Oracle® Fusion Middleware Application Adapters
Application Adapter for Siebel User's Guide for Oracle WebLogic Server
12c Release 1 (12.1.3.0.0)
E58247-01

October 2014
Provides information on how to integrate with Siebel systems and develop applications.
Contents

Preface
- Audience ... ix
- Documentation Accessibility .. ix
- Related Documents .. ix
- Conventions ... x

1 Introduction
- Adapter Features .. 1-1
 - Oracle Adapter Business Services Engine (BSE) Architecture .. 1-2
 - Oracle Adapter J2CA Generic Architecture ... 1-3
- The Siebel Application Model .. 1-4
- Integration with Siebel ... 1-4
 - Integrating with Siebel EAI Architecture .. 1-5
- Using Application Explorer with Oracle Application Adapter for Siebel ... 1-5
- BSE Versus Oracle Adapter J2CA Deployment ... 1-6
- Sample Projects .. 1-6

2 Configuring Oracle Application Server Adapter for Siebel
- Starting Application Explorer .. 2-2
- Configuring Repository Settings ... 2-2
- Creating a Repository Configuration ... 2-3
 - Creating a Configuration for BSE .. 2-3
 - Creating a Configuration for J2CA ... 2-4
 - Connecting to a BSE or J2CA Configuration ... 2-5
- Establishing a Connection (Target) for Siebel ... 2-5
 - Defining a Target to Siebel .. 2-6
Connecting to a Defined Target ... 2-9
Disconnecting From Siebel .. 2-9
Editing a Target ... 2-10
Deleting a Target to Siebel ... 2-10
Viewing Application System Objects .. 2-10
Viewing Metadata .. 2-11
Creating XML Schemas .. 2-12
Siebel Schema Considerations .. 2-13
Creating an XML Schema for a Siebel Business Object or Business Service 2-13
Creating an XML Schema for a Siebel Business Component or Business Service 2-13
Searching for a Specific Siebel Object .. 2-15
Returning Fields in a Specified Order ... 2-15
Using QueryWithView ... 2-16
Siebel Prerequisites for Working With Integration Objects 2-16
Creating Schemas for Siebel Integration Objects 2-17
Creating a Siebel XDR or XSD Schema for a Siebel Integration Object 2-17
Creating Integration Object (IO) Nodes for Siebel 2-19
Creating an XML Schema for a Siebel Integration Object 2-21
Creating a Service Node for a Siebel Business Service 2-22
Creating and Testing a Web Service (BSE Configurations Only) 2-24
Creating a Web Service ... 2-24
Testing a Web Service ... 2-25
Generating WSDL (J2CA Configurations Only) 2-27
Configuring an Event Adapter .. 2-28
Creating and Modifying a Channel ... 2-29

3 Oracle WebLogic Server Deployment and Integration

Adapter Integration with Oracle WebLogic Server 3-1
Deployment of Adapter ... 3-1
Updating Adapter Configuration ... 3-2
Creating a Managed Connector Factory Object 3-3
Creating Multiple Managed Connector Factory Objects 3-4
Modifying WSDL Files for Additional Connection Factory Values ... 3-6

4 Integration With BPEL Service Components in the Oracle SOA Suite

Overview .. 4-1
Deployment of Adapter ... 4-2
Configuring a New Application Server Connection 4-2
Designing an Outbound BPEL Process for Service Integration (J2CA Configuration) 4-7
Generating WSDL for Request/Response Service 4-8
Creating an Empty Composite for SOA .. 4-9
Defining a BPEL Outbound Process ... 4-11
Deploying the BPEL Outbound Process .. 4-28
Invoking the Input XML Document in the Oracle Enterprise Manager Console 4-31
Testing Outbound BPEL and Mediator Processes 4-33
Designing an Inbound BPEL Process for Event Integration (J2CA Configuration) 4-33
Generating WSDL for Event Integration ... 4-34
Creating an Empty Composite for SOA ... 4-40
Defining a BPEL Inbound Process .. 4-41
Deploying the BPEL Inbound Process ... 4-47
Triggering an Event in Siebel .. 4-48
Designing an Outbound BPEL Process for Service Integration (BSE Configuration) .. 4-74
Generating a WSDL File for Request and Response Services Using a Web Service .. 4-74
Creating an Empty Composite for SOA ... 4-76
Defining a BPEL Outbound Process ... 4-76

5 Integration With Mediator Service Components in the Oracle SOA Suite

Configuring a New Application Server Connection .. 5-2
Configuring a Mediator Outbound Process (J2CA Configuration) 5-2
Creating an Empty Composite for SOA ... 5-2
Defining a Mediator Outbound Process ... 5-3
Deploying the Mediator Outbound Process .. 5-10
Invoking the Input XML Document in the Oracle Enterprise Manager Console .. 5-11
Configuring a Mediator Inbound Process (J2CA Configuration) 5-11
Creating an Empty Composite for SOA ... 5-11
Defining a Mediator Inbound Process ... 5-11
Configuring a Mediator Outbound Process (BSE Configuration) 5-17
Creating an Empty Composite for SOA ... 5-18
Defining a Mediator Outbound Process ... 5-18

6 Integration With BPM Service Components in the Oracle SOA Suite

Overview .. 6-1
Deployment of Adapter ... 6-1
Configuring a New Application Server Connection .. 6-2
Designing an Outbound BPM Process Using Transformations for Service Integration (J2CA Configuration) .. 6-2
Creating an Empty Composite for BPM ... 6-2
Defining a BPM Outbound Process ... 6-2
Adjusting for Known Deployment Issues With 12c .. 6-25
Deploying the BPM Outbound Process ... 6-25
Invoking the Input XML Document in the Oracle Enterprise Manager Console .. 6-26
Designing an Inbound BPM Process Using Transformations for Event Integration (J2CA Configuration) .. 6-27
Creating an Empty Composite for BPM ... 6-27
Defining a BPM Inbound Process ... 6-27
Designing an Outbound BPM Process Using Transformations for Service Integration (BSE Configuration) .. 6-42
Creating an Empty Composite for BPM ... 6-42
Defining a BPM Outbound Process ... 6-42

7 Configuring an Outbound and Inbound Process for Oracle Service Bus Using sbconsole

Overview of Application Adapter Integration with Oracle Service Bus 7-1
Configuring an Outbound Process Using sbconsole (J2CA Configuration) .. 7-1
Starting Oracle Service Bus and Creating Project Folders ... 7-2
Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 7-6
Publishing a WSDL From Application Explorer to Oracle Service Bus .. 7-6
Configuring a WSDL-based Business Service .. 7-7
Configuring a File Type Business Service .. 7-9
Configuring a Pipeline With Proxy Service .. 7-13
Configuring an Inbound Process Using sbconsole (J2CA Configuration) ... 7-22
Starting Oracle Service Bus and Creating Project Folders ... 7-22
Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 7-22
Publishing a WSDL From Application Explorer to Oracle Service Bus .. 7-23
Configuring a WSDL-based Proxy Service ... 7-24
Configuring a File Type Business Service .. 7-25
Configuring a Pipeline .. 7-29
Configuring an Outbound Process Using sbconsole (BSE Configuration) .. 7-36
Starting Oracle Service Bus and Creating Project Folders ... 7-36
Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 7-36
Publishing a WSDL From Application Explorer to Oracle Service Bus .. 7-37
Configuring a File Type Business Service .. 7-38
Configuring a WSDL-based Business Service .. 7-38
Configuring a Pipeline With Proxy Service .. 7-40
Configuring JMS Proxy Services Using Oracle Service Bus (J2CA Configuration) 7-49
Configuring HTTP Proxy Services Using Oracle Service Bus (J2CA Configuration) 7-64

