ORACLE

Oracle® Fusion Middleware

Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server

12¢(12.1.2)
E28152-03

January 2015

Documentation for developers and administrators that
describes how to configure and use the WebLogic
Diagnostics Framework (WLDEF), a monitoring and
diagnostic framework that defines and implements a set of
services that run within WebLogic Server processes and that
participate in the standard server life cycle.

Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server,
12¢ (12.1.2)

E28152-03
Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ... e e e ettt aen Xi
Documentation AccesSibility ..o Xi
(@03 4 hT£=1 015 o) 0 I RRRT RPN Xi

1 Introduction and Roadmap

1.1 What Is the WebLogic Diagnostics Framework? ..o, 1-1
1.2 Document Scope and AUIENCE.........c.cccucuiuiiiiiiiiiiiiiceccceeee e 1-2
1.3 Guide t0 This DOCUMENTc.cooiiiiiiiiiiiicii s 1-2
1.4 Related DOCUMENTATION.ccioiririeiciiiieicire et 1-4
1.5 Samples and TUtOTIalScccceuiiiiiiicce e 1-4
1.5.1 Avitek Medical Records Application (MedRec) and Tutorials.........ccccceveeriiiiiinnnnn. 1-4
1.5.2 WLDF Samples Available for Download.............ccccciiiiiiiiiiiiiiiiicccceenns 1-4
1.6 New and Changed Features in this Release...........ccccccccoeiiiiiiiiiiiiiiiiccccccceeeens 1-5

2 Overview of the WLDF Architecture

2.1 Overview of the WebLogic Diagnostics Framework............cccccoceeiiiinnininnniiineene 2-1
2.2 Data Creation, Collection, and Instrumentationccc.oovveeevieeeieireeeee et 2-2
2.3 ATCIIVE .ttt 2-3
2.4 Watch and Notification ..o 2-4
2.5 Data ACCESSOTvvieiiietcecieieete et 2-5
2.6 Monitoring Dashboard and Request Performance Pages.........c.cccococoveiiviiciiiicnninicnnn 2-5
2.6.1 Monitoring Dashboard ... 2-5
2.6.2 Diagnostics Request Performance Pageooceuoioiiiiiiiiicicicccc 2-6
2.7 Diagnostic Image Capture ..o 2-6
2.8 How It Al Fits TOZthercocoiuiiiiiiiii e 2-7

3 Using the Built-in Diagnostic System Modules

3.1 OVEIVIEW ..eteeiieteete ettt ettt et e e et e steeteebeesa e seestesseessasseessessaessesseassesseassesseessesseassesssessansenssensennes 3-1
3.1.1 Types of Built-in Diagnostic System Modulescccccovvniiinnninnnii, 3-2
3.1.2 Data Collected by Built-in Diagnostic System Modulescccocoooovriiniiiiiininicnnnnn, 3-2
3.2 Configuring a Built-in Diagnostic Module.............ccoooiiiiiiiiiiiiiccns 3-3
3.3 Accessing Data Collected by a Built-in Diagnostic System Modulec.cccocrinne. 3-4
3.3.1 Using the Monitoring Dashboard ..., 3-4
3.3.2 Using the Metrics Log Table in the Administration Console...........ccccccevviviiiiiiiinnnnns 3-5
3.4 Creating a Custom Diagnostic System Module Based on a Built-incccccevvviiiiniinnee. 3-6

4 Using WLDF with Java Flight Recorder

4.1 About Java Flight ReCOTder ... 4-1
4.2 Using Java Flight Recorder with Oracle HOtSPOt ... 4-2
4.3 Key Features of WLDF Integration with Java Flight Recorderccccoooeiiiinnnni. 4-3
4.4 Java Flight Recorder Use Cases...........ocrueuiiiiiiiiiiiiicieeece i 4-4
4.41 Diagnosing a Critical Failure — The "Black BoX"cccccoviivinnnniccne, 4-4
4.4.2 Profiling During Performance Testing or in Productioncccoveiieiiiiiiiiinnnen, 4-5
4.4.3 Real-time Application Diagnostics and Reporting (RADAR).........cccooeveiiiiiiininnnnnn. 4-5
4.5 Obtaining the Flight Recording File...........cccccocoiiiiiiiiiiiiiicceecceceeeeeeeeeennas 4-6
4.6 Analyzing Java Flight Recorder Datacccoouoviiiiiiiiiiii e 4-6
4.6.1 Java Flight Recorder Graphical User Interface..........cccocooeieiiiiiiii 4-6
4.6.2 Analyzing Execution Flow — A Sample Walkthroughccccocovviiinninninnen. 4-8
4.6.21 Displaying Event Data for a Product Subcomponentcccooeueviiiiiiinnennes 4-8
4.6.2.2 Viewing the Event Log to Display Details...........cccoooeiiiiiiiiiiii 4-9
4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set..........cccccccoeeucucuenennne. 4-11
4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data.......... 4-13
4.6.3 Changing the Location of Temporary JER Filesc.cccoooiiiiiiiic 4-14

5 Understanding WLDF Configuration

5.1 Configuration MBeans and XML..........c.cccoiiiiiiiiiic s 5-1
5.2 Tools for Configuring WLDEFccccccoiiiiiiiicnrneereeeeeeeeee e 5-2
5.3 How WLDF Configuration Is Partitionedcccoooiiiiiiiie 5-2
5.3.1 Server-Level Configuration ..o 5-2
5.3.2 Application-Level Configurationccccevvveririnirirnennnnreeesr e 5-3
5.4 Configuring Diagnostic Image Capture and Diagnostic Archives...........ccccceevvirieininnnne. 5-3
5.5 Configuring Diagnostic Image Capture for Java Flight Recorderccccooonvirininnne. 5-4
5.6 Configuring Diagnostic System Modulescccccoceiiiiiiiiiiiiicccceeceeeenennes 5-5
5.6.1 About the Resource Descriptor.........ccociiiiiiiiiniiiiiiiiiiics 5-5
5.6.2 WLDEF Runtime Control.........cccccoiiiiiiiiiiiiiic s 5-7
5.6.3 Creating a Diagnostic System Module Based on a Configured Resource

DESCIIPLOToviiieiietiiete e 5-7
5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor.. 5-8
5.6.5 Targeting a Diagnostic System Module to a Server or Cluster.........c.cccocoooviirirnnnnn. 5-9
5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules 5-9
5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules..................... 5-10
5.6.7.1 EXQMIPLE....iiiiiiiiiiiicic s 5-10
5.6.8 More Information About Configuring Diagnostic System Modules......................... 5-13
5.7 Configuring Diagnostic Modules for Applicationscooeeeiiiiiieniiiicecea 5-14
5.8 WLDF Configuration MBeans and Their Mappings to XML Elements............c.cccc.cc...... 5-14

6 Configuring and Capturing Diagnostic Images

6.1 How to Initiate Image Captures ..o 6-1
6.2 Configuring Diagnostic Image Captures...........ccocoeeueeuiiemieieieeieieeereeenereenenenenenenenenes 6-1
6.2.1 Configuring WLDF Diagnostic Volume............oooooiiiiiiniiiiice, 6-2
6.2.1.1 Low Volume Setting.........ccccoeueuiiiiiiiiiiiiiiiciiciicceiecieeeee e 6-3
6.2.1.2 Medium Volume Settingc.cccceuevieiiieiiirniriiirrrcrcreeeerer e 6-3

6.2.1.3 High Volume Setting.........cccccovviiiiiiiiiiiiiiiiiiiicc 6-4

6.2.2 WLST Commands for Generating an Image Capture..........cccoceeeviviiiciniinniinnnns 6-5
6.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration...................... 6-5
6.4 Content of the Captured Image File............cccoiiiiiiiiiiicccas 6-5
6.4.1 Data Included in the Diagnostics Image Capture File ..o, 6-6
6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures 6-7

7 Configuring Diagnostic Archives

71 Configuring the ATChIVEccooeiiiiiiiiicee e 7-1
7.2 Configuring a File-Based Store ... 7-1
7.3 Configuring a JDBC-Based Store ... 7-2
7.3.1 Creating WLDF Tables in the Databasecccccccevueviniiinniiicccccecrecceeene 7-2
7.3.2 Configuring JDBC Resources for WLDFccooooiiiiiiiiiiice 7-6
7.4 Retiring Data from the Archives...........ccccooiiiiiii e 7-6
7.4.1 Configuring Data Retirement at the Server Level.........c.cccccccociiiiiiiiiiiiiiienns 7-6
74.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives............... 7-7
7.4.3 Sample Configurationooiurueieiiiiece s 7-7

8 Configuring the Harvester for Metric Collection

8.1 Harvesting, Harvestable Data, and Harvested Datac.cccccoovviiiiinnnnninne, 8-1
8.2 Harvesting Data from the Different Harvestable Entitiesccccccccoeeiiiinnicinnnns 8-2
8.3 Configuring the Harvester ... 8-2
8.3.1 Configuring the Harvester Sampling Period...........ccocovvinininnnnnnnnne, 8-3
8.3.2 Configuring the Types of Data to Harvest........ccccocovvviniinnnnnnnncnreeecceee 8-3
8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans............ 8-4
8.3.4 Harvesting from the DomainRuntime MBeanServer-............c.cccoovvvnnnnnnnninincnnn. 8-4
8.3.5 When Configuration Settings Are Validated...........cccccocoiiiiiiiiiniiiiiciicceenes 8-5
8.3.6 Sample Configurations for Different Harvestable Typesccccocovvvinininninninninnnn. 8-5
8.4 Harvester Performance Considerations............cccccooeiiiiiiiiniiiiiiiniiiennns 8-6

9 Configuring Watches and Notifications

10

11

9.1 Watches and NOtICAtIONSc.c.covvieueuiiririeieiieeeccire ettt 9-1
9.2 Overview of Watch and Notification Configurationcccccceeeeieevrennnnvieenneenne 9-2
9.3 Sample Watch and Notification Configuration.............cccooeveiiiiiiiiiice 9-3
Configuring Watches

10.1 Types of Watches ... e 10-1
10.2 Configuration Options Shared by All Types of Watches.........c..cccooviiiiniiine, 10-2
10.3 Configuring Harvester WatChes ... 10-2
10.4 Configuring Log Watches..........c.coooviiiiiii e 10-4
10.5 Configuring Instrumentation Watches...........cccccccceiiiiiiiiinicne 10-5
10.6 Defining Watch Rule EXPIessions ...t 10-5
Configuring Notifications

11,1 Types of NOtIfICAtIONS ...covvueeiiiiiiiicccccce e 11-1

12

13

vi

11.2 Configuring JMX NOtificationsccocueiiiiieiiiiici e 11-2

11.3 Configuring JMS Notifications...........c.ovoeeieiiiiiiic 11-2
11.4 Configuring SNMP NOtificationsccccoeeiiiiiiiiiiiiieeeeeceeee s 11-3
11.5 Configuring SMTP Notificationsccccoeimrieiiiiiiciiiiice e 11-4
11.6 Configuring Image Notifications...........ccoooeiueiiiiiiiiii e 11-5

Configuring Instrumentation

121 Concepts and Terminologycccoeeuiiiueiiiiiiicieeiiccie e 12-1
12.1.1 Instrumentation SCOPE ... 12-2
12.1.2 Configuration and Deployment ..ot 12-2
12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations.............cccoooieiiiiiiiicecne, 12-2
12.1.4 Diagnostic Monitor TYPES ..o 12-2
12.1.5 Diagnostic ACHONS.....ccoiiiiiiiiiiiieiicie s 12-4
12.2 Instrumentation Configuration Files ... 12-4
12.3 XML Elements Used for Instrumentationcccoeeviviiiiiinnniiiicceenes 12-5
12.3.1 <Instrumentation> XML EIementsccccocovviiiniinininiiiniccccnnnnn 12-6
12.3.2 <wldf-instrumentation-monitor> XML Elementsc.cccccovvvvnnnnnnnnnnncnnn 12-7
12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types 12-10
12.4 Configuring Server-Scoped Instrumentationcccccooeeeiiiiiiiiiccc, 12-10
125 Configuring Application-Scoped Instrumentation............ccocooreieiiriiiiiicciic 12-12
12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation..................... 12-12
12.5.2 Overview of the Steps Required to Instrument an Applicationcccevvvrnnaenes 12-13
12.5.3 Creating a Descriptor File for a Delegating Monitor............cccoeeveiiiciiiiccciiene, 12-14
12.5.4 Creating a Descriptor File for a Custom MoONitor ... 12-15
12.5.4.1 Defining Pointcuts for Custom MONitors.........cccoiiviviiiniiiiinini, 12-16
12542 Annotation-based Pointcuts...........cccocoeiviiiiiiiiinii 12-17
12.6 Creating Request Performance Data...........ccooeviiiiiiiiiiiiiiccceecccceecenenenee 12-18

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts

13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context..........ccccoeveveuererenennee 13-1
13.1.1 Context Life Cycle and the Context IDccooooiriiiiiiii e 13-2
13.1.2 Dyes, Dye Flags, and Dye Vectors ... 13-2
13.1.3 Where Diagnostic Context Is Configured ... 13-3
13.2 Overview Of the Process.........cccooiiiiiiiiiii s 13-3
13.3 Configuring the Dye Vector via the Dyelnjection Monitorcccoceveeieeiniicinnincnen. 13-4
13.3.1 Dyes Supported by the Dyelnjection MONItor.........c.ccoceueiviririviicinnrcicrcceene 13-5
13.3.2 PROTOCOL DYeE FIags ...c.cvvvviriiiiiiiiniiiiiiisicssiscssssscsssssssssssssssssesssssssssans 13-6
13.3.3 THROTTLE DYE FIAG ...ttt 13-6
13.3.4 When Diagnostic Contexts Are Created.........c.coovveieiinininiiiniiicccccccceeeenens 13-6
13.4 Configuring Delegating Monitors to Use Dye Filtering..........cccccooooeiiiiiiinnne 13-7
13.5 How Dye Masks Filter Requests to Pass to Monitors...........cccoceveviceininicciciiiccene 13-9
13.5.1 Dye Filtering EXamplecccccocciiiiiiiiiiiceeiccceceeeeeseee e 13-9
13.6 Using Throttling to Control the Volume of Instrumentation Events...........c...ccc.......... 13-10
13.6.1 Configuring the THROTTLE Dyeccccocvuviviiiiiiiiiiiinniiiiicnnececaes 13-11
13.6.2 How Throttling is Handled by Delegating and Custom Monitors......................... 13-12
13.7 Using weblogic.diagnostics.context ... 13-13

14

15

16

17

Accessing Diagnostic Data With the Data Accessor

14.1 Data Stores Accessed by the Data ACCESSOTcccouiuiiiiiiiiiiiiiiiiiiiice 14-1
14.2 Accessing Diagnostic Data ONlnecccoooiiiiiiiiiniiiiiiceeceeeeeeeeeeeneeneeees 14-2
14.2.1 Accessing Data Using the Administration Consolecccccoeeiiiniiiiicicninne 14-2
14.2.2 Accessing Data Programmatically Using Run-Time MBeans............cccccocoeennnne. 14-2
14.2.3 Using WLST to Access Diagnostic Data Online..........cccccocoevecciiiiciiicinccnene 14-3
14.2.4 Using the WLDF Query Language with the Data Accessor...........cooeeviiiciiiinnnen 14-3
14.3 Accessing Diagnostic Data Offlineccoooioiiiiiiiiiic e 14-3
14.4 Accessing Diagnostic Data Programmatically............cccccccoeiiiiiiiiiiniiiicreeene 14-3
145 Resetting the System Clock Can Affect How Data Is Archived and Retrieved.............. 14-8
Deploying WLDF Application Modules

15.1 Deploying a Diagnostic Module as an Application-Scoped Resource............ccccevevnnee. 15-1
15.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration...... 15-2
15.3 Using a Deployment Plan: OVEIVIEW ... 15-3
15.4 Creating a Deployment Plan Using weblogic.PlanGenerator-..............coooocueieiiicieininnnen. 15-4
155 Sample Deployment Plan for Diagnostics..........ccccoeueveiirieiiiiiiciieccic e 15-4
15.6 Enabling Java HOtSWaP ..ot 15-5
15.7 Deploying an Application with a Deployment Plancccccocovvviiiiinen, 15-5
15.8 Updating an Application with a Modified Plan ... 15-6
Using the Monitoring Dashboard

16.1 Running the Monitoring Dashboard............cccoooii 16-1
16.2 Scope of the Diagnostic Information Displayed..........ccccocovvnnnnnnnnnniccccccnes 16-1
16.3 About the Monitoring Dashboard Interfacec.ccooerieiiiiiiiii 16-2
16.3.1 VIEW LIST .ot 16-2
16.3.2 MetriC BIOWSET ..ot 16-4
16.3.3 View Display Panelcoooiiiiii s 16-6
16.4 Understanding How Metrics Are Collected and Presented.............cocooveiiiiiiiiiiinnnne. 16-8
16.4.1 About Metrics and Chart TYPeScccccceieiciiieiiiicrccereeeeeeeeeeeeeeeee s 16-8
16.4.1.1 Current Time Range Charts ..o, 16-8
16.4.1.2 Custom Time Range Chartsccccccciiiiiiiiiiiiiiiccccecces 16-9
16.4.2 Sequence in which Metrics Data is Displayed........c.cccccoevvvinrnnnnnnnnrcccnes 16-9
16.4.3 Notes about Metric Data Retention............cccceiviiiiniiiiiiiiin 16-10
16.5 The Parts 0f @ Chartocoeuciiiiiiiiieccecer et 16-10
Configuring and Using WLDF Programmatically

17.1 How WLDF Generates and Retrieves Data...........cccccceoeeiiiiiiiniiiiiiiciicccccce, 17-1
17.2 Mapping WLDF Components to Beans and Packages..........cccocovoiiiciiicccccnccenen 17-2
17.3 Programming TOOIScocoiiuiiiiiiiiiici e 17-4
17.3.1 Configuration and Run-Time APIscccocovviiiniiiiiiicciees 17-5
17.3.1.1 Configuration APISccccoiiiiiiiiiceee s 17-5
17.3.1.2 RUN-TIME APIS ..o 17-6
17.4 WLDF PaCKaGEScccuouimiiiiiiiiiiiiciciccic s 17-6
17.5 Programming WLDF: EXampIes.........ccccooioiiiiiiiiiiiiiicccceeee e 17-7

vii

17.5.1 Example: DiagnosticContextExamplejava ... 17-7

17.5.2 Example: HarvesterMOnitOrjavaccoceuoiirucieiiiicieiecicec e 17-8
17.5.2.1 Notification LIStENETS.........cccoviiiiiiiiiiiiiiiciii s 17-8
17.56.2.2 HarvesterMOnitOr Java........ccoeeieieieiciiieicicccecc e 17-9
17.5.3 Example: JMXAccessorEXamplejava.........cccocceieiicicieieiinieeceie e 17-13

A WLDF Query Language

AA Components of a Query EXPression ... A-1
A2 Supported OPeTators.........ccccviviiiiiiiiiiiiiiiiic e A-1
A3 Operator Precedence ... A-2
A4 Numeric Relational Operations Supported on String Column Types............ccceveirununnee. A-3
A5 Supported Numeric Constants and String Literals..........cccccccoeeeiiiiiinniiiicicicene A-3
A6 About Variables in EXPIeSsions ... A-4
A7 Creating Watch Rule EXPressions ..o A-4
A7A1 Creating Log Event Watch Rule EXPressions ... A-4
A7.2 Creating Instrumentation Event Watch Rule Expressionsc.ccccoeeiiicieinennnen. A-5
A7.3 Creating Harvester Watch Rule EXPressions..........ccccceeioirucieiiicicieicicccccce e A-6
A8 Creating Data Accessor QUETIESccciiiiiiiiiiiiiiiiii e A-7
A.8.1 Data Store Logical NamMeSccceuemiirieiiiiiiciecc e A-7
A.8.2 Data Store Column NAMES..........ccccoviiiiiiiiiiiiiii s A-8
A9 Creating Log Filter EXPressions..........cccccvviiiiiiiiiiiniiiicinccccennas A-9
A.10 Building Complex EXPIresSSions........cccciviiiiiiiiiiiieieiiiiieiieeeie s A-10

B WLDF Instrumentation Library

B.1 Diagnostic Monitor LiDrary ... B-1
B.2 Diagnostic ACtion LiDTarycccoeoeriiioiiiiiiiiccee B-9
B.2.1 TTACEACHON. ...ttt s B-10
B.2.2 Display ArgumentSACHON.ccoiuiuiieiicietecc e B-11
B.2.3 TraceElapsed TImMeACHON. ... B-11
B.2.4 TraceMemory AllocatioNACHONc.ceucuuiiiieiiicicicieieeecee s B-12
B.2.5 StackDUMPACHON.......cviviiiiiiiece s B-12
B.2.6 Thread DUMPACHONcocviiiiiiiiiicc s B-13
B.2.7 MethodInvocationStatisticSACONccoveviiiiiiiiiic s B-14
B.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction

and Querying the Results..........coooiiiii B-15
B.2.7.1.1 Configuring the Custom Monitor to Use

MethodInvocationStatisticSACHON.........cccciiiiiiiiiiiiiiccccce, B-15

B.2.7.1.2 Using WLST to Query Method Performance Statistics..........cccccoceueucuennnnee. B-17
B.2.7.2 Configuring the Harvester to Collect MethodInvocationStatistics Action

DAt B-20
B.2.7.3 Configuring Watch Rules Based on MethodInvocationStatistics Metrics B-21
B.2.7.4 Using JMX to Collect Data.........ccceeuiiiiiiiiiiiiiceeeeeeeeeee s B-22
B.2.8 MethodMemoryAllocationStatisticSACHON «......cvovieiiiiiic B-22

C Using Wildcards in Expressions

C.1 Using Wildcards in Harvester Instance Namescccccccovvvviiniinniinn, C-1
C.11 EXAQIMIPLES ..ot s C-1

viii

c.2
Cc.21
C.3
C4
C.5

Specifying Complex and Nested Harvester Attributes.........c..ccoooooeiiiiiiin C-2

EXAMPLES ...t s C-3
Using the Accessor with Harvested Complex or Nested Attributes.........cccccccceuvuvivurunnnene. C-4
Using Wildcards in Watch Rule Instance Namesc.ccccooireiiiciicccce, C-4
Specifying Complex Attributes in Harvester Watch Rulesccccoooiii, C-5

D WebLogic Scripting Tool Examples

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8

WLST Commands for Diagnosticsc.oucueueieiiiieiiiiiciceciecc e D-1
Example: Dynamically Creating Dyelnjection MONitorsccccceueveueieeireiicrneceeeene D-2
Example: Configuring a Watch and a JMX Notification ..o, D-4
Example: Writing a JMXWatchNotificationListener Classcccccoeveiiiiiniinncnnnnn, D-6
Example: Registering MBeans and Attributes For Harvestingcccccccccoeccncceennene. D-8
Example: Setting the WLDF Diagnostic VOIUmMeccccooiiiiiiiiiiiicice D-12
Example: Capturing a Diagnostic Image..........c.oooeiiiiiiiiciicce, D-12
Example: Retrieving a JFR File from a Diagnostic Image Capture..........ccccccevuvvverrenencne. D-14

Preface

This preface describes the document accessibility features and conventions used in this
guide—Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

Xii

1

Introduction and Roadmap

This document describes the WebLogic Diagnostics Framework (WLDF), a monitoring
and diagnostic framework that defines and implements a set of services that run
within WebLogic Server processes and participate in the standard server life cycle.
Using WLDE, you can create, collect, analyze, archive, and access diagnostic data
generated by a running server and the applications deployed within its containers.
This data provides insight into the run-time performance of servers and applications
and enables you to isolate and diagnose faults when they occur.

The following sections describe the contents and audience for this guide—Configuring
and Using the Diagnostics Framework for Oracle WebLogic Server:

What Is the WebLogic Diagnostics Framework?
Document Scope and Audience

Guide to This Document

Related Documentation

Samples and Tutorials

New and Changed Features in this Release

1.1 What Is the WebLogic Diagnostics Framework?

WLDF includes several components for collecting and analyzing data:

Integration with Oracle HotSpot—If WebLogic Server is configured with Oracle
HotSpot, WLDF can generate diagnostic information about WebLogic Server that
is captured in the Java Flight Recorder file.

Built-in diagnostic system modules—A set of diagnostic modules available
out-of-the-box that you can enable dynamically to capture basic performance data
about the JVM, the WebLogic Server run time, and primary WebLogic Server
subsystems, including JDBC data sources, messaging, and Java EE containers,
such as servlets, E]Bs, and resource adapters. The built-in diagnostic modules can
also be cloned and modified, providing a simple way to create custom diagnostic
system modules.

Monitoring Dashboard—Graphically presents the current and historical operating
state of WebLogic Server and hosted applications, including information gathered
by the built-in diagnostic system modules. The Monitoring Dashboard, which is
accessed from the WebLogic Server Administration Console, provides a set of tools
for organizing and displaying diagnostic data into views, which surface some of
the more critical run-time WebLogic Server performance metrics and the change in
those metrics over time.

Introduction and Roadmap 1-1

Document Scope and Audience

s Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can
be used for post-failure analysis. The diagnostic image capture includes Java Flight
Recorder data, if it is available, that can be viewed in Java Mission Control.

= Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

s Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations in
the code. The Instrumentation component provides the means for associating a
diagnostic context with requests so they can be tracked as they flow through the
system. The WebLogic Server Administration Console includes a Request
Performance page, which shows real-time and historical views of method
performance information that has been captured through the WLDF
instrumentation capabilities, serving as a tool that can help identify performance
problems in applications.

s Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for
viewing historical data.

= Watches and Notifications—Provides the means for monitoring server and
application states and sending notifications based on criteria set in the watches.

s Logging services—Manage logs for monitoring server, subsystem, and application
events. The WebLogic Server logging services are documented separately from the
rest of the WebLogic Diagnostics Framework. See Configuring Log Files and Filtering
Log Messages for Oracle WebLogic Server.

WLDF provides a set of standardized application programming interfaces (APIs) that
enable dynamic access and control of diagnostic data, as well as improved monitoring
that provides visibility into the server. Independent Software Vendors (ISVs) can use
these APIs to develop custom monitoring and diagnostic tools for integration with
WLDE. These APIs can be accessed using the JMX and the WebLogic Scripting Tool
(WLST), as described in Chapter 17, "Configuring and Using WLDF
Programmatically".

WLDF enables dynamic access to server data through standard interfaces, and the
volume of data accessed at any given time can be modified without shutting down
and restarting the server.

1.2 Document Scope and Audience

This document describes and tells how to configure and use the monitoring and
diagnostic services provided by WLDE.

WLDF provides features for monitoring and diagnosing problems in running
WebLogic Server instances and clusters and in applications deployed to them.
Therefore, the information in this document is directed both to system administrators
and to application developers. It also contains information for third-party tool
developers who want to build tools to support and extend WLDEF.

It is assumed that readers are familiar with Web technologies and the operating system
and platform where WebLogic Server is installed.

1.3 Guide to This Document

This document is organized as follows:

1-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Guide to This Document

This chapter, "Introduction and Roadmap," provides an overview of WLDF
components and describes the audience for this guide.

Chapter 2, "Overview of the WLDF Architecture," provides a high-level view of
the WLDF architecture.

Chapter 3, "Using the Built-in Diagnostic System Modules," describes the built-in
system diagnostic modules, which are provided by the WebLogic Diagnostics
Framework (WLDF) as a simple and easy-to-use mechanism for performing basic
health and performance monitoring of a WebLogic Server instance

Chapter 4, "Using WLDF with Java Flight Recorder," describes the WLDF
integration features with Java Flight Recorder, describes basic usage scenarios, and
provides a sample walkthrough of using Java Mission Control to examine
WebLogic Server events captured in a Java Flight Recorder file.

Chapter 5, "Understanding WLDF Configuration,” provides an overview of how
WLDF features are configured for servers and applications.

Chapter 6, "Configuring and Capturing Diagnostic Images," describes how to
configure and use the WLDF Diagnostic Image Capture component to capture a
snapshot of significant server configuration settings and the server state.

Chapter 7, "Configuring Diagnostic Archives," describes how to configure and use
the WLDF Diagnostic Archive component to persist diagnostic data to a file store
or database.

Chapter 8, "Configuring the Harvester for Metric Collection," describes how to
configure and use the WLDF Harvester component to harvest metrics from
run-time MBeans, including WebLogic Server MBeans and custom MBeans.

Chapter 9, "Configuring Watches and Notifications," provides an overview of
WLDF watches and notifications.

Chapter 10, "Configuring Watches," describes how to configure watches to monitor
server instances and applications for specific conditions and send notifications
when those conditions are met.

Chapter 11, "Configuring Notifications," describes how to configure notifications
that can be triggered by watches.

Chapter 12, "Configuring Instrumentation," describes how to add diagnostic
instrumentation code to WebLogic Server classes and to the classes of applications
running on the server.

Chapter 13, "Configuring the Dyelnjection Monitor to Manage Diagnostic
Contexts," describes how to use the Dyelnjection monitor and how to use dye
filtering with diagnostic monitors.

Chapter 14, "Accessing Diagnostic Data With the Data Accessor," tells how to use
the WLDF Data Accessor component to retrieve diagnostic data.

Chapter 15, "Deploying WLDF Application Modules," explains how to configure
and manage instrumentation for an application as a diagnostics application
module.

Chapter 16, "Using the Monitoring Dashboard," explains how to graphically
present the current and historical operating state of WebLogic Server and hosted
applications using, in part, diagnostic data captured by WLDE.

Chapter 17, "Configuring and Using WLDF Programmatically,” provides an
overview of how you can use the JMX API and the WebLogic Scripting Tool
(WLST) to configure and use WLDF components.

Introduction and Roadmap 1-3

Related Documentation

= Appendix A, "WLDF Query Language," describes the WLDF query language that
is used for constructing expressions to query diagnostic data using the Data
Accessor, constructing watch rules, and constructing rules for filtering logs.

s Appendix B, "WLDF Instrumentation Library," describes the predefined diagnostic
monitors and diagnostic actions that are included in the WLDF Instrumentation
Library.

s Appendix C, "Using Wildcards in Expressions," discusses how to use wildcards in
WLDF expressions.

s Appendix D, "WebLogic Scripting Tool Examples," provides examples of how to
perform WLDF monitoring and diagnostic activities using the WebLogic Scripting
Tool.

= "Glossary" is a glossary of terms used in WLDEF.

1.4 Related Documentation

» Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server describes
how to use WLDF logging services to monitor server, subsystem, and application
events.

= "Configure the WebLogic Diagnostics Framework" in the Oracle WebLogic Server
Administration Console Online Help describes how to use the visual tools in the
WebLogic Administration Console to configure WLDF.

s The WLDF system resource descriptor conforms to the
weblogic-diagnostics.xsd schema, available at
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diag
nostics.xsd.

1.5 Samples and Tutorials

In addition to this document, we provide a variety of samples and tutorials that show
WLDF configuration and use.

1.5.1 Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
recommended best practices. MedRec is optionally installed in the WebLogic Server
distribution and is available by selecting the Complete Installation type. By default,
Medrec is configured post-installation in the ORACLE_HOME/user_
projects/domains/medrec directory, where ORACLE_HOME represents the Oracle home
directory on your machine. For more information, see "Sample Applications and Code
Examples" in Understanding Oracle WebLogic Server.

1.5.2 WLDF Samples Available for Download

Additional WLDEF samples for download can be found at
http://www.oracle.com/technetwork/indexes/samplecode/index.html. These
examples are distributed as . zip files that you can unzip into an existing WebLogic

1-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

New and Changed Features in this Release

Server samples directory structure. These samples include Oracle-certified ones, as
well as samples submitted by fellow developers.

1.6 New and Changed Features in this Release

This document contains the following updates to describe the new WLDF features
introduced in this release of WebLogic Server:

Built-in diagnostic system modules—provide a simple and easy-to-use mechanism
for performing basic health and performance monitoring of a WebLogic Server
instance. See Chapter 3, "Using the Built-in Diagnostic System Modules".

Oracle HotSpot support—WLDF now supports Oracle HotSpot and the Java Flight
Recorder. Note that Java Flight Recorder is now disabled by default. See
Section 4.2, "Using Java Flight Recorder with Oracle HotSpot".

WLDF Runtime Control—allows you to dynamically activate and deactivate
diagnostic system modules without restarting the servers or clusters to which they
are targeted. See Section 5.6, "Configuring Diagnostic System Modules".

New WLST commands to activate and deactivate diagnostic system modules,
deploy and undeploy diagnostic system modules based on resource descriptors
that are not persisted in the domain configuration, and dump the diagnostic
Harvester data collected by a diagnostic system module to a file. See Section 5.6.7,
"Using WLST to Activate and Deactivate Diagnostic System Modules" and
Section D.1, "WLST Commands for Diagnostics".

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Introduction and Roadmap 1-5

New and Changed Features in this Release

1-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

2

Overview of the WLDF Architecture

This chapter describes the components in the WebLogic Diagnostics Framework
(WLDF) architecture that work together to collect, archive, and access diagnostic
information about a WebLogic Server instance and the applications it hosts.

Note: Concepts are presented in this section in a way to help you
understand how WLDF works. Some of this differs from the way
WLDF is surfaced in its configuration and run-time APIs and in the
WebLogic Server Console. If you want to start configuring and using
WLDF right away, you can safely skip this discussion and start with
Chapter 3, "Using the Built-in Diagnostic System Modules."

This chapter includes the following sections:

s Overview of the WebLogic Diagnostics Framework

s Data Creation, Collection, and Instrumentation

= Archive

= Watch and Notification

s Data Accessor

= Monitoring Dashboard and Request Performance Pages
s Diagnostic Image Capture

= How It All Fits Together

2.1 Overview of the WebLogic Diagnostics Framework
WLDF consists of the following:

= Data creators (data publishers and data providers that are distributed across
WLDF components)

= Data collectors (the Logger and the Harvester components)
= Archive component

= Accessor component

s Instrumentation component

= Watch and Notification component

s Image Capture component

Overview of the WLDF Architecture 2-1

Data Creation, Collection, and Instrumentation

= Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the
Harvester. Those components coordinate with the Archive to persist the data, and they
coordinate with the Watch and Notification subsystem to provide automated
monitoring. The Accessor interacts with the Logger and the Harvester to expose
current diagnostic data and with the Archive to present historical data. The Image
Capture facility provides the means for capturing a diagnostic snapshot of a key server
state. The relationship among these components is shown in Figure 2-1.

Figure 2-1 Major WLDF Components

Instrumentation

Wistch &
Matification

Data Creators

Data Collectors

Data L
Puklizhers ngger
Accessor
Data
Providers Harvester
honitoring
Dashiboard
Image Capture Archive

All of the framework components operate at the server level and are only aware of
server scope. All the components exist entirely within the server process and
participate in the standard server lifecycle. All artifacts of the framework are
configured and stored on a per server basis.

2.2 Data Creation, Collection, and Instrumentation

Diagnostic data is collected from a number of sources. These sources can be logically
classified as either data providers, data creators that are sampled at regular intervals to
harvest current values, or data publishers, data creators that synchronously generate
events. Data providers and data publishers are distributed across components, and the
generated data can be collected by the Logger or the Harvester, as shown in

Figure 2-2.

2-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Archive

Figure 2-2 Relationship of Data Creation Components to Data Collection Components

Server Codebaze

Catalog
Locycgirgy
LDgger T @
Debugging —
Instrumentation
I Archiver -
Monitors

[]

MBean Server

WLS Runtime
MBeans

Harvester

Custom
MBeans

Figure 2-2 shows that invocations of the server logging infrastructure serve as inline
data publishers, and that the generated data is collected as events. (The logging
infrastructure can be invoked through the catalog infrastructure, the debugging
model, or directly through the Logger.)

The Instrumentation component creates monitors and inserts them at well-defined
points in the flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as
data providers by registering with the Harvester. Collected data is then exposed to
both the Watch and Notification system for automated monitoring and to the Archive
for persistence.

2.3 Archive

The past state is often critical in diagnosing faults in a system. This requires that the
state be captured and archived for future access, creating a historical archive. In
WLDF, the Archive meets this need with several persistence components. Both events
and harvested metrics can be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion
in the server log, is persisted through the standard logging appenders. New event data
that is intended for system consumption is persisted into an event store using an event
archiver. Metric data is persisted into a data store using a data archiver. The
relationship of the Archive to the Logger and the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the
persisted historical data.

Overview of the WLDF Architecture 2-3

Watch and Notification

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

Logger Archive
Fit e Liog w! Lomst
iters Appenders - og Storage
Imstrumentation
Monitars e Event Archive | Event Stu:uragell}
Harvester
Harvest Data
e -
Table Archive | Data Stnragel_\}

2.4 Watch and Notification

The Watch and Notification system can be used to create automated monitors that
observe specific diagnostic states and send notifications based on configured rules.

A watch rule can monitor log data, event data from the Instrumentation component, or
metric data from a data provider that is harvested by the Harvester. The Watch
Manager is capable of managing watches that are composed of a number of watch
rules. These relationships are shown in Figure 2—4.

Figure 2—4 Relationship of the Logger and the Harvester to the Watch and Notification
System

Logger

Watch]
Appender

Waatch and Matification

Instrumentation o
Wigtch el Motification

1!

Monitors:

Wigtch Rule

Harvester

Harvest —
Takle

One or more notifications can be configured for use by a watch. By default, every
watch logs an event in the server log. SMTP, SNMP, JMX, and JMS notifications are
also supported.

2-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Monitoring Dashboard and Request Performance Pages

2.5 Data Accessor

The Accessor provides access to all the data collected by WLDF, including log, event,
and metric data. The Accessor interacts with the Archive to get historical data
including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The
Accessor provides for data lookup by type, by component, and by attribute. It permits
time-based filtering and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this
case, an offline Accessor is also provided. You can use it to export archived data to an
XML file for later access. To use the Accessor in this way, you must use the WebLogic
Scripting Tool (WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in
Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

Accezsar Archive
Log
Hiztorical — Appenders

Event Archive

Offline Accessor

Data

Historical — Archive

2.6 Monitoring Dashboard and Request Performance Pages
WLDF provides two web pages from which diagnostic data is displayed visually:

= Section 2.6.1, "Monitoring Dashboard"

» Section 2.6.2, "Diagnostics Request Performance Page"

2.6.1 Monitoring Dashboard

The Monitoring Dashboard displays the current and historical operating state of
WebLogic Server and hosted applications by providing visualizations of metric
run-time MBean attributes, which surface some of the more critical run-time
performance metrics and the change in those metrics over time. Historical operating
state is represented by collected metrics that have been persisted into the Archive. To
view collected metrics from the Archive, you must configure the Harvester to capture
the data you want to monitor.

The Monitoring Dashboard displays metric information in a series of views. A view is
a collection of one or more charts that display metrics. The Monitoring Dashboard
includes a predefined set of built-in views of available run-time metrics for all running
WebLogic Server instances in the domain. Built-in views surface some of the more
critical run-time WebLogic Server performance metrics and serve as examples of the
Monitoring Dashboard’s graphic capabilities.

Overview of the WLDF Architecture 2-5

Diagnostic Image Capture

Custom views are available only to the user who creates them. Custom views are
automatically persisted and can be accessed again when you restart the Monitoring
Dashboard sessions.

For more information, see Chapter 16, "Using the Monitoring Dashboard."

2.6.2 Diagnostics Request Performance Page

The Diagnostics Request Performance page of the WebLogic Server Administration
Console shows real-time and historical views of method performance information that
is captured using the Instrumentation component. To view request performance
information, you must first configure the Instrumentation component to make that
data available.

For more information, see Section 12.6, "Creating Request Performance Data."

2.7 Diagnostic Image Capture

Diagnostic Image Capture support gathers the most common sources of the key server
state used in diagnosing problems. It packages that state into a single artifact which
can be made available to support technicians, as shown in Figure 2-6. The diagnostic
image is in essence a diagnostic snapshot or dump from the server, analogous to a
UNIX "core" dump.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes all available Java Flight Recorder data
from all producers. Furthermore, if WLDF is configured to generate WebLogic Server
diagnostic information captured by Java Flight Recorder, the JFR file includes that
information as well. The JER file can be extracted from the diagnostic image capture
and viewed in Java Mission Control. See Chapter 4, "Using WLDF with Java Flight
Recorder."

Image Capture support includes:

s On-demand capture, which is the creation of a diagnostic image capture by means
of an operation or command issued from the WebLogic Server Administration
Console, WLST script, or J]MX application.

» Image notification, which is automatically creating a diagnostic image capture in
response to the triggering of an associated Harvester watch, Log watch, or
Instrumentation watch rule. For example, a Harvester watch that monitors
run-time MBean attributes in a running server can trigger an image notification if
the metrics harvested from specific run-time MBean instances indicate a
performance issue. Data in the diagnostic image capture can be analyzed to
determine the likely causes of the issue.

For more information, see:
» Chapter 6, "Configuring and Capturing Diagnostic Images"

= Section 11.6, "Configuring Image Notifications"

2-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

How It All Fits Together

Figure 2-6 Diagnostic Image Capture

Image
Motification

Irmage Capiure

@ Image Source {®lmadge Manager

2.8 How It All Fits Together

Figure 2-7 shows how all the parts of WLDF fit together.

¥

Image Artifact

Figure 2-7 Overall View of the WebLogic Diagnostics Framework

I
—| Config Wiatcher
‘Watch Mctification
[)
| | Descriptor]
Watch Rule
Data Crestars Collectars
=
=
E Diata Logjer Hatvester
L E Publishers “ ACCESS0r
]
= Data - i : "
o L—m- Archive Il
c Providers Historicsl
T ———
WLDF Flight \‘ Image Capture
N Recorder Evert | —_— : |
—g Producers
b= | Image Source Log Appenders Data Archiver
. JRockit Flight
o Recarcer | ‘*
&
= [Flight Recaorder e ! Image Manager Event Archiver
Image Source _/J |
L — I
¥ h h ¥
Inage Arifac Image Aifact Lo
d . . . =] Evert Diata
with Flight without Flight Storage Storage Storage
Recorder Dats Fecarder Data o d g

Overview of the WLDF Architecture 2-7

How It All Fits Together

2-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

3

Using the Built-in Diagnostic System Modules

This chapter describes the built-in diagnostic system modules, which are provided by
the WebLogic Diagnostics Framework (WLDF) as a simple and easy-to-use mechanism
for performing basic health and performance monitoring of a WebLogic Server
instance.

This chapter includes the following sections:

s Overview

s Configuring a Built-in Diagnostic Module

» Accessing Data Collected by a Built-in Diagnostic System Module

s Creating a Custom Diagnostic System Module Based on a Built-in

3.1 Overview

The WLDF built-in diagnostic modules collect data from key WebLogic Server
run-time MBeans that monitor the main components of a server instance, such as the
following, and store it in the Archive:

s JVM
= WebLogic Server run time
= JDBC, JMS, transaction, and logging services

= Java EE containers hosting servlets, E]Bs, and Connector Architecture resource
adapters

When configured in a WebLogic Server instance, the built-in diagnostic modules are
particularly useful for providing a low-overhead, historical record of server
performance. As server workload changes over time, or the performance
characteristics change as a result of updates made to the server’s configuration, you
can examine the data collected by the built-ins to obtain details about performance
changes. For example, if you notice a slowdown in the response time of one or more
deployed applications, you can use the Monitoring Dashboard or the Metrics Log table
in the Administration Console to examine the data collected by the built-ins for
performance bottlenecks associated with one or more WebLogic Server subsystems.
Then using other diagnostic tools, such as custom diagnostic modules, watches and
notifications, or Java Flight Recorder, you can drill down further into details about
those bottlenecks to pinpoint specific causes and test the effectiveness of solutions.

In WebLogic domains configured to run in production mode, a built-in diagnostic
module is enabled by default in each server instance. (In domains configured to run in
development mode, built-ins are disabled by default.) However, a built-in diagnostic

Using the Built-in Diagnostic System Modules 3-1

Overview

module can be enabled or disabled for a server instance easily and dynamically, using
either the WebLogic Server Administration Console or WLST.

Data collected by the built-in diagnostic modules can be accessed easily, using tools
such as the Metrics Log table in the Administration Console or the Monitoring
Dashboard. The data can also be accessed programmatically using JMX or WLST.

3.1.1 Types of Built-in Diagnostic System Modules

WLDF provides three built-in diagnostic system module types:

= Low — Captures the most important data from key WebLogic Server run-time
MBeans (enabled by default in production mode).

s Medium — Captures additional attributes from the WebLogic Server run-time
MBeans captured by Low, and also includes data from additional run-time MBeans.

= High — Captures the most verbose data from attributes on the WebLogic Server
run-time MBeans captured by Medium, and also includes data from a larger
number of run-time MBeans.

The built-in diagnostic system module type configured for a server instance is
specified in the
WLDFServerDiagnosticMBean.WLDFBuiltinSystemResourceType=string MBean
attribute, where string can be set to one of Low, Medium, High, or None.

3.1.2 Data Collected by Built-in Diagnostic System Modules

When you enable a built-in diagnostic module in a WebLogic Server instance, WLDF
begins collecting data from key WebLogic Server run-time MBeans to obtain
information, such as the following:

Data Category Example of Information Collected

JVM statistics Amount of available free memory and JVM processor load on
host machine.

Thread statistics Threads being held by a request and the number of pending user
requests.

JDBC subsystem statistics ~ Examples of information collected may include:
= Number of connections currently in use by applications.

= Average amount of time taken to create a physical
connection to the database.

= Number of leaked connections (that is, connections reserved
from the data source but not returned to the data source).

s Number of available and idle database connections.

s Cumulative, running count of requests for a connection
from a data source.

JMS subsystem statistics Examples of information collected may include statistics about:

= WebLogic JMS consumers and producers, such as number of
messages pending by a consumer or producer.

= JMS destinations, such as current number of messages in the
destination, and number of pending messages in the
destination.

= The current number of connections to WebLogic Server.

Logging subsystem statistics The number of log messages that the WebLogic Server instance
has generated.

3-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring a Built-in Diagnostic Module

Data Category Example of Information Collected

JTA subsystem Examples of information collected may include:
= Number of active transactions on the server.

s Total number of seconds that transactions were active for all
committed transactions.

Java EE container statistics =~ Examples of information collected may include statistics about:

= EJBs, such as the EJB cache, EJB pool, and EJB transaction
statistics.

= Servlets, such as the average amount of time all invocations
of a servlet have executed since the servlet was created.

Note: The specific configuration of each built-in diagnostic module is
internal to WebLogic Server and subject to change in a future release.

3.2 Configuring a Built-in Diagnostic Module

You can configure a built-in diagnostic module for a WebLogic Server instance quickly
and easily using either the WebLogic Server Administration Console or WLST. For
example, using the Administration Console, you can perform the following steps:

1. Select Built-in Diagnostic Modules in the Diagnostics area of the Administration
Console home page.

Log Files

® Digynwslic Mudules

+ Diagnostic Images

+ Request Performance
« Archives

¢ Context

» SNMP

2. In the Summary of Built-in Diagnostic Modules page, select the server instance for
which you want to configure a built-in diagnostics module.

3. In the Settings for server-name page, select the built-in diagnostics module type you
want to configure: Low, Medium, or High.

%] Built-in Module: Low T
None
Save Low
High

By default, once you select a built-in diagnostics module for a server instance, it is
automatically activated and begins collecting the data in the Archive. From the
Summary of Built-in Diagnostic Modules page, you can later deactivate the built-in
module if desired by setting it to None.

Using the Built-in Diagnostic System Modules 3-3

Accessing Data Collected by a Built-in Diagnostic System Module

Note: Although WebLogic Server allows you to target multiple
diagnostic system modules to a server instance, only one built-in
diagnostic module type may be activated at any time.

For more information about configuring built-in system diagnostic modules in the
Administration Console, see the following topics in the Oracle WebLogic Server
Administration Console Online Help.

= "Configure a built-in diagnostic system module"
» "Select a built-in diagnostics system module"

= "Disable a built-in diagnostic system module"

3.3 Accessing Data Collected by a Built-in Diagnostic System Module

The following sections describe the different ways you can access the data collected by
a built-in diagnostic system module:

= Section 3.3.1, "Using the Monitoring Dashboard"
= Section 3.3.2, "Using the Metrics Log Table in the Administration Console"

3.3.1 Using the Monitoring Dashboard

The Monitoring Dashboard is a good choice for viewing the data collected by the
built-in diagnostic system modules. The Metric Browser simplifies selecting the
specific MBean attributes you want to graph, and the tools available for customizing
views and drilling down on data of interest are easy to use.

The Monitoring Dashboard does not provide a means to select the data collected by a
particular diagnostic system module, including any of the built-ins. However, for a
given server instance, you can easily select the run-time MBean instance and
corresponding metrics you want to display. See Chapter 16, "Using the Monitoring
Dashboard," for complete details about the Monitoring Dashboard.

To view data collected by a built-in module:

1. Launch the Monitoring Dashboard, which you can do from the WebLogic Server
Administration Console or separately in a Web browser. For more information, see
Section 16.1, "Running the Monitoring Dashboard".

2. In the Monitoring Dashboard, create a custom view, as described in "Create
custom views" in the Oracle WebLogic Server Administration Console Online Help.

3. Navigate to the Metric Browser and select the following:

» The server instance for which you want to display data collected by the
built-in diagnostic system module.

s The Collected Metrics Only button.

s The MBean type and instance corresponding to the run-time MBean for which
the data was collected.

4. Create a chart.

5. Open the Chart Properties dialog box, select Custom (only applies to collected
metrics), and specify the time range during which the data you wish to view was
collected.

3-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Accessing Data Collected by a Built-in Diagnostic System Module

6. In the Metric Browser, select the metrics you want to display.

3.3.2 Using the Metrics Log Table in the Administration Console

You can access data collected by the built-in diagnostic system modules in the Metrics
Log table, which is displayed by selecting the log file name HarvestedDataArchive in
the Summary of Log Files console page.

Log Files

View Showing 1 to 9 of @ Pravious | Next
Name &% Type Server

O | DataSourcelog Data Source Profile Log examplesServer

® DomainLog Domain Log examplesServer

O | EventsDatadrchive Instrumentation examplasServer

& |HarvestedDataArchive Metric Data examplesServer

O HTTPAccessLag HTTP Access examplasServer

O | IMSMessagelog/ examplesIMSServer IMS Log examplesServer

@] JMSMessagelog/VWseelMSServer JMS Log examplesServer

O | IMSSAFMessagelog/RelizblewseeSARAgent JMS SAF Agent Log examplesServer

(@] ServerLog Server Log examplesServer
View Showing 1 to 9@ of 9 Previous | Next

To display the metrics collected by a built-in diagnostic module in the Metrics Log
table of the Administration Console, complete the following steps:

1. Select HarvestedDataArchive in the Summary of Log Files console page, and click
View.

2. In the Metrics Log console page, click Customize this table.

3. To constrain the table to display only metrics collected by a built-in diagnostic
module, enter a string in the WLDF Query Expression field that specifies that
built-in, such as the following:

= WLDFMODULE = 'wldf-server-low' — Specifies metrics collected by the Low
built-in diagnostic module.

= WLDFMODULE LIKE 'wldf-server-%' — Specifies metrics collected by any of
the built-in diagnostic modules.

4. In the Available column display box, select WLDF Module, and click the right
arrow to move it to the Chosen box.

Column Display:

Available: Chosen:
D Timestamp D Date
O Type » [1nstance Name
3 O atribute
O value
%

5. Click Apply.

If the Archive contains a large amount of data, you can filter the Metrics Log table
further by adding expressions to the WLDF query string. For example:

Using the Built-in Diagnostic System Modules 3-5

Creating a Custom Diagnostic System Module Based on a Built-in

L] (WLDFMODULE LIKE 'wldf-server-%') AND (NAME LIKE
'$Name=examples-demo% ') restricts the number of metrics displayed to harvested
attributes with an instance name that includes the string examples-demo.

L] (WLDFMODULE LIKE 'wldf-server-%') AND (TYPE LIKE '$%ServletRuntime%')
restricts the number of metrics displayed to harvested attributes of the
ServletRuntimeMBean.

n (WLDFMODULE LIKE 'wldf-server-%') AND (TYPE LIKE '%JMSDestination%' AND
ATTRNAME = 'MessagesCurrentCount') restricts the number of metrics displayed
to harvested instances of the
JMSDestinationRuntimeMBean.MessagesCurrentCount attribute.

For more information about WLDF query expressions, see Appendix A, "WLDF Query
Language".

3.4 Creating a Custom Diagnostic System Module Based on a Built-in

To simplify the process of creating a diagnostic system module, you can use one of the
built-in diagnostic system modules as a starting point and customize it to suit your
requirements. From the Create a Diagnostics System Module page of the WebLogic
Server Administration Console, you can select Use a built-in diagnostic system
module as a template, and then select the particular built-in module upon which you
want to base your new diagnostic module.

VWould you like to use a built-in dizgnostic systermn module as template?
Use a built-in diagnostic system module as template

Built-in diagnostic system module: Low “

OK Cancel

After you select the particular built-in module you want to use as a template, and click
OK, you can navigate to the Settings for module-name page and make the following
customizations as appropriate:

s The Collected Metrics tab displays the set of metrics configured for the particular
built-in you are using as a template. By default, all the metrics configured in the
built-in are enabled in your custom diagnostic module:

— To delete a configured metric, select it and click Delete.

- Toadd a metric not configured with the built-in used as a template, click New,
and use the Create a Metric assistant to specify the metric.

For more information about customizing the metrics configured for your
diagnostic system module, see "Configure metric collection for a diagnostic system
module" in Oracle WebLogic Server Administration Console Online Help.

= The Watches and Notifications tab displays a set of watches and notifications that
are configured but not actually enabled in the built-in module you are using for a
template. The set of watches and notifications available represent those that cover
typical server-level situations for which notifications are generally desirable when
certain state criteria thresholds are met. You can delete, or add to the set of
watches and notifications as appropriate. You may also update threshold values to
suit your situations.

3-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Creating a Custom Diagnostic System Module Based on a Built-in

Note: If you use one or more watches and notifications that are
configured in the built-in module, you must make sure that they are
enabled in your diagnostic system module. In the Watches and
Notifications tab of the Administration Console, select Enabled then
click Save.

For more information about targeting and activating diagnostic system modules, see
Section 5.6, "Configuring Diagnostic System Modules".

Using the Built-in Diagnostic System Modules 3-7

Creating a Custom Diagnostic System Module Based on a Built-in

3-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

4

Using WLDF with Java Flight Recorder

This chapter describes the integration points that the WebLogic Diagnostics
Framework (WLDF) provides with Java Flight Recorder. WebLogic Server events can
optionally be propagated to the Java Flight Recorder for inclusion in a common data
set for run-time or post-incident analysis. The Flight Recording data is also included in
WLDF diagnostic image captures, enabling you to capture flight recording snapshots
based on WLDF watch rules. This full set of functionality enables you to capture and
analyze run-time system information for both the JVM and the Fusion Middleware
components running on it, in a single view.

