviderV2 SSPI
To implement the DeployableAuthorizationProviderV2 SSPI, provide
implementations for the methods described in Section 3.2.2, "Understand the Purpose
of the "Provider" SSPIs," Section 7.5.1.1, "Implement the AuthorizationProvider SSPI,"
and the following methods:

■ deleteApplicationPolicies

public void deleteApplicationPolicies(ApplicationInfo application) throws
ResourceRemovalException

The deleteApplicationPolicies method deletes all policies for an
application. The deleteApplicationPolicies method is called only on the
Administration Server.

■ deployExcludedPolicy

public void deleteApplicationPolicies(DeployPolicyHandle handle, Resource
 resource) throws ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies
access. If a policy already exists, it is removed and replaced by this policy.

■ deployPolicy

public void deployPolicy(DeployPolicyHandle handle, Resource resource,
 String[] roleNames) throws ResourceCreationException

The deployPolicy method creates a security policy on behalf of a deployed Web
application or EJB, based on the WebLogic resource to which the security policy
should apply and the security role names that are in the security policy.

■ deployUncheckedPolicy

public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource
 resource) throws ResourceCreationException

The deployUncheckedPolicy method deploys a policy that always grants
access. If a policy already exists, it is removed and replaced by this policy.

■ endDeployPolicies

public void endDeployPolicies(DeployPolicyHandle handle) throws
 ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies
access. If a policy already exists, it is removed and replaced by this policy.

■ startDeployPolicies

public deployPolicyHandle startDeployPolicies(ApplicationInfo application)
 throws DeployHandleCreationException

The startDeployPolicies method marks the beginning of an application
policy deployment and is called on all servers within a WebLogic Server domain
where an application is targeted.

■ undeployAllPolicies

public void undeployAllPolicies(DeployPolicyHandle handle) throws
 ResourceRemovalException

The undeployAllPolicies method deletes a set of policy definitions on behalf
of an undeployed Web application or EJB.

How to Develop a Custom Authorization Provider

7-8 Developing Security Providers for Oracle WebLogic Server

For more information about the DeployableAuthorizationProviderV2 SSPI and
the deployPolicy and undeployPolicy methods, see the Java API Reference for
Oracle WebLogic Server.

7.5.1.2.1 The ApplicationInfo Interface The ApplicationInfo interface passes data about an
application deployment to a security provider. You can use this data to uniquely
identity the application.

The Security Framework implements the ApplicationInfo interface for your
convenience. You do not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2
interfaces use ApplicationInfo. For example, consider an implementation of the
DeployableAuthorizationProviderV2 methods. The Security Framework calls
the DeployableAuthorizationProviderV2 startDeployPolicies method
and passes in the ApplicationInfo interface for this application. The
ApplicationInfo data is determined based on the information supplied in the
Administration Console when an application is deployed.

The startDeployPolicies method returns DeployPolicyHandle, which you
can then use in the other DeployableAuthorizationProviderV2 methods.

You use the ApplicationInfo interface to get the application identifier, the
component name, and the component type for this application. Component type can
be APPLICATION, CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the
ApplicationInfo.ComponentType class.

The following example shows one way to accomplish this task:

public DeployPolicyHandle startDeployPolicies(ApplicationInfo appInfo)
 throws DeployHandleCreationException
 :
// Obtain the application information...
 String appId = appInfo.getApplicationIdentifier();
 ComponentType compType = appInfo.getComponentType();
 String compName = appInfo.getComponentName();

The Security Framework calls the DeployableAuthorizationProviderV2
deleteApplicationPolicies method and passes in the ApplicationInfo
interface for this application. The deleteApplicationPolicies method deletes all
policies for an application and is called (only on the Administration Server within a
WebLogic Server domain) at the time an application is deleted.

7.5.1.3 Implement the AccessDecision SSPI
When you implement the AccessDecision SSPI, you must provide implementations
for the following methods:

■ isAccessAllowed

public Result isAccessAllowed(Subject subject, Map roles,
Resource resource, ContextHandler handler, Direction direction) throws
InvalidPrincipalException

The isAccessAllowed method utilizes information contained within the subject
to determine if the requestor should be allowed to access a protected method. The
isAccessAllowed method may be called prior to or after a request, and returns
values of PERMIT, DENY, or ABSTAIN. If multiple Access Decisions are configured
and return conflicting values, an Adjudication provider will be needed to
determine a final result. For more information, see Chapter 8, "Adjudication
Providers."

How to Develop a Custom Authorization Provider

Authorization Providers 7-9

■ isProtectedResource

public boolean isProtectedResource(Subject subject, Resource resource) throws
InvalidPrincipalException

The isProtectedResource method is used to determine whether the specified
WebLogic resource is protected, without incurring the cost of an actual access
check. It is only a lightweight mechanism because it does not compute a set of
security roles that may be granted to the caller's subject.

For more information about the AccessDecision SSPI and the isAccessAllowed
and isProtectedResource methods, see the Java API Reference for Oracle WebLogic
Server.

7.5.1.3.1 Developing Custom Authorization Providers That Are Compatible With the Realm
Adapter Authentication Provider An Authentication provider is the security provider
responsible for populating a subject with users and groups, which are then extracted
from the subject by other types of security providers, including Authorization
providers. If the Authentication provider configured in your security realm is a Realm
Adapter Authentication provider, the user and group information will be stored in the
subject in a way that is slightly different from other Authentication providers.
Therefore, this user and group information must also be extracted in a slightly
different way.

Example 7–1 provides code that can be used by custom Authorization providers to
check whether a subject matches a user or group name when a Realm Adapter
Authentication provider was used to populate the subject. This code belongs in both
the isAccessAllowed and isProtectedResource methods.

Example 7–1 Sample Code to Check if a Subject Matches a User or Group Name

/**
 * Determines if the Subject matches a user/group name.
 *
 * @param principalWant A String containing the name of a principal in this role
 * (that is, the role definition).
 *
 * @param subject A Subject that contains the Principals that identify the user
 * who is trying to access the resource as well as the user's groups.
 *
 * @return A boolean. true if the current subject matches the name of the
 * principal in the role, false otherwise.
 */
private boolean subjectMatches(String principalWant, Subject subject)
{
 // first, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, principalWant)) {
 return true;
 }
 // second, see if it's a user name match
 if (principalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }
 // didn't match
 return false;
}

How to Develop a Custom Authorization Provider

7-10 Developing Security Providers for Oracle WebLogic Server

7.5.1.4 Example: Creating the Runtime Class for the Sample Authorization Provider
Example 7–2 shows the SampleAuthorizationProviderImpl.java class, which
is the runtime class for the sample Authorization provider. This runtime class includes
implementations for:

■ The three methods inherited from the SecurityProvider interface:
initialize, getDescription and shutdown (as described in Section 3.2.2,
"Understand the Purpose of the "Provider" SSPIs.")

■ The method inherited from the AuthorizationProvider SSPI: the
getAccessDecision method (as described in Section 7.5.1.1, "Implement the
AuthorizationProvider SSPI").

■ The seven methods in the DeployableAuthorizationProviderV2 SSPI: the
deleteApplicationPolicies, deployExcludedPolicy, deployPolicy,
deployUncheckedPolicy, endDeployPolicies, starteployPolicies,
and undeployAllPolicies methods (as described in Section 7.5.1.2,
"Implement the DeployableAuthorizationProviderV2 SSPI").

■ The two methods in the AccessDecision SSPI: the isAccessAllowed and
isProtectedResource methods (as described in Section 7.5.1.3, "Implement the
AccessDecision SSPI").

Example 7–2 SimpleSampleAuthorizationProviderImpl.java

package examples.security.providers.authorization.simple;
import java.security.Principal;
import java.util.Date;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AccessDecision;
import weblogic.security.spi.ApplicationInfo;
import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableAuthorizationProviderV2;
import weblogic.security.spi.DeployPolicyHandle;
import weblogic.security.spi.Direction;
import weblogic.security.spi.InvalidPrincipalException;
import weblogic.security.spi.Resource;
import weblogic.security.spi.Result;
import weblogic.security.spi.SecurityServices;
import weblogic.security.spi.VersionableApplicationProvider;
public final class SimpleSampleAuthorizationProviderImpl implements
DeployableAuthorizationProviderV2, AccessDecision, VersionableApplicationProvider
{
 private static String[] NO_ACCESS = new String[0];
 private static String[] ALL_ACCESS = new String[] {WLSPrincipals.getEveryoneGroupname()};
 private String description;
 private SimpleSampleAuthorizerDatabase database;
 public void initialize(ProviderMBean mbean, SecurityServices services)

Note: The bold face code in Example 7–2 highlights the class
declaration and the method signatures.

How to Develop a Custom Authorization Provider

Authorization Providers 7-11

 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.initialize");
 SimpleSampleAuthorizerMBean myMBean = (SimpleSampleAuthorizerMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 database = new SimpleSampleAuthorizerDatabase(myMBean);
 }
 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SampleAuthorizationProviderImpl.shutdown");
 }
 public AccessDecision getAccessDecision()
 {
 return this;
 }
 public Result isAccessAllowed(Subject subject, Map roles, Resource resource,
 ContextHandler handler, Direction direction)
 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.isAccessAllowed");
 System.out.println("\tsubject\t= " + subject);
 System.out.println("\troles\t= " + roles);
 System.out.println("\tresource\t= " + resource);
 System.out.println("\tdirection\t= " + direction);
 Set principals = subject.getPrincipals();
 for (Resource res = resource; res != null; res = res.getParentResource()) {
 if (database.policyExists(res)) {
 Result result = isAccessAllowed(res, subject, roles);
 System.out.println("\tallowed\t= " + result);
 return result;
 }
 }
 Result result = Result.ABSTAIN;
 System.out.println("\tallowed\t= " + result);
 return result;
 }
 public boolean isProtectedResource(Subject subject, Resource resource) throws
 InvalidPrincipalException
 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.
 isProtectedResource");
 System.out.println("\tsubject\t= " + subject);
 System.out.println("\tresource\t= " + resource);
 for (Resource res = resource; res != null; res = res.getParentResource()) {
 if (database.policyExists(res)) {
 System.out.println("\tprotected\t= true");
 return true;
 }
 }
 System.out.println("\tprotected\t= false");
 return false;
 }
public DeployPolicyHandle startDeployPolicies(ApplicationInfo application)
{
 String appId = application.getApplicationIdentifier();
 String compName = application.getComponentName();
 ComponentType compType = application.getComponentType();
 DeployPolicyHandle handle = new SampleDeployPolicyHandle(appId,compName,compType);

How to Develop a Custom Authorization Provider

7-12 Developing Security Providers for Oracle WebLogic Server

 database.removePoliciesForComponent(appId, compName, compType);
 return handle;
 public void deployPolicy(DeployPolicyHandle handle,
Resource resource, String[] roleNamesAllowed)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deployPolicy");
 System.out.println("\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
 System.out.println("\tresource\t= " + resource);
 for (int i = 0; roleNamesAllowed != null && i < roleNamesAllowed.length; i++) {
 System.out.println("\troleNamesAllowed[" + i + "]\t= " + roleNamesAllowed[i]);
}
database.setPolicy(resource, roleNamesAllowed);
}
 public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource resource)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deployUncheckedPolicy");
 System.out.println("\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
 System.out.println("\tresource\t= " + resource);
 database.setPolicy(resource, ALL_ACCESS);
}
public void deployExcludedPolicy(DeployPolicyHandle handle, Resource resource)
 {
 System.out.println("SimpleSampleAuthorizationProviderImpl.deployExcludedPolicy");
 System.out.println("\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
 System.out.println("\tresource\t= " + resource);
 database.setPolicy(resource, NO_ACCESS);
}
public void endDeployPolicies(DeployPolicyHandle handle)
{
 database.savePolicies();
}
public void undeployAllPolicies(DeployPolicyHandle handle)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.undeployAllPolicies");
 SampleDeployPolicyHandle myHandle = (SampleDeployPolicyHandle)handle;
 System.out.println("\thandle\t= " + myHandle.toString());

 // remove policies
 database.removePoliciesForComponent(myHandle.getApplication(),
 myHandle.getComponent(),
 myHandle.getComponentType());
}
public void deleteApplicationPolicies(ApplicationInfo application)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicationPolicies");
 String appId = application.getApplicationIdentifier();
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out policies for the application
 database.removePoliciesForApplication(appId);
}
private boolean rolesOrSubjectContains(Map roles, Subject subject, String roleOrPrincipalWant)
{
 // first, see if it's a role name match
if (roles.containsKey(roleOrPrincipalWant)) {
 return true;
}

 // second, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, roleOrPrincipalWant)) {

How to Develop a Custom Authorization Provider

Authorization Providers 7-13

 return true;
 }

 // third, see if it's a user name match
 if (roleOrPrincipalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }

 // didn't match
 return false;
}

private Result isAccessAllowed(Resource resource, Subject subject, Map roles)
{
 // loop over the principals and roles in our database who are allowed to access this resource
 for (Enumeration e = database.getPolicy(resource); e.hasMoreElements();) {
 String roleOrPrincipalAllowed = (String)e.nextElement();
 if (rolesOrSubjectContains(roles, subject, roleOrPrincipalAllowed)) {
 return Result.PERMIT;
 }
 }
 // the resource was explicitly mentioned and didn't grant access
 return Result.DENY;
}

public void createApplicationVersion(String appId, String sourceAppId)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.createApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);
 System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ? sourceAppId :
"None"));

 // create new policies when existing application is specified
 if (sourceAppId != null) {
 database.clonePoliciesForApplication(sourceAppId,appId);
 }
}
public void deleteApplicationVersion(String appId)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out policies for the application
 database.removePoliciesForApplication(appId);
}

public void deleteApplication(String appName)
{
 System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication");
 System.out.println("\tapplication name\t= " + appName);

 // clear out policies for the application
 database.removePoliciesForApplication(appName);
}

class SampleDeployPolicyHandle implements DeployPolicyHandle
{
 Date date;
 String application;
 String component;

How to Develop a Custom Authorization Provider

7-14 Developing Security Providers for Oracle WebLogic Server

 ComponentType componentType;

 SampleDeployPolicyHandle(String app, String comp, ComponentType type)
{
 this.application = app;
 this.component = comp;
 this.componentType = type;
 this.date = new Date();
}

 public String getApplication() { return application; }
 public String getComponent() { return component; }
 public ComponentType getComponentType() { return componentType; }

 public String toString()
 {
 String name = component;
 if (componentType == ComponentType.APPLICATION)
 name = application;
 return componentType +" "+ name +" ["+ date.toString() +"]";
 }
 }
}

7.5.2 Policy Consumer SSPI
WebLogic Server implements a policy consumer for JMX (MBean) default policies and
Web service annotations. This release of WebLogic Server includes an SSPI that
Authorization providers can use to obtain the policy collections.

The PolicyConsumer SSPI is optional; only those Authorization providers that
implement the SSPI are called to consume a policy collection.

The SSPI supports both the delivery of initial policy collections and the delivery of
updated policy collections.

All Authorization providers that support the PolicyConsumer SSPI are called to
consume a policy collection. Each Authorization provider can choose to skip or obtain
the policy collection for a given policy set. In the case where a provider persists policy,
the provider need only collect the policy once. However, providers keeping policy in
memory can obtain the policy collection again.

The out-of-the-box WebLogic Server Authorization providers persist the policy into
LDAP.

7.5.2.1 Required SSPI Interfaces
If you want your custom Authorization provider to support the delivery of policy
collections, you must implement three interfaces:

■ weblogic.security.spi.PolicyConsumerFactory

■ weblogic.security.spi.PolicyConsumer

■ weblogic.security.spi.PolicyCollectionHandler

■ These interfaces are described in the sections that follow.

How to Develop a Custom Authorization Provider

Authorization Providers 7-15

7.5.2.2 Implement the PolicyConsumerFactory SSPI Interface
An Authorization provider implements the PolicyConsumerFactory interface so
that an instance of a PolicyConsumer is available to the WebLogic Security
Framework. The WebLogic Security Framework calls your
PolicyConsumerFactory implementation to obtain the provider's implementation
of the policy consumer.

The PolicyConsumerFactory SSPI has one method, which returns your
implementation of the PolicyConsumer SSPI interface.

public interface PolicyConsumerFactory
{
/**
* Obtain the implementation of the PolicyConsumer
* security service provider interface (SSPI).
*
* @return a PolicyConsumer SSPI implementation.
*/
public PolicyConsumer getPolicyConsumer();
}

7.5.2.3 Implement the PolicyConsumer SSPI Interface
The PolicyConsumer SSPI returns a policy collection handler for consumption of a
policy collection. It has one method, getPolicyCollectionHandler(), which
takes a PolicyCollectionInfo implementation as an argument and returns your
implementation of the PolicyCollectionHandler interface.

public interface PolicyConsumer
 {
 /**
 * Obtain a policy handler for consumption of a policy set.
 *
 * @param info the PolicyCollectionInfo for the policy set.
 *
 * @return a PolicyCollectionHandler or NULL which indicates
 * that the policy set is not needed.
 *
 * @exception ConsumptionException if an error occurs
 * obtaining the handler and the policy set cannot be consumed.
 */
public PolicyCollectionHandler getPolicyCollectionHandler(
 PolicyCollectionInfo info)
 throws ConsumptionException;
}

The WebLogic Security Framework calls the getPolicyCollectionHandler()
method and passes data about a policy collection to a security provider as an
implementation of the PolicyCollectionInfo interface. (This interface
implementation is provided for you, you do not have to implement it.)

You use the PolicyCollectionInfo getName(), getVersion(),
getTimestamp(), and getResourceTypes() methods to discover information
about this policy set. You then return a PolicyCollectionHandler, or NULL to
indicate that the policy collection is not needed.

public interface PolicyCollectionInfo
{
/**
 * Get the name of the collection.
 */

How to Develop a Custom Authorization Provider

7-16 Developing Security Providers for Oracle WebLogic Server

public String getName();

/**
 * Get the runtime version of the policy.
 */
public String getVersion();

/**
 * Get the timestamp of the policy.
 */
public String getTimestamp();

/**
 * Get the resource types used in the policy collection.
 */
public Resource[] getResouceTypes();
}

7.5.2.4 Implement the PolicyCollectionHandler SSPI Interface
The PolicyConsumer.getPolicyCollectionHandler() method returns your
implementation of the PolicyCollectionHandler interface.
PolicyCollectionHandler has three methods: setPolicy,
setUncheckedPolicy, and done(). The setPolicy() method takes a resource
and role names and sets a policy based on the role. The setUncheckedPolicy()
method opens access to everyone.

The done() method signals the completion of the policy collection. We recommend
that the done() method remove all old policies for the policy set.

public interface PolicyCollectionHandler
{
 /**
 * Set a policy for the specified resource.
 */
 public void setPolicy(Resource resource, String[] roleNames)
 throws ConsumptionException;

 /**
 * Sets a policy which always grants access.
 */
 public void setUncheckedPolicy(Resource resource)
 throws ConsumptionException;

 /**
 * Signals the completion of the policy collection.
 */
 public void done()
 throws ConsumptionException;

}

7.5.2.5 Supporting an Updated Policy Collection
To support the delivery of an updated policy collection, all Authorization providers
that support the PolicyConsumer SSPI need to examine the contents of the
PolicyCollectionInfo passed in the
PolicyConsumer.getPolicyCollectionHandler() method to determine if a

How to Develop a Custom Authorization Provider

Authorization Providers 7-17

policy set has changed. Each provider must decide (possibly by configuration) how to
perform conflict resolution with the initial policy collection and any customized policy
received outside of the SSPI.

For the WebLogic Server supplied Authorization providers, customized policy will not
be replaced by the updated policy collection: all policy from the initial policy collection
will be removed and only the customized policies, plus the updated policy collection,
will be in effect. If the policy collection info has a different timestamp or version, it's
treated as an updated policy collection. The collection name is used as a persistence
key.

7.5.2.6 The PolicyConsumerMBean
Authorization providers that implement the Policy Consumer SSPI must also
implement the
weblogic.management.security.authorization.PolicyConsumerMBean to
indicate that the provider supports policy consumption.

7.5.3 PolicyStoreMBean
This release of WebLogic Server includes support for a new MBean
(weblogic.management.security.authorization.PolicyStoreMBean) that
allows for standard management (add, delete, get, list, modify, read) of
administrator-generated XACML policies and policy sets. An Authorization or Role
Mapping provider MBean can optionally implement this MBean interface.

The PolicyStoreMBean methods allow security administrators to manage policy in the
server as XACML documents. This includes creating and managing a domain that
uses the default XACML provider, as well as managing XACML documents that the
administrator has created. The administrator can then use WLST to manage these
XACML policies in WebLogic Server.

WebLogic Server includes an implementation of this MBean for use with the
out-of-the-box XACML providers, and you can write your own implementation of this
MBean for use with your own custom Authorization or Role Mapping providers. The
WebLogic Server out-of-the-box XACML providers support the mandatory features of
XACML, as described in the XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf), with the Oracle-specific usage
described in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Policies are expressed as XACML 2.0 Policy or PolicySet documents. Custom
Authorization providers should expect standard Policy or PolicySet documents as
described in the XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf). Custom Role Mapping providers
should expect Policy or PolicySet documents consistent with role assignment policies
described by the Core and hierarchical role based access control (RBAC) profile of
XACML v2.0 (http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-rbac-profile1-spec-os.pdf).

Specifically, the Target must contain:

■ An ActionAttributeDesignator with the id,
urn:oasis:names:tc:xacml:1.0:action:action-id, and the value,
urn:oasis:names:tc:xacml:2.0:actions:enableRole, according to
anyURI-equal. For example:

<Action>

How to Develop a Custom Authorization Provider

7-18 Developing Security Providers for Oracle WebLogic Server

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0
:actions:enableRole
</AttributeValue>

<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

</ActionMatch>
</Action>

■ A ResourceAttributeDesignator with the id,
urn:oasis:names:tc:xacml:2.0:subject:role, and a value naming the
role being assigned, according to string-equal. For example:

<ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

7.5.3.1 Examining the Format of a XACML Policy File
The XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf) and the Oracle extensions described in
Securing Resources Using Roles and Policies for Oracle WebLogic Server are the definitive
sources of information for the XACML policy files used by the supplied XACML
Authorization and Role Mapping Providers.

However, if as part of your development process you want to take a look at the format
of a supported XACML file, perhaps the most convenient way is to use the
Administration Console to export the data from the XACML Authorization or Role
Mapping provider's database as a XACML file. Copy this exported XACML file to a
file with some other name and use the tool of your choice to review the copy.

7.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean
Example 7–3 shows an example of using WLST to add a single policy to an instance of
the PolicyStoreMBean from a XACML file.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<property name="xacml-docs-dir" value="${xacmldir}/xacml-docs"/>
<sysproperty key="file" value="${xacml-docs-dir}/policy-getSubject.xacml"/>

Example 7–3 Using WLST to Add a Policy to the PolicyStoreMBean

:
try:
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")

Note: Treat the exported file as read-only. If you do make changes,
do not import the file back into WebLogic Server. Editing exported
files might result in an unusable WebLogic Server configuration and is
not supported.

How to Develop a Custom Authorization Provider

Authorization Providers 7-19

 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 fil = System.getProperty("file")
 prov = System.getProperty("provider")
 stat = System.getProperty("status")

def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 print("calling open()")
 xacmlFile = open(fil,"r")
 print("calling read()")
 xacmlDoc = xacmlFile.read()
 print("calling cmo.addPolicy")
 if stat == "none":
 cmo.addPolicy(xacmlDoc)
 else:
 cmo.addPolicy(xacmlDoc, stat)
 print("Add error handling")
:
:

As described in the "Navigating and Interrogating MBeans" section of Understanding
the WebLogic Scripting Tool, when WLST first connects to an instance of WebLogic
Server, the variable, cmo (Current Management Object), is initialized to the root of all
configuration management objects, DomainMBean. When you navigate to an MBean
type, in this case SecurityConfigurationMBean, the value of cmo reflects
SecurityConfigurationMBean. When you navigate to an MBean instance, in this
case to an Authorizer MBean that implements the PolicyStoreMBean, identified in the
example by the variable prov, WLST changes the value of cmo to be the current
MBean instance.

The example uses the addPolicy() method of the PolicyStoreMBean to add a policy
read from a XACML file to the policy store. Two variants of the addPolicy() method
(without and with status) are shown.

If you use an addPolicy() method that does not specify status, it defaults to ACTIVE,
which indicates that the policy is evaluated for any decision to which its target applies.
You can explicitly set status to be ACTIVE, INACTIVE, or BYREFERENCE. The
INACTIVE status indicates that the policy will never be evaluated and is only being
stored. The BYREFERENCE status indicates that the policy will only be evaluated
when referenced by a policy set that is being evaluated.

You can invoke this type of WLST script from the command line, in a manner similar
to the following:

java -Dhost="localhost " -Dprotocol="t3" -Dauthuser="weblogic"
-Dauthpwd="weblogic" -Dport="7001" -Ddomain="mydomain" -Drealm="myrealm"
-Dprovider="Authorizers/XACMLAuthorizer"
-Dfile="C:/XACML/xacml-docs/policy12.xml" -Dstatus="none" weblogic.WLST
XACML/scripts/XACMLaddPolicy.py

7.5.3.3 Using WLST to Read a PolicySet as a String
Example 7–4 shows an example of using WLST to read a PolicySet as a string.

How to Develop a Custom Authorization Provider

7-20 Developing Security Providers for Oracle WebLogic Server

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<sysproperty key="identifier"
value="urn:sample:xacml:2.0:wlssecqa:resource:type@E@Fejb@G@M@Oapplication@ENoD
DRolesOrPoliciesEar@M@Omodule@Eejb11inEarMiniAppBean.jar@M@Oejb@EMiniAppBean@
M@Omethod@EgetSubject@M@OmethodInterface@ERemote"/>
<sysproperty key="version" value="1.0"/>

Example 7–4 Using WLST to Read a PolicySet as a String

:
:
try:
 print("start XACMLreadPolicySet.py")
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 prov = System.getProperty("provider")
 id = System.getProperty("identifier")
 vers = System.getProperty("version")
:
:
def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 polset = cmo.readPolicySetAsString(id, vers)
 print("readPolicySetAsString() returned the following policy set: " + polset)
 print"Add error handling."
:
:

As described in the XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf), the <PolicySet> element contains a
set of <Policy> or other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. See the XACML 2.0 Core Specification for
complete information.

7.5.4 Bulk Authorization Providers
This release of WebLogic Server includes bulk access versions of the following
Authorization provider SSPI interfaces:

■ BulkAuthorizationProvider

■ BulkAccessDecision

The bulk access SSPI interfaces allow Authorization providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a 'for'
loop. The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the

How to Develop a Custom Authorization Provider

Authorization Providers 7-21

passed-in Resource objects are protected by the same policy and will generate the
same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI
interfaces are used.

Note that the BulkAccessDecision.isAccessAllowed() method takes a Map of
roles, indexed first by Resource object and then by role name (Map<Resource,
Map<String, SecurityRole>> roles), that are associated with the subject and
should be taken into consideration when making the authorization decision.

The BulkAccessDecision.isAccessAllowed() method returns a Map
(indexed by Resource, result) that indicates whether the authorization
policies defined for the resources allow the requested methods to be performed.

7.5.5 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom Authorization provider by following these steps:

1. Section 7.5.5.1, "Create an MBean Definition File (MDF)"

2. Section 7.5.5.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 7.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

4. Section 7.5.5.4, "Install the MBean Type Into the WebLogic Server Environment"

7.5.5.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authorization provider to a text file.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Authorization provider.

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

Note: The MDF for the sample Authorization provider is called
SimpleSampleAuthorizer.xml.

How to Develop a Custom Authorization Provider

7-22 Developing Security Providers for Oracle WebLogic Server

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

7.5.5.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Authorization provider. Follow the instructions that are appropriate to your
situation:

■ Section 7.5.5.2.1, "No Optional SSPI MBeans and No Custom Operations"

■ Section 7.5.5.2.2, "Optional SSPI MBeans or Custom Operations"

7.5.5.2.1 No Optional SSPI MBeans and No Custom Operations If the MDF for your custom
Authorization provider does not implement any optional SSPI MBeans and does not
include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. Proceed to Section 7.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Authorization providers).

How to Develop a Custom Authorization Provider

Authorization Providers 7-23

7.5.5.2.2 Optional SSPI MBeans or Custom Operations If the MDF for your custom
Authorization provider does implement some optional SSPI MBeans or does include
custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleAuthorizer, the MBean implementation file to be edited is named
SampleAuthorizerImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement
each method. Be sure to also provide implementations for any methods that
the optional SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods
using the method stubs.

5. Save the file.

6. Proceed to Section 7.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Authorization providers).

How to Develop a Custom Authorization Provider

7-24 Developing Security Providers for Oracle WebLogic Server

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleAuthorizer, the MBean implementation file to be edited is named
SampleAuthorizerImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated MBean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in
the original MDF, implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

8. Proceed to Section 7.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Authorization providers).

How to Develop a Custom Authorization Provider

Authorization Providers 7-25

7.5.5.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the
SampleAuthorizer MDF through the WebLogic MBeanMaker will yield an MBean
interface file called SampleAuthorizerMBean.java.

7.5.5.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Authorization provider into an
MBean JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Authorization provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

7.5.5.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

How to Develop a Custom Authorization Provider

7-26 Developing Security Providers for Oracle WebLogic Server

installation directory for WebLogic Server. This "deploys" your custom Authorization
provider—that is, it makes the custom Authorization provider manageable from the
WebLogic Server Administration Console.

You can create instances of the MBean type by configuring your custom Authorization
provider (see Section 7.5.6, "Configure the Custom Authorization Provider Using the
Administration Console"), and then use those MBean instances from a GUI, from other
Java code, or from APIs. For example, you can use the WebLogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances.

7.5.6 Configure the Custom Authorization Provider Using the Administration Console
Configuring a custom Authorization provider means that you are adding the custom
Authorization provider to your security realm, where it can be accessed by
applications requiring authorization services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
Authorization providers:

■ Section 7.5.6.1, "Managing Authorization Providers and Deployment Descriptors"

■ Section 7.5.6.2, "Enabling Security Policy Deployment"

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory =
dirX,dirY, WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

How to Develop a Custom Authorization Provider

Authorization Providers 7-27

7.5.6.1 Managing Authorization Providers and Deployment Descriptors
Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java EE and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called
web.xml and weblogic.xml) contain information for implementing the Java EE
security model, including declarations of security policies. Typically, you will want to
include this information when first configuring your Authorization providers in the
WebLogic Server Administration Console.

Because the Java EE platform standardizes Web application and EJB security in
deployment descriptors, WebLogic Server integrates this standard mechanism with its
Security Service to give you a choice of techniques for securing Web application and
EJB resources. You can use deployment descriptors exclusively, the Administration
Console exclusively, or you can combine the techniques for certain situations.

Depending on the technique you choose, you also need to apply a Security Model.
WebLogic supports different security models for individual deployments, and a
security model for realm-wide configurations that incorporate the technique you want
to use.

When configured to use deployment descriptors, WebLogic Server reads security
policy information from the web.xml and weblogic.xml deployment descriptor
files (examples of web.xml and weblogic.xml files are shown in Example 7–5 and
Example 7–6). This information is then copied into the security provider database for
the Authorization provider.

Example 7–5 Sample web.xml File

<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>developers</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>developers</role-name>
 </security-role>
</web-app>

Note: The steps for configuring a custom Authorization provider
using the WebLogic Server Administration Console are described
under "Configuring WebLogic Security Providers" in Administering
Security for Oracle WebLogic Server.

How to Develop a Custom Authorization Provider

7-28 Developing Security Providers for Oracle WebLogic Server

Example 7–6 Sample weblogic.xml File

<weblogic-web-app>
 <security-role-assignment>
 <role-name>developers</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

7.5.6.2 Enabling Security Policy Deployment
If you implemented the DeployableAuthorizationProviderV2 SSPI as part of
developing your custom Authorization provider and want to support deployable
security policies, the person configuring the custom Authorization provider (that is,
you or an administrator) must be sure that the Policy Deployment Enabled check box
in the WebLogic Server Administration Console is checked. Otherwise, deployment
for the Authorization provider is considered "turned off." Therefore, if multiple
Authorization providers are configured, the Policy Deployment Enabled check box can
be used to control which Authorization provider is used for security policy
deployment.

7.5.7 Provide a Mechanism for Security Policy Management
While configuring a custom Authorization provider via the WebLogic Server
Administration Console makes it accessible by applications requiring authorization
services, you also need to supply administrators with a way to manage this security
provider's associated security policies. The WebLogic Authorization provider, for
example, supplies administrators with a Policy Editor page that allows them to add,
modify, or remove security policies for various WebLogic resources.

Neither the Policy Editor page nor access to it is available to administrators when you
develop a custom Authorization provider. Therefore, you must provide your own
mechanism for security policy management. This mechanism must read and write
security policy data (that is, expressions) to and from the custom Authorization
provider's database.

You can accomplish this task in one of three ways:

■ Section 7.5.7.1, "Option 1: Develop a Stand-Alone Tool for Security Policy
Management"

■ Section 7.5.7.2, "Option 2: Integrate an Existing Security Policy Management Tool
into the Administration Console"

7.5.7.1 Option 1: Develop a Stand-Alone Tool for Security Policy Management
You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom
Authorization provider, nor do you need to develop any management MBeans.
However, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see Section 3.6.3, "WebLogic
Resource Identifiers."