8 Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper

Configuring an OSB Outbound Process Using JDeveloper (J2CA Configuration) 8-1
Creating a Service Bus Application for OSB ... 8-2
Defining an OSB Outbound Process ... 8-3
Deploying the OSB Outbound Process .. 8-16
Configuring an OSB Inbound Process Using JDeveloper (J2CA Configuration) 8-19
Creating a Service Bus Application for OSB ... 8-19
Defining an OSB Inbound Process ... 8-19
Deploying the OSB Inbound Process .. 8-27
Configuring an OSB Outbound Process Using JDeveloper (BSE Configuration) 8-28
Creating a Service Bus Application for OSB ... 8-28
Defining an OSB Outbound Process ... 8-28
Deploying the OSB Outbound Process .. 8-28
Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration) 8-42
Configuring a JMS Outbound Process Using JDeveloper (J2CA Configuration) 8-48
Configuring an HTTP Outbound Process Using JDeveloper (J2CA Configuration) 8-55

9 Key Features

Exception Filter .. 9-1
Configuring the Exception Filter .. 9-1
Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM) ... 9-13
Configuring Credential Mapping .. 9-14
Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper .. 9-18
Configuring Credential Mapping .. 9-19

10 Troubleshooting and Error Messages

Troubleshooting .. 10-1
 General Usage Notes for the Oracle Application Adapter for Siebel ... 10-1
 Application Explorer ... 10-2
 Siebel .. 10-3
 Oracle Adapter J2CA ... 10-4

BSE Error Messages ... 10-4
 General Error Handling in BSE .. 10-5
 Adapter-Specific Error Handling .. 10-5

A Using Siebel Workflows

Overview .. A-1
 Siebel Workflows .. A-1
 Using a Policy to Invoke a Siebel EAI Workflow ... A-2
 Siebel Workflow - Outbound ... A-2
 Siebel Workflow - Inbound .. A-3

Creating a Siebel Workflow .. A-3
 Creating a Siebel Workflow for an Event Using MQSeries Transport ... A-4
 Creating a Siebel Workflow for an Event Using File Transport ... A-8
 Creating a Siebel Workflow for an Event Using HTTP Transport ... A-13
 Creating a Siebel Workflow for a Service Using MQSeries Transport .. A-16
 Creating a Siebel Workflow for a Service Using File Transport ... A-21
 Creating a Siebel Workflow for a Service Using HTTP Transport ... A-25

Glossary

Index
Welcome to Oracle Fusion Middleware Application Adapter for Siebel User’s Guide for Oracle WebLogic Server. This document provides information on how to integrate with Siebel systems and develop applications.

Audience

This document is intended for system administrators and developers who integrate with Siebel systems and develop applications.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Enterprise Repository 12c Release 1 (12.1.3.0.0) documentation set:

- Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server
- Oracle Fusion Middleware Application Adapter Upgrade Guide for Oracle WebLogic Server
- Oracle’s Unified Method (OUM)

A wealth of additional Governance information can be found within Oracle’s Unified Method (OUM). OUM can be used by Oracle employees, Oracle Partner Network Certified Partners or Certified Advantage Partners, and Clients who either participate in the OUM Customer Program or are engaged on projects
where Oracle provides consulting services. OUM is a web-deployed toolkit for planning, executing and controlling software development and implementation projects.

For more information about OUM, see the OUM FAQ at

http://my.oracle.com/portal/page/myo/ROOTCORNER/KNOWLEDGEAREAS1/BUSINESS_PRACTICE/Methods/Learn_about_OUM.html

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Oracle WebLogic Server connects to a Siebel system through Oracle Application Adapter for Siebel. Oracle Application Adapter for Siebel provides connectivity and carries out interactions on a Siebel system. This chapter contains the following sections:

- Section 1.1, "Adapter Features"
- Section 1.2, "The Siebel Application Model"
- Section 1.3, "Integration with Siebel"
- Section 1.4, "Using Application Explorer with Oracle Application Adapter for Siebel"
- Section 1.5, "BSE Versus Oracle Adapter J2CA Deployment"
- Section 1.6, "Sample Projects"
- Section 1.7, "Quick Start Guide"

1.1 Adapter Features

Oracle Application Adapter for Siebel provides a means to exchange real-time business data between Siebel systems and other applications, databases, or external business partner systems. The adapter enables external applications for inbound and outbound processing with Siebel.

Oracle Application Adapter for Siebel can be deployed as a J2EE Connector Architecture (J2CA) version 1.0 resource adapter. This deployment is referred to as Oracle Adapter J2CA. It can also be deployed as a Web services servlet and as such is referred to as Oracle Adapter Business Services Engine (BSE).

Note: Throughout this document, `<ORACLE_HOME>` refers to the 12c installed home location. `<ADAPTER_HOME>` refers to the following:

- For SOA:
 `<ORACLE_HOME>/soa/soa/thirdparty/ApplicationAdapters`
- For OSB:
 `<ORACLE_HOME>/osb/3rdparty/ApplicationAdapters`
This section contains the following topics:

- Section 1.1.1, "Oracle Adapter Business Services Engine (BSE) Architecture"
- Section 1.1.2, "Oracle Adapter J2CA Generic Architecture"

Oracle Application Adapter for Siebel uses XML messages to enable non-Siebel applications to communicate and exchange transactions with Siebel using services and events. Services and events are defined as follows:

- Services (also known as outbound processing): Enables applications to initiate a Siebel business event.
- Events (also known as inbound processing): Enables applications to access Siebel data only when a Siebel business event occurs.

To support event functionality, channels are supported. A channel represents configured connections to particular instances of back-end or other types of systems.

The channel is the adapter component that receives events in real time from the EIS application. The channel component can be a File reader, an HTTP listener, or an MQ listener. A channel is always EIS specific. The adapter supports multiple channels for a particular EIS, which enables the user to choose the optimal channel component based on deployment requirements.

Oracle Application Adapter for Siebel:

- Supports synchronous and asynchronous, bidirectional message interactions for Siebel Business Services, Business Components, and Integration Objects.
- Includes Oracle WebLogic Server Adapter Application Explorer (Application Explorer), a GUI tool that uses the Siebel Object Manager to explore Siebel metadata and build XML schemas or Web services.
- Supports Siebel transports—MQSeries, File, and HTTP. It also supports MSMQ messaging.
- XML schemas for Oracle Adapter J2CA.
- Web services for BSE.

Oracle Application Adapter for Siebel supports all 23 Siebel Industry Applications (SIA) through business objects, business components, business services, and integration objects. Siebel Industry Applications include industry verticals such as insurance, high technology, automotive, communications, media, financial services, life sciences, manufacturing, and consumer goods.

Siebel Industry Applications is tailored to the specific business requirements and processes of a particular industry with additional business logic in the form of business objects, business components, business services, and integration objects. Oracle Application Adapter for Siebel exposes and generates metadata and interacts with these industry-specific objects.

See Also: Oracle Application Server Adapter Concepts Guide

1.1.1 Oracle Adapter Business Services Engine (BSE) Architecture

Figure 1–1 shows the generic architecture for the Oracle Web service adapter for packaged applications. The adapter works with BSE, as deployed to a Web container in a J2EE application server. BSE serves as host to the adapters, enabling Web service requests to the adapters.
Application Explorer, a design-time tool deployed along with BSE, is used to configure adapter connections, browse EIS objects, and configure services. Metadata created while you perform these operations are stored in the repository by BSE.

BSE uses SOAP as a protocol for receiving requests from clients, interacting with the EIS, and sending responses from the EIS back to clients.

Figure 1–1 Oracle Adapter Business Services Engine (BSE) Generic Architecture

![Oracle Adapter BSE Generic Architecture Diagram](image)

Note: Do not use a file repository for BSE in production environments.