This chapter also explains common usage scenarios that show how this integration can
provide for a comprehensive performance analysis and diagnostic foundation for
production systems based on WebLogic Server.

This chapter includes the following sections:

= About Java Flight Recorder

= Using Java Flight Recorder with Oracle HotSpot

» Key Features of WLDF Integration with Java Flight Recorder
= Java Flight Recorder Use Cases

= Obtaining the Flight Recording File

= Analyzing Java Flight Recorder Data

4.1 About Java Flight Recorder

Java Flight Recorder is a performance monitoring and profiling tool that records
diagnostic information on a continuous basis, making it always available, even in the
wake of catastrophic failure such as a system crash. Java Flight Recorder is available in
Oracle HotSpot. When WebLogic Server is configured with HotSpot, Java Flight
Recorder is not enabled by default. See Section 4.2, "Using Java Flight Recorder with
Oracle HotSpot," for information about how to enable Java Flight Recorder with
WebLogic Server.

Note: For the most current information about configurations
supported in this release of WebLogic Server, see Oracle Fusion
Middleware Supported System Configurations on the Oracle
Technology Network.

Java Flight Recorder maintains a buffer of diagnostics and profiling data, called a
flight recording or a JFR file, that you can access whenever you need it. The flight

Using WLDF with Java Flight Recorder 4-1

Using Java Flight Recorder with Oracle HotSpot

recording functions in a manner similar to an aircraft "black box" in which new data is
continuously added and older data is stripped out, as shown in Figure 4-1.

Figure 4-1 Circular Flight Recording Buffer

Mew data \

L

Time

Flight Recording

\ Old data

The data contained in the JER file includes events from the JVM and from any other
event producer, such as WebLogic Server and Oracle Dynamic Monitoring System
(DMS). The JER file can be analyzed at any time, using Java Mission Control, to
examine the details of system execution flow that occurred leading up to an event.

The amount of additional processing overhead that results when Java Flight Recorder
is enabled, and also configure WLDF to generate WebLogic Server diagnostics to be
captured by Java Flight Recorder, is minimal. This makes it ideal to be used on a full
time basis, especially in production environments where it adds the greatest value.

Java Flight Recorder provides the following key benefits:

= Designed to run continuously — When Java Flight Recorder is configured to run
full-time, with both JVM and WLDF events captured in the flight recording,
diagnostic data is always available at the time an event occurs, including a system
crash. This ensures that a record of diagnostic data leading up to the event is
available, allowing you to diagnose the event without having to recreate it.

s Comprehensive data — Java Flight Recorder combines data generated by tools
such as the Runtime Analyzer and the Latency Analysis Tool and presents it in one

place.

= Integration with event providers — HotSpot includes a set of APIs that allow Java
Flight Recorder to monitor additional system components, including WebLogic
Server, Oracle Dynamic Monitoring System (DMS), and other Oracle products.

For more information about Java Flight Recorder, which available with HotSpot, see
the documentation that is bundled with the Java Mission Control download.

4.2 Using Java Flight Recorder with Oracle HotSpot

If WebLogic Server is configured with Oracle HotSpot, Java Flight Recorder is disabled
by default. To enable Java Flight Recorder, you must specify the following JVM options
in the WebLogic Server instance in which the JVM runs:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

4-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Key Features of WLDF Integration with Java Flight Recorder

Note: The sequence in which you specify JVM options to Hotspot is
very important. The options are processed from left to right, and
option values are overwritten if there are duplicates. Therefore, note
the following:

= HotSpot does not recognize the FlightRecorder option unless it is
preceded by the UnlockCommercialFeatures option.

= If you specify only the FlightRecorder option, or you specify
FlightRecorder before specifying UnlockCommercialFeatures,
the HotSpot JVM does not start.

4.3 Key Features of WLDF Integration with Java Flight Recorder

The key features provided by WLDF to leverage integration with Java Flight Recorder
include the following:

WLDF diagnostic data captured in a flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server
events that is captured in the flight recording. Captured events include those from
components such as: web applications; EJBs; JDBC, JTA, and JMS resources;
resource adapters; and WebLogic Web Services.

WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording is
controlled by the WLDF diagnostic volume configuration. This control also
determines the amount of WebLogic Server event data that is captured by Java
Flight Recorder, and can be adjusted to include more, or less, data for each
WebLogic Server event that is generated. For more information, see Section 6.2.1,
"Configuring WLDF Diagnostic Volume."

Notes:
= By default, the WLDF diagnostic volume is set to Low.

s The WLDF diagnostic volume setting does not affect explicitly
configured diagnostic modules or the built-in diagnostic modules.

Automatic throttling of generated events under load

As processing load rises on a given WebLogic Server instance, WLDF
automatically begins throttling the number of incoming WebLogic Server requests
that are selected for event generation and recording into the JFR file. The degree of
throttling is adjusted continuously as system load rises and falls.

Throttling provides three key benefits:

— The overhead of capturing events generated by WLDF for Java Flight
Recorder remains minimized, which is especially important when systems are
under load.

— The time interval encompassed in the flight recording buffer is maximized,
giving you a better historical record of data.

- Throttling has the effect of sampling incoming WebLogic Server requests,
maintaining high performance while still providing an accurate overall view
of system activity under load.

Using WLDF with Java Flight Recorder 4-3

Java Flight Recorder Use Cases

Note: Throttling affects only the Flight Recording data that is
captured by WLDE. It does not affect data captured by other event
producers, such as the JVM.

» WLDF diagnostic image capture support for JER files

WLDF diagnostic image capture automatically includes the JFR file, if one has
been generated by Java Flight Recorder. The JFR file includes data generated by all
active event producers, including WebLogic Server. An image captured using the
Watch and Notification component may contain the JER file, if available.

s WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic
image captures, described in Section 6.4.2, "WLST Online Commands for
Downloading Diagnostics Image Captures." Although these commands are
generally useful for listing, copying, and downloading all entries contained in the
diagnostic image capture, they can also be used for obtaining the JFR file, if
available. Once obtained from the diagnostic image capture, the JFR file can be
viewed in Java Mission Control.

4.4 Java Flight Recorder Use Cases

This section summarizes three common business cases where using the Java Flight
Recorder can help you resolve important diagnostic issues:

= Section 4.4.1, "Diagnosing a Critical Failure — The "Black Box™""
= Section 4.4.2, "Profiling During Performance Testing or in Production”
» Section 4.4.3, "Real-time Application Diagnostics and Reporting (RADAR)"

For more information about these scenarios using Java Flight Recorder, see "Using the
Java Flight Recorder" in the documentation that is bundled with the Java Mission
Control download.

4.4.1 Diagnosing a Critical Failure — The "Black Box"

When a "catastrophic" failure occurs, the content of the Java Flight Recorder buffer can
be made available for post-failure analysis in a manner analogous to the use of an
aircraft’s black box. Examples of such failures include a JVM crash or an
out-of-memory error (OOME) resulting in an application terminating.

When these situations arise, the flight recording contains the following information,
which can be helpful in determining the cause of the failure:

= JVM core dump, including metadata about the Java Flight Recorder configuration
at the time of the crash. Furthermore, depending on the disk storage parameters
that are set, the Java Flight Recorder data buffer might contain a certain amount of
data.

s WebLogic Server events, captured by WLDF, that preceded the failure.

Java Flight Recorder uses a combination of memory and disk to store its buffer. The
most recent data is stored in memory and is flushed out to disk as it "ages". In this way,
the on-disk data can be available even after a power failure or similar catastrophic
event; only the most recent data will be unavailable (for example, the data that had not
yet been flushed to disk). The text dump file will contain metadata about the Java
Flight Recorder configuration at the time of the crash, including the path to the data

4-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Java Flight Recorder Use Cases

buffer file when applicable. For more information about using Java Flight Recorder,
see the Java Flight Recorder Runtime User Guide in the documentation that is bundled
with the Java Mission Control download.

4.4.2 Profiling During Performance Testing or in Production

Profiling involves capturing data beginning at a specific point in time so that, later,
you can analyze the events that were generated after that point. In contrast to RADAR,
described in the following section, profiling involves analyzing the diagnostic data
generated after a particular event occurs, as opposed to the data that precedes it.

Profiling with Java Flight Recorder optimizes the ability to perform deep analysis of
lock contention and causes of latency.

4.4.3 Real-time Application Diagnostics and Reporting (RADAR)

RADAR is the examination of diagnostic data generated during run time when a
particular event occurs for the purposes of understanding the system activity that
preceded the event; for example, system activity occurring moments before a serious
error message is generated. By using the diagnostic capabilities available in WLDF in
conjunction with Java Flight Recorder, you can capture a large amount of system-wide
diagnostic data the moment a problem occurs. You can then leverage the capabilities of
Java Mission Control to quickly correlate that event with other system activity and
process execution data within the "snapshot in time" that the JFR file provides,
enabling you to quickly isolate likely causes of the problem.

One WLDF feature whose usage with Java Flight Recorder makes for a powerful
RADAR capability is image notification, which allows you to create a diagnostic image
capture automatically in response to a particular event or error condition. A diagnostic
image capture, which created as the result of an image notification, automatically
includes the JFR file. The JFR file can then be extracted from the diagnostic image
capture and examined immediately in Java Mission Control or stored for later analysis.
Image notification, used when WLDF data is captured by Java Flight Recorder, is
particularly well suited for this sort of real-time diagnosis of intermittent problems.

Image notification is part of the Watch and Notifications system in WLDE. To set up
image notification, you create one or more individual watch rules. A watch rule
includes a logical expression that uses the WLDF query language to specify the event
for the watch to detect. For example, the following log event watch rule expression
detects the server log message with severity level Critical and ID BEA-149618:

(SEVERITY = 'Critical') AND (MSGID = 'BEA-149618")

Watch rules can monitor any of the following;:
s Harvestable run-time MBean instances in the local run-time MBean server

A harvester watch can trigger an image notification if run-time MBean attributes
detect a performance issue, such as high memory utilization rates or problems
with open socket connections to the server.

= Messages published to the server log

A log watch can trigger an image notification if a specific message, severity level,
or string is issued.

= Event generated by the WLDF Instrumentation component

An event watch can trigger an image notification if an instrumentation service
generates a particular event.

Using WLDF with Java Flight Recorder 4-5

Obtaining the Flight Recording File

For more information, see the following topics:

s Chapter 9, "Configuring Watches and Notifications"
= Section 11.6, "Configuring Image Notifications"

s Appendix A, "WLDF Query Language"

The following sections explain how to obtain the JFR file from the diagnostic image
capture and provide an example of using Java Mission Control to examine the
WebLogic Server events contained in the JFR file:

= Section 4.5, "Obtaining the Flight Recording File"
= Section 4.6, "Analyzing Java Flight Recorder Data"

4.5 Obtaining the Flight Recording File

The diagnostic image capture itself is a single JFR file that contains individual images
produced by the different server subsystems. If the JFR file is available, it is included
in the diagnostic image as the file FlightRecording.jfr.

A diagnostic image capture can be generated on-demand — for example, from the
WebLogic Server Administration Console, WLST, or a JMX application — or it can be
generated as the result of an image notification. For information about how to generate
a diagnostic image captures and configure the location in which they are created, see
"Configure and capture diagnostic images" in Oracle WebLogic Server Administration
Console Online Help.

To view the contents of the JFR file, you first need to extract it from the diagnostic
image capture as described in Chapter 6, "Configuring and Capturing Diagnostic
Images." Once you have extracted the JFR file, you can view its contents in Java
Mission Control.

For an example WLST script that retrieves the JER file from a diagnostic image file and
saves it to a local directory, see Section D.8, "Example: Retrieving a JFR File from a
Diagnostic Image Capture."

4.6 Analyzing Java Flight Recorder Data

You can use Java Mission Control to examine the contents of the Java Flight Recorder
file after it has been extracted from the diagnostic image capture. The following
sections highlight some of the capabilities of Java Mission Control’s graphical user
interface, which provides a lot of tooling support for drilling down into the diagnostic
data generated not only by WLDF for WebLogic Server events, but also from all other
available event producers, including HotSpot:

= Section 4.6.1, "Java Flight Recorder Graphical User Interface"
= Section 4.6.2, "Analyzing Execution Flow — A Sample Walkthrough"
= Section 4.6.3, "Changing the Location of Temporary JFR Files"

For complete details about the Java Mission Control interface, seethe documentation
that is bundled with the Java Mission Control download.

4.6.1 Java Flight Recorder Graphical User Interface

Java Mission Control includes the Java Flight Recorder graphical user interface, which
allows users who are running a Java Flight Recorder-compliant version of Oracle
HotSpot to view JVM recordings, current recording settings, and run-time parameters.

4-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Analyzing Java Flight Recorder Data

The JER interface includes the Events Type View, which gives you direct access to
event information that has been recorded in the JER file, such as event producers and
types, event logging and graphing, event by thread, event stack traces, and event
histograms.

The Overview tab in the Java Flight Recorder interface is useful for analyzing a
system’s general health because it can reveal behavior that might indicate bottlenecks
or other sources of poor system performance. Figure 4-2 shows an example of the
Overview tab in the Events Type View.

Note the following regarding the information shown in Figure 4-2:

The Events Type View is available by selecting the Events tab group icon.

The name of the Java Flight Recorder file appears at the top of the Overview tab.
Note that the Java Flight Recorder is always named FlightRecording.jfr, itis
useful to rename it descriptively after downloading it from the diagnostic image
capture.

The Event Types Browser, on the left side, is a tree that shows the available event
types in a recording. It works in conjunction with the Events tab group to provide
a means to select events or groups of events in a recording that might be of interest
to you and to obtain more granular information about them.

As you select and deselect entries in the Event Types Browser, the information
displayed in the Overview tab is filtered dynamically. For example, by selecting
only WebLogic Server, event data from all non-WebLogic event producers is
filtered out.

The range navigator, which is the graph displayed below the Overview tab title, is
a time line that shows all events in a recording that pertain to the data displayed
on the selected tab. A set of buttons are available for adjusting the range of data
that is displayed, which can simplify the process of drilling down into the details
of Java Flight Recorder data.

The Producers section identifies each event producer that generated the data that
is displayed. Metrics are included for each producer, indicating the volume of
event activity generated by each as a proportion of the total set of event data
displayed.

The Event Types section lists all events represented in the Overview tab, along
with key metric data about each event.

Using WLDF with Java Flight Recorder 4-7

Analyzing Java Flight Recorder Data

Figure 4-2 Example Overview Page of Java Flight Recorder File in Java Mission Control

. Oracle Java Mission Control

File wWindow Help

B 1M Bro [¥o Event T L | [FlightRecorder.jfr &3

3 Overview

||z G5 webLogic Server

B Events @ Operative Set
(& Connector P

Interval: 2 min 50 s 430 ms

[synchrenize Selection

[+] & E1B
@[] & IDBC

A

SR —

= IMS 12/19/12 10:42:55 AM

- & ITA

12/19/12 10:45:45 AM

B serviet Request

Servlet Request ||| cpyyThreads = Filter Column |E*ent Type + [Shaw Only Operative Set
[serviet Request — | e |
[serviet Request || =} Event Type Total Count | &
[servlet Respons: P [B3MS BE Consumer L... 0's 1567
[serviet Respons: []E38 Business Metho... 0s 147
D Senvlet Stale Re: Events EJB Business Method Pre Invokei 0s 147
[web A Iication. [|E78 Pool Manager F... 0s 147
e QFJB Pool Manager P... 0s 147 ~

B web Application ||

& Log Producers @
=-[#] &= Servlet] rmwm— - I }
[l servlet Async Ac SR Filter Column _PIEE_IEEE_r______V_! Show Only Operative Set
D Servlet Check Ac e Producer Total Count
Servlet Context £ [WwLDF Medium... 45 s 525 ms 945... 1,363
Servlet Context t [C]wLoF Low Dia... 15 s 607 ms 528... 565
Servlet Execute [veLDF High Di... 3 ms 758 ps 535... 313
[serviet Filter Code [JwiLoF Base Fr... 0s 1
[serviet Invocatio){\.»“-«\
Servlet Request
ol g - Event Types @

%

3% Overview| 5¢ Log| E Graph| o Threads| % Stack Traces [[il Histogram |

4.6.2 Analyzing Execution Flow — A Sample Walkthrough

This section shows an example of the steps that a developer or support engineer might
use to identify the event activity associated with a particular request in a Web
application hosted on WebLogic Server. This example is not meant to recommend a
specific way to diagnose performance problems, but simply shows how the Java Flight
Recorder graphical user interface can be used to greatly simplify the process of

locating and analyzing performance issues.

The following examples are shown in this section:

= Section 4.6.2.1, "Displaying Event Data for a Product Subcomponent”

= Section 4.6.2.2, "Viewing the Event Log to Display Details"

= Section 4.6.2.3, "Tracking Execution Flow by Analyzing an Operative Set"

= Section 4.6.2.4, "Expanding the Operative Set and Viewing Correlated Diagnostic

Data"

4.6.2.1 Displaying Event Data for a Product Subcomponent

When you start Java Mission Control and open a JFR file, you can use the Event Types
View to quickly select the specific events you want to analyze. As you select and
deselect items in the Event Types Browser (which is available in the Event Types
View), the information displayed in the Java Flight Recorder graphical user interface is
updated instantly to show information about only the selected event types.

4-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Analyzing Java Flight Recorder Data

Figure 4-3 shows the Event Types Browser with only servlet event types selected.

Figure 4-3 Event Types Browser

B4 1vM Browsser | 3 Event Types L]

=-[E] 2 WebLegic Server ~
[&= Connector
O& B8
[& JoBC
& Ms
O TA
[Log
=[] G Serviet
I serviet Async Action
[] servlet Check Access
Servlet Context Execute
. Servlet Context Handle Throwable
[] serviet Execute
] servlet Filter
] serviet Invocation
[servlet Request
B serviet Request Cancel
Servlet Request Dispatch
[serviet Request Overload
B serviet Request Run
=[] serviet Response Send
[[] serviet Response Write Headers
D Servlet Stale Resource
] web Application Load
B veb Application Unload w

4.6.2.2 Viewing the Event Log to Display Details

To view details about the events logged by one or more event types, select the Log tab,
which is available at the bottom of the Java Flight Recorder graphical user interface.
An example of the Log tab for servlet event types is shown in Figure 4—4.

Using WLDF with Java Flight Recorder 4-9

Analyzing Java Flight Recorder Data

Figure 4-4 Serviet Event Log

Event Log @
Filker Calumn b 1 Shows Only Operative Set
Start Time End Time Duration . Thread Event Type -~

12/19/12 10:43:46.7... 12/19/12 10:43:47.8... 1551 ms35... [ACTIVE] ExecuteTh... Servlet Invocation
12/19/12 10:43:46.7... 12/19/12 10:43:47.8... 1549 ms50... [ACTIVE] ExecuteTh... Servlet Filter

12/19/12 10:43:47.7... 12/19/12 10:43:47.58... 43 ms421 ps... [ACTIVE] ExecuteTh... Servlet Request Disp...
12/19/12 10:43:47.7... 12/19/12 10:43:47.8... 36 ms 711 ps... [ACTIVE] ExecuteTh... Servlet Execute

12/19/12 10:43:47.8... 12/19/12 10:43:47.8... 951 ps 174 ns [ACTIVE] ExecuteTh... Servlet Stale Rescurce
12/19/12 10:43:47.8... 12/19/12 10:43:47.8... 783 ps 682 ns [ACTIVE] ExecuteTh... Servlet Stale Resource %
Event Attributes 6
MName Value -

'g:k) Start Time 12/19/12 10:43:46.781 AM

':E) End Time 12/19/12 10:43:47.832 AM

& Duration 1551 ms35ps 392 ns

<O User ID <anonymaous=

<E* Return Value

<8 Method Name wrapRun

<B» Class Name weblogic.servlet.internal.WebAppServletContextsServietinvocationAction
<Br Transaction ID N/A

<E» RCID N/A

<@* RID N/A

ED ECID daf1bh525-c24e-4214-9d71-a8eada9a09c3-0000021fF

<E+ URI /medrec/admin/viewNewlyRegisteredPatient.action W

%t Overview 5¥ Log| £ Graph| @ Threads| = Stack Traces [Histogram

When using the Log tab, you can view details about events as follows:

= You can click on individual column heads in the Event Log table to modify the sort
order of the events. For example, by clicking the Duration column, you can
quickly identify the events that took the longest time to execute.

= When you select an event in the Event Log table, details about that event are
displayed in the Event Attributes table. For example, Figure 4—4 shows the
following attributes:

— Event start, end, and duration times

— User ID of person who issued the request on the servlet
— Method, class name, and URI of invoked servlet

— Execution context ID (ECID)

- Relationship ID (RID), which may be defined if the Dynamic Monitoring
Service (DMS) is installed in the WebLogic Server environment. For
information, see "Correlating Messages Across Log Files and Components" in
Administering Oracle Fusion Middleware.

Note: The RCID attribute is reserved for future use.

Different event types have different attributes. For example, if this were a JDBC event,
you could scroll among the attributes to see the SQL statement, the JDBC connection
pool used, and the stack from which it was called. The interface makes it easy to scan
for unexpected behavior that can be analyzed in deeper detail.

4-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Analyzing Java Flight Recorder Data

Note:

The value of the ECID is a unique identifier that can be used to
correlate individual events as being part of the same request execution
flow. For example, events that are identified as being related to a
particular request typically have the same ECID value, as shown in
Section 4.6.2.3, "Tracking Execution Flow by Analyzing an Operative
Set." However, the format of the ECID string itself is determined by an
internal mechanism that is subject to change; therefore, you should
not have or place any dependencies on that format.

4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set

The Java Flight Recorder graphical user interface in Java Mission Control allows you
to analyze the run-time trail of system activity that occurs as the result of a particular
event. In this example, the run-time trail is analyzed by first defining an operative set.
An operative set is any set of events that you choose to work in Java Mission Control.

In the example shown in this section, an operative set is created for the events that
have the same execution context ID (ECID) attribute as the servlet invocation event
selected in the Event Log table, shown in Figure 4-5. The operative set is then
analyzed to see the execution flow that resulted from that servlet invocation. (Note
that this operative set could be expanded to include events that match on different
attributes as well; for example, events containing a specific SQL statement but not
necessarily the same ECID.)

Figure 4-5 Operative Set Defined by Execution Context ID (ECID)

Event Log

Filter Column |E\.fent Type ¥ | |

Start Time End Time Duration | Thread

12 19/12 10:43: 46 78... 12/19/12 10:43:47.83... 1551 ms451... [ACTIVE]
[ACTIVE]
12 19/12 10: 43 46 ?8 12/19/12 10: 43 4.7" 83 1549 ms 504. [ACTIVE]
12/19/12 10.4:.55.22... 12/19/12 10.4:.56.00... 773 ms 636 P... [ACTIVE]
12/19/12 10:43:55.22... 12/19/12 10:43:536.00... 775 ms 242 p... [ACTIVE]
12/19/12 10:43:55.22... 12/19/12 10:43:56.00... 774 ms 818 p... [ACTIVE]
12/19/12 10:43:55.22... 12/19/12 10:43:55.99... 773 ms 509 p... [ACTIVE]
12/19/12 10:43:44.81... 12/19/12 10:43:45.53... 714 ms 800 p... [ACTIVE]
12/19/12 10:43:44.81... 12/19/12 10:43:45.53... 714 ms 103 p... [ACTIVE]
12/19/12 10:43:44.82... 12/19/12 10:43:45.53... 713 ms522 p... [ACTIVE]
12/19/12 10:43:44.82... 12/19/12 10:43:45.53... 713 ms 263 p... [ACTIVE]
12/19/12 10:43:31.54... 12/19/12 10:43:32.11... 572 ms 993 p... [ACTIVE]
12/19/12 10:43:31.54... 12/19/12 10:43:32.11... 572 ms 407 p... [ACTIVE]
12/19/12 10:43:31.54... 12/19/12 10:43:32.11... 572 ms 114 ... TACTIVE]

@
| [Shows Only Qperative Set

Event Type b
ExecuteThr... Servlet Context Execute
ExecuteThr...
ExecuteThr... Servlet Filter
ExecuteThr... Servlet Request Run
ExecuteThr... Servlet Context Execute
ExecuteThr... Servlet Invocation
ExecuteThr... Servlet Filter
ExecuteThr... Servlet Request Run
ExecuteThr... Servlet Context Execute
ExecuteThr... Servlet Invocation
ExecuteThr... Servlet Filter
ExecuteThr... Servlet Request Run
ExecuteThr... Servlet Context Execute
ExecuteThr... Servlet Invocation b

This operative set is defined by right-clicking the desired event in the Event Log, and
then selecting Operative Set > Add matching ECID > ecid. See Figure 4-6.

Using WLDF with Java Flight Recorder

4-11

Analyzing Java Flight Recorder Data

Figure 4-6 Defining an Operative Set by Matching ECID

“Br Return Value
<@ Method Name

Add matching ECID

Add matching RCID

All in Selection

Start Time End Time Duration | Thread Event Type e |
e RIS 12/19/12 10:43:47.832... |1 551 ms 35 ... | [ACTIVE] ExecuteThrea... | Servlet Invocation b
1 Sort Column ¥ 112/19/12 10:43:47.832... 1549 ms504 ... [ACTIVE] ExecuteThrea... Servlet Filter
1 Visible Columns P 112/19/12 10:43;56.000... 773 ms 656 pPs... [ACTIVE] ExecuteThrea... Servlet Request Run
1 12/19/12 10:43:56.000... 775 ms 242 ps... [ACTIVE] ExecuteThrea... Servlet Context Execute
1 Copy 12/19/12 10:43:56.000... 774 ms 818 ps... [ACTIVE] ExecuteThrea... Serviet Invocation v
— Clipboard Settings » i —
M| Operative Set 4 Add Selection
izt | Add Concurrent e/
StartTlme Remove Selection
End Time Set Selection
(B puration Clear
<B* User ID

d6f1b525-c24e-4214-9d71-a8eada%a09c3-

0... (First in selection)

<Or Class Name
<@* Transaction ID

Add matching RID pSenletContextsSenvietinvacationAction

3
’:
|

Add matching Servlet Hame »

“B» RCID Add matching Subsystem »
B> RID Add matching Transaction ID »
<0 URI FprrrenrecraummrrrererrereryreemnsteredPatient.action

W

The operative set is then displayed by selecting Show Only Operative Set above the
event log table, shown in Figure 4-7. Note how the operative set is indicated in the

range navigator.
Figure 4-7 Displaying an Operative Set

Operative Set highlighted
in light blue

B Events @ Operative Set /ﬁ!/nter\fal: 2 min 50 5 450 ms (all)

[synchranize Selection

L) |

12/19/12 10:42:35 AM

Event Log

Filter Calumn |Event Type ¥ | |

12/19/12 10:45:45 AM

@

[shows Only Operative Set

Start Time
12/19/12 10:43:46.781 ...

End Time
12/19/12 10:43:47.832...

Thread
[ACTIVE] ExecuteThrea...

Duration
1551 ms451 ...

12/19/12 10:43:46.782 ...
12/19/12 10:43:55.225 ...
12/19/12 10:43:55.225 ...

12/19/12 10:43:47.832...
12/19/12 10:43:56.000...
12/19/12 10:43:536.000...

1549 ms 504 ...
773 ms 636 ps ...
773 ms 242 ps ...

[ACTIVE] ExecuteThrea...
|ACTIVE| ExecuteThrea...
[ACTIVE] ExecuteThrea...

12/19/12 10:43:46.781 ... | 12/19/12 10:43:47.832... |1 551 ms 35 p... | [ACTIVE] ExecuteThrea... | Servlet Invocation

Event Type w |
Servlet Context Execute
Servlet Filter

Serviet Reguest Run

Servlet Context Execute %

The run-time trail of execution flow that results from the request that generated the
servlet invocation event can be viewed by including additional event types. For
example, Figure 4-8 shows the operative set when all WebLogic Server event types are
added, using the Event Type Browser, and listing the events in chronological order.
(You can sort the events chronologically by selecting the Start Time column head.)

4-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Analyzing Java Flight Recorder Data

Figure 4-8 Adding all WebLogic Server Events to Operative Set

Event Log

Filter Column | Event Type

Start Time

12/19/12 10:43:46.7...
12/19/12 10:43:46.7...
12/19/12 10:43:46.7...
12/19/12 10:43:46.7...
12/19/12 10:43:47.7...
12/19/12 10:43:47.7...
12/19/12 10:43:47.6...
12/19/12 10:43:46.9...
12/19/12 10:43:47.7...
12/19/12 10:43:47.8...
12/19/12 10:43:47.8...
12/19/12 10:43:46.9...
12/19/12 10:43:46.7...
12/19/12 10:43:47.8...
12/19/12 10:43:47.7...

b

End Time
12/19/12 10:43:47 8...
12/19/12 10:43:47.8...
12/19/12 10:43:47 8...
12/18/12 10:43:46.8...
12/19/12 10:43:47 8...
12/18/12 10:43:47.8...
12/19/12 10:43:47.6...
12/18/12 10:43:46.9...
12/19/12 10:43:47.7...
12/18/12 10:43:47.8...
12/19/12 10:43:47 8...
12/18/12 10:43:46.9...
12/19/12 10:43:46.7...
12/18/12 10:43:47.8...
12/19/12 10:43:47.7...

Duration
1551 ms45...
1551 ms 35...
1 549 ms 50...
97 ms 307 p...
43 ms 421 p...
36 ms 711 p...
14 ms 589 p...
9ms 729 ps ...
9 ms 271 ps ...
7 ms 690 ps ...
6 ms 342 Js ...
3 ms 76 ps 8...
2 ms 307 Js ...
2ms 197 ps ...
1 ms 250 ps ...

Thread

[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...
[ACTIVE] ExecuteTh...

@
Show Only Operative Set

Event Type e
Serviet Context Exec...
Servlet Invocation

Servlet Filter

EJB PoolManager Cr...
Servlet Request Disp...
Servlet Execute

EJB Business Method...

EJB PoolManager Cr...
JDBC Connection Pre...
EJB PoolManager Cr...

EJB Business Method...

EJB Business Method...

EJB PoolManager Cr...

EJB PoolManager Cr...
JDBC Statement Exe... ¥

In this example, note a portion of the execution flow shown in the Event Log:

1. The servlet URI is invoked.

2. The servlet uses an EJB, which requires access to the database.

3. A]JDBC connection is obtained and a transaction is started.

4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data

The operative set can be further analyzed by constraining the time interval of the
execution flow and adding correlated events from additional producers. By
constraining the time interval for displayed events, you can add events to the Event
Log that occurred simultaneously with the operative set. This allows you to see
additional details about the execution context that can help diagnose performance

issues.

The time interval can be constrained by using the range selection bars in the range
navigator. You can grab these bars with your pointer and drag them inward or
outward to change the range of events displayed in the Event Log. The range selection
bars are activated when you hover your pointer over either end of the navigator, as
shown in Figure 4-9.

Figure 4-9 Range Navigator Selection Bars

Events from additional producers, such as HotSpot, can be selected in the Event Types
Browser. Note that JVM events do not have ECID attributes, so they cannot be

included among the WLDF events in the operative set. So to view the JVM events, you
need to de-select Show Only Operative Set.

At this point the events that are displayed in the Event Log are those that occurred
during the selected time interval but not correlated otherwise. Figure 4-10 shows
drilling down into JDBC activity by selecting only JDBC events and JVM events. The

Using WLDF with Java Flight Recorder

4-13

Analyzing Java Flight Recorder Data

Event Log is updated and listed in chronological order to show the JVM activity that
occurred simultaneously to the flow of the JDBC events in the selected time interval.

Figure 4-10 Adding JVM Events to JDBC Event Log

B Events @ Operative Set Interval: 5 5476 ms 325 ps (selected) [Isynchronize Selection

12/19/12 10:43:45 AM 12/19/12 10:43:51 AM

Event Log @

Filter Column |Event Type | [l shaw Only Operative Set
Start Time End Time Duration . Thread Event Type Ll
12/19/12 10:43:48.41... 12/19/12 10:43:4... 29 ps 557 ns [ACTIVE] ExecuteThr... JDBC Cennection Release
12/19/12 10:43:46.57... 12/19/12 10:43:4... 29 ps 147 ns [ACTIVE] ExecuteThr... IDBC Connection Release
12/19/12 10:43:48.55... 12/19/12 10:43:4... 28 ps 737 ns [ACTIVE] ExecuteThr... JDBC Statement Creation
12/19/12 10:43:46.03... 12/19/12 10:43:4... 27 ps 916 ns [ACTIVE] ExecuteThr... IDBC Connection Release
12/19/12 10:43:47.73... 12/19/12 10:43:4... 27 ps 915 ns [ACTIVE] ExecuteThr... JDBC Cennection Close
12/19/12 10:43:47.78... 12/19/12 10:43:4... 27 ps 915 ns [ACTIVE] ExecuteThr... IDBC Connection Release
12/19/12 10:43:30.19... 12/19/12 10:43:5... 27 ps 505 ns [ACTIVE] ExecuteThr... JDBC Cennection Release
12/19/12 10:43:48.55... 12/19/12 10:43:4... 27 ps 505 ns [ACTIVE] ExecuteThr... IDBC Connection Release
12/19/12 10:43:48.86... 12/19/12 10:43:4... 27 ps 505 ns [ACTIVE] ExecuteThr... JDBC Statement Creation
12/19/12 10:43:49.22... 12/19/12 10:43:4... 27 ys 94 ns [ACTIVE] ExecuteThr... 1DBC Connection Close
12/19/12 10:43:49.22... 12/19/12 10:43:4... 27 ps 94 ns [ACTIVE] ExecuteThr... JDBC Statement Creation
12/19/12 10:43:49.11... 12/19/12 10:43:4... 25 ps 863 ns [ACTIVE] ExecuteThr... IDBC Connection Release
12/19/12 10:43:49.23... 12/19/12 10:43:4... 25 ps 453 ns [ACTIVE] ExecuteThr... JDBC Cennection Release |
12/19/12 10:43:46.02... 12/19/12 10:43:4... 24 us 220 ns [ACTIVE] ExecuteThr... JDBC Cennection Close |

4.6.3 Changing the Location of Temporary JFR Files

The temporary JER files created in the operating system’s temp directory are managed
directly by the JVM. WLDF does not control these files. (By default, WLDF temporary
files related to Java Flight Recorder are placed in the DOMAIN_HOME\servers\SERVER_
NAME/server/logs/diagnostic_images directory.)

However, you can change the location in which the JVM places its temporary files by
using the following command-line option when starting Java Flight Recorder, where
path represents the preferred location:

-XX:FlightRecorderOptions=repository=path

For more information about Java Flight Recorder configuration settings, the
documentation that is bundled with the Java Mission Control download.

4-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

O

Understanding WLDF Configuration

This chapter describes the features provided by the WebLogic Diagnostics Framework
(WLDF) for generating, gathering, analyzing, and persisting diagnostic data from
WebLogic Server instances and from applications deployed to them. For server-scoped
diagnostics, some WLDF features are configured as part of the configuration for a
server in a domain. Other features are configured as system resource descriptors that
can be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic
features are configured as resource descriptors for the application.

This chapter includes the following sections:

s Configuration MBeans and XML

s Tools for Configuring WLDF

= How WLDF Configuration Is Partitioned

s Configuring Diagnostic Image Capture and Diagnostic Archives

= Configuring Diagnostic Image Capture for Java Flight Recorder

= Configuring Diagnostic System Modules

= Configuring Diagnostic Modules for Applications

= WLDF Configuration MBeans and Their Mappings to XML Elements

For general information about WebLogic Server domain configuration, see
Understanding Domain Configuration for Oracle WebLogic Server.

5.1 Configuration MBeans and XML

As in other WebLogic Server subsystems, WLDF is configured using configuration
MBeans (Managed Beans), and the configuration is persisted in XML configuration
files. The configuration MBeans are instantiated at startup, based on the configuration
settings in config.xml. When you modify a configuration by changing the values of
MBean attributes, those changes are saved (persisted) in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For
example, the Enable attribute of the WLDFInstrumentationBean maps directly to the
<enabled> sub-element of the <instrumentation> element in the resource descriptor
file (configuration file) for a diagnostic module. If you change the value of the MBean
attribute, the content of the XML element is changed when the configuration is saved.
Conversely, if you were to edit an XML element in the configuration file directly
(which is not recommended), the change to an MBean value would take effect after the
next session is started.

Understanding WLDF Configuration 5-1

Tools for Configuring WLDF

For more information about WLDF Configuration MBeans, see Section 5.8, "WLDF
Configuration MBeans and Their Mappings to XML Elements." For general
information about how MBeans are implemented and used in WebLogic Server, see
"Understanding WebLogic Server MBeans" in Developing Custom Management Ultilities
Using JMX for Oracle WebLogic Server.

5.2 Tools for Configuring WLDF

As with other WebLogic Server subsystems, there are several ways to configure
WLDEF:

Use the built-in diagnostic system modules, which provide a simple and
easy-to-use mechanism for performing basic health and performance monitoring
of a WebLogic Server instance. For more information, see Chapter 3, "Using the
Built-in Diagnostic System Modules."

Use the Administration Console to configure WLDF for server instances and
clusters. See "Configure the WebLogic Diagnostics Framework" in the Oracle
WebLogic Server Administration Console Online Help.

Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific
information about using WLST with WLDE, see Appendix D, "WebLogic Scripting
Tool Examples". Also see Understanding the WebLogic Scripting Tool for general
information about using WLST.

Configure WLDF programmatically using JMX and the WLDF configuration
MBeans. See Chapter 17, "Configuring and Using WLDF Programmatically," for
specific information about programming WLDE. See MBean Reference for Oracle
WebLogic Server and browse or search for specific MBeans for programming
reference.

Edit the XML configuration files directly. This documentation explains many
configuration tasks by showing and explaining the XML elements in the
configuration files. The XML is easy to understand, and you can edit the
configuration files directly, although it is recommended that you do not. (If you
have a good reason to edit the files directly, you should first generate the XML files
by configuring WLDF in the Administration Console. Doing so provides a
blueprint for valid XML.)

Note: If you make changes to a configuration by editing
configuration files, you must restart the server for the changes to take
effect.

5.3 How WLDF Configuration Is Partitioned

You can use WLDF to perform diagnostics tasks for server instances (and clusters) and
for applications.

5.3.1 Server-Level Configuration

You configure the following WLDF components as part of a server instance in a
domain. The configuration settings are controlled using MBeans and are persisted in
the domain's config.xml file.

Diagnostic Image Capture

Diagnostic Archives

5-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic Image Capture and Diagnostic Archives

See Section 5.4, "Configuring Diagnostic Image Capture and Diagnostic Archives."

You configure the following WLDF components as the parts of one or more diagnostic
system modules, or resources, that can be deployed to one or more server instances (or
clusters). These configuration settings are controlled using Beans and are persisted in
one or more diagnostic resource descriptor files (configuration files) that can be
targeted to one or more server instances or clusters.

= Harvester (for collecting metrics)
s Watch and Notification
s Instrumentation

See Section 5.6, "Configuring Diagnostic System Modules."

5.3.2 Application-Level Configuration

You can use the WLDF Instrumentation component with applications, as well as at the
server level. The Instrumentation component is configured in a resource descriptor file
deployed with the application in the application's archive file. See Section 5.7,
"Configuring Diagnostic Modules for Applications."

5.4 Configuring Diagnostic Image Capture and Diagnostic Archives

In the config.xml file for a domain, you configure the Diagnostic Image Capture
component and the Diagnostic Archive component in the <server-diagnostic-config>
element, which is a child of the <server> element in a domain, as shown in

Example 5-1.

Example 5-1 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
<server>

<name>myserver< /name>

<server-diagnostic-config>
<image-dir>logs/diagnostic_images</image-dir>
<image-timeout>3</image-timeout>
<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
<diagnostic-data-archive-type>FileStoreArchive
</diagnostic-data-archive-type>

</server-diagnostic-config>

</server>
<!-- Other server elements to configure other servers in this domain -->
<!-- Other domain-based configuration elements, including references to

WLDF system resources, or diagnostic system modules.
See Example 5-3. -->
</domain>

Note: If WebLogic Server is configured with Oracle HotSpot, and
Java Flight Recorder is enabled, the diagnostic image capture can
optionally include a Java Flight Recorder file, also called a JFR file,
that includes WebLogic Server events. The JER file can then be viewed
in Java Mission Control. For more information, see Chapter 4, "Using
WLDF with Java Flight Recorder."

Understanding WLDF Configuration 5-3

Configuring Diagnostic Image Capture for Java Flight Recorder

For more information, see the following:

Chapter 6, "Configuring and Capturing Diagnostic Images"
Chapter 7, "Configuring Diagnostic Archives"

5.5 Configuring Diagnostic Image Capture for Java Flight Recorder

If WebLogic Server is configured with a supported version of Oracle HotSpot, and Java
Flight Recorder is enabled, the JFR file is automatically included in the diagnostic
image capture. The JFR file contains data from all event producers that are enabled.
However, the amount of WebLogic Server event data that is included in the JFR file is
determined by the configuration of the WLDF diagnostic volume.

Notes: Note the following:

= If WebLogic Server is configured with Oracle HotSpot, Java Flight
Recorder is disabled by default unless HotSpot is started using the
JVM parameters described in Section 4.2, "Using Java Flight
Recorder with Oracle HotSpot."

= By default, the WLDF diagnostic volume is set to Low.

= For the most current information about configurations supported
in this release of WebLogic Server, including HotSpot support, see
Oracle Fusion Middleware Supported System Configurations on
the Oracle Technology Network.

To include WebLogic Server event data in the JFR file:

1.

Ensure that WebLogic Server is configured with Oracle HotSpot, which installed
separately from WebLogic Server.

For information, see Installing and Configuring Oracle WebLogic Server and Coherence.
Ensure that Java Flight Recorder is enabled.

In a default installation of Oracle HotSpot with WebLogic Server, Java Flight
Recorder is disabled. For information about enabling Java Flight Recorder with
HotSpot and WebLogic Server, see Section 4.2, "Using Java Flight Recorder with
Oracle HotSpot."

Set the WLDF diagnostic volume as appropriate. For general use, Oracle
recommends the default setting of Low. However, you can increase the volume of
WebLogic Server event data that is generated, as appropriate, by setting the
volume to Medium or High.

Note that the WLDF diagnostic volume setting has no impact on data recorded for
other event producers, such as the JVM.

For information, see "Configure WLDF diagnostic volume" in Oracle WebLogic
Server Administration Console Online Help.

Note: If the WLDF diagnostic volume is set to 0ff, and Java Flight
Recorder has not been explicitly disabled, the JER file continues to
include JVM event data and is always included in the diagnostic
image capture.

5-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic System Modules

5.6 Configuring Diagnostic System Modules

To configure and use the Instrumentation, Harvester, and Watch and Notification
components at the server level, you must first create a system resource called a
diagnostic system module, which will contain the configurations for all those
components. The configuration of diagnostic system module is defined in a resource
descriptor.

When creating a diagnostic system module, note the following;:

System modules are globally available for targeting to servers and clusters
configured in a domain.

In a given domain, you can create multiple diagnostic system modules with
distinct configurations.

You can target multiple diagnostic system modules to any given server or cluster.

WLDF Runtime Control allows you to dynamically enable or disable a diagnostic
system module without changing the domain configuration.

Runtime Control also allows you to deploy, activate, deactivate, and undeploy a
diagnostic system module on-the-fly that is not defined in the domain
configuration.

The following sections described the configuration of diagnostic system modules:

Section 5.6.1, "About the Resource Descriptor"
Section 5.6.2, "WLDF Runtime Control"

Section 5.6.3, "Creating a Diagnostic System Module Based on a Configured
Resource Descriptor”

Section 5.6.4, "Creating a Diagnostic System Module Based on an External
Resource Descriptor”

Section 5.6.5, "Targeting a Diagnostic System Module to a Server or Cluster"

Section 5.6.6, "Dynamically Activating or Deactivating Diagnostic System
Modules"

Section 5.6.7, "Using WLST to Activate and Deactivate Diagnostic System
Modules"

Section 5.6.8, "More Information About Configuring Diagnostic System Modules"

5.6.1 About the Resource Descriptor

A diagnostic system module has a corresponding resource descriptor that defines the
diagnostic module’s configuration. A resource descriptor can be either configured or
external:

A configured resource descriptor is one that is defined as part of the domain
configuration, and exists as a file in the DOMAIN_HOME\config\diagnostics
directory. A configured resource descriptor is referenced by the domain
config.xml file, and the corresponding diagnostic system module:

— Is persisted in the domain configuration.
— Is available to all servers and clusters in the domain.

— Can be targeted to a server or cluster through the domain configuration.

Understanding WLDF Configuration 5-5

Configuring Diagnostic System Modules

— Canbe activated or deactivated dynamically using Runtime Control,
regardless of whether it is explicitly targeted to a server or cluster.

Any dynamic changes made to the activation state of the diagnostic system
module are not persisted across server restarts.

= An external resource descriptor is one that is not referenced by the domain
config.xml file; that is, it is defined outside the domain configuration. The
diagnostic system module that is configured by an external resource descriptor
may be deployed and activated on a server using Runtime Control. However, this
diagnostic system module:

- Isnot persisted in the domain configuration (that is, it is not referenced by the
domain config.xml file.

- Can be deployed, activated, and deactivated only dynamically.

- Cannot have its deployment and activation state persisted in the domain
configuration.

- Remains in memory only until the server or cluster on which it is activated is
shut down.

- Cannot be automatically available on server restart.

An external resource descriptor may exist in a file located outside the DOMAIN
HOME\config\diagnostics directory, or may be passed as a String object using the
WLDF Runtime Control API (see Section 5.6.4, "Creating a Diagnostic System
Module Based on an External Resource Descriptor").

Note: The configuration of a diagnostic module conforms to the
diagnostics.xsd schema, available at
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/we
blogic-diagnostics.xsd.

Except for the name and list of targets for the diagnostic system module, all
configuration information for a diagnostic system module is contained in its resource
descriptor file. Example 5-2 shows portions of the descriptor file for a diagnostic
system module named myDiagnosticModule.

Example 5-2 Sample Structure of a Diagnostic System Module Descriptor File,
MyDiagnosticModule.xml

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>MyDiagnosticModule</name>
<instrumentation>
<!-- Configuration elements for zero or more diagnostic monitors -->
</instrumentation>
<harvester>
<!-- Configuration elements for harvesting metrics from zero or more
MBean types, instances, and attributes -->
</harvester>
<watch-notification>
<!-- Configuration elements for one or more watches and one or more
notifications-->
</watch-notification>

5-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic System Modules

</wldf-resource>

5.6.2 WLDF Runtime Control

WLDF Runtime Control allows you to control the activation or deactivation of
diagnostics system modules dynamically at run time without making a change to the
domain configuration. This allows you to perform specific, targeted diagnostic
analysis tasks, and optionally of limited duration, without interfering with the
operation of the server instances themselves.

You can use Runtime Control to do the following;:

= Dynamically activate and deactivate diagnostic system modules that are persisted
in the domain configuration without restarting the servers or clusters to which
they are targeted.

= Dynamically deploy, activate, deactivate, and undeploy diagnostic system
modules that are configured by an external resource descriptor.

Note that changes applied to diagnostic system modules using Runtime Control,
whether defined by configured or external resource descriptors, are not persisted.
When a server instance is restarted, that server returns to its configured state, and any
changes prior to that restart that were made using Runtime Control are lost.

5.6.3 Creating a Diagnostic System Module Based on a Configured Resource

Descriptor

You create a diagnostic system module based on a configured resource descriptor
using either the Administration Console or the WebLogic Scripting Tool (WLST). It is
created as a WLDFResourceBean, and the configuration is persisted in a resource
descriptor file named DIAG_MODULE.xml, where DIAG_MODULE is the name of the
diagnostic system module. You can specify a name for the descriptor file, but it is not
required. If you do not provide a file name, a file name is generated based on the value
in the descriptor file’s <name> element. The file is created by default in the DOMATIN_
HOME\config\diagnostics directory, and a reference to the module is added to the
domain’s config.xml file.

Note: Oracle recommends that you do not write XML configuration
files directly. But if you have a valid reason to do so, you should first
create a diagnostic module from the Console. That way, you can start
with the valid XML that the Console creates. For instructions, see
"Create diagnostic system modules" in the Oracle WebLogic Server
Administration Console Online Help.

The config.xml file can contain references to multiple diagnostic system modules, in
one or more <wldf-system-resource> elements. The <wldf-system-resource> element
includes the name of the diagnostic system module file and the list of servers and
clusters to which the module is targeted.

For example, Example 5-3 shows a config.xml file with a module named
myDiagnosticModule targeted to the server myserver and another module named
newDiagnosticMod targeted to servers myserver and ManagedServer2. Note that
myDiagnosticModule and newDiagnosticMod are both targeted to myserver.

Understanding WLDF Configuration 5-7

Configuring Diagnostic System Modules

Example 5-3 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
<!-- Other domain-level configuration elements -->
<wldf-system-resource
xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics">
<name>myDiagnosticModule</name>
<target>myserver</target>
<descriptor-file-name>diagnostics/MyDiagnosticModule.xml
</descriptor-£file-name>
<description>My diagnostic module</description>
</wldf-system-resource>
<wldf-system-resource>
<name>newDiagnosticMod</name>
<target>myserver,ManagedServer2</target>
<descriptor-file-name>diagnostics/newDiagnosticMod.xml
</descriptor-£file-name>
<description>A diagnostic module for my managed servers</description>
</wldf-system-resource>
<!-- Other WLDF system resource configurations -->
</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is shown
in Figure 5-1.

Figure 5-1 Relationship of config.xml to System Descriptor File

Domrain'config Directory Domainconfigdiagnostics Directory

config-xmil MyDiagnosticModule.xmil

Module <inames=

For instructions on creating a diagnostic system module that is persisted in the
domain, see "Create diagnostic system modules" in the Oracle WebLogic Server
Administration Console Online Help.

5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor

WLDF provides the following API that you can use to pass an external resource
descriptor and create a diagnostic system module on-the-fly. You can use this API to
dynamically create and activate a diagnostic system module for a server, but neither its
deployment nor activation state is persisted when the servers or clusters on which it
was activated are rebooted. This APl is provided by the following MBeans

s weblogic.management.runtime.WLDFControlRuntimeMBean

s weblogic.management.runtime.WLDFSystemResourceControlRuntimeMBean

5-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic System Modules

Using this API, you can pass the resource descriptor as a String object on-the-fly. For
ease-of-use, WLDF also provides the following WLST commands, which you can use
with a resource descriptor file that exists externally to the domain configuration:

m createSystemResourceControl () — Creates (deploys) a diagnostics system
module on-the-fly using a specified descriptor file.

» destroySystemResourceControl () — Destroys (undeploys) a diagnostics system
module previously created on-the-fly.

Externally configured diagnostic system modules that are deployed and activated in a
server or cluster are automatically destroyed when that server or cluster is shut down.

For an example of using WLST to create, activate, and destroy a diagnostic system
module that is based on an external resource descriptor, see Section 5.6.7, "Using
WLST to Activate and Deactivate Diagnostic System Modules".

5.6.5 Targeting a Diagnostic System Module to a Server or Cluster

A diagnostic system module can be targeted by the domain config.xml file to zero,
one, or more servers or clusters. In addition, a given server can have multiple modules
targeted to it simultaneously. Typically you create multiple modules that monitor
different aspects of your system. You can then choose which modules to target to a
server or cluster, based on what you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write
general purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server
instances to which it is targeted or untargeted. This gives you considerable flexibility
in writing and using diagnostic monitors that address a specific diagnostic goal,
without interfering with the operation of the server instances themselves.

For information about how to use the Administration Console to target a diagnostic
system module that is persisted in the domain configuration, see "Target and untarget
diagnostic system modules" in Oracle WebLogic Server Administration Console Online
Help.

Note: You cannot use the Administration Console to target
diagnostic system modules that are configured by an external
descriptor. However, you can use WLST as described in Section 5.6.7,
"Using WLST to Activate and Deactivate Diagnostic System Modules".

5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules

After you configure a diagnostic system module, you can activate or deactivate it
without making a configuration change or rebooting the server instance to which it is
targeted. This capability gives you control over the operative state of diagnostic
system modules without restarting the targeted server or cluster instance or making a
change to the domain configuration.

Because the domain configuration and all resource files are replicated to all servers in
the domain, all configured WLDF resources are available for dynamic activation and
deactivation on all servers in the domain. Note that if you dynamically activate or
deactivate a diagnostics system module, and restart the targeted server, the module’s
activation state is reverted to whatever is configured in the domain.

For information about using this capability in the Administration Console for
diagnostic system modules that are persisted in the domain configuration, see

Understanding WLDF Configuration 5-9

Configuring Diagnostic System Modules

"Dynamically activate or deactivate a diagnostic system module" in Oracle WebLogic
Server Administration Console Online Help. (Note that you cannot use the
Administration Console to dynamically activate or deactivate diagnostic system
modules that are configured by an external descriptor.)

You can also use WLST to dynamically activate or deactivate diagnostic system
modules, including those configured by an external descriptor, as described in
Section 5.6.7, "Using WLST to Activate and Deactivate Diagnostic System Modules".

5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules

You can also use WLST to dynamically activate or deactivate a diagnostic system
module. This capability is provided by the WLST commands listed and described in

Table 5-1:

Table 5-1 WLST Commands to Dynamically Activate and Deactivate Diagnostic

Modules

Command Summary

enableSystemResource Enables a diagnostic system module on a WebLogic Server
instance.

disableSystemResource Disables a diagnostic system module on a WebLogic Server
instance.

createSystemResourceControl Creates a diagnostics system module from an external
diagnostic descriptor file. Note that the diagnostics system
module remains in memory only until the server is shut
down and is not deployed the next time the server is
restarted.

destroySystemResourceControl Destroys, or undeploys, a diagnostics system module
configured in an external diagnostic descriptor without
changing the domain configuration.

listSystemResourceControls Lists the diagnostic system modules currently configured
on a WebLogic Server instance.

For complete details about these WLST commands, see "Diagnostics Commands" in
WLST Command Reference for WebLogic Server.

5.6.7.1 Example

This section gives an example of the steps for using WLST to dynamically activate and
deactivate the following diagnostic system modules:

= Module-0, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN HOME/config/diagnostics directory

= Module-1, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN HOME/config/diagnostics directory

= External-1,not a part of the domain configuration, but defined by the external
resource descriptor external-wldf. This external resource descriptor is configured
in the file external-wldf.xml, which is external to the domain configuration.