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

How to Develop a Custom Authorization Provider

Authorization Providers 7-29

3. Read and write the expressions from and to the custom Authorization provider's
database.

7.5.7.2 Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console
You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see Section 3.6.3, "WebLogic
Resource Identifiers."

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Authorization provider's
database.

4. Link into the Administration Console using basic console extension techniques, as
described in Extending the Administration Console for Oracle WebLogic Server.

How to Develop a Custom Authorization Provider

7-30 Developing Security Providers for Oracle WebLogic Server

8

Adjudication Providers 8-1

8Adjudication Providers

This chapter describes Adjudication provider concepts and functionality, and provides
step-by-step instructions for developing a custom Adjudication provider.

Adjudication involves resolving any authorization conflicts that may occur when
more than one Authorization provider is configured, by weighing the result of each
Authorization provider's Access Decision. In WebLogic Server, an Adjudication
provider is used to tally the results that multiple Access Decisions return, and
determines the final PERMIT or DENY decision. An Adjudication provider may also
specify what should be done when an answer of ABSTAIN is returned from a single
Authorization provider's Access Decision.

The following sections describe Adjudication provider concepts and functionality, and
provide step-by-step instructions for developing a custom Adjudication provider:

■ Section 8.1, "The Adjudication Process"

■ Section 8.2, "Do You Need to Develop a Custom Adjudication Provider?"

■ Section 8.3, "How to Develop a Custom Adjudication Provider"

8.1 The Adjudication Process
The use of Adjudication providers is part of the authorization process, and is
described in Section 7.2, "The Authorization Process."

8.2 Do You Need to Develop a Custom Adjudication Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Adjudication provider. The WebLogic Adjudication provider is responsible for
adjudicating between potentially differing results rendered by multiple Authorization
providers' Access Decisions, and rendering a final verdict on whether or not access
will be granted to a WebLogic resource.

The WebLogic Adjudication provider has an attribute called Require Unanimous
Permit that governs its behavior. By default, the Require Unanimous Permit attribute
is set to TRUE, which causes the WebLogic Adjudication provider to act as follows:

■ If all the Authorization providers' Access Decisions return PERMIT, then return a
final verdict of TRUE (that is, permit access to the WebLogic resource).

■ If some Authorization providers' Access Decisions return PERMIT and others
return ABSTAIN, then return a final verdict of FALSE (that is, deny access to the
WebLogic resource).

How to Develop a Custom Adjudication Provider

8-2 Developing Security Providers for Oracle WebLogic Server

■ If any of the Authorization providers' Access Decisions return ABSTAIN or DENY,
then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebLogic
Adjudication provider acts as follows:

■ If all the Authorization providers' Access Decisions return PERMIT, then return a
final verdict of TRUE (that is, permit access to the WebLogic resource).

■ If some Authorization providers' Access Decisions return PERMIT and others
return ABSTAIN, then return a final verdict of TRUE (that is, permit access to the
WebLogic resource).

■ If any of the Authorization providers' Access Decisions return DENY, then return a
final verdict of FALSE (that is, deny access to the WebLogic resource).

If you want an Adjudication provider that behaves in a way that is different from what
is described above, then you need to develop a custom Adjudication provider. (Keep
in mind that an Adjudication provider may also specify what should be done when an
answer of ABSTAIN is returned from a single Authorization provider's Access
Decision, based on your specific security requirements.)

8.3 How to Develop a Custom Adjudication Provider
If the WebLogic Adjudication provider does not meet your needs, you can develop a
custom Adjudication provider by following these steps:

1. Section 8.3.1, "Create Runtime Classes Using the Appropriate SSPIs," or, optionally,
use the Section 8.3.2, "Bulk Adjudication Providers"

2. Section 8.3.3, "Generate an MBean Type Using the WebLogic MBeanMaker"

3. Section 8.3.4, "Configure the Custom Adjudication Provider Using the
Administration Console"

8.3.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Adjudication provider by following these steps:

■ Section 8.3.1.1, "Implement the AdjudicationProviderV2 SSPI"

■ Section 8.3.1.2, "Implement the AdjudicatorV2 SSPI"

Note: You set the Require Unanimous Permit attributes when you
configure the WebLogic Adjudication provider. For more information
about configuring the WebLogic Adjudication provider, see
"Configuring the WebLogic Adjudication Provider" in Administering
Security for Oracle WebLogic Server.

How to Develop a Custom Adjudication Provider

Adjudication Providers 8-3

8.3.1.1 Implement the AdjudicationProviderV2 SSPI
To implement the AdjudicationProviderV2 SSPI, provide implementations for the
methods described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"
and the following method:

■ getAdjudicator

public AdjudicatorV2 getAdjudicator()

The getAdjudicator method obtains the implementation of the
AdjudicatorV2 SSPI. For a single runtime class called
MyAdjudicationProviderImpl.java, the implementation of the
getAdjudicator method would be:

return this;

If there are two runtime classes, then the implementation of the getAdjudicator
method could be:

return new MyAdjudicatorImpl;

This is because the runtime class that implements the
AdjudicationProviderV2 SSPI is used as a factory to obtain classes that
implement the AdjudicatorV2 SSPI.

For more information about the AdjudicationProviderV2 SSPI and the
getAdjudicator method, see the Java API Reference for Oracle WebLogic Server.

8.3.1.2 Implement the AdjudicatorV2 SSPI
To implement the AdjudicatorV2 SSPI, provide implementations for the following
methods:

■ initialize

public void initialize(AuthorizerMBean[] accessDecisionClassNames)

The initialize method initializes the names of all the configured Authorization
providers' Access Decisions that will be called to supply a result for the "is access
allowed?" question. The accessDecisionClassNames parameter may also be
used by an Adjudication provider in its adjudicate method to favor a result
from a particular Access Decision. For more information about Authorization
providers and Access Decisions, see Chapter 7, "Authorization Providers."

■ adjudicate

public boolean adjudicate(Result[] results, Resource resource,
 ContextHandler handler)

The adjudicate method determines the answer to the "is access allowed?"
question, given all the results from the configured Authorization providers' Access
Decisions.

For more information about the Adjudicator SSPI and the initialize and
adjudicate methods, see the Java API Reference for Oracle WebLogic Server.

8.3.2 Bulk Adjudication Providers
This release of WebLogic Server includes bulk access versions of the following
Adjudication provider SSPI interfaces:

■ BulkAdjudicationProvider

How to Develop a Custom Adjudication Provider

8-4 Developing Security Providers for Oracle WebLogic Server

■ BulkAdjudicator

The bulk access SSPI interfaces allow Adjudication providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a 'for'
loop. The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the
same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI
interfaces are used.

The BulkAdjudicator.adjudicate() method takes a List of Map (Resource,
Result) instances, as passed in by the WebLogic Server Authorization Manager,
which contain the results of each bulk access decision. The order of results is the same
as the order of the Access Decision class names that were passed in the
BulkAdjudicator.initialize() method.

Note too that the BulkAdjudicator.adjudicate() method returns a Set of
Resource objects. If a Resource object is present in the set, access has been granted
for that object; otherwise, access has been denied.

8.3.3 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom Adjudication provider by following these steps:

1. Section 8.3.3.1, "Create an MBean Definition File (MDF)"

2. Section 8.3.3.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 8.3.3.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

4. Section 8.3.3.4, "Install the MBean Type Into the WebLogic Server Environment"

8.3.3.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

How to Develop a Custom Adjudication Provider

Adjudication Providers 8-5

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Adjudication provider.

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

8.3.3.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Adjudication provider. Follow the instructions that are appropriate to your
situation:

■ Section 8.3.3.2.1, "No Custom Operations"

■ Section 8.3.3.2.2, "Custom Operations"

8.3.3.2.1 No Custom Operations If the MDF for your custom Adjudication provider does
not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

Note: The MDF for the sample Authentication provider is called
SampleAuthenticator.xml. (There is currently no sample
Adjudication provider.)

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

Note: The WebLogic MBeanMaker processes one MDF at a time.
Therefore, you may have to repeat this process if you have multiple
MDFs (in other words, multiple Adjudication providers).

How to Develop a Custom Adjudication Provider

8-6 Developing Security Providers for Oracle WebLogic Server

3. Proceed to Section 8.3.3.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

8.3.3.2.2 Custom Operations If the MDF for your custom Adjudication provider does
include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. For any custom operations in your MDF, implement the methods using the
method stubs.

4. Save the file.

5. Proceed to Section 8.3.3.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Adjudication providers).

How to Develop a Custom Adjudication Provider

Adjudication Providers 8-7

4. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

5. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

6. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

7. Proceed to Section 8.3.3.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

8.3.3.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the MyAdjudicator
MDF through the WebLogic MBeanMaker will yield an MBean interface file called
MyAdjudicatorMBean.java.

8.3.3.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Adjudication provider into an MBean
JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Adjudication provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Adjudication providers).

How to Develop a Custom Adjudication Provider

8-8 Developing Security Providers for Oracle WebLogic Server

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

8.3.3.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
installation directory for WebLogic Server. This "deploys" your custom Adjudication
provider—that is, it makes the custom Adjudication provider manageable from the
WebLogic Server Administration Console.

You can create instances of the MBean type by configuring your custom Adjudication
provider (see Section 8.3.4, "Configure the Custom Adjudication Provider Using the
Administration Console"), and then use those MBean instances from a GUI, from other

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory =
dirX,dirY, WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

How to Develop a Custom Adjudication Provider

Adjudication Providers 8-9

Java code, or from APIs. For example, you can use the WebLogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances.

8.3.4 Configure the Custom Adjudication Provider Using the Administration Console
Configuring a custom Adjudication provider means that you are adding the custom
Adjudication provider to your security realm, where it can be accessed by applications
requiring adjudication services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. The steps for
configuring a custom Adjudication provider using the WebLogic Server
Administration Console are described under "Configuring WebLogic Security
Providers" in Administering Security for Oracle WebLogic Server.

How to Develop a Custom Adjudication Provider

8-10 Developing Security Providers for Oracle WebLogic Server

9

Role Mapping Providers 9-1

9Role Mapping Providers

This chapter describes Role Mapping provider concepts and functionality, and
provides step-by-step instructions for developing a custom Role Mapping provider.

Role mapping is the process whereby principals (users or groups) are dynamically
mapped to security roles at runtime. In WebLogic Server, a Role Mapping provider
determines what security roles apply to the principals stored a subject when the
subject is attempting to perform an operation on a WebLogic resource. Because this
operation usually involves gaining access to the WebLogic resource, Role Mapping
providers are typically used with Authorization providers.

The following sections describe Role Mapping provider concepts and functionality,
and provide step-by-step instructions for developing a custom Role Mapping
provider:

■ Section 9.1, "Role Mapping Concepts"

■ Section 9.2, "The Role Mapping Process"

■ Section 9.3, "Is Your Custom Role Mapping Provider Thread Safe?"

■ Section 9.4, "Do You Need to Develop a Custom Role Mapping Provider?"

■ Section 9.5, "How to Develop a Custom Role Mapping Provider"

9.1 Role Mapping Concepts
Before you develop a Role Mapping provider, you need to understand the following
concepts:

■ Section 9.1.1, "Security Roles"

■ Section 9.1.2, "Dynamic Security Role Computation"

■ Section 3.6, "Security Providers and WebLogic Resources"

9.1.1 Security Roles
A security role is a named collection of users or groups that have similar permissions
to access WebLogic resources. Like groups, security roles allow you to control access to
WebLogic resources for several users at once. However, security roles are scoped to
specific resources in a WebLogic Server domain (unlike groups, which are scoped to an
entire WebLogic Server domain), and can be defined dynamically (as described in
Section 9.1.2, "Dynamic Security Role Computation").

Role Mapping Concepts

9-2 Developing Security Providers for Oracle WebLogic Server

The SecurityRole interface in the weblogic.security.service package is
used to represent the abstract notion of a security role. (For more information, see the
Java API Reference for Oracle WebLogic Server for the SecurityRole interface.)

Mapping a principal to a security role grants the defined access permissions to that
principal, as long as the principal is "in" the security role. For example, an application
may define a security role called AppAdmin, which provides write access to a small
subset of that application's resources. Any principal in the AppAdmin security role
would then have write access to those resources. For more information, see
Section 9.1.2, "Dynamic Security Role Computation" and "Users, Groups, and Security
Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Many principals can be mapped to a single security role. For more information about
principals, see Section 4.1.1, "Users and Groups, Principals and Subjects."

Security roles are specified in Java EE deployment descriptor files and/or in the
WebLogic Server Administration Console. For more information, see Section 9.5.6.1,
"Managing Role Mapping Providers and Deployment Descriptors."

9.1.2 Dynamic Security Role Computation
Security roles can be declarative (that is, Java 2 Enterprise Edition roles) or
dynamically computed based on the context of the request.

Dynamic security role computation is the term for this late binding of principals (that
is, users or groups) to security roles at runtime. The late binding occurs just prior to an
authorization decision for a protected WebLogic resource, regardless of whether the
principal-to-security role association is statically defined or dynamically computed.
Because of its placement in the invocation sequence, the result of any
principal-to-security role computations can be taken as an authentication identity, as
part of the authorization decision made for the request.

This dynamic computation of security roles provides a very important benefit: users or
groups can be granted a security role based on business rules. For example, a user may
be allowed to be in a Manager security role only while the actual manager is away on
an extended business trip. Dynamically computing this security role means that you
do not need to change or redeploy your application to allow for such a temporarily
arrangement. Further, you would not need to remember to revoke the special
privileges when the actual manager returns, as you would if you temporarily added
the user to a Managers group.

Note: For more information about security roles, see "Users, Groups,
and Security Roles" in Securing Resources Using Roles and Policies for
Oracle WebLogic Server. For more information about WebLogic
resources, see Section 3.6, "Security Providers and WebLogic
Resources," and "Resource Types You Can Secure with Policies" in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Note: You typically grant users or groups security roles using the
role conditions available in the WebLogic Server Administration
Console. (In this release of WebLogic Server, you cannot write custom
role conditions.) For more information, see "Users, Groups, and
Security Roles" in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

The Role Mapping Process

Role Mapping Providers 9-3

The computed security role is able to access a number of pieces of information that
make up the context of the request, including the identity of the target (if available)
and the parameter values of the request. The context information is typically used as
values of parameters in an expression that is evaluated by the WebLogic Security
Framework. This functionality is also responsible for computing security roles that
were statically defined through a deployment descriptor or through the WebLogic
Server Administration Console.

9.2 The Role Mapping Process
The WebLogic Security Framework calls each Role Mapping provider that is
configured for a security realm as part of an authorization decision. For related
information, see Section 7.2, "The Authorization Process."

The result of the dynamic security role computation (performed by the Role Mapping
providers) is a set of security roles that apply to the principals stored in a subject at a
given moment. These security roles can then be used to make authorization decisions
for protected WebLogic resources, as well as for resource container and application
code. For example, an Enterprise JavaBean (EJB) could use the Java EE
isCallerInRole method to retrieve fields from a record in a database, without
having knowledge of the business policies that determine whether access is allowed.

Figure 9–1 shows how the Role Mapping providers interact with the WebLogic
Security Framework to create dynamic security role computations, and an explanation
follows.

Figure 9–1 Role Mapping Providers and the Role Mapping Process

Note: The computation of security roles for an authenticated user
enhances the Role-Based Access Control (RBAC) security defined by
the Java EE specification.

You create dynamic security role computations by defining role
statements in the WebLogic Server Administration Console. For more
information, see "Users, Groups, and Security Roles" in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

The Role Mapping Process

9-4 Developing Security Providers for Oracle WebLogic Server

Generally, role mapping is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to
perform a given operation.

2. The resource container that handles the type of WebLogic resource being
requested receives the request (for example, the EJB container receives the request
for an EJB resource).

3. The resource container constructs a ContextHandler object that may be used by
Role Mapping providers to obtain information associated with the context of the
request.

The resource container calls the WebLogic Security Framework, passing in the
subject (which already contains user and group principals), an identifier for the
WebLogic resource, and optionally, the ContextHandler object (to provide
additional input).

4. The WebLogic Security Framework calls each configured Role Mapping provider
to obtain a list of the security roles that apply. This works as follows:

a. The Role Mapping providers use the ContextHandler to request various
pieces of information about the request. They construct a set of Callback
objects that represent the type of information being requested. This set of
Callback objects is then passed as an array to the ContextHandler using
the handle method.

The Role Mapping providers may call the ContextHandler more than once
in order to obtain the necessary context information. (The number of times a
Role Mapping provider calls the ContextHandler is dependent upon its
implementation.)

b. Using the context information and their associated security provider databases
containing security policies, the subject, and the WebLogic resource, the Role
Mapping providers determine whether the requestor (represented by the user
and group principals in the subject) is entitled to a certain security role.

The security policies are represented as a set of expressions or rules that are
evaluated to determine if a given security role is to be granted. These rules
may require the Role Mapping provider to substitute the value of context
information obtained as parameters into the expression. In addition, the rules
may also require the identity of a user or group principal as the value of an
expression parameter.

Note: The resource container could be the container that handles any
one of the WebLogic Resources described in Section 3.6, "Security
Providers and WebLogic Resources."

Note: For more information about ContextHandlers, see
Section 3.6.9, "ContextHandlers and WebLogic Resources."

Note: For more information about subjects, see Section 4.1.1, "Users
and Groups, Principals and Subjects." For more information about
resource identifiers, see Section 3.6.3, "WebLogic Resource Identifiers."

Do You Need to Develop a Custom Role Mapping Provider?

Role Mapping Providers 9-5

c. If a security policy specifies that the requestor is entitled to a particular
security role, the security role is added to the list of security roles that are
applicable to the subject.

d. This process continues until all security policies that apply to the WebLogic
resource or the resource container have been evaluated.

5. The list of security roles is returned to the WebLogic Security Framework, where it
can be used as part of other operations, such as access decisions.

9.3 Is Your Custom Role Mapping Provider Thread Safe?
For the best performance, and by default, Weblogic Server supports parallel
modification to security policy and roles during application and module deployment.
For this reason, deployable Authorization and Role Mapping providers configured in
the security realm should support parallel calls. The WebLogic deployable XACML
Authorization and Role Mapping providers meet this requirement.

However, custom deployable Authorization and Role Mapping providers may or may
not support parallel calls. If your custom deployable Authorization or Role Mapping
providers do not support parallel calls, you need to disable the parallel security policy
and role modification and instead enforce a synchronization mechanism that results in
each application and module being placed in a queue and deployed sequentially.

See Administering Security for Oracle WebLogic Server for information on how to turn on
this synchronization enforcement mechanism.

9.4 Do You Need to Develop a Custom Role Mapping Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Role Mapping provider. The WebLogic Role Mapping provider computes dynamic
security roles for a specific user (subject) with respect to a specific protected WebLogic
resource for each of the default users and WebLogic resources. The WebLogic Role
Mapping provider supports the deployment and undeployment of security roles
within the system. The WebLogic Role Mapping provider uses the same security
policy engine as the WebLogic Authorization provider. If you want to use a role
mapping mechanism that already exists within your organization, you could create a
custom Role Mapping provider to tie into that system.

Note: The rules for security policies are set up in the WebLogic
Server Administration Console and in Java EE deployment
descriptors. For more information, see "Security Policies" in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Note: Enabling the synchronization mechanism affects every
deployable provider configured in the realm, including the predefined
WebLogic Server providers. Enabling the synchronization mechanism
may negatively impact the performance of these providers.

How to Develop a Custom Role Mapping Provider

9-6 Developing Security Providers for Oracle WebLogic Server

9.4.1 Does Your Custom Role Mapping Provider Need to Support Application
Versioning?

All Authorization, Role Mapping, and Credential Mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for Authorization, Role
Mapping, or Credential Mapping and need to support versioned applications, you
must implement the Versionable Application SSPI, as described in Chapter 14,
"Versionable Application Providers."

9.5 How to Develop a Custom Role Mapping Provider
If the WebLogic Role Mapping provider does not meet your needs, you can develop a
custom Role Mapping provider by following these steps:

1. Section 9.5.1, "Create Runtime Classes Using the Appropriate SSPIs," or, optionally,
implement the Section 9.5.4, "Bulk Role Mapping Providers"

2. Optionally, implement the Section 9.5.2, "Role Consumer SSPI"

3. Section 9.5.5, "Generate an MBean Type Using the WebLogic MBeanMaker"

4. Section 9.5.6, "Configure the Custom Role Mapping Provider Using the
Administration Console"

5. Section 9.5.7, "Provide a Mechanism for Security Role Management"

9.5.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.4, "Determine Which "Provider" Interface You Will Implement"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Role Mapping provider by following these steps:

■ Section 9.5.1.1, "Implement the RoleProvider SSPI" or Section 9.5.1.2, "Implement
the DeployableRoleProviderV2 SSPI"

■ Section 9.5.1.3, "Implement the RoleMapper SSPI"

■ Section 9.5.1.4, "Implement the SecurityRole Interface"

For an example of how to create a runtime class for a custom Role Mapping provider,
see Section 9.5.1.5, "Example: Creating the Runtime Class for the Sample Role
Mapping Provider."

Note: At least one Role Mapping provider in a security realm must
implement the DeployableRoleProviderV2 SSPI, or else it will be
impossible to deploy Web applications and EJBs.

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-7

9.5.1.1 Implement the RoleProvider SSPI
To implement the RoleProvider SSPI, provide implementations for the methods
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs" and the
following method:

■ getRoleMapper

public RoleMapper getRoleMapper()

The getRoleMapper method obtains the implementation of the RoleMapper
SSPI. For a single runtime class called MyRoleProviderImpl.java, the
implementation of the getRoleMapper method would be:

return this;

If there are two runtime classes, then the implementation of the getRoleMapper
method could be:

return new MyRoleMapperImpl;

This is because the runtime class that implements the RoleProvider SSPI is used
as a factory to obtain classes that implement the RoleMapper SSPI.

For more information about the RoleProvider SSPI and the getRoleMapper
method, see the Java API Reference for Oracle WebLogic Server.

9.5.1.2 Implement the DeployableRoleProviderV2 SSPI

To implement the DeployableRoleProviderV2 SSPI, provide implementations for
the methods described in Section 3.2.2, "Understand the Purpose of the "Provider"
SSPIs," Section 9.5.1.1, "Implement the RoleProvider SSPI," and the following methods:

■ deleteApplicationRoles

void deleteApplicationRoles(ApplicationInfo application)

Deletes all roles for an application and is called only on the Administration Server
within a WebLogic Server domain at the time an application is deleted.

■ deployRole

void deployRole(DeployRoleHandle handle, Resource resource, String roleName,
String[] userAndGroupNames)

Creates a role on behalf of a deployed Web application or EJB. If the role already
exists, it is removed and replaced by this role.

■ endDeployRoles

void endDeployRoles(DeployRoleHandle handle)

Marks the end of an application role deployment.

■ startDeployRoles

DeployRoleHandle startDeployRoles(ApplicationInfo application)

Note: The DeployableRoleProvider SSPI is deprecated in this
release of WebLogic Server. Use the DeployableRoleProviderV2
SSPI instead.

How to Develop a Custom Role Mapping Provider

9-8 Developing Security Providers for Oracle WebLogic Server

Marks the beginning of an application role deployment and is called on all servers
within a WebLogic Server domain where an application is targeted.

■ undeployAllRoles

void undeployAllRoles(DeployRoleHandle handle)

Deletes a set of roles on behalf of an undeployed Web application or EJB.

For more information about the DeployableRoleProvider SSPI and the
deployRole and undeployRole methods, see the Java API Reference for Oracle
WebLogic Server.

9.5.1.2.1 The ApplicationInfo Interface The ApplicationInfo interface passes data about an
application deployment to a security provider. You can use this data to uniquely
identity the application.

The Security Framework implements the ApplicationInfo interface for your
convenience. You do not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2
interfaces use ApplicationInfo. For example, consider an implementation of the
DeployableRoleProviderV2 methods. The Security Framework calls the
DeployableRoleProviderV2 startDeployRoles method and passes in the
ApplicationInfo interface for this application. The ApplicationInfo data is determined
based on the information supplied in the Administration Console when an application
is deployed.

The startDeployRoles method returns DeployRoleHandle, which you can then
use in the other DeployableRoleProviderV2 methods.

You use the ApplicationInfo interface to get the application identifier, the component
name, and the component type for this application. Component type can be
APPLICATION, CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the
ApplicationInfo.ComponentType class.

The following example shows one way to accomplish this task:

public DeployRoleHandle startDeployRoles(ApplicationInfo appInfo)
 throws DeployHandleCreationException
 :
// Obtain the application information...
 String appId = appInfo.getApplicationIdentifier();
 ComponentType compType = appInfo.getComponentType();
 String compName = appInfo.getComponentName();

The Security Framework calls the DeployableRoleProviderV2
deleteApplicationRoles method and passes in the ApplicationInfo interface for
this application. The deleteApplicationRoles method deletes all roles for an
application and is called (only on the Administration Server within a WebLogic Server
domain) at the time an application is deleted.

9.5.1.3 Implement the RoleMapper SSPI
To implement the RoleMapper SSPI, provide implementations for the following
methods:

■ getRoles

public Map getRoles(Subject subject, Resource resource, ContextHandler
handler)

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-9

The getRoles method returns the security roles associated with a given subject
for a specified WebLogic resource, possibly using the optional information
specified in the ContextHandler. For more information about ContextHandlers,
see Section 3.6.9, "ContextHandlers and WebLogic Resources."

For more information about the RoleMapper SSPI and the getRoles methods, see
the Java API Reference for Oracle WebLogic Server.

9.5.1.3.1 Developing Custom Role Mapping Providers That Are Compatible With the Realm
Adapter Authentication Provider An Authentication provider is the security provider
responsible for populating a subject with users and groups, which are then extracted
from the subject by other types of security providers, including Role Mapping
providers. If the Authentication provider configured in your security realm is a Realm
Adapter Authentication provider, the user and group information will be stored in the
subject in a way that is slightly different from other Authentication providers.
Therefore, this user and group information must also be extracted in a slightly
different way.

Example 9–1 provides code that can be used by custom Role Mapping providers to
check whether a subject matches a user or group name when a Realm Adapter
Authentication provider was used to populate the subject. This code belongs in the
getRoles method.

Example 9–1 Sample Code to Check if a Subject Matches a User or Group Name

/**
 * Determines if the Subject matches a user/group name.
 *
 * @param principalWant A String containing the name of a principal in this role
 * (that is, the role definition).
 *
 * @param subject A Subject that contains the Principals that identify the user
 * who is trying to access the resource as well as the user's groups.
 *
 * @return A boolean. true if the current subject matches the name of the
 * principal in the role, false otherwise.
 */
private boolean subjectMatches(String principalWant, Subject subject)
{
 // first, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, principalWant)) {
 return true;
 }
 // second, see if it's a user name match
 if (principalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }
 // didn't match
 return false;
}

9.5.1.4 Implement the SecurityRole Interface
The methods on the SecurityRole interface allow you to obtain basic information
about a security role, or to compare it to another security role. These methods are
designed for the convenience of security providers.

How to Develop a Custom Role Mapping Provider

9-10 Developing Security Providers for Oracle WebLogic Server

To implement the SecurityRole interface, provide implementations for the
following methods:

■ equals

public boolean equals(Object another)

The equals method returns TRUE if the security role passed in matches the
security role represented by the implementation of this interface, and FALSE
otherwise.

■ toString

public String toString()

The toString method returns this security role, represented as a String.

■ hashCode

public int hashCode()

The hashCode method returns a hashcode for this security role, represented as an
integer.

■ getName

public String getName()

The getName method returns the name of this security role, represented as a
String.

■ getDescription

public String getDescription()

The getDescription method returns a description of this security role,
represented as a String. The description should describe the purpose of this
security role.

9.5.1.5 Example: Creating the Runtime Class for the Sample Role Mapping
Provider
Example 9–2 shows the SimpleSampleRoleMapperProviderImpl.java class,
which is the runtime class for the sample Role Mapping provider. This runtime class
includes implementations for:

■ The three methods inherited from the SecurityProvider interface:
initialize, getDescription and shutdown (as described in Section 3.2.2,
"Understand the Purpose of the "Provider" SSPIs").

■ The method inherited from the RoleProvider SSPI: the getRoleMapper
method (as described in Section 9.5.1.1, "Implement the RoleProvider SSPI").

■ The five methods in the DeployableRoleProviderV2 SSPI: the
deleteApplicationRoles, deployRole, endDeployRoles, startDeployRoles, and
undeployAllRoles methods (as described in Section 9.5.1.2, "Implement the
DeployableRoleProviderV2 SSPI").

Note: SecurityRole implementations are returned as a Map by the
getRoles() method (see Section 9.5.1.1, "Implement the RoleProvider
SSPI").

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-11

■ The method in the RoleMapper SSPI: the getRoles method (as described in
Section 9.5.1.1, "Implement the RoleProvider SSPI").

Example 9–2 SimpleSampleRoleMapperProviderImpl.java

package examples.security.providers.roles.simple;

import java.security.Principal;
import java.util.Collections;
import java.util.Date;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.WLSPrincipals;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.ApplicationInfo;
import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableRoleProviderV2;
import weblogic.security.spi.DeployRoleHandle;
import weblogic.security.spi.Resource;
import weblogic.security.spi.RoleMapper;
import weblogic.security.spi.SecurityServices;
import weblogic.security.spi.VersionableApplicationProvider;

public final class SimpleSampleRoleMapperProviderImpl
implements DeployableRoleProviderV2, RoleMapper, VersionableApplicationProvider
{
 private String description;
// a description of this provider
 private SimpleSampleRoleMapperDatabase database;
// manages the role definitions for this provider
 private static final Map NO_ROLES = Collections.unmodifiableMap(new HashMap(1));
// used when no roles are found

 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleRoleMapperProviderImpl.initialize");

// Cast the mbean from a generic ProviderMBean to a SimpleSampleRoleMapperMBean.
 SimpleSampleRoleMapperMBean myMBean = (SimpleSampleRoleMapperMBean)mbean;

 // Set the description to the simple sample role mapper's mbean's description and version
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();

 // Instantiate the helper that manages this provider's role definitions
 database = new SimpleSampleRoleMapperDatabase(myMBean);
 }
 public String getDescription()
{

Note: The bold face code in Example 9–2 highlights the class
declaration and the method signatures.

How to Develop a Custom Role Mapping Provider

9-12 Developing Security Providers for Oracle WebLogic Server

 return description;
}

 public void shutdown()
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.shutdown");
}

 public RoleMapper getRoleMapper()
 {
 // Since this class implements both the DeployableRoleProvider
 // and RoleMapper interfaces, this object is the
 // role mapper object so just return "this".
 return this;
 }

public Map getRoles(Subject subject, Resource resource, ContextHandler handler)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.getRoles");
 System.out.println("\tsubject\t= " + subject);
 System.out.println("\tresource\t= " + resource);

 // Make a list for the roles
 Map roles = new HashMap();

 // Make a list for the roles that have already been found and evaluated
 Set rolesEvaluated = new HashSet();

 // since resources scope roles, and resources are hierarchical,
 // loop over the resource and all its parents, adding in any roles
 // that match the current subject.
 for (Resource res = resource; res != null; res = res.getParentResource()) {
 getRoles(res, subject, roles, rolesEvaluated);
 }

 // try global resources too
 getRoles(null, subject, roles, rolesEvaluated);

 // special handling for no matching roles
 if (roles.isEmpty()) {
 return NO_ROLES;
 }

 // return the roles we found.
 System.out.println("\troles\t= " + roles);
 return roles;
 }

public DeployRoleHandle startDeployRoles(ApplicationInfo application)
{
 String appId = application.getApplicationIdentifier();
 String compName = application.getComponentName();
 ComponentType compType = application.getComponentType();
 DeployRoleHandle handle = new SampleDeployRoleHandle(appId,compName,compType);

 // ensure that previous roles have been removed so that
 // the most up to date deployment roles are in effect
 database.removeRolesForComponent(appId, compName, compType);

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-13

 // A null handle may be returned if needed
 return handle;

 }

public void deployRole(DeployRoleHandle handle, Resource resource,
String roleName, String[] principalNames)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deployRole");
 System.out.println("\thandle\t\t= " + ((SampleDeployRoleHandle)handle).toString());
 System.out.println("\tresource\t\t= " + resource);
 System.out.println("\troleName\t\t= " + roleName);

 for (int i = 0; principalNames != null && i < principalNames.length; i++) {
 System.out.println("\tprincipalNames[" + i + "]\t= " + principalNames[i]);
 }
 database.setRole(resource, roleName, principalNames);
}
public void endDeployRoles(DeployRoleHandle handle)
{
database.saveRoles();
}

public void undeployAllRoles(DeployRoleHandle handle)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.undeployAllRoles");
 SampleDeployRoleHandle myHandle = (SampleDeployRoleHandle)handle;
 System.out.println("\thandle\t= " + myHandle.toString());

 // remove roles
 database.removeRolesForComponent(myHandle.getApplication(),
 myHandle.getComponent(),
 myHandle.getComponentType());
}

public void deleteApplicationRoles(ApplicationInfo application)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplicationRoles");
 String appId = application.getApplicationIdentifier();
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out roles for the application
 database.removeRolesForApplication(appId);
}

private void getRoles(Resource resource, Subject subject,
 Map roles, Set rolesEvaluated)
 {
 // loop over all the roles in our "database" for this resource
 for (Enumeration e = database.getRoles(resource); e.hasMoreElements();) {
 String role = (String)e.nextElement();

 // Only check for roles not already evaluated
 if (rolesEvaluated.contains(role)) {
 continue;
 }
 // Add the role to the evaluated list
 rolesEvaluated.add(role);

How to Develop a Custom Role Mapping Provider

9-14 Developing Security Providers for Oracle WebLogic Server

 // If any of the principals is on that role, add the role to the list.
 if (roleMatches(resource, role, subject)) {

 // Add a simple sample role mapper role instance to the list of roles.
 roles.put(role, new SimpleSampleSecurityRoleImpl(role));
 }
 }
}

private boolean roleMatches(Resource resource, String role, Subject subject)
{
 // loop over the the principals that are in this role.
 for (Enumeration e = database.getPrincipalsForRole(resource, role); e.hasMoreElements();) {

 // get the next principal in this role
 String principalWant = (String)e.nextElement();

 // see if any of the current principals match this principal
 if (subjectMatches(principalWant, subject)) {
 return true;
 }
 }
return false;
}

private boolean subjectMatches(String principalWant, Subject subject)
{
 // first, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, principalWant)) {
 return true;
 }
 // second, see if it's a user name match
 if (principalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }
 // didn't match
 return false;
}

public void createApplicationVersion(String appId, String sourceAppId)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.createApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);
 System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ? sourceAppId :
"None"));

 // create new roles when existing application is specified
 if (sourceAppId != null) {
 database.cloneRolesForApplication(sourceAppId,appId);
 }
}

public void deleteApplicationVersion(String appId)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplicationVersion");
 System.out.println("\tapplication identifier\t= " + appId);

 // clear out roles for the application
 database.removeRolesForApplication(appId);

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-15

}

public void deleteApplication(String appName)
{
 System.out.println("SimpleSampleRoleMapperProviderImpl.deleteApplication");
 System.out.println("\tapplication name\t= " + appName);

 // clear out roles for the application
 database.removeRolesForApplication(appName);
}

class SampleDeployRoleHandle implements DeployRoleHandle
{
 Date date;
 String application;
 String component;
 ComponentType componentType;

 SampleDeployRoleHandle(String app, String comp, ComponentType type)
 {
 this.application = app;
 this.component = comp;
 this.componentType = type;
 this.date = new Date();
 }

 public String getApplication() { return application; }
 public String getComponent() { return component; }
 public ComponentType getComponentType() { return componentType; }

 public String toString()
{
 String name = component;
 if (componentType == ComponentType.APPLICATION)
 name = application;
 return componentType +" "+ name +" ["+ date.toString() +"]";
 }
 }
}

Example 9–3 shows the sample SecurityRole implementation that is used along
with the SimpleSampleRoleMapperProviderImpl.java runtime class.