1.1.2 Oracle Adapter J2CA Generic Architecture

Figure 1–2 shows the generic architecture for the Oracle Adapter J2CA for packaged applications. The Oracle Adapter J2CA is deployed to a standard J2CA container and serves as host container to the adapters. The connector is configured with a repository.

Application Explorer, a design tool that works with the connector, is used to configure adapter connections, browse EIS objects, and configure services. Metadata created while you perform these operations are stored in the repository by the connector. The repository can be a file system or an Oracle database. It is deployed as a RAR file and has an associated deployment descriptor called `ra.xml`. You can create multiple connector factories by editing the Oracle WebLogic Server deployment descriptor `ra.xml`. For more information, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".
1.2 The Siebel Application Model

The Siebel Enterprise application defines a data abstraction layer that removes dependencies on the underlying database. It accomplishes this by using intermediate Business Components and Business Objects that represent database structures. A Business Component usually represents a table in a database. A Business Object is a group of related business components.

From a given business component, you can navigate the relationships defined for that component to another component. The path you use to traverse component relationships is called the navigation path. For example, if you want to obtain all addresses for a particular account, you can traverse the parent/child relationship between Account and Address to obtain those addresses. By using navigation paths, you can traverse nearly all of the business component relationships defined in the Siebel system.

In Siebel, Integration Objects are similar to Siebel Business Components but describe more complex hierarchal data relationships.

1.3 Integration with Siebel

You can use Oracle Application Adapter for Siebel to initiate a Siebel business process, such as add/update account, or you can use the adapter as part of an integration effort to connect Siebel and non-Siebel systems. Oracle Application Adapter for Siebel is bidirectional and can detect an event from Siebel by receiving a Siebel XML document emitted by Siebel.
This section contains the following topic:

- **Section 1.3.1, "Integrating with Siebel EAI Architecture"**

When integrating with Siebel using Siebel XML documents, the adapter application developer must use existing Siebel Integration Objects or create new Siebel Integration Objects to use within a Siebel Workflow. The Workflow processes inbound or outbound Siebel XML and uses various transports such as MQSeries, File, and HTTP to exchange transactions with external systems. The Siebel Workflow is usually created by the Siebel administrator or developer using Siebel Workflow Administration screens.

When integrating with Siebel directly using the Java Data Bean or COM Data Interface, Oracle Application Adapter for Siebel does not require a Siebel Integration Object or Siebel Workflow. Instead, it executes Siebel Business Services and Siebel Business Components directly.

The following table lists Siebel objects and processes.

<table>
<thead>
<tr>
<th>Table 1–1 Siebel Objects and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siebel Objects</td>
</tr>
<tr>
<td>Business Services</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Business Components</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Integration Objects</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1.3.1 Integrating with Siebel EAI Architecture

Siebel enables integration with other applications and systems using its Siebel EAI (Enterprise Application Integration) framework and its Business Integration Manager facility. Oracle Application Adapter for Siebel uses the Siebel EAI framework and leverages various integration access methods to provide the greatest amount of flexibility and functionality while working within the Siebel framework.

Oracle Application Adapter for Siebel supports the following integration access methods:

- Siebel Java Data Bean for services involving Siebel Business Components or Siebel Business Services.
- Siebel COM Data Interface for services involving Siebel Business Components or Siebel Business Services.
- Siebel XML for events and services involving Siebel Integration Objects.

1.4 Using Application Explorer with Oracle Application Adapter for Siebel

Application Explorer uses an explorer metaphor for browsing the Siebel system for Business Services, Business Objects, Business Components, and Integration Objects. The explorer enables you to create XML schemas and Web services for the associated object. External applications that access Siebel through Oracle Application Adapter for
Siebel use either XML schemas or Web services to pass data between the external application and the adapter.

Application Explorer uses interfaces provided by Siebel and in-depth knowledge of the Siebel application systems to access and browse business object metadata. After an object is selected, Application Explorer can generate an XML schema or Web service to define the object for use with Oracle Application Adapter for Siebel.

Key features of Application Explorer include:
- The ability to connect to and explore a variety of application systems.
- Access to application system object metadata.
- A point-and-click process for generating XML schemas and Web services.

See Also:
- Oracle Application Server Adapter Concepts Guide
- Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server

1.5 BSE Versus Oracle Adapter J2CA Deployment

If you are using Oracle Application Adapter for Siebel with Oracle SOA Suite components (for example, BPEL, Mediator, BPM, or OSB), then note that:
- Only Oracle Adapter J2CA deployment supports inbound integration (event notification) with Oracle SOA Suite components.
- Oracle Adapter J2CA and BSE deployments support outbound integration (request-response service) with Oracle SOA Suite components.

The following two factors explain the differences between deploying BSE and Oracle Adapter J2CA. Understanding these factors can help in selecting a deployment option.

1. BSE has the following advantages:
 - Can be deployed in a separate instance of Oracle WebLogic Server.
 - Provides better distribution of load.
 - Conforms more closely to the Service Oriented Architecture (SOA) model for building applications.

2. Oracle Adapter J2CA does provide slightly better performance than BSE.

1.6 Sample Projects

Sample projects for the Oracle Application Adapter for Siebel that demonstrate outbound and inbound integration scenarios using Oracle BPEL, Mediator, BPM, and OSB tools are packaged with the Application Adapters installation. The following table lists the locations of the sample projects:

<table>
<thead>
<tr>
<th>Sample Project</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound BPEL Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample/SIEBEL_Samples.zip/SIEBEL_Samples\BPEL\J2CA\Outbound_Project</code></td>
</tr>
</tbody>
</table>
Sample Projects

<table>
<thead>
<tr>
<th>Sample Project</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound BPEL Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPEL\J2CA\Inbound_Project</code></td>
</tr>
<tr>
<td>Outbound BPEL Process (BSE)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPEL\BSE\Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound Mediator Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\Mediator\J2CA\Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound Mediator Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\Mediator\J2CA\Inbound_Project</code></td>
</tr>
<tr>
<td>Outbound Mediator Process (BSE)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\Mediator\BSE\Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound BPM Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPM\J2CA\Siebel_Sample_J2CA_BPM_Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound BPM Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPM\J2CA\Inbound_Project</code></td>
</tr>
<tr>
<td>Outbound BPM Process (BSE)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPM\BSE\Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound OSB sbconsole Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB\J2CA\Siebel_Sample_J2CA_OSB_Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound OSB sbconsole Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB\J2CA\Siebel_Sample_J2CA_OSB_Inbound_Project</code></td>
</tr>
<tr>
<td>Outbound OSB sbconsole Process (BSE)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB\BSE\Siebel_Sample_BSE_OSB_Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound OSB Jdeveloper Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB_Jdeveloper\J2CA\Siebel_Sample_J2CA_OSB_Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound OSB Jdeveloper Process (J2CA)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB_Jdeveloper\J2CA\Siebel_Sample_J2CA_OSB_Inbound_Project</code></td>
</tr>
<tr>
<td>Outbound OSB Jdeveloper Process (BSE)</td>
<td><code><ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB_Jdeveloper\BSE\Siebel_Sample_BSE_OSB_Outbound_Project</code></td>
</tr>
</tbody>
</table>
1.7 Quick Start Guide

This section enables you to quickly learn the basic steps to install and configure Oracle Application Adapter for Siebel and to use it immediately. It includes the following topics:

- Section 1.7.1, "Installation"
- Section 1.7.2, "Copying Third-Party Library Files"
- Section 1.7.3, "Configuration"
- Section 1.7.4, "WebLogic Server Deployment and Integration"
- Section 1.7.5, "Creating Configurations, Targets, and Channels in Application Explorer"
- Section 1.7.6, "Working With Service Components in the SOA Suite"
- Section 1.7.7, "Working With Oracle Service Bus"
- Section 1.7.8, "Other Features"

1.7.1 Installation

1. Download the Oracle Fusion Middleware Application Adapters installation file for the corresponding platform being used and execute the file.
 - Windows: iwora12c_application-adapters_win.exe
 - Linux: iwora12c_application-adapters_linux.bin
 - Solaris: iwora12c_application-adapters_solaris.bin
 - HPUX: iwora12c_application-adapters_hpux.bin
 - AIX: iwora12c_application-adapters_aix.bin

2. The Oracle Fusion Middleware Application Adapters must be installed in one of the following directories:
 - For Oracle SOA Suite:
 <ORACLE_HOME>\soa\soa\thirdparty\ApplicationAdapters
 - For OSB:
 <OSB_HOME>\osb\3rdparty\ApplicationAdapters

For more information on installing the Oracle Fusion Middleware Application Adapters, see the Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server.