These examples assume the following has been set up:

s The domain config.xml file references two diagnostic system modules that are
part of the domain configuration, as follows:

<wldf-system-resource>
<name>Module-0</name>

5-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic System Modules

<?xml version='1

<descriptor-file-name>diagnostics/Module-0-3905.xml</descriptor-file-name>
<description></description>

</wldf-system-resource>

<wldf-system-resource>
<name>Module-1</name>
<descriptor-file-name>diagnostics/Module-1-3904.xml</descriptor-file-name>
<description></description>

</wldf-system-resource>

» The server name shown in these examples is myserver.

s The external descriptor file external-wldf.xml is located in the domain’s root
directory, wl_domain. It contains the following lines for configuring the diagnostic
system module named External-1:

.0' encoding='UTF-8'?>

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"

xmlns:sec="http://xmlns.oracle.com/weblogic/security"

xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd">
<name>External-1</name>

<harvester>

<enabled>true</enabled>

<sample-period>10000</sample-period>

<harvested-type>
<name>weblogic.management.runtime.ServerRuntimeMBean</name>
<harvested-attribute>OverallHealthState.ReasonCodeSummary</harvested-attribute>
<harvested-attribute>OverallHealthState.State</harvested-attribute>
<namespace>ServerRuntime</namespace>

</harvested-type>

</harvester>
</wldf-resource>

Step 1: List Diagnostic System Modules

The following WLST command, shown in bold, lists the diagnostic system modules
that are currently configured:

wls:/wl_domain/Serverl> listSystemResourceControls()

External Enabled Name
false false Module-0
false false Module-1

The preceding command shows that Module-0 and Module-1 are configured in the
domain (that is, they are referenced from config.xml and are not configured by
external resource descriptors), but that they have not been activated.

Step 2: Activate Module-0
The following WLST command activates Module-0:

wls:/mydomain/serverConfig> enableSystemResource('Module-0"')

You can also supply a server name to all of the WLDF system resource run-time
control functions. If you do not specify a server name, the enableSystemResource ()
command defaults to the server instance to which WLST is currently connected.
(However, by default, all configured WLDF system resources are available for
run-time control operations on all servers in the domain.)

Understanding WLDF Configuration 5-11

Configuring Diagnostic System Modules

wls: /mydomain/serverConfig> enableSystemResource('Module-0', Server='myserver')

Step 3: Verify that Module-0 is Activated
The following WLST command shows that Module-0 is now activated:

wls:/mydomain/serverConfig> listSystemResourceControls()

External Enabled Name
false true Module-0
false false Module-1

Step 4: Activate Module-1
The following WLST commands activate Module-1 and verify the activation state of all
diagnostic system modules:

wls: /mydomain/serverConfig> enableSystemResource('Module-1', Server='myserver')
wls: /mydomain/serverConfig> listSystemResourceControls()

External Enabled Name
false true Module-0
false true Module-1

Step 5: Deactivate Configured Diagnostic Modules

The following WLST commands deactivate all diagnostic system modules that are
configured in the domain and verify their state:

wls:/mydomain/serverConfig> disableSystemResource('Module-0"')
wls:/mydomain/serverConfig> disableSystemResource("Module-1")
wls:/mydomain/serverConfig> listSystemResourceControls()

External Enabled Name
false false Module-0
false false Module-1

Step 6: Create a Diagnostic System Module from an External Resource
Descriptor File

The external resource descriptor needs to be accessible by the WLST client. The
following WLST command creates and deploys the diagnostic system module
External-1 from the external resource descriptor in the file external-wldf.xml, and
verifies its activation state. ()

wls:/mydomain/serverConfig> createSystemResourceControl ('external-wldf',
'external-wldf.xml')
wls:/mydomain/serverConfig> listSystemResourceControls()

External Enabled Name

false false Module-0

true false external-wldf
false false Module-1

Note that the External column identifies External-1 as being configured by an
external resource descriptor.

5-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic System Modules

Step 7: Activate External-1

Because the createSystemResourceControl () command only deploys the diagnostic
system module, the following WLST command activates it. The subsequent command
verifies the diagnostic system module’s activation state.

wls:/mydomain/serverConfig> enableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()

External Enabled Name

false false Module-0

true true external-wldf
false false Module-1

Step 8: Deactivate External-1
The following WLST commands deactivate External-1 and verify its deactivation
status:

wls:/mydomain/serverConfig> disableSystemResource ("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()

External Enabled Name

false false Module-0

true false external-wldf
false false Module-1

Step 9: Destroy External-1
The following WLST command destroys the diagnostic system module that is
configured by an external resource descriptor:

wls:/mydomain/serverConfig> destroySystemResourceControl ("external-wldf")

Step 10: Verify Original State of Configured Diagnostic Modules

The following WLST command verifies that the domain’s configuration is reverted to
its original state, showing only the two diagnostic system modules whose
configuration is persisted in the config.xml file:

wls:/mydomain/serverConfig> listSystemResourceControls()

External Enabled Name
false false Module-0
false false Module-1

5.6.8 More Information About Configuring Diagnostic System Modules

See the following sections for detailed instructions about configuring WLDF system
modules:

» Chapter 8, "Configuring the Harvester for Metric Collection"
s Chapter 9, "Configuring Watches and Notifications"
s Chapter 12, "Configuring Instrumentation”

s Chapter 13, "Configuring the Dyelnjection Monitor to Manage Diagnostic
Contexts"

Understanding WLDF Configuration 5-13

Configuring Diagnostic Modules for Applications

5.7 Configuring Diagnostic Modules for Applications

You can configure only the Instrumentation component in a diagnostic descriptor for
an application.

You configure and deploy application-scoped instrumentation as a diagnostic module,
which is similar to a diagnostic system module. However, an application module is
configured in an XML descriptor (configuration) file named
weblogic-diagnostics.xml, which is packaged with the application archive in the
ARCHIVE_PATH/META-INF directory for the deployed application. For example,
C:\Oracle\Middleware\Oracle_Home\user_
projects\applications\medrec\dist\standalone\exploded\medrec\META-INF\webl
ogic-diagnostics.xml.

Note: The Dyelnjection monitor, which is used to configure
diagnostic context (a way of tracking requests as they flow through
the system), can be configured only at the server level. But once a
diagnostic context is created, the context attached to incoming
requests remains with the requests as they flow through the
application. For information about the diagnostic context, see
Chapter 13, "Configuring the Dyelnjection Monitor to Manage
Diagnostic Contexts."

For more information about configuring and deploying diagnostic modules for
applications, see:

s Section 12.5, "Configuring Application-Scoped Instrumentation”

s Chapter 15, "Deploying WLDF Application Modules"

5.8 WLDF Configuration MBeans and Their Mappings to XML Elements

Figure 5-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic
system module beans for WLDF objects in a WebLogic Server domain.

5-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

WLDF Configuration MBeans and Their Mappings to XML Elements

Figure 5-2 WLDF Configuration Bean Tree

DomainMBean

ServerMBean

W1 DFServerDiagnosticMBean

WLDFSystemBResourceMBean

WLDFResourceBean JavaBean representations
of WLDF descriptor elements

WL DFHarvesterBean

WLDFInstrumentationBean

WL DPWathcHotificationBean

The following WLDF MBeans configure WLDF at the server level. They map to XML
elements in the config.xml configuration file for a domain:

s WLDEFServerDiagnosticMBean controls configuration settings for the Data Archive
and Diagnostic Images components for a server. It also controls whether
diagnostic context for a diagnostic module is globally enabled or disabled.
(Diagnostic context is a way to uniquely identify requests and track them as they
flow through the system. See Chapter 13, "Configuring the Dyelnjection Monitor
to Manage Diagnostic Contexts.")

This MBean is represented by a <server-diagnostic-config> child element of the
<server> element in the config.xml file for the server's domain.

= WLDFSystemResourceMBean contains the name of a descriptor file for a
diagnostic module in the DOMAIN_ HOME/config/diagnostics directory and the
names of one or more the target servers on which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the
config.xml file for the domain.

Note: You can create multiple diagnostic system modules in a
domain. The configurations for the modules are saved in multiple
descriptor files in the config/diagnostics directory for the domain.
The domain's config.xml file, therefore, can contain the multiple
<wldf-system-resource> elements that represent those modules.

= WLDFResourceBean contains the configuration settings for a diagnostic system
module. This bean is represented by a <wldf-resource> element in a DTAG_
MODULE.xml diagnostics descriptor file in the domain’s config/diagnostics

Understanding WLDF Configuration 5-15

WLDF Configuration MBeans and Their Mappings to XML Elements

directory. (See Figure 5-1 and Example 5-2.) The WLDFResourceBean contains
configuration settings for the following components:

- Harvester: The WLDFHarvesterBean is represented by the <harvester>
element in a DIAG_MODULE. xnl file.

- Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DTAG_MODULE . xm1 file.

— Watch and Notification: The WLDFWatchNotificationBean is represented by
the <watch-notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the
settings for WLDF components apply to the targeted server. If a
WLDFResourceBean is contained within a weblogic-diagnostics.xml descriptor
file which is deployed as part of an application archive, you can configure only the
Instrumentation component, and the settings apply only to that application. In the
latter case, the WLDFResourceMBean is not a child of a
WLDFSystemResourceMBean.

5-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

6

Configuring and Capturing Diagnostic Images

This chapter describes the Diagnostic Image Capture component of the WebLogic
Diagnostics Framework (WLDF) that you can use to create a diagnostic snapshot, or
dump, of a server's internal run-time state at the time of the capture. This information
helps support personnel analyze the cause of a server failure.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes WebLogic Server diagnostic data that
can be viewed in Java Mission Control. For information, see Section 4.2, "Using Java
Flight Recorder with Oracle HotSpot".

This chapter includes the following sections:

= How to Initiate Image Captures

» Configuring Diagnostic Image Captures

» How Diagnostic Image Capture Is Persisted in the Server's Configuration

= Content of the Captured Image File

6.1 How to Initiate Image Captures
A diagnostic image capture can be initiated by:
= A configured watch notification. See Chapter 11, "Configuring Notifications."

= Arequest initiated by a user in the Administration Console (and requests initiated
from third-party diagnostic tools). See "Configure and capture diagnostic images"
in the Oracle WebLogic Server Administration Console Online Help.

= Adirect API call, using JMX. See Example 6-1.
s WLST command

6.2 Configuring Diagnostic Image Captures

Because the diagnostic image capture is meant primarily as a post-failure analysis tool,
there is little control over what information is captured. Available configuration
options are:

» The destination for the image
= For a specific capture, a destination that is different from the default destination

= A lockout, or timeout, period, to control how often an image is taken during a
sequence of server failures and recoveries

Configuring and Capturing Diagnostic Images 6-1

Configuring Diagnostic Image Captures

= WLDF diagnostics volume, which determines the volume of WebLogic Server
event information that is captured in the Java Flight Recorder file.

As with other WLDF components, you can configure Diagnostic Image Capture using
the Administration Console (see "Configure and capture diagnostic images" in the
Oracle WebLogic Server Administration Console Online Help), the WebLogic Scripting Tool
(WLST), or programmatically.

Note: It is often useful to generate a diagnostic image capture when
a server fails. To do so, set a watch rule to evaluate to true when the
server's state changes to FAILED; then associate an image notification
with the watch.

The watch rule is as follows:

(s{[weblogic.management.runtime.ServerRuntimeMBean]//State}
= 'FAILED')

For more information, see Section 10.3, "Configuring Harvester
Watches," and Section 11.6, "Configuring Image Notifications." Also
see "Configure Watches and Notifications" in the Oracle WebLogic
Server Administration Console Online Help.

6.2.1 Configuring WLDF Diagnostic Volume

If WebLogic Server is configured with Oracle HotSpot, and the Java Flight Recorder is
enabled, the Java Flight Recorder data is automatically also captured in the diagnostic
image capture. This data can be extracted from the diagnostic image capture and
viewed in Java Mission Control. If Java Flight Recorder is not enabled, or if WebLogic
Server is configured with a different JVM, the Java Flight Recorder data is not captured
in the diagnostics image capture.

Note: When WebLogic Server is configured with HotSpot, by default
Java Flight Recorder is disabled. For information about how to enable
it, see Section 4.2, "Using Java Flight Recorder with Oracle HotSpot".

The volume of Java Flight Recorder data that is captured can be configured from the
WebLogic Server Administration Console, which allows you to specify the following
settings:

Volume Setting Description

Off Disables the collection of data in the Java Flight Recorder diagnostic
image.

Low Enabled by default. For information about data that is collected, see
Section 6.2.1.1, "Low Volume Setting."

Medium Captures a moderate amount of data. For details, see Section 6.2.1.2,
"Medium Volume Setting."

High Captures in-depth data. For details, see Section 6.2.1.3, "High Volume
Setting."

6-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Diagnostic Image Captures

Note: The specific set of events for which diagnostic data is collected
using the diagnostic volume settings is subject to change in future
releases of WebLogic Server.

For information about how to set the diagnostic volume, see "Configure WLDF
diagnostics volume" in the Oracle WebLogic Server Administration Console Online Help.
For an example using WLST, see Section D.6, "Example: Setting the WLDF Diagnostic
Volume".

6.2.1.1 Low Volume Setting

The Low diagnostic volume setting is enabled by default. With this setting, basic
information is generated and captured, and log messages with the "emergency",
"alert", or "critical" levels are recorded.

In the current release of WebLogic Server, the following events are captured at the Low
setting:

ThrottleInformation

WLDF Logging Snapshot

WLDF LogRecord Snapshot

WLDF WLLogRecord Snapshot

Connector Activate Endpoint

Connector Deactivate Endpoint
Connector Inbound Transaction Rollback
Connector Outbound Connection Closed
Connector Outbound Connection Error
Connector Outbound Destroy Connection
Connector Outbound Register Resource
Connector Outbound Release Connection
Connector Outbound Reserve Connection
Connector Outbound Transaction Rollback
Connector Outbound Unregister Resource
EJB Business Method Invoke

EJB Business Method Post Invoke

EJB Business Method Pre Invoke

JDBC Connection Rollback

JDBC Statement Execute

JDBC Transaction Rollback

Servlet Invocation

Web Application Load

Web Application Unload

Webservices JAXRPC Client Request
Webservices JAXRPC Client Response
Webservices JAXRPC Dispatch
Webservices JAXRPC Request
Webservices JAXRPC Response
Webservices JAXWS Endpoint
Webservices JAXWS Request

Webservices JAXWS Resource

6.2.1.2 Medium Volume Setting

With the Medium diagnostic volume setting, additional information is captured, and
messages with the "error" level and above are recorded. For example, User IDs are
captured by the Medium and High volume settings (capturing them imposes a
performance overhead not appropriate for the Low setting).

Configuring and Capturing Diagnostic Images 6-3

Configuring Diagnostic Image Captures

In the current release of WebLogic Server, the following events are captured at the
Medium setting, in addition to those captured at the Low setting:

Connector Inbound Transaction Commit
Connector Inbound Transaction Start
Connector Outbound Transaction Commit
Connector Outbound Transaction Start
EJB Home Create

EJB Home Remove

EJB PoolManager Create

EJB Pool Manager Post Invoke

EJB Pool Manager Pre Invoke

JDBC Connection Close

JDBC Connection Commit

JDBC Connection Create Statement
JDBC Connection Get Vendor Connection
JDBC Connection Prepare

JDBC Connection Release

JDBC Connection Reserve

JDBC Data Source Get Connection

JDBC Driver Connect

JDBC Statement Creation

Servlet Execute

Servlet Request Run

Servlet Request Dispatch

Servlet Request

Servlet Filter

Servlet Async Action

Servlet Context Execute

Servlet Response Write Headers
Servlet Response Send

Servlet Stale Resource

Servlet Check Access

JMS BE Consumer Log

6.2.1.3 High Volume Setting

With the High diagnostic volume setting, in-depth information is captured, and
messages with the "error" level and above are recorded. Stack traces are also captured
with the High setting, but only for events for which a stack trace add value (for
example, stack traces where application code would normally be visible are generated,
but stack traces that only show internal code and that do not vary at all are not
generated).

In the current release of WebLogic Server, the following events are captured at the High
setting in addition to those captured at the Medium setting;:

EJB Database Access

EJB Business Method Post Invoke Cleanup
EJB Pool Manager Remove

EJB Replicated Session Manager
EJB Timer Manager

JDBC Transaction Commit

JDBC Transaction End

JDBC Transaction Get XA Resource
JDBC Transaction Is Same RM

JDBC Transaction Prepare

JDBC Transaction Start

JTA Transaction Commit

JTA Transaction End

JTA Transaction Prepared

6-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Content of the Captured Image File

JTA Transaction Prepare

JTA Transaction Start

Servlet Request Overload

Servlet Request Cancel

Servlet Context Handle Throwable

6.2.2 WLST Commands for Generating an Image Capture

Example 6-1 shows an example of WLST commands for generating an image capture.

Example 6-1 Sample WLST Commands for Generating a Diagnostic Image

url="t3://localhost:7001"

username='sgystem'

password="'password'

server='myserver'

timeout=120

connect (username, password, url)

serverRuntime ()

cd ('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image"')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([timeout],java.lang.Object)
invoke ('captureImage', argValues, argTypes)

6.3 How Diagnostic Image Capture Is Persisted in the Server's
Configuration

6.4

The configuration for Diagnostic Image Capture is persisted in the config.xml file for
a domain, under the <server-diagnostic-config> sub-element of the <server> element
for the server, as shown in Example 6-2:

Example 6—-2 Sample Diagnostic Image Capture Configuration

<domain>
<!-- Other domain configuration elements -->
<server>
<name>myserver</name>
<server-diagnostic-config>
<image-dir>logs\diagnostic_images</image-dir>
<image-timeout>2</image-timeout>
</server-diagnostic-config>

<!-- Other configuration details for this server -->
</server>
<!-- Other server configurations in this domain-->
</domain>

Note: Oracle recommends that you do not edit the config.xml file
directly.

Content of the Captured Image File

The most common sources of a server state are captured in a diagnostic image capture,
including:

= Configuration

Configuring and Capturing Diagnostic Images 6-5

Content of the Captured Image File

= Log cache state

= Java Virtual Machine (JVM)
= Work Manager state

s JNDI state

» Most recent harvested data

The Diagnostic Image Capture component captures and combines the images
produced by the different server subsystems into a single . zip file. In addition to
capturing the most common sources of the server state, this component captures
images from all the server subsystems including, for example, images produced by the
JMS, JDBC, EJB, and JNDI subsystems.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes a Java Flight Recorder image,
FlightRecording.jfr, that can be viewed in Java Mission Control. The contents of the
Java Flight Recorder image contains all available data from the Java Flight Recorder,
and the volume of data produced by WLDF depends on the diagnostics volume
setting. When Java Flight Recorder is enabled, data is always provided by the JVM,
and optionally includes data provided by WebLogic Server. Data from additional
Oracle components, such as Oracle Dynamic Monitoring System (DMS), may be
included in the Java Flight Recorder image as well.

Notes: Note the following:

= A diagnostic image is a heavyweight artifact meant to serve as a
server-level state dump for the purpose of diagnosing significant
failures. It enables you to capture a significant amount of
important data in a structured format and then to provide that
data to support personnel for analysis.

= If a non-WebLogic event producer in the WebLogic Server
environment, such as DMS, has configured Java Flight Recorder to
record data, the WLDF diagnostic image capture includes a Java
Flight Recorder image file with the recorded data even if the
WLDF diagnostics volume is set to Off.

s When WebLogic Server is configured with HotSpot, Java Flight
Recorder is not enabled by default. For information about how to
enable it, see Section 4.2, "Using Java Flight Recorder with Oracle
HotSpot."

6.4.1 Data Included in the Diagnostics Image Capture File

Each image is captured as a single file for the entire server. The default location is
SERVER_NAME\logs\diagnostic_images. Each image instance has a unique name, as
follows:

diagnostic_image DOMAIN_SERVER YYYY MM _DD_HH MM SS.zip

The contents of the file include at least the following information:
» Creation date and time of the image
= Source of the capture request

= Name of each image source included in the image and the time spent processing
each of those image sources

6-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Content of the Captured Image File

s JVM and OS information, if available
s Command line arguments, if available
s WebLogic Server version including patch and build number information

If WLDF is configured with Oracle HotSpot, as described in Section 5.5, "Configuring
Diagnostic Image Capture for Java Flight Recorder," the image also contains the Java
Flight Recorder file, F1ightRecording.jfr. The JER file can be extracted as described
in Section 6.4.2, "WLST Online Commands for Downloading Diagnostics Image
Captures," and viewed in Java Mission Control. For more information, see Section 4.6,
"Analyzing Java Flight Recorder Data".

Figure 61 shows the contents of an image file. You can open most of the files in this

.zip file with a text editor to examine the contents.

Figure 6—1 An Image File

7 7-Zip File Manager [||

File Edit View Favorites Tools
.? @C:'\Diagnostics.zip'\

MName

= AFFLICATION.img
= configuration.img
= CONNECTOR.img

ource.img

= IDEC.img

= 1ms.img

=) INDT_IMAGE_SOURCE.img
= 1T AImg

= 7vM.img

Lugging.img

= FathService.img

=] PERSISTENT_STORE.img
= sAF.img

=) watchSource.img

= WORK_MANAGER.Img

£

0 object(s) selected

6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures

WLST online provides the following commands for downloading diagnostic image
captures from the server to which WLST is connected:

Table 6—-1 WLST Commands for Downloading Image Captures

Command Summary

captureAndSaveDiagnosticImage Captures a diagnostic image and downloads it locally.

getAvailableCapturedImages Returns a list of diagnostic images that have been created in the image
destination directory configured on the server.

saveDiagnosticImageCaptureFile Downloads a specified diagnostic image capture file.

saveDiagnosticImageCaptureEntryFile Downloads a specific entry within a diagnostic image capture. This

command is particularly useful for obtaining the Java Flight Recorder
diagnostics data for viewing in Java Mission Control.

Configuring and Capturing Diagnostic Images 6-7

Content of the Captured Image File

For information about these commands, and examples of using them, see "Diagnostics
Commands" in WLST Command Reference for WebLogic Server. For examples of WLST
scripts that return a list of diagnostic images and retrieve JFR files in them, see
Appendix D, "WebLogic Scripting Tool Examples."

6-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

7

Configuring Diagnostic Archives

This chapter describes the Archive component of the WebLogic Diagnostics
Framework (WLDF) that captures and persists all data events, log records, and metrics
collected by WLDF from server instances and applications running on them. You can
subsequently access archived diagnostic data in online mode (that is, on a running
server). You can also access archived data in off-line mode using the WebLogic
Scripting Tool (WLST).

You can configure WLDF to archive diagnostic data to a file store or a Java Database
Connectivity (JDBC) data source, as described in this chapter.

This chapter includes the following sections:
s Configuring the Archive

s Configuring a File-Based Store

s Configuring a JDBC-Based Store

= Retiring Data from the Archives

You can also specify when and under what conditions old data will be removed from
the archive, as described in Section 7.4, "Retiring Data from the Archives."

7.1 Configuring the Archive

You configure the diagnostic archive on a per-server basis.The configuration is
persisted in the config.xml file for a domain, under the <server-diagnostic-config>
element for the server. Example configurations for file-based stores and JDBC-based
stores are shown in Example 7-1 and Example 7-5.

Note: Resetting the system clock while diagnostic data is being
written to the archive can produce unexpected results. See
Section 14.5, "Resetting the System Clock Can Affect How Data Is
Archived and Retrieved."

7.2 Configuring a File-Based Store

For a file-based store, WLDF creates a file to contain the archived information. The
only configuration option for a WLDF file-based archive is the directory where the file
will be created and maintained. The default directory is DOMAIN_
HOME/servers/SERVER_NAME/data/store/diagnostics.

Configuring Diagnostic Archives 7-1

Configuring a JDBC-Based Store

When you save to a file-based store, WLDF uses the WebLogic Server persistent store.
For more information, see "Using the WebLogic Persistent Store" in Administering
Server Environments for Oracle WebLogic Server.

An example configuration for a file-based store is shown in Example 7-1.

Example 7-1 Sample Configuration for File-based Diagnostic Archive (in config.xml)

<domain>
<!-- Other domain configuration elements -->
<server>
<name>myserver</name>
<server-diagnostic-config>
<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
<diagnostic-data-archive-type>FileStoreArchive
</diagnostic-data-archive-type>
</server-diagnostic-config>
</server>
<!-- Other server configurations in this domain -->
</domain>

7.3 Configuring a JDBC-Based Store

To use a JDBC store, the appropriate tables must exist in a database, and JDBC must be
configured to connect to that database. For information about how to configure JDBC
using the Administration Console, see "Configure database connectivity" in Oracle
WebLogic Server Administration Console Online Help. For additional information about
JDBC configuration, see Administering [DBC Data Sources for Oracle WebLogic Server.

7.3.1 Creating WLDF Tables in the Database

If they do not already exist, you must create the database tables used by WLDF to store
data in a JDBC-based store. Two tables are required:

» The wls_events table stores data generated from WLDF Instrumentation events.
s The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database. Example 7-2
shows the DDL that you can use to create WLDF tables in Apache Derby.

Example 7-2 DDL Definition of the WLDF Tables for Apache Derby

-- WLDF Instrumentation and Harvester archive DDLs using Derby
AUTOCOMMIT OFF;

-- DDL for creating wls_events table for instrumentation events
DROP TABLE wls_events;

CREATE TABLE wls_events (
RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
TIMESTAMP BIGINT default NULL,
CONTEXTID varchar (128) default NULL,
TXID varchar(32) default NULL,
USERID varchar (32) default NULL,
TYPE varchar (64) default NULL,

7-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring a JDBC-Based Store

DOMAIN varchar(64) default NULL,
SERVER varchar (64) default NULL,
SCOPE varchar (64) default NULL,
MODULE varchar (64) default NULL,
MONITOR varchar (64) default NULL,
FILENAME varchar (64) default NULL,
LINENUM INTEGER default NULL,
CLASSNAME varchar (250) default NULL,
METHODNAME varchar (64) default NULL,
METHODDSC varchar (4000) default NULL,
ARGUMENTS clob(100000) default NULL,
RETVAL varchar (4000) default NULL,
PAYLOAD blob(100000),
CTXPAYLOAD VARCHAR (4000),
DYES BIGINT default NULL,
THREADNAME varchar (250) default NULL
)i

-- DDL for creating wls_events table for instrumentation events
DROP TABLE wls_hvst;

CREATE TABLE wls_hvst (
RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
TIMESTAMP BIGINT default NULL,
DOMAIN varchar(64) default NULL,
SERVER varchar (64) default NULL,
TYPE varchar (64) default NULL,
NAME varchar (250) default NULL,
ATTRNAME varchar (64) default NULL,
ATTRTYPE INTEGER default NULL,
ATTRVALUE VARCHAR (4000),
WLDFMODULE VARCHAR (250) default NULL

COMMIT;
Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

Example 7-3 shows the DDL that you can use to create WLDF tables in an Oracle
database.

Example 7-3 DDL Definition of the WLDF Tables for Oracle Database
SET SERVEROUTPUT ON;

DECLARE
vCtr Number;
vSQL VARCHAR2 (2000) ;
vcurrSchema VARCHAR2 (256) ;
BEGIN
SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;

SELECT COUNT (*)

INTO vCtr

FROM user_tables

WHERE table_name = 'WLS_EVENTS';

Configuring Diagnostic Archives 7-3

Configuring a JDBC-Based Store

vSQL := 'CREATE TABLE "WLS_EVENTS" (
"RECORDID" NUMBER (20,0) DEFAULT NULL,
"TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
"CONTEXTID" VARCHAR2 (250 BYTE) DEFAULT NULL,
"TXID" VARCHAR2 (250 BYTE) DEFAULT NULL,
"USERID" VARCHAR2 (250 BYTE) DEFAULT NULL,
"TYPE" VARCHAR2 (250 BYTE) DEFAULT NULL,
"DOMAIN" VARCHAR2 (250 BYTE) DEFAULT NULL,
"SERVER" VARCHAR2 (250 BYTE) DEFAULT NULL,
"SCOPE" VARCHAR2 (250 BYTE) DEFAULT NULL,
"MODULE" VARCHAR2 (250 BYTE) DEFAULT NULL,
"MONITOR" VARCHAR2 (250 BYTE) DEFAULT NULL,
"FILENAME" VARCHAR2 (250 BYTE) DEFAULT NULL,
"LINENUM" NUMBER (10,0) DEFAULT NULL,
"CLASSNAME" VARCHAR2 (250 BYTE) DEFAULT NULL,
"METHODNAME" VARCHAR2 (250 BYTE) DEFAULT NULL,
"METHODDSC" VARCHAR2 (4000 BYTE) DEFAULT NULL,
"ARGUMENTS" CLOB DEFAULT NULL,

"RETVAL" VARCHAR2 (4000 BYTE) DEFAULT NULL,
"PAYLOAD" BLOB DEFAULT NULL,

"CTXPAYLOAD" VARCHAR2 (4000 BYTE) DEFAULT NULL,
"DYES" NUMBER (20,0) DEFAULT NULL,
"THREADNAME" VARCHAR2 (250 BYTE) DEFAULT NULL

)t

EXECUTE IMMEDIATE vSQL;

vSQL := 'CREATE UNIQUE INDEX WLS_EVENTS_RECORD_IDX ON WLS_EVENTS (RECORDID) ';
EXECUTE IMMEDIATE vSQL;
vSQL := 'CREATE INDEX WLS_EVENTS_TS_IDX ON WLS_EVENTS (TIMESTAMP) ';

EXECUTE IMMEDIATE vSQL;

SELECT COUNT (*)
INTO vCtr
FROM user_tables
WHERE table_name = 'WLS_HVST';

IF vCtr = 0 THEN
vSQL : 'CREATE TABLE "WLS_HVST"
()
"RECORDID" NUMBER (20,0) NOT NULL,
"TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
"DOMAIN" VARCHAR2 (250 BYTE) DEFAULT NULL,
"SERVER" VARCHAR2 (250 BYTE) DEFAULT NULL,
"TYPE" VARCHAR2 (250 BYTE) DEFAULT NULL,
"NAME" VARCHAR2 (250 BYTE) DEFAULT NULL,
"ATTRNAME" VARCHAR2 (250 BYTE) DEFAULT NULL,
"ATTRTYPE" NUMBER(10,0) DEFAULT NULL,
"ATTRVALUE" VARCHAR2 (4000 BYTE) DEFAULT NULL,
"WLDFMODULE" VARCHAR2 (250 BYTE) DEFAULT NULL
)i
EXECUTE IMMEDIATE vSQL;

vSQL := 'CREATE UNIQUE INDEX WLS_HVST_RECORD_IDX ON WLS_HVST (RECORDID) ';
EXECUTE IMMEDIATE vSQL;
vSQL := 'CREATE INDEX WLS_HVST_TS_IDX ON WLS_HVST (TIMESTAMP) ';

EXECUTE IMMEDIATE vSQL;

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

Example 7-4 shows the DDL that you can use to create WLDF tables in an Oracle
database.

7-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring a JDBC-Based Store

Example 7-4 DDL Definition of the WLDF Tables for MySql Database

DROP PROCEDURE if exists create_alter wls_events
/

CREATE PROCEDURE create_alter_wls_events()

language sqgl

BEGIN

CREATE TABLE WLS_EVENTS
(

RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
TIMESTAMP BIGINT NOT NULL,
CONTEXTID VARCHAR (250) default NULL,
TXID VARCHAR(250) default NULL,
USERID VARCHAR(250) default NULL,
TYPE VARCHAR(250) default NULL,
DOMAIN VARCHAR (250) default NULL,
SERVER VARCHAR (250) default NULL,
SCOPE VARCHAR (250) default NULL,
MODULE VARCHAR (250) default NULL,
MONITOR VARCHAR(250) default NULL,
FILENAME VARCHAR(250) default NULL,
LINENUM INT UNSIGNED default NULL,
CLASSNAME VARCHAR(250) default NULL,
METHODNAME VARCHAR (250) default NULL,
METHODDSC VARCHAR (4000) default NULL,
ARGUMENTS TEXT (100000) default NULL,
RETVAL VARCHAR (4000) default NULL,
PAYLOAD BLOB(100000),
CTXPAYLOAD VARCHAR (4000),
DYES BIGINT UNSIGNED default NULL,
THREADNAME VARCHAR (250) default NULL,
INDEX (TIMESTAMP)

END

CALL create_alter wls_events()
/

DROP PROCEDURE if exists create_alter_wls_events

DROP PROCEDURE if exists create_alter_ wls_hvst
/

CREATE PROCEDURE create_alter wls_hvst()
language sqgl
BEGIN
CREATE TABLE WLS_HVST
(
RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
TIMESTAMP BIGINT NOT NULL,
DOMAIN VARCHAR (250) default NULL,
SERVER VARCHAR (250) default NULL,
TYPE VARCHAR(250) default NULL,
NAME VARCHAR (250) default NULL,
SCOPE VARCHAR (250) default NULL,
ATTRNAME VARCHAR (250) default NULL,
ATTRTYPE INT default NULL,
ATTRVALUE VARCHAR (4000) default NULL,

Configuring Diagnostic Archives

Retiring Data from the Archives

WLDFMODULE VARCHAR (250) default NULL,
INDEX (TIMESTAMP)
)i

END
/

CALL create_alter_wls_hvst()
/

DROP PROCEDURE if exists create_alter wls_hvst

/

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

7.3.2 Configuring JDBC Resources for WLDF

After you create the tables in your database, you must configure JDBC to access the
tables. (See Administering [DBC Data Sources for Oracle WebLogic Server.) Then, as part of
your server configuration, you specify that JDBC resource as the data store to be used
for a server's archive.

An example configuration for a JDBC-based store is shown in Example 7-5.

Example 7-5 Sample configuration for JDBC-based Diagnostic Archive (in config.xml)

<domain>
<!-- Other domain configuration elements -->
<server>
<name>myserver</name>
<server-diagnostic-config>
<diagnostic-data-archive-type>JDBCArchive
</diagnostic-data-archive-type>
<diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>
<server-diagnostic-config>
</server>
<!-- Other server configurations in this domain -->
</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables
do not exist in the database, WLDF uses the default file-based persistent store.

7.4 Retiring Data from the Archives

WLDF includes a configuration-based data retirement feature for periodically deleting
old diagnostic data from the archives. You can configure size-based data retirement at
the server level and age-based retirement at the individual archive level, as described
in the following sections.

7.4.1 Configuring Data Retirement at the Server Level

You can set the following data retirement options for a server instance:

s The preferred maximum size of the server instance's data store
(<preferred-store-size-limit>) and the interval at which it is checked, on the hour,
to see if it exceeds that size (<store-size-check-period>).

7-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Retiring Data from the Archives

When the size of the store is found to exceed the preferred maximum, an
appropriate number of the oldest records in the store are deleted to reduce the size
below the specified threshold. This is called "size-based data retirement."

Note: Size-based data retirement can be used only for file-based
stores. These options are ignored for database-based stores.

m Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data
retirement options discussed above. For both file-based stores and database-based
stores, this also enables or disables any age-based data retirement policies defined
for individual archives in the store. See Section 7.4.2, "Configuring Age-Based Data
Retirement Policies for Diagnostic Archives," below.

7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives

The data store for a server instance can contain the following types of diagnostic data
archives whose records can be retired using the data retirement feature:

» Harvested metrics data (logical name: HarvestedDataArchive)
= Instrumentation events data (logical name: EventsDataArchive)

» Custom data (user-defined name)

Note: WebLogic Server log files are maintained both at the server
level and the domain level. Data is retired from the current log using
the log rotation feature. See "Configuring WebLogic Logging Services"
in Configuring Log Files and Filtering Log Messages for Oracle WebLogic
Server.

Age-based policies apply to individual archives. The data store for a server instance
can have one age-based policy for the HarvestedDataArchive, one for the
EventsDataArchive, and one each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive,
those records are deleted.

7.4.3 Sample Configuration

Data retirement configuration settings are persisted in the config.xml configuration
file for the server's domain, as shown in Example 7-6.

Example 7-6 Data Retirement Configuration Settings in config.xml

<domain>

<!-- other domain configuration settings -->
<server>
<name>MedRecServer</name>
<!-- other server configuration settings -->

<server-diagnostic-config>
<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
<diagnostic-data-archive-type>FileStoreArchive
</diagnostic-data-archive-type>
<data-retirement-enabled>true</data-retirement-enabled>
<preferred-store-size-limit>120</preferred-store-size-limit>

Configuring Diagnostic Archives 7-7

Retiring Data from the Archives

<store-size-check-period>1l</store-size-check-period>

<wldf-data-retirement-by-age>
<name>HarvestedDataRetirementPolicy</name>
<enabled>true</enabled>
<archive-name>HarvestedDataArchive</archive-name>
<retirement-time>1l</retirement-time>
<retirement-period>24</retirement-period>
<retirement-age>45</retirement-age>

</wldf-data-retirement-by-age>

<wldf-data-retirement-by-age>
<name>EventsDataRetirementPolicy</name>
<enabled>true</enabled>
<archive-name>EventsDataArchive</archive-name>
<retirement-time>10</retirement-time>
<retirement-period>24</retirement-period>
<retirement-age>72</retirement-age>

</wldf-data-retirement-by-age>

</server-diagnostic-config>
</server>
</domain>

7-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

8

Configuring the Harvester for Metric Collection

This chapter describes the Harvester component of the WebLogic Diagnostics
Framework (WLDF) that gathers metrics from attributes on qualified MBeans
instantiated in a running server. The Harvester can collect metrics from WebLogic
Server MBeans and from custom MBeans.

This chapter includes the following sections:

» Harvesting, Harvestable Data, and Harvested Data

» Harvesting Data from the Different Harvestable Entities
s Configuring the Harvester

s Harvester Performance Considerations

8.1 Harvesting, Harvestable Data, and Harvested Data

Harvesting metrics is the process of gathering data that is useful for monitoring the
system state and performance. Metrics are exposed to WLDF as attributes on qualified
MBeans. The Harvester gathers values from selected MBean attributes at a specified
sampling rate. Therefore, you can track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet
further requirements in order to be harvested:

s Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean
must be registered in the local WebLogic Server run-time MBean server. Only
simple type attributes of an MBean can be harvestable.

s Harvested data is data that is currently being harvested. To be harvested, the data
must meet all the following criteria:

— The data must be harvestable.
— The data must be configured to be harvested.

- For custom MBeans, the MBean must be currently registered with the JMX
server.

— The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and
harvested data. The information returned by this MBean is a snapshot of a potentially
changing state. For a description of the information about the data provided by this
MBean, see the description of the

weblogic.management.runtime. WLDFHarvesterRuntimeMBean in the MBean Reference
for Oracle WebLogic Server.

Configuring the Harvester for Metric Collection 8-1

Harvesting Data from the Different Harvestable Entities

You can use the Administration Console, the WebLogic Scripting Tool (WLST), or J]MX
to configure the harvester to collect and archive the metrics that the server MBeans
and the custom MBeans contain.

8.2 Harvesting Data from the Different Harvestable Entities

You can configure the Harvester to harvest data from named MBean types, instances,
and attributes. In all cases, the Harvester collects the values of attributes of MBean
instances, as explained in Table 8-1.

Table 8-1 Sources of Harvested Data from Different Configurations

When this entity is configured to

be harvested as... Data is collected from...

A type (only) All harvestable attributes in all instances of the
specified type

An attribute of a type The specified attribute in all instances of the specified

(type + attribute(s)) type

An instance of a type All harvestable attributes in the specified instance of

(type + instance(s)) the specified type

An attribute of an instance of a type The specified attribute in the specified instance of the

(type + instance(s) + attribute(s)) specified type

All WebLogic Server run-time MBean types and attributes are known at startup.
Therefore, when the Harvester configuration is loaded, the set of harvestable
WebLogic Server entities is the same as the set of WebLogic Server run-time MBean
types and attributes. As types are instantiated, those instances also become known and
thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be
instantiated before its type can be known. (The type does not exist until at least one
instance is created.) Therefore, as custom MBeans are registered with and removed
from the MBean server, the set of custom harvestable types grows and shrinks. This
process of detecting a new type based on the registration of a new MBean is called type
discovery.

When you configure the Harvester through the Administration Console, the Console
provides a list of harvestable entities that can be configured. The list is always
complete for WebLogic Server MBeans, but for custom MBeans, the list contains only
the currently discovered types. See "Configure metrics to collect in a diagnostic system
module" in the Oracle WebLogic Server Administration Console Online Help.

8.3 Configuring the Harvester

The Harvester is configured and metrics are collected in the scope of a diagnostic
module targeted to one or more server instances.

Example 8-1 shows Harvester configuration elements in a WLDF system resource
descriptor file, myWLDF . xm1. This sample configuration harvests from the
ServerRuntimeMBean, the WLDFHarvesterRuntimeMBean, and from a custom (that
is, non-WebLogic Server) MBean. The text following the listing explains each element
in the listing.

8-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring the Harvester

8.3.1

Example 8-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<name>myWLDF< /name>
<harvester>
<enabled>true</enabled>
<sample-period>5000</sample-period>
<harvested-type>
<name>weblogic.management.runtime.ServerRuntimeMBean</name>
</harvested-type>
<harvested-type>
<name>weblogic.management . runtime.WLDFHarvesterRuntimeMBean</name>
<harvested-attribute>TotalSamplingTime</harvested-attribute>
<harvested-attribute>CurrentSnapshotElapsedTime
</harvested-attribute>
</harvested-type>
<harvested-type>
<name>myMBeans .MySimpleStandard</name>
<harvested-instance>myCustomDomain :Name=myCustomMBeanl
</harvested-instance>
<harvested-instance>myCustomDomain : Name=myCustomMBean?2
</harvested-instance>
</harvested-type>
</harvester>
<l = Other elements ----- -- >
</wldf-resource>

Configuring the Harvester Sampling Period

The <sample-period> element sets the sample period for the Harvester, in
milliseconds. For example:

<sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester
begins execution at time T, and the sample period is I, then the next harvest cycle
begins at T+1. If a cycle takes A seconds to complete and if A exceeds I, then the next
cycle begins at T+A. If this occurs, the Harvester tries to start the next cycle sooner, to
ensure that the average interval is L.

8.3.2 Configuring the Types of Data to Harvest

One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be
collected. Optional sub-elements specify the instances and/or attributes to be collected
for that type. Set these options as follows:

= The optional <harvested-instance> element specifies that metrics are to be
collected only from the listed instances of the specified type. In general, an
instance is specified by providing its JMX ObjectName in JMX canonical form.
However, you can use pattern-matching to specify instance names in
non-canonical form, as described in Section C.1, "Using Wildcards in Harvester
Instance Names."

s If no <harvested-instance> is present, all instances that are present at the time of
each harvest cycle are collected.

Configuring the Harvester for Metric Collection 8-3

Configuring the Harvester

s The optional <harvested-attribute> element specifies that metrics are to be
collected only for the listed attributes of the specified type. An attribute is
specified by providing its name. The first character should be capitalized. For
example, an attribute defined with getter method getFoo () is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling
down" into attributes that are complex or aggregate objects, such as lists, maps,
simple POJOs (Plain Old Java Objects), and various nestings of these types. See
Section C.2, "Specifying Complex and Nested Harvester Attributes," for details on
this syntax. However, note that the result of these expressions must be a simple
intrinsic type (int, boolean, String, and so on) in order to be harvested.

s If no <harvested-attribute> is present, all harvestable attributes defined for the
type are collected.

= Attribute and instance lists can be combined in a type.

8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans

The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic
Server MBeans are those that come packaged as part of the WebLogic Server. Custom
MBeans can be harvested as long as they are registered in the local run-time MBean
server.

There is a difference in how WebLogic Server and customer types are specified. For
WebLogic Server types, the type name is the name of the Java interface that defines the
MBean. For example, the server run-time MBean’s type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

s If the MBean is not a ModelMBean, the type name is the implementing class name.
(For example, see Example 8-1.)

s If the MBean is a ModelMBean, the type name is the value of the MBean
Descriptor field DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is
no value for the MBean Descriptor field DiagnosticTypeName) then the MBean cannot
be harvested.

8.3.4 Harvesting from the DomainRuntime MBeanServer

The <harvested-type> element supports a <namespace> attribute that lets you harvest
metrics from MBeans registered in the DomainRuntime MBeanServer. However,
Oracle recommends that you limit the usage to harvesting only
DomainRuntime-specific MBeans, such as the ServerLifeCycleRuntimeMBean.
Harvesting of remote managed server MBeans through the DomainRuntime
MBeanServer is possible, but is discouraged for performance reasons. It is a best
practice to use the resident Harvester in each managed server to capture metrics
related to that managed server instance.

The <namespace> attribute can have one of two values:
s ServerRuntime
s DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

8-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring the Harvester

Note: Harvesting from the DomainRuntime MBean server is
available only on the Administration Server. Attempts to harvest
DomainRuntime MBeans on a Managed Server are ignored. For an
example, see Example 8-5.

8.3.5 When Configuration Settings Are Validated

WLDF attempts to validate configuration as soon as possible. Most configuration is
validated at system startup and whenever a dynamic change is committed. However,
due to limitations in JMX, custom MBeans cannot be validated until instances of those
MBeans have been registered in the MBean server.

8.3.6 Sample Configurations for Different Harvestable Types

In Example 8-2, the <harvested-type> element in the DTAG_MODULE.xml configuration
file specifies that the ServerRuntimeMBean is to be harvested. Because no
<harvested-instance> sub-element is present, all instances of the type will be collected.
However, because there is always only one instance of the server run-time MBean,
there is no need to provide a specific list of instances. And because there are no
<harvested-attribute> sub-elements present, all available attributes of the MBean are
harvested for each of the two instances.

Example 8-2 Sample Configuration for Collecting All Instances and All Attributes of a
Type (in DIAG_MODULE.xml)

<harvested-type>
<name>weblogic.management . runtime.ServerRuntimeMBean</name>
</harvested-type>

In Example 8-3, the <harvested-type> element in the DIAG_MODULE.xml configuration
file specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above,
because there is only one WLDFHarvesterRuntimeMBean, there is no need to provide
a specific list of instances. The sub-element <harvested-attribute> specifies that only
two of the available attributes of the WLDFHarvesterRuntimeMBean will be
harvested: TotalSamplingTime and CurrentSnapshotElapsedTime.

Example 8-3 Sample Configuration for Collecting Specified Attributes of All Instances
of a Type (in DIAG_MODULE.xml)

<harvested-type>
<name>weblogic.management . runtime.WLDFHarvesterRuntimeMBean</name>
<harvested-attribute>TotalSamplingTime</harvested-attribute>
<harvested-attribute>CurrentSnapshotElapsedTime
</harvested-attribute>
</harvested-type>

In Example 84, the <harvested-type> element in the DTAG_MODULE.xml configuration
file specifies that a single instance of a custom MBean type is to be harvested. Because
this is a custom MBean, the type name is the implementation class. In this example, the
two <harvested-instance> elements specify that only two instances of this type will be
harvested. Each instance is specified using the canonical representation of its JMX
ObjectName. Because no instances of <harvested-attribute> are specified, all attributes
will be harvested.

Configuring the Harvester for Metric Collection 8-5

Harvester Performance Considerations

Example 8-4 Sample Configuration for Collecting All Attributes of a Specified Instance
of a Type (in DIAG_MODULE.xml)

<harvested-type>
<name>myMBeans .MySimpleStandard</name>
<harvested-instance>myCustomDomain:Name=myCustomMBeanl
</harvested-instance>
<harvested-instance>myCustomDomain : Name=myCustomMBean?2
</harvested-instance>

</harvested-type>

In Example 8-5, the <harvested-type> element in the DIAG_MODULE.xml configuration
file specifies that the ServerLifeCycleRuntimeMBean is to be harvested. The
<namespace> attribute specifies that this is a DomainRuntime MBean, so this
configuration will only be honored on the administration server (see the note in
Section 8.3.4, "Harvesting from the DomainRuntime MBeanServer"). The sub-element
<harvested-attribute> specifies that only the StateVal attribute will be harvested.

Example 8-5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

<harvested-type>

<name>weblogic.management.runtime. ServerLifeCycleRuntimeMBean</name>
<namespace>DomainRuntime</namespace>

<known-type>true</known-type>
<harvested-attribute>StateVal</harvested-attribute>
</harvested-type>

8.4 Harvester Performance Considerations

Because the Harvester tracks all MBeans that are registered in the local WebLogic
Server run-time MBean server, applications that create a high volume of transient
MBeans can create performance issues in WLDF. Here, a transient MBean is an MBean
with a very short life span that can be registered and unregistered very quickly,
typically within the space of a few milliseconds. Such MBeans can create a load stress
in the Harvester and the Watch and Notification system, which tracks MBean
registrations. This performance problem is particularly a risk when high-volume JMS
applications are not coded according to recommended best practices.

When JMS connections are not cached properly, a scenario can develop in which
hundreds of connections (and consequently, the corresponding connection, producer,
and consumer run-time MBeans) are created and destroyed every second when the
system is operating under heavy load. This situation can cause load stress on both the
Harvester and the Watch and Notification system.

To avoid this problem, make sure your JMS applications conform to the best coding
practices described in "Cache and Re-use Client Resources" in Tuning Performance of
Oracle WebLogic Server. As a result, you will not only obtain better WLDF performance,
but you will also improve your JMS and overall server performance.

8-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

9

Configuring Watches and Notifications

This chapter describes the Watch and Notification component of the WebLogic
Diagnostics Framework (WLDF) that provides the means for monitoring server and
application states and then sending notifications based on criteria set in the
watches.Watches and notifications are configured as part of a diagnostic module
targeted to one or more server instances in a domain.

This chapter includes the following sections:
» Watches and Notifications
s Overview of Watch and Notification Configuration

= Sample Watch and Notification Configuration

9.1 Watches and Notifications

A watch identifies a situation that you want to trap for monitoring or diagnostic
purposes. You can configure watches to analyze log records, data events, and
harvested metrics. A watch is specified as a watch rule, which includes:

= A watch rule expression
= An alarm setting
= One or more notification handlers

A notification is an action that is taken when a watch rule expression evaluates to true.
WLDF supports the following types of notifications:

= Java Management Extensions (JMX)

= Java Message Service (JMS)

= Simple Mail Transfer Protocol (SMTP), for example, e-mail
= Simple Network Management Protocol (SNMP)

= Diagnostic Images

You must associate a watch with a notification for a useful diagnostic activity to occur,
for example, to notify an administrator about specified states or activities in a running
server.

Watches and notifications are configured separately from each other. A notification can
be associated with multiple watches, and a watch can be associated with multiple
notifications. This provides the flexibility to recombine and re-use watches and
notifications, according to current needs.

Configuring Watches and Notifications 9-1

Overview of Watch and Notification Configuration

9.2 Overview of Watch and Notification Configuration

A complete watch and notification configuration includes settings for one or more
watches, one or more notifications, and any underlying configurations required for the
notification media, for example, the SNMP configuration required for an SNMP-based
notification.

The main elements required for configuring watches and notifications in a WLDF
system resource descriptor file, DIAG_MODULE.xml, are shown in Example 9-1. As the
listing shows, the base element for defining watches and notifications is
<watch-notification>. Watches are defined in <watch> elements, and notifications are
defined in elements named for each of the types of notification, for example
<jms-notification>, <jmx-notification>, <smtp-notification>, and <image-notification>.

Example 9—1 A Skeleton Watch and Notification Configuration (in DIAG_MODULE.xml)

<wldf-resource>

<le- ———- Other system resource configuration elements ----- -- >
<watch-notification>
<log-watch-severity>

<!-- Threshold severity for a log watch to be evaluated further
(This can be narrowed further at the watch level.) -->
</log-watch-severity>
<lem —m——- Watch configuration elements: ----- -- >
<watch>
<!-- A watch rule -->
</watch>
<watch>
<!-- A watch rule -->
</watch>
<!-- Any other watch configurations -->
<l== === Notification configuration elements: ----- -- >
<!-- The following notification configuration elements show one of each

type of supported notifications. However, not all types are
required in any one system resource configuration, and multiples

of any type are permitted. -->
<jms-notification>
<!-- Configuration for a JMS-based notification; requires a

corresponding JMS configuration via a jms-server element and a
jms-system-resource element -->
</jms-notification>

<jmx-notification>
<!-- Configuration for a JMX-based notification -->
</jmx-notification>
<smtp-notification>
<!-- Configuration for an SMTP-based notification; requires a
corresponding SMTP configuration via a mail-session element -->
</smtp-notification>
<snmp-notification>
<!-- Configuration for an SNMP-based notification; requires a
corresponding SNMP agent configuration via an snmp-agent
element -->
</snmp-notification>
<image-notification>
<!-- Configuration for an image-based notification -->
</image-notification>
<watch-notification>
<l-- === Other configuration elements ----- -- >

9-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Sample Watch and Notification Configuration

</wldf-resource>

Note: While the notification media must be configured so they can
be used by the notifications that depend on them, those configurations
are not part of the configuration of the diagnostic module itself. That
is, they are not configured in the <wldf-resource> element in the
diagnostic module's configuration file.

Each watch and notification can be individually enabled and disabled by setting
<enabled>true</enabled> or <enabled>false</enabled> for the individual watch
and/or notification. In addition, the entire watch and notification facility can be
enabled and disabled by setting <enabled>true</enabled> or
<enabled>false</enabled> for all watches and notifications. The default value is
<enabled>true</enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which
affects how notifications are triggered by log-rule watches.

If the maximum severity level of the log messages that triggered the watch do not at
least equal the provided severity level, then the resulting notifications are not fired.
Note that this only applies to notifications fired by watches which have log rule types.
Do not confuse this element with the <severity> element defined on watches. The
<severity> element assigns a severity to the watch itself, whereas the
<log-watch-severity> element controls which notifications are triggered by log-rule
watches.

For information about how to configure watches and notifications using the
Administration Console, see "Configure Watches and Notifications" in Oracle WebLogic
Server Administration Console Online Help.