Example 9–3 SimpleSampleSecurityRoleImpl.java

package examples.security.providers.roles.simple;
import weblogic.security.service.SecurityRole;
/*package*/ class SimpleSampleSecurityRoleImpl implements SecurityRole
{
 private String roleName; // the role's name
 private int hashCode; // the role's hash code
/*package*/ SimpleSampleSecurityRoleImpl(String roleName)
{
 this.roleName = roleName;
 this.hashCode = roleName.hashCode() + 17;
}
public boolean equals(Object genericRole)
{
 // if the other role is null, we're not the same
 if (genericRole == null) {

How to Develop a Custom Role Mapping Provider

9-16 Developing Security Providers for Oracle WebLogic Server

 return false;
 }
// if we're the same java object, we're the same
if (this == genericRole) {
 return true;
}

// if the other role is not a simple sample role mapper role,
// we're not the same
if (!(genericRole instanceof SimpleSampleSecurityRoleImpl)) {
return false;
}

// Cast the other role to a simple sample role mapper role.
SimpleSampleSecurityRoleImpl sampleRole =
(SimpleSampleSecurityRoleImpl)genericRole;
// if our names don't match, we're not the same
if (!roleName.equals(sampleRole.getName())) {
 return false;
}
// we're the same
 return true;
}
public String toString()
{
return roleName;
}

public int hashCode()
{
return hashCode;
}

public String getName()
{
 return roleName;
}
public String getDescription()
{
 return "";
}
}

9.5.2 Role Consumer SSPI
WebLogic Server implements a role consumer for Web service annotations. This
release of WebLogic Server includes an SSPI that Role Mapping providers can use to
obtain the role collections.

The RoleConsumer SSPI is optional; only those Role Mapping providers that
implement the SSPI are called to consume a role collection.

The SSPI supports both the delivery of initial role collections and the delivery of
updated role collections.

All Role Mapping providers that support the RoleConsumer SSPI are called to
consume a role collection. Each Role Mapping provider can choose to skip or obtain
the role collection for a given role set. In the case where a provider persists roles, the

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-17

provider need only collect the role once. However, providers keeping roles in memory
can obtain the role collection again.

The out-of-the-box WebLogic Server Role Mapping providers persist the role into
LDAP.

9.5.2.1 Required SSPI Interfaces
If you want your custom Role Mapping provider to support the delivery of role
collections, you must implement three interfaces:

■ weblogic.security.spi.RoleConsumerFactory

■ weblogic.security.spi.RoleConsumer

■ weblogic.security.spi.RoleCollectionHandler

These interfaces are described in the sections that follow.

9.5.2.2 Implement the RoleConsumerFactory SSPI Interface
A Role Mapping provider implements the RoleConsumerFactory interface so that
an instance of a RoleConsumer is available to the WebLogic Security Framework. The
WebLogic Security Framework calls your RoleConsumerFactory implementation to
obtain the provider's implementation of the role consumer.

The RoleConsumerFactory SSPI has one method, which returns your
implementation of the RoleConsumer SSPI interface.

public interface RoleConsumerFactory
{
 /**
 * Obtain the implementation of the RoleConsumer
 * security service provider interface (SSPI).<P>
 *
 * @return a RoleConsumer SSPI implementation.<P>
 */
 public RoleConsumer getRoleConsumer();
}

9.5.2.3 Implement the RoleConsumer SSPI Interface
The RoleConsumer SSPI returns a role collection handler for consumption of a role
collection. It has one method, getRoleCollectionHandler(), which takes a
RoleCollectionInfo implementation as an argument and returns your
implementation of the RoleCollectionHandler interface.

public interface RoleConsumer
{
 /**
 * Obtain a role handler for consumption of a role collection.
 *
 * @param info the RoleCollectionInfo for the role collection.
 *
 * @return a RoleCollectionHandler or NULL which indicates
 * that the role collection is not needed.
 *
 * @exception ConsumptionException if an error occurs
 * obtaining the handler and the role collection cannot be consumed.
 */
 public RoleCollectionHandler getRoleCollectionHandler(
 RoleCollectionInfo info)

How to Develop a Custom Role Mapping Provider

9-18 Developing Security Providers for Oracle WebLogic Server

 throws ConsumptionException;
}

The WebLogic Security Framework calls the getRoleCollectionHandler()
method and passes data about a role collection to a security provider as an
implementation of the RoleCollectionInfo interface. (This interface
implementation is provided for you, you do not have to implement it.)

You use the RoleCollectionInfo getName(), getVersion(),
getTimestamp(), and getResourceTypes() methods to discover information
about this role collection. You then return a RoleCollectionHandler, or NULL to
indicate that the role collection is not needed.

public interface RoleCollectionInfo
{
 /**
 * Get the name of the collection.
 */
 public String getName();

 /**
 * Get the runtime version of the role.
 */
 public String getVersion();

 /**
 * Get the timestamp of the role.
 */
 public String getTimestamp();

 /**
 * Get the resource types used in the role collection.
 */
 public Resource[] getResouceTypes();
}

9.5.2.4 Implement the RoleCollectionHandler SSPI Interface
The RoleConsumer.getRoleCollectionHandler() method returns your
implementation of the RoleCollectionHandler interface.
RoleCollectionHandler has two methods: setRole() and done(). The
setRole() method takes a resource, a role name, and an array of user and group
names that defines what user names and group names are to be assigned to that role
for the given resource.

The done() method signals the completion of the role collection.

public interface RoleCollectionHandler
{
 /**
 * Set a role for the specified resource.
 */
 public void setRole(Resource resource, String roleName, String[]
userAndGroupNames)
 throws ConsumptionException;

 /**
 * Signals the completion of the role collection.
 */

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-19

 public void done()
 throws ConsumptionException;

}

9.5.2.5 Supporting an Updated Role Collection
To support the delivery of an updated role collection, all Role Mapping providers that
support the RoleConsumer SSPI need to examine the contents of the
RoleCollectionInfo passed in the
RoleConsumer.getRoleCollectionHandler() method to determine if a role
collection has changed. Each provider must decide (possibly by configuration) how to
perform conflict resolution with the initial role collection and any customized role
received outside of the SSPI.

For the WebLogic Server supplied Role Mapping providers, customized roles will not
be replaced by the updated role collection: all roles from the initial role collection will
be removed and only the customized roles, plus the updated role collection, will be in
effect. If the role collection info has a different timestamp or version, it's treated as an
updated role collection. The collection name is used as a persistence key.

9.5.2.6 The RoleConsumerMBean
Role Mapping providers that implement the Role Consumer SSPI must also
implement the
weblogic.management.security.authorization.RoleConsumerMBean to
indicate that the provider supports policy consumption.

9.5.3 PolicyStoreMBean
This release of WebLogic Server includes support for a new MBean
(weblogic.management.security.authorization.PolicyStoreMBean) that
allows for standard management (add, delete, get, list, modify, read) of
administrator-generated XACML policies and policy sets. An Authorization or Role
Mapping provider MBean can optionally implement this MBean interface.

The PolicyStoreMBean methods allow security administrators to manage policy in the
server as XACML documents. This includes creating and managing a domain that
uses the default XACML provider, as well as managing XACML documents that the
administrator has created. The administrator can then use WLST to manage these
XACML policies in WebLogic Server.

WebLogic Server includes an implementation of this MBean for use with the
out-of-the-box XACML providers, and you can write your own implementation of this
MBean for use with your own custom Authorization or Role Mapping providers. The
WebLogic Server out-of-the-box XACML providers support the mandatory features of
XACML, as described in the XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf), with the Oracle-specific usage
described in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Policies are expressed as XACML 2.0 Policy or PolicySet documents. Custom
Authorization providers should expect standard Policy or PolicySet documents as
described in the XACML 2.0 Core Specification. Custom Role Mapping providers
should expect Policy or PolicySet documents consistent with role assignment policies
described by the Core and hierarchical role based access control (RBAC) profile of
XACML v2.0 (http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-rbac-profile1-spec-os.pdf).

How to Develop a Custom Role Mapping Provider

9-20 Developing Security Providers for Oracle WebLogic Server

Specifically, the Target must contain:

■ An ActionAttributeDesignator with the id,
urn:oasis:names:tc:xacml:1.0:action:action-id, and the value,
urn:oasis:names:tc:xacml:2.0:actions:enableRole, according to
anyURI-equal. For example:

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0:ac
tions:enableRole
</AttributeValue>

<ActionAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

</ActionMatch>
</Action>

■ A ResourceAttributeDesignator with the id,
urn:oasis:names:tc:xacml:2.0:subject:role, and a value naming the
role being assigned, according to string-equal. For example:

<ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor-or-self"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

9.5.3.1 Examining the Format of a XACML Policy File
The XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf) and the Oracle extensions described in
Securing Resources Using Roles and Policies for Oracle WebLogic Server are the definitive
sources of information for the XACML policy files used by the supplied XACML
Authorization and Role Mapping Providers.

However, if as part of your development process you want to take a look at the format
of a supported XACML file, perhaps the most convenient way is to use the
Administration Console to export the data from the XACML Authorization or Role
Mapping provider's database as a XACML file. Copy this exported XACML file to a
file with some other name and use the tool of your choice to review the copy.

9.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean
Example 9–4 shows an example of using WLST to add a single policy to an instance of
the PolicyStoreMBean from a XACML file.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<property name="xacml-docs-dir" value="${xacmldir}/xacml-docs"/>
<sysproperty key="file" value="${xacml-docs-dir}/policy-getSubject.xacml"/>

Note: Treat the exported file as read-only. If you do make changes,
do not import the file back into WebLogic Server. Editing exported
files might result in an unusable WebLogic Server configuration and is
not supported.

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-21

Example 9–4 Using WLST to Add a Policy to the PolicyStoreMBean

:
try:
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 fil = System.getProperty("file")
 prov = System.getProperty("provider")
 stat = System.getProperty("status")

def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 print("calling open()")
 xacmlFile = open(fil,"r")
 print("calling read()")
 xacmlDoc = xacmlFile.read()
 print("calling cmo.addPolicy")
 if stat == "none":
 cmo.addPolicy(xacmlDoc)
 else:
 cmo.addPolicy(xacmlDoc, stat)
 print("Add error handling")
:
:

As described in the "Navigating and Interrogating MBeans" section of Understanding
the WebLogic Scripting Tool, when WLST first connects to an instance of WebLogic
Server, the variable, cmo (Current Management Object), is initialized to the root of all
configuration management objects, DomainMBean. When you navigate to an MBean
type, in this case SecurityConfigurationMBean, the value of cmo reflects
SecurityConfigurationMBean. When you navigate to an MBean instance, in this
case to an Authorizer MBean that implements the PolicyStoreMBean, identified in the
example by the variable prov, WLST changes the value of cmo to be the current
MBean instance.

The example uses the addPolicy() method of the PolicyStoreMBean to add a policy
read from a XACML file to the policy store. Two variants of the addPolicy() method
(without and with status) are shown.

If you use an addPolicy() method that does not specify status, it defaults to
ACTIVE, which indicates that the policy is evaluated for any decision to which its
target applies. You can explicitly set status to be ACTIVE, INACTIVE, or
BYREFERENCE. The INACTIVE status indicates that the policy will never be
evaluated and is only being stored. The BYREFERENCE status indicates that the
policy will only be evaluated when referenced by a policy set that is being evaluated.

You can invoke this type of WLST script from the command line, in a manner similar
to the following:

java -Dhost="localhost " -Dprotocol="t3" -Dauthuser="weblogic"
-Dauthpwd="weblogic" -Dport="7001" -Ddomain="mydomain" -Drealm="myrealm"

How to Develop a Custom Role Mapping Provider

9-22 Developing Security Providers for Oracle WebLogic Server

-Dprovider="Authorizers/XACMLAuthorizer"
-Dfile="C:/XACML/xacml-docs/policy12.xml" -Dstatus="none" weblogic.WLST
XACML/scripts/XACMLaddPolicy.py

9.5.3.3 Using WLST to Read a PolicySet as a String
Example 9–5 shows an example of using WLST to read a PolicySet as a string.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<sysproperty key="identifier"
value="urn:sample:xacml:2.0:wlssecqa:resource:type@E@Fejb@G@M@Oapplication@ENoD
DRolesOrPoliciesEar@M@Omodule@Eejb11inEarMiniAppBean.jar@M@Oejb@EMiniAppBean@
M@Omethod@EgetSubject@M@OmethodInterface@ERemote"/>
<sysproperty key="version" value="1.0"/>

Example 9–5 Using WLST to Read a PolicySet as a String

:
:
try:
 print("start XACMLreadPolicySet.py")
 protocol = System.getProperty("protocol")
 host = System.getProperty("host")
 user = System.getProperty("authuser")
 passwd = System.getProperty("authpwd")
 port = System.getProperty("port")
 dom = System.getProperty("domain")
 rlm = System.getProperty("realm")
 prov = System.getProperty("provider")
 id = System.getProperty("identifier")
 vers = System.getProperty("version")
:
:
def configure():
try:
 url = protocol + "://" + host + ":" + port
 connect(user,passwd, url)
 path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
 print("cd'ing to " + path)
 cd(path)
 polset = cmo.readPolicySetAsString(id, vers)
 print("readPolicySetAsString() returned the following policy set: " + polset)
 print"Add error handling."
:
:

As described in the XACML 2.0 Core Specification
(http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf), the <PolicySet> element contains a
set of <Policy> or other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. See the XACML 2.0 Core Specification for
complete information.

9.5.4 Bulk Role Mapping Providers
This release of WebLogic Server includes bulk access versions of the following Role
Mapping provider SSPI interfaces:

■ BulkRoleProvider

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-23

■ BulkRoleMapper

The bulk access SSPI interfaces allow Role Mapping providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a 'for'
loop. The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the
same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI
interfaces are used. For example, the BulkRoleMapper.getRoles() method
returns a Map of roles indexed first by resource and then by their names
(Map<Resource, Map<String, SecurityRole>>), representing the security
roles associated with the specified resources that have been granted to the subject.

9.5.5 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom Role Mapping provider by following these steps:

1. Section 9.5.5.1, "Create an MBean Definition File (MDF)"

2. Section 9.5.5.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 9.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

4. Section 9.5.5.4, "Install the MBean Type Into the WebLogic Server Environment"

9.5.5.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Role Mapping provider to a text file.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Role Mapping provider.

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

Note: The MDF for the sample Role Mapping provider is called
SimpleSampleRoleMapper.xml.

How to Develop a Custom Role Mapping Provider

9-24 Developing Security Providers for Oracle WebLogic Server

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

9.5.5.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Role Mapping provider. Follow the instructions that are appropriate to your
situation:

■ Section 9.5.5.2.1, "No Custom Operations"

■ Section 9.5.5.2.2, "Custom Operations"

9.5.5.2.1 No Custom Operations If the MDF for your custom Role Mapping provider
does not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. Proceed to Section 9.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

9.5.5.2.2 Custom Operations If the MDF for your custom Role Mapping provider does
include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Role Mapping providers).

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-25

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. For any custom operations in your MDF, implement the methods using the
method stubs.

4. Save the file.

5. Proceed to Section 9.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Role Mapping providers).

How to Develop a Custom Role Mapping Provider

9-26 Developing Security Providers for Oracle WebLogic Server

4. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

5. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

6. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

7. Proceed to Section 9.5.5.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

9.5.5.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the
SampleRoleMapper MDF through the WebLogic MBeanMaker will yield an MBean
interface file called SampleRoleMapperMBean.java.

9.5.5.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Role Mapping provider into an
MBean JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Role Mapping provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Role Mapping providers).

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-27

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

9.5.5.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
installation directory for WebLogic Server. This "deploys" your custom Role Mapping
provider—that is, it makes the custom Role Mapping provider manageable from the
WebLogic Server Administration Console.

You can create instances of the MBean type by configuring your custom Role Mapping
provider (see Section 9.5.6, "Configure the Custom Role Mapping Provider Using the
Administration Console"), and then use those MBean instances from a GUI, from other

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory =
dirX,dirY, WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

How to Develop a Custom Role Mapping Provider

9-28 Developing Security Providers for Oracle WebLogic Server

Java code, or from APIs. For example, you can use the WebLogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances.

9.5.6 Configure the Custom Role Mapping Provider Using the Administration Console
Configuring a custom Role Mapping provider means that you are adding the custom
Role Mapping provider to your security realm, where it can be accessed by
applications requiring role mapping services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom Role
Mapping providers:

■ Section 9.5.6.1, "Managing Role Mapping Providers and Deployment Descriptors"

■ Section 9.5.6.2, "Enabling Security Role Deployment"

9.5.6.1 Managing Role Mapping Providers and Deployment Descriptors
Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java EE and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called
web.xml and weblogic.xml) contain information for implementing the Java EE
security model, including security roles. Typically, you will want to include this
information when first configuring your Role Mapping providers in the WebLogic
Server Administration Console.

Because the Java EE platform standardizes Web application and EJB security in
deployment descriptors, WebLogic Server integrates this standard mechanism with its
Security Service to give you a choice of techniques for securing Web application and
EJB resources. You can use deployment descriptors exclusively, the Administration
Console exclusively, or you can combine the techniques for certain situations.

Depending on the technique you choose, you also need to apply a Security Model.
WebLogic supports different security models for individual deployments, and a
security model for realm-wide configurations that incorporate the technique you want
to use.

For more information, see "Options for Securing EJB and Web Application Resources"
in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

When configured to use deployment descriptors, WebLogic Server reads security role
information from the web.xml and weblogic.xml deployment descriptor files
(examples of web.xml and weblogic.xml files are shown in Example 9–6 and
Example 9–7. This information is then copied into the security provider database for
the Role Mapping provider.

Example 9–6 Sample web.xml File

<web-app>

Note: The steps for configuring a custom Role Mapping provider
using the WebLogic Server Administration Console are described
under"Configuring WebLogic Security Providers" in Administering
Security for Oracle WebLogic Server.

How to Develop a Custom Role Mapping Provider

Role Mapping Providers 9-29

 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>developers</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>developers</role-name>
 </security-role>
</web-app>

Example 9–7 Sample weblogic.xml File

<weblogic-web-app>
 <security-role-assignment>
 <role-name>developers</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

9.5.6.2 Enabling Security Role Deployment
If you implemented the DeployableRoleProviderV2 SSPI as part of developing
your custom Role Mapping provider and want to support deployable security roles,
the person configuring the custom Role Mapping provider (that is, you or an
administrator) must be sure that the Role Deployment Enabled box in the WebLogic
Server Administration Console is checked. Otherwise, deployment for the Role
Mapping provider is considered "turned off." Therefore, if multiple Role Mapping
providers are configured, the Role Deployment Enabled box can be used to control
which Role Mapping provider is used for security role deployment.

9.5.7 Provide a Mechanism for Security Role Management
While configuring a custom Role Mapping provider via the WebLogic Server
Administration Console makes it accessible by applications requiring role mapping
services, you also need to supply administrators with a way to manage this security
provider's associated security roles. The WebLogic Role Mapping provider, for
example, supplies administrators with a Role Editor page that allows them to add,
modify, or remove security roles for various WebLogic resources.

Neither the Role Editor page nor access to it is available to administrators when you
develop a custom Role Mapping provider. Therefore, you must provide your own
mechanism for security role management. This mechanism must read and write
security role data (that is, expressions) to and from the custom Role Mapping
provider's database.

You can accomplish this task in one of two ways:

How to Develop a Custom Role Mapping Provider

9-30 Developing Security Providers for Oracle WebLogic Server

■ Section 9.5.7.1, "Option 1: Develop a Stand-Alone Tool for Security Role
Management"

■ Section 9.5.7.2, "Option 2: Integrate an Existing Security Role Management Tool
into the Administration Console"

9.5.7.1 Option 1: Develop a Stand-Alone Tool for Security Role Management
You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom Role
Mapping provider, nor do you need to develop any management MBeans. However,
your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see Section 3.6.3, "WebLogic
Resource Identifiers."

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Role Mapping provider's
database.

9.5.7.2 Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console
You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see Section 3.6.3, "WebLogic
Resource Identifiers."

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Role Mapping provider's
database.

4. Link into the Administration Console using basic console extension techniques, as
described in Extending the Administration Console for Oracle WebLogic Server.

10

Auditing Providers 10-1

10Auditing Providers

This chapter describes Auditing provider concepts and functionality, and provides
step-by-step instructions for developing a custom Auditing provider.

Auditing is the process whereby information about operating requests and the
outcome of those requests are collected, stored, and distributed for the purposes of
non-repudiation. In WebLogic Server, an Auditing provider provides this electronic
trail of computer activity.

The following sections describe Auditing provider concepts and functionality, and
provide step-by-step instructions for developing a custom Auditing provider:

■ Section 10.1, "Auditing Concepts"

■ Section 10.2, "The Auditing Process"

■ Section 10.3.3, "Extend weblogic.management.security.audit.ContextHandlerImpl"

■ Section 10.5, "How to Develop a Custom Auditing Provider"

■ Section 10.6, "Security Framework Audit Events"

10.1 Auditing Concepts
Before you develop an Auditing provider, you need to understand the following
concepts:

■ Section 10.1.1, "Audit Channels"

■ Section 10.1.2, "Auditing Events From Custom Security Providers"

10.1.1 Audit Channels
An Audit Channel is the component of an Auditing provider that determines whether
a security event should be audited, and performs the actual recording of audit
information based on Quality of Service (QoS) policies.

10.1.2 Auditing Events From Custom Security Providers
Each type of security provider can call the configured Auditing providers with a
request to write out information about security-related events, before or after these
events take place. For example, if a user attempts to access a withdraw method in a
bank account application (to which they should not have access), the Authorization

Note: For more information about Audit Channels, see
Section 10.5.1.2, "Implement the AuditChannel SSPI."

The Auditing Process

10-2 Developing Security Providers for Oracle WebLogic Server

provider can request that this operation be recorded. Security-related events are only
recorded when they meet or exceed the severity level specified in the configuration of
the Auditing providers.

For information about how to post audit events from a custom security provider, see
Chapter 12, "Auditing Events From Custom Security Providers."

10.2 The Auditing Process
Figure 10–1 shows how Auditing providers interact with the WebLogic Security
Framework and other types of security providers (using Authentication providers as
an example) to audit selected events. An explanation follows.

Figure 10–1 Auditing Providers, the WebLogic Security Framework, and Other Security
Providers

Auditing providers interact with the WebLogic Security Framework and other types of
security providers in the following manner:

1. A resource container passes a user's authentication information (for example, a
username/password combination) to the WebLogic Security Framework as part of
a login request.

Note: In Figure 10–1 and the explanation below, the "other types of
security providers" are a WebLogic Authentication provider and a
custom Authentication provider. However, these can be any type of
security provider that is developed as described in Chapter 12,
"Auditing Events From Custom Security Providers."

The Auditing Process

Auditing Providers 10-3

2. The WebLogic Security Framework passes the information associated with the
login request to the configured Authentication providers.

3. If, in addition to providing authentication services, the Authentication providers
are designed to post audit events, the Authentication providers will each:

a. Instantiate an AuditEvent object. At minimum, the AuditEvent object
includes information about the event type to be audited and an audit severity
level.

b. Make a trusted call to the Auditor Service, passing in the AuditEvent object.

4. The Auditor Service passes the AuditEvent object to the configured Auditing
providers' runtime classes (that is, the AuditChannel SSPI implementations),
enabling audit event recording.

5. The Auditing providers' runtime classes use the event type, audit severity and
other information (such as the Audit Context) obtained from the AuditEvent
object to control audit record content. Typically, only one of the configured
Auditing providers will meet all the criteria for auditing.

6. When the criteria for auditing specified by the Authentication providers in their
AuditEvent objects is met, the appropriate Auditing provider's runtime class
(that is, the AuditChannel SSPI implementation) writes out audit records in the
manner their implementation specifies.

Note: An AuditEvent class is created by implementing either the
AuditEvent SSPI or an AuditEvent convenience interface in the
Authentication provider's runtime class, in addition to the other
security service provider interfaces (SSPIs) the custom Authentication
provider must already implement. For more information about Audit
Events and the AuditEvent SSPI/convenience interfaces, see
Section 12.2.1, "Create an Audit Event."

Note: This is a trusted call because the Auditor Service is already
passed to the security provider's initialize method as part of its
"Provider" SSPI implementation. For more information, see
Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Note: Depending on the Authentication providers' implementations
of the AuditEvent convenience interface, audit requests may occur
both pre and post event, as well as just once for an event.

Note: For more information about audit severity levels and the
Audit Context, see Section 12.2.1.3, "Audit Severity" and
Section 12.2.1.4, "Audit Context", respectively.

Note: Depending on the AuditChannel SSPI implementation, audit
records may be written to a file, a database, or some other persistent
storage medium when the criteria for auditing is met.

Implementing the ContextHandler MBean

10-4 Developing Security Providers for Oracle WebLogic Server

10.3 Implementing the ContextHandler MBean
The ContextHandlerMBean,
weblogic.management.security.audit.ContextHandler, provides a set of
attributes for ContextHandler support. You use this interface to manage audit
providers that support context handler entries in a standard way.

An Auditor provider MBean can optionally implement the ContextHandlerMBean
MBean. The Auditor provider can then use the MBean to determine the supported and
active ContextHandler entries.

The WebLogic Server Administration Console detects when an Auditor provider
implements this MBean and automatically provides a tab for using these attributes.

10.3.1 ContextHandlerMBean Methods
The ContextHandlerMBean interface implements the following methods:

■ getActiveContextHandlerEntries

public String[] getActiveContextHandlerEntries()

Returns the ContextHandler entries that the Audit provider is currently
configured to process.

■ getSupportedContextHandlerEntries

public String[] getSupportedContextHandlerEntries()

Returns the list of all ContextHandler entries supported by the auditor.

■ setActiveContextHandlerEntries

public void setActiveContextHandlerEntries(String[] types) throws
InvalidAttributeValueException

Sets the ContextHandler entries that the Audit provider will process. The entries
you specify must be listed in the Audit provider's
SupportedContextHandlerEntries attribute.

Note: The ContextHandler entries associated with the
ContextHandlerMBean are not related to, nor do they affect, the
contents of an AuditEvent that is passed to the Audit providers. An
AuditEvent received by a provider may or may not include a
ContextHandler with ContextElements. If a ContextHandler is
included, an Audit provider can get the ContextHandler from the
AuditEvent, regardless of whether you implemented the
ContextHandlerMBean management interface. In particular, the
AuditContext getContext method returns a
weblogic.security.service.ContextHandler interface that is
independent of the context handler implemented by the
ContextHandlerMBean.

You can choose to implement the ContextHandlerMBean context
handler in a manner that compliments the AuditContext getContext
method. (The SimpleSampleAuditProviderImpl.java sample
takes this approach.) However, there is no requirement that you do so.

Implementing the ContextHandler MBean

Auditing Providers 10-5

10.3.2 Example: Implementing the ContextHandlerMBean
Example 10–5 shows the SimpleSampleAuditProviderImpl.java class, which is
the runtime class for the sample Auditing provider. This sample Auditing provider
has been enhanced to implement the ContextHandlerMBean.

An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker
utility to generate the Java files that comprise an MBean type. All MDFs must extend a
required SSPI MBean that is specific to the type of the security provider you have
created, and can implement optional SSPI MBeans.

Example 10–1 shows the key sections of the MDF for the sample Auditing provider,
which implements the optional ContexthandlerMBean.

Example 10–1 Example: SimpleSampleAuditor.xml

<MBeanType
Name = "SimpleSampleAuditor"
DisplayName = "SimpleSampleAuditor"
Package = "examples.security.providers.audit.simple"
Extends = "weblogic.management.security.audit.Auditor"
Implements = "weblogic.management.security.audit.ContextHandler"
PersistPolicy = "OnUpdate"
>
...
<MBeanAttribute
Name = "SupportedContextHandlerEntries"
Type = "java.lang.String[]"
Writeable = "false"
Default = "new String[] {
"com.bea.contextelement.servlet.HttpServletRequest" }"
Description = "List of all ContextHandler entries
supported by the auditor."
/>

10.3.3 Extend weblogic.management.security.audit.ContextHandlerImpl
The ContextHandlerMBean has an setActiveContextHandlerEntries attribute
that sets the ContextHandler entries that the Audit provider is currently configured to
process. The entries you specify must be listed in the Audit provider's
SupportedContextHandlerEntries attribute. However, this requirement is not
actually enforced by the MBean. Additional work is required to validate that this
attribute can set only values from the SupportedContextHandlerEntries
attribute.

You must also create an MBean customizer (for example, you might call it
MyAuditorImpl.java) file that extends
weblogic.management.security.audit.ContextHandlerImpl. Extending
weblogic.management.security.audit.ContextHandlerImpl gives the
provider access to the ActiveContextHandlerEntries attribute validator, which
ensures that the entries include only SupportedContextHandlerEntries.

An example of extending ContextHandlerImpl is available in
SimpleSampleAuditorImpl, which is shown in Example 10–2.

Example 10–2 SimpleSampleAuditorImpl

package examples.security.providers.audit.simple;
import javax.management.MBeanException;
import javax.management.modelmbean.RequiredModelMBean;

Do You Need to Develop a Custom Auditing Provider?

10-6 Developing Security Providers for Oracle WebLogic Server

import weblogic.management.security.audit.ContextHandlerImpl;

/**
* The simple sample auditor's mbean implementation.
* <p>
* It is needed to inherit the ContextHandlerMBean's ActiveContextHandlerEntries
* attribute validator that ensures that the ActiveContextHandlerEntries
* attribute only contains values from the SupportedContextHandlerEntries
* attribute.
*
* @author Copyright © 1996, 2008, Oracle and/or its affiliates.
* All rights reserved.
*/
public class SimpleSampleAuditorImpl extends ContextHandlerImpl
// Note: extend ContextHandlerImpl instead of AuditorImpl to inherit
// the ActiveContextHandlerEntries attribute validator.
{
/**
* Standard mbean impl constructor.
*
* @throws MBeanException
*/
public SimpleSampleAuditorImpl(RequiredModelMBean base) throws MBeanException
{
super(base);
}
}

After you implement code similar to that in SimpleSampleAuditorImpl, add code
to your Audit runtime provider to get the ActiveContextHandlerEntries. One
possible way to do this is shown in Example 10–3.

Example 10–3 Getting Active Context Handler Entries

 String [] activeHandlerEntries = myMBean.getActiveContextHandlerEntries();
 if (activeHandlerEntries != null) {
 for (int i=0; i<activeHandlerEntries.length; i++) {
 if ((activeHandlerEntries[i] != null) &&
 (activeHandlerEntries[i].equalsIgnoreCase(HTTP_REQUEST_ELEMENT))) {
 handlerEnabled = true;
 break;
 }
 }
 }

10.4 Do You Need to Develop a Custom Auditing Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Auditing provider. The WebLogic Auditing provider records information from a
number of security requests, which are determined internally by the WebLogic
Security Framework. The WebLogic Auditing provider also records the event data
associated with these security requests, and the outcome of the requests.

The WebLogic Auditing provider makes an audit decision in its writeEvent method,
based on the audit severity level it has been configured with and the audit severity
contained within the AuditEvent object that is passed into the method. (For more
information about AuditEvent objects, see Section 12.2.1, "Create an Audit Event."