1.7.2 Copying Third-Party Library Files

Once the adapter installation is completed, copy the required third-party library files for Siebel to the following directories:

<ADAPTER_HOME>\lib

<ORACLE_HOME>\user_projects\domains\base_domain\lib

For more information on encoding settings and prerequisites for Siebel versions 6.2 and lower, see the following topics in Chapter 2, "Configuring Oracle Application Server Adapter for Siebel":

- Encoding Support on UNIX Platforms
- Adding Required Encoding Option (All UNIX Platforms)
- Siebel Connectivity Prerequisites for Versions 6.2 and Lower

1.7.3 Configuration

Navigate to `<ADAPTER_HOME>` and make the following changes:

1. Open `iwafjca.rar\META-INF\ra.xml` and add the following values under the specified config-property-name parameters, as shown in Table 1–2.

Table 1–2

<table>
<thead>
<tr>
<th>Config-Property-Name</th>
<th>Config-Property-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWayHome</td>
<td><code><ADAPTER_HOME></code></td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>- For SOA:</td>
</tr>
<tr>
<td></td>
<td>C:\12C_soa\soa\soa\thirdparty\ApplicationAdapters</td>
</tr>
<tr>
<td></td>
<td>- For OSB:</td>
</tr>
<tr>
<td></td>
<td>C:\12c Osb\osb\3rdparty\ApplicationAdapters</td>
</tr>
<tr>
<td>IWayConfig</td>
<td>The name of the configuration. For example:</td>
</tr>
<tr>
<td></td>
<td>jca_sample</td>
</tr>
</tbody>
</table>

2. Open `ibse.war\WEB-INF\web.xml` and add the following values under the specified param-name parameters, as shown in Table 1–3.

Table 1–3

<table>
<thead>
<tr>
<th>Param-Name</th>
<th>Param-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibseroot</td>
<td><code><ADAPTER_HOME></code>\ibse.war</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>- For SOA:</td>
</tr>
<tr>
<td></td>
<td>C:\12C_soa\soa\soa\thirdparty\ApplicationAdapters\ibse.war</td>
</tr>
<tr>
<td></td>
<td>- For OSB:</td>
</tr>
<tr>
<td></td>
<td>C:\12c_Osb\osb\3rdparty\ApplicationAdapters\ibse.war</td>
</tr>
</tbody>
</table>
1.7.4 WebLogic Server Deployment and Integration

1. Start the WebLogic server and open the WebLogic console.
2. Deploy the adapter components (ibse.war, iwafjca.war, and iwafjca.rar files) and start the deployed adapter components.

For more information on deployment, integration, and target creation, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".

1.7.5 Creating Configurations, Targets, and Channels in Application Explorer

For more information on creating configurations, targets, and channels in Application Explorer, see the following sections in this user’s guide:

- Starting Application Explorer: Section 2.1, "Starting Application Explorer"
- Creating a BSE Configuration: Section 2.3.1, "Creating a Configuration for BSE"
- Creating a J2CA Configuration: Section 2.3.2, "Creating a Configuration for J2CA"
- Connecting the Created Configurations: Section 2.3.3, "Connecting to a BSE or J2CA Configuration"
- Creating and Connecting to Targets: Section 2.4, "Establishing a Connection (Target) for Siebel"
- Working with Integration Objects: Section 2.7, "Siebel Prerequisites for Working With Integration Objects", Section 2.8, "Creating Schemas for Siebel Integration Objects", and Section 2.9, "Creating Integration Object (IO) Nodes for Siebel".
- Working With Service Nodes: Section 2.10, "Creating a Service Node for a Siebel Business Service"
- Creating and Testing Web Services: Section 2.11, "Creating and Testing a Web Service (BSE Configurations Only)"

Table 1–3 (Cont.)

<table>
<thead>
<tr>
<th>Param-Name</th>
<th>Param-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWay.home</td>
<td><code><ADAPTER_HOME></code></td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>- For SOA:</td>
</tr>
<tr>
<td></td>
<td>C:\12C_soa\soa\soa\thirdparty\ApplicationAdapters</td>
</tr>
<tr>
<td></td>
<td>- For OSB:</td>
</tr>
<tr>
<td></td>
<td>C:\12c_OSB\osb\3rdparty\ApplicationAdapters</td>
</tr>
<tr>
<td>Iway.config</td>
<td>The name of the configuration. For example:</td>
</tr>
<tr>
<td></td>
<td>IBSE</td>
</tr>
</tbody>
</table>

Note: These steps are provided only when configuring a File repository. For more information about configuring a database repository and general configuration information, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel" and Chapter 3, "Oracle WebLogic Server Deployment and Integration".
■ Generating WSDL Files: Section 2.12, "Generating WSDL (J2CA Configurations Only)"
■ Creating and Working With Channels: Section 2.13, "Configuring an Event Adapter"

1.7.6 Working With Service Components in the SOA Suite
Oracle Application Adapter for Siebel integrates with service components in SOA suite such as BPEL, Mediator, and BPM. Required processes are created in JDeveloper and then deployed to the SOA server.

For more information on working with BPEL, Mediator, and BPM service components, see:
- Chapter 4, "Integration With BPEL Service Components in the Oracle SOA Suite"
- Chapter 5, "Integration With Mediator Service Components in the Oracle SOA Suite"
- Chapter 6, "Integration With BPM Service Components in the Oracle SOA Suite"

1.7.7 Working With Oracle Service Bus
Oracle Application Adapter for Siebel integrates with Oracle Service Bus (OSB) to facilitate Web service integration. Required processes are created in the Oracle Service Bus Console. The process can also be created in JDeveloper and then deployed to the SOA server.

For more information on working with OSB Console, see Chapter 7, "Configuring an Outbound and Inbound Process for Oracle Service Bus Using sbconsole".

For more information on working with OSB Jdeveloper, see Chapter 8, "Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper".

1.7.8 Other Features
The following is list of other features and their relevant sections in this user’s guide:
■ Configuring the Exception Filter: Section 9.1, "Exception Filter"
■ Configuring Credential Mapping:
 - Section 9.2, "Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)"
 - Section 9.3, "Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper"
This chapter describes how to configure Oracle Application Adapter for Siebel and create schemas for Siebel Business Objects. It contains the following sections:

- Section 2.1, "Starting Application Explorer"
- Section 2.2, "Configuring Repository Settings"
- Section 2.3, "Creating a Repository Configuration"
- Section 2.4, "Establishing a Connection (Target) for Siebel"
- Section 2.5, "Viewing Application System Objects"
- Section 2.6, "Creating XML Schemas"
- Section 2.7, "Siebel Prerequisites for Working With Integration Objects"
- Section 2.8, "Creating Schemas for Siebel Integration Objects"
- Section 2.9, "Creating Integration Object (IO) Nodes for Siebel"
- Section 2.10, "Creating a Service Node for a Siebel Business Service"
- Section 2.11, "Creating and Testing a Web Service (BSE Configurations Only)"
- Section 2.12, "Generating WSDL (J2CA Configurations Only)"
- Section 2.13, "Configuring an Event Adapter"

Siebel Connectivity Prerequisites for Versions 6.2 and Lower

For Siebel versions 6.2 and lower only, you must perform the following steps to connect to your Siebel system using COM connectivity for a J2CA configuration.