9.3 Sample Watch and Notification Configuration

A complete configuration for a set of watches and notifications in a diagnostic module
is shown in Example 9-2. The details of this example are explained in the following
topics:

s Chapter 10, "Configuring Watches"
s Chapter 11, "Configuring Notifications"

Example 9-2 Sample Watch and Notification Configuration (in DIAG_MODULE.xml)

<?xml version='1.0"' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>

<!-- Instrumentation must be configured and enabled for instrumentation
watches -->
<instrumentation>

<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>DyeInjection</name>
<description>Dye Injection monitor</description>
<dye-mask xsi:nil="true"></dye-mask>

Configuring Watches and Notifications 9-3

Sample Watch and Notification Configuration

<properties>ADDR1=127.0.0.1</properties>
</wldf-instrumentation-monitor>
</instrumentation>

<!-- Harvesting does not have to be configured and enabled for harvester
watches. However, configuring the Harvester can provide advantages;
for example the data will be archived. -->

<harvester>

<name>mywldfl</name>
<sample-period>20000</sample-period>
<harvested-type>
<name>weblogic.management.runtime.ServerRuntimeMBean</name>
</harvested-type>
<harvested-type>
<name>weblogic.management . runtime.WLDFHarvesterRuntimeMBean</name>
</harvested-type>
</harvester>
<!-- All watches and notifications are defined under the
watch-notification element -->
<watch-notification>
<enabled>true</enabled>
<log-watch-severity>Info</log-watch-severity>
<!-- A harvester watch configuration -->
<watch>
<name>myWatch</name>
<enabled>true</enabled>
<rule-type>Harvester</rule-type>

<rule-expression>${com.bea:Name=myserver, Type=ServerRuntime//SocketsOpenedTotalCou
nt} >= 1l</rule-expression>

<alarm-type>AutomaticReset</alarm-type>
<alarm-reset-period>60000</alarm-reset-period>
<notification>myMailNotif, myJMXNotif, mySNMPNotif</notification>

</watch>

<!-- An instrumentation watch configuration -->

<watch>
<name>myWatch2</name>
<enabled>true</enabled>
<rule-type>EventData</rule-type>
<rule-expression>
(MONITOR LIKE 'JDBC_After_Execute') AND
(DOMAIN = 'MedRecDomain') AND
(SERVER = 'medrec-adminServer') AND
((TYPE = 'ThreadDumpAction') OR (TYPE = TraceElapsedTimeAction')) AND
(SCOPE = 'MedRecEAR')
</rule-expression>
<notification>JMxXNotifInstr</notification>

</watch>

<!-- A log watch configuration -->

<watch>
<name>myLogWatch</name>
<rule-type>Log</rule-type>
<rule-expression>MSGID="'BEA-000360'</rule-expression>
<severity>Info</severity>
<notification>myMailNotif2</notification>

</watch>

<!-- A JMX notification -->

<jmx-notification>
<name>myJMXNotif</name>

</jmx-notification>

<!-- Two SMTP notifications -->

9-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Sample Watch and Notification Configuration

<smtp-notification>
<name>myMailNotif</name>
<enabled>true</enabled>
<mail-session-jndi-name>myMailSession</mail-session-jndi-name>
<subject>This is a harvester alert</subject>
<recipient>username@emailservice.com</recipient>

</smtp-notification>

<smtp-notification>
<name>myMailNotif2</name>
<enabled>true</enabled>
<mail-session-jndi-name>myMailSession</mail-session-jndi-name>
<subject>This is a log alert</subject>
<recipient>username@emailservice.com</recipient>

</smtp-notification>

<!-- An SNMP notification -->

<snmp-notification>
<name>mySNMPNotif</name>
<enabled>true</enabled>

</snmp-notification>

</watch-notification>
</wldf-resource>

Configuring Watches and Notifications 9-5

Sample Watch and Notification Configuration

9-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

10

Configuring Watches

This chapter describes the types of watches available in the WebLogic Diagnostics
Framework (WLDF) and their configuration options

This chapter includes the following sections:

s Types of Watches

= Configuration Options Shared by All Types of Watches
s Configuring Harvester Watches

s Configuring Log Watches

» Configuring Instrumentation Watches

s Defining Watch Rule Expressions

For information about how to create a watch using the Administration Console, see
"Create watches for a diagnostic system module" in Oracle WebLogic Server
Administration Console Online Help.

10.1 Types of Watches
WLDF provides three main types of watches, based on what the watch can monitor:

s Harvester watches monitor the set of harvestable MBeans in the local run-time
MBean server.

= Log watches monitor the set of messages generated into the server log.

s Instrumentation (or Event Data) watches monitor the set of events generated by
the WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of
watch is defined in a <rule-type> element, which is a child of <watch>. For example:

<watch>
<rule-type>Harvester</rule-type>
<!-- Other configuration elements -->
</watch>
Watches with different rule types differ in two ways:

s The rule syntax for specifying the conditions being monitored are unique to the
type.

» Log and Instrumentation watches are triggered in real time, whereas Harvester
watches are triggered only after the current harvest cycle completes.

Configuring Watches 10-1

Configuration Options Shared by All Types of Watches

10.2 Configuration Options Shared by All Types of Watches
All watches share certain configuration options:
= Watch rule expression

In the diagnostic module configuration file, watch rule expressions are defined in
<rule-expression> elements.

A watch rule expression is a logical expression that specifies what significant
events the watch is to trap. For information about the query language you use to
define watch rules, including the syntax available for each type of watch rule, see
Appendix A, "WLDF Query Language."

= Notifications associated with the watch

In the diagnostic module configuration file, notifications are defined in
<notification> elements.

Each watch can be associated with one or more notifications that are triggered
whenever the watch evaluates to true. The content of this element is a
comma-separated list of notifications. For information about configuring
notifications, see Chapter 11, "Configuring Notifications."

= Alarm options

In the diagnostic module configuration file, alarm options are set using
<alarm-type> and <alarm-reset-period> elements.

Watches can be specified to trigger repeatedly, or to trigger once, when a condition
is met. For watches that trigger repeatedly, you can optionally define a minimum
time between occurrences. The <alarm-type> element defines whether a watch
automatically repeats, and, if so, how often. A value of none causes the watch to
trigger whenever possible. A value of AutomaticReset also causes the watch to
trigger whenever possible, except that subsequent occurrences cannot occur any
sooner than the millisecond interval specified in the <alarm-reset-period>. A value
of ManualReset causes the watch to fire a single time. After it fires, you must
manually reset it to fire again. For example, you can use the
WatchNotificationRuntimeMBean to reset a manual watch. The default for
<alarm-type> is None.

= Severity options

Watches contain a severity value which is passed through to the recipients of
notifications. The permissible severity values are as defined in the logging
subsystem. The severity value is specified using sub-element <severity>. The
default is Notice.

= Enabled options

Each watch can be individually enabled and disabled, using the sub-element
<enabled>. When disabled, the watch does not trigger and corresponding
notifications do not fire. If the more generic watch/notification flag is disabled, it
causes all individual watches to be effectively disabled (that is, the value of this
flag on a specific watch is ignored).

10.3 Configuring Harvester Watches

A Harvester watch can monitor any run-time MBean in the local run-time MBean
server.

10-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Harvester Watches

Note: If you define a watch rule to monitor an MBean (or MBean
attributes) that the Harvester is not configured to harvest, the watch
will work. The Harvester will "implicitly" harvest values to satisfy the
requirements set in the defined watch rules. However, data harvested
in this way (that is, implicitly for a watch) will not be archived. See
Chapter 8, "Configuring the Harvester for Metric Collection,"” for more
information about the Harvester.

Harvester watches are triggered in response to a harvest cycle. So, for Harvester
watches, the Harvester sample period defines a time interval between when a
situation is identified and when it can be reported though a notification. On average,
the delay is SamplePeriod /2.

Example 10-1, shows a configuration example of a Harvester watch that monitors
several run-time MBeans. When the watch rule (defined in the <rule-expression>
element) evaluates to true, six different notifications are sent: a JMX notification, an
SMTP notification, an SNMP notification, an image notification, and JMS notifications
for both a topic and a queue.

The watch rule is a logical expression composed of four Harvester variables. The rule
has the form:

((A >= 100) AND (B > 0)) OR C OR D.equals("active")

Each variable is of the form:
{entityName}//{attributeName}
where {entityName} is the JMX ObjectName as registered in the run-time MBean

server or the type name as defined by the Harvester, and where {attributeName} is the
name of an attribute defined on that MBean type.

Note: The comparison operators are qualified in order to be valid in
XML.

Example 10-1 Sample Harvester Watch Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>

<harvester>

<!-- Harvesting does not have to be configured and enabled for harvester
watches. However, configuring the Harvester can provide advantages;
for example the data will be archived. -->

<harvested-type>
<name>myMBeans .MySimpleStandard</name>
<harvested-instance>myCustomDomain : Name=myCustomMBeanl
</harvested-instance>
<harvested-instance>myCustomDomain : Name=myCustomMBean?2
</harvested-instance>
</harvested-type>
<!-- Other Harvester configuration elements -->
</harvester>
<watch-notification>

Configuring Watches 10-3

Configuring Log Watches

<watch>
<name>simpleWeblLogicMBeanWatchRepeatingAfteriWait</name>
<enabled>true</enabled>
<rule-type>Harvester</rule-type>
<rule-expression>
(${mydomain:Name=WLDFHarvesterRuntime, ServerRuntime=myserver, Type=
WLDFHarvesterRuntime, WL.DFRunt ime=WLDFRuntime//TotalSamplingTime}
>= 100
AND
S {mydomain:Name=myserver, Type=
ServerRuntime//OpenSocketsCurrentCount} > 0)
OR
${mydomain:Name=WLDFWatchNotificationRuntime, ServerRuntime=
myserver, Type=WLDFWatchNotificationRuntime,
WLDFRuntime=WLDFRuntime//Enabled} = true
OR
$ {myCustomDomain:Name=myCustomMBean3//State} =
'active')
</rule-expression>
<severity>Warning</severity>
<alarm-type>AutomaticReset</alarm-type>
<alarm-reset-period>10000</alarm-reset-period>
<notification>myJMxNotif, myImageNotif,
myJMSTopicNotif, mydMSQueueNotif, mySNMPNotif,
mySMTPNotif</notification>
</watch>
<!-- Other watch-notification configuration elements -->
</watch-notification>
</wldf-resource>

This watch uses an alarm type of AutomaticReset, which means that it may be
triggered repeatedly, provided that the last time it was triggered was longer than the
interval set as the alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the watch, but
will be passed on through the notifications.

10.4 Configuring Log Watches

Use Log watches to monitor the occurrence of specific messages and/or strings in the
server log. Watches of this type are triggered as a result of a log message containing
the specified data being issued.

An example configuration for a log watch is shown in Example 10-2.

Example 10-2 Sample Configuration for a Log Watch (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>
<watch-notification>
<enabled>true</enabled>
<log-watch-severity>Info</log-watch-severity>
<watch>
<name>myLogWatch</name>
<rule-type>Log</rule-type>
<rule-expression>MSGID="BEA-000360'</rule-expression>

10-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Defining Watch Rule Expressions

<severity>Info</severity>
<notification>myMailNotif2</notification>

</watch>

<smtp-notification>
<name>myMailNotif2</name>
<enabled>true</enabled>
<mail-session-jndi-name>myMailSession</mail-session-jndi-name>
<subject>This is a log alert</subject>
<recipient>username@emailservice.com</recipient>

</smtp-notification>

</watch-notification>
</wldf-resource>

10.5 Configuring Instrumentation Watches

You use Instrumentation watches to monitor the events from the WLDF
Instrumentation component. Watches of this type are triggered as a result of the event
being posted.

Example 10-3 shows an example configuration for an Instrumentation watch.

Example 10-3 Sample Configuration for an Instrumentation Watch (in DIAG_
MODULE.xml)

<watch-notification>
<watch>
<name>myInstWatch</name>
<enabled>true</enabled>
<rule-type>EventData</rule-type>
<rule-expression>
(PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
</rule-expression>
<alarm-type xsi:nil="true"></alarm-type>
<notification>mySMTPNotification</notification>
</watch>
<smtp-notification>
<name>mySMTPNotification</name>
<enabled>true</enabled>
<mail-session-jndi-name>myMailSession</mail-session-jndi-name>
<subject xsi:nil="true"></subject>
<body xsi:nil="true"></body>
<recipient>username@emailservice.com</recipient>
</smtp-notification>
</watch-notification>

10.6 Defining Watch Rule Expressions

A watch rule expression encapsulates all information necessary for specifying a rule.
For documentation on the query language you use to define watch rules, see
Appendix A, "WLDF Query Language."

Configuring Watches 10-5

Defining Watch Rule Expressions

10-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

11

Configuring Notifications

This chapter describes the types of notifications available in the WebLogic Diagnostics
Framework (WLDF) and their configuration options.

This chapter includes the following sections:
= Types of Notifications

s Configuring JMX Notifications

s Configuring JMS Notifications

s Configuring SNMP Notifications

s Configuring SMTP Notifications

s Configuring Image Notifications

For information about how to create a notification using the Administration Console,
see "Create notifications for watches in a diagnostic system module" in Oracle WebLogic
Server Administration Console Online Help.

11.1 Types of Notifications

A notification is an action that is triggered when a watch rule evaluates to true. WLDF
supports four types of diagnostic notifications, based on the delivery mechanism: Java
Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), and Simple Network Management Protocol (SNMP). You can also
create a notification that generates a diagnostic image.

In the configuration file for a diagnostic module, the different types of notifications are
identified by these elements:

= <jmx-notification>

= <jms-notification>

= <snmp-notification>
= <smtp-notification>
= <image-notification>

These notification types all have <name> and <enabled> configuration options. The
value of <name> is used as the value in a <notification> element for a watch, to map
the watch to its corresponding notification(s). The <enabled> element, when set to
true, enables that notification. In other words, the notification is fired when an
associated watch evaluates to true. Other than <name> and <enabled>, each
notification type is unique.

Configuring Notifications 11-1

Configuring JMX Notifications

Note: To define notifications programmatically, use
weblogic.diagnostics.watch.WatchNotification.

11.2 Configuring JMX Notifications

For each defined JMX notification, WLDF issues JMX events (notifications) whenever
an associated watch is triggered. Applications can register a notification listener with
the server's WLDFWatchJMXNotificationRuntimeMBeans to receive all notifications
and filter the provided output. You can also specify a JMX "notification type" string
that a JMX client can use as a filter.

Example 11-1 shows an example of a JMX notification configuration.

Example 11-1 Example Configuration for a JMX Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>
<watch-notification>
<!-- One or more watch configurations -->
<jmx-notification>
<name>myJMXNotif</name>
<enabled>true</enabled>
</jmx-notification>
<!-- Other notification configurations -->
</watch-notification>
</wldf-resource>

Here is an example of a JMX notification:

Notification name: myjmx called. Count= 42.

Watch severity: Notice

Watch time: Jul 19, 2005 3:40:38 PM EDT

Watch ServerName: myserver

Watch RuleType: Harvester

Watch Rule:

S${com.bea:Name=myserver, Type=ServerRuntime//OpenSocketsCurrentCount} > 1
Watch Name: mywatch

Watch DomainName: mydomain

Watch AlarmType: None

Watch AlarmResetPeriod: 10000

11.3 Configuring JMS Notifications

JMS notifications are used to post messages to JMS topics and/or queues in response
to the triggering of an associated watch. In the system resource configuration file, the
elements <destination-jndi-name> and <connection-factory-jndi-name> define how
the message is to be delivered.

Example 11-2 shows two JMS notifications that cause J]MS messages to be sent through
the provided topics and queues using the specified connection factory. For this to work
properly, JMS must be properly configured in the config.xml configuration file for the
domain, and the JMS resource must be targeted to this server.

11-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring SNMP Notifications

Example 11-2 Example JMS Notifications

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>
<watch-notification>
<!-- One or more watch configurations -->
<jms-notification>
<name>myJMSTopicNotif</name>
<destination-jndi-name>MyJMSTopic</destination-jndi-name>
<connection-factory-jndi-name>weblogic.jms.ConnectionFactory
</connection-factory-jndi-name>
</jms-notification>
<jms-notification>
<name>myJMSQueueNotif</name>
<destination-jndi-name>MyJMSQueue</destination-jndi-name>
<connection-factory-jndi-name>weblogic.jms.ConnectionFactory
</connection-factory-jndi-name>
</jms-notification>
<!-- Other notification configurations -->
</watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

11.4 Configuring SNMP Notifications

Simple Network Management Protocol (SNMP) notifications are used to post SNMP
traps in response to the triggering of an associated watch. To define an SNMP
notification you only have to provide a notification name, as shown in Example 11-3.
Generated traps contain the names of both the watch and notification that caused the
trap to be generated. For an SNMP trap to work properly, SNMP must be properly
configured in the config.xml configuration file for the domain.

Example 11-3 An Example Configuration for an SNMP Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>
<watch-notification>
<!-- One or more watch configurations -->
<snmp-notification>
<name>mySNMPNotif</name>
</snmp-notification>
<!-- Other notification configurations -->
</watch-notification>
</wldf-resource>

The trap resulting from the SNMP notification configuration shown in Example 11-3 is
of type 85. It contains the following values (configured values are shown in angle
brackets "<>"):

.1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM EST
.1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")

Configuring Notifications 11-3

Configuring SMTP Notifications

.6.1.4.1.140.625.100.10 serverName (e.g. myserver)
.1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)

.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.

simpleWebLogicMBeanWatchRepeatingAfterWait)

.1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)
.1.3.6.1.4.1.140.625.100.115 <rule-expression>
.1.3.6.1.4.1.140.625.100.125 values which caused rule to

fire (e.g..State =

null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.

TotalSamplingTime = 886, .Enabled =

null,weblogic.management.runtime.ServerRuntimeMBean.
OpenSocketsCurrentCount = 1,)
.1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)
.1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)
.1.3.6.1.4.1.140.625.100.140 <name> [of notification]
(e.g.mySNMPNotif)

11.5 Configuring SMTP Notifications

Simple Mail Transfer Protocol (SMTP) notifications are used to send messages (e-mail)
over the SMTP protocol in response to the triggering of an associated watch. To define
an SMTP notification, first configure the SMTP session. That configuration is persisted
in the config.xml configuration file for the domain. In DTAG_MODULE.xml, you provide
the configured SMTP session using sub-element <mail-session-jndi-name>, and
provide a list of at least one recipient using sub-element <recipients>. An optional
subject and/or body can be provided using sub-elements <subject> and <body>
respectively. If these are not provided, they will be defaulted.

Example 11-4 shows an SMTP notification that causes an SMTP (e-mail) message to be
distributed through the configured SMTP session, to the configured recipients. In this
notification configuration, a custom subject and body are provided. If a subject and /or
a body are not specified, defaults are provided, showing details of the watch and
notification.

Example 11-4 Sample Configuration for SMTP Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>
<watch-notification>
<!-- One or more watch configurations -->
<smtp-notification>
<name>mySMTPNotif</name>
<mail-session-jndi-name>MyMailSession</mail-session-jndi-name>
<subject>Critical Problem!</subject>
<body>A system issue occurred. Call Winston ASAP.
Reference number 81767366662AG-USA23.</body>
<recipients>administrator@myCompany.com</recipients>
</smtp-notification>
<!-- Other notification configurations -->
</watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

11-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Image Notifications

11.6 Configuring Image Notifications

An image notification causes a diagnostic image to be generated in response to the
triggering of an associated watch. You can configure two options for image
notifications: a directory and a lockout period.

The directory name indicates where images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be
generated after the last one. This is useful for limiting the number of images that will
be generated when there is a sequence of server failures and recoveries

You can specify the directory name relative to the DOMAIN_HOME\servers\SERVER_NAME.
The default directory is DOMAIN_HOME\servers\SERVER_
NAME\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example,
diagnostic_image_myserver_2005_08_09_13_40_34.zip), so a notification can fire
many times, resulting in a separate image file each time.

The configuration is persisted in the DIAG_MODULE. xml configuration file. Example 11-5
shows an image notification configuration that specifies that the lockout time will be
two minutes and that the image will be generated to the DOMATN_
HOME\servers\SERVER_NAME\images directory.

Example 11-5 Sample Configuration for Image Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<name>mywldfl</name>
<watch-notification>
<!-- One or more watch configurations -->
<image-notification>
<name>myImageNotif</name>
<enabled>true</enabled>
<image-lockout>2</image-lockout>
<image-directory>images</image-directory>
</image-notification>
<!-- Other notification configurations -->
</watch-notification>
</wldf-resource>

For more information about Diagnostic Images, see Chapter 6, "Configuring and
Capturing Diagnostic Images."

Configuring Notifications 11-5

Configuring Image Notifications

11-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

12

Configuring Instrumentation

This chapter describes the Instrumentation component of the WebLogic Diagnostics
Framework (WLDF) that provides a mechanism for adding diagnostic code to
WebLogic Server instances and the applications running on them. The key features
provided by WLDF Instrumentation are:

Diagnostic monitors. A diagnostic monitor is a dynamically manageable unit of
diagnostic code that is inserted into server or application code at specific locations.
You define monitors by scope (system or application) and type (standard,
delegating, or custom).

Diagnostic actions. A diagnostic action is the action a monitor takes when it is
triggered during program execution.

Diagnostic context. A diagnostic context is contextual information, such as unique
request identifier and flags that indicate the presence of certain request properties
such as originating IP address or user identity. The diagnostic context provides a
means for tracking program execution and for controlling when monitors trigger
their diagnostic actions. See Chapter 13, "Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts."

WLDF provides a library of predefined diagnostic monitors and actions. You can also
create application-scoped custom monitors in which you control the locations in the
application where diagnostic code is inserted.

This chapter includes the following sections:

Concepts and Terminology

Instrumentation Configuration Files

XML Elements Used for Instrumentation
Configuring Server-Scoped Instrumentation
Configuring Application-Scoped Instrumentation

Creating Request Performance Data

12.1 Concepts and Terminology

This section introduces instrumentation concepts and terminology. The following
topics are included:

Section 12.1.1, "Instrumentation Scope"
Section 12.1.2, "Configuration and Deployment"

Section 12.1.3, "Joinpoints, Pointcuts, and Diagnostic Locations"

Configuring Instrumentation 12-1

Concepts and Terminology

= Section 12.1.4, "Diagnostic Monitor Types"

= Section 12.1.5, "Diagnostic Actions"

12.1.1 Instrumentation Scope

You can provide instrumentation services at the system level (servers and clusters) and
at the application level. Many concepts, services, configuration options, and
implementation features are the same for both levels. However, there are differences,
which are discussed throughout this document. The term server-scoped
instrumentation refers to instrumentation configuration and features specific to
WebLogic Server instances and clusters. By contrast, application-scoped
instrumentation refers to configuration and features specific to applications deployed
on WebLogic Server instances. The scope is built in to each diagnostic monitor; you
cannot modify a monitor’s scope.

12.1.2 Configuration and Deployment

Server-scoped instrumentation for a server or cluster is configured and deployed as
part of a diagnostic module, an XML configuration file located in the DOMAIN_
HOME/config/diagnostics directory, and linked from config.xml.

Application-scoped instrumentation is also configured and deployed as a diagnostics
module, in this case an XML configuration file named weblogic-diagnostics.xml,
which is packaged with the application archive in the ARCHIVE_PATH/META-INF
directory for the deployed application.

12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations

Instrumentation code is inserted (or woven) into server and application code at precise
locations. The following terms are used to describe these locations:

= A joinpoint is a specific location in a class; for example, the entry point, or exit
point, or both, of a method or a call site within a method.

= A pointcut is an expression that specifies a set of joinpoints, for example all
methods related to scheduling, starting, and executing work items. The XML
element that specifies a pointcut is <pointcut>. Pointcuts are described in
Section 12.5.4.1, "Defining Pointcuts for Custom Monitors."

= A diagnostic location is the position relative to a joinpoint where the diagnostic
activity will take place. Diagnostic locations are Before, After, and Around. The
XML element that identifies a diagnostic location is <location-type>.

12.1.4 Diagnostic Monitor Types

A diagnostic monitor is categorized by its scope and its type. The scope is either
server-scoped or application-scoped. The type is determined by the monitor’s
pointcut, diagnostic location, and actions. For example, Servlet_Around_Service is an
application-scoped delegating monitor that can be used to trigger diagnostic actions at
the entry to and exit from specific servlet and JSP methods.

There are three types of diagnostic monitors:

= A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are
hard-coded in the monitor. You can enable or disable the monitor, but you cannot
modify its behavior.

12-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Concepts and Terminology

The only standard server-scoped monitor is the Dyelnjection monitor, which you
can use to create diagnostic context and to configure dye injection at the server
level. For more information, see Chapter 13, "Configuring the Dyelnjection
Monitor to Manage Diagnostic Contexts."

The only standard application-scoped monitor is HttpSessionDebug, which you
can use to inspect an HTTP Session object.

A delegating monitor has its scope, pointcuts, and locations hard-coded in the
monitor, but you select the actions that the monitor performs. That is, the monitor
delegates its actions to the ones you select. Delegating monitors are either
server-scoped or application-scoped.

A delegating monitor by itself is incomplete. To have a delegating monitor
perform useful work, you must assign at least one action to it.

Not all actions are compatible with all monitors. When you configure a delegating
monitor from the Administration Console, you can choose only those actions that
are appropriate for the selected monitor. If you configure a delegating monitor
using WLST or by editing a descriptor file manually, you must make sure that the
actions are compatible with that monitor. WLDF validates a delegating monitor
when its XML configuration file is loaded at deployment time.

See Appendix B, "WLDF Instrumentation Library," for a list of the delegating
monitors and actions provided by the WLDF Instrumentation Library.

A custom monitor is a special case of delegating monitor that:
- Isavailable only for application-scoped instrumentation
— Does not have a predefined pointcut or location

To configure a custom monitor, you assign it a name, define the pointcut and the
diagnostics location that the monitor uses, and assign actions from the set of
predefined diagnostic actions. The <pointcut> and <location type> elements are
mandatory for a custom monitor.

Table 12-1 summarizes the differences among the types of monitors.

Table 12-1 Diagnostic Monitor Types

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor ~ Server or Fixed Fixed Configurable
Application

Custom monitor Application Configurable Configurable Configurable

You can restrict when a diagnostic action is triggered by setting a dye mask on a
monitor. This mask determines the dye flags in the diagnostic context that trigger
actions. See Section 12.3.2, "<wldf-instrumentation-monitor> XML Elements," for
information about setting a dye mask for a monitor.

Note: Diagnostic context, dye injection, and dye filtering are
described in Chapter 13, "Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts."

Configuring Instrumentation 12-3

Instrumentation Configuration Files

12.1.5 Diagnostic Actions

Diagnostic actions execute diagnostic code that is appropriate for the associated
delegating or custom monitor (standard monitors have predefined actions). For a
delegating or custom monitor to perform any useful work, you must configure at least
one action for that monitor.

The WLDF diagnostics library provides the following actions, which you can attach to
a monitor by including the action’s name in an <action> element of the DIAG_
MODULE.xml configuration file:

= DisplayArgumentsAction

s MethodInvocationStatisticsAction

= MethodMemoryAllocationStatistics Action
s StackDumpAction

s ThreadDumpAction

s TraceAction

» TraceElapsedTimeAction

s TraceMemoryAllocationAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime
action is compatible with a delegating or custom monitor whose diagnostic location
type is Around. See Appendix B, "WLDF Instrumentation Library," for more
information.

12.2 Instrumentation Configuration Files

Instrumentation is configured as part of a diagnostics descriptor, which is an XML
configuration file whose name and location depend on whether you are implementing
system-level (server-scoped) or application-level (application-scoped) instrumentation,
as follows:

= System-level instrumentation configuration is stored in one or more diagnostics
descriptors in the following directory:

DOMAIN_HOME/config/diagnostics
This directory can contain multiple system-level diagnostic descriptor files. File
names are arbitrary but must be terminated with .xml; for example, myDiag.xml.

Each file can contain configuration information for one or more of the following
deployable diagnostic components:

— Harvester
— Instrumentation
— Watch and Notification

The configuration of one or more diagnostic monitors can be defined in an
<instrumentation> section in the descriptor file. Server-scoped instrumentation
can be enabled, disabled, and reconfigured without restarting the server.

Only one WLDF system resource (and hence one system-level diagnostics
descriptor file) can be active for a server or cluster at any given time. The active
descriptor is linked to and targeted from the following configuration file:

DOMAIN_HOME/config/config.xml

12-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

XML Elements Used for Instrumentation

For more information about configuring diagnostic system modules, see

Section 5.6, "Configuring Diagnostic System Modules." For general information
about the creation, content, and parsing of configuration files in WebLogic Server,
see Understanding Domain Configuration for Oracle WebLogic Server.

= Application-level instrumentation configuration is packaged within an
application's archive in the following location:

META-INF/weblogic-diagnostics.xml
Because instrumentation is the only diagnostics component that is deployable to

applications, this descriptor can contain only instrumentation configuration
information.

Note: For instrumentation to be available for an application,
instrumentation must be enabled on the server to which the
application is deployed. (Server-scoped instrumentation is enabled
and disabled in the <instrumentation> element of the diagnostics
descriptor for the server.

You can enable and disable diagnostic monitors without redeploying an
application. However, you may need to redeploy the application after modifying
other instrumentation features; for example, defining pointcuts or adding or
removing monitors. Whether you need to redeploy depends on how you configure
the instrumentation and how you deploy the application. There are three options:

— Define and change the instrumentation configuration for the application
directly, without using a JSR-88 deployment plan

— Configure and deploy the application using a deployment plan that has
placeholders for instrumentation settings

— Enable the HotSwap feature when starting the server, and deploy using a
deployment plan that has placeholders for instrumentation settings

For more information about these choices, see Section 15.2, "Using Deployment
Plans to Dynamically Control Instrumentation Configuration."

For more information about deploying and modifying diagnostic application
modules, see Chapter 15, "Deploying WLDF Application Modules."

The diagnostics XML schema is located at:

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnos
tics.xsd

Each diagnostics descriptor file must begin with the following lines:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

For an overview of WLDF resource configuration, see Chapter 5, "Understanding
WLDF Configuration."

12.3 XML Elements Used for Instrumentation

This section provides descriptor fragments and tables that summarize information
about the XML elements used to configure instrumentation and diagnostic monitors.

Configuring Instrumentation 12-5

XML Elements Used for Instrumentation

s Section 12.3.1, "<Instrumentation> XML Elements," describes the top-level
elements used within an <instrumentation> element.

s Section 12.3.2, "<wldf-instrumentation-monitor> XML Elements," describes the
elements used within a <wldf-instrumentation-monitor> element.

= Section 12.3.3, "Mapping <wldf-instrumentation-monitor> XML Elements to
Monitor Types," identifies the instrumentation elements that apply to each
monitor.

12.3.1 <Instrumentation> XML Elements

Table 12-2 describes the <instrumentation> elements in the DIAG_MODULE. xm1 file. The
following configuration fragment illustrates the use of those elements:

<wldf-resource>
<name>MyDiagnosticModule</name>
<instrumentation>
<enabled>true</enabled>
<!-- The following <include> element would apply only to an
application-scoped Instrumentation descriptor -->
<include>foo.bar.com. *</include>

<!-- <wldf-instrumentation-monitor> elements to define diagnostic
monitors for this diagnostic module -->
</instrumentation>
<!-- Other elements to configure this diagnostic module -->

</wldf-resource>

Table 12-2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration

File

Element Description

<instrumentation> The element that begins an instrumentation configuration.
<enabled> If true, instrumentation is enabled. If false, no instrumented code is

inserted in classes in this instrumentation scope, and all diagnostic
monitors within this scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable
instrumentation for the server and for any applications deployed to
it. You must further enable instrumentation at the application level
to enable instrumentation for the application (that is, in addition to
enabling the server-scoped instrumentation).

12-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

XML Elements Used for Instrumentation

Table 12-2 (Cont.) <instrumentation> XML Elements in the DIAG_MODULE.xml
Configuration File

Element Description

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are supported. You
can specify multiple <include> elements. If specified, a class must
satisfy an <include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied to the application scope
as a whole.

Note: You can also specify <include> and <exclude> patterns for
specific diagnostic monitors. See the entries for <include> and
<exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating monitor
from the library has its own predefined classes and pointcuts. A
custom monitor specifies its own pointcut expression. Therefore, a
class can pass the include/exclude checks and still not be
instrumented.

Note: Instrumentation is inserted in applications at class load time. A
large application that is loaded often may benefit from a judicious
use of <include> elements, <exclude> elements, or both. You can
probably ignore these elements for small applications or for
medium-to-large applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are supported.
You can specify multiple <exclude> elements. If specified, classes
satisfying an <exclude> pattern are not instrumented.

Applies only to application-scoped instrumentation. See the
preceding description of the <include> element.

12.3.2 <wldf-instrumentation-monitor> XML Elements

Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which
are children of the <instrumentation> element in the following descriptor:

s The DIAG_MODULE.xml descriptor for server-scoped instrumentation

» The META-INF/weblogic-diagnostics.xml descriptor for application-scoped
instrumentation

The following fragment shows the configuration for a delegating monitor and a
custom monitor in an application. (You could modify this fragment for server-scoped
instrumentation by replacing the application-scoped monitors with server-scoped
monitors.)

<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>

<name>Servlet_Before_Service</name>
<enabled>true</enabled>
<dye-mask>USER1</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>
<action>TraceAction</action>

</wldf-instrumentation-monitor>

<wldf-instrumentation-monitor>

Configuring Instrumentation 12-7

XML Elements Used for Instrumentation

<name>MyCustomMonitor</name>
<enabled>true</enabled>
<action>TraceAction</action>
<location-type>before</location-type>

<pointcut>call(* com.foo.bar.* get*(...));</pointcut>
</wldf-instrumentation-monitor>
</instrumentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye
filtering. This will be useful only if instrumentation is enabled at the server level and
the Dyelnjection monitor is enabled and properly configured. See Chapter 13,
"Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts," for
information about configuring the Dyelnjection monitor.

Table 12-3 describes the <wldf-instrumentation-monitor> elements.

Table 12-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or
weblogic-diagnostics.xml file

Element Description

<wldf-instrumentation-monitor> The element that begins a diagnostic monitor
configuration.

<enabled> If true, the monitor is enabled. If false, the monitor is

disabled. You enable or disable each monitor separately.
The default value is true.

<name> The name of the monitor. For standard and delegating
monitors, use the names of the predefined monitors in
Appendix B, "WLDF Instrumentation Library," For
custom monitors, an arbitrary string that identifies the
monitor. The name for a custom monitor must be
unique; that is, it cannot duplicate the name of any
monitor in the library.

<description> An optional element describing the monitor.

<action> An optional element, which applies to delegating and
custom monitors. If you do not specify at least one
action, the monitor will not generate any information.
You can specify multiple <action> elements. An action
must be compatible with the monitor type. For the list
of predefined actions for use by delegating and custom
monitors, see Appendix B, "WLDF Instrumentation
Library."

<dye-filtering-enabled> An optional element. If true, dye filtering is enabled for
the monitor. If false, dye-filtering is disabled. The
default value is false.

In order to use dye filtering, the Dyelnjection monitor
must be configured appropriately at the server level.

<dye-mask> An optional element. If dye filtering is enabled, the dye
mask, when compared with the values in the diagnostic
context, determines whether actions are taken. See
Chapter 13, "Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts," for information about
dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye
flags.

Currently applies only to the Dyelnjection monitor.

12-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

XML Elements Used for Instrumentation

Table 12-3 (Cont.) <wlidf-instrumentation-monitor> XML Elements in the DIAG _
MODULE.xml or weblogic-diagnostics.xml file

Element

Description

<location-type>

An optional element, whose value is one of before, after,
or around. The location type determines when an action
is triggered at a pointcut: before the pointcut, after the
pointcut, or both before and after the pointcut.

Applies only to custom monitors; standard and
delegating monitors have predefined location types. A
custom monitor must define a location type and a
pointcut.

<pointcut>

An optional element. A pointcut element contains an
expression that defines joinpoints where diagnostic
code will be inserted.

Applies only to custom monitors; standard and
delegating monitors have predefined pointcuts. A
custom monitor must define a location type and a
pointcut.

Pointcut syntax is documented in Section 12.5.4.1,
"Defining Pointcuts for Custom Monitors."

<include>

An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are
supported. You can specify multiple <include>
elements. If specified, a class must satisfy an <include>
pattern for it to be instrumented.

Applies only to application-scoped instrumentation.
Any specified <include> or <exclude> patterns are
applied only to the monitor defined in the parent
<wldf-instrumentation-monitor> element.

Note: You can also specify <include> and <exclude>
patterns for an entire instrumented application scope.
See the entries for <include> and <exclude> in

Table 12-1.

As classes are loaded, they must pass an
include/exclude pattern check before any
instrumentation code is inserted. Even if a class passes
the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors
included in the configuration descriptor. An
application-scoped delegating monitor from the library
has its own predefined classes and pointcuts. A custom
monitor specifies its own pointcut expression. Therefore
a class can pass the include/exclude checks and still not
be instrumented.

Note: Instrumentation is inserted in applications at class
load time. A large application that is loaded often may
benefit from a judicious use of <include> and/or
<exclude> elements. You can probably ignore these
elements for small applications or for medium-to-large
applications that are loaded infrequently.

<exclude>

An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are
supported. You can specify multiple <exclude>
elements. If specified, classes satisfying an <exclude>
pattern are not instrumented.

Applies only to diagnostic monitors in
application-scoped instrumentation. See the <include>
description, above.

Configuring Instrumentation 12-9

Configuring Server-Scoped Instrumentation

Note the following additional information about the <dye-filtering-enabled> and
<dye-mask> elements:

s When a Dyelnjection monitor is enabled and configured for a server or a cluster,
you can use dye filtering in downstream delegating and custom monitors to
inspect the dyes injected into a request's diagnostic context by that Dyelnjection
monitor.

s The configuration of the Dyelnjection monitor determines which bits are set in the
64-bit dye vector associated with a diagnostic context. When the
<dye-filtering-enabled> attribute is enabled for a monitor, its diagnostic activity is
suppressed if the dye vector in a request's diagnostic context does not match the
monitor's configured dye mask. If the dye vector matches the dye mask (a bitwise
AND), the application can execute its diagnostic actions:

(dye_vector & dye_mask == dye_mask)
Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for
specific requests, without slowing down other requests. See Chapter 13, "Configuring

the Dyelnjection Monitor to Manage Diagnostic Contexts," for detailed information
about diagnostic contexts and dye vectors.

12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

Table 12—4 identifies the <wldf-instrumentation-monitor> elements that apply to each
monitor type. An X indicates that an element applies to the corresponding monitor;
N/ A indicates that it does not.

Table 12-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom
<wldf-instrumentation-monitor> X X X
<name> X X

<description> X X X
<enabled> X X X
<action> N/A X X
<dye-filtering-enabled> N/A X X
<dye-mask> N/A X X
<properties> x! N/A N/A
<location-type> N/A N/A X
<pointcut> N/A N/A X

! Currently used only by the Dyelnjection monitor to set name=value pairs for dye flags.

12.4 Configuring Server-Scoped Instrumentation

To enable instrumentation at the server level, and to configure server-scoped monitors,
perform the following steps:

1. Decide how many WLDF system resources you want to create.

You can have multiple DIAG_MODULE.xml diagnostic descriptor files in a domain. In
addition, for each server or cluster in a domain, you can deploy multiple
diagnostic descriptor files simultaneously. However, one reason for creating more
than one file is for flexibility. For example, you could have five diagnostic

12-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Server-Scoped Instrumentation

descriptor files in the DOMAIN HOME/config/diagnostics directory. Each file
contains a different instrumentation (and perhaps Harvester and Watch and
Notification) configuration. You then deploy the descriptor file that corresponds to
the particular monitors you want active.

2. Decide which server-scoped monitors you want to include in a configuration:

= If you plan to use dye filtering on a server, or on any applications deployed on
that server, configure the Dyelnjection monitor.

= If you plan to use one or more of the server-scoped delegating monitors,
decide which monitors to use and which actions to associate with each
monitor.

3. Create and configure the configuration file(s).

= If you use the Administration Console to create the DIAG_MODULE. xml file
(recommended), for delegating monitors the console displays only the actions
that are compatible with the monitor. If you create a configuration file with an
editor or with the WebLogic Scripting Tool (WLST), you must correctly match
actions to monitors.

= See the "Domain Configuration Files" in Understanding Domain Configuration
for Oracle WebLogic Server for information about configuring config.xml.

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you
can add and remove monitors and enable or disable monitors while the server is
running.

Example 12-1 contains a sample server-scoped instrumentation configuration file that
enables instrumentation and configures the Dyelnjection standard monitor and the
Connector_Before_Work delegating monitor. A single <instrumentation> element
contains all instrumentation configuration for the module. Each diagnostic monitor is
defined in a separate <wldf-instrumentation-monitor> element.

Example 12-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>DyeInjection</name>
<description>Inject USER1 and ADDR1 dyes</description>
<enabled>true</enabled>
<properties>USERl=weblogic
ADDR1=127.0.0.1</properties>
</wldf-instrumentation-monitor>
<wldf-instrumentation-monitor>
<name>Connector_Before_Work</name>
<enabled>true</enabled>
<action>TraceAction</action>
<dye-filtering-enabled>true</dye-filtering-enabled>
<dye-mask>USER1</dye-mask>
</wldf-instrumentation-monitor>
</instrumentation>
</wldf-resource>

Configuring Instrumentation 12-11

Configuring Application-Scoped Instrumentation

12.5 Configuring Application-Scoped Instrumentation

At the application level, WLDF instrumentation is configured as a deployable module,
which is then deployed as part of the application.

The following sections provide information you need to configure application-scoped
instrumentation:

Section 12.5.1, "Comparing System-Scoped to Application-Scoped
Instrumentation”

Section 12.5.2, "Overview of the Steps Required to Instrument an Application”
Section 12.5.3, "Creating a Descriptor File for a Delegating Monitor"

Section 12.5.4, "Creating a Descriptor File for a Custom Monitor"

Section 12.5.4.1, "Defining Pointcuts for Custom Monitors"

Section 12.5.4.2, "Annotation-based Pointcuts"

Note: Application classes and libraries that are put on the system
classpath are not instrumented. Application class instrumentation
works only on classes that are loaded by application classloaders. If
application classes are put on the system classpath, either deliberately
or inadvertently, they will be loaded by the system classloader. As a
result no deployment time weaving is performed on those classes.

12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation

Instrumenting an application is similar to instrumenting at the system level, but with
the following differences:

Applications can use standard, delegating, and custom monitors.

— The only server-scoped standard monitor is Dyelnjection. The only
application-scoped standard monitor is HttpSessionDebug. For more
information, see the entry for HttpSessionDebug in Section B.1, "Diagnostic
Monitor Library."

— Delegating monitors are either server-scoped or application-scoped.
Applications must use the application-scoped delegating monitors.

— All custom monitors are application-scoped.

The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server
on which the application is deployed. If server instrumentation is enabled at the
time of deployment, instrumentation will be available for the application. If
instrumentation is not enabled on the server at the time of deployment, enabling
instrumentation in an application will have no effect.

Application instrumentation is configured with a weblogic-diagnostics.xml
descriptor file. You create a META-INF/weblogic-diagnostics.xml file, configure
the instrumentation, and put the file in the application's archive. When the archive
is deployed, the instrumentation is automatically inserted when the application is
loaded.

You can use a deployment plan to dynamically update configuration elements
without redeploying the application. See Section 15.2, "Using Deployment Plans to
Dynamically Control Instrumentation Configuration."

12-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Application-Scoped Instrumentation

The XML descriptors for application-scoped instrumentation are defined in the same
way as for server-scoped instrumentation. You can configure instrumentation for an
application solely by using the delegating monitors and diagnostic actions available in
the WLDF Instrumentation Library. You can also create your own custom monitors;
however, the diagnostic actions that you attach to these monitors must be taken from
the WLDF Instrumentation Library.

Table 12-5 compares the function and scope of system and application diagnostic
modules.

Table 12-5 Comparing System and Application Modules

Add or Add or Enable/Disable
Remove Remove Modify Modify with Dye Filtering
Objects Objects with with JMX JSR-88 Modify with and Dye Mask
Module Type Dynamically Console Remotely (non-remote) Console Dynamically
System Yes Yes Yes No Yes Yes
Module (via JMX)
Application Yes, when Yes No Yes Yes Yes
Module HotSwap is ia ol
enabled (via plan)
No, when
HotSwap is not
enabled:
module must
be redeployed

12.5.2 Overview of the Steps Required to Instrument an Application

Note: As of WebLogic Server 10.3, you are not required to create a
weblogic-diagnostics.xml file in the application's META-INF
directory, as was the case in previous WebLogic Server releases.
However, you can still use this method to initially configure
diagnostic monitors for your application.

To implement a diagnostic monitor for an application, perform the following steps:

1. Make sure that instrumentation is enabled on the server. See Section 12.4,
"Configuring Server-Scoped Instrumentation."

2. Create a well formed META-INF/weblogic-diagnostics.xml descriptor file for the
application. If you want to add any monitors that will be automatically enabled
each time the application is deployed:

» Enable the <instrumentation> element: <enabled>true</enabled>.

= Add and enable at least one diagnostic monitor, with appropriate actions
attached to it. (A monitor will generate diagnostic events only if the monitor is
enabled and actions that generate events are attached to it.).

See Section 12.5.3, "Creating a Descriptor File for a Delegating Monitor," and
Section 12.5.4, "Creating a Descriptor File for a Custom Monitor," for samples of
well-formed descriptor files.

See Section 12.5.4.1, "Defining Pointcuts for Custom Monitors," for information
about creating a pointcut expression.

3. Put the descriptor file in the application archive.

Configuring Instrumentation 12-13

Configuring Application-Scoped Instrumentation

4. Deploy the application. See Chapter 15, "Deploying WLDF Application Modules."
Keep the following points in mind:

s The diagnostic monitors defined in weblogic-diagnostics.xml is listed on the
Deployments: <server_name>: Configuration: Instrumentation page of the
Administration Console.

s If the META-INF/weblogic-diagnostics.xml descriptor in the application archive
defines a monitor, it cannot be removed using the Administration Console.
However, it can be disabled or enabled using the Administration Console.

= You can add additional monitors from the Administration Console. Any monitors
you add from the Administration Console will not be persisted to
weblogic-diagnostics.xml; they will be saved in the application's deployment
plan. Any monitors that were added in this way can be deleted using the
Administration Console.

= Application classes and libraries that are put on the server’s classpath are not
instrumented. Application class instrumentation works only on classes that are
loaded by application classloaders.

If application classes are put on the system classpath, either deliberately or
inadvertently, they will be loaded by the system classloader. As a result no
deployment time weaving is performed on those classes.

12.5.3 Creating a Descriptor File for a Delegating Monitor

The following example shows a well-formed META-INF/weblogic-diagnostics.xml
descriptor file for an application-scoped delegating monitor. At a minimum, this file
must contain the lines shown in bold. In this example, there is only one monitor
defined (Servlet_Before_Service). However, you can define multiple monitors in the
descriptor file.

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>Servlet_Before_Service</name>
<enabled>true</enabled>
<dye-mask>USER1</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>
<action>TraceAction</action>
</wldf-instrumentation-monitor>
</instrumentation>
</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from the
WLDF monitor library. It is hard coded with a pointcut that sets joinpoints at method
entry for several servlet or JSP methods. Because the application enables dye filtering
and sets the USER1 flag in its dye mask, the TraceAction action will be invoked only
when the dye vector in the diagnostic context passed to the application also has its
USERLI flag set.

The dye vector is set at the system level via the Dyelnjection monitor as per the
Dyelnjection monitor configuration when the request enters the server. For example, if
the Dyelnjection monitor is configured with property USER1=weblogic and the

12-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Application-Scoped Instrumentation

request was originated by user weblogic, the USER1 dye flag in the dye vector will be
set.

Therefore, the Servlet_Before_Service monitor in this application is essentially
quiescent until it inspects a dye vector and finds the USER1 flag set. This filtering
reduces the amount of diagnostic data generated, and ensures that the generated data
is of interest to the administrator.

12.5.4 Creating a Descriptor File for a Custom Monitor

The following is an example of a well-formed META-INF/weblogic-diagnostics.xml
file for a custom monitor. At a minimum, the file must contain the lines shown in bold.

Example 12-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"

xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>MyCustomMonitor</name>
<enabled>true</enabled>
<action>TraceAction</action>
<location-type>before</location-type>

<pointcut>call(* com.foo.bar.* get* (...));</pointcut>
</wldf-instrumentation-monitor>
</instrumentation>

</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer.
Because this monitor is custom, it has no predefined locations when actions should be
invoked; the descriptor file must define the location type and pointcut expression. In
this example, the TraceAction action will be invoked before
(<location-type>before</location-type) any methods defined by the pointcut
expression is invoked. Table 12-6 shows how the pointcut expression from

Example 12-2 is parsed. (Note the use of wildcard characters.)

Table 12-6 Description of a Sample Pointcut Expression

Pointcut Expression Description

call(* com.foo.bar.* get* (...)) call(): Trigger any defined actions when the
methods whose joinpoints are defined by the
remainder of this pointcut expression are invoked.

call(* com.foo.bar.* get* (...)) *: Return value. The wildcard indicates that the
methods can have any type of return value.

call(* com.foo.bar.* get* (...)) com. foo.bar. *: Methods from class com.foo.bar
and its sub-packages are eligible.

call(* com.foo.bar.* get* (...)) get*: Any methods whose name starts with the
string get is eligible.
call(* com.foo.bar.* get* (...)) (...): The ellipsis indicates that the methods can

have any number of arguments.

Configuring Instrumentation 12-15

Configuring Application-Scoped Instrumentation

This pointcut expression matches all methods in all classes in package com.foo.bar and
its sub-packages. The methods can return values of any type, including void, and can
have any number of arguments of any type. Instrumentation code will be inserted
before these methods are called, and, just before those methods are called, the
TraceAction action will be invoked.

See Section 12.5.4.1, "Defining Pointcuts for Custom Monitors," for a description of the
grammar used to define pointcuts.

12.5.4.1 Defining Pointcuts for Custom Monitors

Custom monitors provide more flexibility than delegating monitors because you create
pointcut expressions to control where diagnostics actions are invoked. As with
delegating monitors, you must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an
expression that specifies a set of joinpoints. This section describes how you define
expressions for pointcuts using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:
m call: Take an action when a method is invoked.
m execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR' orExpr) *
orExpr := andExpr ('AND' andExpr) *
andExpr := 'NOT' ? termExpr
termExpr := exec_pointcut \ call_pointcut \ "(' pointcutExpr ')'
exec_pointcut := 'execution' '(' modifiers?

returnSpec

classSpecWithAnnotations

methodSpec ' (' parameterList ')'

|)v
call_pointcut := 'call' '(' returnSpec
classSpec
methodSpec ' (' parameterList ')'
l)l

modifiers := modifier ('OR' modifier) * modifier := 'public' | 'protected' |
'private' | 'static’
returnSpec := '*! \ typeSpec
classSpecWithAnnotations := '@' IDENTIFIER ('OR' IDENTIFIER) * \ classSpec
classSpec := '+' ? classOrMethodPattern | '*!
typeSpec := '%' ? (primitiveType | classSpec) ('[]1')*
methodSpec := classOrMethodPattern
parameterList := param (',' param) *
param := typeSpec | '...'
primitiveType := 'byte' | 'char' | 'boolean' | 'short' | 'int' | 'float' | 'long'
| 'double' | 'void'
classOrMethodPattern := '*' ? IDENTIFIER '*'? | '*!

The following rules apply:
» The asterisk wildcard character (*) can be used in class types and method names.

= Anellipsis (...) in the argument list signifies a variable number of arguments of
any types beyond the argument.

= A percent character (%) prefix designates the value of a non-static class
instantiation, parameter, or return specification as not containing nor exposing
sensitive information. The use of this operator is particularly useful with the

12-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Application-Scoped Instrumentation

Display ArgumentsAction action, which captures method arguments or return
values. If this prefix character is not explicitly used, an asterisk string is
substituted for the value that is returned; this behavior ensures that sensitive data
in your application is not inadvertently transmitted when an instrumentation
event captures input arguments to, or return values from, a joinpoint.

Note: The % operator cannot be applied to an ellipsis or to a
wildcarded type within a pointcut expression.

= A plus sign (+) prefix to a class type identifies all subclasses, sub-interfaces or
concrete classes implementing the specified class/interface pattern.

= A pointcut expression specifies a pattern to identify matching joinpoints. An
attempt to match a joinpoint against it will return a boolean, indicating a valid
match (or not).

= Pointcut expressions can be combined with AND, OR and NOT boolean operators
to build complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize
methods in all classes in package com.foo.bar and its sub-packages. The initialize
methods may return values of any type, including void, and may have any number of
arguments of any types.

execution(public * com.foo.bar.* initialize(...))
The following pointcut matches the method calls (call sites) on all classes that directly
or indirectly implement the com.foo.bar.MyInterface interface (or a subclass, if it

happens to be a class). The method names must start with get, be public, and return an
int value. The method must accept exactly one argument of type java.lang.String:

call(int +com.foo.bar.MyInterface get*(java.lang.String))
The following example shows how to use boolean operators to build a pointcut
expression tree:

call (void com.foo.bar.* set*(java.lang.String)) OR
call(* com.foo.bar.* get*())

The following example illustrates how the previous expression tree would be rendered
as a <pointcut> element in a configuration file:

<pointcut>call (void com.foo.bar.* set*(java.lang.String)) OR
call(* com.foo.bar.* get*())</pointcut>

12.5.4.2 Annotation-based Pointcuts

You can use JDK-style annotations in class and method specifiers of execution points.
A class or method specifier starting with @ is interpreted as an annotation name.

When used as a class specifier, the annotation matches all classes that are annotated
with it. While performing the match, only annotation names are considered.
Annotation attributes are ignored.

For example, consider the following pointcut:

execution (public void @Service @Invocation (...)

The preceding pointcut matches methods that:

Configuring Instrumentation 12-17

Creating Request Performance Data

= Are public method

s Return void

» Are contained in a class that is annotated with @Service
= Have a method annotated with @Invocation

= Contain any number of arguments.

Note: Annotation-based specifiers can be used only with execution
pointcuts. They cannot be used with call pointcuts.

Annotation-based class and method specifiers can use the following wildcard
characters:

» The asterisk wildcard (*) matches everything.

» The asterisk wildcard (*) at the beginning matches class/interface or method
names that end with the given string. For example, *Bean matches with
weblogic.management.configuration.ServerMBean.

n The asterisk wildcard (*) at the end matches class/interface or method names that
end with the given string. For example, weblogic.* matches all classes and
interfaces that are in weblogic and its sub-packages.

= You can specify a pointcut based on names of inner classes. For example:

public class Foo {
class Bar {
public int getValue() {...}
}
}

You can define a pointcut that covers the getvValue method of the inner class Bar
using the following specification:
execution (public int Foo$Bar getValue(...));
You can also use wildcard characters as follows. The following pointcut matches only
the getter methods in the inner class Bar of class Foo:

execution (* FooSBar get*(...));

You can also use leading and trailing wildcard characters. The following examples also
match the getter methods in class Foo$Bar:

execution (* FooS$Ba* get*(...));
execution (* *ooSBar get*(...));
execution (* *ooS$Ba* get*(...));

12.6 Creating Request Performance Data

If you have configured server-scoped or application-scoped instrumentation, you can
display request performance data in the WebLogic Server Administration Console. The
Request Performance page displays information about the real-time and historical
views of method performance that has been captured by means of the WebLogic
Diagnostics Framework instrumentation capabilities.

To create request performance data, the following criteria must be met:

12-18 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Creating Request Performance Data

= A WLDF system resource must be created and targeted to the server. Create the
system resource as described in Section 12.2, "Instrumentation Configuration
Files." You can do this using the WebLogic Server Administration Console or the
WebLogic Scripting Tool (WLST).

s Instrumentation in the targeted WLDF system resource must be enabled.

= Application instrumentation must be enabled with a weblogic-diagnostics.xml
descriptor, which you create in the application’s META-INF directory, as described
in Section 12.2, "Instrumentation Configuration Files."