How to Develop a Custom Auditing Provider

Auditing Providers 10-7

If there is a match, the WebLogic Auditing provider writes audit information to the
DefaultAuditRecorder.log file, which is located in the WL_HOME\yourdomain\
yourserver\logs directory. Example 10–4 is an excerpt from the
DefaultAuditRecorder.log file.

Example 10–4 DefaultAuditRecorder.log File: Sample Output

When Authentication suceeds. [SUCCESS]
Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####
When Authentication fails. [FAILURE]
Audit Record Begin <Feb 23, 2005 11:42:01 AM> <Severity=FAILURE>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####When Operations are invoked.[SUCCESS]
When a user account is unlocked. [SUCCESS]
Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><USERUNLOCKED>>> Audit
Record End ####
When an Authorization request succeeds. [SUCCESS]
Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authorization Audit Event ><Subject: 1
Principal = class weblogic.security.principal.WLSUserImpl("TestUser")
><ONCE><<jndi>><type=<jndi>, application=, path={weblogic}, action=lookup>>>
Audit Record End ####

Specifically, Example 10–4 shows the Role Manager (a component in the WebLogic
Security Framework that deals specifically with security roles) recording an audit
event to indicate that an authorized administrator has accessed a protected method in
a certificate servlet.

You can specify a new directory location for the DefaultAuditRecorder.log file
on the command line with the following Java startup option:

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\DefaultAuditRecorder.log.

If you want to write audit information in addition to that which is specified by the
WebLogic Security Framework, or to an output repository that is not the
DefaultAuditRecorder.log (that is, to a simple file with a different name/location or to
an existing database), then you need to develop a custom Auditing provider.

10.5 How to Develop a Custom Auditing Provider
If the WebLogic Auditing provider does not meet your needs, you can develop a
custom Auditing provider by following these steps:

1. Section 10.5.1, "Create Runtime Classes Using the Appropriate SSPIs"

2. Section 10.5.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

Note: You can change the audit severity level that the WebLogic
Auditing provider is configured with using the WebLogic Server
Administration Console. For more information, see "Configuring a
WebLogic Auditing Provider" in Administering Security for Oracle
WebLogic Server.

How to Develop a Custom Auditing Provider

10-8 Developing Security Providers for Oracle WebLogic Server

3. Section 10.5.3, "Configure the Custom Auditing Provider Using the
Administration Console"

10.5.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Auditing provider by following these steps:

■ Section 10.5.1.1, "Implement the AuditProvider SSPI"

■ Section 10.5.1.2, "Implement the AuditChannel SSPI"

For an example of how to create a runtime class for a custom Auditing provider, see
Section 10.5.1.3, "Example: Creating the Runtime Class for the Sample Auditing
Provider."

10.5.1.1 Implement the AuditProvider SSPI
To implement the AuditProvider SSPI, provide implementations for the methods
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs" and the
following method:

■ getAuditChannel

public AuditChannel getAuditChannel();

The getAuditChannel method obtains the implementation of the
AuditChannel SSPI. For a single runtime class called
MyAuditProviderImpl.java, the implementation of the getAuditChannel
method would be:

return this;
If there are two runtime classes, then the implementation of the getAuditChannel
method could be:

return new MyAuditChannelImpl;

This is because the runtime class that implements the AuditProvider SSPI is
used as a factory to obtain classes that implement the AuditChannel SSPI.

For more information about the AuditProvider SSPI and the getAuditChannel method,
see the Java API Reference for Oracle WebLogic Server.

10.5.1.2 Implement the AuditChannel SSPI
To implement the AuditChannel SSPI, provide an implementation for the following
method:

■ writeEvent

public void writeEvent(AuditEvent event)

The writeEvent method writes an audit record based on the information
specified in the AuditEvent object that is passed in. For more information about
AuditEvent objects, see Section 12.2.1, "Create an Audit Event."

How to Develop a Custom Auditing Provider

Auditing Providers 10-9

For more information about the AuditChannel SSPI and the writeEvent method, see
the Java API Reference for Oracle WebLogic Server.

10.5.1.3 Example: Creating the Runtime Class for the Sample Auditing Provider
Example 10–5 shows the SimpleSampleAuditProviderImpl.java class, which is
the runtime class for the sample Auditing provider. This runtime class includes
implementations for:

■ The three methods inherited from the SecurityProvider interface:
initialize, getDescription and shutdown (as described in Section 3.2.2,
"Understand the Purpose of the "Provider" SSPIs.")

■ The method inherited from the AuditProvider SSPI: the getAuditChannel
method (as described in Section 10.5.1.1, "Implement the AuditProvider SSPI").

■ The method in the AuditChannel SSPI: the writeEvent method (as described
in Section 10.5.1.2, "Implement the AuditChannel SSPI").

Example 10–5 SimpleSampleAuditProviderImpl.java

package examples.security.providers.audit.simple;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import javax.servlet.http.HttpServletRequest;
import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditChannel;
import weblogic.security.spi.AuditContext;
import weblogic.security.spi.AuditEvent;
import weblogic.security.spi.AuditProvider;
import weblogic.security.spi.SecurityServices;

public final class SimpleSampleAuditProviderImpl implements AuditProvider, AuditChannel
{
 private String description; // a description of this provider
 private PrintStream log; // the log file that events are written to
 private boolean handlerEnabled = false;
 private final static String HTTP_REQUEST_ELEMENT =
 "com.bea.contextelement.servlet.HttpServletRequest";
 public void initialize(ProviderMBean mbean, SecurityServices services)
 {
 System.out.println("SimpleSampleAuditProviderImpl.initialize");
 SimpleSampleAuditorMBean myMBean = (SimpleSampleAuditorMBean)mbean;
 description = myMBean.getDescription() + "\n" + myMBean.getVersion();
 String [] activeHandlerEntries = myMBean.getActiveContextHandlerEntries();
 if (activeHandlerEntries != null) {
 for (int i=0; i<activeHandlerEntries.length; i++) {
 if ((activeHandlerEntries[i] != null) &&
 (activeHandlerEntries[i].equalsIgnoreCase(HTTP_REQUEST_ELEMENT))) {
 handlerEnabled = true;
 break;
 }
 }
 }

Note: The bold face code in Example 10–5 highlights the class
declaration and the method signatures.

How to Develop a Custom Auditing Provider

10-10 Developing Security Providers for Oracle WebLogic Server

 File file = new File(myMBean.getLogFileName());
 System.out.println("\tlogging to " + file.getAbsolutePath());
 try {
 log = new PrintStream(new FileOutputStream(file), true);
 } catch (IOException e) {
 throw new RuntimeException(e.toString());
 }
 }

 public String getDescription()
 {
 return description;
 }
 public void shutdown()
 {
 System.out.println("SimpleSampleAuditProviderImpl.shutdown");
 log.close();
 }
 public AuditChannel getAuditChannel()
 {
 return this;
 }
 public void writeEvent(AuditEvent event)
 {
 log.println(event);

 if ((!handlerEnabled) || (!(event instanceof AuditContext)))
 return;

 AuditContext auditContext = (AuditContext)event;
 ContextHandler handler = auditContext.getContext();

 if ((handler == null) || (handler.size() == 0))
 return;

 Object requestValue = handler.getValue("com.bea.contextelement.servlet.HttpServletRequest");
 if ((requestValue == null) || (!(requestValue instanceof HttpServletRequest)))
 return;
 HttpServletRequest request = (HttpServletRequest) requestValue;
 log.println(" " + HTTP_REQUEST_ELEMENT + " method: " + request.getMethod());
 log.println(" " + HTTP_REQUEST_ELEMENT + " URL: " + request.getRequestURL());
 log.println(" " + HTTP_REQUEST_ELEMENT + " URI: " + request.getRequestURI());
 return;
 }
}

10.5.2 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

How to Develop a Custom Auditing Provider

Auditing Providers 10-11

When you understand this information and have made your design decisions, create
the MBean type for your custom Auditing provider by following these steps:

1. Section 10.5.2.1, "Create an MBean Definition File (MDF)"

2. Section 10.5.2.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 10.5.2.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

4. Section 10.5.2.4, "Install the MBean Type Into the WebLogic Server Environment"

10.5.2.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Auditing provider to a text file.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Auditing provider.

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

10.5.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Auditing provider. Follow the instructions that are appropriate to your
situation:

■ Section 10.5.2.2.1, "No Custom Operations"

■ Section 10.5.2.2.2, "Custom Operations"

10.5.2.2.1 No Custom Operations If the MDF for your custom Auditing provider does
not include any custom operations, follow these steps:

1. Create a new DOS shell.

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

Note: The MDF for the sample Auditing provider is called
SampleAuditor.xml.

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

How to Develop a Custom Auditing Provider

10-12 Developing Security Providers for Oracle WebLogic Server

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. Proceed to Section 10.5.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

10.5.2.2.2 Custom Operations If the MDF for your custom Auditing provider does
include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. For any custom operations in your MDF, implement the methods using the
method stubs.

4. Save the file.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Auditing providers).

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Auditing providers).

How to Develop a Custom Auditing Provider

Auditing Providers 10-13

5. Proceed to Section 10.5.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

4. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

5. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

6. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

7. Proceed to Section 10.5.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

10.5.2.2.3 About the Generated MBean Interface File

The MBean interface file is the client-side API to the MBean that your runtime class or
your MBean implementation will use to obtain configuration data. It is typically used
in the initialize method as described in Section 3.2.2, "Understand the Purpose of the
"Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the SampleAuditor
MDF through the WebLogic MBeanMaker will yield an MBean interface file called
SampleAuditorMBean.java.

10.5.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply

Note: The WebLogic MBeanMaker processes one MDF at a time.
Therefore, you may have to repeat this process if you have multiple
MDFs (in other words, multiple Auditing providers).

How to Develop a Custom Auditing Provider

10-14 Developing Security Providers for Oracle WebLogic Server

implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Auditing provider into an MBean
JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Auditing provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and
<filesdir> is the location where the WebLogic MBeanMaker looks for the files
to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

10.5.2.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
installation directory for WebLogic Server. This "deploys" your custom Auditing
provider; that is, it makes the custom Auditing provider manageable from the
WebLogic Server Administration Console.

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

How to Develop a Custom Auditing Provider

Auditing Providers 10-15

You can create instances of the MBean type by configuring your custom Auditing
provider (see Section 10.5.3, "Configure the Custom Auditing Provider Using the
Administration Console"), and then use those MBean instances from a GUI, from other
Java code, or from APIs. For example, you can use the WebLogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances.

10.5.3 Configure the Custom Auditing Provider Using the Administration Console
Configuring a custom Auditing provider means that you are adding the custom
Auditing provider to your security realm, where it can be accessed by security
providers requiring audit services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
Auditing providers:

■ Section 10.5.3.1, "Configuring Audit Severity"

10.5.3.1 Configuring Audit Severity
During the configuration process, an Auditing provider's audit severity must be set to
one of the following severity levels:

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory =
dirX,dirY, WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

Note: The steps for configuring a custom Auditing provider using
the WebLogic Server Administration Console are described under
"Configuring WebLogic Security Providers" in Administering Security
for Oracle WebLogic Server.

Security Framework Audit Events

10-16 Developing Security Providers for Oracle WebLogic Server

■ INFORMATION

■ WARNING

■ ERROR

■ SUCCESS

■ FAILURE

10.6 Security Framework Audit Events
This section describes the audit events that are posted by the WebLogic Server Security
Framework. If you write a custom audit provider, it should be prepared to handle
these events. The following topics are covered in this section:

■ Section 10.6.1, "Passing Additional Audit Information"

■ Section 10.6.2, "Audit Event Interfaces and Audit Events"

10.6.1 Passing Additional Audit Information
The WebLogic Security providers implement the appropriate AuditEvent interfaces
and post those events to the Audit provider. The audit events that also implement the
AuditContext interface can provide more information via a ContextHandler.

Table 10–1 lists the weblogic.security.spi subinterfaces that extend the
AuditEvent SSPI, and indicates which subinterfaces implement the AuditContext
interface.

Table 10–1 Audit Events

Audit Event Name Interface Class
Audit
Event

Audit
Context

Application Version
Event

weblogic.security.spi.Aud
itApplicationVersionEvent

Yes No

Authentication Audit
Event

weblogic.security.spi.Aud
itAtnEvent

Yes No

Authentication Audit
Event V2

weblogic.security.spi.Aud
itAtnEventV2

Yes Yes

Authorization Audit
Event

weblogic.security.spi.Aud
itAtzEvent

Yes Yes

CertPathBuilder Audit
Event

weblogic.security.spi.Aud
itCertPathBuilderEvent

Yes Yes

CertPathValidator Audit
Event

weblogic.security.spi.Aud
itCertPathValidatorEvent

Yes Yes

Configuration Audit
Event

weblogic.security.spi.Aud
itConfigurationEvent

Yes Yes

Credential Mapping
Audit Event

weblogic.security.spi.Aud
itCredentialMappingEvent

Yes Yes

Life Cycle Event weblogic.security.spi.Aud
itLifecycleEvent

Yes No

Audit Management
Event

weblogic.security.spi.Aud
itMgmtEvent

Yes No

Security Framework Audit Events

Auditing Providers 10-17

10.6.2 Audit Event Interfaces and Audit Events
In the weblogic.security.spi package, WebLogic Security defines one top-level base
interface (AuditEvent) with derived interfaces that represent the different types of
audit events.

Subsequent sections describe when the security framework and security providers
post the following audit events:

■ AuditApplicationVersionEvent

■ AuditAtnEventV2

■ AuditAtzEvent

■ AuditCerPathBuilderEvent, AuditCertPathValidatorEvent

■ AuditConfigurationEvent (AuditCreateConfigurationEvent,
AuditDeleteConfigurationEvent, AuditInvokeConfigurationEvent,
AuditSetAttributeConfigurationEvent)

■ AuditCredentialMappingEvent

■ AuditLifecycleEvent

■ AuditMgmtEvent

■ AuditPolicyEvent (AuditEndPolicyDeployEvent,
AuditPolicyDeleteAppEvent, AuditPolicyDeployEvent,
AuditPolicyUndeployEvent, AuditResourceProtectedEvent,
AuditStartPolicyDeployEvent, PolicyConsumerAuditEvent)

■ AuditRoleDeploymentEvent (AuditStartRoleDeployEvent,
AuditEndRoleDeployEvent, AuditRoleUndeployEvent,
AuditRoleDeleteAppEvent)

■ AuditRoleEvent (RoleConsumerAuditEvent)

10.6.2.1 AuditApplicationVersionEvent
Application version audit events are posted by the security framework. You can use
the getEventType method to get the type of the audit event. The actual audit string

Policy Audit Event weblogic.security.spi.Aud
itPolicyEvent

Yes No

Policy Consumer Audit
Event

weblogic.security.service
.internal.PolicyConsumerA
uditEvent

AuditPolic
yEvent

No

Provider Audit Record com.bea.security.spi.Prov
iderAuditRecord

Yes Yes

Role Consumer Audit
Event

weblogic.security.service
.internal.RoleConsumerAud
itEvent

AuditRoleE
vent

Yes

Role Deployment Audit
Event

weblogic.security.spi.Aud
itRoleDeploymentEvent

Yes No

Role Mapping Audit
Event

weblogic.security.spi.Aud
itRoleEvent

Yes Yes

Table 10–1 (Cont.) Audit Events

Audit Event Name Interface Class
Audit
Event

Audit
Context

Security Framework Audit Events

10-18 Developing Security Providers for Oracle WebLogic Server

returned by getEventType is String = "Application Version Audit
Event".

Table 10–2 describes the conditions under which the event is posted and severity level
of the event.

10.6.2.2 AuditAtnEventV2
Authentication audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string
returned by getEventType is String eventType = "Event Type =
Authentication Audit Event".

Table 10–3 describes the conditions under which the event is posted and severity level
of the event.

Table 10–2 Application Version Events

Component Description Severity

Security
Framework

The security framework posts these events
for the following reasons:

■ Authorization Manager application
version creation has succeeded or
failed.

■ Authorization Manager application
version deletion has succeeded or
failed.

■ Authorization Manager non-versioned
application deletion has succeeded or
failed.

■ Role Manager application version
creation has succeeded or failed.

■ Role Manager application version
deletion has succeeded or failed.

■ Role Manager non-versioned
application deletion has succeeded or
failed.

■ Credential Manager application
version creation has succeeded or
failed.

■ Credential Manager application
version deletion has succeeded or
failed.

■ Credential Manager non-versioned
application deletion has succeeded or
failed.

Success or Failure

Table 10–3 Authentication Audit Events

Component Description Severity

Security Framework Posted after successful
authentication of a user.

Success

Security Framework Audit Events

Auditing Providers 10-19

10.6.2.3 AuditAtzEvent
Authorization audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string
returned by getEventType is String eventType = "Event Type =
Authorization Audit Event V2 ".

Table 10–4 describes the conditions under which the events are posted and severity
level of the event.

Security Framework Posted after unsuccessful
authentication (a LoginException
thrown from JAAS login method).
This LoginException can be
thrown by either JAAS framework
or by JAAS LoginModule of
WebLogic Server authentication
provider.

Failure

Security Framework Posted after an identity assertion
to an anonymous user.

Success

Security Framework Posted after an unsuccessful
identity assertion
(IdentityAssertionException
thrown from identity assertion
method)

Failure

Security Framework Posted after an unsuccessful
identity assertion (IOException is
thrown by identity assertion
callback handler when retrieving
username from callback).

Failure

Security Framework Posted after an unsuccessful
identity assertion
(UnsupportedCallbackException
is thrown by identity assertion
callback handler when retrieving
username from callback).

Failure

Security Framework Posted after an unsuccessful
identity assertion (when username
returned from identity assertion
callback handler is null or zero
length).

Failure

Security Framework Posted after a successful identity
assertion.

Success

Security Framework Posted after an unsuccessful
identity assertion.

Failure

Security Framework Posted after a successful
impersonate identity (anonymous
identity).

Success

Security Framework Posted after a successful
impersonate identity.

Success

Security Framework Posted after an unsuccessful
impersonate identity.

Failure

Security Framework Posted after a failure of principal
validation.

Failure

Table 10–3 (Cont.) Authentication Audit Events

Component Description Severity

Security Framework Audit Events

10-20 Developing Security Providers for Oracle WebLogic Server

10.6.2.4 AuditCerPathBuilderEvent, AuditCertPathValidatorEvent
CertPath Builder and Validation audit events are posted by the security framework.
You can use the getEventType method to get the type of the audit event. The actual
audit strings returned by getEventType are as follows:

■ String eventType = "Event Type = CertPathBuilder Audit Event
"

■ String eventType = "Event Type = CertPathValidator Audit
Event "

Table 10–5 describes the conditions under which the events are posted and severity
level of the event.

10.6.2.5 AuditConfigurationEvent
Configuration audit events are posted by the security framework. The following
events are posted:

■ AuditConfigurationEvent

■ AuditCreateConfigurationEvent (The actual audit string returned by
getEventType is String CREATE_EVENT = "Create Configuration
Audit Event")

■ AuditDeleteConfigurationEvent (The actual audit string returned by
getEventType is String DELETE_EVENT = "Delete Configuration
Audit Event")

■ AuditInvokeConfigurationEvent (The actual audit string returned by
getEventType is String INVOKE_EVENT = "Invoke Configuration
Audit Event")

Table 10–4 Authorization Audit Events

Component Description Severity

Security Framework Posted if access is not allowed to
resource (exception thrown by
authorization provider).

Failure

Security Framework Posted if access is allowed to
resource.

Success

Security Framework Posted if access is not allowed to
resource.

Failure

Table 10–5 CertPath Builder and Validation Events

Component Description Severity

Security Framework Posted if the Certificate Path is
successfully built.

Success

Security Framework Posted if the Certificate Path is not
successfully built.

Failure

Security Framework Posted if the Certificate Path is
successfully validated.

Success

Security Framework Posted if the Certificate Path is not
successfully validated.

Failure

Security Framework Audit Events

Auditing Providers 10-21

■ AuditSetAttributeConfigurationEvent (The actual audit string returned
by getEventType is String SETATTRIBUTE_EVENT = "SetAttribute
Configuration Audit Event")

Table 10–6 describes the conditions under which the events are posted and severity
level of the events.

10.6.2.6 AuditCredentialMappingEvent
Credential Mapping audit events are posted by the security framework. You can use
the getEventType method to get the type of the audit event. The actual audit string
returned by getEventType is String EVENT_TYPE = "Event Type =
Credential apping Audit Event".

Table 10–7 describes the condition under which the events are posted and severity
level of the event.

Table 10–6 Audit Configuration Events

Component Description Severity

WebLogic Management
Infrastructure

The WebLogic Management
infrastructure implements this
interface and may post
configuration audit events for the
following configuration change
events:

■ A request to create a new
configuration artifact has
been allowed or disallowed.

■ A request to delete an
existing configuration artifact
has been allowed or
disallowed.

■ A request to modify an
existing configuration artifact
has been allowed or
disallowed.

■ A invoke an operation on an
existing configuration artifact
has been allowed or
disallowed.

Success or Failure

Table 10–7 Credential Mapping Audit Events

Component Description Severity

Security Framework The WebLogic Security
Framework implements this
interface and may post audit
events for the following security
events:

Credentials for a WebLogic Server
User are requested

Credentials for a Subject are
requested

Success

Security Framework Audit Events

10-22 Developing Security Providers for Oracle WebLogic Server

10.6.2.7 AuditLifecycleEvent
The AuditLifecycleEvent interface is used to post audit lifecycle events. The WebLogic
Security Framework implements this interface and may post audit events for the
following security events:

■ After the auditing service in the framework is started.

■ Before the auditing service in the framework is stopped.

The actual audit string returned by getEventType is String eventType = "Event
Type = AuditLifecycle Audit Event".

The AuditLifecycleEventType class describes the audit service lifecycle event
types that are supported. Possible values are START_AUDIT and STOP_AUDIT.

An Auditing provider can use this interface to get additional information about the
audit lifecycle event. The AuditSeverity and AuditLifecycleEventType
attributes can be used to determine which of the above audit events has been posted.

10.6.2.8 AuditMgmtEvent
Management audit events are not currently posted by either the Security Framework
or by the supplied providers. However, a custom security provider may implement
this interface and post different audit events for the various management operations
performed by the custom security provider.

An Auditing provider can use this interface to get additional information about the
management audit event. The AuditSeverity attribute can be used to determine
whether the management operation succeeded or failed.

10.6.2.9 AuditPolicyEvent
AuditPolicyEvent is posted by the security framework and the WebLogic
Authorization provider. The security framework posts audit policy events when
policies are deployed to or undeployed from an authorization provider. The WebLogic
Server authorization provider posts audit policy events when creating, deleting, or
updating policies. You can use the getEventType method to get the type of the audit
event. The audit events and the actual audit strings returned by getEventType are as
follows:

■ AuditStartPolicyDeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization
Start Policy Deploy Audit Event ".)

■ AuditPolicyUndeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization
Policy Undeploy Audit Event ".)

■ AuditPolicyDeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization
Policy Deploy Audit Event ".)

■ AuditPolicyDeleteAppEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization
Delete Application Policies Audit Event ".)

■ AuditEndPolicyDeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = Authorization
End Policy Deploy Audit Event ".)

For PolicyConsumerAuditEvent, which implements AuditPolicyEvent, the
actual audit strings returned by getEventType are:

Security Framework Audit Events

Auditing Providers 10-23

■ String eventType = "Event Type = Policy Consumer Get Handler"

■ String eventType = "Event Type = Policy Consumer Set Policy"

■ String eventType = "Event Type = Policy Consumer Set
Unchecked Policy"

■ String eventType = "Event Type = Policy Consumer Done"

Table 10–8 describes the conditions under which the events are posted and lists the
event severity level.

10.6.2.10 AuditRoleDeploymentEvent
The security framework posts audit role deployment events when roles are deployed
to or undeployed from a role mapping provider. You can use the getEventType
method to get the type of the audit event. The following events are posted:

■ AuditRoleDeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = RoleManager Deploy Audit
Event ".)

■ AuditStartRoleDeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = RoleManager
Start Deploy Role Audit Event ".)

■ AuditEndRoleDeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = RoleManager
End Deploy Role Audit Event ".)

■ AuditRoleUndeployEvent (The actual audit string returned by
getEventType is String eventType = "Event Type = RoleManager
Undeploy Audit Event ".)

Table 10–9 describes the conditions under which the events are posted and lists the
event severity level.

Table 10–8 Audit Policy Events

Component Description Severity

WebLogic Authorization
Provider

■ The WebLogic Authorization provider
implements this interface and posts
audit events for the following security
events:

■ Security policy creation has succeeded.

■ Security policy creation has failed.

■ Security policy removal has succeeded.

■ Security policy removal has failed.

■ A security policy update has
succeeded.

■ A security policy update has failed.

■ Application deletion of security
policies has succeeded.

■ Application deletion of security
policies has failed.

Success or
Failure

Security Framework Audit Events

10-24 Developing Security Providers for Oracle WebLogic Server

10.6.2.11 AuditRoleEvent
The WebLogic Authorization provider posts audit role events when roles are created,
deleted, or updated. You can use the getEventType method to get the type of the
audit event. The actual audit strings returned by getEventType are as follows:

■ String eventType = "Event Type = RoleManager Audit Event "

■ String eventType = "Event Type = RoleManager Delete
Application Roles Audit Event "

For RoleConsumerAuditEvent, which implements AuditRoleEvent, the actual
audit strings returned by getEventType are:

■ String eventType = "Event Type = Role Consumer Get Handler"

■ String eventType = "Event Type = Role Consumer Set Role"

■ String eventType = "Event Type = Role Consumer Done"

Table 10–10 describes the conditions under which the events are posted and lists the
event severity level.

Table 10–9 Audit Role Deployment Events

Component Description Severity

Security Framework The WebLogic Security Framework
implements this interface and may post
audit events for the following security
events:

■ Security role deployment to a Role
Mapping provider has succeeded.

■ Security role deployment to a Role
Mapping provider has failed.

■ Security role undeployment to a Role
Mapping provider has succeeded.

■ Security role undeployment to a Role
Mapping provider has failed.

■ Application deletion of security roles
to a Role Mapping provider has
succeeded.

■ Application deletion of security roles
to a Role Mapping provider has failed.

Success or
Failure

Table 10–10 Audit Role Events

Component Description Severity

WebLogic Authorization
Provider

The WebLogic Authorization provider
implements this interface and posts audit
events for the following security events:

■ Security role creation has succeeded.

■ Security role creation has failed.

■ Security role removal has succeeded.

■ Security role removal has failed.

■ A security role update has succeeded.

■ A security role update has failed.

Success

11

Credential Mapping Providers 11-1

11Credential Mapping Providers

This chapter describes Credential Mapping provider concepts and functionality, and
provides step-by-step instructions for developing a custom Credential Mapping
provider.

Credential mapping is the process whereby a legacy system's database is used to
obtain an appropriate set of credentials to authenticate users to a target resource. In
WebLogic Server, a Credential Mapping provider is used to provide credential
mapping services and bring new types of credentials into the WebLogic Server
environment.

The following sections describe Credential Mapping provider concepts and
functionality, and provide step-by-step instructions for developing a custom
Credential Mapping provider:

■ Section 11.1, "Credential Mapping Concepts"

■ Section 11.2, "The Credential Mapping Process"

■ Section 11.3, "Do You Need to Develop a Custom Credential Mapping Provider?"

■ Section 11.4, "How to Develop a Custom Credential Mapping Provider"

11.1 Credential Mapping Concepts
A subject, or source of a WebLogic resource request, has security-related attributes
called credentials. A credential may contain information used to authenticate the
subject to new services. Such credentials include username/password combinations,
Kerberos tickets, and public key certificates. Credentials might also contain data that
allows a subject to perform certain activities. Cryptographic keys, for example,
represent credentials that enable the subject to sign or encrypt data.

A credential map is a mapping of credentials used by WebLogic Server to credentials
used in a legacy (or any remote) system, which tell WebLogic Server how to connect to
a given resource in that system. In other words, credential maps allow WebLogic
Server to log in to a remote system on behalf of a subject that has already been
authenticated. You can map credentials in this way by developing a Credential
Mapping provider.

11.2 The Credential Mapping Process
Figure 11–1 illustrates how Credential Mapping providers interact with the WebLogic
Security Framework during the credential mapping process, and an explanation
follows.

Do You Need to Develop a Custom Credential Mapping Provider?

11-2 Developing Security Providers for Oracle WebLogic Server

Figure 11–1 Credential Mapping Providers and the Credential Mapping Process

Generally, credential mapping is performed in the following manner:

1. Application components, such as JavaServer Pages (JSPs), servlets, Enterprise
JavaBeans (EJBs), or Resource Adapters call into the WebLogic Security
Framework through the appropriate resource container. As part of the call, the
application component passes in the subject (that is, the "who" making the
request), the WebLogic resource (that is, the "what" that is being requested) and
information about the type of credentials needed to access the WebLogic resource.

2. The WebLogic Security Framework sends the application component's request for
credentials to a configured Credential Mapping provider. It is up to the credential
mapper to decide whether it supports the token or not. If it supports the token, it
performs its processing.

3. The Credential Mapping provider consults the legacy system's database to obtain
a set of credentials that match those requested by the application component.

4. The Credential Mapping provider returns the credentials to the WebLogic Security
Framework.

5. The WebLogic Security Framework passes the credentials back to the requesting
application component through the resource container.

The application component uses the credentials to access the external system. The
external system might be a database resource, such as an Oracle or SQL Server.

11.3 Do You Need to Develop a Custom Credential Mapping Provider?
The default (that is, active) security realm for WebLogic Server includes a WebLogic
Credential Mapping provider. The WebLogic Credential Mapping provider maps
WebLogic Server users and groups to the appropriate username/password credentials
that may be required by other, external systems. If the type of credential mapping you
want is between WebLogic Server users and groups and username/password
credentials in another system, then the WebLogic Credential Mapping provider is
sufficient.

Do You Need to Develop a Custom Credential Mapping Provider?

Credential Mapping Providers 11-3

WebLogic Server includes a PKI Credential Mapping provider. The PKI (Public Key
Infrastructure) Credential Mapping provider included in WebLogic Server maps a
WebLogic Server subject (the initiator) and target resource (and an optional credential
action) to a key pair or public certificate that should be used by the application when
using the targeted resource. The PKI Credential Mapping provider uses the subject
and resource name to retrieve the corresponding credential from the keystore. The PKI
Credential Mapping provider supports the CredentialMapperV2.PKI_KEY_PAIR_
TYPE and CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE token types.

WebLogic Server also includes the SAML Credential Mapping provider. The SAML
Credential Mapping provider generates SAML 1.1 and 2.0 assertions for authenticated
subjects based on a target site or resource. If the requested target has not been
configured and no defaults are set, an assertion will not be generated. User
information and group membership (if configured as such) are put in the
AttributeStatement.

As described in "Configuring SAML SSO Attribute Support" in Developing Applications
with the WebLogic Security Service, WebLogic Server enhanced the SAML 1.1 and 2.0
Credential Mapping provider and Identity Assertion provider mechanisms to support
the use of a custom attribute mapper that can obtain additional attributes (other than
group information) to be written into SAML assertions, and to then map attributes
from incoming SAML assertions.

The SAML Credential Mapping provider supports the
CredentialMapperV2.SAML_ASSERTION_B64_TYPE,
CredentialMapperV2.SAML_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML_ASSERTION_TYPE token types.

The SAML 2.0 Credential Mapping provider supports the
CredentialMapperV2.SAML2_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML2_ASSERTION_TYPE token types.

If the out-of-the-box Credential Mapping providers do not meet your needs, then you
need to develop a custom Credential Mapping provider. Note, however, that only the
following token types are ever requested by the WebLogic Server resource containers:

■ CredentialMapperV2.PASSWORD_TYPE

■ CredentialMapperV2.PKI_KEY_PAIR_TYPE

■ CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE

■ CredentialMapperV2.SAML_ASSERTION_B64_TYPE

■ CredentialMapperV2.SAML_ASSERTION_DOM_TYPE

■ CredentialMapperV2.SAML_ASSERTION_TYPE

■ CredentialMapperV2.SAML2_ASSERTION_DOM_TYPE

■ CredentialMapperV2.SAML2_ASSERTION_TYPE

■ CredentialMapperV2.USER_PASSWORD_TYPE

11.3.1 Does Your Custom Credential Mapping Provider Need to Support Application
Versioning?

All Authorization, Role Mapping, and Credential Mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for Authorization, Role
Mapping, or Credential Mapping and need to support versioned applications, you

How to Develop a Custom Credential Mapping Provider

11-4 Developing Security Providers for Oracle WebLogic Server

must implement the Versionable Application SSPI, as described in Chapter 14,
"Versionable Application Providers."