1. Install Siebel thick client on the same system where the adapters are installed.
2. Install the database client (Microsoft SQL Server or Oracle) on the same system.
3. The Siebel .DLL files (iwsiebel.local.dll and iwsiebel.core.dll) in the adapter lib folder must be added to the Application server path.
4. Edit the uagent.cfg file and change the data source parameter value from "local" to "server".
 - The uagent.cfg file can be found in the following Siebel thick client folder:
   ```
c:\sea\client\bin
```
5. Edit the data source for SEA MSQI with appropriate parameters.
You can edit a data source in Windows by accessing the Control Panel, Administrative Tools, and Data Sources (ODBC).

6. Use the following target type when creating the adapter target connection:

 Siebel 6.2 - (Local COM Access Implementation)

7. Provide the full path to the uagent.cfg file when creating an adapter target connection, for example:

 c:\sea\client\bin\uagent.cfg

2.1 Starting Application Explorer

To start Application Explorer:

1. Ensure that Oracle WebLogic Server is started, which is where Application Explorer is deployed.

2. Open the command prompt.

3. Navigate to the following directory:

 <ADAPTER_HOME>/user_projects/domains/base_domain/bin

4. Execute `setDomainEnv.cmd` (Windows) or `. ./setDomainEnv.sh` (UNIX/Linux).

 This command sets the class path and other environment variables for Application Explorer in the Oracle WebLogic Server environment. In addition, it allows Application Explorer to access the Oracle WebLogic Server APIs to publish WSDL files to the Oracle Service Bus (OSB) Console.

5. Do not close the command prompt.

6. Navigate to the following directory:

 <ADAPTER_HOME>/tools/iwae/bin

7. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer.

 Application Explorer starts. You are ready to define new targets to your Siebel system.

 Note: Before you run the `iwae.sh` file on UNIX or Linux platforms, the permissions must be changed. For example:

   ```
   chmod +x iwae.sh
   ```

2.2 Configuring Repository Settings

A repository holds information about configuration details, adapter targets, channels, and other configuration information. For more information on how to configure BSE and J2CA repository settings, see the Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server (Section 2.7.4 "Configuring the Oracle Database Repository").
2.3 Creating a Repository Configuration

Before you use Application Explorer with Oracle Application Adapter for Siebel, you must create a repository configuration. You can create two kinds of repository configurations, Web services and J2CA, depending on the container to which the adapter is deployed.

This section contains the following topics:

- Section 2.3.1, "Creating a Configuration for BSE"
- Section 2.3.2, "Creating a Configuration for J2CA"
- Section 2.3.3, "Connecting to a BSE or J2CA Configuration"

During design time, the repository is used to store metadata created when using Application Explorer to configure adapter connections, browse EIS objects, configure services, and configure listeners to listen for EIS events. The information in the repository is also referenced at run-time.

Web services and BSE refer to the same type of deployment. For more information, see "Adapter Features" on page 1-1.

2.3.1 Creating a Configuration for BSE

To create a configuration for BSE using Application Explorer, you must first define a new configuration.

This section contains the following topic:

- Section 2.3.1.1, "Defining a New Configuration for BSE"

2.3.1.1 Defining a New Configuration for BSE

To create a new configuration for BSE:

1. Start the Application Explorer.
2. Right-click Configurations and select New.

 The New Configuration dialog is displayed.
3. Enter a name for the new configuration (for example, SampleConfig) and click OK.

 The New Configuration dialog is displayed, as shown in Figure 2–1.

 Figure 2–1 New Configuration Dialog

 ![New Configuration Dialog](image)

4. From the Service Provider list, select iBSE.
5. In the **iBSE URL** field, accept the default URL or replace it with a different URL using the following format:

 `http://host name:port/ibse/IBSEServlet`

 Where **host name** is the system where your Oracle WebLogic Server resides and **port** is the HTTP port number on which the Oracle WebLogic Server is listening.

6. Click **OK**.

 As shown in **Figure 2–2**, a node representing the new configuration appears beneath the root Configurations node.

2.3.2 Creating a Configuration for J2CA

To create a configuration for Oracle Adapter J2CA using Application Explorer, you must first define a new configuration.

To define a new configuration for J2CA:

1. Start the Application Explorer.

2. Right-click **Configurations** and select New, as shown in **Figure 2–3**.

![Figure 2–3 Configurations Node](image)

 The New Configuration dialog is displayed, as shown in **Figure 2–4**.

3. Enter a name for the new configuration (for example, SampleConfig) and click **OK**.

![Figure 2–4 New Configuration Dialog](image)

4. From the **Service Provider** list, select JCA.

5. Click **OK**.

 As shown in **Figure 2–5**, a node representing the new configuration appears beneath the root Configurations node.
The Oracle Adapter J2CA configuration folder is stored in a location based on your adapter installation:

<ADAPTER_HOME>\config\configuration_name

The configuration_name is the name of the configuration you created (for example, SampleConfig).

2.3.3 Connecting to a BSE or J2CA Configuration

To connect to a new configuration:

1. Right-click the configuration to which you want to connect, for example, SampleConfig.
2. Select Connect.

Nodes appear for Adapters, Events, and Business Services (also known as Web services). The Business Services node is only available for BSE configurations. If you are connected to a J2CA configuration, then the Business Services node is not shown. As shown in Figure 2–6, the following is an example of a BSE configuration named SampleConfig:

Figure 2–6 The New SampleConfig Configuration That Appears Under The Configurations Node

- Use the Adapters node to create inbound interaction with Siebel. For example, you use the Siebel node in the Adapters node to configure a service that updates Siebel.
- Use the Events node (available for J2CA configurations only) to configure listeners that listen for events in Siebel.
- Use the Business Services node (available for BSE configurations only) to test Web services created in the Adapters node. You can also control security settings for the Web services by using the security features of the Business Services node.

You can now define new targets to Siebel.

2.4 Establishing a Connection (Target) for Siebel

To browse the Siebel Business Services, Business Components, and Integration Objects, you must define a target to Siebel. After you define the target, the parameters are automatically saved.

This section contains the following topics:

- Section 2.4.1, "Defining a Target to Siebel"
- Section 2.4.2, "Connecting to a Defined Target"
Establishing a Connection (Target) for Siebel

- Section 2.4.3, "Disconnecting From Siebel"
- Section 2.4.4, "Editing a Target"
- Section 2.4.5, "Deleting a Target to Siebel"

Important (All UNIX Platforms): Before you attempt to connect to a Siebel target using a BSE or J2CA configuration in a UNIX environment, you must perform the additional steps described in "Adding Required Encoding Option (All UNIX Platforms)" on page 2-6. Failure to add the encoding option as described in this section results in an error and you are not able to connect to the Siebel target. The error message may indicate that the encoding is not supported, for example:

Error: Problem activating adapter -- UTF-8 is not supported. Check logs for more information.

Error: Error getting target [Siebel] -- UTF-8 is not supported.

Adding Required Encoding Option (All UNIX Platforms)
Before attempting to connect to a Siebel target, perform the following steps:

1. Add the following Java file encoding option to the startWebLogic.sh file:

   ```
   JAVA_OPTIONS="${SAVE_JAVA_OPTIONS} -Dfile.encoding=ISO8859_1"
   ```

 The startWebLogic.sh file is located in the following directory:

 <ADAPTER_HOME>

 2.4.1 Defining a Target to Siebel
The connection parameters required for defining a Siebel target can be obtained from the eapps.cfg file, which is located in the following directory:

 drive:\SiebelRoot\SWEApp\BIN

 Where Siebelroot is the Siebel installation directory.