= Application instrumentation descriptors must use TraceElapsedTimeAction
diagnostic actions attached to Around diagnostic monitor types. For example, a
descriptor could contain the following;:

<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>Connector_Around_Inbound</name>
<action>TraceElapsedTimeAction</action>
</wldf-instrumentation-monitor>
</instrumentation>

Note: WebLogic Server does not require the
weblogic-diagnostics.xml descriptor to be pre-bundled in your
application’s archive in order to make instrumentation changes to a
deployed application.

= If your application uses a deployment plan, and you enable Java
HotSwap before deploying your application, you can make
instrumentation changes at run time without redeploying your
application.

= If your deployed application does not have a deployment plan
and you modify the application’s instrumentation configuration,
the Administration Console automatically creates a deployment
plan for you and prompts you for the location in which to save it.

= If Java HotSwap is not enabled in your deployment plan, or if you
do not use a deployment plan, changes to some instrumentation
settings require redeployment.

For more information, see Chapter 15, "Deploying WLDF Application
Modules."

See Appendix B, "WLDF Instrumentation Library," for a list of "Around" type
monitors.

For information about creating and analyzing request performance data in the
WebLogic Server Administration Console, see "Analyze request performance" in the
Oracle WebLogic Server Administration Console Online Help.

Configuring Instrumentation 12-19

Creating Request Performance Data

12-20 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

13

Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts

This chapter describes the Instrumentation component of the WebLogic Diagnostics
Framework (WLDF) that provides a way to uniquely identify requests (such as HTTP
or RMI requests) and track them as they flow through the system. You can configure
WLDF to check for certain characteristics (such as the originating user or client
address) of every request that enters the system and attach a diagnostic context to the
request. This allows you to take measurements (such as elapsed time) of specific
requests to get an idea of how all requests are being processed as they flow through
the system.

The diagnostic context consists of two pieces: a unique Context ID and a 64-bit dye
vector that represents the characteristics of the request. The Context ID associated with
a given request is recorded in the Event Archive and can be used to:

» Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

= Associate log records with a request

» Filter searches of log or event records using the WLDF Accessor component (see
Chapter 14, "Accessing Diagnostic Data With the Data Accessor").

This chapter includes the following sections:

s Contents, Life Cycle, and Configuration of a Diagnostic Context

s Overview of the Process

s Configuring the Dye Vector via the Dyelnjection Monitor

s Configuring Delegating Monitors to Use Dye Filtering

s How Dye Masks Filter Requests to Pass to Monitors

s Using Throttling to Control the Volume of Instrumentation Events
= Using weblogic.diagnostics.context

For an example of how to use WLST to create a Dyelnjection monitor dynamically, see
Section D.2, "Example: Dynamically Creating Dyelnjection Monitors".

13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context

A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye
vector contains flags which are set to identify the characteristics of the diagnostic
context associated with a request. Currently, 32 bits of the dye vector are used, one for
each available dye flag (see Table 13-1).

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-1

Contents, Life Cycle, and Configuration of a Diagnostic Context

13.1.1 Context Life Cycle and the Context ID

The diagnostic context for a request is created and initialized when the request enters
the system (for example, when a client makes an HTTP request). The diagnostic
context remains attached to the request, even as the request crosses thread boundaries
and Java Virtual Machine (JVM) boundaries. The diagnostic context lives for the
duration of the life cycle of the request.

Every diagnostic context is identified by a Context ID that is unique in the domain.
Because the Context ID travels with the request, it is possible to determine the events
and log entries associated with a given request as it flows through the system.

13.1.2 Dyes, Dye Flags, and Dye Vectors

Contextual information travels with a request as a 64-bit dye vector, where each bit is a
flag to identify the presence of a dye. Each dye represents one attribute of a request; for
example, an originating user, an originating client IP address, access protocol, and so
on.

When a dye flag for a given attribute is set, it indicates that the attribute is present.
When the flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

= the flag ADDRI is configured to indicate a request that originated from IP address
127.0.0.1.

= the flag ADDR2 is configured to indicate a request that originated from IP address
127.0.0.2.

= the flag USER1 is configured to indicate a request that originated from user
admin@avitek.com.

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDRI flag in the dye vector for the request is set. The
ADDR?2 and USER1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The
ADDRI1 and ADDR?2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system, both
the USER1 and ADDR? flags in the dye vector for this request are set. The ADDRI flag
remains unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can
examine the dye vector to determine if one or more attributes are present (that is, the
associated flag is set). In the example above, you could configure a diagnostic monitor
to trace every request that is dyed with ADDRI; that is, every request originating from
IP address 127.0.0.1. You could also configure a diagnostic monitor that traces every
request that is dyed with both ADDR1 and USER1; that is, every request originating
from user admin@avitek.com at IP address 127.0.0.1 (requests from other users at
127.0.0.1 would not be traced).

The dye vector also contains a THROTTLE dye, which is used to set how often
incoming requests are dyed. For more information about this special dye, see
Section 13.3.3, "THROTTLE Dye Flag."

For a list of the available dyes and the attributes they represent, see Section 13.3.1,
"Dyes Supported by the Dyelnjection Monitor." The process of configuring dye vectors
and using them is discussed throughout the rest of this chapter.

13-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Overview of the Process

13.1.3 Where Diagnostic Context Is Configured

Diagnostic context is configured as part of a diagnostic module. You use the
Dyelnjection monitor at the server level to configure the diagnostic context. The
Dyelnjection monitor is a standard diagnostic monitor, so you cannot modify its
behavior. The joinpoints where the Dyelnjection monitor is woven into the code are
those locations where a request can enter the system.

The diagnostic action is to check every request against the Dyelnjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the
dye flags as appropriate. If the dye flags that are set for a request match the dye flags
that are configured for a downstream diagnostic monitor, an event with the request's
associated Context ID is added to the Event Archive. So, for example, if a request has
only the USER1 and ADDRI1 dye flags set, and there is a diagnostic monitor
configured to trace requests with both the USER1 and ADDRI flags set (but no other
flags set), an event is added to the Event Archive.

For information about diagnostic monitor types, pointcuts (which define the
joinpoints), and diagnostic actions, see Chapter 12, "Configuring Instrumentation."

13.2 Overview of the Process

This overview describes the configuration and use of context in a server-scoped
diagnostic module.

1. Configure a dye vector via the Dyelnjection Module. See Section 13.3,
"Configuring the Dye Vector via the Dyelnjection Monitor."

2. When any request enters the system, WLDF creates and instantiates a diagnostic
context for the request. The context includes a unique Context ID and a dye vector.

3. The Dyelnjection monitor, if enabled at the server level within a WLDF diagnostic
module, examines the request to see if any of the configured dye values in the dye
vector match attributes of the request. For example, it checks to see if the request
originated from the user associated with USER1 or USER?2, and it checks to see if
the request came from the IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the Dyelnjection monitor sets
the associated dye bits within the diagnostic context. For example, if the
Dyelnjection monitor is configured with USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0. 0.2, and the request
originated from user weblogic at IP address 127.0.0.2, it will set the USER1 and
ADDR?2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes
the dye vector) flows with it as well. This 64-bit dye vector contains only flags, not
values. So, in this example, the dye vector contains only two flags that are
explicitly set (USER1 and ADDR?). It does not contain the actual user name and IP
address associated with USER1 and ADDR2.

Note: All dye vectors also contain one of the implicit PROTOCOL
dyes, as explained in Section 13.3, "Configuring the Dye Vector via the
Dyelnjection Monitor."

6. The administrator configures a diagnostic monitor (either application-scoped or
server-scoped) to be active within downstream code, setting the monitor's dye
mask as USER1 and ADDR2. See Section 13.4, "Configuring Delegating Monitors
to Use Dye Filtering," for more information.

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-3

Configuring the Dye Vector via the Dyelnjection Monitor

7. The diagnostic monitor will perform its associated action(s) if the dye flags that are
set in the diagnostic context's dye vector match the dye mask of the diagnostic
monitor. See Section 13.5, "How Dye Masks Filter Requests to Pass to Monitors,"
for more details. In this example, the monitor will perform its action(s) if the
USER1 and ADDR? flags are set in the dye vector. In addition, an event associated
with the request will be written to the Event Archive.

13.3 Configuring the Dye Vector via the Dyelnjection Monitor
To create diagnostic contexts for all requests coming into the system, you must:

1. Create and enable a diagnostic module for the server (or servers) you want to
monitor.

2. Enable Instrumentation for the diagnostic module.

3. Configure and enable the Dyelnjection monitor for the module. (Only one
Dyelnjection monitor can be used with a diagnostic module at any one time.)

You configure the Dyelnjection monitor by assigning values to dyes. The available dye
flags are described in Table 13-1.

For example, you could set the flags as follows: USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0.0. 2, and so forth. Basically,
you want to set the values of one or more flags to the user(s), IP address(es) whose
requests you want to monitor.

For example, to monitor all requests initiated by a user named admin@avitek from a
client at IP address 127.0.0.1, assign the value admin@avitek to USER1 and assign the
value 127.0.0.1 to ADDR1.

In the Administration Console, you assign values to dyes by typing them into the
Properties field of the Settings for DyelInjection page. For instructions, see "Configure
diagnostic monitors in a diagnostic system module" in the Oracle WebLogic Server
Administration Console Online Help.

Figure 13—-1 Setting Dye Values in the Administration Console
Settings for Dyelnjection

Configuration

R A A A A A A A VAV AN
AVANVANVEVEVEAVEVEVAVEVEVE VAN

Properties: ADDR1=127.0.0.1
TSERl=adminfavitek.com

These settings appear in the descriptor file for the diagnostic module, as shown in the
following code listing.

13-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring the Dye Vector via the Dyelnjection Monitor

Example 13-1 Sample Dyelnjection Monitor Configuration, in DIAG_MODULE.xml

<wldf-resource>
<name>MyDiagnosticModule</name>
<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>DyeInjection</name>
<enabled>true</enabled>
<dye-mask xsi:nil="true"></dye-mask>
<properties>ADDR1=127.0.0.1
USER1=admin@avitek</properties>
</wldf-instrumentation-monitor>

<!-- Other elements to configure instrumentation -->
<instrumentation>
<!-- Other elements to configure this diagnostic monitor -->

<wldf-resource>

13.3.1 Dyes Supported by the Dyelnjection Monitor

The dyes available in the dye vector are listed and explained in the following table.

Table 13-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDRI1 Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP
ADDR?2 addresses of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request originated from an IP
ADDR3 address specified by the respective property (ADDR1, ADDR2, ADDR3,
ADDR4 ADDR4) of the Dyelnjection monitor.

These dyes cannot be used to specify DNS names.

CONNECTOR1 Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and
CONNECTOR?2 CONNECTOR4 dyes to identify characteristics of connector drivers.
These dye flags are set by the connector drivers to identify request
CONNECTOR3 properties specific to their situations. You do not configure these directly
CONNECTOR4 in the Administration Console or in the descriptor files. The connector
drivers can assign values to these dyes (using the Connector API), so

information about the connections can be carried in the diagnostic
context.

COOKIE1 COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the diagnostic
COOKIE2 context for an HTTP/S request, if the request contains the cookie named
weblogic.diagnostics.dye and its value is equal to the value of the
COOKIE3 respective property (COOKIE1, COOKIE2, COOKIE3, COOKIE4) of the
COOKIE4 Dyelnjection monitor.

DYE_0 DYE_0 to DYE_7 are available only for use by application developers. See
DYE_1 Section 13.7, "Using weblogic.diagnostics.context."

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-5

Configuring the Dye Vector via the Dyelnjection Monitor

Table 13-1 (Cont) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

PROTOCOL_ The Dyelnjection monitor implicitly identifies the protocol used for a
HTTP request and sets the appropriate dye(s) in the dye vector, according to the
PROTOCOL TIOP protocol(s) used.

PROTOCOL,_JRMP PROTOCOL_HTTP is set in the diagnostic context of a request if the

request uses HTTP or HTTPS protocol.

PROTOCOL_RMI PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
PROTOCOL _ Internet Inter-ORB Protocol (IIOP).

SOAP PROTOCOL_JRMP is set in the diagnostic context of a request if it uses
PROTOCOL_SSL. the Java Remote Method Protocol (JRMP).

PROTOCOL_T3 PROTOCOL_RMI is set in the diagnostic context of a request if it uses the
Java Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses the
Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the request
uses T3 or T3s protocol

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it
satisfies requirements specified by THROTTLE_INTERVAL and/or
THROTTLE_RATE properties of the Dyelnjection monitor.

USER1 Use the USER1, USER2, USER3 and USER4 dyes to specify the user
USER2 names of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request was originated by a user
USER3 specified by the respective property (USER1, USER2, USER3, USER4) of
USER4 the Dyelnjection monitor.

13.3.2 PROTOCOL Dye Flags

You must explicitly set the values for the dye flags USERn, ADDR#n, COOKIE#n, and
CONNECTOR#. in the Dyelnjection monitor. However, the flags PROTOCOL_HTTP,
PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP,
PROTOCOL_SSL, and PROTOCOL_TS3 are set implicitly by WLDE. When the
Dyelnjection monitor is enabled, every request is injected with the appropriate
protocol dye. For example, every request that arrives via HTTP is injected with the
PROTOCOL_HTTP dye.

13.3.3 THROTTLE Dye Flag

The THROTTLE dye flag can be used to control the volume of incoming requests that
are dyed. THROTTLE is configured differently from the other flags, and WLDF uses it
differently. See Section 13.6, "Using Throttling to Control the Volume of
Instrumentation Events," for more information.

13.3.4 When Diagnostic Contexts Are Created

When the Dyelnjection monitor is enabled in a diagnostic module, a diagnostic context
is created for every incoming request. The Dyelnjection monitor is enabled by default
when you enable instrumentation in a diagnostic module. This ensures that a
diagnostic Context ID is available so that events can be correlated. Even if no
properties are explicitly set in the Dyelnjection monitor, the diagnostic context for
every request will contain a unique Context ID and a dye vector with one of the
implicit PROTOCOL dyes.

13-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Configuring Delegating Monitors to Use Dye Filtering

If the Dyelnjection monitor is disabled, no diagnostic contexts will be created for any
incoming requests.

13.4 Configuring Delegating Monitors to Use Dye Filtering

Note: For information about how to implement a diagnostic monitor
for an application (such as a web application), see Section 12.5.2,
"Overview of the Steps Required to Instrument an Application.”

You can use the Dyelnjection monitor as a mechanism to restrict when a delegating or
custom diagnostic monitor in the diagnostic module is triggered. This process is called

dye filtering.

Each monitor can have a dye mask, which specifies a selection of the dyes from the
Dyelnjection monitor. When dye filtering is enabled for a diagnostic monitor, the
monitor's diagnostic action is triggered and a diagnostic event is generated only for
those requests that meet the criteria set by the mask.

Figure 13-2 shows an example of diagnostic events that were generated when a
configured diagnostic action was triggered. Notice that the Context ID is the same for
all of the events, indicating that they are related to the same request. You can use this
Context ID to query for log records that are associated with the request. Note that the
user ID associated with a request may not always be the same as the USER value you
configured in the Dyelnjection monitor; as a request is processed through the system,
the user associated with the request may change to allow the system to perform certain
functions (for example, the User ID may change to kernel).

Figure 13-2 Example of Diagnostic Events Associated with a Request

Date % | Context ID UserID | Type Monitor Class Method
ggxggxgg 513bb54e27060c3a:30c3ef2 1 13a5c7b97a- | | | TraceElapsedTimeaction-[o et hito HitoSenetReauest | cetsessi
509 N 7#2-000000000000000b Lurme Before-1 erviet_Around_oession | jJavax.senviet.ntp. poenvietrequest | getoession
g?ggfgg 513bb54627060c3a:30c3ef2:113a6c7b07a- | | | TraceElapsedTimeAction- o et hito HitoSenetReauest | aetsessi
509 N 7#2-000000000000000b urme After-1 envlel_Around_session | jJavax.senviel.ntp. poemnvietRequest | getsession
g?ggfg 513bb5462706003a:30c3ef2:11336¢7b07a- | | | TraceElapsedTimeaction- . o et ing osen
07:5218 | 762.0000000000000000 urmel | g oo envlet_Around_Service |jsp_semnviet_ index _ispSenvice
06/20/08

e 513bb54e27dBcc3a:30c3eff2:11aa5c7ba7as- "
2;53.18 7f2-000000000000008b turmel | TraceAction Servlet_Before_Senvice | jsp_semnvlet__index _ispService
DB20/08 | 1 3ppsae2705cc3a:30c36M2: 1133507097 TraceElapsedTimeAction-
2;53'18 212-000000000000000 wrmel | g e s Senvlet_Around_Session | javax senet http HitpSenvietRequest | getSession
UBI20I08 | 51 3pns4e27dmcc3a:30¢c3eM2:11aa5c7hoTa- TraceElapsedTimeAction-
2;25318 7f2-00000000000000bh turmel After-3 Senviet_Around_Session | javax.senlethttp HitpServietRequest | getSession
g?gg“’gg 513bb54e2706cc3a 30c3ei2 11aa5c7b97a- | | | TraceElapsedTimeAction-[(oo it HilpSess —
442 X 7#2-000000000000000b urme Before-4 envlel_Around_session | javax.senvietntp.| paession 5€ ripute
g?gg“’fg 513bb54827000c3a:30c3ef2:113a6¢7b97a- | | | TraceElapsedTimeAction-[oo et hito HitoSess bt
442 X 7#2-000000000000000b urme After-4 enviel_Around_osession | Javax.senviel.ntp. poession 5¢ ripute
ggggfg 513bb54e27060c3a:30c3ef2 1 13a5c7b97a- | | | TraceElapsedTimeaction-[et ing osen
07:5218 | 762.00000000000000b5 LT vy envlet_Around_Service |jsp_serviet_ index _ispService
g?ggfg 513bb54627060c3a:30c3ef2:113a6c7b07a- | | | TraceElapsedTimeAction- oo et hito HitoSenetReauest | aetsessi
552 X 7#2-000000000000000b urme Before-5 envlel_Around_session | jJavax.senviel.ntp. poemnvietRequest | getsession

Example configuration

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-7

Configuring Delegating Monitors to Use Dye Filtering

Consider a Servlet_Around_Service application-scoped diagnostic monitor that has a
TraceElapsedTimeAction action attached to it. Without dye filtering, any request that is
handled by Servlet_Around_Service will trigger a TraceElapsedTimeAction. However,
you could use dye filtering to trigger TraceElapsedTimeAction only for requests that
originated from user admin@avitek.com at IP address 127.0.0.1.

1. Configure the Dyelnjection monitor so that USER1=admin@avitek.com and
ADDR1=127.0.0.1, and enable the Dyelnjection monitor. For instructions, see
"Configure diagnostic monitors in a diagnostic system module" in the Oracle
WebLogic Server Administration Console Online Help.

2. Configure a dye mask and enable dye filtering for the Servlet_Before_Service
diagnostic monitor. In the Administration Console:

a. Add the Servlet_Around_Service monitor from the WLDF instrumentation
library to your application as described in "Configure instrumentation for
applications" in the Oracle WebLogic Server Administration Console Online Help.

b. After adding the monitor, click Save on the Settings for <application_name>
page.

c. Click the Servlet_Around_Service link to display the Settings for Servlet_
Around_Service page.

d. Select the Enabled check box to enable the monitor.

e. Under Actions, move TraceElapsedTimeAction from the Available list to the
Chosen list.

f. Inthe Dye Mask section, move USER1 and ADDRI1 from the Available list to
the Chosen list.

g. Select the EnableDyeFiltering check box.
h. Click Save.
3. Redeploy the application.

Configurations added via the Administration Console are not persisted to the
weblogic-diagnostics.xml file in the application's META-INF directory or to the DIAG_
MODULE. xml file; they are saved in the application's deployment plan.

You can also manually update your DIAG_MODULE.xnl file to add diagnostic monitors,
as shown in Example 13-2, but this is not recommended. It is better to change the
configuration via the Administration Console on a running server. Any changes you
make to DIAG_MODULE . xml will not take effect until you redeploy the application.

Example 13-2 Sample Configuration for Using Dye Filtering in a Delegating Monitor, in
DIAG_MODULE.xml

<wldf-resource>
<name>MyDiagnosticModule</name>
<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>DyeInjection</name>
<enabled>true</enabled>
<properties>ADDR1=127.0.0.1 USERl=admin@avitek.com</properties>
</wldf-instrumentation-monitor>
<wldf-instrumentation-monitor>
<name>Servlet_Around_Service</name>
<dye-mask>ADDR1 USER1</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>

13-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

How Dye Masks Filter Requests to Pass to Monitors

<action>TraceElapsedTimeAction</action>
</wldf-instrumentation-monitor>

<!-- Other elements to configure instrumentation -->
</instrumentation>
<!-- Other elements to configure this diagnostic monitor -->

<wldf-resource>

With this configuration, the TraceElapsedTimeAction action will be triggered for the
Servlet_Around_Service diagnostic monitor only for those requests that originate from
IP address 127.0.0.1 and user admin@avitek.com.

The flags that are enabled in the diagnostic monitor must exactly match the bits set in
the request's dye vector for an action to be triggered and an event to be written to the
Event Archive. For example, if the diagnostic monitor has both the USER1 and ADDR1
flags enabled, and only the USER1 flag is set in the request's dye vector, no action will
be triggered and no event will be generated.

Note: When configuring a diagnostic monitor, do not enable
multiple flags of the same type. For example, don't enable both the
USER1 and USER?2 flags, as the dye vector for a given request will
never have both the USER1 and USER2 flags set.

13.5 How Dye Masks Filter Requests to Pass to Monitors

A dye vector attached to a request can contain multiple dyes, and a dye mask attached
to a delegating monitor can contain multiple dyes. For a delegating monitor's dye
mask to allow a monitor to take action on a request, all of the following must be true:

= Dye filtering for the delegating or custom diagnostic monitor is enabled in the
application's weblogic-diagnostics.xml descriptor, or is enabled via the
Administration Console.

= The request's dye vector contains all of the dyes that are defined in the monitor's
dye mask. (The dye vector can also contain dyes that are not in the dye mask.)

13.5.1 Dye Filtering Example

Figure 13-3 illustrates how dye filtering works, using a diagnostic module with three
diagnostic monitors:

s The Dyelnjection monitor is configured as follows:

ADDR1=127.0.0.1
USER1=weblogic

» The Servlet_Around_Service monitor is configured with a dye mask containing
only ADDRI.

s The EJB_Around_SessionEjbBusinessMethods monitor is configured with a dye
mask containing USER1 only.

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-9

Using Throttling to Control the Volume of Instrumentation Events

Figure 13-3 Dye Filtering Example

Dyeinjection Monitor '(EJB_Around_SessionkjbBusinessiethnds 5.

ADDR1=127.0.0.1 | Dye_mask: USER1 Mo Event
USER1=wehlogic

i
N

—

Entry
IP=127.00.9 ’/
User = guest -

SesslonEJB

Dye_vector:
ADDR1

Serviet_Around_Sentce. 3.
Dye_mask: ADDRA ! Event
1. A request initiated by user guest from IP address 127.0.0.1 enters the system. The
user guest does not match the value for USER1 in the Dyelnjection monitor, so the
request is not dyed with the dye vector USER1. The originating IP address
(127.0.0.1) matches the value for ADDR1 defined in the Dyelnjection monitor, so
the request is dyed with the dye vector ADDR1.

2. The request (dyed with ADDR1) enters the Servlet component, where the
diagnostic monitor Servlet_Around_Service is woven into the code. (Servlet_
Around_Service triggers diagnostic actions at the entry of and exit of certain
servlet and JSP methods.) Dye monitoring is enabled for the monitor, and the dye
mask is defined with the single value ADDRI.

3. When the request enters or exits a method instrumented with Servlet_Around_
Service, the diagnostic monitor checks the request for dye vector ADDR1, which it
finds. Therefore, the monitor triggers a diagnostic action, which generates a
diagnostic event, for example, writing data to the Events Archive.

4. The request enters the SessionE]B component, where the diagnostic monitor EJB_
Around_SessionEjbBusinessMethods is woven into the code. (EJB_Around_
SessionEjbBusinessMethods triggers diagnostic actions at the entry and exit of all
SessionBean methods). Dye monitoring is enabled for the monitor, and the dye
mask is defined with the single value USER1.

5. When the request enters or exits a SessionBean method (instrumented with EJB_
Around_SessionEjbBusinessMethods), the diagnostic monitor checks the request
for dye vector USER1, which it does not find. Therefore, the monitor does not
trigger a diagnostic action, and therefore does not generate a diagnostic event.

13.6 Using Throttling to Control the Volume of Instrumentation Events

Throttling is used to control the number of requests that are processed by the monitors
in a diagnostic module. Throttling is configured using the THROTTLE dye, which is
defined in the Dyelnjection monitor.

13-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Using Throttling to Control the Volume of Instrumentation Events

Note: The USERn and ADDR# dyes allow inspection of requests
from specific users or IP addresses. However, they do not provide a
means to look at arbitrary user transactions. The THROTTLE dye
provides that functionality by allowing sampling of requests.

13.6.1 Configuring the THROTTLE Dye

Unlike other dyes in the dye vector, the THROTTLE dye is configured through two
properties.

THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new
incoming request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the Dyelnjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request
dyed with THROTTLE arrived at least THROTTLE_INTERVAL before the new request.
For example, if THROTTLE_INTERVAL=3000, the Dyelnjection monitor waits at
least 3000 milliseconds before it will dye an incoming request with THROTTLE.

THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by
which new incoming requests are dyed with the THROTTLE dye.

If THROTTLE_RATE is greater than 0, the Dyelnjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request when the number of
requests since the last request dyed with THROTTLE equals THROTTLE_RATE. For
example, if THROTTLE_RATE = 6, every sixth request is dyed with THROTTLE.

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either
condition is satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both,
or neither), you are configuring the THROTTLE dye. A THROTTLE configuration
setting in the Administration Console is shown in Figure 13—4.

Figure 13-4 Configuring the THROTTLE Dye

Settings for Dyelnjection

Configuration

RNZAYAVAYAVAVAVAVAYAVAVAVAN
AV VA VYA VANV VA VAVEAVAVAVEN

Properties: THROTTLE INTERVAL=3000
THROTTLE_RATE= &

Example 13-3 shows the resulting configuration in the descriptor file for the
diagnostics module.

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-11

Using Throttling to Control the Volume of Instrumentation Events

Example 13-3 Sample THROTTLE Configuration in the Dyelnjection Monitor, in DIAG_
MODULE.xml

<wldf-resource>
<name>MyDiagnosticModule</name>
<instrumentation>
<wldf-instrumentation-monitor>
<name>DyeInjection</name>
<properties>
THROTTLE_INTERVAL=3000
THROTTLE_RATE=6
</properties>
</wldf-instrumentation-monitor>
</instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

Example 13-4 shows the configuration for a JDBC_Before_Start_Internal delegating
monitor where the THROTTLE dye is set in the dye mask for the monitor.

Example 13-4 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<wldf-resource>
<name>MyDiagnosticModule</name>
<instrumentation>
<wldf-instrumentation-monitor>
<name>JDBC_Before_Start_Internal</name>
<enabled>true</enabled>
<dye-mask>THROTTLE</dye-mask>
</wldf-instrumentation-monitor>
</instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

13.6.2 How Throttling is Handled by Delegating and Custom Monitors

Dye masks and dye filtering provide a mechanism for restricting which requests are
passed to delegating and custom monitors for handling, based on properties of the
requests. The presence of a property in a request is indicated by the presence of a dye,
as discussed in Section 13.3, "Configuring the Dye Vector via the Dyelnjection
Monitor." One of those dyes can be the THROTTLE dye, so that you can filter on
THROTTLE, just like any other dye.

The items in the following list explain how throttling is handled:

s If dye filtering for a delegating or custom monitor is enabled and that monitor has
a dye mask, filtering is performed based on the dye mask. That mask may include
the THROTTLE dye, but it does not have to. If THROTTLE is included in a dye
mask, then THROTTLE must also be included in the request's dye vector for the
request to be passed to the monitor. However, if THROTTLE is not included in the
dye mask, all qualifying requests are passed to the monitor, whether their dye
vectors include THROTTLE or not.

= If dye filtering for a delegating or custom monitor is not enabled and neither
THROTTLE property is set in the Dyelnjection monitor, dye filtering will not take
place and throttling will not take place.

= If dye filtering for a delegating or custom monitor is not enabled and THROTTLE
is configured in the Dyelnjection monitor, delegating monitors ignore dye masks

13-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Using weblogic.diagnostics.context

but do check for the presence of the THROTTLE dye in all requests. Only those
requests dyed with THROTTLE are passed to the delegating monitors for
handling. Therefore, by setting a THROTTLE_RATE and/or THROTTLE_
INTERVAL in the Dyelnjection monitor, you reduce the number of requests
handled by all delegating monitors. You do not have to configure dye masks for all
your delegating monitors to take advantage of throttling.

= If dye filtering for a delegating or custom monitor is enabled and the only dye set
in a dye mask is THROTTLE, only those requests that are dyed with THROTTLE
are passed to the delegating monitor. This behavior is the same as when dye
filtering is not enabled and THROTTLE is configured in the Dyelnjection monitor.

13.7 Using weblogic.diagnostics.context

The weblogic.diagnostics.context package provides applications with limited access to
a diagnostic context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper
APIs to perform the following functions:

= Inspect a diagnostics context's immutable context ID.
= Inspect the settings of the dye flags in a context's dye vector.
= Retrieve an array of valid dye flag names.

= Set, or unset, the DYE_0 through DYE_7 flags in a context's dye vector. (Note that
there is no way to set these flag bits via XML. You can configure Dyelnjection
monitor <properties> to set the non-application-specific flag bits via XML, but
setDye() is the only method for setting DYE_0 through DYE_7 in a dye vector.)

= Attach a payload (a String) to a diagnostic context, or read an existing payload.
An application cannot:
= Set any flags in a dye vector other than the eight flags reserved for applications.

= Prevent another application from setting the same application flags in a dye vector.
A well-behaved application can test whether a dye flag is set before setting it.

= Prevent another application from replacing a payload. A well-behaved application
can test for the presence of a payload before adding one.

Note: The diagnostic context payload can be viewed by other code in
the same execution context; it can flow out of the process along with
the Work instance; and it can be overwritten by other code running in
the same execution context. Therefore, you should ensure the
following behavior in your applications:

= Avoid including any sensitive data in the payload that, for
example, could be returned by the getPayload () method.

= Do not create a dependency on any particular data being available
in the context payload. For example, applications should not rely
on a particular context ID being present. If an application uses the
contents of the payload, the application should first verify that the
contents match what is expected.

A monitor, or another application, that is downstream from the point where an
application has set one or more of the DYE_0 through DYE_7 flags can set a dye mask

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts 13-13

Using weblogic.diagnostics.context

to check for those flags, and take an action when the flag(s) are present in a context's
dye vector. If a payload is attached to the diagnostics context, any action taken by that
monitor will result in the payload being archived, and thus available through the
accessor component.

Example 13-5 is a short example which (implicitly) creates a diagnostic context, prints
the context ID, checks the value of the DYE_0 flag, and then sets the DYE_0 flag.

Example 13-5 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
public static void main(String args[]) throws Exception {
System.out.println("\nContextId=" +
DiagnosticContextHelper.getContextId());
System.out.println("isDyedWith (DYE 0)=" +
DiagnosticContextHelper.isDyedWith (DiagnosticContextHelper.DYE_0));
DiagnosticContextHelper.setDye (DiagnosticContextHelper.DYE_0, true);
System.out.println("isDyedWith (DYE_0)=" +
DiagnosticContextHelper.isDyedWith (DiagnosticContextHelper.DYE 0));

13-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

14

Accessing Diagnostic Data With the Data
Accessor

This chapter describes the Data Accessor component of the WebLogic Diagnostics
Framework (WLDF) that is used to access diagnostic data from various sources,
including log records, data events, and harvested metrics.

Using the Data Accessor, you can perform data lookups by type, component, and
attribute. You can perform time-based filtering and, when accessing events, filtering
by severity, source, and content. You can also access diagnostic data in tabular form.
This chapter also describes how to use the Data Accessor online (when a server is
running) and offline (when a server is not running).

This chapter includes the following sections:

= Data Stores Accessed by the Data Accessor

m Accessing Diagnostic Data Online

» Accessing Diagnostic Data Offline

» Accessing Diagnostic Data Programmatically

= Resetting the System Clock Can Affect How Data Is Archived and Retrieved

14.1 Data Stores Accessed by the Data Accessor

The Data Accessor retrieves diagnostic information from other WLDF components.
Captured information is segregated into logical data stores that are separated by the
types of diagnostic data. For example, server logs, HTTP logs, and harvested metrics
are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor
provides access to data stores for individual servers.

Data stores can be modeled as tabular data. Each record in the table represents one
item, and the columns describe characteristics of the item. Different data stores may
have different columns. However, most data stores have some of the same columns,
such as the time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by
WLDF for a server:

= Alist of supported data store types, including:
- HTTP_LOG
- HARVESTED_DATA_ARCHIVE

Accessing Diagnostic Data With the Data Accessor 14-1

Accessing Diagnostic Data Online

— EVENTS_DATA_ARCHIVE

— SERVER_LOG

- DOMAIN_LOG

- HTTP_ACCESS_LOG

- WEBAPP_LOG

— CONNECTOR_LOG

- JMS_MESSAGE_LOG

- CUSTOM_LOG

A list of available data store instances

The layout of each data store (information that describes the columns in the data
store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine
the nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Configuring Log Files and
Filtering Log Messages for Oracle WebLogic Server.

14.2 Accessing Diagnostic Data Online

You access diagnostic data from a running server by using the Administration
Console, JMX APIs, or the WebLogic Scripting Tool (WLST).

14.2.1 Accessing Data Using the Administration Console

You do not use the Data Accessor explicitly in the Administration Console, but
information collected by the Accessor is displayed, for example, in the Summary of
Log Files page. See "View and Configure Logs" in the Oracle WebLogic Server
Administration Console Online Help.

14.2.2 Accessing Data Programmatically Using Run-Time MBeans

The Data Accessor provides the following run-time MBeans for discovering data stores
and retrieving data from them:

Use the WLDFAccessRuntimeMBean to do the following:
- Get the logical names of the available data stores on the server.

- Look up a WLDFDataAccessRuntimeMBean to access the data from a specific
data source, based on its logical name. The different data stores are uniquely
identified by their logical names.

See "WLDFAccessRuntimeMBean" in the MBean Reference for Oracle WebLogic
Server.

Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to
retrieve data records within a specified time duration. This MBean provides
metadata about the columns of the data set and the earliest and latest timestamp
of the records in the data store.

14-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Accessing Diagnostic Data Programmatically

Data Accessor run-time MBeans are currently created and registered lazily. So,
when a remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntime’s attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for
example:

ObjectName objName =
new ObjectName ("com.bea:ServerRuntime=" + serverName +
", Name=Accessor, " +
"Type=WLDFAccessRuntime, " +
"WLDFRuntime=WLDFRuntime") ;
rmbs.getAttribute (objName, "WLDFDataAccessRuntimes");

See "WLDFDataAccessRuntimeMBean" in the MBean Reference for Oracle WebLogic
Server.

14.2.3 Using WLST to Access Diagnostic Data Online

Use the WLST exportDiagnosticDataFromServer () command to access diagnostic
data from a running server. For the syntax and examples of this command, see
"Diagnostics Commands" in the WLST Command Reference for WebLogic Server.

14.2.4 Using the WLDF Query Language with the Data Accessor

To query data from data stores, use the WLDF query language. For Data Accessor
query language syntax, see Appendix A, "WLDF Query Language."

14.3 Accessing Diagnostic Data Offline

Use the WLST exportDiagnosticData () command to access historical diagnostic data
from an offline server. For the syntax and examples of this command, see "Diagnostics
Commands" in the WLST Command Reference for WebLogic Server.

Note: You can use exportDiagnosticData to access archived data only
from the machine on which the data is persisted.

You cannot discover data store instances using the offline mode of the
Data Accessor. You must already know what they are.

14.4 Accessing Diagnostic Data Programmatically

Example 14-1 shows the source Java code for a utility that uses the Accessor to query
the different archive data stores.

Example 14-1 Sample Code to Use the WLDF Accessor

WLAccessor.java

*

*

* Demonstration utility that allows query of the different ARCV data stores
* via the WLDF Accessor.
*
*

/

import javax.naming.Context;

Accessing Diagnostic Data With the Data Accessor 14-3

Accessing Diagnostic Data Programmatically

import weblogic.jndi.Environment;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.Properties;

import weblogic.management.ManagementException;

import weblogic.management.runtime.WLDFAccessRuntimeMBean;
import weblogic.management.runtime.WLDFDataAccessRuntimeMBean;
import weblogic.diagnostics.accessor.ColumnInfo;

import weblogic.diagnostics.accessor.DataRecord;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import javax.management.MBeanServerConnection;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

import javax.management.ObjectName;

import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
import weblogic.management.runtime.ServerRuntimeMBean;

import weblogic.management.jmx.MBeanServerInvocationHandler;

import weblogic.management.configuration.ServerMBean;

/**

* Demonstration utility that allows query of the different ARCV data stores
* via the WLDF Accessor. The class looks up the appropriate accessor and

* executes the query given the specified query parameters.

*

* To see information about it's usage, compile this file and run
*
* java WLAccessor usage
*/
public class WLAccessor {

/** Creates a new instance of WLAccessor */
public WLAccessor (Properties p) {
initialize(p);

}

/**

* Retrieve the specfied WLDFDataAccessRuntimeMBean instance for querying.
*/

public WLDFDataAccessRuntimeMBean getAccessor (String accessorType)

throws Throwable

{

// Get the runtime MBeanServerConnection

MBeanServerConnection runtimeMBS = this.getRuntimeMBeanServerConnection();

// Lookup the runtime service for the connected server
ObjectName rtSvcObjName = new ObjectName (RuntimeServiceMBean.OBJECT NAME) ;
RuntimeServiceMBean rtService = null;

rtService = (RuntimeServiceMBean)
MBeanServerInvocationHandler.newProxyInstance (
runtimeMBS, rtSvcObjName
)

// Walk the Runtime tree to the desired accessor instance.
ServerRuntimeMBean srt = rtService.getServerRuntime();

14-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Accessing Diagnostic Data Programmatically

WLDFDataAccessRuntimeMBean ddar =
srt.getWLDFRuntime () .getWLDFAccessRuntime () .
lookupWLDFDataAccessRuntime (accessorType) ;

return ddar;
/**

* Execute the query using the given parameters, and display the formatted
* records.

*/
public void queryEventData() throws Throwable
{

String logicalName = "EventsDataArchive";

WLDFDataAccessRuntimeMBean accessor = getAccessor (accessorType);

ColumnInfo[] colinfo = accessor.getColumns () ;
inform("Query string: " + queryString);

int recordsFound = 0;
Iterator actuallt =

accessor.retrieveDataRecords (beginTime, endTime, queryString);
while (actuallt.hasNext()) {

DataRecord rec = (DataRecord)actuallt.next();

inform("Record[" + recordsFound + "]: {");

Object[] values = rec.getValues();

for (int colno=0; colno < values.length; colno++) {

inform("[" + colno + "] "
+ colinfo[colno] .getColumnName () +
" (" + colinfo[colno].getColumnTypeName() + "): "4

values[colno]);

}

inform("}");
inform("");
recordsFound++;

}

inform("Found " + recordsFound + " results");

/**
* Main method that implements the tool.
* @param args the command line arguments
*/
public static void main(String[] args) {
try {
WLAccessor acsr = new WLAccessor (handleArgs (args));
acsr.queryEventDatal() ;
} catch (UsageException uex) {

usage() ;
} catch (Throwable t) {
inform("Caught exception, " + t.getMessage(), t);
inform("");
usage() ;

public static class UsageException extends Exception {}

/**

Accessing Diagnostic Data With the Data Accessor

14-5

Accessing Diagnostic Data Programmatically

* Process the command line arguments, which are provided as name/value pairs.
*/
public static Properties handleArgs (String[] args) throws Exception
{
Properties p = checkForDefaults();
for (int 1 = 0; i < args.length; i++) {
if (args[i].equalsIgnoreCase("usage"))
throw new UsageException();

String[] nvpair = new String[2]
int token = args[i].indexOf('="
if (token < 0)

throw new Exception("Invalid argument, " + args[il]);
nvpair[0] = args[i].substring(0, token);
nvpair([1l] = args[i].substring(token+1);
p.put (nvpair[0], nvpair[l]);

}

return p;

)

/**
* Look for a default properties file
*/
public static Properties checkForDefaults() throws IOException {
Properties defaults = new Properties();
try {
File defaultprops = new File("accessor-defaults.properties");
FileInputStream defaultsIS = new FileInputStream(defaultprops);
//inform("loading options from accessor-defaults.properties");
defaults.load(defaultsIS);
} catch (FileNotFoundException fnfex) {
//inform("No accessor-defaults.properties found");
}
return defaults;
}
public static void inform(String s) {
System.out.println(s);
}
public static void inform(String s, Throwable t) {
System.out.println(s);
t.printStackTrace() ;

private MBeanServerConnection getRuntimeMBeanServerConnection ()
throws IOException

// construct jmx service url

// "service:jmx: [url]/jndi/[mbeanserver-jndi-name]"
JMXServiceURL serviceURL =
new JMXServiceURL (
"service:jmx:" + getServerUrl() +
"/jndi/" + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME
)i

// specify the user and pwd. Also specify weblogic provide package
inform("user name [" + username + "]");

inform("password [" + password + "]");

Hashtable h = new Hashtable();

h.put (Context.SECURITY_PRINCIPAL, username);

14-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Accessing Diagnostic Data Programmatically

h.put (Context.SECURITY_CREDENTIALS, password) ;

h.put (JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote") ;

// get jmx connector

JMXConnector connector = JMXConnectorFactory.connect (serviceURL, h);

inform("Using JMX Connector to connect to " + serviceURL);
return connector.getMBeanServerConnection() ;

private void initialize(Properties p) {
serverUrl = p.getProperty("url","t3://localhost:7001");
username = p.getProperty("user", "weblogic");
password = p.getProperty("pass", "password") ;
queryString = p.getProperty("query","SEVERITY IN
('"Error', 'Warning', 'Critical', 'Emergency')");
accessorType = p.getProperty("type", "ServerLog") ;

try {
beginTime = Long.parselLong (p.getProperty ("begin", "0"));

String end = p.getProperty("end");
endTime = (end==null) ? Long.MAX VALUE : Long.parseLong (end);
} catch (NumberFormatException nfex) {
throw new RuntimeException("Error formatting time bounds", nfex);

private static void usage() {

inform("");

inform("");

inform("Usage: ");

inform("");

inform(" java WLAccessor [options]");

inform("");

inform("where [options] can be any combination of the following: ");

inform("");

inform(" usage Prints this text and exits");

inform(" url=<url> default: 't3://localhost:7001'");

inform(" user=<username> default: 'weblogic'");

inform(" pass=<password> default: 'password'");

inform(" begin=<begin-timestamp> default: 0");

inform(" end=<end-timestamp> default: Long.MAX VALUE");

inform(" query=<query-string> default: \"SEVERITY IN
('Error', 'Warning', 'Critical', 'Emergency')\"");

inform(" type=<accessor-type> default: 'ServerLog'");

inform("");

inform("Example:");

inform("");

inform(" java WLAccessor user=system pass=gumbyl1234 url=http://myhost:8000
A\

inform(" query=\"SEVERITY = 'Error'\" begin=1088011734496
type=ServerLog") ;

inform("");

inform("");

inform("");

(
(
inform("All properties (except \"usage\") can all be specified in a file ");
inform("in the current working directory. The file must be named: ");
inform("");

(

inform \"accessor-defaults.properties\"");

Accessing Diagnostic Data With the Data Accessor 14-7

Resetting the System Clock Can Affect How Data Is Archived and Retrieved

inform("");

inform("Each property specified in the defaults file can still be ");
inform("overridden on the command-line as shown above");

inform("");

}

/** Getter for property serverUrl.
* @return Value of property serverUrl.
*
*/

public java.lang.String getServerUrl() {
return serverUrl;

}

/** Setter for property serverUrl.
* @param serverUrl New value of property serverUrl.
*
*/
public void setServerUrl(java.lang.String serverUrl) ({
this.serverUrl = serverUrl;

}

protected String serverName = null;

protected String username = null;

protected String password = null;

protected String queryString = "";

private String serverUrl = "t3://localhost:7001";
private String accessorType = null;

private long endTime = Long.MAX_VALUE;
private long beginTime = 0;

private WLDFAccessRuntimeMBean dar = null;

14.5 Resetting the System Clock Can Affect How Data Is Archived and

Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to
the WLDF Archive or logs can cause unexpected results when you query that data
based on a timestamp. For example, consider the following sequence of events:

1. At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of
2:00:00 PM.

2. At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of
2:30:00 PM.

3. At 3:00 p.m., the system clock is reset to 2:00 p.m.

4. At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as RECORD_
215, with a timestamp of 2:15:00 PM.

5. You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

14-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

15

Deploying WLDF Application Modules

This chapter describes how to deploy WebLogic Diagnostics Framework (WLDEF)
application modules. The only WLDF component you can use with applications is
Instrumentation (see Section 12.5, "Configuring Application-Scoped Instrumentation").

You configure and manage instrumentation for an application as a diagnostics
application module, which is an application-scoped resource. The configuration is
persisted in a descriptor file which you deploy with the application. A diagnostic
module deployed in this way is available only to the enclosing application. Using
application-scoped resources ensures that an application always has access to required
resources and simplifies the process of deploying the application to new
environments.

You can deploy an application using a deployment plan, which permits dynamic
configuration updates.

Note: For instrumentation to be available for an application,
instrumentation must be enabled on the server to which the
application is deployed. (Server-scoped instrumentation is enabled
and disabled in the <instrumentation> element of the diagnostics
descriptor for the server.)

This chapter includes the following sections:

= Deploying a Diagnostic Module as an Application-Scoped Resource

= Using Deployment Plans to Dynamically Control Instrumentation Configuration
= Using a Deployment Plan: Overview

» Creating a Deployment Plan Using weblogic.PlanGenerator

= Sample Deployment Plan for Diagnostics

= Enabling Java HotSwap

= Deploying an Application with a Deployment Plan

s Updating an Application with a Modified Plan

15.1 Deploying a Diagnostic Module as an Application-Scoped Resource

To deploy a diagnostic module as an application-scoped resource, you configure the
module in a descriptor file named weblogic-diagnostics.xml. You then package the
descriptor file with the application archive in the ARCHIVE_PATH/META-INF directory
for the deployed application. For example:

Deploying WLDF Application Modules 15-1

Using Deployment Plans to Dynamically Control Instrumentation Configuration

C:\Oracle\Middleware\Oracle_Home\user_
projects\applications\medrec\dist\standalone\exploded\medrec\META-INF\weblogic-dia
gnostics.xml

You can deploy the diagnostic module in both exploded and unexploded archives.

Note: If the EAR archive contains WAR, RAR or EJB modules that
have the weblogic-diagnostics.xml descriptors in their META-INF
directory, those descriptors are ignored.

You can use any of the standard WebLogic Server tools provided for controlling
deployment, including the WebLogic Administrative Console or the WebLogic
Scripting Tool (WLST).

For information about creating modules and deploying applications, see Deploying
Applications to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic
system modules are deployed, there are some differences in how you can reconfigure
them and when those changes take place, as shown in Table 15-1. The details of how
to work with diagnostic application modules is described throughout this section. See
Chapter 12, "Configuring Instrumentation," for information about working with
diagnostic system modules.

Table 15-1 Comparing System and Application Modules
Add/Remove Add/Remove Modify with Modify with

Objects Objects with JMX JSR-88 Modify with
Monitor Type Dynamically Console Remotely (non-remote) Console
System Yes Yes Yes No Yes - via JMX
Module
Application Yes, when Yes No Yes Yes - via plan
Module HotSwap1 is

enabled

No, when

HotSwap is

not enabled:
module must
be redeployed

1 See Section 15.2, "Using Deployment Plans to Dynamically Control Instrumentation Configuration," for
information about HotSwap.

15.2 Using Deployment Plans to Dynamically Control Instrumentation
Configuration

WebLogic Server supports deployment plans, as specified in the Java EE Deployment
Specification API (JSR-88). With deployment plans, you can modify an application's
configuration after the application is built, without having to modify the application
archives. For complete documentation on using deployment plans in WebLogic Server,
see "Configuring Applications for Production Deployment" in Deploying Applications to
Oracle WebLogic Server.

If you want to reconfigure an application that was deployed without a deployment
plan, you must undeploy, unarchive, reconfigure, re-archive, and then redeploy the
application. With a configuration plan, you can dynamically change many

15-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Using a Deployment Plan: Overview

configuration options simply by updating the plan, without modifying the application
archive.

If you enable a feature called Java HotSwap (see Section 15.6, "Enabling Java
HotSwap") before deploying your application with a deployment plan, you can
dynamically update all instrumentation settings without redeploying the application.
If you do not enable HotSwap, or if you do not use a deployment plan, changes to
some instrumentation settings require redeployment, as shown in Table 15-2.

Table 15-2 When Application Instrumentation Configuration Changes Take Effect

Add and

remove Attach and Enable and
Scenario / Settings to Use => monitors detach actions disable monitors
Application deployed with a Dynamic Dynamic Dynamic
deployment plan, HotSwap enabled
Application deployed with a Must redeploy ~ Dynamic Dynamic
deployment plan, HotSwap not application’
enabled
Application deployed without a Must redeploy Must redeploy Must redeploy
deployment plan application application application

1 If HotSwap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation code
is still woven into the application code. You cannot re-enable it through a modified plan.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

= <enabled>
= <dye-filtering-enabled>
s <dye-mask>

s <action>

15.3 Using a Deployment Plan: Overview
The general process for creating and using a deployment plan is as follows:

1. Create a well-formed weblogic-diagnostics.xml descriptor file for the
application.

Oracle recommends that you create an empty descriptor. This provides full
flexibility for dynamically modifying the configuration. It is possible to create
monitors in the original descriptor file and then use a deployment plan to override
the settings. However, you will be unable to completely remove monitors without
redeploying. If you add monitors using a deployment plan to an empty descriptor,
all such monitors can be removed. For information about configuring diagnostic
application modules, see Section 12.5, "Configuring Application-Scoped
Instrumentation."

The schema for weblogic-diagnostics.xml is available at
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diag
nostics.xsd.

2. Place the descriptor file weblogic-diagnostics.xml, in the top-level META-INF
directory of the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See
Section 15.4, "Creating a Deployment Plan Using weblogic.PlanGenerator."

Deploying WLDF Application Modules 15-3

Creating a Deployment Plan Using weblogic.PlanGenerator

4. Start the server, optionally enabling Java HotSwap. See Section 15.6, "Enabling
Java HotSwap."

5. Deploy the application using the deployment plan. See Section 15.7, "Deploying an
Application with a Deployment Plan").

6. When needed, edit the plan and update the application with the plan. See
Section 15.8, "Updating an Application with a Modified Plan."

15.4 Creating a Deployment Plan Using weblogic.PlanGenerator

You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the weblogic-diagnostics.xml descriptor.

The PlanGenerator tool inspects all Java EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant
WebLogic Server deployment properties that configure external resources for the
application.

To create the plan, use the following syntax:
java weblogic.PlanGenerator -plan output-plan.xml [options]
application-path
For example:

java weblogic.PlanGenerator -plan foo.plan -dynamics /test/apps/mywar

Note: The -dynamics options specifies that the plan should be
generated to include only those options that can be dynamically
updated.

For more information about creating and using deployment plans, see "Configuring
Applications for Production Deployment" in Deploying Applications to Oracle WebLogic
Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator
Command Line Reference" and "Exporting an Application for Deployment to New
Environments" in Deploying Applications to Oracle WebLogic Server

15.5 Sample Deployment Plan for Diagnostics

Example 15-1 shows a simple deployment plan generated using
weblogic.PlanGenerator. (For readability, some information has been removed.) The
plan enables the Servlet_Before_Service monitor and attaches to it the actions
Display ArgumentsAction and StackDumpAction.

Example 15-1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
global-variables="false">

<application-name>jsp_expr_root</application-name>

<variable-definition>
<!-- Add two additional actions to Servlet_Before_Service monitor -->

15-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Deploying an Application with a Deployment Plan

<variable>
<name>WLDFInstrumentationMonitor_Servlet_ Before_ Service_Actions_113050559713922</name>
<value>"DisplayArgumentsAction", "StackDumpAction"</value>

</variable>

<-- Enable the Servlet_Before_Service monitor -->

<variable>
<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled _113050559713927</name>
<value>true</value>

</variable>

</variable-definition>

<module-override>
<module-name>jspExpressionWar</module-name>
<module-type>war</module-type>
<module-descriptor external="false">
<root-element>weblogic-web-app</root-element>
<uri>WEB-INF/weblogic.xml</uri>
</module-descriptor>
<module-descriptor external="false">
<root-element>web-app</root-element>
<uri>WEB-INF/web.xml</uri>
</module-descriptor>
<module-descriptor external="false">
<root-element>wldf-resource</root-element>
<uri>META-INF/weblogic-diagnostics.xml</uri>
<variable-assignment>
<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
<xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/[name="Servlet_Before_
Service"]/action</xpath>
</variable-assignment>
<variable-assignment>
<name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
<xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/[name="Servlet_Before_
Service"]/enabled</xpath>
</variable-assignment>
</module-descriptor>
</module-override>
<config-root xsi:nil="true"></config-root>
</deployment-plan>

For a list and documentation of diagnostic monitors and actions that you can specify
in the deployment plan, see Appendix B, "WLDF Instrumentation Library."

15.6 Enabling Java HotSwap
To enable Java HotSwap, start the server with the following command line switch:

-javaagent :SWL_HOME/server/lib/diagnostics-agent.jar

15.7 Deploying an Application with a Deployment Plan

To take advantage of the dynamic control provided by a deployment plan, you must
deploy the application with the plan.

You can use any of the standard WebLogic Server tools for controlling deployment,
including the Administration Console or the WebLogic Scripting Tool (WLST). For
example, the following WLST command deploys an application with a corresponding
deployment plan.

Deploying WLDF Application Modules 15-5

Updating an Application with a Modified Plan

wls: /mydomain/serverConfig> deploy('myApp', './myApp.ear', 'myserver',
'nostage', './plan.xml')

After deployment, the effective diagnostic monitor configuration is a combination of
the original descriptor, combined with the overridden attribute values from the plan. If
the original descriptor did not include a monitor with the given name and the plan
overrides an attribute of such a monitor, the monitor is added to the set of monitors to
be used with the application. This way, if your application is built with an empty
weblogic-diagnostics.xml descriptor, you can add diagnostic monitors to the
application during or after the deployment process without having to modify the
application archive.