11.4 How to Develop a Custom Credential Mapping Provider
If the WebLogic Credential Mapping provider does not meet your needs, you can
develop a custom Credential Mapping provider by following these steps:

1. Section 11.4.1, "Create Runtime Classes Using the Appropriate SSPIs"

2. Section 11.4.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

3. Section 11.4.3, "Provide a Mechanism for Credential Map Management"

11.4.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.4, "Determine Which "Provider" Interface You Will Implement"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom Credential Mapping provider by following these
steps:

■ Section 11.4.1.1, "Implement the CredentialProviderV2 SSPI" or Section 11.4.1.2,
"Implement the DeployableCredentialProvider SSPI"

■ Section 11.4.1.3, "Implement the CredentialMapperV2 SSPI"

11.4.1.1 Implement the CredentialProviderV2 SSPI
To implement the CredentialProviderV2 SSPI, provide implementations for the
methods described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"
and the following method:

■ getCredentialProvider

public CredentialMapperV2 getCredentialProvider();

The getCredentialProviderV2 method obtains the implementation of the
CredentialMapperV2 SSPI. For a single runtime class called
MyCredentialMapperProviderImpl.java (as in Figure 3–3), the
implementation of the getCredentialProvider method would be:

return this;

If there are two runtime classes, then the implementation of the
getCredentialProvider method could be:

return new MyCredentialMapperImpl;

This is because the runtime class that implements the CredentialProviderV2
SSPI is used as a factory to obtain classes that implement the
CredentialMapperV2 SSPI.

For more information about the CredentialProviderV2 SSPI and the
getCredentialProvider method, see the Java API Reference for Oracle WebLogic
Server.

How to Develop a Custom Credential Mapping Provider

Credential Mapping Providers 11-5

11.4.1.2 Implement the DeployableCredentialProvider SSPI

To implement the DeployableCredentialProvider SSPI, provide
implementations for the methods described in Section 3.2.2, "Understand the Purpose
of the "Provider" SSPIs," Section 11.4.1.1, "Implement the CredentialProviderV2 SSPI,"
and the following methods:

■ deployCredentialMapping

public void deployCredentialMapping(Resource resource, String
initiatingPrincipal, String eisUsername, String eisPassword)throws
ResourceCreationException;

The deployCredentialMapping method deploys credential maps. If the
mapping already exists, it is removed and replaced by this mapping. The
resource parameter represents the WebLogic resource to which the initiating
principal (represented as a String) is requesting access. The Enterprise
Information System (EIS) username and password are the credentials in the legacy
(remote) system to which the credential maps are being made.

■ undeployCredentialMappings

public void undeployCredentialMappings(Resource resource) throws
ResourceRemovalException;

The undeployCredentialMappings method undeploys credential maps (that
is, deletes a credential mapping on behalf of an undeployed Resource Adapter
from a database). The resource parameter represents the WebLogic resource for
which the mapping should be removed.

For more information about the DeployableCredentialProvider SSPI and the
deployCredentialMapping/undeployCredentialMappings methods, see the
Java API Reference for Oracle WebLogic Server.

11.4.1.3 Implement the CredentialMapperV2 SSPI
The CredentialMapperV2 interface defines the security service provider interface
(SSPI) for objects capable of obtaining the appropriate set of credentials for a particular
resource that is scoped within an application.

Only the following credential types are supported and passed to the
CredentialMapperV2 interface:

■ PASSWORD_TYPE

■ PKI_KEY_PAIR_TYPE

■ PKI_TRUSTED_CERTIFICATE_TYPE

■ SAML_ASSERTION_B64_TYPE

■ SAML_ASSERTION_DOM_TYPE

Note: The DeployableCredentialProvider SSPI is deprecated in this
release of WebLogic Server.

Note: The deployCredentialMapping/undeployCredentialMappings
methods operate on username/password credentials only.

How to Develop a Custom Credential Mapping Provider

11-6 Developing Security Providers for Oracle WebLogic Server

■ SAML_ASSERTION_TYPE

■ SAML2_ASSERTION_DOM_TYPE

■ SAML2_ASSERTION_TYPE

■ USER_PASSWORD_TYPE

To implement the CredentialMapperV2 SSPI, you must provide implementations
for the following methods:

■ getCredential

public Object getCredential(Subject requestor, String initiator, Resource
resource, ContextHandler handler, String credType);

The getCredential method returns the credential of the specified type from the
target resource associated with the specified initiator.

■ getCredentials

public Object[] getCredentials(Subject requestor, Subject initiator, Resource
resource, ContextHandler handler, String credType);

The getCredentials method returns the credentials of the specified type from
the target resource associated with the specified initiator.

For more information about the CredentialMapperV2 SSPI and the
getCredential and getCredentials methods, see the Java API Reference for Oracle
WebLogic Server.

11.4.1.3.1 Developing Custom Credential Mapping Providers That Are Compatible With the
Realm Adapter Authentication Provider An Authentication provider is the security
provider responsible for populating a subject with users and groups, which are then
extracted from the subject by other types of security providers, including Credential
Mapping providers. If the Authentication provider configured in your security realm
is a Realm Adapter Authentication provider, the user and group information will be
stored in the subject in a way that is slightly different from other Authentication
providers. Therefore, this user and group information must also be extracted in a
slightly different way.

Example 11–1 provides code that can be used by custom Credential Mapping
providers to check whether a subject matches a user or group name when a Realm
Adapter Authentication provider was used to populate the subject. This code belongs
in whatever form of the getCredentials method you choose to implement. The
code makes use of the methods available in the
weblogic.security.SubjectUtils class.

Example 11–1 Sample Code to Check if a Subject Matches a User or Group Name

/**
 * Determines if the Subject matches a user/group name.
 *
 * @param principalWant A String containing the name of a principal in this role
 * (that is, the role definition).
 *
 * @param subject A Subject that contains the Principals that identify the user
 * who is trying to access the resource as well as the user's groups.
 *
 * @return A boolean. true if the current subject matches the name of the
 * principal in the role, false otherwise.
 */

How to Develop a Custom Credential Mapping Provider

Credential Mapping Providers 11-7

private boolean subjectMatches(String principalWant, Subject subject)
{
 // first, see if it's a group name match
 if (SubjectUtils.isUserInGroup(subject, principalWant)) {
 return true;
 }
 // second, see if it's a user name match
 if (principalWant.equals(SubjectUtils.getUsername(subject))) {
 return true;
 }
 // didn't match
 return false;
}

11.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom Credential Mapping provider by following these
steps:

1. Section 11.4.2.1, "Create an MBean Definition File (MDF)"

2. Section 11.4.2.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

3. Section 11.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF)"

4. Section 11.4.2.4, "Install the MBean Type Into the WebLogic Server Environment"

11.4.2.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

Note: The MDF for the sample Authentication provider is called
SimpleSampleAuthenticator.xml. (There is currently no sample
Credential Mapping provider.)

How to Develop a Custom Credential Mapping Provider

11-8 Developing Security Providers for Oracle WebLogic Server

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom Credential Mapping
provider.

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

11.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom Credential Mapping provider. Follow the instructions that are appropriate to
your situation:

■ Section 11.4.2.2.1, "No Optional SSPI MBeans and No Custom Operations"

■ Section 11.4.2.2.2, "Optional SSPI MBeans or Custom Operations"

11.4.2.2.1 No Optional SSPI MBeans and No Custom Operations If the MDF for your custom
Credential Mapping provider does not implement any optional SSPI MBeans and does
not include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. Proceed to Section 11.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Credential Mapping providers).

How to Develop a Custom Credential Mapping Provider

Credential Mapping Providers 11-9

11.4.2.2.2 Optional SSPI MBeans or Custom Operations If the MDF for your custom
Credential Mapping provider does implement some optional SSPI MBeans or does
include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
MyCredentialMapper, the MBean implementation file to be edited is named
MyCredentialMapperImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement
each method. Be sure to also provide implementations for any methods that
the optional SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods
using the method stubs.

5. Save the file.

6. Proceed to Section 11.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Credential Mapping providers).

How to Develop a Custom Credential Mapping Provider

11-10 Developing Security Providers for Oracle WebLogic Server

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleCredentialMapper, the MBean implementation file to be edited is
named SampleCredentialMapperImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated MBean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in
the original MDF, implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

8. Proceed to Section 11.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Credential Mapping providers).

How to Develop a Custom Credential Mapping Provider

Credential Mapping Providers 11-11

11.4.2.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the
MyCredentialMapper MDF through the WebLogic MBeanMaker will yield an
MBean interface file called MyCredentialMapperMBean.java.

11.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Credential Mapping provider into an
MBean JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Credential Mapping provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

11.4.2.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

How to Develop a Custom Credential Mapping Provider

11-12 Developing Security Providers for Oracle WebLogic Server

installation directory for WebLogic Server. This "deploys" your custom Credential
Mapping provider—that is, it makes the custom Credential Mapping provider
manageable from the WebLogic Server Administration Console.

You can create instances of the MBean type by configuring your custom Credential
Mapping provider (see Section 11.4.3, "Provide a Mechanism for Credential Map
Management"), and then use those MBean instances from a GUI, from other Java code,
or from APIs. For example, you can use the WebLogic Server Administration Console
to get and set attributes and invoke operations, or you can develop other Java objects
that instantiate MBeans and automatically respond to information that the MBeans
supply. We recommend that you back up these MBean instances.

11.4.3 Provide a Mechanism for Credential Map Management
While configuring a custom Credential Mapping provider via the WebLogic Server
Administration Console makes it accessible by applications requiring credential
mapping services, you also need to supply administrators with a way to manage this
security provider's associated credential maps. The WebLogic Credential Mapping
provider, for example, supplies administrators with a Credential Mappings page that
allows them to add, modify, or remove credential mappings for various Connector
modules.

Neither the Credential Mapping page nor access to it is available to administrators
when you develop a custom Credential Mapping provider. Therefore, you must
provide your own mechanism for credential map management. This mechanism must
read and write credential maps to and from the custom Credential Mapping provider's
database.

You can accomplish this task in one of two ways:

■ Section 11.4.3.1, "Option 1: Develop a Stand-Alone Tool for Credential Map
Management"

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory =
dirX,dirY, WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

How to Develop a Custom Credential Mapping Provider

Credential Mapping Providers 11-13

■ Section 11.4.3.2, "Option 2: Integrate an Existing Credential Map Management Tool
into the Administration Console"

11.4.3.1 Option 1: Develop a Stand-Alone Tool for Credential Map Management
You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom
Credential Mapping provider, nor do you need to develop any management MBeans.
However, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see Section 3.6.3, "WebLogic
Resource Identifiers."

2. Determine how to represent the represent the local-to-remote user relationship.
(This representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Credential Mapping
provider's database.

11.4.3.2 Option 2: Integrate an Existing Credential Map Management Tool into the
Administration Console
You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID. For more information, see Section 3.6.3,
"WebLogic Resource Identifiers."

2. Determine how to represent the represent the local-to-remote user relationship.
(This representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom Credential Mapping
provider's database.

4. Link into the Administration Console using basic console extension techniques, as
described in Extending the Administration Console for Oracle WebLogic Server.

How to Develop a Custom Credential Mapping Provider

11-14 Developing Security Providers for Oracle WebLogic Server

12

Auditing Events From Custom Security Providers 12-1

12Auditing Events From Custom Security
Providers

This chapter describes the background information you need to understand before
adding auditing capability to your custom security providers, and provides
step-by-step instructions for adding auditing capability to a custom security provider.

As described in Chapter 10, "Auditing Providers" auditing is the process whereby
information about operating requests and the outcome of those requests are collected,
stored, and distributed for the purposes of non-repudiation. Auditing providers
provide this electronic trail of computer activity.

Each type of security provider can call the configured Auditing providers with a
request to write out information about security-related events, before or after these
events take place. For example, if a user attempts to access a withdraw method in a
bank account application (to which they should not have access), the Authorization
provider can request that this operation be recorded. Security-related events are only
recorded when they meet or exceed the severity level specified in the configuration of
the Auditing providers.

The following sections provide the background information you need to understand
before adding auditing capability to your custom security providers, and provide
step-by-step instructions for adding auditing capability to a custom security provider:

■ Section 12.1, "Security Services and the Auditor Service"

■ Section 12.2, "How to Audit From a Custom Security Provider"

12.1 Security Services and the Auditor Service
The SecurityServices interface, located in the weblogic.security.spi
package, is a repository for security services (currently just the Auditor Service). As
such, the SecurityServices interface is responsible for supplying callers with a
reference to the Auditor Service via the following method:

■ getAuditorService

public AuditorService getAuditorService

The getAuditorService method returns the AuditService if an Auditing
provider is configured.

The AuditorService interface, also located in the weblogic.security.spi
package, provides other types of security providers (for example, Authentication
providers) with limited (write-only) auditing capabilities. In other words, the Auditor
Service fans out invocations of each configured Auditing provider's writeEvent

How to Audit From a Custom Security Provider

12-2 Developing Security Providers for Oracle WebLogic Server

method, which simply writes an audit record based on the information specified in the
AuditEvent object that is passed in.

For more information about the writeEvent method, see Section 10.5.1.2,
"Implement the AuditChannel SSPI." For more information about AuditEvent
objects, see Section 12.2.1, "Create an Audit Event." The AuditorService interface
includes the following method:

■ providerAuditWriteEvent

public void providerAuditWriteEvent (AuditEvent event)

The providerAuditWriteEvent method gives security providers write access to
the object in the WebLogic Security Framework that calls the configured Auditing
providers. The event parameter is an AuditEvent object that contains the audit
criteria, including the type of event to audit and the audit severity level. For more
information about Audit Events and audit severity levels, see Section 12.2.1,
"Create an Audit Event" and Section 12.2.1.3, "Audit Severity," respectively.

The Auditor Service can be called to write audit events before or after those events
have taken place, but does not maintain context in between pre and post operations.
Security providers designed with auditing capabilities will need to obtain the Auditor
Service as described in Section 12.2.2, "Obtain and Use the Auditor Service to Write
Audit Events."

For more information about these interfaces and their methods, see the Java API
Reference for Oracle WebLogic Server for the SecurityServices interface and the
AuditorService interface.

12.2 How to Audit From a Custom Security Provider
Add auditing capability to your custom security provider by following these steps:

■ Section 12.2.1, "Create an Audit Event"

■ Section 12.2.2, "Obtain and Use the Auditor Service to Write Audit Events"

Examples for each of these steps are provided in Section 12.2.1.5, "Example:
Implementation of the AuditRoleEvent Interface" and Section 12.2.2.1, "Example:
Obtaining and Using the Auditor Service to Write Role Audit Events," respectively.

Notes: Implementations for both the SecurityServices and
AuditorService interfaces are created by the WebLogic Security
Framework at boot time if an Auditing provider is configured. (For
more information about configuring Auditing providers, see
Section 10.5.3, "Configure the Custom Auditing Provider Using the
Administration Console.") Therefore, you do not need to provide your
own implementations of these interfaces.

Additionally, SecurityServices objects are specific to the security
realm in which your security providers are configured. Your custom
security provider's runtime class automatically obtains a reference to
the realm-specific SecurityServices object as part of its initialize
method. (For more information, see Section 3.2.2, "Understand the
Purpose of the "Provider" SSPIs.")

How to Audit From a Custom Security Provider

Auditing Events From Custom Security Providers 12-3

12.2.1 Create an Audit Event
Security providers must provide information about the events they want audited, such
as the type of event (for example, an authentication event) and the audit severity (for
example, "error"). Audit Events contain this information, and can also contain any
other contextual data that is understandable to a configured Auditing provider. To
create an Audit Event, either:

■ Section 12.2.1.1, "Implement the AuditEvent SSPI" or

■ Section 12.2.1.2, "Implement an Audit Event Convenience Interface"

12.2.1.1 Implement the AuditEvent SSPI
To implement the AuditEvent SSPI, provide implementations for the following
methods:

■ getEventType

public java.lang.String getEventType()

The getEventType method returns a string representation of the event type that
is to be audited, which is used by the Audit Channel (that is, the runtime class that
implements the AuditChannel SSPI). For example, the event type for the
Oracle-provided implementation is "Authentication Audit Event". For
more information, see Section 10.1.1, "Audit Channels" and Section 10.5.1.2,
"Implement the AuditChannel SSPI."

■ getFailureException

public java.lang.Exception getFailureException()

The getFailureException method returns an Exception object, which is
used by the Audit Channel to obtain audit information, in addition to the
information provided by the tostring method.

■ getSeverity

public AuditSeverity getSeverity()

The getSeverity method returns the severity level value associated with the
event type that is to be audited, which is used by the Audit Channel. This allows
the Audit Channel to make the decision about whether or not to audit. For more
information, see Section 12.2.1.3, "Audit Severity."

■ toString

public java.lang.String toString()

The toString method returns preformatted audit information to the Audit
Channel.

Note: If your custom security provider is to record audit events, be
sure to include any classes created as a result of these steps into the
MBean JAR File (MJF) for the custom security provider (that is, in
addition to the other files that are required).

How to Audit From a Custom Security Provider

12-4 Developing Security Providers for Oracle WebLogic Server

For more information about the AuditEvent SSPI and these methods, see the Java
API Reference for Oracle WebLogic Server.

12.2.1.2 Implement an Audit Event Convenience Interface
There are several subinterfaces of the AuditEvent SSPI that are provided for your
convenience, and that can assist you in structuring and creating Audit Events.

Each of these Audit Event convenience interfaces can be used by an Audit Channel
(that is, a runtime class that implements the AuditChannel SSPI) to more effectively
determine the instance types of extended event type objects, for a certain type of
security provider. For example, the AuditAtnEventV2 convenience interface can be
used by an Audit Channel that wants to determine the instance types of extended
authentication event type objects. (For more information, see Section 10.1.1, "Audit
Channels" and Section 10.5.1.2, "Implement the AuditChannel SSPI.")

The Audit Event convenience interfaces are:

■ Section 12.2.1.2.1, "The AuditAtnEventV2 Interface"

■ Section 12.2.1.2.2, "The AuditAtzEvent and AuditPolicyEvent Interfaces"

■ Section 12.2.1.2.3, "The AuditMgmtEvent Interface"

■ Section 12.2.1.2.4, "The AuditRoleEvent and AuditRoleDeploymentEvent
Interfaces"

12.2.1.2.1 The AuditAtnEventV2 Interface The AuditAtnEventV2 convenience interface
helps Audit Channels to determine instance types of extended authentication event
type objects.

To implement the AuditAtnEventV2 interface, provide implementations for the
methods described in Section 12.2.1.1, "Implement the AuditEvent SSPI" and the
following methods:

■ getUsername

public String getUsername()

The getUsername method returns the username associated with the
authentication event.

■ getAtnEventType

public AuditAtnEventV2.AtnEventTypeV2 getAtnEventType()

Note: The toString method can produce any character and no
escaping is used. If your Audit provider is writing the toString
value into a format that uses characters for syntax, escape the
toString value before writing it.

Note: It is recommended, but not required, that you implement one
of the Audit Event convenience interfaces.

Note: The AuditAtnEvent interface is deprecated in this release of
WebLogic Server.

How to Audit From a Custom Security Provider

Auditing Events From Custom Security Providers 12-5

The getAtnEventType method returns an event type that more specifically
represents the authentication event. The specific authentication event types are:

AUTHENTICATE: simple authentication using a username and password occurred.

ASSERTIDENTITY: perimeter authentication based on tokens occurred.

CREATEDERIVEDKEY: represents the creation of the Derived key.

CREATEPASSWORDDIGEST: represents the creation of the Password Digest.

IMPERSONATEIDENTITY: client identity has been established using the supplied
client username (requires kernel identity).

USERLOCKED: a user account has been locked because of invalid login attempts.

USERUNLOCKED: a lock on a user account has been cleared.

USERLOCKOUTEXPIRED: a lock on a user account has expired.

VALIDATEIDENTITY: authenticity (trust) of the principals within the supplied
subject has been validated.

■ toString

public String toString()

The toString method returns the specific authentication information to audit,
represented as a string.

For more information about the AuditAtnEventV2 convenience interface and these
methods, see the Java API Reference for Oracle WebLogic Server.

12.2.1.2.2 The AuditAtzEvent and AuditPolicyEvent Interfaces The AuditAtzEvent and
AuditPolicyEvent convenience interfaces help Audit Channels to determine
instance types of extended authorization event type objects.

To implement the AuditAtzEvent or AuditPolicyEvent interface, provide
implementations for the methods described in Section 12.2.1.1, "Implement the
AuditEvent SSPI" and the following methods:

■ getSubject

public Subject getSubject()

Note: The toString method can produce any character and no
escaping is used. If your Audit provider is writing the toString
value into a format that uses characters for syntax, escape the
toString value before writing it.

The AuditAtnEventV2 convenience interface extends both the
AuditEvent and AuditContext interfaces. For more information
about the AuditContext interface, see Section 12.2.1.4, "Audit
Context."

Note: The difference between the AuditAtzEvent convenience
interface and the AuditPolicyEvent convenience interface is that
the latter only extends the AuditEvent interface. (It does not also
extend the AuditContext interface.) For more information about the
AuditContext interface, see Section 12.2.1.4, "Audit Context."

How to Audit From a Custom Security Provider

12-6 Developing Security Providers for Oracle WebLogic Server

The getSubject method returns the subject associated with the authorization
event (that is, the subject attempting to access the WebLogic resource).

■ getResource

public Resource getResource()

The getResource method returns the WebLogic resource associated with the
authorization event that the subject is attempting to access.

For more information about these convenience interfaces and methods, see the Java
API Reference for Oracle WebLogic Server for the AuditAtzEvent interface or the
AuditPolicyEvent interface.

12.2.1.2.3 The AuditMgmtEvent Interface The AuditMgmtEvent convenience interface
helps Audit Channels to determine instance types of extended security management
event type objects, such as a security provider's MBean. It contains no methods that
you must implement, but maintains the best practice structure for an Audit Event
implementation.

For more information about the AuditMgmtEvent convenience interface, see the Java
API Reference for Oracle WebLogic Server.

12.2.1.2.4 The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces The
AuditRoleDeploymentEvent and AuditRoleEvent convenience interfaces help
Audit Channels to determine instance types of extended role mapping event type
objects. They contain no methods that you must implement, but maintain the best
practice structure for an Audit Event implementation.

For more information about these convenience interfaces, see the Java API Reference for
Oracle WebLogic Server for the AuditRoleEvent interface or the
AuditRoleDeploymentEvent interface.

12.2.1.3 Audit Severity
The audit severity is the level at which a security provider wants audit events to be
recorded. When the configured Auditing providers receive a request to audit, each will
examine the severity level of events taking place. If the severity level of an event is
greater than or equal to the level an Auditing provider was configured with, that
Auditing provider will record the audit data.

Note: For more information about MBeans, see Section 3.3, "Security
Service Provider Interface (SSPI) MBeans."

Note: The difference between the AuditRoleEvent convenience
interface and the AuditRoleDeploymentEvent convenience
interface is that the latter only extends the AuditEvent interface. (It
does not also extend the AuditContext interface.) For more
information about the AuditContext interface, see Section 12.2.1.4,
"Audit Context."

How to Audit From a Custom Security Provider

Auditing Events From Custom Security Providers 12-7

The AuditSeverity class, which is part of the weblogic.security.spi package,
provides audit severity levels as both numeric and text values to the Audit Channel
(that is, the AuditChannel SSPI implementation) through the AuditEvent object.
The numeric severity value is to be used in logic, and the text severity value is to be
used in the composition of the audit record output. For more information about the
AuditChannel SSPI and the AuditEvent object, see Section 10.5.1.2, "Implement the
AuditChannel SSPI" and Section 12.2.1, "Create an Audit Event," respectively.

12.2.1.4 Audit Context
Some of the Audit Event convenience interfaces extend the AuditContext interface
to indicate that an implementation will also contain contextual information. This
contextual information can then be used by Audit Channels. For more information, see
Section 10.1.1, "Audit Channels" and Section 10.5.1.2, "Implement the AuditChannel
SSPI."

The AuditContext interface includes the following method:

■ getContext

public ContextHandler getContext()

The getContext method returns a ContextHandler object, which is used by
the runtime class (that is, the AuditChannel SSPI implementation) to obtain
additional audit information. For more information about ContextHandlers, see
Section 3.6.9, "ContextHandlers and WebLogic Resources."

12.2.1.5 Example: Implementation of the AuditRoleEvent Interface
Example 12–1 shows the MyAuditRoleEventImpl.java class, which is a sample
implementation of an Audit Event convenience interface (in this case, the
AuditRoleEvent convenience interface). This class includes implementations for:

■ The four methods inherited from the AuditEvent SSPI: getEventType,
getFailureException, getSeverity and toString (as described in
Section 12.2.1.1, "Implement the AuditEvent SSPI").

■ One additional method: getContext, which returns additional contextual
information via the ContextHandler. (For more information about
ContextHandlers, see Section 3.6.9, "ContextHandlers and WebLogic Resources.")

Example 12–1 MyAuditRoleEventImpl.java

package mypackage;
import javax.security.auth.Subject;
import weblogic.security.SubjectUtils;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditRoleEvent;
import weblogic.security.spi.AuditSeverity;

Note: Auditing providers are configured using the WebLogic Server
Administration Console. For more information, see Section 10.5.3,
"Configure the Custom Auditing Provider Using the Administration
Console."

Note: The bold face code in Example 12–1 highlights the class
declaration and the method signatures.

How to Audit From a Custom Security Provider

12-8 Developing Security Providers for Oracle WebLogic Server

import weblogic.security.spi.Resource;
/*package*/ class MyAuditRoleEventImpl implements AuditRoleEvent
{
 private Subject subject;
 private Resource resource;
 private ContextHandler context;
 private String details;
 private Exception failureException;
 /*package*/ MyAuditRoleEventImpl(Subject subject, Resource resource,
 ContextHandler context, String details, Exception
 failureException) {
 this.subject = subject;
 this.resource = resource;
 this.context = context;
 this.details = details;
 this.failureException = failureException;
 }
 public Exception getFailureException()
 {
 return failureException;
 }
 public AuditSeverity getSeverity()
 {
 return (failureException == null) ? AuditSeverity.SUCCESS :
 AuditSeverity.FAILURE;
 }
 public String getEventType()
 {
 return "MyAuditRoleEventType";
 }
 public ContextHandler getContext()
 {
 return context;
 }
 public String toString()
 {
 StringBuffer buf = new StringBuffer();
 buf.append("EventType:" + getEventType() + "\n");
 buf.append("\tSeverity: " +
 getSeverity().getSeverityString());
 buf.append("\tSubject: " +
 SubjectUtils.displaySubject(getSubject());
 buf.append("\tResource: " + resource.toString());
 buf.append("\tDetails: " + details);
 if (getFailureException() != null) {
 buf.append("\n\tFailureException:" +
 getFailureException());
 }
 return buf.toString();
 }
}

12.2.2 Obtain and Use the Auditor Service to Write Audit Events
To obtain and use the Auditor Service to write audit events from a custom security
provider, follow these steps:

1. Use the getAuditorService method to return the Audit Service.

How to Audit From a Custom Security Provider

Auditing Events From Custom Security Providers 12-9

2. Instantiate the Audit Event you created in Section 12.2.1.1, "Implement the
AuditEvent SSPI" and send it to the Auditor Service through the
AuditService.providerAuditWriteEvent method.

12.2.2.1 Example: Obtaining and Using the Auditor Service to Write Role Audit
Events
Example 12–2 illustrates how a custom Role Mapping provider's runtime class (called
MyRoleMapperProviderImpl.java) would obtain the Auditor Service and use it
to write out audit events.

Example 12–2 MyRoleMapperProviderImpl.java

package mypackage;
import javax.security.auth.Subject;
import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditorService;
import weblogic.security.spi.RoleMapper;
import weblogic.security.spi.RoleProvider;
import weblogic.security.spi.Resource;
import weblogic.security.spi.SecurityServices;
public final class MyRoleMapperProviderImpl implements RoleProvider, RoleMapper
{
 private AuditorService auditor;
 public void initialize(ProviderMBean mbean, SecurityServices
 services)
 {
 auditor = services.getAuditorService();
 ...
 }
 public Map getRoles(Subject subject, Resource resource,
 ContextHandler handler)
 {
 ...
 if (auditor != null)
 {
 auditor.providerAuditWriteEvent(
 new MyRoleEventImpl(subject, resource, context,
 "why logging this event",
 null); // no exception occurred
 }
 ...
 }
}

Note: Recall that a SecurityServices object is passed into a
security provider's implementation of a "Provider" SSPI as part of the
initialize method. (For more information, see Section 3.2.2,
"Understand the Purpose of the "Provider" SSPIs.") An
AuditorService object will only be returned if an Auditing
provider has been configured.

Note: The MyRoleMapperProviderImpl.java class relies on the
MyAuditRoleEventImpl.java class from Example 12–1.

How to Audit From a Custom Security Provider

12-10 Developing Security Providers for Oracle WebLogic Server

12.2.2.2 Auditing Management Operations from a Provider's MBean
A SecurityServices object is passed into a security provider's implementation of a
"Provider" SSPI as part of the initialize method. (For more information, see
Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs.") The provider can use
this object's auditor to audit provider-specific security events, such as when a user is
successfully logged in.

A security provider's MBean implementation is not passed a SecurityServices object.
However, the provider may need to audit its MBean operations, such as a user being
created.

To work around this, the provider's runtime implementation can cache the
SecurityServices object and use a provider-specific mechanism to pass it to the
provider's MBean implementation. This allows the provider to audit its MBean
operations.

The Manageable Sample Authentication Provider shows one way to accomplish this
task. The sample provider contains three major implementation classes:

■ ManageableSampleAuthenticationProviderImpl contains its security runtime
implementation.

■ ManageableSampleAuthenticatorImpl contains its MBean implementation.

■ UserGroupDatabase is a helper class used by
ManageableSampleAuthenticationProviderImpl and
ManageableSampleAuthenticatorImpl.

The code flow to cache and obtain the SecurityServices object is as follows:

1. The ManageableSampleAuthenticationProviderImpl's initialize method is
passed a SecurityServices object.

2. The initialize method creates a UserGroupDataBase object and passes it the
SecurityServices object.

3. The UserGroupDataBaseObject caches the SecurityServices object. The
initialize method also puts the UserGroupDatabase object into a hash table
using the realm's name as the lookup key.

4. The ManageableSampleAuhenticatorImpl's init method finds its realm name
from its MBean.

5. The init method uses the realm name to find the corresponding
UserGroupDataBase object from the hash table.

6. The init method then retrieves the SecurityServices object from the
UserGroupDatabase object, and uses its auditor to audit management operations
such as "createUser."

Note: A provider's runtime implementation is initialized only if the
provider is part of the default realm when the server is booted.
Therefore, if the provider is not in the default realm when the server is
booted, its runtime implementation is never initialized, and the
provider's MBean implementation cannot gain access to the
SecurityServices object. That is, if the provider is not in the
default realm when the server is booted, the provider cannot audit its
MBean operations.

How to Audit From a Custom Security Provider

Auditing Events From Custom Security Providers 12-11

12.2.2.3 Example: Auditing Management Operations from a Provider's MBean
Example 12–3 illustrates how the ManageableSampleAuhenticatorImpl's init method
finds its realm name from its MBean, how it uses the realm name to find the
corresponding UserGroupDataBase object from the hash table (via the
UserGroupDatabase helper class), and how it then retrieves the
SecurityServices object from the UserGroupDatabase object.

Example 12–3 also shows how ManageableSampleAuhenticatorImpl uses its
auditor to audit management operations such as "createUser."

Example 12–3 ManageableSampleAuthenticatorImpl.java

package examples.security.providers.authentication.manageable;
import java.util.Enumeration;
import javax.management.MBeanException;
import javax.management.modelmbean.ModelMBean;
import weblogic.management.security.authentication.AuthenticatorImpl;
import weblogic.management.utils.AlreadyExistsException;
import weblogic.management.utils.InvalidCursorException;
import weblogic.management.utils.NotFoundException;
import weblogic.security.spi.AuditorService;
import weblogic.security.spi.SecurityServices;

public class ManageableSampleAuthenticatorImpl extends AuthenticatorImpl
{
// Manages the user and group definitions for this provider:
private UserGroupDatabase database;

// Manages active queries (see listUsers, listGroups, listMemberGroups):
private ListManager listManager = new ListManager();

// The name of the realm containing this provider:
private String realm;

// The name of this provider:
private String provider;

// The auditor for auditing user/group management operations.
// This is only available if this provider was configured in
// the default realm when the server was booted.
private AuditorService auditor;

public ManageableSampleAuthenticatorImpl(ModelMBean base) throws MBeanException
{
super(base);
}

private synchronized void init() throws MBeanException
{
if (database == null) {
try {
ManageableSampleAuthenticatorMBean myMBean = (ManageableSampleAuthenticatorMBean)getProxy();
database = UserGroupDatabase.getDatabase(myMBean);
realm = myMBean.getRealm().getName();
provider = myMBean.getName();
SecurityServices services = database.getSecurityServices();
auditor = (services != null) ? services.getAuditorService() : null;
}
catch(Exception e) {
throw new MBeanException(e, "SampleAuthenticatorImpl.init failed");

How to Audit From a Custom Security Provider

12-12 Developing Security Providers for Oracle WebLogic Server

}
}
}
...
public void createUser(String user, String password, String description)
throws MBeanException, AlreadyExistsException
{
init();
String details = (auditor != null) ?
"createUser(user = " + user + ", password = " + password + ",
description = " + description + ")" : null;
try {
// we don't support descriptions so just ignore it
database.checkDoesntExist(user);
database.getUser(user).create(password);
database.updatePersistentState();
auditOperationSucceeded(details);
}
catch (AlreadyExistsException e) { auditOperationFailed(details, e); throw e; }
catch (IllegalArgumentException e) { auditOperationFailed(details, e); throw e; }
}
...
private void auditOperationSucceeded(String details)
{
if (auditor != null) {
auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details, null)
);
}
}
...
private void auditOperationFailed(String details, Exception failureException)
{
if (auditor != null) {

auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details, failureException)
);
}
}
}

12.2.3 Best Practice: Posting Audit Events from a Provider's MBean
Provider's management operations that do writes (for example, create user, delete user,
remove data) should post audit events, regardless of whether or not the operation
succeeds.