 When you are working with a J2CA configuration, creating, updating, and deleting a target requires you to restart the Oracle WebLogic Server. In addition, make sure to close Application Explorer before you restart the Oracle WebLogic Server.

 To define a target to Siebel:

 1. In the left pane, expand the Adapters node, as shown in Figure 2–7.

 Figure 2–7 Adapters Node

 ![Adapters Node](image)

 2. Right-click the Siebel node and select Add Target.

 The Add Target dialog is displayed. Provide the following information:
Establishing a Connection (Target) for Siebel

Configuring Oracle Application Server Adapter for Siebel 2-7

3. Click OK.

The Java Data Bean Connection dialog is displayed, as shown in Figure 2–8.

Figure 2–8 Java Data Bean Connection Dialog

Enter the system information as specified in the following steps:

a. In the Gateway Server field, enter the name of the server. To specify a Gateway Server that uses a port other than the default (usually, 2320), add a colon and the port number, for example, gateway name:port number.

b. In the Enterprise Name field, enter the appropriate name.

c. In the Siebel Server field, enter the name of your Siebel server. Do not supply a value in this field when connecting to a Siebel 7.7, 7.8, or 8 system.

d. In the User field, enter the user name.

e. In the Password field, enter the password associated with the user name.

f. From the Siebel Version list, select Siebel 7.7 and above (default) or Siebel 7.5 and below.

g. Click the Advanced tab, as shown in Figure 2–9 and verify the following:

Language
Object Manager
Object Manager

For Siebel 7.0.3, the default Object Manager is EAIObjMgr. For Siebel 7.7, the default is EAIObjMgr_enu. Siebel 7.7 requires that you add a language extension (for example, _enu) to the end of the Object Manager name. Check with your Siebel Administrator for the specific names that apply to your system.

Repository Name

If no repository is specified, then a full list of objects from all available repositories is returned. If a specified repository is not found, then an empty list of objects is returned.

The configuration parameters supplied are those used by Siebel client applications to connect to the Siebel system. For more information about these parameters, see your Siebel documentation or ask your Siebel system administrator.

Encryption

A new parameter named Encryption is now introduced to the Advanced tab when using the Siebel adapter to create a target during design time. This parameter has two values, None and RSA. The default value is None, where no encryption is performed. By choosing RSA, an RSA-encrypted connection to the object manager specified is established.

To use RSA encryption, the Object Manager must be specified as SCCObjMgr_enu.
4. Click OK.

In the left pane, the target you create appears under the Siebel node.

2.4.2 Connecting to a Defined Target

To connect to a defined target:

1. Expand the **Siebel** node and click the target name to which you want to connect, as shown in Figure 2–10.

![Disconnected Siebel Target](image)

Figure 2–10 Disconnected Siebel Target

2. In the left pane, right-click the target name and select **Connect**.

The target icon changes, indicating that you are connected to the Siebel system, as shown in Figure 2–11.

![Siebel Target Node](image)

Figure 2–11 Siebel Target Node

You can now browse the available Business Objects, Business Services, and Integration Objects in the Siebel system.

2.4.3 Disconnecting From Siebel

Although you can maintain multiple open connections to different application systems, it is good practice to close connections when not in use.

To disconnect from Siebel:

1. In the left pane, select the target to which you are connected.

2. Right-click the target and select **Disconnect**.

Disconnecting from the application system drops the target, but the node remains. The SiebelConnection node in the left pane changes to reflect that the target is disconnected, as shown in Figure 2–12.

Note: These parameters are typically found in Siebel configuration files stored under the Siebel server root/bin/<language> directory, where language is the Siebel code for the language you installed (enu for U.S English). For example, for Siebel versions 7 and higher on a Windows platform, for the Siebel Call Center module, these values can be found in the uagent.cfg file. Consult your Siebel administrator and your Siebel bookshelf documentation for more information.
2.4.4 Editing a Target

To edit a target:

1. In the left pane, ensure the target you want to edit is disconnected.
2. Right-click the disconnected target and select **Edit**, as shown in **Figure 2–13**.

The Edit pane is displayed on the right.

3. Modify the target information.
4. Click **OK**.

2.4.5 Deleting a Target to Siebel

You can delete a target, rather than just disconnecting and closing it. When you delete the target, the node disappears from the list of Siebel targets in the left pane of Application Explorer.

When you delete a target, you must restart the Oracle WebLogic Server to update the repository for run time purposes.

To delete a target:

1. In the left pane, select the target.
2. Right-click the target and select **Delete**.

 A confirmation message is displayed.
3. Click **OK** to delete the target you selected.

 The Siebel connection node disappears from the left pane.

2.5 Viewing Application System Objects

Application Explorer gives you the flexibility to view all Siebel application system objects. One benefit of this flexibility is that you can gain an understanding of the Siebel data structure. You can review parameters, data types, and other attributes of the Siebel data in the right pane.

This section contains the following topic:

- **Section 2.5.1, "Viewing Metadata"**
2.5.1 Viewing Metadata

To view metadata:

1. Start Application Explorer and connect to your Siebel system.
2. In the left pane, expand the Business Object or Business Service containing the component for which you want to generate schema.
3. Expand the Business Object or Business Service node.
4. Expand the Business Component or the Business Service node to view the objects under it.
 - For a Business Component, select the node in which you are interested, for example, Account, as shown in Figure 2–14.

 Figure 2–14 Account Node
 ![Account Node](image1)
 - For a Siebel Business Service, select the object in which you are interested, for example, addAccount, as shown in Figure 2–15.

 Figure 2–15 Simple Add Account Node
 ![Simple Add Account Node](image2)

5. In the right pane, click the ellipsis (…) in the Table row of the properties table. The metadata table appears in the right pane, as shown in Figure 2–16.
2.6 Creating XML Schemas

You can create service schemas for Business Services and Business Components using Application Explorer.

This section contains the following topics:

- Section 2.6.1, "Siebel Schema Considerations"
- Section 2.6.2, "Creating an XML Schema for a Siebel Business Object or Business Service"
- Section 2.6.3, "Creating an XML Schema for a Siebel Business Component or Business Service"
- Section 2.6.4, "Searching for a Specific Siebel Object"
- Section 2.6.5, "Returning Fields in a Specified Order"
- Section 2.6.6, "Using QueryWithView"

The following topic describes how to create schemas for the adapter when you deploy Oracle Application Adapter for Siebel for use either in a J2CA environment or a Web services environment. For more information, see "Creating and Testing a Web Service (BSE Configurations Only)" on page 2-24 if you plan to deploy Oracle Application Adapter for Siebel in a Web services environment.
2.6.1 Siebel Schema Considerations

When inserting a record into Siebel, the data can be specified by the user or configured in Siebel to have default values or other system generated values. For example, the Account Business Component, Currency Code, by default, has ‘USD’ and the system fields such as ROW_ID generated by the Siebel system when the record is inserted. The Siebel API does not provide this distinction. Therefore, the Oracle Application Adapter for Siebel can not anticipate what the required fields the user should enter are and what are the required fields that can be filled by Siebel. As a result, the adapter schemas have been modified to have all elements as optional by setting minOccurs=0 for the elements.

Hence, all users must determine which fields are mandatory through Siebel Tools and create a payload (request XML document) for Siebel services (outbound).

2.6.2 Creating an XML Schema for a Siebel Business Object or Business Service

You create schemas for Siebel Business Service methods (for example, the Add method) and Business Components using Application Explorer. After you create a schema, you can use it to generate service request and response schemas for the Business Service or Business Component.