15.8 Updating an Application with a Modified Plan

You change configuration settings by modifying the deployment plan and then
updating or redeploying the application, depending on whether or not HotSwap is
enabled. (See Table 15-2 to see when you can simply update the application and when
you must redeploy it.) You can use any of the standard WebLogic Server tools for
updating or redeploying, including the Administration Console or the WebLogic
Scripting Tool (WLST).

If you enabled HotSwap, you can update the configuration for the application with the
modified plan values by updating the application with the plan. For example, the
following WLST command updates an application with a plan:

wls:/mydomain/serverConfig> updateApplication('BigApp',
'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE',
testMode="'false"')

If you did not enable HotSwap, you must redeploy the application for certain changes
to take effect. For example, the following WLST command redeploys an application
using a plan:

wls:/mydomain/serverConfig> redeploy ('myApp' 'c:/myapps/plan.xml')

15-6 Configuring and Using the Diagnostics Framework for Oracle WeblLogic Server

16

Using the Monitoring Dashboard

This chapter describes the Monitoring Dashboard, which provides views and tools for
graphically presenting diagnostic data about servers and applications running on
them. The underlying functionality for generating, retrieving, and persisting
diagnostic data is provided by the WebLogic Diagnostics Framework (WLDF). The
Monitoring Dashboard provides additional tools for presenting that data in charts and
graphs.

This chapter includes the following sections:

= Running the Monitoring Dashboard

= Scope of the Diagnostic Information Displayed

= About the Monitoring Dashboard Interface

s Understanding How Metrics Are Collected and Presented
» The Parts of a Chart

16.1 Running the Monitoring Dashboard

You can launch the Monitoring Dashboard from the WebLogic Server Administration
Console, or you can run it separately in a Web browser. The Monitoring Dashboard is
always displayed in its own tab, or window, depending on the preferences you have
set for your browser. You do not need to be logged in to the Administration Console to
use the Monitoring Dashboard; but if you are not logged in, you are prompted for
your username and password credentials.

For more information, see "Launch the Monitoring Dashboard" in Oracle WebLogic
Server Administration Console Online Help.

16.2 Scope of the Diagnostic Information Displayed

The diagnostic data displayed by the Monitoring Dashboard consists of run-time
MBean attributes with numeric or Boolean values that are useful to measure, either as
their current values or as their changes over time. These values, referred to in the
Monitoring Dashboard as metrics, originate from one or more run-time MBean
instances from one or more servers in the domain.

The Monitoring Dashboard obtains metrics from two sources:

= Directly from active run-time MBean instances — these metrics are sometimes
called polled metrics in this chapter.

» From the Archive that have been collected by the Harvester — these metrics are
also known as collected metrics to distinguish them from metrics whose values are

Using the Monitoring Dashboard 16-1

About the Monitoring Dashboard Interface

obtained directly from active run-time MBean instances and returned to the
Monitoring Dashboard.

16.3 About the Monitoring Dashboard Interface

The Monitoring Dashboard has two main panels: the explorer panel and the view
display panel, as shown in the following figure.

Figure 16-1 Monitoring Dashboard Panels

View Displa
Explorer Panel play
Panel
r 3
OorACLE WeblLogic Server® Administration Console 1 Preferences |Help Logout O
0@ - @ | welcome, weblogic | Connected to: medrec
View List | Matric Browser MedRec Local Network Channel http] Server Channel on MedRecServer || = |
IE? x o MedRecGlobalDataSourceXs Prepared Statement Cache o
=120 Built-in Yiews
17
21| IME Runkime
<= VM Runtime Heap

B =] MedRecServer

--*| Thread Pool Runtime
15

=107 My views
MedRer Local Metwark Ch

11 [
10
3
8
102400 10125100 10:26:00 12700 1012500 10:29:00
Current Size * I i
Hit Count
& Migs Count ¥ | @ »
< > |]

The explorer panel provides access to the following:

= View List — Set of existing built-in and custom views. It also contains controls for

creating, copying, renaming, and deleting views. For details, see Section 16.3.1,
"View List."

» Metric Browser — Provides a means to navigate to and select the specific MBean
instance attributes whose metric values you want to display in a chart in a view.
For details, see Section 16.3.2, "Metric Browser."

16.3.1 View List

To display a view, select it from the View List, shown in Figure 16-2.

16-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

About the Monitoring Dashboard Interface

Figure 16-2 Built-in and Custom Views Displayed in the View List

View List
menu button
Yiew List
x{-)
o —
¢ | B Builk-in views ~
M3 Runkime

IwM Runtime Heap
Thircad Moal Runkinc

‘< = 4] examplesserver

Built-in views

Application \Work Managers on examplesServer
DefaultSecure[https] Server Channel on exampless
Defaulk3ecurefhttps][1] Server Channel on example

Defaulk3ecurefiops] Server Channel on examplesse

_ DefaultSecurefiops][1] Server Channel on exarnple
=i I:l My Wiews
Custom views Copy of Default[http] Server Channel on examplesser
Server Channel W
< >

Views are presented in two primary categories:

Built-in views

The Built-in views are a set of predefined views of available run-time metrics for
all running WebLogic Server instances in the domain. These views surface some of
the more critical run-time WebLogic Server performance metrics and serve as
examples of the Monitoring Dashboard’s view and charting capabilities.

Note the following about built-in views:

— Built-in views are dynamic. For example, if four servers are running, the set of
available built-in views and its charts are related to those four servers. If five
servers are running, then the set of built-in views and its charts expands for
each additional server. In addition, if the number of running server instances
changes while you are using dashboard (for example, a server is started or
stopped), and you want to see the new built-in views for the current set of
running server instances, refresh the view list by selecting Refresh from the
View List menu.

— Built-in views are automatically available with every WebLogic Server
installation and can be used by every user logged into Administration Console
or Monitoring Dashboard.

- You cannot modify a built-in view, but you can copy it. Once copied, the view
can be modified, renamed, saved, and deleted.

Custom views

A custom view is any view created by a user. Custom views are available only to
the user who created them. Custom views are automatically persisted for the user
and are in effect only for that user account and only in the current domain.
(However, note that polled metric values that are displayed in custom views are
not persisted if you close the Monitoring Dashboard window, just as they are not
persisted for built-in views either.)

No custom views are available by default.

Using the Monitoring Dashboard 16-3

About the Monitoring Dashboard Interface

For more information, see the following topics in Oracle WebLogic Server Administration
Console Online Help:

s "Work with views in the Monitoring Dashboard"
= 'Start and stop views"

s "Create custom views"

s "Copy aview"

s '"Delete a view"

16.3.2 Metric Browser

Charts display metrics, which are attributes of MBean instances. Metrics can be either
of the following:

= Metrics whose values are obtained from active MBean instances in a running
WebLogic Server instance.

The running server instances are polled at regular intervals, and the charts that
display the metric values that are returned are continually updated (see
Section 16.4.1.1, "Current Time Range Charts").

s Collected metrics whose values are obtained from the Archive.

Collected metrics have been previously captured by the WLDF Harvester and
placed in the Archive, and they provide a record of past state. Charts that display
only collected metrics are not updated (see Section 16.4.1.2, "Custom Time Range
Charts").

You use the Metric Browser to select the metrics that you want to add to a chart. The
Metric Browser, shown in Figure 16-3, displays:

s Currently registered WebLogic MBean types
s Currently registered instances of MBean types
= Attributes of the listed registered instances

As a convenience for selecting metrics that have been collected by the Harvester, the
Metric Browser includes the Collected Metrics Only button. When you select this
button, the Metric Browser displays only collected metrics.

To see metrics for all run-time MBean types regardless of whether instances of them
are currently active, select Include All Types. To determine whether a metric was
collected by the harvester, select the metric, or leave the mouse positioned over it. A
note window is displayed that provides information about the metric, including
whether or not it is a collected metric (that is, collected by the harvester).

16-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

About the Monitoring Dashboard Interface

Figure 16-3 Metric Browser

Metric Browser

Servers:
tMedRecSener ¥ | Go

[collected Metrics only
include al Types
Types:

filtar

53¢

@Cnmpilationlmpl
@CunnectDrService
{C)EXBCampanent
@ EJBPonl

Instances:

Hlftar 4

i AdministratorRepositoryImpl, medrec

[:i AdministratorRepositoryImpl, physician

[:i AdministratorServiceImpl, medrec

[g AdrniristratorServicelmpl, physician w
Meatrics:

Hlftar 4

<> DestroyedTotalCount (ong) ~

¢ IdleBeansCount int}
4 MissTotalCount (long)
¢ PooledBeansCurrentCount (int)

W

To use the Metric Browser, select the server instance containing the metric values you
want to display. The Metric Browser can optionally constrain the list of MBean types,
registered instances, and metrics that are displayed to only those for which metric data
has been collected, or display all MBean types for the server even if they have no
active instances.

In addition, you do not need to find a metric by first selecting its MBean type and then
the instance in which it exists. You can select a metric in any order; for example, you
can start by first selecting a metric, or by first selecting the MBean instance if you
prefer. In addition, you can apply filters to each list to further constrain the items that
are displayed.

You can select and filter in any order. Selecting an item in one list may make a selection
in another and may also constrain other lists. Note the following behavior:

s Initially the Types list box shows all MBean types (as determined by the settings of
the Collected Metrics Only and Include All Types checkboxes), the Instances list
box shows all MBean instances, and the Metrics list box shows all metrics.

= Selecting a specific MBean type causes the MBean instances list to be constrained
to instances of that type and the metrics list to be constrained to metrics of that

type.

= Selecting (none) in the Types list specifies that no type is selected, which causes
the entries in the Instances and Metrics lists to be unconstrained.

» Selecting a specific MBean instance, either before or after making any other
selection, causes:

— The corresponding MBean type in the Types list box to become selected.

Using the Monitoring Dashboard 16-5

About the Monitoring Dashboard Interface

— The entries in the Metrics list to become constrained to only those metrics for
that MBean instance.

= Selecting a specific entry in the Metrics list box, either before or after making any
other selection, causes:

— The specific MBean type to which the metric corresponds to become selected
in the Types list.

— The Instances list to be constrained to the MBean instances to which the metric
corresponds.

= When you enter a filter string into any of the list boxes, you constrain the list
contents to include only the items that match the filter. The behaviors described in
the preceding items that are used in combination with the filter result in a
behavior similar to a "logical and."

The effect of these behaviors is to reinforce the relationships among MBean types,
MBean instances, and metrics. Each MBean instance is of a specific MBean type, and
each metric corresponds to a particular MBean type. The MBean type determines both
all the instances of that type as well as all the metrics that the type has.

For information about using the Metric Browser, see the following topics in Oracle
WebLogic Server Administration Console Online Help:

s "Work with the Metric Browser"
s "Select the server to monitor"
= "Display items in the Metric Browser"

= "Display summary notes about MBean instances and metrics in the Metric
Browser"

16.3.3 View Display Panel

A view is a collection of one or more charts that display captured metric values, as
shown in Figure 16—4. Only one view is displayed at a time in the Monitoring
Dashboard; however, multiple views can be running simultaneously.

16-6 Configuring and Using the Diagnostics Framework for Oracle WeblLogic Server

About the Monitoring Dashboard Interface

Figure 16-4 View Containing Four Charts

MyMedRec Local Metwork Channel[http] Server Channel on MedRecServer 1

Connections / Connections as Radial / -
g
4
3
2
1
]
1126000 112700 112800 11:29:00 11:30:00 11:31:00 11:32:00

O Connections Court ¥ I P r, I © Connections Count ¥

Bytes Sent/Received / - Accept / -
Etez
3,000,000 100
2,500,000
2,000,000 | 7
1,500,000 | =]
1,000,000

S00,000 =

] 1]
11:09:00 11:10:00 11:11:00 11012000 11:12:00 11:14:00 11:15:00 11:32:00 11:34:00 11:35:00 11:36:00 11:37:00
Buyles Received Count * Accept Count T

Bytes Sent Count

Each chart in the view contains a legend, labels, and controls for identifying and
displaying the data. The following chart styles can be included in a view:

» Time-series charts, such as a line plot or bar graph that show changes in each
metric’s value over a period of time

= Gauges, which show the current or most recent value of a metric along with the
following statistics that have been collected for the metric’s values:

— Minimum

- Maximum

- Average

— Standard deviation

Charts can show the metrics for a current time range, meaning that the chart is
updated continually as the Monitoring Dashboard obtains new values for the metric at
regular intervals. Or, for charts for which you specify a custom time range that has
already passed, charts can display collected metrics obtained from the Archive that
were captured by the Harvester.

For information about displaying and starting views, and arranging charts in them,
see the following topics in Oracle WebLogic Server Administration Console Online Help:

= "Display or create views, charts, and metrics: main steps"
s "Work with views in the Monitoring Dashboard"

= "Display views"

= 'Start and stop views"

For general details about Monitoring Dashboard charts, see Section 16.5, "The Parts of
a Chart."

Using the Monitoring Dashboard 16-7

Understanding How Metrics Are Collected and Presented

16.4 Understanding How Metrics Are Collected and Presented

As mentioned in Section 16.2, "Scope of the Diagnostic Information Displayed," the
Monitoring Dashboard displays metrics from two sources:

= Real-time, polled metric values that are obtained at regular intervals from running
WebLogic Server instances and returned to the Monitoring Dashboard.

= Metrics collected by the Harvester and placed into the Archive.

To view real-time, polled metrics in the Monitoring Dashboard, it is not necessary to
configure the Harvester. When a view is started with charts that contain one or more
real-time, polled metrics, the run-time MBean instances corresponding to those metrics
are polled at each configured interval, and the requested metric values are returned to
the Monitoring Dashboard. A polled metric is stored only once in the Monitoring
Dashboard, even if that metric has been added to multiple charts or multiple views.
The run-time MBean instance corresponding to that metric is also polled only once at
each interval, regardless of the number of charts or views in which its metric values
are displayed. So when an updated value for a metric arrives in the Monitoring
Dashboard, all charts containing that metric are updated simultaneously. This enables
the Monitoring Dashboard to minimize the performance overhead on your system and
maximize its overall efficiency.

To be able to view collected metrics, you must first configure the Harvester to collect
the data you want to monitor and have it available in the Archive. In a view with one
or more custom time range charts containing collected metrics, the values for those
metrics that correspond to the specific custom time ranges are fetched once from the
Archive and displayed in those charts. Note that collected metrics data is also
available for programmatic access, and it is written to a standard log,
HarvestedDataArchive, which you can view using the standard Administration
Console as well as the Monitoring Dashboard. For information about configuring the
Harvester to collect metrics, see Chapter 8, "Configuring the Harvester for Metric
Collection."

16.4.1 About Metrics and Chart Types

The way in which the Monitoring Dashboard presents metrics depends upon the chart
in which they are displayed. After you add a chart to a view, you can use the Chart
Properties dialog box to specify either of the following time ranges:

s Current
s Custom

The following sections provide key information about how metrics are presented in
each chart type.

16.4.1.1 Current Time Range Charts

This is the default time range for charts in the Monitoring Dashboard. Use this time
range for displaying real-time, polled metrics, which can be displayed only in current
time range charts. These charts are updated at regular intervals, which by default is
every 20 seconds. (The sample interval can be customized in the Dashboard
Preferences dialog box.)

When you add a metric to a current time range chart, the Monitoring Dashboard
fetches a small number of historical values for that metric from the Archive, if they are
available. Note the following about metric values obtained from the Archive for
current time range charts:

16-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Understanding How Metrics Are Collected and Presented

s The number of values fetched is derived from the amount of time over which the
stored samples can range, in which the sample interval is multiplied by the
maximum samples for the chart. (The default sampling interval is 20 seconds and
the default sample maximum is 100, which yields a time range of 2000 seconds, or
approximately 33.3 minutes.)

s If the sampling interval used by the Harvester is different from the one configured
for the Monitoring Dashboard, some distortion may be evident in the graphing of
that metric.

16.4.1.2 Custom Time Range Charts

Charts configured with a custom time range display collected metrics only. When you
specify a custom time range for a chart and add a collected metric, the Monitoring
Dashboard fetches the metric’s values from the Archive that match the specified time
range. These charts are static: once the Monitoring Dashboard displays collected
metrics in a custom time range chart, the values of those metrics are never updated.

Note the following:
s Custom time range charts never include real-time, polled metric values.

= Asa convenience for creating custom time range charts, the Metric Browser
includes a button labeled Collected Metrics Only. When you select this button,
the Metric Browser displays only collected metrics.

16.4.2 Sequence in which Metrics Data is Displayed

If the Harvester is configured to collected run-time MBean metrics, collection can
begin independently of whether the Monitoring Dashboard is running. This section
shows the sequence of activity that occurs when the Monitoring Dashboard collects
and displays metrics in current time range and custom time range charts.

1. If the Harvester is configured to collect data for a metric, it starts to harvest that
data after the server is started. The data is persisted in the Archive.

2. When the Monitoring Dashboard is launched, the list of available built-in and
custom views is displayed. However, the real-time polling of metric values
directly by JMX does not begin until one or more views are started.

3. When a view containing a current time range chart is started:

s The Monitoring Dashboard begins polling the run-time MBean instances
corresponding to the metrics contained in the chart.

s If the Harvester has collected data for this metric in the Archive, that data
added to the chart immediately. The number of samples that the Monitoring
Dashboard obtains from the Archive corresponds to the time range for the
chart.

s If the Harvester was not configured to harvest data for this metric, no
historical data is retrieved from the Archive for the metric and therefore none
is displayed.

4. When a view containing a custom time range chart is created, the Monitoring
Dashboard fetches from the Archive the set of values for the metric that match the
custom time range specified for that chart. Once the values are displayed in the
chart, the chart is never updated. The view in which a custom time range chart has
been added does not need to be started in order to have the values of its collected
metrics displayed.

Using the Monitoring Dashboard 16-9

The Parts of a Chart

As polled data values for a metric arrive in the Monitoring Dashboard, the new
values are added to the chart. The oldest values obtained from the Archive, if
available, are purged.

The chart always displays the most current data. The maximum samples for a
chart determines how many samples can be saved for metrics, in both current and
custom time range charts. After a chart reaches its maximum samples threshold,
the oldest metric values are removed as newest arrive.

16.4.3 Notes about Metric Data Retention

If you exit from the Monitoring Dashboard, either by closing the Monitoring
Dashboard window or by logging out, the browser prompts you to confirm your
choice because all metric values captured by the Monitoring Dashboard during the
session will be lost. Exiting from the Monitoring Dashboard has no effect on collected
metrics persisted in the Archive. However, note that the Archive may have a data
retirement policy in effect that limits how long data is retained there. For more
information, see Section 7.4, "Retiring Data from the Archives."

16.5 The Parts of a Chart

A chart consists of the following:

Chart name

Chart viewport, which shows the data values of one or more metrics that are
displayed according to the chart type. The type can be a time-series chart that plots
individual data points over a specified time span, or a gauge that shows the
current or most recent value of a metric along with statistics indicating maximum,
minimum, average, and standard deviation values.

X- and Y-axes for plotting diagnostic data

— For time-series charts, data point plots against a time-based X-axis. You can
zoom in or out to see a larger or smaller time segment in the viewport.

— The Y-axis has a range and, by default, the range is automatically set to
include all the data points in the chart.

- You can optionally configure minimum and maximum values for the Y-axis.

A legend for each metric that includes the name of the metric and the colored
marker symbol that is used for that metric in the chart viewport.

The metric legend includes a button that, when selected, provides access to
operations that can be performed with the metric, such as:

- Changing the name that is displayed for the metric in the chart, as well as the
shape and color used for the metric data points displayed in the chart
viewport

- Copying or moving the metric to another chart, moving the legend within the
current chart, or deleting the metric from the chart

Chart series overview

The chart series overview, which is available for time-series charts, indicates the
portion of metrics data currently visible in the chart in relation to the whole set of
data that has been collected for the corresponding metrics for the represented
period of time. You can "drag-select" in either the viewport or the chart series
overview to zoom in or out of the chart’s data.

16-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

The Parts of a Chart

The display of the chart series overview can optionally be suppressed, which can
be useful for reducing the number of UI artifacts that are displayed
simultaneously in the Monitoring Dashboard and also improving performance on
slower systems or browsers.

For information about customizing the display settings for the chart series
overview, see "Set dashboard preferences" in Oracle WebLogic Server Administration
Console Online Help.

= Buttons for panning the and zooming the data displayed on the chart’s X-axis.
These buttons are part of the chart series overview, so the display properties set for
the chart series overview also apply to these buttons.

s Optional Y-axis units label
s Chart menu, available by selecting the chart menu button

You can use the chart menu to add metrics, change the chart type, pan and zoom
data shown in the viewport, and set various chart properties.

s Edit tool

Select the edit tool to modify the chart name, Y-axis units label, and names used to
identify each metric added to the chart.

Figure 16-5 shows each of these parts as they appear in a line plot chart.

Figure 16-5 Parts of a Chart

Edit tool

pd

IEDSIETIEREEEEs | ocal Network Channel Chart menu button

Y.-axis units e | Byt sent

label 20,000,000

15,000,000 4—— Chart viewport

Y-axis 10,000,030 ﬂ-\;\h
%

5,000,000 Metric data points

X-axis P 0
121421300 12:48:40 12148150 12:49:00 12:49:10 12:49:20 12:49:30 12:49:40 12:49:50 12:50:00 Chart series
Metric Iegen{l — EytasSentCounb@MedRec Local |-‘— overview
‘ L 8 8 P 4_'_ Pan and zoom
controls

Metric legend button
A gauge chart, shown in Figure 16-6, contains the following additional information
about each metric that has been added to it:
s Minimum and maximum values
= Average value

s Standard deviation

Using the Monitoring Dashboard 16-11

The Parts of a Chart

Figure 16-6 Data Values Shown in Gauge Chart Types

Bytes Sent/Received v

Bytes

300 250

Current value

100/

Average value

B0

EO0

Minimum value L

Buyles Received Count ™
M"l}{lllllllll value
Bytes Sent Count

Shn(hr(l deviation

To display the numeric values indicated by each of these artifacts associated with a
particular metric in a gauge chart, position the mouse pointer over that metric’s
marker symbol, indicated in Table 16-6 by the label Current value.

For information about how to create, modify, and work with charts in the Monitoring
Dashboard, see the following topics in Oracle WebLogic Server Administration Console
Online Help:

= "Work with metrics in charts"

= "Add charts to a view"

= "Choose the chart type"

= "Display summary information about metrics in charts"
= "Pan and zoom the metrics data shown in a chart"

= "Reset gauge statistics"

= "Copy or move charts"

= "Set chart time range"

= "Control the Y-axis range"

= "Display thresholds in charts"

16-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

17

Configuring and Using WLDF
Programmatically

This chapter describes how to enable, configure, and monitor the WebLogic
Diagnostics Framework (WLDF) programmatically, using the JMX API and the
WebLogic Scripting Tool (WLST), as an alternative to performing these tasks using the
WebLogic Server Administration Console

This chapter includes the following sections:

How WLDF Generates and Retrieves Data

Mapping WLDF Components to Beans and Packages
Programming Tools

WLDF Packages

Programming WLDEF: Examples

In addition to the information provided in those sections, use the information in the
following manuals to develop and deploy applications, and to use WLST:

Developing Applications for Oracle WebLogic Server

Developing Manageable Applications Using [MX for Oracle WebLogic Server
Developing Custom Management Utilities Using [MX for Oracle WebLogic Server
Deploying Applications to Oracle WebLogic Server

Understanding the WebLogic Scripting Tool

17.1 How WLDF Generates and Retrieves Data

In general, diagnostic data is generated and retrieved by WLDF components following
this process:

The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image
Capture, and Watch and Notification components determine the type and amount
of diagnostic data generated while a server is running.

The diagnostic context and instrumentation settings filter and monitor this data as
it flows through the system. Data is harvested, actions are triggered, events are
generated, and configured notifications are sent.

The Archive component stores the data.

The Accessor component retrieves the data.

Configuring and Using WLDF Programmatically 17-1

Mapping WLDF Components to Beans and Packages

Configuration is primarily an administrative task, accomplished either through the
Administration Console or through WLST scripts. Deployable descriptor modules,
XML configuration files, are the primary method for configuring diagnostic resources
at both the system level (servers and clusters) and at the application level. (For
information about configuring WLDF resources, see Chapter 5, "Understanding WLDF
Configuration.")

Output retrieval via the Accessor component can be either an administrative or a
programmatic task.

17.2 Mapping WLDF Components to Beans and Packages

When you create WLDF resources using the Administration Console or WLST,
WebLogic Server creates MBeans (managed beans=) for each resource. You can then
access these MBeans using JMX or WLST. Because WLST is a JMX client; any task you
can perform using WLST you can also perform programmatically through JMX.

Table 17-1 lists the beans and packages associated with WLDF and its components.
Figure 17-1 groups the beans by type.

Table 17-1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

WLDEF WLDFServerDiagnosticMBean
WLDFSystemResourceMBean
WLDFBean (abstract)
WLDFResourceBean
WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean
WLDFImageCreationTaskRuntimeMBean
WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean
WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context
DiagnosticContextHelper

DiagnosticContextConstants

Harvester WLDFHarvesterBean
WLDFHarvested TypeBean
WLDFHarvesterRuntimeMBean

17-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Mapping WLDF Components to Beans and Packages

Table 17-1 (Cont.) Mapping WLDF Components to Beans and Packages

Component Beans / Packages

Watch & Notification WLDEFENotificationBean
WLDFWatchNotificationBean
WLDFJMSNotificationBean
WLDFJMXNotificationBean
WLDFSMTPNotificationBean
WLDFSNMPNotificationBean
WLDFWatchNotificationRuntimeMBean
Package: weblogic.diagnostics.watch
JMXWatchNotification
WatchNotification

Archive WLDFArchiveRuntimeMBean
WLDEFDbstoreArchiveRuntimeMBean
WLDFFileArchiveRuntimeMBean
WLDFWIstoreArchiveRuntimeMBean

Accessor WLDFA ccessRuntimeMBean
WLDFDataAccessRuntimeMBean

Runtime Control WLDEFControlRuntimeMBean
WLDFSystemResourceControlRuntimeMBean

Configuring and Using WLDF Programmatically 17-3

Programming Tools

Figure 17-1 WLDF Configuration MBeans, Run-Time MBeans, and System Module

-,

Beans
WebLogic Diagnostic Framework)
Domain Configuration MBeans
WLDFSystemResourceMBean j (WLDFServerDiagnosticMBean

System Module MBeans

VWLDFBean (abstract) WLDFInstrumentationBean VWLDFMotificationBean

WLDFHarvestedTypeBean WLDFInstrumentationMonitorBean WLDFResourceBean

WLDFHarvesterBean WLDFJMSMotificationBean WLDFSMTPMotificationBean

N A A S
I P

TN Y T Yy Y

WLDFImageMotificationBean

A A A
YT Y =Y Y
A A A A

WLDFJMXMotificationBean] (WLDFSMMPMotificationBean

[WLDFWatchBean j [WLDFWatchMetificationBean]

Runtime MBeans

WLDFAccessRuntimeMBean WLDFFileArchiveRuntimeMBean

WLDFInstrumentationRuntime
[MBean

WLDFArchiveRuntimeMBean WLDFHarvesterRuntimeMBean WLDFRuntimeMBean

WLDFDataAccessRuntimeMBean

VWLDFImageCreationTaskRuntime WLDFCentrolRuntimeMBean

MBean

WLDFDbstoreArchiveRuntime

Il-"llr 1 .'\'I
MBean WLDFImageRuntimeMBean

WLDFWistoreArchiveRuntime
[MBean

WLDFDataRetirementTaskRuntime
MBean

WLDFEditableArchiveRuntime
[MBean

—— e W

WLDFHarvesterManagerRuntime

WLDFSystemResourceCantrol
RuntimeMBean

WLDFWatchManagerRuntime

[MBean [MBean

b A A A A A
h A AL A AL A

WLDFWatchMotification
RuntimeMBean

A A A A A)

A

WLDFWatchMotificationSourceRuntimeMBean

17.3 Programming Tools

The WebLogic Diagnostics Framework enables you to perform the following tasks
programmatically:

» Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Watch and Notification components at the server level.

s Use JMX to access WLDF operations and attributes.

s Use JMX to create custom MBeans that contain harvestable data. You can then
configure the Harvester to collect that data and configure a watches and
notifications to monitor the values.

= Write Java programs that perform the following tasks:

- Capture notifications using J]MX listeners.

17-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Programming Tools

- Capture notifications using JMS.

— Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JMX
programming to retrieve diagnostic data.)

17.3.1 Configuration and Run-Time APIs

The configuration and run-time APIs configure and monitor WLDE. Both the
configuration and run-time APIs are exposed as MBeans.

s The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their run-time behavior.

= The run-time MBeans monitor the run-time state and the operations defined for
the different components.

You can use the APIs to configure, activate, and deactivate data collection; to configure
watches, notifications, alarms, and diagnostic image captures; and to access data.

17.3.1.1 Configuration APIs

The Configuration APIs define interfaces that are used to configure the following
WLDF components:

= Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

- For the Instrumentation component, you can enable, disable, create, and
destroy server-level instrumentation and instrumentation monitors.

Note: The configuration APIs do not support configuration of
application-level instrumentation. However, configuration changes for
application-level instrumentation can be effected using Java
Specification Request (JSR) 88 APIs.

- For the Harvester component, you can add and remove types to be harvested,
specify which attributes and instances of those types are to be harvested, and
set the sample period for the harvester.

- For the Diagnostic Image Capture component, you can set the name and path
of the directory in which the image capture is to be stored and the events
image capture interval, that is, the time interval during which recently
archived events are captured in the diagnostic image.

= Watch and Notifications: You can use the configuration APIs to enable, disable,
create, and destroy watches and notifications. You can also use the configuration
APIs to:

- Set the rule type, watch-rule expressions, and severity for watches
- Setalarm type and alarm reset period for notifications

- Configure a watch to trigger a diagnostic image capture

- Add and remove notifications from watches

= Archive: Set the archive type and the archive directory

Configuring and Using WLDF Programmatically 17-5

WLDF Packages

17.3.1.2 Run-Time APIs

The run-time APIs define interfaces that are used to monitor the run-time state of the
WLDF components. Instances of these APIs are instantiated on instances of
individually managed servers. These APIs are defined as run-time MBeans, so JMX
clients can easily access them.

The run-time APIs encapsulate all other run-time interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the run-time APIs to monitor the following WLDF components:

Data Collectors—You can use the run-time APIs to monitor the Instrumentation,
Harvester, and the Image Capture components.

- For the Instrumentation component, you can monitor joinpoint count
statistics, the number of classes inspected for instrumentation monitors, the
number of classes modified, and the time it takes to inspect a class for
instrumentation monitors.

- For the Harvester component, you can query the set of harvestable types,
harvestable attributes, and harvestable instances (that is, the instances that are
currently harvestable for specific types). And, you can also query which types,
attributes, and instances are currently configured for harvesting. The sampling
interval and various run-time statistics pertaining to the harvesting process are
also available.

- For the Image Capture component, you can specify the destination and
lockout period for diagnostic images and initiate image captures.

Watches and Notifications: You can use the run-time APIs to monitor the Watches
and Notifications and Archive components.

- For the Watches and Notifications component, you can reset watch alarms and
monitor statistics about watch-rule evaluations and watches triggered,
including information about the analysis of alarms, events, log records, and
harvested metrics.

Archive: You can monitor information about the archive, such as file name and
archive statistics.

Data Accessor—You can use the run-time APIs to retrieve the diagnostic data
persisted in the different archives. The run-time APIs also support data filtering by
allowing you to specify a query expression to search the data from the underlying
archive. You can monitor information about column type maps (a map relating
column names to the corresponding type names for the diagnostic data), statistics
about data record counts and timestamps, and cursors (cursors are used by clients
to fetch data records).

17.4 WLDF Packages

The following two packages are provided:

weblogic.diagnostics.context contains:

- DiagnosticContextConstants, which defines the indices of dye flags supported
by the WebLogic diagnostics system.

- DiagnosticContextHelper, which provides applications limited access to the
diagnostic context.

weblogic.diagnostics.watch contains:

17-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Programming WLDF: Examples

- JMXWatchNotification, an extended JMX notification object which includes
additional information about the notification. This information is contained in
the referenced WatchNotification object returned from method
getExtendedInfo.

— WatchNotification, which defines a notification for a watch rule.

17.5 Programming WLDF: Examples

The examples described in the following sections use WLDF beans and packages to
access and modify information about a running server:

ms Section 17.5.1, "Example: DiagnosticContextExample.java"
m Section 17.5.2, "Example: HarvesterMonitor.java"
= Section 17.5.3, "Example: JMXAccessorExample.java"

In addition, see the WLST and JMX examples in Appendix D, "WebLogic Scripting
Tool Examples."

17.5.1 Example: DiagnosticContextExample.java

The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_0 flag. (For
information about diagnostic contexts, see Chapter 13, "Configuring the Dyelnjection
Monitor to Manage Diagnostic Contexts.")

To compile and run the program:

1. Copy the DiagnosticContextExample java example (Example 17-1) to a directory
and compile it with:

javac -d . DiagnosticContextExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it
with DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java weblogic.diagnostics.examples.DiagnosticContextExample
Sample output is similar to:

java weblogic.diagnostics.examples.DiagnosticContextExample
ContextId=5b7898f93bf010ce:40305614:1048582efd4:-8000-0000000000000001
isDyedWith (DYE_0)=false

isDyedWith (DYE_0)=true

Example 17-1 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
public static void main(String args[]) throws Exception {
System.out.println("ContextId=" +
DiagnosticContextHelper.getContextId());
System.out.println("isDyedWith (DYE_0)=" +
DiagnosticContextHelper.isDyedWith (DiagnosticContextHelper.DYE_0));
DiagnosticContextHelper.setDye (DiagnosticContextHelper.DYE_0, true);
System.out.println("isDyedWith (DYE_0)=" +
DiagnosticContextHelper.isDyedWith (DiagnosticContextHelper.DYE_O));

Configuring and Using WLDF Programmatically 17-7

Programming WLDF: Examples

17.5.2 Example: HarvesterMonitor.java

The HarvesterMonitor program uses the Harvester JMX notification to identify when a
harvest cycle has occurred. It then retrieves the new values using the Accessor. All
access is performed through JMX. A description of notification listeners and the
HarvesterMonitor.java code are provided in the following sections:

s Section 17.5.2.1, "Notification Listeners"
= Section 17.5.2.2, "HarvesterMonitor.java"

For information about the Harvester component, see Chapter 8, "Configuring the
Harvester for Metric Collection."

17.5.2.1 Notification Listeners

Notification listeners provide an appropriate implementation for a particular transport
medium. For example, SMTP notification listeners provide the mechanism to establish
an SMTP connection with a mail server and trigger an e-mail with the notification
instance that it receives. JMX, SNMP, JMS and other types of listeners provide their
respective implementations as well.

Note: You can develop plug-ins that propagate events generated by
the WebLogic Diagnostics Framework using transport mediums other
than SMTP, JMX, SNMP, or JMS. One approach is to use the J]MX
NotificationListener interface to implement an object, and then
propagate the notification according to the requirements of the
selected transport medium.

Table 17-2 describes each notification listener type that is provided with WebLogic
Server and the relevant configuration settings for each type.

Table 17-2 Notification Listener Types

Notificatio
n Medium Description Configuration Parameter Requirements
JMS Propagated via JMS Required: Destination JNDI name.

Message queues or topics. Optional: Connection factory JNDI name (use the

default JMS connection factory if not present).

JMX Propagated via standard None required. Uses predefined singleton for
JMX notifications. posting the event.
SMTP Propagated via regular Required: MailSession JNDI name and Destination
e-mail. e-mail.
Optional: Subject and body (if not specified, use
default)
SNMP Propagated via SNMP traps None required, but the SNMPTrapDestination
and the WebLogic Server MBean must be defined in the WebLogic SNMP
SNMP Agent. agent.

By default, all notifications fired from watch rules are stored in the server log file in
addition to being fired through the configured medium.

17-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Programming WLDF: Examples

17.5.2.2 HarvesterMonitor.java
To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 17-2) to a directory and
compile it with:

javac -d . HarvesterMonitor.java
This will create the ./weblogic/diagnostics/examples directory and populate it
with HarvesterMonitor.class and HarvesterMonitor$HarvestCycleHandler.class.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

You will need access to a WebLogic Server instance, and will need to know the
server's name, port number, administrator's login name, and the administrator's
password.

You can provide an optional list of harvested type names. If provided, the
program will display only the values for those types. However, for each selected
type, the monitor displays the complete set of collected values; there is no way to
constrain the values that are displayed for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values
collected solely to support watch rules (implicit values) are not displayed.

The following command requires that "." is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
command connects to the myserver server, at port 7001, as user weblogic (and also
the password, shown as password):

java weblogic.diagnostics.examples.HarvesterMonitor myserver 7001
weblogic password
See Example 17-3 for an example of output from the HarvesterMonitor.

Example 17-2 Example: HarvesterMonitor.java

package weblogic.diagnostics.examples;

import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
import javax.management.*;

import javax.management.remote.*;

import javax.naming.Context;

import java.util.*;

public class HarvesterMonitor {

private static String accessorRuntimeMBeanName;

private static ObjectName accessorRuntimeMBeanObjectName;
private static String harvRuntimeMBeanName;

private static ObjectName harvRuntimeMBeanObjectName;

private static MBeanServerConnection rmbs;

private static ObjectName getObjectName (String objectNameStr) {

try { return new ObjectName (getCanonicalName (objectNameStr)); }
catch (RuntimeException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new

RuntimeException (x); }
}
private static String getCanonicalName (String objectNameStr) {

try { return new ObjectName (objectNameStr) .getCanonicalName(); }
catch (RuntimeException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new

RuntimeException(x); }
}

private static String serverName;

Configuring and Using WLDF Programmatically 17-9

Programming WLDF: Examples

private static int port;
private static String userName;
private static String password;
private static ArrayList typesToMonitor = null;
public static void main(String[] args) throws Exception {
if (args.length < 4) {
System.out.println(
"Usage: java weblogic.diagnostics.harvester.HarvesterMonitor " +
"<gerverName> <port> <userName> <password> [<types>]" +
weblogic.utils.PlatformConstants.EOL +
" where <types> (optional) is a comma-separated list " +
"of types to monitor.");
System.exit (1) ;
}
serverName = args[0];
port = Integer.parselnt(args[l]);
userName = args[2];
password = args[3];
accessorRuntimeMBeanName = getCanonicalName (

"com.bea:ServerRuntime=" + serverName +

", Name=HarvestedDataArchive, Type=WLDFDataAccessRuntime" +

", WLDFAccessRuntime=Accessor, WLDFRuntime=WLDFRuntime") ;

accessorRuntimeMBeanObjectName =

getObjectName (accessorRuntimeMBeanName) ;
harvRuntimeMBeanName = getCanonicalName (

"com.bea:ServerRuntime=" + serverName +

", Name=WLDFHarvesterRuntime, Type=WLDFHarvesterRuntime" +

", WLDFRuntime=WLDFRuntime") ;
harvRuntimeMBeanObjectName = getObjectName (harvRuntimeMBeanName) ;
if (args.length > 4) {

String typesStr = args([4];

typesToMonitor = new ArrayList();

int index;

while ((index = typesStr.indexOf(",")) > 0) {

String typeName = typesStr.substring(0,index).trim();

typesToMonitor.add (typeName) ;

typesStr = typesStr.substring (index+1) ;

}
typesToMonitor.add (typesStr.trim());
}
rmbs = getRuntimeMBeanServerConnection();
new HarvesterMonitor().new HarvestCycleHandler();
while(true) {Thread.sleep(100000);}
}
static protected String JNDI = "/jndi/";
static public MBeanServerConnection getRuntimeMBeanServerConnection()
throws Exception {
JMXServiceURL serviceURL;
serviceURL =

new JMXServiceURL("t3",

"localhost",

port,

JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME) ;
System.out.println("ServerName=" + serverName) ;
System.out.println("URL=" + serviceURL);

Hashtable h = new Hashtable();

h.put (Context.SECURITY_PRINCIPAL, userName) ;

h.put (Context .SECURITY_CREDENTIALS, password);

h.put (IMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote") ;

17-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Programming WLDF: Examples

JMXConnector connector = JMXConnectorFactory.connect (serviceURL, h);
return connector.getMBeanServerConnection();
}
class HarvestCycleHandler implements NotificationListener {
// used to track harvest cycles
private int timestampIndex;
private int domainIndex;
private int serverIndex;
private int typelIndex;
private int instNameIndex;
private int attrNameIndex;
private int attrTypelndex;
private int attrValueIndex;
long lastSampleTime = System.currentTimeMillis();
HarvestCycleHandler () throws Exception({
System.out.println("Harvester monitor started...");
try {
setUpRecordIndices () ;
rmbs.addNotificationListener (harvRuntimeMBeanObjectName,
this, null, null);
}
catch (javax.management.InstanceNotFoundException x) {
System.out.println("Cannot find JMX data. " +
"Is the server name correct?");
System.exit (1) ;

}
private void setUpRecordIndices() throws Exception {
Map columnIndexMap = (Map)rmbs.getAttribute (
accessorRuntimeMBeanObjectName, "ColumnIndexMap");

timestampIndex =
((Integer)columnIndexMap.get ("TIMESTAMP")) .intValue() ;
domainIndex =
((Integer)columnIndexMap.get ("DOMAIN")) .intValue() ;
serverIndex =
((Integer)columnIndexMap.get ("SERVER")) .intValue() ;
typeIndex =
((Integer)columnIndexMap.get ("TYPE")) .intValue();
instNameIndex =
((Integer)columnIndexMap.get ("NAME")) .intValue() ;
attrNameIndex =
((Integer)columnIndexMap.get ("ATTRNAME")) .intValue() ;
attrTypeIndex =
((Integer)columnIndexMap.get ("ATTRTYPE")) .intValue() ;
attrValueIndex =

((Integer)columnIndexMap.get ("ATTRVALUE")) .intValue() ;
}
public synchronized void handleNotification (Notification notification,
Object handback) {
System.out.printIn("\n-—------———— - "y
long thisSampleTime = System.currentTimeMillis()+1;
try {
String lastTypeName = null;
String lastInstName = null;
String cursor = (String)rmbs.invoke (accessorRuntimeMBeanObjectName,
"openCursor",
new Object[]{new Long(lastSampleTime),
new Long(thisSampleTime), null},
new String[]{ "java.lang.Long",
"java.lang.Long", "java.lang.String" });

Configuring and Using WLDF Programmatically 17-11

Programming WLDF: Examples

while (((Boolean)rmbs.invoke (accessorRuntimeMBeanObjectName,
"hasMoreData",
new Object[]{cursor},
new String[]{"java.lang.String"})) .booleanvalue()) {
Object[] os = (Object[])rmbs.invoke (accessorRuntimeMBeanObjectName,
"fetch",

new Object[]{cursor},
new String[]{"java.lang.String"});
for (int i = 0; 1 < os.length; i++) {

Object[] values = (Object[])os[i];

String typeName = (String)values|[typelndex];
String instName = (String)values[instNameIndex];
String attrName = (String)values[attrNameIndex];
if (!typeName.equals (lastTypeName)) {

if (typesToMonitor != null &&
ItypesToMonitor.contains (typeName)) continue;

System.out.println("\nType " + typeName) ;
lastTypeName = typeName;

}

if (!instName.equals(lastInstName)) {
System.out.println("\n Instance " + instName);
lastInstName = instName;

}

Object attrValue = values|[attrValueIndex];

System.out.println(" - " + attrName + "=" + attrValue);

}
lastSampleTime = thisSampleTime;
}

catch (Exception e) {e.printStackTrace();}

Example 17-3 contains sample output from the HarvesterMonitor program:

Example 17-3 Sample Output from HarvesterMonitor

ServerName=myserver
URL=service:jmx:t3://localhost:7001/jndi/weblogic.management .mbeanservers.runtime
Harvester monitor started...
Type weblogic.management.runtime.WLDFHarvesterRuntimeMBean
Instance com.bea:Name=WLDFHarvesterRuntime, ServerRuntime=myserver, Type=WLDFHarveste
rRuntime, WLDFRunt ime=WLDFRuntime

- TotalSamplingTime=202048863

- CurrentSnapshotElapsedTime=1839619
Type weblogic.management.runtime.ServerRuntimeMBean

Instance com.bea:Name=myserver, Type=ServerRuntime

- RestartRequired=false

- ListenPortEnabled=true

- ActivationTime=1118319317071

- ServerStartupTime=40671

- ServerClasspath= [deleted long classpath listing]

- CurrentMachine=

- SocketsOpenedTotalCount=1

- State=RUNNING

- RestartsTotalCount=0

- AdminServer=true

- AdminServerListenPort=7001

17-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Programming WLDF: Examples

- ClusterMaster=false

- StatevVal=2

- CurrentDirectory=C:\testdomain\.
- AdminServerHost=10.40.8.123

- OpenSocketsCurrentCount=1

- ShuttingDown=false

- SSLListenPortEnabled=false

- AdministrationPortEnabled=false

- AdminServerListenPortSecure=false
- Registered=true

17.5.3 Example: JMXAccessorExample.java

The following example program uses JMX to print log entries to standard out. All
access is performed through JMX. (For information about the Accessor component, see
Chapter 14, "Accessing Diagnostic Data With the Data Accessor.")

To compile and run the program:

1.

Copy the JMXAccessorExample.java example (Example 17—4) to a directory and
compile it with:

javac -d . JMXAccessorExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it
with JMXAccessorExample.class.

Start the program. The command syntax is:

java weblogic.diagnostics.example.JMXAccessor <logicalName> <query>

You will need access to a WebLogic Server instance, and will need to know the
server's name, port number, administrator's login name, and the administrator's
password.

The logicalName is the name of the log. Valid names are: HarvestedDataArchive,
EventsDataArchive, ServerLog, DomainLog, HTTPAccessLog,
ServletAccessorHelper WEBAPP_LOG, RAUtil. CONNECTOR_LOG,
JMSMessageLog, and CUSTOM.

The query is constructed using the syntax described in Appendix A, "WLDF
Query Language." For the JMXAccessorExample program, an empty query (an
empty pair of double quotation marks, ") returns all entries in the log.

The following command requires that ." is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
program uses the IIOP (Internet Inter-ORB Protocol) protocol to connect to port
7001, as user weblogic, with a password shown as password, and prints all entries
in the ServerLog to standard out:

java weblogic.diagnostics.examples.JMXAccessorExample ServerLog ""

You can modify the example to use a username/password combination for your
site.

Example 17-4 JMXAccessorExample.java

package weblogic.diagnostics.examples;
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

Configuring and Using WLDF Programmatically 17-13

Programming WLDF: Examples

import java.util.Iterator;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;
public class JMXAccessorExample {
private static final String JNDI = "/jndi/";
public static void main(String[] args) {
try {
if (args.length != 2) {
System.err.println("Incorrect invocation. Correct usage is:\n" +
"java weblogic.diagnostics.examples.JMXAccessorExample " +
"<logicalName> <query>");
System.exit (1) ;
}
String logicalName = args[0];
String query = args[l];
MBeanServerConnection mbeanServerConnection =
lookupMBeanServerConnection() ;
ObjectName service = new
ObjectName (weblogic.management .mbeanservers.runtime.RuntimeServiceMBean.0B
JECT_NAME) ;
ObjectName serverRuntime =
(ObjectName) mbeanServerConnection.getAttribute(service,
"ServerRuntime") ;
ObjectName wldfRuntime =
(ObjectName) mbeanServerConnection.getAttribute (serverRuntime,
"WLDFRuntime") ;
ObjectName wldfAccessRuntime =
(ObjectName) mbeanServerConnection.getAttribute (wldfRuntime,
"WLDFAccessRuntime") ;
ObjectName wldfDataAccessRuntime =
(ObjectName) mbeanServerConnection.invoke (wldfAccessRuntime,
"lookupWLDFDataAccessRuntime", new Object[] {logicalName},
new String[] {"java.lang.String"});
String cursor =
(String) mbeanServerConnection.invoke (wldfDataAccessRuntime,
"openCursor", new Object[] {query},
new String[] {"java.lang.String"});
int fetchedCount = 0;
do {
Object[] rows =
(Object[]) mbeanServerConnection.invoke (wldfDataAccessRuntime,
"fetch", new Object[] {cursor},
new String[] {"java.lang.String"});
fetchedCount = rows.length;
for (int i1=0; i<rows.length; i++) {
StringBuffer sb = new StringBuffer();

Object[] cols = (Object[]) rows[i];
for (int j=0; j<cols.length; j++) {
sb.append("Index " + j + "=" + cols[j].toString() + " ");
}
System.out.println("Found row = " + sb.toString());

}
} while (fetchedCount > 0);
mbeanServerConnection. invoke (wldfDataAccessRuntime,
"closeCursor", new Object[] {cursor},

17-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Programming WLDF: Examples

new String[] {"java.lang.String"});
} catch(Throwable th) {
th.printStackTrace() ;
System.exit (1) ;

}
private static MBeanServerConnection lookupMBeanServerConnection ()
throws Exception {
// construct JMX service URL
JMXServiceURL serviceURL;
serviceURL = new JMXServiceURL("iiop", "localhost", 7001,
JNDI + "weblogic.management.mbeanservers.runtime");
// Specify the user, password, and WebLogic provider package
Hashtable h = new Hashtable();
h.put (Context.SECURITY_PRINCIPAL, "weblogic");
h.put (Context.SECURITY_CREDENTIALS, "password") ;
h.put (JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote") ;
// Get jmx connector
JMXConnector connector = JMXConnectorFactory.connect (serviceURL,h);
// return MBean server connection class
return connector.getMBeanServerConnection() ;
} // End - lookupMBeanServerConnection

Configuring and Using WLDF Programmatically 17-15

Programming WLDF: Examples

17-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A

WLDF Query Language

WLDF includes a query language for constructing watch rule expressions, Data
Accessor query expressions, and log filter expressions. The syntax is a small and
simplified subset of SQL syntax.

The language is described in the following sections:

s Components of a Query Expression

= Supported Operators

= Operator Precedence

= Numeric Relational Operations Supported on String Column Types
s Supported Numeric Constants and String Literals

= About Variables in Expressions

» Creating Watch Rule Expressions

s Creating Data Accessor Queries

» Creating Log Filter Expressions

= Building Complex Expressions

A.1 Components of a Query Expression
A query expression may include:
s Operators. (See Section A.2, "Supported Operators.")
= Literals. (See Section A.5, "Supported Numeric Constants and String Literals.")

» Variables. The supported variables differ for each type of expression. (See
Section A.6, "About Variables in Expressions.")

The query language is case-sensitive.

A.2 Supported Operators

The query language supports the operators listed in Table A-1.

Table A-1 WLDF Query Language Operators

Operator Supported
Operator Type Operand Types Definition
AND Logicalbinary Boolean Evaluates to true when both expressions are

true.

WLDF Query Language A-1

Operator Precedence

Table A-1 (Cont.) WLDF Query Language Operators

Operator

Operator Type

Supported
Operand Types

Definition

OR Logical binary

Boolean

Evaluates to true when either expression is
true.

NOT Logical unary

Boolean

Evaluates to true when the expression is not
true.

& Bitwise binary

Numeric,

Dye flag

Performs the bitwise AND function on each
parallel pair of bits in each operand. If both
operand bits are 1, the & function sets the
resulting bit to 1. Otherwise, the resulting bit is
set to 0.

Examples of both the & and the | operators
are:

1010 & 0010 = 0010
1010 | 0001 = 1011
(1010 & (1100 | 1101)) = 1000

Bitwise binary

Numeric,

Dye flag

Performs the bitwise OR function on each
parallel pair of bits in each operand. If either
operand bit is 1, the | function sets the
resulting bit to 1. Otherwise, the resulting bit is
set to 0.

For examples, see the entry for the bitwise &
operator, above.

= Relational

Numeric, String

Equals

1= Relational

Numeric

Not equals

< Relational

Numeric

Less than

> Relational

Numeric

Greater than

<= Relational

Numeric

Less than or equals

>= Relational

Numeric

Greater than or equals

Match

String

Evaluates to true when a character string
matches a specified pattern that can include
wildcards.

LIKE supports two wildcard characters:

A percent sign (%) matches any string of zero
or more characters

A period (.) matches any single character

MATCHE
S

Match

String

Evaluates to true when a target string matches
the regular expression pattern in the operand
String.

IN Search

String

Evaluates to true when the value of a variable
exists in a predefined set, for example:

SUBSYSTEM IN ('A','B')

A.3 Operator Precedence

The following list shows the levels of precedence among operators, from the highest
precedence to the lowest. Operators listed on the same line have equivalent

precedence:

A-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Supported Numeric Constants and String Literals

1.0
NOT

&, |

=, =, <, >, <=, >=, LIKE, MATCHES,IN
AND

OR

o g & 0 b

A.4 Numeric Relational Operations Supported on String Column Types

Numeric relational operations can be performed on String column types when they
hold numeric values. For example, if STATUS is a String type, while performing
relational operations with a numeric operand, the column value is treated as a numeric
value. For instance, in the following comparisons:

STATUS = 100
STATUS !=100
STATUS < 100
STATUS <= 100
STATUS > 100
STATUS >= 100

the query evaluator attempts to convert the string value to appropriate numeric value
before comparison. When the string value cannot be converted to a numeric value, the
query fails.

A.5 Supported Numeric Constants and String Literals
Rules for numeric constants are as follows:
= Numeric literals can be integers or floating point numbers.

= Numeric literals are specified the same as in Java. Some examples of numeric
literals are 2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

Rules for string literals are as follows:
= String literals must be enclosed in single quotes.
= A percent character (%) can be used as a wildcard inside string literals.

= Anunderscore character (_) can be used as a wildcard to stand for any single
character.

= A backslash character (\) can be used to escape special characters, such as a quote
(") or a percent character (%).

= For watch rule expressions, you can use comparison operators to specify threshold
values for String, Integer, Long, Double, Boolean literals.

» The relational operators do a lexical comparison for Strings. For more information,
see the documentation for the java.lang.String.compareTo(String str) method.

WLDF Query Language A-3

About Variables in Expressions

A.6 About Variables in Expressions

Variables represent the dynamic portion of a query expression that is evaluated at run
time. You must use variables that are appropriate for the type of expression you are
constructing, as documented in the following sections:

= Section A.7, "Creating Watch Rule Expressions"
= Section A.8, "Creating Data Accessor Queries"

= Section A.9, "Creating Log Filter Expressions"

Caution: When specifying a wildcard pattern in a variable for a
watch rule expression that matches custom MBean ObjectName
instances, make sure the pattern is sufficiently explicit. If you exclude
an MBean type name and use an ambiguous instance pattern, the
following may result:

= Only WebLogic Server run-time MBean instances are matched to
the pattern.

» The desired custom MBean instances are ignored.

For example, the following ObjectName pattern does not explicitly
declare a type and uses an ambiguous ObjectName pattern that can
match a WebLogic Server run-time MBean instance:

${ServerRuntime//com.b*:Type=Server*, *}

The preceding pattern matches the WebLogic Server run-time MBean
instances, and causes any custom MBeans matching the same pattern
to be ignored.