If your provider audits MBean operations, you should keep the following Best Practice
guidelines in mind.

■ If the write operation succeeds, post an INFORMATION audit event.

■ If the write operation fails because of a bad parameter (for example, because the
user already exists, or due to a bad import format name, a non-existent file name,
or the wrong file format), do not post an audit event.

■ If the write operation fails because of an error (for example, LDAPException,
RuntimeException), post a FAILURE audit event.

How to Audit From a Custom Security Provider

Auditing Events From Custom Security Providers 12-13

■ Import operations can partially succeed. For example, some of the users are
imported, but others are skipped because there are already users with that name in
the provider.

■ If you can easily detect that the data you are skipping is identical to the data
already in the provider (for example, the username, description, and password are
the same) then consider posting a WARNING event.

■ If you are skipping data because there is a partial collision (for example, the
username is the same but the password is different), you should post a FAILURE
event.

■ If it is too difficult to distinguish the import data from the data already stored in
the provider, post a FAILURE event.

How to Audit From a Custom Security Provider

12-14 Developing Security Providers for Oracle WebLogic Server

13

Servlet Authentication Filters 13-1

13Servlet Authentication Filters

This chapter describes Servlet Authentication Filter interface concepts and
functionality, and provides step-by-step instructions for developing a Servlet
Authentication Filter.

A Servlet Authentication Filter is a provider type that performs pre- and
post-processing for authentication functions, including identity assertion. A Servlet
Authentication Filter is a special type of security provider that primarily acts as a
"helper" to an Authentication provider.

The ServletAuthenticationFilter interface defines the security service
provider interface (SSPI) for authentication filters that can be plugged in to WebLogic
Server. You implement the ServletAuthenticationFilter interface as part of an
Authentication provider, and typically as part of the Identity Assertion form of
Authentication provider, to signal that the Authentication provider has authentication
filters that it wants the servlet container to invoke during the authentication process.

The following sections describe Servlet Authentication Filter interface concepts and
functionality, and provide step-by-step instructions for developing a Servlet
Authentication Filter:

■ Section 13.1, "Authentication Filter Concepts"

■ Section 13.2, "How Filters Are Invoked"

■ Section 13.3, "Example of a Provider that Implements a Filter"

■ Section 13.4, "How to Develop a Custom Servlet Authentication Filter"

13.1 Authentication Filter Concepts
Filters, as defined by the Java Servlet API 2.3 specification, are preprocessors of the
request before it reaches the servlet, and/or postprocessors of the response leaving the
servlet. Filters provide the ability to encapsulate recurring tasks in reusable units and
can be used to transform the response from a servlet or JSP page.

Servlet Authentication filters are an extension to of the filter object that allows filters to
replace or extend container-based authentication.

13.1.1 Why Filters are Needed
The WebLogic Security Framework allows you to provide a custom Authentication
provider. However, due to the nature of the Java Servlet API 2.3 specification, the
interaction between the Authentication provider and the client or other servers is
architecturally limited during the authentication process. This restricts authentication

How Filters Are Invoked

13-2 Developing Security Providers for Oracle WebLogic Server

mechanisms to those that are compatible with the authentication mechanisms the
Servlet container offers: basic, form, and certificate.

Filters have fewer architecturally-dependence limitations; that is, they are not
dependent on the authentication mechanisms offered by the Servlet container. By
allowing filters to be invoked prior to the container beginning the authentication
process, a security realm can implement a wider scope of authentication mechanisms.
For example, a Servlet Authentication Filter could redirect the user to a SAML
provider site for authentication.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Customizing the location of the user database, the
types of proof material required to execute a login, or the population of the Subject
with groups is implemented via a LoginModule.

Conversely, redirecting to a remote site to execute the login, extracting login
information out of the query string, and negotiating a login mechanism with a browser
are implemented via a Servlet Authentication Filter.

13.1.2 Servlet Authentication Filter Design Considerations
You should consider the following design considerations when writing Servlet
Authentication Filters:

■ Do you need to allow multiple filters to be specified? You might want to allow this
so that administrative decisions can be made at configuration time.

■ Do you depend on a particular order of-execution? Servlet Authentication Filters
must not be dependent on the order in which filters are executed.

■ Have you considered allowing each filter to process the request both before and
after authentication? If so, the filter should not make any assumptions about when
it is being invoked.

■ Consider allowing each filter to have the option of stopping the execution of the
remaining filters and the Servlet's authentication process by not calling the Filter
doFilter method.

■ Do you need to allow a filter to cause the browser to redirect?

■ Consider allowing a filter to work for 1-way SSL, 2-way SSL, identity assertion,
form authentication, and basic authentication. For example, Form authentication is
a two-request process and the filter is called twice for form authentication.

13.2 How Filters Are Invoked
The Servlet Authentication Filter interface allows an Authentication provider to
implement zero or more Servlet Authentication Filter classes. The filters are invoked as
follows:

1. The servlet container calls the Servlet Authentication Filters prior to authentication
occurring.

The servlet container gets the configured chain of Servlet Authentication Filters
from the WebLogic Security Framework.

The Security Framework returns the Servlet Authentication Filters in the order of
the authentication providers. If one provider has multiple Servlet Authentication
Filters, the Security Framework uses the ordered list of javax.servlet.Filters
returned by the ServletAuthenticationFilter getAuthenticationFilters
method.

How Filters Are Invoked

Servlet Authentication Filters 13-3

Duplicate filters are allowed because they might need to execute multiple times to
correctly manipulate the request.

2. For each filter, the servlet container calls the Filter init method to indicate to a
filter that it is being placed into service.

3. The servlet container calls the Filter doFilter method on the first filter each time
a request/response pair is passed through the chain due to a client request for a
resource at the end of the chain.

The FilterChain object passed in to this method allows the Filter to pass on the
request and response to the next entity in the chain. Filters use the FilterChain
object to invoke the next filter in the chain, or if the calling filter is the last filter in
the chain, to invoke the resource at the end of the chain.

4. If all Servlet Authentication Filters call the Filter doFilter method then, when
the final one calls the doFilter method, the servlet container then performs
authentication as it would if the filters were not present.

However, if any of the Servlet Authentication Filters do not call the doFilter
method, the remaining filters, the servlet, and the servlet container's
authentication procedure are not called. This allows a filter to replace the servlet's
authentication process. This typically involves authentication failure or redirecting
to another URL for authentication.

13.2.1 Do Not Call Servlet Authentication Filters From Authentication Providers
Although you implement the Servlet Authentication Filter interface as part of an
Authentication provider, Authentication providers do not actually call Servlet
Authentication Filters directly. The implementation of Servlet Authentication Filters
depends upon particular features of the WebLogic Security Framework that know how
to locate and invoke the filters.

If you develop a custom Servlet Authentication Filter, make sure that your custom
Authentication providers do not call the WLS-specific classes (for example,
weblogic.servlet.*) and the Java EE-specific classes (for example,
javax.servlet.*). Following this rule ensures maximum portability with
WebLogic Security.

Figure 13–1 illustrates this requirement.

Example of a Provider that Implements a Filter

13-4 Developing Security Providers for Oracle WebLogic Server

Figure 13–1 Authentication Providers Do Not Call Servlet Authentication Filters

13.3 Example of a Provider that Implements a Filter
WebLogic Server includes a Servlet Authentication Filter that handles the header
manipulation required by the Simple and Protected Negotiate (SPNEGO). This Servlet
Authentication Filter, called the "Negotiate Servlet Authentication Filter," is configured
to support the WWW-Authenticate and Authorization HTTP headers.

The Negotiate Servlet Authentication Filter generates the appropriate
WWW-Authenticate header on unauthorized responses for the negotiate protocol and
handles the Authorization headers on subsequent requests. The filter is available
through the Negotiate Identity Assertion Provider.

By default, the Negotiate Identity Assertion provider is available, but not configured,
in the WebLogic default security realm. The Negotiate Identity Assertion provider can
be used instead of, or in addition to, the WebLogic Identity Assertion provider.

13.4 How to Develop a Custom Servlet Authentication Filter
You can develop a custom Servlet Authentication Filter by following these steps:

1. Section 13.4.1, "Create Runtime Classes Using the Appropriate SSPIs"

2. Section 13.4.5, "Generate an MBean Type Using the WebLogic MBeanMaker"

3. Section 13.4.6, "Configure the Authentication Provider Using Administration
Console"

How to Develop a Custom Servlet Authentication Filter

Servlet Authentication Filters 13-5

13.4.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your Servlet Authentication Filter by following these steps:

■ Section 5.4.1.1, "Implement the AuthenticationProviderV2 SSPI" or Section 5.4.1.2,
"Implement the IdentityAsserterV2 SSPI"

■ Section 13.4.2, "Implement the Servlet Authentication Filter SSPI"

■ Section 13.4.3, "Implement the Filter Interface Methods"

For an example of how to create a runtime class for a custom Servlet Authentication
Filter provider, see Section 13.4.5, "Generate an MBean Type Using the WebLogic
MBeanMaker."

13.4.2 Implement the Servlet Authentication Filter SSPI
You implement the ServletAuthenticationFilter interface as part of an
Authentication provider to signal that the Authentication provider has authentication
filters that it wants the servlet container to invoke during the authentication process.

To implement the Servlet Authentication Filter SSPI, provide an implementation for
the following method:

■ get Servlet Authentication Filters

public Filter[] getServletAuthenticationFilters

The getServletAuthenticationFilters method returns an ordered list of
the javax.servlet.Filters that are executed during the authentication process of the
Servlet container. The container may call this method multiple times to get
multiple instances of the Servlet Authentication Filter. On each call, this method
should return a list of new instances of the filters.

13.4.3 Implement the Filter Interface Methods
To implement the Filter interface methods, provide implementations for the following
methods. In typical use, you would call init() once, doFilter() possibly many times,
and destroy() once.

■ destroy

public void destroy()

The destroy method is called by the web container to indicate to a filter that it is
being taken out of service. This method is only called once all threads within the
filter's doFilter method have exited, or after a timeout period has passed. After the
web container calls this method, it does not call the doFilter method again on
this instance of the filter.

This method gives the filter an opportunity to clean up any resources that are
being held (for example, memory, file handles, threads) and make sure that any
persistent state is synchronized with the filter's current state in memory

■ doFilter

How to Develop a Custom Servlet Authentication Filter

13-6 Developing Security Providers for Oracle WebLogic Server

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain)

The doFilter method of the Filter is called by the container each time a
request/response pair is passed through the chain due to a client request for a
resource at the end of the chain. The FilterChain passed in to this method
allows the Filter to pass on the request and response to the next entity in the chain.

A typical implementation of this method would follow the following pattern:

1. Examine the request.

2. Optionally, wrap the request object with a custom implementation to filter
content or headers for input filtering.

3. Optionally, wrap the response object with a custom implementation to filter
content or headers for output filtering.

4. Either invoke the next entity in the chain using the FilterChain object
(chain.doFilter()), or do not pass on the request/response pair to the next
entity in the filter chain to block the request processing.

5. Directly set headers on the response after invocation of the next entity in the
filter chain.

■ init

public void init(FilterConfig filterConfig)

The init method is called by the web container to indicate to a filter that it is
being placed into service. The servlet container calls the init method exactly once
after instantiating the filter. The init method must complete successfully before
the filter is asked to do any filtering work.

13.4.4 Implementing Challenge Identity Assertion from a Filter
As described in Chapter 5, "Identity Assertion Providers" the Challenge Identity
Assertion interface supports challenge response schemes in which multiple challenges,
responses messages, and state are required. The Challenge Identity Asserter interface
allows Identity Assertion providers to support authentication protocols such as
Microsoft's Windows NT Challenge/Response (NTLM), Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO), and other challenge/response
authentication mechanisms.

Servlet Authentication Filters allow you to implement a challenge/response protocol
without being limited to the authentication mechanisms compatible with the Servlet
container. However, because Servlet Authentication Filters operate outside of the
authentication environment provided by the Security Framework, they cannot depend
on the Security Framework to determine provider context, and require an API to drive
the multiple-challenge Identity Assertion process.

The weblogic.security.services.Authentication class has been extended to
allow multiple challenge/response identity assertion from a Servlet Authentication
Filter. The methods and interface provide a wrapper for the
ChallengeIdentityAsserterV2 and ProviderChallengeContext SSPI
interfaces so that you can invoke them from a Servlet Authentication Filter.

There is no other documented way to perform a multiple challenge/response dialog
from a Servlet Authentication Filter within the context of the Security Framework.
Your Servlet Authentication Filter cannot directly invoke the
ChallengeIdentityAsserterV2 and ProviderChallengeContext interfaces.

How to Develop a Custom Servlet Authentication Filter

Servlet Authentication Filters 13-7

Therefore, if you plan to implement multiple challenge/response identity assertion
from a filter, you need to implement the ChallengeIdentityAsserterV2 and
ProviderChallengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and
AppChallengeContect interface to invoke them from a Servlet Authentication
Filter.

The steps to accomplish this process are described in Chapter 5, "Identity Assertion
Providers" and are summarized here:

■ Section 5.4.1.1, "Implement the AuthenticationProviderV2 SSPI" or Section 5.4.1.2,
"Implement the IdentityAsserterV2 SSPI"

■ Section 5.4.4.4, "Implement the ChallengeIdentityAsserterV2 Interface"

■ Section 5.4.4.5, "Implement the ProviderChallengeContext Interface"

■ Section 5.4.4.6, "Invoke the weblogic.security.services Challenge Identity Methods"

■ Section 5.4.4.7, "Invoke the weblogic.security.services AppChallengeContext
Methods"

13.4.5 Generate an MBean Type Using the WebLogic MBeanMaker
When you generate the MBean type for your custom Authentication provider as
described in Chapter 4, "Authentication Providers" you must also implement the
MBean for your Servlet Authentication Filter.

The ServletAuthenticationFilter MBean extends the
AuthenticationProvider MBean. The ServletAuthenticationFilter
MBean is a marker interface and has no methods.

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType

Name = "ServletAuthenticationFilter"
Package = "weblogic.management.security.authentication"
Extends =
"weblogic.management.security.authentication.AuthenticationProvider"
PersistPolicy = "OnUpdate"
Abstract = "true"
Description = "The SSPI MBean that all Servlet Authentication Filter providers
must extend.
This MBean is just a marker interface. It has no methods on it."
>
</MBeanType>

13.4.5.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Authentication provider, including
the Servlet Authentication Filter, into an MBean JAR File (MJF).

These steps are described for the custom Authentication provider in Section 4.4.2.3,
"Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)."

How to Develop a Custom Servlet Authentication Filter

13-8 Developing Security Providers for Oracle WebLogic Server

13.4.6 Configure the Authentication Provider Using Administration Console
Configuring a custom Authentication provider that implements a Servlet
Authentication Filter means that you are adding the custom Authorization provider to
your security realm, where it can be accessed by applications requiring authorization
services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

The steps for configuring a custom Authorization provider using the WebLogic Server
Administration Console are described under "Configuring WebLogic Security
Providers" in Administering Security for Oracle WebLogic Server.

14

Versionable Application Providers 14-1

14Versionable Application Providers

This chapter describes the background information you need to understand before
adding application versioning capability to your custom security providers, and
provides step-by-step instructions for adding application versioning capability to a
custom security provider.

A versionable application is an application that has an application archive version
specified in the manifest of the application archive (EAR file). Versionable applications
can be deployed side-by-side and active simultaneously. Versionable applications
allow multiple versions of an application, where security constraints can vary between
the application versions.

The Versionable Application provider SSPI enables all security providers that support
application versioning to be notified when versions are created and deleted. It also
enables all security providers that support application versioning to be notified when
non-versioned applications are removed.

The following sections provide the background information you need to understand
before adding application versioning capability to your custom security providers, and
provide step-by-step instructions for adding application versioning capability to a
custom security provider:

■ Section 14.1, "Versionable Application Concepts"

■ Section 14.2, "The Versionable Application Process"

■ Section 14.3, "Do You Need to Develop a Custom Versionable Application
Provider?"

■ Section 14.4, "How to Develop a Custom VersionableApplication Provider"

14.1 Versionable Application Concepts
Redeployment of versionable applications is always done via side-by-side versions,
unless the same archive version is specified in the subsequent redeployments.
However, a versionable application has to be written in such a way that multiple
versions of it can be run side-by-side without conflicts; that is, it does not make any
assumption of the uniqueness of the application name, and so forth. For example, in
the case where an applications may use the application name as a unique key for
global data structures, such as database tables or LDAP stores, the applications would
need to change to use the application identifier instead.

Production Redeployment is allowed only if the configured security providers support
the application versioning security SSPI. All Authorization, Role Mapping, and
Credential Mapping providers for the security realm must support application
versioning for an application to be deployed using versions.

The Versionable Application Process

14-2 Developing Security Providers for Oracle WebLogic Server

See "Developing Applications for Production Redeployment" in Developing Applications
for Oracle WebLogic Server for detailed information on how an application assigns an
application version.

14.2 The Versionable Application Process
For a security provider to support application versioning, it must implement the
Versionable Application SSPI. The WebLogic Security Framework calls the Versionable
Application provider SSPI when an application version is created and deleted so that
the provider can take any required actions to create, copy or removed data associated
with the application version. It is up to the provider to determine the appropriate
action to take, if any.

In addition, the Versionable Application provider SSPI is also called when a
non-versioned application is deleted so that the provider can perform cleanup actions.

The WebLogic Security Framework passes the Versionable Application provider the
application identifier for the new version and the application identifier of the version
used as the source of application data. When the source identifier is not supplied, the
initial version of the application is being created.

14.3 Do You Need to Develop a Custom Versionable Application
Provider?

The WebLogic Server out-of-the-box security providers for Authorization, Role
Mapping and Credential Mapping support the application versioning SSPI. When a
new version is created, all the customized roles, policies and credential maps are
cloned with new resource identifiers representing the new application version. In
addition, when an application version is deleted, resources associated with the deleted
version are removed.

If you develop a custom security provider for Authorization, Role Mapping, or
Credential Mapping and need to support versioned applications, you must implement
the Versionable Application SSPI.

14.4 How to Develop a Custom VersionableApplication Provider
If you need to support the Versionable Application SSPI, you can develop a custom
Versionable Application provider by following these steps:

■ Implement your custom Authorization, Role Mapping, or Credential Mapping
providers. All Authorization, Role Mapping, or Credential Mapping providers for
the security realm must support application versioning for an application to be
deployed using versions.

■ Section 14.4.1, "Create Runtime Classes Using the Appropriate SSPIs"

■ Section 14.4.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

14.4.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

How to Develop a Custom VersionableApplication Provider

Versionable Application Providers 14-3

When you understand this information and have made your design decisions, create
the runtime classes for your custom Versionable Application provider by following
these steps:

■ Implement your custom Authorization, Role Mapping, or Credential Mapping
providers.

■ Section 14.4.1.1, "Implement the VersionableApplication SSPI"

14.4.1.1 Implement the VersionableApplication SSPI
To implement the VersionableApplication SSPI, provide implementations for the
methods described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"
and the following methods:

■ createApplicationVersion

void createApplicationVersion(String appIdentifier, String sourceAppIdentifier)

Marks the creation of a new application version and is called (only on the
Administration Server within a WebLogic Server domain) on one server within a
WebLogic Server domain at the time the version is created. The WebLogic Security
Framework passes the createApplicationVersion method the application
identifier for the new version (appIdentifier) and the application identifier of
the version used as the source of application data (sourceAppIdentifier).
When the source identifier is not supplied, the initial version of the application is
being created.

■ deleteApplication

void deleteApplication(String appName)

Marks the deletion of a non-versioned application and is called (only on the
Administration Server within a WebLogic Server domain) at the time the
application is deleted.

■ deleteApplicationVersion

void deleteApplicationVersion(String appIdentifier)

Marks the deletion of an application version and is only called (only on the
Administration Server within a WebLogic Server domain) at the time the version is
deleted.

14.4.1.2 Example: Creating the Runtime Class for the Sample
VersionableApplication Provider
Example 14–1 shows how the Versionable Application SSPI is implemented in the
sample Authorization provider.

Example 14–1 SimpleSampleAuthorizationProviderImpl

public final class SimpleSampleAuthorizationProviderImpl
 implements DeployableAuthorizationProviderV2, AccessDecision,
VersionableApplicationProvider
:
:
public void createApplicationVersion(String appId, String sourceAppId)
{
System.out.println("SimpleSampleAuthorizationProviderImpl.createApplicationVersion
");
System.out.println("\tapplication identifier\t= " + appId);

How to Develop a Custom VersionableApplication Provider

14-4 Developing Security Providers for Oracle WebLogic Server

System.out.println("\tsource app identifier\t= " + ((sourceAppId != null) ?
sourceAppId : "None"));
// create new policies when existing application is specified
 if (sourceAppId != null) {
 database.clonePoliciesForApplication(sourceAppId,appId);
 }

public void deleteApplicationVersion(String appId)
{
System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplicationVersion
");
System.out.println("\tapplication identifier\t= " + appId);

// clear out policies for the application
database.removePoliciesForApplication(appId);
}

public void deleteApplication(String appName)
{
System.out.println("SimpleSampleAuthorizationProviderImpl.deleteApplication");
System.out.println("\tapplication name\t= " + appName);

// clear out policies for the application
database.removePoliciesForApplication(appName);
}

14.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
When you generate the MBean type for your custom Authorization, Role Mapping,
and Credential Mapping providers, you must also implement the MBean for your
Versionable Application provider. The ApplicationVersionerMBean is a marker
interface and has no methods.

Example 14–2 shows how the SimpleSampleAuthorizer MBean Definition File (MDF)
implements the ApplicationVersionerMBean MBean.

Example 14–2 Implementing the ApplicationVersionerMBean

<MBeanType
 Name = "SimpleSampleAuthorizer"
 DisplayName = "SimpleSampleAuthorizer"
 Package = "examples.security.providers.authorization.simple"
 Extends = "weblogic.management.security.authorization.DeployableAuthorizer"
 Implements = "weblogic.management.security.ApplicationVersioner"
 PersistPolicy = "OnUpdate"
>

14.4.2.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom Authorization, Role Mapping, or
Credential Mapping provider, including the Versionable Application provider, into an
MBean JAR File (MJF).

For a custom Authorization provider, these steps are described in Section 7.5.5.3, "Use
the WebLogic MBeanMaker to Create the MBean JAR File (MJF)."

How to Develop a Custom VersionableApplication Provider

Versionable Application Providers 14-5

For a custom Role Mapping provider, these steps are described in Section 9.5.5.3, "Use
the WebLogic MBeanMaker to Create the MBean JAR File (MJF)."

For a custom Credential Mapping provider, these steps are described in
Section 11.4.2.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)."

14.4.3 Configure the Custom Versionable Application Provider Using the
Administration Console

Configuring a custom Versionable Application provider means that you are adding the
custom Versionable Application provider to your security realm, where it can be
accessed by applications requiring application version services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

The steps for configuring a custom Versionable Application provider using the
WebLogic Server Administration Console are described under "Configuring WebLogic
Security Providers" in Administering Security for Oracle WebLogic Server.

How to Develop a Custom VersionableApplication Provider

14-6 Developing Security Providers for Oracle WebLogic Server

15

CertPath Providers 15-1

15CertPath Providers

This chapter describes the background information you need to understand before
adding certificate lookup and validation capability to your custom security providers,
and provides step-by-step instructions for adding certificate lookup and validation
capability to a custom security provider.

The WebLogic Security service provides a framework that finds and validates X509
certificate chains for inbound 2-way SSL, outbound SSL, application code, and
WebLogic Web services. The Certificate Lookup and Validation (CLV) framework is a
new security plug-in framework that finds and validates certificate chains. The
framework extends and completes the JDK CertPath functionality, and allows you to
create a custom CertPath provider.

The following sections provide the background information you need to understand
before adding certificate lookup and validation capability to your custom security
providers, and provide step-by-step instructions for adding certificate lookup and
validation capability to a custom security provider:

■ Section 15.1, "Certificate Lookup and Validation Concepts"

■ Section 15.2, "Do You Need to Develop a Custom CertPath Provider?"

■ Section 15.3, "How to Develop a Custom CertPath Provider"

15.1 Certificate Lookup and Validation Concepts
A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath
is also used to refer to the JDK architecture and framework that is used to locate and
validate certificate chains.

There are two distinct types of providers, CertPath Validators and CertPath Builders:

■ The purpose of a certificate validator is to determine if the presented certificate
chain is valid and trusted. As the CertPath Validator provider writer, you decide
how to validate the certificate chain and determine whether you need to use the
trusted CA's.

■ The purpose of a certificate builder is to use a selector (which holds the selection
criteria for finding the CertPath) to find a certificate chain. Certificate builders
often to validate the certificate chain as well. As the CertPath Builder provider
writer, you decide which of the four selector types you support and whether you
also validate the certificate chain. You also decide how much of the certificate
chain you fill in and whether you need to use the trusted CA's.

The WebLogic CertPath providers are built using both the JDK and WebLogic CertPath
SPI's.

Certificate Lookup and Validation Concepts

15-2 Developing Security Providers for Oracle WebLogic Server

15.1.1 The Certificate Lookup and Validation Process
The certificate lookup and validation process is shown in Figure 15–1.

Figure 15–1 Certificate Lookup and Validation Process

15.1.2 Do You Need to Implement Separate CertPath Validators and Builders?
You can implement the CertPath provider in several ways:

■ You can implement a CertPath Builder that performs both building and validation.
In this case, you are responsible for:

1. Implementing the Validator SPI.

2. Implementing the Builder SPI.

3. You must validate the certificate chain you build as part of the Builder SPI.
Your provider will be called only once; you will not be called a second time
specifically for validation.

4. You decide the validation algorithm, which selectors to support, and whether
to use trusted CA's.

■ You can implement a CertPath Validator that performs only validation. In this
case, you are responsible for:

1. Implementing the Validator SPI.

2. You decide the validation algorithm and whether to use trusted CA's.

■ You can implement a CertPath Builder that performs only building. In this case,
you are responsible for:

Certificate Lookup and Validation Concepts

CertPath Providers 15-3

1. Implementing the Builder SPI.

2. You decide whether to validate the chain you build.

3. You decide which selectors to support and whether to use trusted CA's.

15.1.3 CertPath Provider SPI MBeans
WebLogic Server includes two CertPath provider SPI MBeans, both of which extend
CertPathProviderMBean:

■ CertPathBuilderMBean indicates that the provider can look up certificate chains. It
adds no attributes or methods. CertPathBuilder providers must implement a
custom MBean that extends this MBean.

■ CertPathValidatorMBean indicates that the provider can validate a certificate
chain. It adds no attributes or methods. CertPathValidator providers must
implement a custom MBean that extends this MBean.

Your CertPath provider, depending on its type, must extend one or both of the
MBeans. A security provider that supports both building and validating should write
an MBean that extends both of these MBeans, as shown in Example 15–1.

Example 15–1 Sample CertPath MBean MDF

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">

<MBeanType
Name = "MyCertPathProvider"
DisplayName = "MyCertPathProvider"
Package = "com.acme"
Extends = "weblogic.management.security.pk.CertPathBuilder"
Implements = "weblogic.management.security.pk.CertPathValidator"
PersistPolicy = "OnUpdate"
>
<MBeanAttribute
Name = "ProviderClassName"
Type = "java.lang.String"
Writeable = "false"
Default = ""com.acme.MyCertPathProviderRuntimeImpl""
/>

<MBeanAttribute
Name = "Description"
Type = "java.lang.String"
Writeable = "false"
Default = ""My CertPath Provider""
/>

<MBeanAttribute
Name = "Version"
Type = "java.lang.String"
Writeable = "false"
Default = ""1.0""
/>

 <!-- add custom attributes for the configuration data needed by this provider -->
<MBeanAttribute
Name = "CustomConfigData"
Type = "java.lang.String"

Certificate Lookup and Validation Concepts

15-4 Developing Security Providers for Oracle WebLogic Server

/>

15.1.4 WebLogic CertPath Validator SSPI
The WebLogic CertPath Validator SSPI has four parts:

■ An MBean SSPI, described in Section 15.1.3, "CertPath Provider SPI MBeans."

■ The JDK CertPathValidatorSPI interface, as described inSection 15.3.1.1,
"Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces."

■ The WebLogic Server CertPathProvider SSPI interface, as described in
Section 15.3.1.2, "Implement the CertPath Provider SSPI."

■ The JDK security provider that registers your CertPathValidatorSPI
implementation with the JDK, as described in Section 15.3.1.3, "Implement the JDK
Security Provider SPI."

15.1.5 WebLogic CertPath Builder SSPI
The WebLogic CertPath Builder SSPI has four parts:

■ An MBean SSPI, described in Section 15.1.3, "CertPath Provider SPI MBeans."

■ The JDK CertPathBuilderSPI interface, as described inSection 15.3.1.1,
"Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces."

■ The WebLogic Server CertPathProvider SSPI interface, as described in
Section 15.3.1.2, "Implement the CertPath Provider SSPI."

■ The JDK security provider that registers your CertPathBuilderSPI with the
JDK, as described in Section 15.3.1.3, "Implement the JDK Security Provider SPI."

15.1.6 Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI
Unlike other WebLogic Security Framework providers, your implementation of the
CertPath provider relies on a tightly-coupled integration of WebLogic and JDK
interfaces. This integration might best be shown in the tasks you perform to create a
CertPath provider.

If you are writing a CertPath Validator, you must perform the following tasks:

1. Create a CertPathValidatorMBean that extends CertPathProviderMBean, as described
in Section 15.3.2, "Generate an MBean Type Using the WebLogic MBeanMaker."

2. Implement the JDK java.security.cert.CertPathValidatorSpi, as
described in Section 15.3.1.1, "Implement the JDK CertPathBuilderSpi and/or
CertPathValidatorSpi Interfaces."

Your JDK implementation will be passed a JDK CertPathParameters object
that you can cast to a WebLogic CertPathValidatorParametersSpi. You can
then access its WebLogic methods to get the trusted CA's and ContextHandler.
You can also use it to access your WebLogic CertPath provider object.

Use the CertPathValidatorParametersSpi to provide the data you need to
validate the certificate chain, such as Trusted CA's, the ContextHandler, and your
CertPath provider SSPI implementation, which gives access to any custom
configuration data provided by your MBean, as described in Section 15.3.1.5, "Use
the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation."

Do You Need to Develop a Custom CertPath Provider?

CertPath Providers 15-5

Your WebLogic CertPath provider is important because your
CertPathValidatorSpi implementation has no direct way to get the custom
configuration data in your MBean. Your WebLogic CertPath provider can provide
a proprietary mechanism to make your custom MBean data available to your JDK
implementation.

3. Implement the WebLogic CertPath provider SSPI, as described in Section 15.3.1.2,
"Implement the CertPath Provider SSPI." In particular, you use the initialize
method of the CertPath provider SSPI to hook into the MBean and make its
custom configuration data available to your CertPathValidatorSpi
implementation, as shown in Example 15–2.

4. Implement a JDK security provider that registers your CertPathValidatorSpi
implementation, as described in Section 15.3.1.3, "Implement the JDK Security
Provider SPI." This coding might not be intuitive, and is called out in
Example 15–5.

If you are writing a CertPath Builder, you must perform the following tasks:

1. Create a CertPathBuilderMBean that extends CertPathProviderMBean, as
described in Section 15.3.2, "Generate an MBean Type Using the WebLogic
MBeanMaker."

2. Implement the JDK java.security.cert.CertPathBuilderSpi, as
described in Section 15.3.1.1, "Implement the JDK CertPathBuilderSpi and/or
CertPathValidatorSpi Interfaces."

Your JDK implementation will be passed a JDK CertPathParameters object
that you can cast to a WebLogic CertPathBuilderParametersSpi. You can
then access its WebLogic methods to get the trusted CA's, selector, and
ContextHandler. You can also use it to access your WebLogic CertPath provider
object.

Use the CertPathBuilderParametersSpi to provide the data you need to
build the CertPath, such as Trusted CA's, ContextHandler, the CertPathSelector,
and your CertPath provider SSPI implementation, which gives access to any
custom configuration data provided by your MBean, as described in
Section 15.3.1.4, "Use the CertPathBuilderParametersSpi SSPI in Your
CertPathBuilderSpi Implementation."

Your WebLogic CertPath provider is important because your
CertPathBuilderSpi implementation has no direct way to get the custom
configuration data in your MBean. Your WebLogic CertPath provider can provide
a proprietary mechanism to make your custom MBean data available to your JDK
implementation.

3. Implement a WebLogic CertPath provider SSPI, as described in Section 15.3.1.2,
"Implement the CertPath Provider SSPI." In particular, you use the initialize
method of the CertPath provider SSPI to hook into the MBean and make its
custom configuration data available to your CertPathBuilderSpi
implementation, as shown in Example 15–2.

4. Implement the JDK security provider that registers your CertPathBuilderSpi
implementation, as described in Section 15.3.1.3, "Implement the JDK Security
Provider SPI." This coding might not be intuitive, and is called out in
Example 15–5.

15.2 Do You Need to Develop a Custom CertPath Provider?
WebLogic Server includes a CertPath provider and the Certificate Registry.

How to Develop a Custom CertPath Provider

15-6 Developing Security Providers for Oracle WebLogic Server

The WebLogic Server CertPath provider is both a CertPath Builder and a CertPath
Validator. The provider completes certificate paths and validates the certificates using
the trusted CA configured for a particular WebLogic Server instance. It can build only
chains that are self-signed or are issued by a self-signed certificate authority, which
must be listed in the server's trusted CA's. If a certificate chain cannot be completed, it
is invalid. The provider uses only the EndCertificateSelector selector.