Siebel Business Objects contain one or more Siebel Business Components. You can view Business Components by clicking the associated Business Object.

For example, the Account Business Object can be expanded to display all available Business Components, as shown in Figure 2–17.

Figure 2–17 Account Business Object

2.6.3 Creating an XML Schema for a Siebel Business Component or Business Service

To generate service request and response schemas for a Business Component or Business Service:
1. Start Application Explorer and connect to your Siebel system.

2. In the left pane, expand the Business Object or the Business Service node.

3. Expand the Business Component or Business Service to view the objects under it.
 - For a Business Component, expand the Business Object node, then expand the Business Component you want, then expand the node you want, and select the method for which you want to create a schema, as shown in Figure 2–18.

 Figure 2–18 Insert Method selected Under the Account Business Object
 - [Diagram]

 - For a Siebel Business Service, expand the Business Service node containing the object for which you want to create schema, as shown in Figure 2–19.

 Figure 2–19 The addAccount Object Under The Add Account Business Service
 - [Diagram]

4. Right-click the node and select Generate Schema.
 Application Explorer accesses the Siebel repository and builds schemas.
 As shown in Figure 2–20, schema tabs similar to the following appear in the right pane.

 Figure 2–20 Request and Response Schema Tabs
 - [Diagram]

5. To view a schema, click the ellipsis tab corresponding to the schema you want to view.
 The schema appears on the right, as shown in Figure 2–21.
2.6.4 Searching for a Specific Siebel Object

You can use the search function in Application Explorer to locate a Siebel object or node quickly.

1. Start Application Explorer and connect to your Siebel system through a target.
2. Expand the target and select Business Object, Business Service, or Integration Object.
3. In the right pane, move the cursor over Operations and select Search.
4. Enter the name of the node or object on which you want to search in the text entry box, for example, Account.
5. Click OK.
A list containing the Siebel items that match your search appears.
6. Select the item in which you are interested.
Application Explorer locates the item in which you are interested.

2.6.5 Returning Fields in a Specified Order

When you create a request document from an XML schema to query the Siebel system, you can limit the expected response to specific fields that are specified in the query. The response contains the fields in the order in which they were specified. If you do not specify a set of fields, then the response document contains the entire set.

For example, the following query returns all fields:

```xml
<m:Siebel location="S/BO/Account/Account/queryWithView" view="AllView">  
  <m:select>  
    <m:Name>Yelena*</m:Name>  
  </m:select>  
</m:Siebel>
```

The following query returns a response that only contains the fields Name, Location and Account Status fields:

```xml
<m:Siebel location="S/BO/Account/Account/queryWithView" view="AllView">  
  <m:select>  
    <m:Name>Yelena*</m:Name>  
    <m:Location>Location</m:Location>  
    <m:AccountStatus>Status</m:AccountStatus>  
  </m:select>  
</m:Siebel>
```
2.6.6 Using QueryWithView

For Business Components, the Oracle Application Adapter for Siebel enables Insert, Update, Delete, and Query. It also enables a method called QueryWithView. The View modes are a visibility feature provided by Siebel.

By using QueryWithView, you can specify a Siebel View mode as a parameter. The API parameters allow different presentations of data depending on the Siebel environment that you configured.

You can use Query except when you want to enable a user to retrieve records based on different view modes. In this case, use QueryWithView. For more information on QueryWithView mode or Siebel "Visibility" concepts, see your Siebel Administrator.

The following levels are available:

- Sales Rep View
- Manager View
- Personal View
- All View
- Organization View
- Group View
- Catalog View
- SubOrganization View

2.7 Siebel Prerequisites for Working With Integration Objects

To create XML schemas for Siebel Integration Objects, you may have to generate XDR schemas first, using the Siebel Tools Schema Wizard.

The XDR schema is used as input to Application Explorer when generating schemas for integration objects. After you generate the XDR schema, Application Explorer uses the XDR file to generate the XML schema.

Please note:

- For **Siebel 7.5 and later**: Generate XSD schemas directly from Siebel tools. These XSD schemas are used to create Web services directly using Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and Web service.

- For **Siebel 7.0**: You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Therefore, to create a Web service, Application Explorer must first generate an XSD schema from the XDR schema.

- For releases **before Siebel 6.3**: The Siebel Tools Schema Wizard creates only DTD schemas. You must transform these schemas manually, or by using other tools, into XDR files before Application Explorer can use them as input to create XML schemas.
schemas. In addition, you must include the SiebelMessage tag reference in your XDR file.

Oracle Application Adapter for Siebel supports access to Siebel Integration Objects by using Siebel XML to handle events. Using Siebel Integration Objects through supported transports requires Siebel workflows.

2.8 Creating Schemas for Siebel Integration Objects

This section describes how to create schemas for Siebel Integration Objects and contains the following topic:

- Section 2.8.1, "Creating a Siebel XDR or XSD Schema for a Siebel Integration Object"

2.8.1 Creating a Siebel XDR or XSD Schema for a Siebel Integration Object

To generate a Siebel XDR or XSD schema:

1. Log on to Siebel Tools, as shown in Figure 2–22.

Figure 2–22 Siebel Tools Menu

![Siebel Tools Menu](image)

Perform the following steps:

a. Enter your user ID and password.

b. Select a database from the list.

2. Click OK.

The Siebel Tools window is displayed, as shown in Figure 2–23. Integration Objects appear in the right pane.
3. To create a schema, select an Integration Object, for example, Sample Account.

 The Generate XML Schema wizard is displayed, as shown in Figure 2–24.

Figure 2–24 Generate XML Schema Wizard

Perform the following steps:

a. From the Select a Business Service list, select EAI XML XDR Generator for XDR schemas or EAI XML XSD Generator for XSD schemas (for Siebel 7.5 and later).

b. From the Select an envelope type list, select Siebel Message envelope.
c. In the Choose the file name field, specify a file name for the XDR schema and a
directory where it can be accessed by Application Explorer.

Note: The XDR or XSD schema file must be saved to a directory on
the same computer as Application Explorer.

5. Click Finish.

6. Create a workflow to accept incoming XML documents through HTTP and to
insert/update Siebel data by using the EAI XML Converter and EAI Siebel
Adapter Business Services.

For more information, see Appendix A, "Using Siebel Workflows".

7. Edit the eai.cfg file, which is located in the following directory:

 `<siebel_server>/bin/enu`

8. Add the following line to the [HTTP Services] section:

   ```
   [HTTP Services]
   wf = iWayWorkflow
   ```

9. Confirm that the following line is set in the [EAI_ENU] section of the Eapps.cfg
 file:

   ```
   [EAI_ENU]
   EnableExtServiceOnly = True
   ```

 The Eapps.cfg file is located in the following directory:

 `<siebel_server>/bin`

10. Create a named subsystem using Siebel Server Manager by running the following
 command, where EAITEST is the name of the workflow that was created in step 6:

    ```
    create named subsystem iWayWorkflow for subsystem
    EAITransportDataHandlingSubsys with DispatchWorkflowProcess="EAITEST"
    ```

 Now you can use Application Explorer to create Integration Object (IO) nodes for
 Siebel.

2.9 Creating Integration Object (IO) Nodes for Siebel

This section contains the following topic:

- Section 2.9.1, "Creating an XML Schema for a Siebel Integration Object"

To create an Integration Object node for Siebel, perform the following steps:

1. In Application Explorer, connect to a defined target. For more information on how
to connect to a target, see "Connecting to a Defined Target" on page 2-9.

 The X over the icon disappears, indicating that the node target is connected, as
 shown in Figure 2–25.
2. Expand the Integration Object node and select Sample Account.