A.7 Creating Watch Rule Expressions

You can create watches based on log events, instrumentation events, and harvested
attributes. The variables supported for creating the expressions are different for each
type of watch, as described in the following sections:

= Section A.7.1, "Creating Log Event Watch Rule Expressions"

= Section A.7.2, "Creating Instrumentation Event Watch Rule Expressions"

= Section A.7.3, "Creating Harvester Watch Rule Expressions"

For complete documentation about configuring and using WLDF watches, see:
s Chapter 9, "Configuring Watches and Notifications"

s Chapter 10, "Configuring Watches"

A.7.1 Creating Log Event Watch Rule Expressions

A log event watch rule expression is based upon the attributes of a log message from
the server log.

Variable names for log message attributes are listed and explained in Table A-2:

A-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Creating Watch Rule Expressions

Table A-2 Variable Names for Log Event Watch Rule Expressions

Variable Description Data Type
CONTEXTID The request ID propagated with the request. String
DATE Date when the message was created. String
MACHINE Name of machine that generated the log message. String
MESSAGE Message content of the log message. String
MSGID ID of the log message (usually starts with "BEA="). String
RECORDID The number of the record in the log. Long
SERVER Name of server that generated the log message. String
SEVERITY Severity of log message. Values are Info, Notice, String
Warning, Error, Critical, Alert, and Emergency.
SUBSYTEM Name of subsystem emitting the log message. String
THREAD Name of thread that generated the log message. String
TIMESTAMP Timestamp when the log message was created. Long
TXID JTA transaction ID of thread that generated the log String
message.
USERID ID of the user that generated the log message. String

An example log event watch rule expression is:

(SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

A.7.2 Creating Instrumentation Event Watch Rule Expressions

An instrumentation event watch rule expression is based upon attributes of a data
record created by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in
Table A-3:

Table A-3 Variable Names for Instrumentation Event Rule Expressions

Variable Description Data Type
ARGUMENTS Arguments passed to the method that was String
invoked.
CLASSNAME Class name of joinpoint. String
CONTEXTID Diagnostic context ID of instrumentation event. String
CTXPAYLOAD The context payload associated with this request. = String
DOMAIN Name of domain. String
DYES Dyes associated with this request. Long
FILENAME Source file name. String
LINENUM Line number in source file. Integer
METHODNAME Method name of joinpoint. String
METHODDSC Method arguments of joinpoint. String
MODULE Name of the diagnostic module. String

WLDF Query Language A-5

Creating Watch Rule Expressions

Table A-3 (Cont.) Variable Names for Instrumentation Event Rule Expressions

Variable Description Data Type

MONITOR Name of the monitor. String

PAYLOAD Payload of instrumentation event. String

RECORDID The number of the record in the log. Long

RETVAL Return value of joinpoint. String

SCOPE Name of instrumentation scope. String

SERVER Name of server that created the instrumentation String
event.

TIMESTAMP Timestamp when the instrumentation event was ~ Long
created.

TXID JTA transaction ID of thread that created the String
instrumentation event.

TYPE Type of monitor. String

USERID ID of the user that created the instrumentation String

event.

An example instrumentation event data rule expression is:

(USERID = 'weblogic')

A.7.3 Creating Harvester Watch Rule Expressions

A harvester watch rule expression is based upon one or more harvestable MBean
attributes. The expression can specify an MBean type, an instance, an attribute, or an
instance and an attribute.

Instance-based and type-based expressions can contain an optional namespace
component, which is the namespace of the metric being watched. It can be set to either
Server Runtime or DomainRuntime. If omitted, it defaults to ServerRuntime.

If included and set to DomainRuntime, you should limit the usage to monitoring only
DomainRuntime-specific MBeans, such as the ServerLifeCycleRuntimeMBean.
Monitoring remote managed server MBeans through the DomainRuntime
MBeanServer is possible, but is discouraged for performance reasons. It is a best
practice to use the resident watcher in each managed server to monitor metrics related
to that managed server instance.

You can also use wildcards in instance names in Harvester watch rule expressions, as
well as specify complex attributes in Harvester watch rule expressions. See
Appendix C, "Using Wildcards in Expressions."

The syntax for constructing a Harvester watch rule expression is as follows:

= To specify an attribute of all instances of a type, use the following syntax:

${namespace// [type_name) //attribute_name}

s To specify an attribute of an instance of a WebLogic type, use the following syntax:

${com.bea:namespace//instance_name//attribute_name}

» To specify an attribute of an instance of a custom MBean type, use the following

syntax:

A-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Creating Data Accessor Queries

${domain_name: instance_name//attribute_name}

Note: The domain_name is not required for a WebLogic Server
domain name.

The expression must include the complete MBean object name, as shown in the
following example:

${com.bea:Name=HarvesterRuntime, Location=myserver, Type=HarvesterRuntime,
ServerRuntime=myserver//TotalSamplingCycles} > 10

A.8 Creating Data Accessor Queries

Use the WLDF query language with the Data Accessor component to retrieve data
from data stores, including server logs, HTTP logs, and harvested metrics. The
variables used to build a Data Accessor query are based on the column names in the
data store from which you want to extract data.

A Data Accessor query contains the following:

= The logical name of a data store, as described in Section A.8.1, "Data Store Logical
Names."

= Optionally, the name(s) of one or more columns from which to retrieve data, as
described in Section A.8.2, "Data Store Column Names."

When there is a match, all columns of matching rows are returned.

A.8.1 Data Store Logical Names

The logical name for a data store must be unique. It denotes a specific data store
available on the server. The logical name consists of a log type keyword followed by
zero or more identifiers separated by the forward-slash (/) delimiter. For example, the
logical name of the server log data store is simply ServerLog. However, other log types
may require additional identifiers, as shown in Table A—4.

Table A-4 Naming Conventions for Log Types

Optional
Log Type Identifiers Example
ConnectorLog The JNDI ConnectorLog/eis/
name of the 900eisaBlackBoxXATxConnectorINDINAME
connection .
factor In this example,

y eis/900eisaBlackBoxXATxConnectorIJNDINAME is
the JNDI name of the connection factory specified in
the weblogic-ra.xml deployment descriptor.

DataSourceLog None DataSourceLog
DomainLog None DomainLog
EventsDataArchive None EventsDataArchive
HarvestedDataArchive None HarvestedDataArchive

WLDF Query Language A-7

Creating Data Accessor Queries

Table A-4 (Cont) Naming Conventions for Log Types

Optional
Log Type Identifiers Example
HTTPAccessLog Virtual host HTTPAccessLog — For the default web server's
name access log.
HTTPAccessLog/MyVirtualHost — For the Virtual
host named My VirtualHost deployed to the current
server.
Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are
user-defined.
JMSMessageLog The name of JMSMessageLog/MyJMSServer
the JMS
Server.
JMSSAFMessageLog The name of JMSSAFMessageLog/MySAFAgent
the SAF
agent.
ServerLog None ServerLog
WebAppLog Web server WebAppLog/MyWebServer /MyRootServletContext
name + Root
servlet

context name

A.8.2 Data Store Column Names

The column names included in a query are resolved for each row of data. A row is
added to the result set only if it satisfies the query conditions for all specified columns.
A query that omits column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table A-5.

Table A-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DataSourceLog RECORDID, DATASOURCE, PROFILETYPE, TIMESTAMP,
USER, PROFILEINFORMATION

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID,

RECORDID, SERVER, SEVERITY, SUBSYSTEM, THREAD,
TIMESTAMP, TXID, USERID

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD,
DOMAIN, DYES, FILENAME, LINENUM, METHODNAME,
METHODDSC, MODULE, MONITOR, PAYLOAD, RECORDID,
RETVAL, SCOPE, SERVER, THREADNAME, TIMESTAMP, TXID,
TYPE, USERID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME,
RECORDID, SERVER, TIMESTAMP, TYPE, WLDFMODULE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessageLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, JMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

A-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Creating Log Filter Expressions

Table A-5 (Cont.) Column Names for Log Types

Log Type Column Names

JMSSAFMessagelLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, JMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

An example of a Data Accessor query is:

(SUBSYSTEM = 'Deployer') AND (MESSAGE LIKE '%Failed%')

In this example, the Accessor retrieves all messages that include the string "Failed"
from the Deployer subsystem.

The following example shows an API method invocation. It includes a query for
harvested attributes of the JDBC connection pool named MyPool, within an interval
between a timeStampFrom (inclusive) and a timeStampTo (exclusive):

WLDFDataAccessRuntimeMBean.retrieveDataRecords (timeStampFrom,
timeStampTo, "TYPE='JDBCConnectionPoolRuntime' AND NAME='MyPool'")

For complete documentation about the WLDF Data Accessor, see Chapter 14,
"Accessing Diagnostic Data With the Data Accessor."

A.9 Creating Log Filter Expressions

The query language can be used to filter what is written to the server log. The
variables used to construct a log filter expression represent the columns in the log are:

s CONTEXTID

s DATE

= MACHINE
s MESSAGE
s MSGID

= RECORDID
L] SEVERITY
u SUBSYSTEM
L] SERVER

s THREAD

s TIMESTAMP
s TXID

s USERID

Note: These are the same variables that you use to build a Data
Accessor query for retrieving historical diagnostic data from existing
server logs.

WLDF Query Language A-9

Building Complex Expressions

For complete documentation about the WebLogic Server logging services, see
"Filtering WebLogic Server Log Messages" in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

A.10 Building Complex Expressions

You can build complex query expressions using sub-expressions containing variables,
binary comparisons, and other complex sub-expressions. There is no limit on levels of
nesting. The following rules apply:

= Nest queries by surrounding sub-expressions within parentheses, for example:

(SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

= Enclose a variable name within ${} if it includes special characters, as in an MBean
object name. For example:

${mydomain:Name=myserver,
Type=ServerRuntime//SocketsOpenedTotalCount} >= 1

Notice that the object name and the attribute name are separated by consecutive
forward slashes (//) in the watch variable name.

A-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

B

WLDF Instrumentation Library

The WebLogic Diagnostics Framework Instrumentation Library contains diagnostic
monitors and diagnostic actions, as discussed in the following sections:

» Diagnostic Monitor Library

= Diagnostic Action Library

For information about using items from the Instrumentation Library, see Chapter 12,
"Configuring Instrumentation.”

B.1 Diagnostic Monitor Library

Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors. The former can be used to instrument WebLogic Server classes. You use the
latter to instrument application classes. Except for the Dyelnjection monitor, all
monitors are delegating monitors; that is, they do not have a built-in diagnostic action.
Instead, they delegate to actions attached to them to perform diagnostic activity.

All monitors are preconfigured with their respective pointcuts. However, the actual
locations affected by them may vary depending on the classes they instrument. For
example, the Servlet_Before_Service monitor adds diagnostic code at the entry of
servlet or java server page (JSP) service methods at different locations in different

servlet implementations.

For any delegating monitor, only compatible actions may be attached. The
compatibility is determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within
server scope; that is, in WebLogic Server classes. For the diagnostic actions that are
compatible with each monitor, see the Compatible Action Type column in Table B-1.

Table B-1 Diagnostic Monitors for Use Within Server Scope

Monitor Compatible

Monitor Name Type Action Type Pointcuts

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.

Connector_After_Inbound Server Stateless At exit of methods handling inbound connections.

Connector_Around_Inbound Around Around At entry and exit of methods handling inbound
connections.

Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.

WLDF Instrumentation Library B-1

Diagnostic Monitor Library

Table B-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Compatible

Monitor Name Type Action Type Pointcuts

Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.

Connector_Around_Outbound Around Around At entry and exit of methods handling outbound
connections.

Connector_Before_Tx Before Stateless Entry of transaction register, unregister, start,
rollback and commit methods.

Connector_After_Tx After Stateless At exit of transaction register, unregister, start,
rollback and commit methods.

Connector_Around_Tx Around Around At entry and exit of transaction register, unregister,
start, rollback and commit methods.

Connector_Before_ Work Before Stateless At entry of methods related to scheduling, starting
and executing connector work items.

Connector_After_Work After Stateless At exit of methods related to scheduling, starting
and executing connector work items.

Connector_Around_Work Around Around At entry and exit of methods related to scheduling,
starting and executing connector work items.

Dyelnjection Before Built-in At points where requests enter the server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_ Before Stateless Before calls to methods:

Internal Driver.connect

DataSource.getConnection

JDBC_After_Connection_ Internal ~ Before Stateless JDBC subsystem internal code
JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code
JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code
JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code
JDBC_After_Start_Internal After Stateless JDBC subsystem internal code
JDBC_Before_Statement_ Before Stateless JDBC subsystem internal code

Internal

JDBC_After_Statement_ After Stateless JDBC subsystem internal code

Internal

JDBC_After_Reserve_Connection_ After Stateless After a JDBC connection is reserved from the
Internal connection pool.
JDBC_After_Release_Connection_ After Stateless After a JDBC connection is released back to the
Internal connection pool.

Table B-2 lists the diagnostic monitors that can be used within application scopes; that
is, in deployed applications. The Compatible Action Type column identifies the
diagnostic action type that is compatible with each monitor.

B-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Monitor Library

Table B-2 Diagnostic Monitors for Use Within Application Scopes

Compatible
Monitor Action
Monitor Name Type Type Pointcuts
EJB_After_EntityEjbBusiness Methods After Stateless At exits of all EntityBean methods, which are not
standard ejb methods.
EJB_Around_ Around Around At entry and exits of all EntityBean methods that
EntityEjbBusinessMethods are not standard ejb methods.
EJB_After_EntityEjpbMethods After Stateless At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejpRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejpbLoad
EnitityBean.ejbStore

EJB_Around_EntityEjbMethods

Around Around

At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejpRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejpLoad

EnitityBean.ejbStore

EJB_After_EntityEjbSemantic Methods After

Stateless

At exits of methods:

EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejpHome*

EnitityBean.ejbSelect*
EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Around_
EntityEjbSemanticMethods

Around Around

At entry and exits of methods:

EnitityBean.set*

EnitityBean.get*
EnitityBean.ejbFind*

EnitityBean.ejpHome*
EnitityBean.ejbSelect*

EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

WLDF Instrumentation Library B-3

Diagnostic Monitor Library

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Compatible
Monitor Action
Monitor Name Type Type Pointcuts
EJB_After_SessionEjbMethods After Stateless At exits of methods:
SessionBean.setSessionContext
SessionBean.ejpRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate
EJB_Around_SessionEjbMethods Around Around At entry and exits of methods:

SessionBean.setSessionContext
SessionBean.ejpRemove
SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods After

Stateless At exits of all SessionBean methods, which are
not standard ejb methods.

EJB_Around_SessionEjb Around Around At entry and exits of all SessionBean methods,

. which are not standard ejb methods.
BusinessMethods
EJB_After_ After Stateless At exits of methods:
SessionFjbSemanticMethods SessionBean.ejbCreateSessionBean.ejbPostCreate
EJB_Around_SessionEjb Around Around At entry and exits of methods:
SemanticMethods SessionBean.ejbCreate

SessionBean.ejpPostCreate

EJB_Before_EntityEjbBusinessMethods Before

Stateless At entry of all EntityBean methods, which are not
standard ejb methods.

EJB_Before_EntityEjbMethods Before

Stateless At entry of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejpRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejpLoad
EnitityBean.ejbStore

EJB_Before_ Before
EntityEjbSemanticMethods

Stateless At entry of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejpHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejpPostCreate*

EJB_Before_SessionEjb Before
BusinessMethods

Stateless At entry of all SessionBean methods, which are
not standard ejb methods.

B-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Monitor Library

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor
Type

Compatible
Action

Type

Pointcuts

EJB_Before_SessionEjbMethods

Before

Stateless

At entry of methods:
SessionBean.setSessionContext
SessionBean.ejpRemove
SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_Before_SessionEjb
SemanticMethods

Before

Stateless

At entry of methods:
SessionBean.ejbCreate

SessionBean.ejbPostCreate

HttpSessionDebug

Around

Built-in

getSession - Inspects returned HTTP session
Before and after calls to methods:
getAttribute

setAttribute

removeAttribute

At inspection points, the approximate session
size is computed and stored as the payload of a
generated event. The size is computed by
flattening the session to a byte-array. If an error is
encountered while flattening the session, a
negative size is reported.

JDBC_Before_CloseConnection

Before

Stateless

Before calls to methods:

Connection.close

JDBC_After_CloseConnection

After

Stateless

After calls to methods:

Connection.close

JDBC_Around_CloseConnection

Around

Around

Before and after calls to methods:

Connection.close

JDBC_Before_CommitRollback

Before

Stateless

Before calls to methods:
Connection.commit

Connection.rollback

JDBC_After_CommitRollback

After

Stateless

After calls to methods:
Connection.commit

Connection.rollback

JDBC_Around_CommitRollback

Around

Around

Before and after calls to methods:
Connection.commit

Connection.rollback

JDBC_Before_Execute

Before

Stateless

Before calls to methods:
Statement.execute*

PreparedStatement.execute*

JDBC_After_Execute

After

Stateless

After calls to methods:
Statement.execute*

PreparedStatement.execute*

WLDF Instrumentation Library B-5

Diagnostic Monitor Library

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor

Type

Compatible

Action
Type

Pointcuts

JDBC_Around_Execute

Around

Around

Before and after calls to methods:
Statement.execute*

PreparedStatement.execute*

JDBC_Before_GetConnection

Before

Stateless

Before calls to methods:
Driver.connect

DataSource.getConnection

JDBC_After_GetConnection

After

Stateless

After calls to methods:
Driver.connect

DataSource.getConnection

JDBC_Around_GetConnection

Around

Around

Before and after calls to methods:
Driver.connect

DataSource.getConnection

JDBC_Before_Statement

Before

Stateless

Before calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch

RowSet.setCommand

JDBC_After_Statement

After

Stateless

After calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch

RowSet.setCommand

JDBC_Around_Statement

Around

Around

Before and after calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch

RowSet.setCommand

JMS_Before_AsyncMessage

Received

Before

Stateless

At entry of methods:

MessageListener.onMessage

JMS_After_AsyncMessage

Received

After

Stateless

At exits of methods:

MessageListener.onMessage

JMS_Around_AsyncMessage

Received

Around

Around

At entry and exits of methods:

MessageListener.onMessage

JMS_Before_MessageSent

Before

Stateless

Before call to methods:

QueSender send

JMS_After_MessageSent

After

Stateless

After call to methods:

QueSender send

JMS_Around_MessageSent

Around

Around

Before and after call to methods:

QueSender send

B-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Monitor Library

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Compatible

Monitor Action
Monitor Name Type Type Pointcuts
JMS_Before_SyncMessage Before Stateless Before calls to methods:
Received MessageConsumer.receive*
JMS_After_SyncMessage After Stateless After calls to methods:
Received MessageConsumer.receive*
JMS_Around_SyncMessage Around Around Before and after calls to methods:
Received MessageConsumer.receive*
JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

JMS_After_TopicPublished After Stateless After call to methods:
TopicPublisher.publish

JMS_Around_TopicPublished Around Around Before and after call to methods:
TopicPublisher.publish
JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context lookup
methods
Context.lookup*
JNDI_After_Lookup After Stateless After calls to javax.naming.Context lookup
methods:
Context.lookup*
JNDI_Around_Lookup Around Around Before and after calls to javax.naming.Context
lookup methods
Context.lookup*
JTA_Before_Commit Before Stateless At entry of methods:
UserTransaction.commit
JTA_After_Commit After Stateless At exits of methods:
advice

UserTransaction.commit

JTA_Around_Commit Around Around At entry and exits of methods:

UserTransaction.commit

JTA_Before_Rollback Before Stateless At entry of methods:
UserTransaction.rollback
JTA_After_Rollback After Stateless At exits of methods:
advice UserTransaction.rollback
JTA_Around_Rollback Around Around At entry and exits of methods:
UserTransaction.rollback
JTA_Before_Start Before Stateless At entry of methods:
UserTransaction.begin
JTA_After_Start After Stateless At exits of methods:
advice UserTransaction.begin
JTA_Around_Start Around Around At entry and exits of methods:

UserTransaction.begin

WLDF Instrumentation Library B-7

Diagnostic Monitor Library

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Compatible
Monitor Action
Monitor Name Type Type Pointcuts
MDB_Before_MessageReceived Before Stateless At entry of methods:
MessageDrivenBean.onMessage
MDB_After_MessageReceived After Stateless At exits of methods:
MessageDrivenBean.onMessage
MDB_Around_MessageReceived Around Around At entry and exits of methods:
MessageDrivenBean.onMessage
MDB_Before_Remove Before Stateless At entry of methods:
MessageDrivenBean.ejpRemove
MDB_After_Remove After Stateless At exits of methods:
MessageDrivenBean.ejpRemove
MDB_Around_Remove Around Around At entry and exits of methods:
MessageDrivenBean.ejpRemove
MDB_Before_SetMessageDriven Before Stateless At entry of methods:
Context MessageDrivenBean.setMessage
DrivenContext
MDB_After_SetMessageDriven After Stateless At exits of methods:
Context MessageDrivenBean.setMessageDrivenContext
MDB_Around_SetMessageDriven Around Around At entry and exits of methods:
Context MessageDrivenBean.setMessageDrivenContext
Servlet_Before_Service Before Stateless At method entries of servlet/jsp methods:
HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter
Servlet_After_Service After Stateless At method exits of servlet/jsp methods:
HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter
Servlet_Around_Service Around Around At method entry and exits of servlet/jsp

methods:
HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

B-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

Table B-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Compatible
Monitor Action
Monitor Name Type Type Pointcuts

Servlet_Before_Session Before Stateless Before calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute /
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue

HttpSession.invalidate

Servlet_Around_Session Around Around Before and after calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute /
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue

HttpSession.invalidate

Servlet_After_Session After Stateless After calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute /
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue

HttpSession.invalidate

Servlet_Before_Tags Before Stateless Before calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Servlet_After_Tags After Stateless After calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Servlet_Around_Tags Around Around Before and after calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

B.2 Diagnostic Action Library

The Diagnostic Action Library includes the following actions:

WLDF Instrumentation Library B-9

Diagnostic Action Library

These diagnostic actions can be used with the delegating monitors described in the
previous tables. They can also be used with custom monitors that you can define and
use within applications. Each diagnostic action can only be used with monitors with

Section B.2.1, "TraceAction"

Section B.2.2, "Display ArgumentsAction"

Section B.2.3, "TraceElapsed TimeAction"

Section B.2.4, "TraceMemoryAllocationAction"
Section B.2.5, "StackDumpAction"

Section B.2.6, "ThreadDumpAction"

Section B.2.7, "MethodInvocationStatisticsAction"

Section B.2.8, "MethodMemoryAllocationStatisticsAction"

which they are compatible, as indicated by the Compatible Monitor Type column.
Some actions (for example, TraceElapsed TimeAction) generate an event payload.

B.2.1 TraceAction

TraceAction is a stateless action that is compatible with Before and After monitor
types.

TraceAction generates a trace event at the affected location in the program execution.

The following information is generated:

Timestamp

Context identifier from the diagnostic context which uniquely identifies the
request

Transaction identifier, if available

User identity

Action type (that is, TraceAction)

Domain

Server name

Instrumentation scope name (for example, application name)
Diagnostic monitor name

Module name

Location in code from where the action was called. The location information
includes:

— Class name

— Method name

- Method signature
— Line number

— Thread name

Payload carried by the diagnostic context, if any

B-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

B.2.2 DisplayArgumentsAction

Display ArgumentsAction is a stateless action that is compatible with Before and After
monitor types.

Display ArgumentsAction generates an instrumentation event at the affected location
in the program execution to capture method arguments or a return value.

When executed, this action causes an instrumentation event that is dispatched to the
events archive. When attached to Before monitors, the instrumentation event captures
input arguments to the joinpoint (for example, method arguments). When attached to
After monitors, the instrumentation event captures the return value from the joinpoint.
The event carries the following information:

s Timestamp

= Context identifier from the diagnostic context that uniquely identifies the request
s Transaction identifier, if available

s User identity

= Action type (that is, DisplayArgumentsAction)

s Domain

= Server name

= Instrumentation scope name (for example, application name)

s Diagnostic monitor name

= Module name

s Location in code from where the action was called. The location information
includes:

- C(lass name
- Method name
- Method signature
- Line number
— Thread name
= Payload carried by the diagnostic context, if any
= Input arguments, if any, when attached to Before monitors

= Return value, if any, when attached to After monitors

B.2.3 TraceElapsedTimeAction
TraceElapsedTimeAction is an Around action that is compatible with Around monitor
types.
TraceElapsedTimeAction generates two events: one before and one after the location in
the program execution.

When executed, this action captures the timestamps before and after the execution of
an associated joinpoint. It then computes the elapsed time by computing the
difference. It generates an instrumentation event which is dispatched to the events
archive. The elapsed time is stored as event payload. The event carries the following
information:

s Timestamp

WLDF Instrumentation Library B-11

Diagnostic Action Library

= Context identifier from the diagnostic context that uniquely identifies the request
s Transaction identifier, if available

s User identity

= Action type (that is TraceElapsed TimeAction)

s Domain

= Server name

= Instrumentation scope name (for example, application name)

s Diagnostic monitor name

= Module name

m Location in code from where the action was called. This location information
consists of:

- C(lass name
- Method name
- Method signature
- Line number
— Thread name
= Payload carried by the diagnostic context, if any

= Elapsed time processing the joinpoint, as event payload, in nanoseconds

B.2.4 TraceMemoryAllocationAction

TraceMemoryAllocationAction uses the HotSpot ThreadMXBean API to trace the
number of bytes allocated by a thread during a method call. This action is very similar
to TraceElapsedTimeAction, with the exception that the memory allocated within a
method call is traced.

The TraceMemoryAllocationAction action:
» Creates an instrumentation event that is persisted.

= Can be used from delegating and custom monitors.

B.2.5 StackDumpAction

StackDumpAction is a stateless action that is compatible with Before and After
monitor types.

StackDumpAction generates an instrumentation event at the affected location in the
program execution to capture a stack dump.

When executed, this action generates an instrumentation event that is dispatched to
the events archive. It captures the stack trace as an event payload. The event carries
following information:

s Timestamp
= Context identifier from the diagnostic context that uniquely identifies the request
s Transaction identifier, if available

» User identity

B-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

Action type (that is, StackDumpAction)

Domain

Server name

Instrumentation scope name (for example, application name)
Diagnostic monitor name

Module name

Location in code from where the action was called. This location information
consists of:

- C(lass name

- Method name

- Method signature

- Line number

— Thread name

Payload carried by the diagnostic context, if any

Stack trace as an event payload

B.2.6 ThreadDumpAction

ThreadDumpAction is a stateless action that is compatible with Before and After
monitor types.

ThreadDumpAction generates an instrumentation event at the affected location in the
program execution to capture a thread dump, if the underlying VM supports it. JDK
1.7 and later (Oracle HotSpot) supports this action.

This action generates an instrumentation event that is dispatched to the events archive.
This action may be used only with HotSpot. It is ignored when used with other JVMs.
It captures the thread dump as event payload. The event carries the following
information:

Timestamp

Context identifier from the diagnostic context that uniquely identifies the request
Transaction identifier, if available

User identity

Action type (that is, ThreadDumpAction)

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Module name

Location in code from where the action was called. This location information
consists of:

— Class name

— Method name

WLDF Instrumentation Library B-13

Diagnostic Action Library

- Method signature
- Line number
— Thread name
= Payload carried by the diagnostic context, if any

s Thread dump as an event payload

B.2.7 MethodlInvocationStatisticsAction

MethodInvocationStatisticsAction is an Around action that is compatible with Around
monitor types.

MethodInvocationStatisticsAction captures performance metrics around a joinpoint in
memory without persisting an event in the Archive for each invocation. The statistics
are collected and made available through the WLDFInstrumentationRuntimeMBean.
The collected statistics are also consumable by the Harvester and the
Watch-Notifications components. This makes it possible to create watch rules that can
combine request information from the instrumentation system and metric information
from other run-time MBeans.

Some of the statistics that can be captured include the following:
s Number of invocations

= Average execution time (in nanoseconds)

= Standard deviation in observed execution time

s Minimum execution time

s Maximum execution time

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the data
collected from MethodInvocationStatisticsAction instances, which are attached to
configured Diagnostic Around monitors, using the MethodInvocationStatistics
attribute. The MethodInvocationStatistics attribute contains a hierarchy of Map
objects, keyed as shown in Figure B-1.

Figure B-1 Structure of MethodinvocationStatistics Attribute

Class Top-level map. Keyed by full class name

Method Method-level map. Keyed by method name

Overloaded methods have a single entry

Signature Signature-level map. Organizes overloaded

method instances. Keyed by signature

Statistics-level map. Keyed by statistics

Statistics name {"avg”, "min", "max")

The following semantics are used in the MethodInvocationStatistics attribute:

MethodInvocationStatistics::= Map<className, MethodMap>
MethodMap: : = Map<methodName, MethodParamsSignatureMap>

B-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

MethodParamsSignatureMap: := Map<MethodParamsSignature, MethodDataMap>
MethodDataMap: := <MetricName, Statistic>
MetricName:= min | max | avg | count | sum | sum of squares | std_deviation

Because the MethodInvocationStatisticsAction only captures information in memory,
and does not persist that information in the Archive, this action does not incur the I/O
overhead of other instrumentation actions. This makes this action a lightweight
mechanism for capturing performance statistics and helping identify bottlenecks in
your application. You can navigate through the map structures and identify the low
performing parts of your application.

B.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction

and Querying the Results

This section shows an example of instrumenting the Avitek Medical Records (MedRec)
sample application with a custom monitor that uses
MethodInvocationStatisticsAction. This example then shows using WLST online to
query the performance statistics that have been collected, which can be done by
navigating the WLDFInstrumentationRuntimeMBean instance associated with the
instrumented application.

WLST online provides simplified access to MBeans. While JMX APIs require you to
use JMX object names to interrogate MBeans, WLST enables you to navigate a
hierarchy of MBeans in a similar fashion to navigating a hierarchy of files in a file
system. For more information, see "Navigating and Interrogating MBeans" in
Understanding the WebLogic Scripting Tool.

The following subsections are included in this example:

= Section B.2.7.1.1, "Configuring the Custom Monitor to Use
MethodInvocationStatisticsAction”

» Section B.2.7.1.2, "Using WLST to Query Method Performance Statistics"

Note: Code examples demonstrating Java EE APIs and other
WebLogic Server features are provided with your WebLogic Server
installation. To work with these examples, select the custom
installation option when installing WebLogic Server, and select to
install the Server Examples. For more information, see "Code
Examples and Sample Applications" in Understanding Oracle WebLogic
Server.

B.2.7.1.1 Configuring the Custom Monitor to Use

MethodlnvocationStatisticsAction As of WebLogic Server 10.3, it is no longer necessary to
create a weblogic-diagnostics.xml file in the application’s META-INF directory to
configure a custom monitor. Instead, you can complete all the required steps from the
Administration Console, as described in the following steps for instrumenting the
MedRec sample application:

1. In the Domain Structure pane of the Administration Console, select Deployments.

2. On the Summary of Deployments page, select Control, and click medrec in the
Deployments table.

The Settings for medrec page is displayed.
3. Select Configuration > Instrumentation.

4. In the Diagnostic Monitors in this Module table, click Add Custom Monitor.

WLDF Instrumentation Library B-15

Diagnostic Action Library

10.

11.

In the Add Custom Monitors page, enter MethodStatsMonitor as the monitor
name. Optionally, you can enter a brief description.

In the Location Type selection box, select Around.

In the Pointcut text box, enter the following pointcut expression:

execution (public * com.bea.medrec.* *(...)) AND NOT
execution(public * com.bea.medrec.* get*(...)) OR
execution(public * com.bea.medrec.* set*(...)) OR

(*

execution (public com.bea.medrec.* _ WL_*(...)));

This pointcut expression specifies joinpoints for all public methods in classes
within packages whose name starts with com.bea.medrec, but excludes the
following methods:

s All accessor methods
= Methods that begin with the string _ WL_

This pointcut expression encompasses a wide variety of public methods and
classes in MedRec, but ignores all getter and setter methods, as well as code
generated by WebLogic Server.

Below the pointcut expression text box, click OK.

On the Save Deployment Plan page, enter a new path for the deployment plan, or
accept the default location, and click OK.

Select Configuration > Instrumentation, and click the name of the new custom
monitor, MethodStatsMonitor, which is listed in the Diagnostic Monitors in this
Module table.

The Settings for MethodStatsMonitor page is displayed.

In the Actions table, assign MethodInvocationStatisticsAction to the custom
monitor, as shown in Figure B-2:

Figure B-2 Choosing MethodinvocationStatisticsAction for Custom Monitor

Actions:
Available: Chosen:
[MemoryallocationStatistics [] MethodInvocationStatistics

[] TraceElapsedTimeAction

&

[] TraceMemoryAllocationAct %

12.
13.

b]

&

Click Save, at the bottom of the Settings for MethodStatsMonitor page.
Apply the updated deployment plan to the MedRec application:
a. In the Domain Structure pane, select Deployments.

b. On the Summary of Deployments page, select Control, and click the selection
box adjacent to medrec in the Deployments table, as shown in Figure B-3:

B-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

Figure B-3 Selecting the MedRec Deployment

Deployments
Ingtall | | Update | | Delete Start v | | Stop Showing 1to 50f 5 Previous | Mext
Deployment
1| name & State | Health | Type R
e . web
F I‘E‘Ibmf-.m starter Active |9 OK Application 100
O | ipsfil.2, 1.2.5.0) Active Lbrary | 100
O | pstil. 2, 1.2.0.1) Active Lbrary | 100
L 3 HHY Enterprise
Lu_lm'EdI e Active | 0K Application | 1
= i = P Enterprise
F L.jphfs":'“” Active |9 OK Application | 190
Install | Update | | Delete ‘ Start v | | Stop v Showing 1to 50f 5 Previous | Mext
c. Click Update.
d. In the Update Application Assistant page, select Redeploy this application

e.

using the following deployment files.

Click Next, then click Finish.

The MedRec application is now redeployed, and the custom monitor
MethodStatsMonitor is active.

Note: If Java HotSwap is not enabled, to add a new pointcut to the
application’s configuration, you need to redeploy the application to
enable a custom monitor to be woven into the application code.
(However, you can modify most of an application’s monitor
configuration without requiring a redeploy. This includes changes to
the custom monitor’s Actions, Properties, EnableDyeFiltering, and
Description attributes — that is, anything that does not require
bytecode weaving.

However, with HotSwap enabled, you can change any monitor
attribute and update the application without the need to redeploy it.
For more information, see Section 15.2, "Using Deployment Plans to
Dynamically Control Instrumentation Configuration."

B.2.7.1.2 Using WLST to Query Method Performance Statistics Once MedRec is redeployed,
the MethodInvocationStatisticsAction begins capturing method performance statistics
as the instrumented code is executed. This section shows how to generate statistics
quickly and simply by navigating the MedRec patient application with the custom
monitor enabled. This section then shows how to examine those statistics using WLST

online.

To capture method performance statistics using the custom monitor configured for
MedRec and query the results using WLST, complete the following steps:

1. Start the MedRec application, as described in "Sample Applications and Code
Examples" in Understanding Oracle WebLogic Server.

Log in as a patient, administrator, or physician, and perform a small number of
operations.

WLDF Instrumentation Library B-17

Diagnostic Action Library

2. Invoke WLST online and navigate to the WLDFInstrumentationRuntimeMBean
instance, as shown in the following example steps:

a. Connect to the MedRec server:

wls:/offline> connect ('weblogic', 'password', 'localhost:7011")
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs to
domain 'medrec'.

b. Use the cd command to navigate to the WLDFInstrumentationRuntimeMBean
instance associated with the MedRec application:

cd('serverRuntime: /WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/medr
ec')

Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.

For more help, use help(serverRuntime)

3. Access specific values collected by MethodInvocationStatisticsAction by invoking
the following method on the WLDFInstrumentationRuntimeMBean:

public Object getMethodInvocationStatisticsData(String expr) throws
ManagementException;

Using WLST interactively, you can pass a lookup expression to this method. The
lookup expression specifies the particular subset of values that you are interested
in viewing. These values are obtained from the map structure created by
MethodInvocationStatisticsAction. For example, the following WLST command
returns the average execution time (in nanoseconds) of all methods instrumented
by MethodInvocationStatisticsAction:

cmo . getMethodInvocationStatisticsData (" (com.bea%) (*) (?) (avg)")
array(java.lang.Object, [3352.0, 3632.0, 145270.0, 4050.5, 8450.916666666666,
1798645.75,

583538.0, 3610515.0, 1.9541031E7, 1.2796319E7, 3.07897E8, 4470.0, 3073.0,
3073.0,

2.4644752E7, 3492.5, 1051530.0, 2794.0, 390552.3333333333, 3632.0, 2095.5,
189409.33333333334,

2607.6666666666665, 2793.6666666666665, 4749.333333333333, 5308.0, 65930.0,
3.3950405E7,

3353.0, 3911.5]

Note that if you display the entire set of data values that have been collected, a large

amount of information could be displayed in the WLST console, as shown in
Figure B—4:

B-18 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

Figure B-4 Displaying All Data Values Collected by MethodInvocationStatisticsAction

Command Prompt - wist

wls i /medrecsserverHuntime WLDFRuntime -WLDFRuntime - WLDFInstrumentationHun

print cmo.getMethodInvocationStatistics(>
{com.bea.medrec.model.Patient$Status={values={={count=1, sum=4749.0, std_deviation=0.
» avg=474%? .8, sum_of_squares=2.2553001E7, max=4749, min=474%9}}}. com.bhea.medrec.mode
1.Record={_persistence_new={org.eclipse.persistence.internal.descriptors.Persistencel
bject={count=1, sum=335%3.8,. std_deviation=0.8, avg=3353.8,. sum_of_squares=1.12426H09E?7
> max=335%3, min=33533>3, com.bhea.medrec.repository.impl.RecordRepositorylmpl={findRec
ordsByPatientId={java.lang.Long={count=1, sum=5.7?01772E7,. std_deviation=0.8, avg=5.7
?@17?72E?,. sum_of _squares=3.352615200737984E15, max=579801772, min=579@8177233%. com.hea
.medrec.web.LocalizationDispatchingFilter={init={javax.servlet.FilterConfig={count=1,
sum=4191 .08, std_deviation=0.8, avg=4191.8, sum_of_squares=1.7564481E7, max=41%?1. min
=41?13%¥,. com.hea.medrec.model.Administrator={_persistence_new={org.eclipse.persisten
ce.internal.descriptors.PersistenceObject={count=1, sum=2794.8, std_deviation=B.8, av
g=2794.8, sum_of _squares=7806436.0, max=2774, min=2794333,. com.bea.medrec.common.weh.
CacheControlPhaseListener={afterPhase={javax.faces.event.PhaseEvent={count=9, sum=600
6b2.0, std_deviation=2037.9947176417818, avg=6673.55555555585856,. sum_of _sguares=4.38207
B?76E8,. max=9778. min=3911}>, heforePhase={javax.faces.event.PhaseBEvent={count=%7, sum=
2.0024612E7,. std_deviation=4543091.564348776, avg=2224956.888B888B8?,. sum_of_squares=2
.30311827874586E14, max=158264%1, min=2078473}}. com.bea.medrec.common.web.PageContex
tImpl={addGlohalOnlyMessage={java.lang.S5tring={count=3,. sum=4906207 .0, std_deviation=
2293450 .68553232, avg=1635403 .68, sum_of _squares=2.3803377858133E13, max=4878832, min=
131383, dinvalidateSession={={count=1, sum=719365.08, std_deviation=0.8, avg=717365.0.
sum_of _squares=5.17486003225E11, max=719365, min=7193653}}, com.bea.medrec.repositor
y.impl.PatientRepositorylmpl={findBylsernamefAndPasswordAndStatus={java.lang.8tring. ja
va.lang.String,.com.bea.medrec . .model.Patient$Status={count=4, sum=1.22686542E8, std_de
viation=2.7804933871654555E7,. avg=3.86716355E7,. sum_of_squares=6.855454287487772E15.
max=6b129633,. min=24952893>3,. com.bhea.medrec.webh.controller.lVievingRecordSummaryConter
oller={vievRecordSummary={={count=1, sum=1.5786214E8, std_deviation=0.8, avg=1.578621
4E8, sum_of _squares=2.46685158213796E16,. max=157062148,. min=15786214833}, com.bea.med
pec.model.PatientfGender={values={={count=1, sum=6146.0, std_deviation=0.8, avg=6146.
B, sum_of _squares=3.7773316E?7,. max=6146. min=61463}}, com.bea.medrec.web.controller.B
asefuthenticationController={logout={={count=1, sum=3062400.0,. std_deviation=8.8, avg
=3062400.8, sum_of _squares=7.37829376E12, max=3062400, min=3062400}},. login={={count=
4, sum=2.12179201E8,. std_deviation=4.409884341763271E7. avg=5.304480825E7. sum_of_squ
arez=1.7833835292734122F16,. max=110257830. min=7878464}}},. com.bhea.medrec.model.Addres

As an alternative, you can create a WLST script to invoke MethodInvocationStatistics
and to format the collected data so that it is more easily read, as in Example B-1:

Example B-1 Using WLST to Invoke MethodInvocationStatistics and Display Results

import sys

def getPositionalArgument (pos, default):
value=None
try:
value=sys.argv[pos]
except:
value=default
return value

url = getPositionalArgument (1, "t3://localhost:7001")
user = getPositionalArgument (2, "weblogic")

password = getPositionalArgument (3, "password")
appName = getPositionalArgument (4, "myapp")

connect (user, password,url)
serverRuntime ()
cd (' /WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/' + appName)

print "# Class Method | Count | Min | Max | Average | Std-dev |"
stats=cmo.getMethodInvocationStatistics()
for className in stats.keySet():
classMap=stats.get (className)
for methodName in classMap.keySet():
methodMap=classMap.get (methodName)
for sig in methodMap.keySet () :
str= className + " " + methodName + "(" + sig + ")"

WLDF Instrumentation Library B-19

Diagnostic Action Library

sigMap=methodMap.get (sig)

count=sigMap.get ('count')

min=sigMap.get('min")

max=sigMap.get ('max"')

avg=sigMap.get('avg')

std_deviation=sigMap.get ('std_deviation')

print str, "|", count, "|", min, "|", max, "|", avg, "|", std_deviation, "|"

The following shows the output produced by the WLST script shown in Example B-1:

Class Method | Count | Min | Max | Average | Std-dev |

jsp_servlet.
jsp_servlet.
jsp_servlet.
jsp_servlet.

2 | 70000 |
jsp_servlet
jsp_servlet

.__index$MyMap containsKey(java.lang.Object) |
.__index$MyMap containsValue(java.lang.Object)

__index _isStale() | 1 | 1378000 | 1378000 | 1378000.0 | 0.0

__index _getBytes(java.lang.String) | 3 | 1000 | 754000 | 252666.66666666666 | 354497.1399351795
__index _staticIsStale(weblogic.servlet.jsp.StaleChecker) | 1 | 861000 | 861000 | 861000.0 | 0.0
__index _jspService(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse) \

| 1091500.0 | 1021500.0 |
2 | 2000 | 101000 | 51500.0 | 49500.0 |
| 2 | 1000 | 2000 | 1500.0 | 500.0 |

\
2
B.2.7.2 Configuring the Harvester to Collect MethodInvocationStatisticsAction
Data

To configure the Harvester to collect data gathered by
MethodInvocationStatisticsAction instances, you must configure an instance of
WLDFHarvesterBean using the following attribute:

Name=weblogic.management.runtime.WLDFInstrumentationRuntimeMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. You can
access the successive elements of the map by using the following notation:

MethodInvocationStatistics (className) (methodName) (methodParamSignature)
(metricName)

In the preceding notation:

» className represents the fully qualified Java class name. You can use the asterisk
(*) wildcard character in a class name.

= methodName selects a specific method from the given class. You can use the asterisk
(*) wildcard character in a method name.

» methodParamSignature represents a string that is a comma-separated list of a
method's input argument types. Only the Java type names, without the argument
names, are included in the signature specification. As in the Java language, the
order of the parameters in the signature is significant.

This element also supports the asterisk (*) wildcard character, which can be used
to specify the entire list of input argument types for a given method. The asterisk
(*) wildcard character matches zero or more argument types at the position
following its occurrence in the methodParamSignature expression.

You can also use the question mark (?) wildcard character to match a single
argument type at any given position in the ordered list of parameter types.

Both of these wildcard characters can appear anywhere in the expression. See
"MethodInvocationStatistics Examples" on page B-20.

= metricName represents the statistics to be harvested. You can use the asterisk (*)
wildcard character in this key to harvest all of the supported metrics.

MethodInvocationStatistics Examples

B-20 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Diagnostic Action Library

Consider a class with the following overloaded methods:

package.com. foo;

public interface Bar ({
public void doIt();
public void dolIt(int a);
public void doit(int a, String s)
public void doIt(Stringa, int b);
public void doIt(String a, String b);
public void doIt(Stringl[] a);
public void doNothing();
public void doNothing(com.foo.Baz);

}

Table B-3 provides examples that show to use MethodInvocationStatisticsAction to
harvest various statistics.

Table B-3 MethodinvocationStatisticsAction Examples

The following
MethodinvocationStatisticsAction
instance configuration causes the following to be harvested

MethodInvocationStatistics (com.foo.Bar) All statistics for all methods on com.Foo.Bar.
(*) (%) (*)

MethodInvocationStatistics (com.foo.Bar) All statistics for the doIt () method that has no input arguments.
(doIt) () (*)

MethodInvocationStatistics (com.foo.Bar) All statistics for all doIt () methods.
(doIt) (*) (*)

MethodInvocationStatistics (com.foo.Bar) All statistics for the doIt (int) and doIt(int, String) methods.
(doIt) (int, *) (%)

MethodInvocationStatistics(com.foo.Bar) All statistics for the doIt (String[]) method.

(doTt) (String[]) (*) Note that array parameters are specified by the use of a pair of

square brackets ([]) following the type name. Space characters are
insignificant for the Harvester.

MethodInvocationStatistics(com.foo.Bar) All statistics for doIt () methods that have two input parameters
(doIt) (String, ?) (*) and String as the first argument type. In this example class, this
instance configuration matches the following methods:

n doIt(String, int)

n doIt(String, String)

MethodInvocationStatistics (com.foo.Bar) The min and max execution time for the doNothing () method that
(doNothing) (com.foo.Baz) (min, max) has the single input parameter of type com. foo.Baz.

Note: Using a wildcard character in the className specification can
have a negative impact on performance.

B.2.7.3 Configuring Watch Rules Based on MethodInvocationStatistics Metrics

You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a watch rule. You can create meaningful watch
rules that do not use a wildcard character in the MetricName element by specifying
whether you want the min, max, avg, count, sum, sum_of_squares, or std_deviation
variable for a given method.

WLDF Instrumentation Library B-21

Diagnostic Action Library

B.2.7.4 Using JMX to Collect Data

When using straight JMX to collect data, you can potentially impact server
performance negatively if you invoke the
getAttribute("MethodInvocationStatistics") method on the
WLDFInstrumentationRuntimeMBean. This occurs because, depending on the
instrumented classes, the nested map structure can contain a lot of data that involves
expensive serialization.

When you use JMX to collect data, Oracle recommends using the
getMethodInvocationStatisticsData (String) method.

B.2.8 MethodMemoryAllocationStatisticsAction

The MethodMemoryAllocationStatistics Action uses the HotSpot ThreadMXBean API
API to track the number of bytes allocated by a thread during a method call. Statistics
are kept in-memory on the memory allocations, and no instrumentation events are
created by this action.

The MethodMemoryAllocationStatisticsAction is very similar to the existing
MethodInvocationStatisticsAction. However, statistics tracked by
MethodMemoryAllocationStatistics Action are related to the memory allocated within
a method call.

The MethodInvocationStatisticsAction does not create an instrumentation event. When
HotSpot is available, the statistics are available through the
WLDFInstrumentationRuntimeMBean.

The following statistics for each method are kept:

n count
s min
] max
n avg
] sum

m sum_of_squares

m std_deviation

B-22 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

C

Using Wildcards in Expressions

WLDF allows for the use of wildcards in instance names within the
<harvested-instance> element, and also provides drill-down and wildcard capabilities
in the attribute specification of the <harvested-attribute> element.

WLDF also allows the same wildcard capabilities for instance names in Harvester
watch rules, as well as specifying complex attributes in Harvester watch rules.

These capabilities are discussed in the following sections:

» Using Wildcards in Harvester Instance Names

» Specifying Complex and Nested Harvester Attributes

= Using the Accessor with Harvested Complex or Nested Attributes
= Using Wildcards in Watch Rule Instance Names

= Specifying Complex Attributes in Harvester Watch Rules

C.1 Using Wildcards in Harvester Instance Names
When specifying instance names within the <harvested-instance> element, you can:

= Express the instance name in non-canonical form, allowing you to specify the
property list of the ObjectName out of order.

= Express the ObjectName as a J]MX ObjectName query pattern without concern as
to the order of the property list.

= Use zero or more asterisk (*) wildcard characters in any of the values in the
property list of an ObjectName, such as Name=*.

= Use zero or more asterisk (*) wildcard characters to replace any character
sequence in a canonical ObjectName string. In this case, you must ensure that any
properties of the ObjectName not substituted by a wildcard character are in
canonical form.

C.1.1 Examples

The instance specification in Example C-1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing
any instance-name qualification in the <harvested-type> declaration.

Example C-1 Harvesting All Instances of an MBean

<harvested-type>
<name>weblogic.management . runtime.WorkManagerRuntimeMBean</name>
<harvested-instance>*<harvested-instance>

Using Wildcards in Expressions C-1

Specifying Complex and Nested Harvester Attributes

<known-type>true</known-type>
<harvested-attribute>PendingRequests</harvested-attribute>
</harvested-type>

Example C-2 shows a JMX ObjectName pattern as the <harvested-instance> value:

Example C-2 Using a JMX ObjectName Pattern

<harvested-type>
<name>com.acme.CustomMBean</name>
<harvested-instance>adomain:Type=MyType, *</harvested-instance>
<known-type>false</known-type>

</harvested-type>

In Example C-3, some of the values in the ObjectName property list contain wildcard
characters:

Example C-3 Using Wildcards in the Property List

<harvested-type>
<name>com.acme.CustomMBean</name>
<harvested-instance>adomain:Type=My*, Name=*, *</harvested-instance>
<known-type>false</known-type>

</harvested-type>

In Example C—4, all harvestable attributes of all instances of com.acme.CustomMBean
are to be harvested, but only those in which the instance name contains the string
Name=mybean.

Example C-4 Harvesting All Attributes of Multiple Instances

<harvested-type>
<name>coma.acme.CustomMBean</name>
<harvested-instance>*Name=mybean*</harvested-instance>
<known-type>true</known-type>

</harvested-type>

C.2 Specifying Complex and Nested Harvester Attributes

The Harvester provides the ability to access metric values nested within complex
attributes of an MBean. A complex attribute can be a map or list object, a simple POJO,
or different nestings of these types of objects. For example:

s anObject.anAttribute
m arrayAttribute[1]

s mapAttribute(akey)

s aList[1l] (aKey)

In addition, wildcard characters can be used for list indexes and map keys to specify
multiple elements within a collection of those types. The following wildcard characters
are available:

= You can use the asterisk (*) wildcard character to specify all key values for Map
attributes.

= You can use the percent (%) wildcard character to replace parts of a Map key string
and identify a group of keys that match a particular pattern.

C-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Specifying Complex and Nested Harvester Attributes

You can also specify a discrete set of key values by using a comma-separated list.
For example:

m alist[1] (partial%Key%)

s aList[*] (keyl, key3, keyN)

s alist*

In the last example, where the asterisk (*) wildcard character is used for the index to a
list and as the key value to a nested map object, nested arrays of values are returned.

Embedding the asterisk (*) wildcard character in a comma-separated list of map keys
is equivalent to specifying all map keys. For example, the following two specifications
are equivalent:

s alList[*] (keyl, *,keyN)

m alist[*] (%)

Note: Leading or trailing spaces will be stripped from a map key
unless the map key is enclosed within quotation marks.

Using a map key pattern can result in a large number of elements
being scanned, returned, or both. The larger the number of elements
in a map, the bigger the impact is on performance.

The more complex the matching pattern is, the more processing time
is required.

C.2.1 Examples

To use drill-down syntax to harvest the nested State property of the HealthState
attribute on the ServerRuntime MBean, use the diagnostic descriptor shown in
Example C-5.

Example C-5 Using Drill-Down Syntax

<harvester>
<sample-period>10000</sample-period>
<harvested-type>
<name>weblogic.management.runtime.ServerRuntimeMBean</name>
<harvested-attribute>HealthState.State</harvested-attribute>
</harvested-type>
</harvester>

To harvest the elements of an array or list, the Harvester supports a subscript notation
in which a value is referred to by its index position in the array or list. For example, to
refer to the first element in the array attribute URLPatterns in the
ServletRuntimeMBean, specify URLPatterns[0]. Example C-6 shows referencing all
elements of URLPatterns using a wildcard character.

Example C-6 Using a Wildcard Character to Reference All Elements of an Array

<harvester>
<sample-period>10000</sample-period>
<harvested-type>
<name>weblogic.management.runtime.ServletRuntimeMBean</name>
<harvested-attribute>URLPatterns[*]</harvested-attribute>
</harvested-type>
</harvester>

Using Wildcards in Expressions C-3

Using the Accessor with Harvested Complex or Nested Attributes

To harvest the elements of a map, each individual value is referenced by the key
enclosed in parentheses. Multiple keys can be specified as a comma-delimited list, in
which case the values corresponding to specified keys in the map are harvested, as
shown in the following examples.

The following example shows the following
<harvested-attribute>MyMap (Foo) </harvested-attribute> Harvesting the value from the map with
key Foo.

<harvested-attribute>MyMap (Foo,Bar)</harvested-attribute> Harvesting the value from the map with
keys Foo and Bar.

<harvested-attribute>MyMap (Foo%Bar)</harvested-attribute> Using the percent (%) wildcard character
with a key specification to harvest all values
from the map if their keys start with Foo
and end with Bar.

<harvested-attribute>MyMap (*)</harvested-attribute> Harvesting all values from a map by using
the asterisk (*) wildcard character.

<harvested-attribute>MyBeanMyMap (Foo) </harvested-attribute> The MBean has a JavaBean attribute MyBean,
which has a nested map type attribute
MyMap. This example harvests this value
from the map that has the key Foo.

C.3 Using the Accessor with Harvested Complex or Nested Attributes

While a large number of complex or nested attributes can be specified as a single
expression in terms of the Harvester and Watch and Notifications configuration, the
actual metrics are persisted in terms of each individually gathered metric.