The WebLogic Server CertPath provider also checks the signatures in the chain,
ensures that the chain has not expired, and checks that one of the certificates in the
chain is issued by one of the trusted CAs configured for the server. If any of these
checks fail, the chain is not valid. Finally, the provider checks each certificate's basic
constraints (that is, the ability of the certificate to issue other certificates) to ensure the
certificate is in the proper place in the chain.

The WebLogic Server CertPath provider can be used as a CertPath Builder and a
CertPath Validator in a security realm.

The WebLogic Server Certificate Registry is an out-of-the-box CertPath provider that
allows the administrator to configure a list of trusted end certificates via the
Administration Console. The Certificate Registry is a builder/validator. The selection
criteria can be EndCertificateSelector, SubjectDNSelector,
IssuerDNSerialNumberSelector, or SubjectKeyIdentifier. The certificate
chain that is returned has only the end certificate. When it validates a chain, it makes
sure only that the end certificate is registered; no further checking is done.

You can configure both the CertPath provider and the Certificate Registry. You might
do this to make sure that a certificate chain is valid only if signed by a trusted CA, and
that the end certificate is in the registry.

If the supplied WebLogic Server CertPath providers do not meet your needs, you can
develop a custom CertPath provider.

15.3 How to Develop a Custom CertPath Provider
If the WebLogic CertPath provider or Certificate Registry does not meet your needs,
you can develop a custom CertPath provider by following these steps:

15.3.1 Create Runtime Classes Using the Appropriate SSPIs
Before you start creating runtime classes, you should first:

■ Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"

■ Section 3.2.5, "Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes"

When you understand this information and have made your design decisions, create
the runtime classes for your custom CertPath provider by following these steps:

■ Section 15.3.2, "Generate an MBean Type Using the WebLogic MBeanMaker"

■ Section 15.3.1.1, "Implement the JDK CertPathBuilderSpi and/or
CertPathValidatorSpi Interfaces"

■ Section 15.3.1.2, "Implement the CertPath Provider SSPI"

■ Section 15.3.1.3, "Implement the JDK Security Provider SPI"

■ Section 15.3.1.4, "Use the CertPathBuilderParametersSpi SSPI in Your
CertPathBuilderSpi Implementation" and/or Section 15.3.1.5, "Use the

How to Develop a Custom CertPath Provider

CertPath Providers 15-7

CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation"

15.3.1.1 Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi
Interfaces
The java.security.cert.CertPathBuilderSpi interface is the Service Provider
Interface (SPI) for the CertPathBuilder class. All CertPathBuilder
implementations must include a class that implements this interface
(CertPathBuilderSpi).

The java.security.cert.CertPathValidatorSpi interface is the Service
Provider Interface (SPI) for the CertPathValidator class. All
CertPathValidator implementations must include a class that implements this
interface (CertPathValidatorSpi).

Example 15–6 shows an example of implementing the CertPathBuilderSpi and
CertPathValidatorSpi interfaces.

15.3.1.2 Implement the CertPath Provider SSPI
The CertPathProvider SSPI interface exposes the services provided by both the
JDK CertPathValidator and CertPathBuilder SPIs and allows the provider to
be manipulated (initialized, started, stopped, and so on).

In particular, you use the initialize method of the CertPath provider SSPI to hook
into the MBean and make its custom configuration data available to your
CertPathBuilderSpi or CertPathValidatorSpi implementation, as shown in
Example 15–2.

A more complete example is available in Example 15–6.

Example 15–2 Code Fragment: Obtaining Custom Configuration Data From MBean

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{
:
:
 public void initialize(ProviderMBean mBean, SecurityServices securityServices)
 {
 MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;
 description = myMBean.getDescription();
 customConfigData = myMBean.getCustomConfigData();
:
}
:
 // make my config data available to my JDK CertPathBuilderSpi and
 // CertPathValidatorSpi impls
 private String getCustomConfigData() { return customConfigData; }
}
:
static public class MyJDKCertPathBuilder extends CertPathBuilderSpi
{
:
//get my runtime implementation instance which holds the configuration
//data needed to build and validate the cert path
MyCertPathProviderRuntimeImpl runtime =
(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
String myCustomConfigData = runtime.getCustomConfigData();

Example 15–5 shows how to register your JDK implementation with the JDK.

How to Develop a Custom CertPath Provider

15-8 Developing Security Providers for Oracle WebLogic Server

To implement the CertPathProvider SSPI, provide implementations for the
methods described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs"
and the following methods:

■ getCertPathBuilder

public CertPathBuilder getCertPathBuilder()

Gets a CertPath Provider's JDK CertPathBuilder that invokes your JDK
CertPathBuilderSpi implementation, as shown in Example 15–3. A
CertPathBuilder finds, and optionally validates, a certificate chain.

Example 15–3 Code Fragment: getCertPathBuilder

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
:
 // get my JDK cert path impls
 try {
 certPathBuilder = CertPathBuilder.getInstance(BUILDER_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }

■ getCertPathValidator

public CertPathValidator getCertPathValidator()

Gets a CertPath Provider's JDK CertPathValidator that invokes your JDK
CertPathValidatorSpi implementation, as shown in Example 15–4. A
CertPathValidator validates a certificate chain.

Example 15–4 Code Fragment: getCertPathValidator

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
:
 // get my JDK cert path impls
 try {
 certPathValidator = CertPathValidator.getInstance(VALIDATOR_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }
 }

15.3.1.3 Implement the JDK Security Provider SPI
Implement the JDK security provider SPI and use it to register your
CertPathBuilderSpi or CertPathValidatorSpi implementations with the JDK.
Use it to register your JDK implementation in your provider's initialize method.

Example 15–6 shows an example of creating the runtime class for a sample CertPath
provider. Example 15–5 shows the fragment from that larger example that implements
the JDK security provider.

Example 15–5 Implementing the JDK Security Provider

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{
private static final String MY_JDK_SECURITY_PROVIDER_NAME = "MyCertPathProvider";
private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME + "CertPathBuilder";
private static final String VALIDATOR_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathValidator";
:

How to Develop a Custom CertPath Provider

CertPath Providers 15-9

:
 public void initialize(ProviderMBean mBean, SecurityServices securityServices)
 {
 MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

 description = myMBean.getDescription();

 customConfigData = myMBean.getCustomConfigData();

// register my cert path impls with the JDK
// so that the CLV framework may invoke them via
// the JDK cert path apis.
if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 Security.addProvider(new MyJDKSecurityProvider());
 return null;
 }
 }
);
}
:
// This class implements the JDK security provider that registers
// this provider's cert path builder and cert path validator implementations
// with the JDK.
private class MyJDKSecurityProvider extends Provider
 {
 private MyJDKSecurityProvider()
 {
 super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK CertPath provider");
 put("CertPathBuilder." + BUILDER_ALGORITHM,
 "com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder");
 put("CertPathValidator." + VALIDATOR_ALGORITHM,
 "com.acme.MyCertPathProviderRuntimeImpl$MyJDKCertPathValidator");
 }
 }
}

15.3.1.4 Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation
Your JDK implementation will be passed a JDK CertPathParameters object that
you can cast to a WebLogic CertPathBuilderParametersSpi. You can then access
its WebLogic methods to get the trusted CA's, selector, and ContextHandler. You can
also use it to access your WebLogic CertPath provider object. The following methods
are provided:

■ getCertPathProvider

CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and
make its custom configuration data available to your CertPathBuilderSpi
implementation, as shown in Example 15–2.

■ getCertPathSelector

CertPathSelector getCertPathSelector()

How to Develop a Custom CertPath Provider

15-10 Developing Security Providers for Oracle WebLogic Server

Gets the CertPathSelector interface that holds the selection criteria for finding
the CertPath.

WebLogic Server provides a set of classes in weblogic.security.pk that
implement the CertPathSelector interface, one for each supported type of
certificate chain lookup. Therefore, the getCertPathSelector method returns
one of the following derived classes:

■ EndCertificateSelector – used to find and validate a certificate chain given
its end certificate.

■ IssuerDNSerialNumberSelector – used to find and validate a certificate
chain from its end certificate's issuer DN and serial number.

■ SubjectDNSelector – used to find and validate a certificate chain from its end
certificate's subject DN.

■ SubjectKeyIdentifierSelector – used to find and validate a certificate
chain from its end certificate's subject key identifier (an optional field in X509
certificates).

Each selector class has one or more methods to retrieve the selection data and a
constructor.

Your CertPathBuilderSpi implementation decides which selectors it supports.
The CertPathBuilderSpi implementation must use the
getCertPathSelector method of the CertPathBuilderParametersSpi
SSPI to get the CertPathSelector that holds the selection criteria for finding
the CertPath. If your CertPathBuilderSpi implementation supports that type
of selector, it then uses the selector to build and validate the chain. Otherwise, it
must throw an InvalidAlgorithmParameterException, which is propagated back to
the caller.

■ getContext()

ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for
building and validating the CertPath.

■ getTrustedCAs()

X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for building the
certificate chain. If your CertPathBuilderSpi implementation needs Trusted
CA's to build the chain, it should use these Trusted CA's.

■ clone

Object clone()

This interface is not cloneable.

15.3.1.5 Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation
Your JDK implementation will be passed a JDK CertPathParameters object that
you can cast to a WebLogic CertPathValidatorParametersSpi. You can then
access its WebLogic methods to get the trusted CA's and ContextHandler. You can also
use it to access your WebLogic CertPath provider object. The CLV framework ensures
that the certificate chain passed to the validator SPI is in order (starting at the end

How to Develop a Custom CertPath Provider

CertPath Providers 15-11

certificate), and that each cert has signed the next. The following methods are
provided:

■ getCertPathProvider

CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and
make its custom configuration data available to your CertPathValidatorSpi
implementation, as shown in Example 15–2.

■ getContext()

ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for
building and validating the CertPath.

SSL performs some built-in validation before it calls one or more
CertPathValidator objects to perform additional validation. A validator can reduce
the amount of validation it must do by discovering what validation has already
been done.

For example, the WebLogic CertPath Provider performs the same validation that
SSL does, and there is no need to duplicate that validation when invoked by SSL.
Therefore, SSL puts some information into the context it hands to the validators to
indicate what validation has already occurred. The
weblogic.security.SSL.SSLValidationConstants CHAIN_
PREVALIDATED_BY_SSL field is a Boolean that indicates whether SSL has
pre-validated the certificate chain. Your application code can test this field, which
is set to true if SSL has pre-validated the certificate chain, and is false otherwise.

■ getTrustedCAs()

X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for validating the
certificate chain. If your CertPathBuilderSpi implementation needs Trusted CA's to
validate the chain, it should use these Trusted CA's.

■ clone

Object clone()

This interface is not cloneable.

15.3.1.6 Returning the Builder or Validator Results
Your JDK CertPathBuilder or CertPathValidator implementation must return an object
that implements the java.security.cert.CertPathValidatorResult or
java.security.cert.CertPathValidatorResult interface.

You can write your own results implementation or you can use the WebLogic Server
convenience routines.

WebLogic Server provides two convenience results-implementation classes,
WLSCertPathBuilderResult and WLSCertPathValidatorResult, both of
which are located in weblogic.security.pk, that you can use to return instances
of java.security.cert.CertPathValidatorResult or
java.security.cert.CertPathValidatorResult.

How to Develop a Custom CertPath Provider

15-12 Developing Security Providers for Oracle WebLogic Server

15.3.1.7 Example: Creating the Sample Cert Path Provider
Example 15–6 shows an example CertPath builder/validator provider. The example
includes extensive comments that explain the code flow.

Example 15–1 shows the CertPath MBean that Example 15–6 uses.

Example 15–6 Creating the Sample Cert Path Provider

package com.acme;

import weblogic.management.security.ProviderMBean;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.SubjectDNSelector;
import weblogic.security.pk.WLSCertPathBuilderResult;
import weblogic.security.pk.WLSCertPathValidatorResult;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.CertPathBuilderParametersSpi;
import weblogic.security.spi.CertPathProvider;
import weblogic.security.spi.CertPathValidatorParametersSpi;
import weblogic.security.spi.SecurityServices;
import weblogic.security.SSL.SSLValidationConstants;

import java.security.InvalidAlgorithmParameterException;
import java.security.NoSuchAlgorithmException;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.Provider;
import java.security.Security;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.CertPathBuilderResult;
import java.security.cert.CertPathBuilderSpi;
import java.security.cert.CertPathBuilderException;
import java.security.cert.CertPathParameters;
import java.security.cert.CertPathValidator;
import java.security.cert.CertPathValidatorResult;
import java.security.cert.CertPathValidatorSpi;
import java.security.cert.CertPathValidatorException;
import java.security.cert.X509Certificate;

public class MyCertPathProviderRuntimeImpl implements CertPathProvider
{
 private static final String MY_JDK_SECURITY_PROVIDER_NAME = "MyCertPathProvider";
 private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathBuilder";
 private static final String VALIDATOR_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME +
"CertPathValidator";

 // Used to invoke my JDK cert path builder / validator implementations
 private CertPathBuilder certPathBuilder;
 private CertPathValidator certPathValidator;

 // remember my custom configuration data from my mbean
 private String customConfigData;

Note: The results you return are not passed through the WebLogic
Security framework.

How to Develop a Custom CertPath Provider

CertPath Providers 15-13

 private String description;

 public void initialize(ProviderMBean mBean, SecurityServices securityServices)
 {
 MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

 description = myMBean.getDescription();

 customConfigData = myMBean.getCustomConfigData();

 // register my cert path impls with the JDK
 // so that the CLV framework may invoke them via
 // the JDK cert path apis.
 if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
 AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 Security.addProvider(new MyJDKSecurityProvider());
 return null;
 }
 }
);
 }

 // get my JDK cert path impls
 try {
 certPathBuilder = CertPathBuilder.getInstance(BUILDER_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }

 try {
 certPathValidator = CertPathValidator.getInstance(VALIDATOR_ALGORITHM);
 } catch (NoSuchAlgorithmException e) { throw new AssertionError("..."); }
 }

 public void shutdown () { }
 public String getDescription () { return description; }
 public CertPathBuilder getCertPathBuilder () { return certPathBuilder;}
 public CertPathValidator getCertPathValidator () { return certPathValidator;}

 // make my config data available to my JDK CertPathBuilderSpi and
 // CertPathValidatorSpi impls
 private String getCustomConfigData() { return customConfigData; }

 /**
 * This class contains JDK cert path builder implementation for this provider.
 */

 static public class MyJDKCertPathBuilder extends CertPathBuilderSpi
 {
 public CertPathBuilderResult
 engineBuild(CertPathParameters genericParams)
 throws CertPathBuilderException, InvalidAlgorithmParameterException
 {

 // narrow the CertPathParameters to the WLS ones so we can get the
 // data needed to build and validate the cert path
 if (!(genericParams instanceof CertPathBuilderParametersSpi)) {
 throw new InvalidAlgorithmParameterException("The CertPathParameters must be a
 weblogic.security.pk.CertPathBuilderParametersSpi instance.");
 }

How to Develop a Custom CertPath Provider

15-14 Developing Security Providers for Oracle WebLogic Server

 CertPathBuilderParametersSpi params = (CertPathBuilderParametersSpi)genericParams;

 // get my runtime implementation instance which holds the configuration
 // data needed to build and validate the cert path
 MyCertPathProviderRuntimeImpl runtime =
(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
 String myCustomConfigData = runtime.getCustomConfigData();

 // get the selector which indicates which cert path the caller wants built.
 // it can be an EndCertificateSelector, SubjectDNSelector,
 // IssuerDNSerialNumberSelector
 // or a SubjectKeyIdentifier.
 CertPathSelector genericSelector = params.getCertPathSelector();

 // decide which kinds of selectors this builder wants to support.

 if (genericSelector instanceof SubjectDNSelector) {

 // get the subject dn of the end certificate of the cert path the caller
 // wants built
 SubjectDNSelector selector = (SubjectDNSelector)genericSelector;
 String subjectDN = selector.getSubjectDN();

 // if your implementation requires trusted CAs, get them.
 // otherwise, ignore them. that is, it's a quality of service
 // issue whether or not you require trusted CAs.
 X509Certificate[] trustedCAs = params.getTrustedCAs();

 // if your implementation requires looks for extra data in
 // the context handler, get it. otherwise ignore it.
 ContextHandler context = params.getContext();
 if (context != null) {
 // ...
 }

 // use my custom configuration data (ie. myCustomConfigData),
 // the trusted CAs (if applicable to my implementation),
 // the context (if applicable to my implementation),
 // and the subject DN to build and validate the cert path
 CertPath certpath = ...
 // or X509Certificate[] chain = ...

 // if not found, throw an exception:
 if (...) {
 throw new CertPathBuilderException("Could not build a cert path for " + subjectDN);
 }

 // if not valid, throw an exception:
 if (...) {
 throw new CertPathBuilderException("Could not validate the cert path for " + subjectDN);
 }

 // if found and valid, return the cert path.
 // for convenience, use the WLSCertPathBuilderResult class
 return new WLSCertPathBuilderResult(certpath);
 // or return new WLSCertPathBuilderResult(chain);

 } else {

How to Develop a Custom CertPath Provider

CertPath Providers 15-15

 // the caller passed in a selector that my implementation does not support
 throw new InvalidAlgorithmParameterException("MyCertPathProvider only
 supports weblogoic.security.pk.SubjectDNSelector");
 }
 }
}

 /**
 * This class contains JDK cert path validator implementation for this provider.
 */

 static public class MyJDKCertPathValidator extends CertPathValidatorSpi
 {
 public CertPathValidatorResult
 engineValidate(CertPath certPath, CertPathParameters genericParams)
 throws CertPathValidatorException, InvalidAlgorithmParameterException
 {

 // narrow the CertPathParameters to the WLS ones so we can get the
 // data needed to build and validate the cert path
 if (!(genericParams instanceof CertPathValidatorParametersSpi)) {
 throw new InvalidAlgorithmParameterException("The CertPathParameters must be a
 weblogic.security.pk.CertPathValidatorParametersSpi instance.");
 }

 CertPathValidatorParametersSpi params = (CertPathValidatorParametersSpi)genericParams;

 // get my runtime implementation instance which holds the configuration
 // data needed to build and validate the cert path
 MyCertPathProviderRuntimeImpl runtime =
(MyCertPathProviderRuntimeImpl)params.getCertPathProvider();
 String myCustomConfigData = runtime.getCustomConfigData();

 // if your implementation requires trusted CAs, get them.
 // otherwise, ignore them. that is, it's a quality of service
 // issue whether or not you require trusted CAs.
 X509Certificate[] trustedCAs = params.getTrustedCAs();

 // if your implementation requires looks for extra data in
 // the context handler, get it. otherwise ignore it.
 ContextHandler context = params.getContext();
 if (context != null) {
 // ...
 }

 // The CLV framework has already done some minimal validation
 // on the cert path before sending it to your provider:
 // 1) the cert path is not empty
 // 2) the cert path starts with the end cert
 // 3) each certificate in the cert path was issued and
 // signed by the next certificate in the chain
 // So, your validator can rely on these checks having
 // already been performed (vs your validator needing to
 // do these checks too).

 // Use my custom configuration data (ie. myCustomConfigData),
 // the trusted CAs (if applicable to my implementation),
 // and the context (if applicable to my implementation)
 // to validate the cert path

How to Develop a Custom CertPath Provider

15-16 Developing Security Providers for Oracle WebLogic Server

 // if not valid, throw an exception:
 if (...) {
 throw new CertPathValidatorException("Could not validate the cerpath " + certPath);
 }
 // if valid, return success

 // For convenience, use the WLSCertPathValidatorResult class

 return new WLSCertPathValidatorResult();
 }
}

 // This class implements the JDK security provider that registers this // provider's
 // cert path builder and cert path validator implementations with the JDK.
 private class MyJDKSecurityProvider extends Provider
 {
 private MyJDKSecurityProvider()
 {
 super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK CertPath provider");
 put("CertPathBuilder." + BUILDER_ALGORITHM,
"com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder");
 put("CertPathValidator." + VALIDATOR_ALGORITHM,
"com.acme.MyCertPathProviderRuntimeImpl$MyJDKCertPathValidator");
 }
 }
}

15.3.2 Generate an MBean Type Using the WebLogic MBeanMaker
Before you start generating an MBean type for your custom security provider, you
should first:

■ Section 3.3.1, "Understand Why You Need an MBean Type"

■ Section 3.3.2, "Determine Which SSPI MBeans to Extend and Implement"

■ Section 3.3.3, "Understand the Basic Elements of an MBean Definition File (MDF)"

■ Section 3.3.4, "Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console"

■ Section 3.3.5, "Understand What the WebLogic MBeanMaker Provides"

When you understand this information and have made your design decisions, create
the MBean type for your custom CertPath provider by following these steps:

Section 15.3.2.1, "Create an MBean Definition File (MDF)"

Section 15.3.2.2, "Use the WebLogic MBeanMaker to Generate the MBean Type"

Section 15.3.2.3, "Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)"

Section 15.3.2.4, "Install the MBean Type Into the WebLogic Server Environment"

Note: Several sample security providers illustrate how to perform
these steps.

All instructions provided in this section assume that you are working
in a Windows environment.

How to Develop a Custom CertPath Provider

CertPath Providers 15-17

15.3.2.1 Create an MBean Definition File (MDF)
To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to a text file.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in
your MDF so that they are appropriate for your custom CertPath provider. You
need to extend or implement CertPathBuilderMBean or CertPathValidatorMBean.

3. Add any custom attributes and operations (that is, additional
<MBeanAttribute> and <MBeanOperation> elements) to your MDF.

4. Save the file.

15.3.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom CertPath provider. Follow the instructions that are appropriate to your
situation:

■ Section 15.3.2.2.1, "No Optional SSPI MBeans and No Custom Operations"

■ Section 15.3.2.2.2, "Optional SSPI MBeans or Custom Operations"

15.3.2.2.1 No Optional SSPI MBeans and No Custom Operations If the MDF for your custom
CertPath provider does not implement any optional SSPI MBeans and does not
include any custom operations, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

Note: MDF for the sample Authentication provider is called
SimpleSampleAuthenticator.xml. There is no sample CertPath
provider.

Note: A complete reference of MDF element syntax is available in
Appendix A, "MBean Definition File (MDF) Element Syntax."

How to Develop a Custom CertPath Provider

15-18 Developing Security Providers for Oracle WebLogic Server

3. Proceed to Section 15.3.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

15.3.2.2.2 Optional SSPI MBeans or Custom Operations If the MDF for your custom
CertPath provider does implement some optional SSPI MBeans or does include
custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is
named SampleIdentityAsserterImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement
each method. Be sure to also provide implementations for any methods that
the optional SSPI MBean inherits.

4. If you included any custom operations in your MDF, implement the methods
using the method stubs.

5. Save the file.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple CertPath providers).

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple CertPath providers).

How to Develop a Custom CertPath Provider

CertPath Providers 15-19

6. Proceed to Section 15.3.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

Are you updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

2. Create a new DOS shell.

3. Type the following command:

java -DMDF=xmlfile -Dfiles=filesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

where the -DMDF flag indicates that the WebLogic MBeanMaker should translate
the MDF into code, xmlFile is the MDF (the XML MBean Description File) and
filesdir is the location where the WebLogic MBeanMaker will place the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing
MBean implementation file.

4. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNameImpl.java. For example, for the MDF named
SampleIdentityAsserter, the MBean implementation file to be edited is
named SampleIdentityAsserterImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated MBean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in
the original MDF, implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

Note: As of version 9.0 of WebLogic Server, you can also provide a
directory that contains multiple MDF's by using the -DMDFDIR
<MDF directory name> option. In prior versions of WebLogic Server,
the WebLogic MBeanMaker processed only one MDF at a time.
Therefore, you had to repeat this process if you had multiple MDFs (in
other words, multiple Cert Path providers).

How to Develop a Custom CertPath Provider

15-20 Developing Security Providers for Oracle WebLogic Server

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specified this
as filesdir in step 3. (You will be overriding the MBean implementation file
generated by the WebLogic MBeanMaker as a result of step 3.)

8. Proceed to Section 15.3.2.3, "Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)."

15.3.2.2.3 About the Generated MBean Interface File The MBean interface file is the
client-side API to the MBean that your runtime class or your MBean implementation
will use to obtain configuration data. It is typically used in the initialize method as
described in Section 3.2.2, "Understand the Purpose of the "Provider" SSPIs."

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plus the
text "MBean" appended to it. For example, the result of running the
SampleIdentityAsserter MDF through the WebLogic MBeanMaker will yield an
MBean interface file called SampleIdentityAsserterMBean.java.

15.3.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom CertPath provider into an MBean
JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom CertPath provider, follow these steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMJF=jarfile -Dfiles=filesdir
weblogic.management.commo.WebLogicMBeanMaker

where the -DMJF flag indicates that the WebLogic MBeanMaker should build a
JAR file containing the new MBean types, jarfile is the name for the MJF and filesdir
is the location where the WebLogic MBeanMaker looks for the files to JAR into the
MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and
no errors occur, an MJF is created with the specified name.

How to Develop a Custom CertPath Provider

CertPath Providers 15-21

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server
environments.

15.3.2.4 Install the MBean Type Into the WebLogic Server Environment
To install an MBean type into the WebLogic Server environment, copy the MJF into the
WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
installation directory for WebLogic Server. This "deploys" your custom CertPath
provider—that is, it makes the custom CertPath provider manageable from the
WebLogic Server Administration Console.

You can create instances of the MBean type by configuring your custom CertPath
provider (see Section 15.3.3, "Configure the Custom CertPath Provider Using the
Administration Console"), and then use those MBean instances from a GUI, from other

Note: When you create a JAR file for a custom security provider, a
set of XML binding classes and a schema are also generated. You can
choose a namespace to associate with that schema. Doing so avoids
the possibility that your custom classes will conflict with those
provided by Oracle. The default for the namespace is vendor. You can
change this default by passing the -targetNameSpace argument to the
WebLogicMBeanMaker or the associated WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and
regenerate it. The WebLogic MBeanMaker also has a -DIncludeSource
option, which controls whether source files are included into the
resulting MJF. Source files include both the generated source and the
MDF itself. The default is false. This option is ignored when -DMJF is
not used.

Note: WL_HOME\server\lib\mbeantypes is the default directory
for installing MBean types. (Beginning with 9.0, security providers can
be loaded from ...\domaindir\lib\mbeantypes as well.)
However, if you want WebLogic Server to look for MBean types in
additional directories, use the
-Dweblogic.alternateTypesDirectory=<dir> command-line
flag when starting your server, where <dir> is a comma-separated list
of directory names. When you use this flag, WebLogic Server will
always load MBean types from WL_
HOME\server\lib\mbeantypes first, then will look in the
additional directories and load all valid archives present in those
directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory =
dirX,dirY, WebLogic Server will first load MBean types from WL_
HOME\server\lib\mbeantypes, then any valid archives present in
dirX and dirY. If you instruct WebLogic Server to look in additional
directories for MBean types and are using the Java Security Manager,
you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security
provider). For more information, see "Using Java Security to Protect
WebLogic Resources" in Developing Applications with the WebLogic
Security Service.

How to Develop a Custom CertPath Provider

15-22 Developing Security Providers for Oracle WebLogic Server

Java code, or from APIs. For example, you can use the WebLogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances.

15.3.3 Configure the Custom CertPath Provider Using the Administration Console
Configuring a custom CertPath provider means that you are adding the custom
CertPath provider to your security realm, where it can be accessed by applications
requiring CertPath services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

Note: The steps for configuring a custom CertPath provider using
the WebLogic Server Administration Console are described under
"Configuring WebLogic Security Providers" in Administering Security
for Oracle WebLogic Server.

A

MBean Definition File (MDF) Element Syntax A-1

AMBean Definition File (MDF) Element Syntax

An MBean Definition File (MDF) is an input file to the WebLogic MBeanMaker
utility, which uses the file to create an MBean type for managing a custom security
provider. An MDF must be formatted as a well-formed and valid XML file that
describes a single MBean type. The following sections describe all the elements and
attributes that are available for use in a valid MDF:

■ Section A.1, "The MBeanType (Root) Element"

■ Section A.2, "The MBeanAttribute Subelement"

■ Section A.3, "The MBeanConstructor Subelement"

■ Section A.4, "The MBeanOperation Subelement"

■ Section A.6, "Examples: Well-Formed and Valid MBean Definition Files (MDFs)"

A.1 The MBeanType (Root) Element
All MDFs must contain exactly one root element called MBeanType, which has the
following syntax:

<MBeanType Name= string optional_attributes>
 subelements
</MBeanType>

The MBeanType element must include a Name attribute, which specifies the internal,
programmatic name of the MBean type. (To specify a name that is visible in a user
interface, use the DisplayName attribute.) Other attributes are optional.

The following is a simplified example of an MBeanType (root) element:

<MBeanType Name="MyMBean" Package="com.mycompany">
 <MBeanAttribute Name="MyAttr" Type="java.lang.String" Default="Hello World"/>
</MBeanType>

Attributes specified in the MBeanType (root) element apply to the entire set of MBeans
instantiated from that MBean type. To override attributes for specific MBean instances,
you need to specify attributes in the MBeanAttribute subelement. For more
information, see Section A.2, "The MBeanAttribute Subelement."

Table A–1 describes the attributes available to the MBeanType (root) element. The JMX
Specification/Oracle Extension column indicates whether the attribute is an Oracle
extension to the JMX specification or a standard JMX attribute. Note that Oracle
extensions might not function on other Java EE Web servers.

The MBeanType (Root) Element

A-2 Developing Security Providers for Oracle WebLogic Server

Table A–1 MBeanType (Root) Element Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

Abstract Oracle Extension true/false A true value specifies that the
MBean type cannot be instantiated
(like any abstract Java class), though
other MBean types can inherit its
attributes and operations. If you
specify true, you must create other
non-abstract MBean types for
carrying out management tasks. If
you do not specify a value for this
attribute, the assumed value is
false.

Deprecated Oracle Extension true/false Indicates that the MBean type is
deprecated. This information
appears in the generated Java source,
and is also placed in the
ModelMBeanInfo object for
possible use by a management
application. If you do not specify this
attribute, the assumed value is
false.

Description JMX Specification String An arbitrary string associated with
the MBean type that appears in
various locations, such as the
Javadoc for generated classes. There
is no default or assumed value.

Note: To specify a description that is
visible in a user interface, use the
DisplayName attribute.

DisplayName JMX Specification String The name that a user interface
displays to identify instances of
MBean types. For an instance of type
X, the default DisplayName is
"instance of type X." This value is
typically overridden when instances
are created.

Extends Oracle Extension Pathname A fully qualified MBean type name
that this MBean type extends.

Implements Oracle Extension Comma-

separated list

A comma-separated list of fully
qualified MBean type names that
this MBean type implements.

See also Extends.

Name JMX Specification String Mandatory attribute that specifies
the internal, programmatic name of
the MBean type.

Package Oracle Extension String Specifies the package name of the
MBean type and determines the
location of the class files that the
WebLogic MBeanMaker creates. If
you do not specify this attribute, the
MBean type is placed in the Java
default package.

Note: MBean type names can be the
same as long as the package name
varies.

The MBeanAttribute Subelement

MBean Definition File (MDF) Element Syntax A-3

A.2 The MBeanAttribute Subelement
You must supply one instance of an MBeanAttribute subelement for each attribute
in your MBean type. The MBeanAttribute subelement must be formatted as follows:

<MBeanAttribute Name=string optional_attributes />

The MBeanAttribute subelement must include a Name attribute, which specifies the
internal, programmatic name of the Java attribute in the MBean type. (To specify a
name that is visible in a user interface, use the DisplayName attribute.) Other
attributes are optional.

The following is a simplified example of an MBeanAttribute subelement within an
MBeanType element:

<MBeanType Name="MyMBean" Package="com.mycompany">
 <MBeanAttribute Name= "WhenToCache"
 Type="java.lang.String"
 LegalValues="'cache-on-reference','cache-at-initialization','cache-never'"
 Default= "cache-on-reference"
 />
</MBeanType>

Attributes specified in an MBeanAttribute subelement apply to a specific MBean
instance. To set attributes for the entire set of MBeans instantiated from an MBean
type, you need to specify attributes in the MBeanType (root) element. For more
information, see Section A.1, "The MBeanType (Root) Element."

Table A–2 describes the attributes available to the MBeanAttribute subelement. The
JMX Specification/Oracle Extension column indicates whether the attribute is an
Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

PersistPolic
y

JMX Specification /OnUpdate Specifies how persistence will occur:

OnUpdate. The attribute is stored
every time the attribute is updated.

Note: When specified in the
MBeanType element, this value
overrides any setting within an
individual MBeanAttribute
subelement.

Table A–1 (Cont.) MBeanType (Root) Element Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

The MBeanAttribute Subelement

A-4 Developing Security Providers for Oracle WebLogic Server

Table A–2 MBeanAttribute Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

Default JMX Specification String The value to be returned if the
MBeanAttribute subelement does
not provide a getter method or a
cached value. The string represents a
Java expression that must evaluate
to an object of a type that is
compatible with the provided data
type for this attribute.

If you do not specify this attribute,
the assumed value is null. If you
use this assumed value, and if you
set the LegalNull attribute to false,
then an exception is thrown by
WebLogic MBeanMaker and
WebLogic Server.

Deprecated Oracle Extension true/false Indicates that the MBean attribute is
deprecated. This information
appears in the generated Java
source, and is also placed in the
ModelMBeanInfo object for
possible use by a management
application. If you do not specify
this attribute, the assumed value is
false.

Description JMX Specification String An arbitrary string associated with
the MBean attribute that appears in
various locations, such as the
Javadoc for generated classes. There
is no default or assumed value.

Note: To specify a description that is
visible in a user interface, use the
DisplayName attribute.

Dynamic Oracle Extension true/false Changes made to dynamic MBeans
take effect without rebooting the
server. By default, all custom
security provider MBean attributes
are non-dynamic.

Note that in 8.1 and 7.0, all custom
security provider MBean attributes
were dynamic.

Encrypted Oracle Extension true/false A true value indicates that this
MBean attribute will be encrypted
when it is set. If you do not specify
this attribute, the assumed value is
false.

The MBeanAttribute Subelement

MBean Definition File (MDF) Element Syntax A-5

InterfaceTyp
e

Oracle Extension String Classname of an interface to be used
instead of the MBean interface
generated by the WebLogic
MBeanMaker. InterfaceType can
be

■ int

■ long

■ float

■ double

■ char

■ byte

Do not specify if "Type" is
java.lang.String,
java.lang.String[], or
java.lang.Properties.

IsIs JMX Specification true/false Specifies whether a generated Java
interface uses the JMX
is<AttributeName> method to
access the boolean value of the
MBean attribute (as opposed to the
get<AttributeName> method). If
you do not specify this attribute, the
assumed value is false.

LegalNull Oracle Extension true/false Specifies whether null is an
allowable value for the current
MBeanAttribute subelement. If
you do not specify this attribute, the
assumed value is true.

LegalValues Oracle Extension Comma-separa
ted list

Specifies a fixed set of allowable
values for the current
MBeanAttribute subelement. If
you do not specify this attribute, the
MBean attribute allows any value of
the type that is specified by the Type
attribute.

Note: The items in the list must be
convertible to the data type that is
specified by the subelement's Type
attribute.

Max Oracle Extension Integer For numeric MBean attribute types
only, provides a numeric value that
represents the inclusive maximum
value for the attribute. If you do not
specify this attribute, the value can
be as large as the data type allows.

Min Oracle Extension Integer For numeric MBean attribute types
only, provides a numeric value
which represents the inclusive
minimum value for the attribute. If
you do not specify this attribute, the
value can be as small as the data
type allows.

Table A–2 (Cont.) MBeanAttribute Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

The MBeanConstructor Subelement

A-6 Developing Security Providers for Oracle WebLogic Server

A.3 The MBeanConstructor Subelement
MBeanConstructor subelements are not currently used by the WebLogic
MBeanMaker, but are supported for compliance with the Java Management eXtensions
1.0 specification
(http://jcp.org/aboutJava/communityprocess/final/jsr003/index.ht
ml) and upward compatibility. Therefore, attribute details for the
MBeanConstructor subelement (and its associated MBeanConstructorArg
subelement) are omitted from this documentation.

Name JMX Specification String Mandatory attribute that specifies
the internal, programmatic name of
the MBean attribute.

Type JMX Specification Java class
name

The fully qualified classname of the
data type of this attribute. This
corresponding class must be
available on the classpath. If you do
not specify this attribute, the
assumed value is
java.lang.String. Type can be

■ java.lang.Integer

■ java.lang.Integer[]

■ java.lang.Long

■ java.lang.Long[]

■ java.lang.Float

■ java.lang.Float[]

■ java.lang.Double

■ java.lang.Double[]

■ java.lang.Char

■ java.lang.Char[]

■ java.lang.Byte

■ java.lang.Byte[]

■ java.lang.String

■ java.lang.String[]

■ java.util.Properties

Writeable JMX Specification true/false A true value allows the MBean API
to set an MBeanAttribute's value.
If you do not specify this attribute in
MBeanType or MBeanAttribute,
the assumed value is true.

When specified in the MBeanType
element, this value is considered the
default for individual
MBeanAttribute subelements.

Table A–2 (Cont.) MBeanAttribute Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

The MBeanOperation Subelement

MBean Definition File (MDF) Element Syntax A-7

A.4 The MBeanOperation Subelement
You must supply one instance of an MBeanOperation subelement for each operation
(method) that your MBean type supports. The MBeanOperation must be formatted
as follows:

<MBeanOperation Name=string optional_attributes >
 <MBeanOperationArg Name=string optional_attributes />
</MBeanOperation>

The MBeanOperation subelement must include a Name attribute, which specifies the
internal, programmatic name of the operation. (To specify a name that is visible in a
user interface, use the DisplayName attribute.) Other attributes are optional.

Within the MBeanOperation element, you must supply one instance of an
MBeanOperationArg subelement for each argument that your operation (method)
uses. The MBeanOperationArg must be formatted as follows:

<MBeanOperationArg Name=string optional_attributes />

The Name attribute must specify the name of the operation. The only optional attribute
for MBeanOperationArg is Type, which provides the Java class name that specifies
behavior for a specific type of Java attribute. If you do not specify this attribute, the
assumed value is java.lang.String.

The following is a simplified example of an MBeanOperation and
MBeanOperationArg subelement within an MBeanType element:

<MBeanType Name="MyMBean" Package="com.mycompany">
 <MBeanOperation
 Name= "findParserSelectMBeanByKey"
 ReturnType="XMLParserSelectRegistryEntryMBean"
 Description="Given a public ID, system ID, or root element tag, returns the
 object name of the corresponding XMLParserSelectRegistryEntryMBean."
 >
 <MBeanOperationArg Name="publicID" Type="java.lang.String"/>
 <MBeanOperationArg Name="systemID" Type="java.lang.String"/>
 <MBeanOperationArg Name="rootTag" Type="java.lang.String"/>
 </MBeanOperation>
</MBeanType>

Table A–3 describes the attributes available to the MBeanOperation subelement. The
JMX Specification/Oracle Extension column indicates whether the attribute is an
Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

Table A–3 MBeanOperation Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

Deprecated Oracle Extension true/false Indicates that the MBean
operation is deprecated. This
information appears in the
generated Java source, and is
also placed in the
ModelMBeanInfo object for
possible use by a management
application. If you do not specify
this attribute, the assumed value
is false.

The MBeanOperation Subelement

A-8 Developing Security Providers for Oracle WebLogic Server

Table A–4 describes the attributes available to the MBeanOperationArg subelement.
The JMX Specification/Oracle Extension column indicates whether the attribute is an
Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

Description JMX Specification String An arbitrary string associated
with the MBean operation that
appears in various locations,
such as the Javadoc for generated
classes. There is no default or
assumed value.

Note: To specify a description
that is visible in a user interface,
use the DisplayName attribute.

Name JMX Specification String Mandatory attribute that
specifies the internal,
programmatic name of the
MBean operation.

ReturnType JMX Specification String A string containing the fully
qualified classname of the Java
object returned by the operation
being described. ReturnType
can be void or the following:

■ int

■ int[]

■ long

■ long[]

■ float

■ float[]

■ double

■ double[]

■ char

■ char[]

■ byte

■ byte[]

■ java.lang.String

■ java.lang.String[]

■ java.util.Properties

Table A–4 MBeanOperationArg Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

Description JMX Specification String An arbitrary string associated
with the MBean operation
argument that appears in various
locations, such as the Javadoc for
generated classes. There is no
default or assumed value.

Table A–3 (Cont.) MBeanOperation Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

MBean Operation Exceptions

MBean Definition File (MDF) Element Syntax A-9

A.5 MBean Operation Exceptions
Your MBean Definition Files (MDFs) must use only JDK exception types or
weblogic.management.utils exception types. The following is a code fragment
from Example A–1 that shows the use of an MBeanException within an
MBeanOperation subelement:

<MBeanOperation
Name = "registerPredicate"
ReturnType = "void"
Description = "Registers a new predicate with the specified class name."
>
<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements the predicate."
/>
<MBeanException>weblogic.management.utils.InvalidPredicateException</MBeanExceptio
n>
<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanException>
</MBeanOperation>

Name JMX Specification String Mandatory attribute that
specifies the name of the
argument.

Type JMX Specification String The type of the MBean operation
argument. If you do not specify
this attribute, the assumed value
is java.lang.String. Type
can be

■ int

■ int[]

■ long

■ long[]

■ float

■ float[]

■ double

■ double[]

■ char

■ char[]

■ byte

■ byte[]

■ java.lang.String

■ java.lang.String[]

■ java.util.Properties

Table A–4 (Cont.) MBeanOperationArg Subelement Attributes

Attribute

JMX Specification

/Oracle Extension
Allowed
Values Description

Examples: Well-Formed and Valid MBean Definition Files (MDFs)

A-10 Developing Security Providers for Oracle WebLogic Server

A.6 Examples: Well-Formed and Valid MBean Definition Files (MDFs)
Example A–1 and Example A–2 provide examples of MBean Definition Files (MDFs)
that use many of the attributes described in this Appendix. Example A–1 shows the
MDF used to generate an MBean type that manages predicates and reads data about
predicates and their arguments.Example A–2 shows the MDF used to generate the
MBean type for the WebLogic (default) Authorization provider.

Example A–1 PredicateEditor.xml

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType
Name = "PredicateEditor"
Package = "weblogic.security.providers.authorization"
Implements = "weblogic.security.providers.authorization.PredicateReader"
PersistPolicy = "OnUpdate"
Abstract = "false"
Description = "This MBean manages predicates and reads data about predicates and
their arguments.<p>"
>
<MBeanOperation
Name = "registerPredicate"
ReturnType = "void"
Description = "Registers a new predicate with the specified class name."
>
<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements the predicate."
/>

<MBeanException>weblogic.management.utils.InvalidPredicateException</MBeanExceptio
n>
<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanException>
</MBeanOperation>

<MBeanOperation
Name = "unregisterPredicate"
ReturnType = "void"
Description = "Unregisters the currently registered predicate." >

<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements predicate to be
unregistered."
/>
<MBeanException>weblogic.management.utils.NotFoundException</MBeanException>
</MBeanOperation>
</MBeanType>

Example A–2 DefaultAuthorizer.xml

<?xml version="1.0" ?>
<!DOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType
Name = "DefaultAuthorizer"
DisplayName = "DefaultAuthorizer"
Package = "weblogic.security.providers.authorization"

Examples: Well-Formed and Valid MBean Definition Files (MDFs)

MBean Definition File (MDF) Element Syntax A-11

Extends ="weblogic.management.security.authorization.DeployableAuthorizer"
Implements = "weblogic.management.security.authorization.PolicyEditor,
weblogic.security.providers.authorization.PredicateEditor"
PersistPolicy = "OnUpdate"
Description = "This MBean represents configuration attributes
for the WebLogic Authorization provider. <p>"
>
<MBeanAttribute
Name = "ProviderClassName"
Type = "java.lang.String"
Writeable = "false"
Default""weblogic.security.providers.authorization.DefaultAuthorizationProvid
erImpl""
Description = "The name of the Java class used to load the WebLogic
Authorization provider."
/>
<MBeanAttribute
Name = "Description"
Type = "java.lang.String"
Writeable = "false"
Default = ""Weblogic Default Authorization Provider"" Description =
"A short description of the WebLogic Authorization provider." />
<MBeanAttribute
Name = "Version"
Type = "java.lang.String"
Writeable = "false"
Default = ""1.0""
Description = "The version of the WebLogic Authorization provider."
/>
</MBeanType>

Examples: Well-Formed and Valid MBean Definition Files (MDFs)

A-12 Developing Security Providers for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope
	1.2 Documentation Audience
	1.3 Guide to this Document
	1.4 Related Information
	1.5 New and Changed Features in this Release

	2 Introduction to Developing Security Providers for WebLogic Server
	2.1 Prerequisites for This Guide
	2.2 Overview of the Development Process
	2.2.1 Designing the Custom Security Provider
	2.2.2 Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs
	2.2.3 Generating an MBean Type to Configure and Manage the Custom Security Provider
	2.2.4 Writing Console Extensions
	2.2.5 Configuring the Custom Security Provider
	2.2.6 Providing Management Mechanisms for Security Policies, Security Roles, and Credential Maps

	3 Design Considerations
	3.1 General Architecture of a Security Provider
	3.2 Security Services Provider Interfaces (SSPIs)
	3.2.1 Understand Two Important Restrictions
	3.2.2 Understand the Purpose of the "Provider" SSPIs
	3.2.3 Understand the Purpose of the Bulk Access Providers
	3.2.4 Determine Which "Provider" Interface You Will Implement
	3.2.4.1 The DeployableAuthorizationProviderV2 SSPI
	3.2.4.2 The DeployableRoleProviderV2 SSPI
	3.2.4.3 The DeployableCredentialProvider SSPI

	3.2.5 Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two Runtime Classes
	3.2.6 SSPI Quick Reference

	3.3 Security Service Provider Interface (SSPI) MBeans
	3.3.1 Understand Why You Need an MBean Type
	3.3.2 Determine Which SSPI MBeans to Extend and Implement
	3.3.3 Understand the Basic Elements of an MBean Definition File (MDF)
	3.3.3.1 Custom Providers and Classpaths
	3.3.3.2 Throwing Exceptions from MBean Operations
	3.3.3.3 Specifying Non-Clear Text Values for MBean Attributes

	3.3.4 Understand the SSPI MBean Hierarchy and How It Affects the Administration Console
	3.3.5 Understand What the WebLogic MBeanMaker Provides
	3.3.5.1 About the MBean Information File

	3.3.6 SSPI MBean Quick Reference

	3.4 Security Data Migration
	3.4.1 Migration Concepts
	3.4.1.1 Formats
	3.4.1.2 Constraints
	3.4.1.3 Migration Files

	3.4.2 Adding Migration Support to Your Custom Security Providers
	3.4.3 Administration Console Support for Security Data Migration

	3.5 Management Utilities Available to Developers of Security Providers
	3.6 Security Providers and WebLogic Resources
	3.6.1 The Architecture of WebLogic Resources
	3.6.2 Types of WebLogic Resources
	3.6.3 WebLogic Resource Identifiers
	3.6.3.1 The toString() Method
	3.6.3.2 Resource IDs and the getID() Method

	3.6.4 Creating Default Groups for WebLogic Resources
	3.6.5 Creating Default Security Roles for WebLogic Resources
	3.6.6 Creating Default Security Policies for WebLogic Resources
	3.6.7 Looking Up WebLogic Resources in a Security Provider's Runtime Class
	3.6.8 Single-Parent Resource Hierarchies
	3.6.8.1 Pattern Matching for URL Resources
	3.6.8.1.1 Example 1
	3.6.8.1.2 Example 2

	3.6.9 ContextHandlers and WebLogic Resources
	3.6.9.1 Providers and Interfaces that Support Context Handlers

	3.7 Initialization of the Security Provider Database
	3.7.1 Best Practice: Create a Simple Database If None Exists
	3.7.2 Best Practice: Configure an Existing Database
	3.7.3 Best Practice: Delegate Database Initialization
	3.7.4 Best Practice: Use the JDBC Connection Security Service API to Obtain Database Connections
	3.7.4.1 Implementing a JDBC Connection Security Service: Main Steps

	3.8 Differences In Attribute Validators
	3.8.1 Differences In Attribute Validators for Custom Validators

	4 Authentication Providers
	4.1 Authentication Concepts
	4.1.1 Users and Groups, Principals and Subjects
	4.1.1.1 Providing Initial Users and Groups

	4.1.2 LoginModules
	4.1.2.1 The LoginModule Interface
	4.1.2.2 LoginModules and Multipart Authentication

	4.1.3 Java Authentication and Authorization Service (JAAS)
	4.1.3.1 How JAAS Works With the WebLogic Security Framework
	4.1.3.2 Example: Standalone T3 Application

	4.2 The Authentication Process
	4.3 Do You Need to Develop a Custom Authentication Provider?
	4.4 How to Develop a Custom Authentication Provider
	4.4.1 Create Runtime Classes Using the Appropriate SSPIs
	4.4.1.1 Implement the AuthenticationProviderV2 SSPI
	4.4.1.2 Implement the JAAS LoginModule Interface
	4.4.1.3 Throwing Custom Exceptions from LoginModules
	4.4.1.3.1 Method 1: Make Custom Exceptions Available via the System and Compiler Classpath
	4.4.1.3.2 Method 2: Make Custom Exceptions Available via the Application Classpath

	4.4.1.4 Example: Creating the Runtime Classes for the Sample Authentication Provider

	4.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
	4.4.2.1 Create an MBean Definition File (MDF)
	4.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	4.4.2.2.1 No Optional SSPI MBeans and No Custom Operations
	4.4.2.2.2 Optional SSPI MBeans or Custom Operations
	4.4.2.2.3 About the Generated MBean Interface File

	4.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	4.4.2.4 Install the MBean Type Into the WebLogic Server Environment

	4.4.3 Configure the Custom Authentication Provider Using the Administration Console
	4.4.3.1 Managing User Lockouts
	4.4.3.1.1 Rely on the Realm-Wide User Lockout Manager
	4.4.3.1.2 Implement Your Own User Lockout Manager

	4.4.3.2 Specifying the Order of Authentication Providers

	5 Identity Assertion Providers
	5.1 Identity Assertion Concepts
	5.1.1 Identity Assertion Providers and LoginModules
	5.1.2 Identity Assertion and Tokens
	5.1.2.1 How to Create New Token Types
	5.1.2.2 How to Make New Token Types Available for Identity Assertion Provider Configurations

	5.1.3 Passing Tokens for Perimeter Authentication
	5.1.4 Common Secure Interoperability Version 2 (CSIv2)

	5.2 The Identity Assertion Process
	5.3 Do You Need to Develop a Custom Identity Assertion Provider?
	5.4 How to Develop a Custom Identity Assertion Provider
	5.4.1 Create Runtime Classes Using the Appropriate SSPIs
	5.4.1.1 Implement the AuthenticationProviderV2 SSPI
	5.4.1.2 Implement the IdentityAsserterV2 SSPI
	5.4.1.3 Example: Creating the Runtime Class for the Sample Identity Assertion Provider

	5.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
	5.4.2.1 Create an MBean Definition File (MDF)
	5.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	5.4.2.2.1 No Optional SSPI MBeans and No Custom Operations
	5.4.2.2.2 Optional SSPI MBeans or Custom Operations
	5.4.2.2.3 About the Generated MBean Interface File

	5.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	5.4.2.4 Install the MBean Type Into the WebLogic Server Environment

	5.4.3 Configure the Custom Identity Assertion Provider Using the Administration Console
	5.4.4 Challenge Identity Assertion
	5.4.4.1 Challenge/Response Limitations in the Java Servlet API 2.3 Environment
	5.4.4.2 Filters and The Role of the weblogic.security.services.Authentication Class
	5.4.4.3 How to Develop a Challenge Identity Asserter
	5.4.4.4 Implement the ChallengeIdentityAsserterV2 Interface
	5.4.4.5 Implement the ProviderChallengeContext Interface
	5.4.4.6 Invoke the weblogic.security.services Challenge Identity Methods
	5.4.4.7 Invoke the weblogic.security.services AppChallengeContext Methods
	5.4.4.8 Implementing Challenge Identity Assertion from a Filter

	6 Principal Validation Providers
	6.1 Principal Validation Concepts
	6.1.1 Principal Validation and Principal Types
	6.1.2 How Principal Validation Providers Differ From Other Types of Security Providers
	6.1.3 Security Exceptions Resulting from Invalid Principals

	6.2 The Principal Validation Process
	6.3 Do You Need to Develop a Custom Principal Validation Provider?
	6.3.1 How to Use the WebLogic Principal Validation Provider

	6.4 How to Develop a Custom Principal Validation Provider
	6.4.1 Implement the PrincipalValidator SSPI

	7 Authorization Providers
	7.1 Authorization Concepts
	7.1.1 Access Decisions
	7.1.2 Using the Java Authorization Contract for Containers

	7.2 The Authorization Process
	7.3 Do You Need to Develop a Custom Authorization Provider?
	7.3.1 Does Your Custom Authorization Provider Need to Support Application Versioning?

	7.4 Is Your Custom Authorization Provider Thread Safe?
	7.5 How to Develop a Custom Authorization Provider
	7.5.1 Create Runtime Classes Using the Appropriate SSPIs
	7.5.1.1 Implement the AuthorizationProvider SSPI
	7.5.1.2 Implement the DeployableAuthorizationProviderV2 SSPI
	7.5.1.2.1 The ApplicationInfo Interface

	7.5.1.3 Implement the AccessDecision SSPI
	7.5.1.3.1 Developing Custom Authorization Providers That Are Compatible With the Realm Adapter Authentication Provider

	7.5.1.4 Example: Creating the Runtime Class for the Sample Authorization Provider

	7.5.2 Policy Consumer SSPI
	7.5.2.1 Required SSPI Interfaces
	7.5.2.2 Implement the PolicyConsumerFactory SSPI Interface
	7.5.2.3 Implement the PolicyConsumer SSPI Interface
	7.5.2.4 Implement the PolicyCollectionHandler SSPI Interface
	7.5.2.5 Supporting an Updated Policy Collection
	7.5.2.6 The PolicyConsumerMBean

	7.5.3 PolicyStoreMBean
	7.5.3.1 Examining the Format of a XACML Policy File
	7.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean
	7.5.3.3 Using WLST to Read a PolicySet as a String

	7.5.4 Bulk Authorization Providers
	7.5.5 Generate an MBean Type Using the WebLogic MBeanMaker
	7.5.5.1 Create an MBean Definition File (MDF)
	7.5.5.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	7.5.5.2.1 No Optional SSPI MBeans and No Custom Operations
	7.5.5.2.2 Optional SSPI MBeans or Custom Operations
	7.5.5.2.3 About the Generated MBean Interface File

	7.5.5.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	7.5.5.4 Install the MBean Type Into the WebLogic Server Environment

	7.5.6 Configure the Custom Authorization Provider Using the Administration Console
	7.5.6.1 Managing Authorization Providers and Deployment Descriptors
	7.5.6.2 Enabling Security Policy Deployment

	7.5.7 Provide a Mechanism for Security Policy Management
	7.5.7.1 Option 1: Develop a Stand-Alone Tool for Security Policy Management
	7.5.7.2 Option 2: Integrate an Existing Security Policy Management Tool into the Administration Console

	8 Adjudication Providers
	8.1 The Adjudication Process
	8.2 Do You Need to Develop a Custom Adjudication Provider?
	8.3 How to Develop a Custom Adjudication Provider
	8.3.1 Create Runtime Classes Using the Appropriate SSPIs
	8.3.1.1 Implement the AdjudicationProviderV2 SSPI
	8.3.1.2 Implement the AdjudicatorV2 SSPI

	8.3.2 Bulk Adjudication Providers
	8.3.3 Generate an MBean Type Using the WebLogic MBeanMaker
	8.3.3.1 Create an MBean Definition File (MDF)
	8.3.3.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	8.3.3.2.1 No Custom Operations
	8.3.3.2.2 Custom Operations
	8.3.3.2.3 About the Generated MBean Interface File

	8.3.3.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	8.3.3.4 Install the MBean Type Into the WebLogic Server Environment

	8.3.4 Configure the Custom Adjudication Provider Using the Administration Console

	9 Role Mapping Providers
	9.1 Role Mapping Concepts
	9.1.1 Security Roles
	9.1.2 Dynamic Security Role Computation

	9.2 The Role Mapping Process
	9.3 Is Your Custom Role Mapping Provider Thread Safe?
	9.4 Do You Need to Develop a Custom Role Mapping Provider?
	9.4.1 Does Your Custom Role Mapping Provider Need to Support Application Versioning?

	9.5 How to Develop a Custom Role Mapping Provider
	9.5.1 Create Runtime Classes Using the Appropriate SSPIs
	9.5.1.1 Implement the RoleProvider SSPI
	9.5.1.2 Implement the DeployableRoleProviderV2 SSPI
	9.5.1.2.1 The ApplicationInfo Interface

	9.5.1.3 Implement the RoleMapper SSPI
	9.5.1.3.1 Developing Custom Role Mapping Providers That Are Compatible With the Realm Adapter Authentication Provider

	9.5.1.4 Implement the SecurityRole Interface
	9.5.1.5 Example: Creating the Runtime Class for the Sample Role Mapping Provider

	9.5.2 Role Consumer SSPI
	9.5.2.1 Required SSPI Interfaces
	9.5.2.2 Implement the RoleConsumerFactory SSPI Interface
	9.5.2.3 Implement the RoleConsumer SSPI Interface
	9.5.2.4 Implement the RoleCollectionHandler SSPI Interface
	9.5.2.5 Supporting an Updated Role Collection
	9.5.2.6 The RoleConsumerMBean

	9.5.3 PolicyStoreMBean
	9.5.3.1 Examining the Format of a XACML Policy File
	9.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean
	9.5.3.3 Using WLST to Read a PolicySet as a String

	9.5.4 Bulk Role Mapping Providers
	9.5.5 Generate an MBean Type Using the WebLogic MBeanMaker
	9.5.5.1 Create an MBean Definition File (MDF)
	9.5.5.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	9.5.5.2.1 No Custom Operations
	9.5.5.2.2 Custom Operations
	9.5.5.2.3 About the Generated MBean Interface File

	9.5.5.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	9.5.5.4 Install the MBean Type Into the WebLogic Server Environment

	9.5.6 Configure the Custom Role Mapping Provider Using the Administration Console
	9.5.6.1 Managing Role Mapping Providers and Deployment Descriptors
	9.5.6.2 Enabling Security Role Deployment

	9.5.7 Provide a Mechanism for Security Role Management
	9.5.7.1 Option 1: Develop a Stand-Alone Tool for Security Role Management
	9.5.7.2 Option 2: Integrate an Existing Security Role Management Tool into the Administration Console

	10 Auditing Providers
	10.1 Auditing Concepts
	10.1.1 Audit Channels
	10.1.2 Auditing Events From Custom Security Providers

	10.2 The Auditing Process
	10.3 Implementing the ContextHandler MBean
	10.3.1 ContextHandlerMBean Methods
	10.3.2 Example: Implementing the ContextHandlerMBean
	10.3.3 Extend weblogic.management.security.audit.ContextHandlerImpl

	10.4 Do You Need to Develop a Custom Auditing Provider?
	10.5 How to Develop a Custom Auditing Provider
	10.5.1 Create Runtime Classes Using the Appropriate SSPIs
	10.5.1.1 Implement the AuditProvider SSPI
	10.5.1.2 Implement the AuditChannel SSPI
	10.5.1.3 Example: Creating the Runtime Class for the Sample Auditing Provider

	10.5.2 Generate an MBean Type Using the WebLogic MBeanMaker
	10.5.2.1 Create an MBean Definition File (MDF)
	10.5.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	10.5.2.2.1 No Custom Operations
	10.5.2.2.2 Custom Operations
	10.5.2.2.3 About the Generated MBean Interface File

	10.5.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	10.5.2.4 Install the MBean Type Into the WebLogic Server Environment

	10.5.3 Configure the Custom Auditing Provider Using the Administration Console
	10.5.3.1 Configuring Audit Severity

	10.6 Security Framework Audit Events
	10.6.1 Passing Additional Audit Information
	10.6.2 Audit Event Interfaces and Audit Events
	10.6.2.1 AuditApplicationVersionEvent
	10.6.2.2 AuditAtnEventV2
	10.6.2.3 AuditAtzEvent
	10.6.2.4 AuditCerPathBuilderEvent, AuditCertPathValidatorEvent
	10.6.2.5 AuditConfigurationEvent
	10.6.2.6 AuditCredentialMappingEvent
	10.6.2.7 AuditLifecycleEvent
	10.6.2.8 AuditMgmtEvent
	10.6.2.9 AuditPolicyEvent
	10.6.2.10 AuditRoleDeploymentEvent
	10.6.2.11 AuditRoleEvent

	11 Credential Mapping Providers
	11.1 Credential Mapping Concepts
	11.2 The Credential Mapping Process
	11.3 Do You Need to Develop a Custom Credential Mapping Provider?
	11.3.1 Does Your Custom Credential Mapping Provider Need to Support Application Versioning?

	11.4 How to Develop a Custom Credential Mapping Provider
	11.4.1 Create Runtime Classes Using the Appropriate SSPIs
	11.4.1.1 Implement the CredentialProviderV2 SSPI
	11.4.1.2 Implement the DeployableCredentialProvider SSPI
	11.4.1.3 Implement the CredentialMapperV2 SSPI
	11.4.1.3.1 Developing Custom Credential Mapping Providers That Are Compatible With the Realm Adapter Authentication Provider

	11.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
	11.4.2.1 Create an MBean Definition File (MDF)
	11.4.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	11.4.2.2.1 No Optional SSPI MBeans and No Custom Operations
	11.4.2.2.2 Optional SSPI MBeans or Custom Operations
	11.4.2.2.3 About the Generated MBean Interface File

	11.4.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	11.4.2.4 Install the MBean Type Into the WebLogic Server Environment

	11.4.3 Provide a Mechanism for Credential Map Management
	11.4.3.1 Option 1: Develop a Stand-Alone Tool for Credential Map Management
	11.4.3.2 Option 2: Integrate an Existing Credential Map Management Tool into the Administration Console

	12 Auditing Events From Custom Security Providers
	12.1 Security Services and the Auditor Service
	12.2 How to Audit From a Custom Security Provider
	12.2.1 Create an Audit Event
	12.2.1.1 Implement the AuditEvent SSPI
	12.2.1.2 Implement an Audit Event Convenience Interface
	12.2.1.2.1 The AuditAtnEventV2 Interface
	12.2.1.2.2 The AuditAtzEvent and AuditPolicyEvent Interfaces
	12.2.1.2.3 The AuditMgmtEvent Interface
	12.2.1.2.4 The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

	12.2.1.3 Audit Severity
	12.2.1.4 Audit Context
	12.2.1.5 Example: Implementation of the AuditRoleEvent Interface

	12.2.2 Obtain and Use the Auditor Service to Write Audit Events
	12.2.2.1 Example: Obtaining and Using the Auditor Service to Write Role Audit Events
	12.2.2.2 Auditing Management Operations from a Provider's MBean
	12.2.2.3 Example: Auditing Management Operations from a Provider's MBean

	12.2.3 Best Practice: Posting Audit Events from a Provider's MBean

	13 Servlet Authentication Filters
	13.1 Authentication Filter Concepts
	13.1.1 Why Filters are Needed
	13.1.2 Servlet Authentication Filter Design Considerations

	13.2 How Filters Are Invoked
	13.2.1 Do Not Call Servlet Authentication Filters From Authentication Providers

	13.3 Example of a Provider that Implements a Filter
	13.4 How to Develop a Custom Servlet Authentication Filter
	13.4.1 Create Runtime Classes Using the Appropriate SSPIs
	13.4.2 Implement the Servlet Authentication Filter SSPI
	13.4.3 Implement the Filter Interface Methods
	13.4.4 Implementing Challenge Identity Assertion from a Filter
	13.4.5 Generate an MBean Type Using the WebLogic MBeanMaker
	13.4.5.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	13.4.6 Configure the Authentication Provider Using Administration Console

	14 Versionable Application Providers
	14.1 Versionable Application Concepts
	14.2 The Versionable Application Process
	14.3 Do You Need to Develop a Custom Versionable Application Provider?
	14.4 How to Develop a Custom VersionableApplication Provider
	14.4.1 Create Runtime Classes Using the Appropriate SSPIs
	14.4.1.1 Implement the VersionableApplication SSPI
	14.4.1.2 Example: Creating the Runtime Class for the Sample VersionableApplication Provider

	14.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
	14.4.2.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	14.4.3 Configure the Custom Versionable Application Provider Using the Administration Console

	15 CertPath Providers
	15.1 Certificate Lookup and Validation Concepts
	15.1.1 The Certificate Lookup and Validation Process
	15.1.2 Do You Need to Implement Separate CertPath Validators and Builders?
	15.1.3 CertPath Provider SPI MBeans
	15.1.4 WebLogic CertPath Validator SSPI
	15.1.5 WebLogic CertPath Builder SSPI
	15.1.6 Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI

	15.2 Do You Need to Develop a Custom CertPath Provider?
	15.3 How to Develop a Custom CertPath Provider
	15.3.1 Create Runtime Classes Using the Appropriate SSPIs
	15.3.1.1 Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces
	15.3.1.2 Implement the CertPath Provider SSPI
	15.3.1.3 Implement the JDK Security Provider SPI
	15.3.1.4 Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi Implementation
	15.3.1.5 Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi Implementation
	15.3.1.6 Returning the Builder or Validator Results
	15.3.1.7 Example: Creating the Sample Cert Path Provider

	15.3.2 Generate an MBean Type Using the WebLogic MBeanMaker
	15.3.2.1 Create an MBean Definition File (MDF)
	15.3.2.2 Use the WebLogic MBeanMaker to Generate the MBean Type
	15.3.2.2.1 No Optional SSPI MBeans and No Custom Operations
	15.3.2.2.2 Optional SSPI MBeans or Custom Operations
	15.3.2.2.3 About the Generated MBean Interface File

	15.3.2.3 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	15.3.2.4 Install the MBean Type Into the WebLogic Server Environment

	15.3.3 Configure the Custom CertPath Provider Using the Administration Console

	A MBean Definition File (MDF) Element Syntax
	A.1 The MBeanType (Root) Element
	A.2 The MBeanAttribute Subelement
	A.3 The MBeanConstructor Subelement
	A.4 The MBeanOperation Subelement
	A.5 MBean Operation Exceptions
	A.6 Examples: Well-Formed and Valid MBean Definition Files (MDFs)