For example, the attribute specification mymap (*) . (a,b, c) maps to the following
actual nested attributes:

mymap (keyl) .
mymap (keyl) .
mymap (keyl) .
mymap (key2) .
mymap (key2) .
mymap (key2) .

Q o oo w

Each of the preceding six metrics are stored in a separate record in the
HarvestedDataArchive, with the shown attribute names stored in the ATTRNAME
column in each corresponding record. The values in the ATTRNAME column are the
values you must use in Accessor queries when retrieving them from the archive.

The following are examples of query strings:

NAME="foo0:Name=MyMBean" ATTRNAME="mymap (keyl).a"
NAME="foo"Name=MyBean" ATTRNAME LIKE "mymap(%).a"
NAME="fooName=MyMBean" ATTRNAME MATCHES "mymap\((.*?)\).a"

C.4 Using Wildcards in Watch Rule Instance Names

Within Harvester watch rules, you can use the asterisk (*) wildcard character to
specify portions of an ObjectName. This gives you the ability to watch for multiple
instances of a type.

C-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Specifying Complex Attributes in Harvester Watch Rules

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed:

= The instance-name pattern can be a valid JMX ObjectName pattern, in which case
the property list order is not important. For example:

${com.bea:Name=managed*, Type=ServerRuntime, *//OpenSocketCurrentCount}

This example is a valid JMX ObjectName pattern that can match:

- Any ObjectName that contains a Name key with a value that starts with
managed

- A Type key that exactly matches the value ServerRuntime
- Any other property pairs

For more examples of valid JMX ObjectName patterns, see the ObjectName API
documentation at
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.ht
ml.

s If the name is a pattern but is not a JMX ObjectName pattern, WebLogic Server
does pattern-matching using the pattern as-is. For example:

${com.bea: *Name=managed*, Type=ServerRuntime, *//OpenSocketCurrentCount}
This example is not a valid JMX ObjectName pattern. This pattern is matched

using straight string substitution, where the pattern is matched as-is against the
canonical form of the ObjectName for any target MBean instance.

Note: The ObjectName query pattern syntax supported by the
Harvester is determined by whatever is supported by the underlying
JMX implementation. The preceding example demonstrates the syntax
supported by JDK 5 and later. For information about the full syntax
that is supported, see the description of the

javax.management .ObjectName class corresponding to the version of
the JDK with which your installation of WebLogic Server is
configured.

C.5 Specifying Complex Attributes in Harvester Watch Rules

You can specify complex attributes (a collection, an array type or an Object with nested
intrinsic attribute types) within Harvester watch rule expressions. There are several
ways to do this.

The following example shows a drill-down into a nested attribute in a complex type,
which is then checked to see if it is greater than 0:

${somedomain:name=MyMbean//complexAttribute.nestedAttribute} > 0

You can also use wildcard characters to specify multiple Map keys. The following
wildcard characters are available for specifying complex attributes:

= You can use an asterisk character (*) to specify all key values for Map attributes.

= You can use a percent character (%) to replace parts of a Map key string and to
identify a group of keys that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.

For example:

Using Wildcards in Expressions C-5

Specifying Complex Attributes in Harvester Watch Rules

${[com.bea.foo.BarClass]//aList[*]. (some%partialKey$%) . (aValue,bvalue)} > 0

The rule in the preceding example examines all elements of the aList attribute on all
instances of com.bea. foo.BarClass, drilling down into a nested map for all keys
starting with the text some and containing the text partialKey afterwards. The
returned values are assumed to be Map instances, from which values for the keys
avalue and bvValue are compared to determine if they are greater than 0.

When using the MethodInvocationStatistics attribute on the
WLDFInstrumentationRuntime type, the system needs to determine the type from the
variable. If the system cannot determine the type when validating the attribute
expression, the expression is not valid. For example, the following expression is not
valid:

${ com.bea:Name=myScope, * //MethodInvocationStatistics.(...).(...)
You must explicitly declare the type in this situation, as shown in the following
example that shows drilling down into the nested map structure:

$ (com.bea:Name=hello, Type=WLDFInstrumentationRuntime, *//MethodInvocationStatistics
(*) (*) (*) (count)) >= 1

C-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

D

WebLogic Scripting Tool Examples

The following sections describe and provide examples of using WLST and JMX to
interact with WLDF components:

s WLST Commands for Diagnostics

= Example: Dynamically Creating Dyelnjection Monitors

= Example
= Example
= Example
= Example

= Example

: Configuring a Watch and a JMX Notification

: Writing a JMXWatchNotificationListener Class

: Registering MBeans and Attributes For Harvesting
: Setting the WLDF Diagnostic Volume

: Capturing a Diagnostic Image

= Example: Retrieving a JFR File from a Diagnostic Image Capture

For information about running WebLogic Scripting Tool (WLST) scripts, see "Running
WLST from Ant" in Understanding the WebLogic Scripting Tool. For information about
developing JMX applications, see Developing Manageable Applications Using JMX for
Oracle WebLogic Server.

D.1 WLST Commands for Diagnostics

WLST includes the following commands for retrieving diagnostic data and managing
diagnostic system resources:

Table D-1 WLST Commands Used with WLDF

Command

Summary

captureAndSaveDiagnosticImage

Captures a diagnostics image and downloads it locally.

createSystemResourceControl

Creates a diagnostics system resource control using specified descriptor
file that is not persisted in the domain configuration. For an example,
see Section 5.6.7, "Using WLST to Activate and Deactivate Diagnostic
System Modules".

destroySystemResourceControl

Destroys an external diagnostics system resource control; that is, one
that is created in a server or cluster instance but that is not persisted in
the domain configuration. For an example, see Section 5.6.7, "Using
WLST to Activate and Deactivate Diagnostic System Modules"

disableSystemResource

Deactivates a diagnostic system resource control that is persisted in the
domain configuration. For an example, see Section 5.6.7, "Using WLST
to Activate and Deactivate Diagnostic System Modules"

dumpDiagnosticData

Dumps the diagnostics data from a harvester to a local file.

WebLogic Scripting Tool Examples D-1

Example: Dynamically Creating Dyelnjection Monitors

Table D-1 (Cont.) WLST Commands Used with WLDF

Command Summary

enableSystemResource Activates a diagnostic resource control. For an example, see
Section 5.6.7, "Using WLST to Activate and Deactivate Diagnostic
System Modules"

exportDiagnosticData Execute a query against the specified log file.

exportDiagnosticDataFromServer Executes a query on the server side and retrieves the exported WLDF
data.

getAvailableCapturedImages Returns a list of the previously captured diagnostic images.

listSystemResourceControls Lists the diagnostic system modules that are currently configured in the

domain. For an example, see Section 5.6.7, "Using WLST to Activate
and Deactivate Diagnostic System Modules"

saveDiagnosticImageCaptureFile Downloads the specified diagnostic image capture.

saveDiagnosticImageCaptureEntryFile Downloads a specific entry from the diagnostic image capture.

For complete details about each of these commands, including additional examples,
see "Diagnostics Commands" in WLST Command Reference for WebLogic Server.

D.2 Example: Dynamically Creating Dyelnjection Monitors

This demonstration script (see Example D-1) shows how to use WLST to create a
Dyelnjection monitor dynamically. This script:

= Connects to a server (boots the server first if necessary).

= Looks up or creates a WLDF System Resource.

» Creates the Dyelnjection monitor.

= Sets the dye criteria.

= Enables the monitor.

= Saves and activates the configuration.

= Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

The demonstration script in Example D-1 only configures the dye monitor, which
injects dye values into the diagnostic context. To trigger events, you must implement
downstream diagnostic monitors that use dye filtering to trigger on the specified dye
criteria. An example downstream monitor artifact is shown in Example D-2. This must
be placed in a file named weblogic-diagnostics.xml and placed into the META-INF
directory of a application archive. It is also possible to create a monitor using a JSR-88
deployment plan. For more information about deploying applications, see Deploying
Applications to Oracle WebLogic Server.

Example D-1 Example: Using WLST to Dynamically Create Dyelnjection Monitors
(demoDyeMonitorCreate.py)

Script name: demoDyeMonitorCreate.py

FhEF
Demo script showing how to create a DyeInjectionMonitor dynamically
via WLST. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a WLDF System Resource

- Create the DyelInjection Monitor (DIM)

- Set the dye criteria

HH H H H H

D-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Dynamically Creating Dyelnjection Monitors

- Enable the monitor

- Save and activate

- Enable the Diagnostic Context functionality via the
ServerDiagnosticConfig MBean

Note: This will only configure the dye monitor, which will inject dye

values into the Diagnostic Context. To trigger events requires the

existence of "downstream" monitors set to trigger on the specified

dye criteria.

FhEF R

myDomainDirectory="domain"

url="t3://localhost:7001"

user="weblogic"

password="password"

myServerName="myserver"

myDomain="mydomain"

props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\

+myDomainDirectory

HH H H H H H H

try:
connect (user, password, url)
except:
startServer (adminServerName=myServerName, domainName=myDomain,
username=user, password=password, systemProperties=props,
domainDir=myDomainDirectory,block="true")
connect (user, password,url)
Start an edit session
edit()
startEdit ()
cd ("/")
Look up or create the WLDF System resource.
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource (wldfResourceName)
if myWldfVar==None:
print "Unable to find named resource, \
creating WLDF System Resource: " + wldfResourceName
myWldfVar=cmo.createWLDFSystemResource (wldfResourceName)
Target the System Resource to the demo server.
wldfServer=cmo.lookupServer (serverName)
myWldfVar.addTarget (wldfServer)
create and set properties of the DyeInjection Monitor (DIM).
mywldfResource=myWldfVar.getWLDFResource ()
mywldfInst=mywldfResource.getInstrumentation/()
mywldfInst.setEnabled(1)
monitor=mywldfInst.createWLDFInstrumentationMonitor ("DyeInjection")
monitor.setEnabled(1)
Need to include newlines when setting properties
on the DyeInjection monitor.
monitor.setProperties ("\nUSERl=1larry@celtics.com\
\nUSER2=brady@patriots.com\n")
monitor.setDyeFilteringEnabled (1)
Enable the diagnostic context functionality via the
ServerDiagnosticConfig.
cd("/Servers/"+serverName+" /ServerDiagnosticConfig/"+serverName)
cmo. setDiagnosticContextEnabled (1)
save and disconnect
save ()
activate()
disconnect ()
exit ()

WebLogic Scripting Tool Examples D-3

Example: Configuring a Watch and a JMX Notification

Example D-2 Example: Downstream Monitor Artifact

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<instrumentation>

<enabled>true</enabled>

<!-- Servlet Session Monitors -->

<wldf-instrumentation-monitor>
<name>Servlet_Before_Session</name>
<enabled>true</enabled>
<dye-mask>USER1</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>
<action>TraceAction</action>
<action>StackDumpAction</action>
<action>DisplayArgumentsAction</action>
<action>ThreadDumpAction</action>

</wldf-instrumentation-monitor>

<wldf-instrumentation-monitor>
<name>Servlet_After_ Session</name>
<enabled>true</enabled>
<dye-mask>USER2</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>
<action>TraceAction</action>
<action>StackDumpAction</action>
<action>DisplayArgumentsAction</action>
<action>ThreadDumpAction</action>

</wldf-instrumentation-monitor>

</instrumentation>

</wldf-resource>

D.3 Example: Configuring a Watch and a JMX Notification

This demonstration script (see Example D-3) shows how to use WLST to configure a
watch and a JMX notification using the WLDF Watch and Notification component.
This script:

Connects to a server and boots the server first if necessary.
Looks up/creates a WLDF system resource.

Creates a watch and watch rule on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

Configures the watch to use a JMXNotification medium.

This script can be used in conjunction with the following files and scripts:

The JMXWatchNotificationListener.java class (see Section D.4, "Example: Writing a
JMXWatchNotificationListener Class").

The demoHarvester.py script, which registers the OpenSocketsCurrentCount
attribute with the harvester for collection (see Section D.5, "Example: Registering
MBeans and Attributes For Harvesting").

To see these files work together, perform the following steps:

1.

2.

To run the watch configuration script (demoWatch.py), type:

java weblogic.WLST demoWatch.py

To compile the JMXWatchNotificationListener.java source, type:

javac JMXWatchNotificationListener.java

D-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Configuring a Watch and a JMX Notification

3. To run the JMXWatchNotificationListener.class file, type:

java JMXWatchNotificationListener

Note: Be sure the current directory is in your class path, so it will
find the class file you just created.

4. To run the demoHarvester.py script, type:

java weblogic.WLST demoHarvester.py

When the demoHarvester.py script runs, it triggers the JMXNotification for the watch
configured in step 1.

Example D-3 Example: Watch and JMXNotification (demoWatch.py)

Script name: demoWatch.py
FHEH R R R
Demo script showing how to configure a Watch and a JMXNotification
using the WLDF Watches and Notification framework.
The script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create a watch and watch rule on the ServerRuntimeMBean for the
"OpenSocketsCurrentCount" attribute
- Configure the watch to use a JMXNotification medium

#
#
#
#
#
#
#
#
#
This script can be used in conjunction with
- the JMXWatchNotificationListener.java class
- the demoHarvester.py script, which registers the
"OpenSocketsCurrentCount" attribute with the harvester for collection.
To see these work together:
1. Run the watch configuration script
java weblogic.WLST demoWatch.py
2. Compile and run the JMXWatchNotificationListener.java source code
javac JMXWatchNotificationListener.java
java JMXWatchNotificationListener
3. Run the demoHarvester.py script
java weblogic.WLST demoHarvester.py
When the demoHarvester.py script runs, it triggers the
JMXNotification for the watch configured in step 1.
FHEH R R R R R R
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true\
weblogic.RootDirectory="+myDomainDirectory
try:
connect (user,user,url)
except:
startServer (adminServerName=myServerName, domainName=myDomain,
username=user, password=password, systemProperties=props,
domainDir=myDomainDirectory,block="true")
connect (user,user,url)
edit()
startEdit ()

WebLogic Scripting Tool Examples D-5

Example: Writing a JMXWatchNotificationListener Class

Look up or create the WLDF System resource
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource (wldfResourceName)
if myWldfvar==None:
print "Unable to find named resource"
print "creating WLDF System Resource: " + wldfResourceName
myWldfVar=cmo.createWLDFSystemResource (wldfResourceName)
Target the System Resource to the demo server
wldfServer=cmo.lookupServer (myServerName)
myWldfVar.addTarget (wldfServer)
cd (" /WLDFSystemResources/mywldf /WLDFResource/mywldf/WatchNotification/mywldf")
watch=cmo.createWatch ("mywatch")
watch.setEnabled (1)
jmxnot=cmo.createJMXNotification ("myjmx")
watch.addNotification (jmxnot)
serverRuntime ()
cd("/")
on=cmo.getObjectName () .getCanonicalName ()
watch.setRuleExpression("${"+on+"} > 1")
watch.getRuleExpression()
watch.setRuleExpression("${"+on+"//OpenSocketsCurrentCount} > 1")
watch.setAlarmResetPeriod(10000)
edit ()
save ()
activate()
disconnect ()
exit ()

D.4 Example: Writing a JMXWatchNotificationListener Class

Example D—4 shows how to write a JMXWatchNotificationListener.

Example D-4 Example: JMXWatchNotificationListener Class
(JMXWatchNotificationListener.java)

import javax.management.*;
import weblogic.diagnostics.watch.*;
import weblogic.diagnostics.watch.JMXWatchNotification;
import javax.management.Notification;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXConnector;
import javax.naming.Context;
import java.util.Hashtable;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
public class JMXWatchNotificationListener implements NotificationListener,
Runnable {
private MBeanServerConnection rmbs = null;

private String notifName = "myjmx";

private int notifCount = 0;

private String serverName = "myserver";

public JMXWatchNotificationListener (String serverName) {

}

public void register() throws Exception {
rmbs = getRuntimeMBeanServerConnection() ;
addNotificationHandler () ;

}

public void handleNotification(Notification notif, Object handback) {
synchronized (this) {

D-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Writing a JMXWatchNotificationListener Class

try {
if (notif instanceof JIJMXWatchNotification) {
WatchNotification wNotif =
((IMXWatchNotification)notif) .getExtendedInfo();

notifCount++;
System.out.println("===") ;
System.out.println("Notification name: "4
notifName + " called. Count= " + notifCount + ".");
System.out.println("Watch severity: "4
wNotif.getWatchSeverityLevel());
System.out.println("Watch time: "ot
wNotif.getWatchTime());
System.out.println("Watch ServerName: "o+
wNotif.getWatchServerName()) ;
System.out.println("Watch RuleType: "o+
wNotif.getWatchRuleType());
System.out.println("Watch Rule: "ot
wNotif.getWatchRule());
System.out.println("Watch Name: "o+
wNotif.getWatchName()) ;
System.out.println("Watch DomainName: "4
wNotif.getWatchDomainName ()) ;
System.out.println("Watch AlarmType: "o+
wNotif.getWatchAlarmType());
System.out.println("Watch AlarmResetPeriod: " +

wNotif.getWatchAlarmResetPeriod());
System.out.println("===") ;
}
} catch (Throwable x) {
System.out.println("Exception occurred processing JMX watch
notification: " + notifName +"\n" + Xx);
x.printStackTrace() ;

}
private void addNotificationHandler () throws Exception {
/*
* The JMX Watch notification listener registers with a Runtime MBean
* that matches the name of the corresponding watch bean.
* Each watch has its own Runtime MBean instance.
*/
ObjectName oname =
new ObjectName (
"com.bea:ServerRuntime=" + serverName + ", Name=" +
JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
", Type=WLDFWatchIJMXNotificationRuntime, " +
"WLDFWatchNotificationRuntime=WatchNotification, " +
"WLDFRuntime=WLDFRuntime"
)i
System.out.println("Adding notification handler for: " +
oname.getCanonicalName()) ;
rmbs.addNotificationListener (oname, this, null, null);
}
private void removeNotificationHandler (String name,
NotificationListener list) throws Exception {
ObjectName oname =
new ObjectName (
"com.bea:ServerRuntime=" + serverName + ",Name=" +
JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
", Type=WLDFWatchJMXNotificationRuntime, " +

WebLogic Scripting Tool Examples D-7

Example: Registering MBeans and Attributes For Harvesting

"WLDFWatchNotificationRuntime=WatchNotification, " +
"WLDFRuntime=WLDFRuntime"
)i
System.out.println("Removing notification handler for: " +
oname.getCanonicalName()) ;
rmbs.removeNotificationListener (oname, list);
}
public void run() {
try {
System.out.println("VM shutdown, unregistering notification
listener");
removeNotificationHandler (notifName, this);
} catch (Throwable t) {
System.out.println("Caught exception in shutdown hook");
t.printStackTrace() ;

}
private String user = "weblogic";
private String password = "password";
public MBeanServerConnection getRuntimeMBeanServerConnection ()
throws Exception {
String JNDI = "/jndi/";
JMXServiceURL serviceURL;
serviceURL =
new JMXServiceURL("t3", "localhost", 7001,
JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME) ;
System.out.println("URL=" + serviceURL);
Hashtable h = new Hashtable();
h.put (Context.SECURITY_PRINCIPAL, user) ;
h.put (Context.SECURITY_CREDENTIALS, password) ;
h.put (JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote") ;
JMXConnector connector = JMXConnectorFactory.connect (serviceURL,h);
return connector.getMBeanServerConnection() ;
}
public static void main(String[] args) {
try {
String serverName = "myserver";
if (args.length > 0)
serverName = args[0];
JMXWatchNotificationListener listener =
new JMXWatchNotificationListener (serverName) ;
System.out.println("Adding shutdown hook");
Runtime.getRuntime () .addShutdownHook (new Thread(listener));
listener.register();
// Sleep waiting for notifications
Thread.sleep (Long.MAX_VALUE) ;
} catch (Throwable e) {
e.printStackTrace();
} // end of try-catch
} // end of main()

D.5 Example: Registering MBeans and Attributes For Harvesting

This demonstration script shows how to use WLST to register MBeans and attributes
for collection by the WLDF Harvester. This script:

= Connects to a server and boots the server first if necessary.

D-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Registering MBeans and Attributes For Harvesting

= Looks up or creates a WLDF system resource.

= Sets the sampling frequency.

= Adds a type for collection.

= Adds an attribute of a specific instance for collection.
= Saves and activates the configuration.

= Displays a few cycles of the harvested data.

Example D-5 Example: MBean Registration and Data Collection (demoHarvester.py)

Script name: demoHarvester.py
FHEH R R
Demo script showing how register MBeans and attributes for collection
by the WLDF Harvester Service. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Set the sampling frequency
- Add a type for collection
- Add an attribute of a specific instance for collection
- Save and activate
hEH A R
from java.util import Date
from java.text import SimpleDateFormat
from java.lang import Long
import jarray
FHEH R R R
Helper functions for adding types/attributes to the harvester
configuration
FhEF R R
def findHarvestedType (harvester, typeName) :
htypes=harvester.getHarvestedTypes ()
for ht in (htypes):
if ht.getName() == typeName:
return ht
return None
def addType (harvester, mbeanInstance):
typeName = "weblogic.management.runtime."\
+ mbeanInstance.getType() + "MBean"
ht=findHarvestedType (harvester, typeName)
if ht == None:
print "Adding " + typeName + " to harvestables collection for "\
+ harvester.getName ()
ht=harvester.createHarvestedType (typeName)
return ht;
def addAttributeToHarvestedType (harvestedType, targetAttribute):
currentAttributes = PyList()
currentAttributes.extend (harvestedType.getHarvestedAttributes());
print "Current attributes: " + str(currentAttributes)
try:
currentAttributes.index (targetAttribute)
print "Attribute is already in set"
return
except ValueError:
print targetAttribute + " not in list, adding"
currentAttributes.append (targetAttribute)
newSet = jarray.array(currentAttributes, java.lang.String)
print "New attributes for type "\
+ harvestedType.getName() + ": " + str(newSet)

HH H H H H

WebLogic Scripting Tool Examples D-9

Example: Registering MBeans and Attributes For Harvesting

harvestedType.setHarvestedAttributes (newSet)

return
def addTypeForInstance (harvester, mbeanInstance):
typeName = "weblogic.management.runtime."\

+ mbeanInstance.getType() + "MBean"
return addTypeByName (harvester, typeName, 1)
def addInstanceToHarvestedType (harvester, mbeanInstance):
harvestedType = addTypeForInstance (harvester, mbeanInstance)
currentInstances = PyList()
currentInstances.extend (harvestedType.getHarvestedAttributes());
on = mbeanInstance.getObjectName () .getCanonicalName ()
print "Adding " + str(on) + " to set of harvested instances for type "\
+ harvestedType.getName ()
print "Current instances : " + str(currentInstances)
for inst in currentInstances:
if inst == on:
print "Found " + on + " in existing set"
return harvestedType
only get here if the target attribute is not in the set
currentInstances.append(on)
convert the new list back to a Java String array
newSet = jarray.array(currentInstances, java.lang.String)
print "New instance set for type " + harvestedType.getName()\
+ ": " + str(newSet)
harvestedType.setHarvestedInstances (newSet)
return harvestedType
def addTypeByName (harvester, _typeName, knownType=0):
ht=findHarvestedType (harvester, _typeName)
if ht == None:
print "Adding " + _typeName + " to harvestables collection for "\
+ harvester.getName ()
ht=harvester.createHarvestedType (_typeName)
if knownType ==
print "Setting known type attribute to true for " + _typeName
ht.setKnownType (knownType)
return ht;
def addAttributeForInstance (harvester, mbeanInstance, attributeName) :
typeName = mbeanInstance.getType() + "MBean"
ht = addInstanceToHarvestedType (harvester, mbeanInstance)
return addAttributeToHarvestedType (ht,attributeName)
FhEF R
Display the currently registered types for the specified harvester
FHEH R R R
def displayHarvestedTypes (harvester):
harvestedTypes = harvester.getHarvestedTypes ()
print ""
print "Harvested types:"
print ""
for ht in (harvestedTypes) :
print "Type: " + ht.getName()
attributes = ht.getHarvestedAttributes()

if attributes != None:
print " Attributes: " + str(attributes)

instances = ht.getHarvestedInstances()

print " Instances: " + str(instances)

print ""

return

A R
Main script flow -- create a WLDF System resource and add harvestables

FHEHH R R

D-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Registering MBeans and Attributes For Harvesting

myDomainDirectory="domain"

url="t3://localhost:7001"

user="weblogic"

myServerName="myserver"

myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\

+myDomainDirectory
try:
connect (user,user,url)
except:

startServer (adminServerName=myServerName, domainName=myDomain,
username=user, password=password, systemProperties=props,
domainDir=myDomainDirectory,block="true")
connect (user,user,url)
start an edit session
edit()
startEdit ()
cd("/")
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
systemResource = cmo.lookupSystemResource (wldfResourceName)
if systemResource==None:
print "Unable to find named resource, \
creating WLDF System Resource: " + wldfResourceName
systemResource=cmo.createWLDFSystemResource (wldfResourceName
Obtain the harvester bean instance for configuration
print "Getting WLDF Resource Bean from " + str(wldfResourceName)
wldfResource = systemResource.getWLDFResource()
print "Getting Harvester Configuration Bean from " + wldfResourceName
harvester = wldfResource.getHarvester ()
print "Harvester: " + harvester.getName /()
Target the WLDF System Resource to the demo server
wldfServer=cmo.lookupServer (myServerName)
systemResource.addTarget (wldfServer)
The harvester Jython wrapper maintains refs to
the SystemResource objects
harvester.setSamplePeriod(5000)
harvester.setEnabled (1)
add an instance-based RT MBean attribute for collection
serverRuntime ()
cd("/")
addAttributeForInstance (harvester, cmo, "OpenSocketsCurrentCount")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes,
with KnownType = "true"
addTypeByName (harvester,

"weblogic.management.runtime.WLDFInstrumentationRuntimeMBean", 1)
addTypeByName (harvester,

"weblogic.management.runtime.WLDFWatchNotificationRuntimeMBean", 1)
addTypeByName (harvester,

"weblogic.management.runtime.WLDFHarvesterRuntimeMBean", 1)

try:
save ()
activate (block="true")
except:
print "Error while trying to save and/or activate."
dumpStack ()

display the data
displayHarvestedTypes (harvester)

WebLogic Scripting Tool Examples D-11

Example: Setting the WLDF Diagnostic Volume

disconnect ()
exit()

D.6 Example: Setting the WLDF Diagnostic Volume

By default, WLDF gathers data and record most events in a WebLogic Server instance,
unless specifically configured otherwise. Note that even when WLDF diagnostic
volume is set to 0ff, WLDEF, and potentially the JVM if flight recording is enabled,
generate global events that have information about the recording settings; for example,
JVM metadata events that list active recordings, and WLDF GloballnformationEvents
that list the volume level for the domain, server, and machine.

Example D-6 shows changing the WLDF Diagnostic Volume to Medium:

Example D-6 Setting WLDF Diagnostic Volume

connect ()

edit ()

startEdit ()

cd("Servers/myserver")
cd("ServerDiagnosticConfig")
cd("myserver")

cmo . setWLDFDiagnosticVolume ("Medium")
save ()

activate()

D.7 Example: Capturing a Diagnostic Image

The diagnostic image capture can be created for a WebLogic Server instance in any of
the following ways:

= WebLogic Server Administration Console
s WLST script

= Image notification by means of the Watch and Notification component

Note: If WebLogic Server is running in production mode, the
server’s SSL port must be used when executing the commands
included in this script.

Example D-7 show a sample WLST script that captures a diagnostic image. This
example does the following;:

= Captures an diagnostic image after connecting, and then waits for the image task
to complete.

s Uses the getAvailableCapturedImages () command to obtain a list of available
diagnostic image files in the server’s image directory.

s Loops through the list of available images in the diagnostic image capture and
saves each image file locally using the saveDiagnosticImageCaptureFile()
command.

Example D-7 Creating a Diagnostic Image Capture
#

D-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Capturing a Diagnostic Image

WLST script to capture a WLDF Diagnostic Image and
retrieve the image files to a local dir.

#

Usage:

#

java weblogic.WLST captureImage.py [username] [passwd] [url] [output-dir]
#

where

#

username Username to use to connect

passwd Password for connecting to server
url URL to connect to the server

output-dir Path to place saved entries

#

from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.

#
#
#
Params:

pos The integer location in sys.argv of the parameter

default The default value to return if the parameter does not exist
#
#

returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument (pos, default):
value=None
try:
value=sys.argv[pos]
except:
value=default
return value

Credential arguments
uname=getPositionalArgument (1, "weblogic")
passwd=getPositionalArgument (2, "password")
url=getPositionalArgument (3, "t3://localhost:7001")
outputDir=getPositionalArgument (4, ".")

connect (uname, passwd, url)
serverRuntime ()
currentDrive=currentTree ()

Capture a new diagnostic image
try:
cd("serverRuntime: /WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
task=cmo.captureImage ()
Thread.sleep(1000)
while task.isRunning():
Thread.sleep(5000)
cmo.resetImageLockout () ;
finally:
currentDrive ()

List the available diagnostic image files in the server's image capture dir
images=getAvailableCapturedImages ()
if len(images) > 0:
For each diagnostic image found, retrieve image file, renaming it as
the user sees fit
for image in images:
saveName=outputDir+File.separator+serverName+'-"'+image

WebLogic Scripting Tool Examples D-13

Example: Retrieving a JFR File from a Diagnostic Image Capture

saveDiagnosticImageCaptureFile (image, saveName)

D.8 Example: Retrieving a JFR File from a Diagnostic Image Capture

The following example shows retrieving the Java Flight Recorder (JFR) file from each
diagnostic image capture located in the image destination directory on the server and
copying it to a local directory. This example script does the following:

= Connects to WebLogic Server, passing the required credentials.
» Creates a diagnostic image capture.

= Obtains a list of the available diagnostic image files in the server’s configured
image directory.

s For each diagnostic image file, attempts to retrieve the JER file and save it to a local
directory, ensuring that each file is renamed as necessary to avoid any from being
overwritten.

Note: If WebLogic Server is running in production mode, the
server’s SSL port must be used when executing the commands
included in this script.

Example D-8 Retrieving a Diagnostic Image Capture File

image-suffix Suffix to use to rename JFR image entries locally

#

WLST script to capture a WLDF Diagnostic Image and
save the FlightRecording.jfr entry locally

#

Usage:

#

java weblogic.WLST captureImageEntry.py [username] [passwd] [url] [output-dir]
[image-suffix]

#

where

#

username Username to use to connect

passwd Password for connecting to server
url URL to connect to the server

output-dir Path to place saved entries

#

#

import os.path
from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.

Params:

#
#
#
#
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument (pos, default):
value=None
try:
value=sys.argv[pos]
except:
value=default

D-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example: Retrieving a JFR File from a Diagnostic Image Capture

return value

Credential arguments
uname=getPositionalArgument (1, "weblogic")
passwd=getPositionalArgument (2, "password")
url=getPositionalArgument (3, "t3://localhost:7001")
outputDir=getPositionalArgument (4, ".")
imageSuffix=getPositionalArgument (5, "_WLS")

connect (uname, passwd, url)
serverRuntime ()
currentDrive=currentTree ()

Capture a new diagnostic image capture file
try:
cd("serverRuntime: /WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
task=cmo.captureImage ()
Thread.sleep(1000)
while task.isRunning():
Thread.sleep(5000)
cmo.resetImageLockout () ;
finally:
currentDrive ()

List the available diagnostic image captures in the server's image capture dir
images=getAvailableCapturedImages ()
if len(images) > 0:
For each image capture found, retrieve the JFR entry and save it to a local
file, renaming it to avoid collisions in the event there are multiple
diagnostic image capture files with JFR entries.
i=0
for image in images:
saveName=outputDir+File.separator+"FlightRecording
"+imageSuffix+"-"+str(i)+".jfr"
while os.path.exists (saveName) :
i+=1
saveName=outputDir+File.separator+"FlightRecording
"+imageSuffix+"-"+str(i)+".jfr"
saveDiagnosticImageCaptureEntryFile (image, 'FlightRecording.jfr', saveName)
i+=1

WebLogic Scripting Tool Examples D-15

Example: Retrieving a JFR File from a Diagnostic Image Capture

D-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Glossary

Key terms that you will encounter throughout the diagnostic and monitoring
documentation include the following:

artifact

Any resulting physical entity, or data, generated and persisted to disk by the WebLogic
Diagnostics Framework that can be used later for diagnostic analysis. For example, the
diagnostic image file that is created when the server fails is an artifact. The diagnostic
image artifact is provided to support personnel for analysis to determine why the
server failed. The WebLogic Diagnostics Framework produces a number of different
artifacts.

context creation

If diagnostic monitoring is enabled, a diagnostic context is created, initialized, and
populated by WebLogic Server when a request enters the system. Upon request entry,
WebLogic Server determines whether a diagnostic context is included in the request. If
so, the request is propagated with the provided context. If not, WebLogic Server
creates a new context with a specific name (weblogic.management.DiagnosticContext).
The contextual data for the diagnostic context is stored in the diagnostic context
payload. Thus, within the scope of a request execution, existence of the diagnostic
context is guaranteed.

context payload

The actual contextual data for the diagnostic context is stored in the Context Payload.
See also context creation, diagnostic context, request dyeing.

data stores

Data stores are a collection of data, or records, represented in a tabular format. Each
record in the table represents a datum. Columns in the table describe various
characteristics of the datum. Different data stores may have different columns;
however, most data stores have some shared columns, such as the time when the data
item was collected.

In WebLogic Server, information captured by WebLogic Diagnostics Framework is
segregated into logical data stores, separated by the types of diagnostic data. For
example, Server logs, HTTP logs, and harvested metrics are captured in separate data
stores.

diagnostic action

Business logic or diagnostic code that is executed when a joinpoint defined by a
pointcut is reached. Diagnostic actions, which are associated with specific pointcuts,
specify the code to execute at a joinpoint. Put another way, a pointcut declares the

Glossary-1

diagnostic context

Glossary-2

location and a diagnostic action declares what is to be done at the locations identified
by the pointcut.

Diagnostic actions provide visibility into a running server and applications. Diagnostic
actions specify the diagnostic activity that is to take place at locations, or pointcuts,
defined by the monitor in which it is implemented. Without a defined action, a
diagnostic monitor is useless.

Depending on the functionality of a diagnostic action, it may need a certain
environment to do its job. Such an environment must be provided by the monitor to
which the diagnostic action is attached; therefore, diagnostic actions can be used only
with compatible monitors. Hence, diagnostic actions are classified by type so that their
compatibility with monitors can be determined.

To facilitate the implementation of useful diagnostic monitors, a library of suitable
diagnostic actions is provided with the WebLogic Server product.

diagnostic context

The WebLogic Diagnostics Framework adds contextual information to all requests
when they enter the system. You can use this contextual information, referred to as the
diagnostic context, to reconstruct transactional events, as well correlate events based
on the timing of the occurrence or logical relationships. Using diagnostic context you
can reconstruct or piece together a thread of execution from request to response.

Various diagnostic components, for example, the logging services and diagnostic
monitors, use the diagnostic context to tag generated data events. Using the tags, the
diagnostic data can be collated, filtered and correlated by the WebLogic Diagnostics
Framework and third-party tools.

The diagnostic context also makes it possible to generate diagnostic information only
when contextual information in the diagnostic context satisfies certain criteria. This
capability enables you to keep the volume of generated information to manageable
levels and keep the overhead of generating such information relatively low. See also
context creation, context payload, request dyeing.

diagnostic image

An artifact containing key state from an instance of a server that is meant to serve as a
server-level state dump for the purposes of diagnosing significant failures. This artifact
can be used to diagnose and analyze problems even after the server has cycled.

diagnostic module

A diagnostic module is the definition the configuration settings that are to be applied
to the WebLogic Diagnostics Framework. The configuration settings determine the
data that is to be collected and processed, how the data is to be analyzed and archived,
the notifications and alarms that are to be fired, and the operating parameters of the
Diagnostic Image Capture component. After a diagnostic module has been defined, or
configured, it can be distributed to a running server where the data is collected.

diagnostic monitor

A diagnostic monitor is a unit of diagnostic code that defines the following:
1. The locations in a program where the diagnostic code is added

2. The diagnostic actions that are executed at those locations

WebLogic Server provides a library of useful diagnostic monitors. You can integrate
these monitors into server and application classes. Once integrated, the monitors take
effect at server startup for server classes, and at application deployment and
redeployment for application classes.

Harvester's configuration data set

diagnostic notification

The action that occurs as a result of the successful evaluation of a watch rule. The
WebLogic Diagnostics Framework supports these types of diagnostic notifications:
Java Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), Simple Network Management Protocol (SNMP), and WLDF Image
Capture. See also diagnostic image.

dye filtering

The process of looking at the dye mask and making the decision as to whether or not a
diagnostic monitor should execute an action so as to generate a data event. Dye
filtering is dependent upon dye masks. You must define dye masks in order for dye
filtering to take place. See also dye mask, request dyeing.

dye mask

The entity that contains a predefined set of conditions that are used by dye filtering in
diagnostic monitors to determine whether or not a data event should be generated. See
also dye filtering, request dyeing.

harvestable entities

A harvestable entity is any entity that is available for data consumption via the
Harvester. Once an entity is identified as a harvestable resource, the Harvester can
engage the entity in the data collection process.

Harvestable entities provide access to the following information: harvestable
attributes, values of harvestable attributes, metadata for harvestable attributes, and the
name of the harvestable entity. See also harvestable data, harvested data, Harvester's
configuration data set, MBean type discovery.

harvestable data

Harvestable data (types, instances, attributes) is the set of data that potentially could
be harvested when and if a harvestable entity is configured for harvesting. Therefore,
the set of harvestable data exists independent of what data is configured for
harvesting and of what data samples are taken.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data for users. For
a description of the information about harvestable data provided by this MBean, see
the description of the weblogic.management.runtime. WLDFHarvesterRuntimeMBean
in the MBean Reference for Oracle WebLogic Server.

The WebLogic Diagnostics Framework only makes run-time MBeans available as
harvestable. In order for an MBean to be harvestable, it must be registered in the local
WebLogic Server run-time MBean server. See also harvestable entities, harvested data,
Harvester's configuration data set, MBean type discovery.

harvested data

A type, instance, or attribute is called harvested data if that data is currently being
harvested. To meet these criteria the data must: 1) be configured to be harvested, 2) if
applicable, it must have been discovered, and 3) it must not throw exceptions while
being harvested.

See also harvestable entities, harvestable data, Harvester's configuration data set.

Harvester's configuration data set

The set of data to be harvested as defined by the Harvester's configuration. The
configured data set can contain items that are not harvestable and items that are not
currently being harvested.

Glossary-3

joinpoint

Glossary-4

See also harvestable entities, harvestable data, Harvester's configuration data set.
joinpoint
A well defined point in the program flow where diagnostic code can be added. The

Instrumentation component allows identification of such diagnostic joinpoints with an
expression in a generic manner.

pointcut

A well defined set of joinpoints, typically identified by some generic expression.
Pointcuts identify joinpoints, which are well-defined points in the flow of execution,
such as a method call or method execution site. The Instrumentation component
provides a mechanism to allow execution of specific diagnostic code at such pointcuts.
The Instrumentation component adds such diagnostic code to the server and
application code.

MBean (Managed Bean)

A Java object that provides a management interface for an underlying resource. An
MBean is part of Java Management Extensions (JMX).

In the WebLogic Diagnostics Framework, MBean classes are used to configure the
service and to monitor its run-time state. MBeans are registered with the MBean server
that runs inside WebLogic Server. MBeans are implemented as standard MBeans
which means that each class implements its own MBean interface.

MBean type discovery

For WebLogic Server entities, the set of harvestable types is known at system startup,
but not the complete set of harvestable instances. However, for user-defined MBeans,
the set of types can grow dynamically as more MBeans appear at run time. The process
of detecting a new type based on the registration of a new MBean is called type
discovery. MBean type discovery is only applicable to user-defined MBeans.

MBean type metadata

The set of harvestable attributes for a type (and its instances) is defined by the
metadata for the type. Since the WebLogic Server model is MBeans, the metadata is
provided through MBeanlInfos. Since WebLogic type information is always available,
the set of harvestable attributes for WebLogic Server types (and existing and potential
instances) is always available as well. However, for customer types, knowledge of the
set of harvestable attributes is dependent on the existence of the type. And, the type
does not exist until at least one instance is created. So the list of harvestable attributes
on a user defined type is not known until at least one instance of the type is registered.

It is important to be aware of latencies in the availability of information for custom
MBeans. Due to latencies, the Administration Console cannot provide complete lists of
all harvestable data in its user selection lists for configuring the harvester. The set of
harvestable data for WebLogic Server entities is always complete, but the set of
harvestable data for customer entities (and even the set of entities itself) may not be
complete.

metadata

Metadata is information that describes the information the WebLogic Diagnostics
Framework collects. Because the service collects diagnostic information from different
sources, the consumers of this information need to know what diagnostic information
is collected and available. To satisfy this need, the Data Accessor provides
functionality to programmatically obtain this metadata. The metadata made available
by means of the Data Accessor includes:

weaving time

1. Alist of supported data store types. For example, SERVER_LOG, HTTP_LOG, and
HARVESTED_DATA.

2. A list of available data stores.

3. The layout of each data store; that is, information about columns in the data store.

metrics

Monitoring system operation and diagnosing problems depends on having data from
running systems. Metrics are measurements of system performance. From these
measurements, support personnel can determine whether the system is in good
working order or a problem is developing.

In general, metrics are exposed to the WebLogic Diagnostics Framework as attributes
on qualified MBeans. In WebLogic Server, metrics include performance measurements
for the operating system, the virtual machine, the system runtime, and applications
running on the server.

request dyeing

Requests can be dyed, or specially marked, to indicate that they are of special interest.
For example, in a running system, it may be desirable to send a specially marked test
request, which can be conditionally traced by the tracing monitors. This allows
creation of highly focused diagnostic information without slowing down other
requests.

Requests are typically marked when they enter the system by setting flags in the
diagnostic context. The diagnostic context provides a number of flags, 64 in all, that
can be independently set or reset.

See also context creation, context payload, diagnostic context.

system image capture

Whenever a system fails, there is need to know its state when it failed. Therefore, a
means of capturing system state upon failure is critical to failure diagnosis. A system
image capture does just that. It creates, in essence, a diagnostic snapshot, or dump,
from the system for the express purpose of diagnosing significant failures.

In WebLogic Server, you can configure the WebLogic Diagnostics Framework provides
the First-Failure Notification feature to trigger system image captures automatically
when the server experiences an abnormal shutdown. You can also implement watches
to automatically trigger diagnostic image captures when significant failures occur and
you can manually initiate diagnostic image captures on demand.

watch

A watch encapsulates all of the information for a watch rule. This includes the watch
rule expression, the alarm settings for the watch, and the various notification handlers
that will be fired once a watch rule expression evaluates to true.

weaving time

The time it takes to inspect server and application classes and insert the diagnostic
byte code at well-defined locations, if necessary at class load time. The diagnostic byte
code enables the WebLogic Diagnostics Framework to take diagnostic actions.
Weaving time affects both the load time for server-level instrumented classes and
application deployment time for application-level classes.

Glossary-5

weaving time

Glossary-6

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 What Is the WebLogic Diagnostics Framework?
	1.2 Document Scope and Audience
	1.3 Guide to This Document
	1.4 Related Documentation
	1.5 Samples and Tutorials
	1.5.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.5.2 WLDF Samples Available for Download

	1.6 New and Changed Features in this Release

	2 Overview of the WLDF Architecture
	2.1 Overview of the WebLogic Diagnostics Framework
	2.2 Data Creation, Collection, and Instrumentation
	2.3 Archive
	2.4 Watch and Notification
	2.5 Data Accessor
	2.6 Monitoring Dashboard and Request Performance Pages
	2.6.1 Monitoring Dashboard
	2.6.2 Diagnostics Request Performance Page

	2.7 Diagnostic Image Capture
	2.8 How It All Fits Together

	3 Using the Built-in Diagnostic System Modules
	3.1 Overview
	3.1.1 Types of Built-in Diagnostic System Modules
	3.1.2 Data Collected by Built-in Diagnostic System Modules

	3.2 Configuring a Built-in Diagnostic Module
	3.3 Accessing Data Collected by a Built-in Diagnostic System Module
	3.3.1 Using the Monitoring Dashboard
	3.3.2 Using the Metrics Log Table in the Administration Console

	3.4 Creating a Custom Diagnostic System Module Based on a Built-in

	4 Using WLDF with Java Flight Recorder
	4.1 About Java Flight Recorder
	4.2 Using Java Flight Recorder with Oracle HotSpot
	4.3 Key Features of WLDF Integration with Java Flight Recorder
	4.4 Java Flight Recorder Use Cases
	4.4.1 Diagnosing a Critical Failure — The "Black Box"
	4.4.2 Profiling During Performance Testing or in Production
	4.4.3 Real-time Application Diagnostics and Reporting (RADAR)

	4.5 Obtaining the Flight Recording File
	4.6 Analyzing Java Flight Recorder Data
	4.6.1 Java Flight Recorder Graphical User Interface
	4.6.2 Analyzing Execution Flow — A Sample Walkthrough
	4.6.2.1 Displaying Event Data for a Product Subcomponent
	4.6.2.2 Viewing the Event Log to Display Details
	4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set
	4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data

	4.6.3 Changing the Location of Temporary JFR Files

	5 Understanding WLDF Configuration
	5.1 Configuration MBeans and XML
	5.2 Tools for Configuring WLDF
	5.3 How WLDF Configuration Is Partitioned
	5.3.1 Server-Level Configuration
	5.3.2 Application-Level Configuration

	5.4 Configuring Diagnostic Image Capture and Diagnostic Archives
	5.5 Configuring Diagnostic Image Capture for Java Flight Recorder
	5.6 Configuring Diagnostic System Modules
	5.6.1 About the Resource Descriptor
	5.6.2 WLDF Runtime Control
	5.6.3 Creating a Diagnostic System Module Based on a Configured Resource Descriptor
	5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor
	5.6.5 Targeting a Diagnostic System Module to a Server or Cluster
	5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules
	5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules
	5.6.7.1 Example

	5.6.8 More Information About Configuring Diagnostic System Modules

	5.7 Configuring Diagnostic Modules for Applications
	5.8 WLDF Configuration MBeans and Their Mappings to XML Elements

	6 Configuring and Capturing Diagnostic Images
	6.1 How to Initiate Image Captures
	6.2 Configuring Diagnostic Image Captures
	6.2.1 Configuring WLDF Diagnostic Volume
	6.2.1.1 Low Volume Setting
	6.2.1.2 Medium Volume Setting
	6.2.1.3 High Volume Setting

	6.2.2 WLST Commands for Generating an Image Capture

	6.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration
	6.4 Content of the Captured Image File
	6.4.1 Data Included in the Diagnostics Image Capture File
	6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures

	7 Configuring Diagnostic Archives
	7.1 Configuring the Archive
	7.2 Configuring a File-Based Store
	7.3 Configuring a JDBC-Based Store
	7.3.1 Creating WLDF Tables in the Database
	7.3.2 Configuring JDBC Resources for WLDF

	7.4 Retiring Data from the Archives
	7.4.1 Configuring Data Retirement at the Server Level
	7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	7.4.3 Sample Configuration

	8 Configuring the Harvester for Metric Collection
	8.1 Harvesting, Harvestable Data, and Harvested Data
	8.2 Harvesting Data from the Different Harvestable Entities
	8.3 Configuring the Harvester
	8.3.1 Configuring the Harvester Sampling Period
	8.3.2 Configuring the Types of Data to Harvest
	8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	8.3.4 Harvesting from the DomainRuntime MBeanServer
	8.3.5 When Configuration Settings Are Validated
	8.3.6 Sample Configurations for Different Harvestable Types

	8.4 Harvester Performance Considerations

	9 Configuring Watches and Notifications
	9.1 Watches and Notifications
	9.2 Overview of Watch and Notification Configuration
	9.3 Sample Watch and Notification Configuration

	10 Configuring Watches
	10.1 Types of Watches
	10.2 Configuration Options Shared by All Types of Watches
	10.3 Configuring Harvester Watches
	10.4 Configuring Log Watches
	10.5 Configuring Instrumentation Watches
	10.6 Defining Watch Rule Expressions

	11 Configuring Notifications
	11.1 Types of Notifications
	11.2 Configuring JMX Notifications
	11.3 Configuring JMS Notifications
	11.4 Configuring SNMP Notifications
	11.5 Configuring SMTP Notifications
	11.6 Configuring Image Notifications

	12 Configuring Instrumentation
	12.1 Concepts and Terminology
	12.1.1 Instrumentation Scope
	12.1.2 Configuration and Deployment
	12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations
	12.1.4 Diagnostic Monitor Types
	12.1.5 Diagnostic Actions

	12.2 Instrumentation Configuration Files
	12.3 XML Elements Used for Instrumentation
	12.3.1 <Instrumentation> XML Elements
	12.3.2 <wldf-instrumentation-monitor> XML Elements
	12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	12.4 Configuring Server-Scoped Instrumentation
	12.5 Configuring Application-Scoped Instrumentation
	12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation
	12.5.2 Overview of the Steps Required to Instrument an Application
	12.5.3 Creating a Descriptor File for a Delegating Monitor
	12.5.4 Creating a Descriptor File for a Custom Monitor
	12.5.4.1 Defining Pointcuts for Custom Monitors
	12.5.4.2 Annotation-based Pointcuts

	12.6 Creating Request Performance Data

	13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context
	13.1.1 Context Life Cycle and the Context ID
	13.1.2 Dyes, Dye Flags, and Dye Vectors
	13.1.3 Where Diagnostic Context Is Configured

	13.2 Overview of the Process
	13.3 Configuring the Dye Vector via the DyeInjection Monitor
	13.3.1 Dyes Supported by the DyeInjection Monitor
	13.3.2 PROTOCOL Dye Flags
	13.3.3 THROTTLE Dye Flag
	13.3.4 When Diagnostic Contexts Are Created

	13.4 Configuring Delegating Monitors to Use Dye Filtering
	13.5 How Dye Masks Filter Requests to Pass to Monitors
	13.5.1 Dye Filtering Example

	13.6 Using Throttling to Control the Volume of Instrumentation Events
	13.6.1 Configuring the THROTTLE Dye
	13.6.2 How Throttling is Handled by Delegating and Custom Monitors

	13.7 Using weblogic.diagnostics.context

	14 Accessing Diagnostic Data With the Data Accessor
	14.1 Data Stores Accessed by the Data Accessor
	14.2 Accessing Diagnostic Data Online
	14.2.1 Accessing Data Using the Administration Console
	14.2.2 Accessing Data Programmatically Using Run-Time MBeans
	14.2.3 Using WLST to Access Diagnostic Data Online
	14.2.4 Using the WLDF Query Language with the Data Accessor

	14.3 Accessing Diagnostic Data Offline
	14.4 Accessing Diagnostic Data Programmatically
	14.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	15 Deploying WLDF Application Modules
	15.1 Deploying a Diagnostic Module as an Application-Scoped Resource
	15.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration
	15.3 Using a Deployment Plan: Overview
	15.4 Creating a Deployment Plan Using weblogic.PlanGenerator
	15.5 Sample Deployment Plan for Diagnostics
	15.6 Enabling Java HotSwap
	15.7 Deploying an Application with a Deployment Plan
	15.8 Updating an Application with a Modified Plan

	16 Using the Monitoring Dashboard
	16.1 Running the Monitoring Dashboard
	16.2 Scope of the Diagnostic Information Displayed
	16.3 About the Monitoring Dashboard Interface
	16.3.1 View List
	16.3.2 Metric Browser
	16.3.3 View Display Panel

	16.4 Understanding How Metrics Are Collected and Presented
	16.4.1 About Metrics and Chart Types
	16.4.1.1 Current Time Range Charts
	16.4.1.2 Custom Time Range Charts

	16.4.2 Sequence in which Metrics Data is Displayed
	16.4.3 Notes about Metric Data Retention

	16.5 The Parts of a Chart

	17 Configuring and Using WLDF Programmatically
	17.1 How WLDF Generates and Retrieves Data
	17.2 Mapping WLDF Components to Beans and Packages
	17.3 Programming Tools
	17.3.1 Configuration and Run-Time APIs
	17.3.1.1 Configuration APIs
	17.3.1.2 Run-Time APIs

	17.4 WLDF Packages
	17.5 Programming WLDF: Examples
	17.5.1 Example: DiagnosticContextExample.java
	17.5.2 Example: HarvesterMonitor.java
	17.5.2.1 Notification Listeners
	17.5.2.2 HarvesterMonitor.java

	17.5.3 Example: JMXAccessorExample.java

	A.1 Components of a Query Expression
	A.2 Supported Operators
	A.3 Operator Precedence
	A.4 Numeric Relational Operations Supported on String Column Types
	A.5 Supported Numeric Constants and String Literals
	A.6 About Variables in Expressions
	A.7 Creating Watch Rule Expressions
	A.7.1 Creating Log Event Watch Rule Expressions
	A.7.2 Creating Instrumentation Event Watch Rule Expressions
	A.7.3 Creating Harvester Watch Rule Expressions

	A.8 Creating Data Accessor Queries
	A.8.1 Data Store Logical Names
	A.8.2 Data Store Column Names

	A.9 Creating Log Filter Expressions
	A.10 Building Complex Expressions
	B.1 Diagnostic Monitor Library
	B.2 Diagnostic Action Library
	B.2.1 TraceAction
	B.2.2 DisplayArgumentsAction
	B.2.3 TraceElapsedTimeAction
	B.2.4 TraceMemoryAllocationAction
	B.2.5 StackDumpAction
	B.2.6 ThreadDumpAction
	B.2.7 MethodInvocationStatisticsAction
	B.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction and Querying the Results
	B.2.7.1.1 Configuring the Custom Monitor to Use MethodInvocationStatisticsAction
	B.2.7.1.2 Using WLST to Query Method Performance Statistics

	B.2.7.2 Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	B.2.7.3 Configuring Watch Rules Based on MethodInvocationStatistics Metrics
	B.2.7.4 Using JMX to Collect Data

	B.2.8 MethodMemoryAllocationStatisticsAction

	C.1 Using Wildcards in Harvester Instance Names
	C.1.1 Examples

	C.2 Specifying Complex and Nested Harvester Attributes
	C.2.1 Examples

	C.3 Using the Accessor with Harvested Complex or Nested Attributes
	C.4 Using Wildcards in Watch Rule Instance Names
	C.5 Specifying Complex Attributes in Harvester Watch Rules
	D.1 WLST Commands for Diagnostics
	D.2 Example: Dynamically Creating DyeInjection Monitors
	D.3 Example: Configuring a Watch and a JMX Notification
	D.4 Example: Writing a JMXWatchNotificationListener Class
	D.5 Example: Registering MBeans and Attributes For Harvesting
	D.6 Example: Setting the WLDF Diagnostic Volume
	D.7 Example: Capturing a Diagnostic Image
	D.8 Example: Retrieving a JFR File from a Diagnostic Image Capture

	Glossary