3. Right-click the Sample Account node and select Add IO Node. The Add IO Node dialog is displayed, as shown in Figure 2–26.

Figure 2–26 Add IO Node Dialog

Please note:

■ For Siebel 7.5 or later: Generate XSD schemas directly from Siebel tools. You use the XSD schemas when you create Web services in Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and a Web service.

■ For Siebel 7.0: You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Before you create a Web service, you must first generate an XSD schema from the XDR schema using Application Explorer.

Note: This is the schema file that you generated in Creating Schemas for Siebel Integration Objects on page 2-17.

4. Enter a node name, for example SampleAccount in the Node name field and a path to the Sample Account XDR or XSD file in the Schema location field.

5. If the XSD schema has already been generated, then select XSD Schema. If you are using Siebel-generated XDR schemas, then do not select the XSD schema option.

6. Select a protocol from the Protocol list.

7. Click Continue. The Add IO Node dialog is displayed, as shown in Figure 2–27.
8. Perform the following steps:
 a. In the SWE URL field, type the Base SWE URL. For example:

 \[http://web_server/eai/start.swe\]

 Where **web_server** is the name of the Web server that is hosting Siebel SWE.
 b. In the SWE External Source field, type the section within the eai.cfg file to execute, which is the [HTTP Services] section.

 For more information, see step 8 in *Creating Schemas for Siebel Integration Objects* on page 2-17.
 c. In the SWE External Command field, type the following command exactly as shown:

 Execute
 d. In the User Name and Password fields, type a valid user name and password used to connect to the Siebel SWE.

 The user name and password must have privileges to execute the given workflow.

9. Click Finish.

 The new IO node is listed under the Integration Object’s Sample Account node, as shown in *Figure 2–28*.

Figure 2–28 Integration Object’s Sample Account Node

You can now create an XML schema.

2.9.1 Creating an XML Schema for a Siebel Integration Object

After you create an Integration Object node for Siebel, you can create an XML schema using Application Explorer.
To create an XML schema:

1. In Application Explorer, expand the Integration Objects node to browse the Integration Objects in the Siebel system, as shown in Figure 2–29.

 Figure 2–29 Siebel Integration Objects Node, Sample Account

2. Scroll down and select an Integration Object (for example, SampleAccount).

3. Right-click the created Integration Object node (for example, SampleAccount) and select Export Schema(s) from the menu, as shown in Figure 2–30.

 Figure 2–30 Export Schema(s) Menu Option

 The Select Export Directory dialog is displayed.

 The exported event schema must be specified during the channel creation process in the PreParser tab (Schema location field).

4. Click OK to save the Schemas.

2.10 Creating a Service Node for a Siebel Business Service

OracleAS Adapter for Siebel enables the addition of a service node for a Business Service that includes methods containing method arguments having hierarchy data types.

Important limitations:

- The adapter supports only Integration Object hierarchy data types.
- Adding a Service node requires that you have previously generated an XSD schema for the Integration Object. For more information on generating XSD schemas for Siebel Integration Objects, see “Creating Schemas for Siebel Integration Objects” on page 2-17.
Only one of the method arguments for the Business Service method for which you want to add a service node can be a hierarchical data type.

The method argument XMLCharEncoding is not supported. Leave this element blank in the XML payload. If you enter a valid XMLCharEncoding value such as UTF-8 or UTF-16, then the following error is received:

Invocation of Service failed.

To create the service:

1. Select the Business Service node in which you are interested.

2. Right-click the Business Service method argument for which you want to create a service and select Add Service Node.

 The Add Service Node dialog is displayed, as shown in Figure 2–31.

Figure 2–31 Add Service Node Dialog

3. Perform the following steps:
 a. Provide a service node name.
 b. Enter a description (optional).
 c. Provide the full path (including the file name) to the XSD schema file.
 d. Specify the root element for the XSD schema file. For many XSD schemas for Integration Objects, the root element is SiebelMessage.
 e. Specify whether the XSD schema is for an Integration Object.

 Important: You must verify that this check box is selected.

4. Click OK.

 The Service node is listed under the Business Service object, as shown in Figure 2–32.

Figure 2–32 Service Node Listed Under The Business Service Object
You can right-click this node to create a Web service. The request and response schemas are displayed in the right pane.

The following procedure describes how to create a Web service for a Business Object.

2.11 Creating and Testing a Web Service (BSE Configurations Only)

You can generate a **business service** (also known as a Web service) for Siebel objects you want to use with your adapter after you have properly configured the servlet BSE.

<table>
<thead>
<tr>
<th>Note: In a J2EE Connector Architecture (J2CA) implementation of adapters, Web services are not available. When the adapters are deployed to use Oracle Adapter J2CA, the Common Client Interface provides integration services using the adapters.</th>
</tr>
</thead>
</table>

This section contains the following topics:

- **Section 2.11.1, "Creating a Web Service"
- **Section 2.11.2, "Testing a Web Service"

2.11.1 Creating a Web Service

To generate a Web service for a Siebel Business Object:

1. Connect to your Siebel system.
2. Expand a **Business Object** node.
3. Expand the **Business Component** for which you want to create a Web service, as shown in Figure 2–33.

Figure 2–33 Account Business Object with queryWithView method

4. Expand the object and select a method for creating the Web service, for example, `queryWithView` under `Account`.
5. Right-click the node from which you want to create a business service and select **Create Business Service**.

The Create Web Service dialog is displayed.

You can add the business object as a method for a new Web service or as a method for an existing one. Perform the following steps:

- **From the Existing Service Names list, select either <new service> or an existing service.**

- **Specify a service name if you are creating a new service. This name identifies the Web service in the list of services under the **Business Services** node.**
c. Enter a description for the service (optional).
d. Select one of the available licenses.

6. Click Next.

The License and Method dialog is displayed. Perform the following steps:
a. In the License field, select one or more license codes to assign to the Web service. To select more than one, hold down the Ctrl key and click the licenses.
b. In the Method Name field, leave the default method name.
c. In the Description field, enter a brief description of the method (optional).

7. Click OK.

Application Explorer switches the view to the Business Services node, and the new Web service appears in the left pane.

8. Right-click the new Web service and select Save WSDL from the menu.

The Save dialog is displayed.

9. Provide a name for the WSDL file and a location to save the WSDL file on your file system.

10. Click Save.

2.11.2 Testing a Web Service

After you create a Web service for the Siebel Business Object, test it to ensure it functions properly. Application Explorer includes a test tool for testing a Web service.

This section contains the following topics:
- Section 2.11.2.1, "Testing a Web Service for a Business Object"
- Section 2.11.2.2, "Testing a Web Service for a Business Service"
- Section 2.11.2.3, "Identity Propagation"

2.11.2.1 Testing a Web Service for a Business Object

1. In the left pane of Application Explorer, expand the Business Services node.
2. Expand the Services node.
3. As shown in Figure 2–34, select the name of the business service you want to test.

![Figure 2–34 Expanded Service Node](queryWithView)

4. Expand the Methods node under the service and select the method you want to test.

The test option appears in the right pane.

If you are testing a Web service that requires XML input, then an input field is displayed.

5. Click Invoke.
Creating and Testing a Web Service (BSE Configurations Only)

Application Explorer displays the results in the results pane, as shown in Figure 2–35.

Figure 2–35 XML Results in the Results Pane

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <SOAP-ENV:Body>
    <QueryWithViewResponse
      xmlns="urn:iwaysoftware:ibse:jbse:2003:QueryWithViewResponse">
      <Name>SIEBEL1 ACCOUNT</Name>
      <Location>ONE</Location>
    </record>
    <Name>SIEBEL2 ACCOUNT</Name>
    <Location>TWO</Location>
  </record>
  <Name>SIEBEL3</Name>
  <Location>RR</Location>
</record>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

2.11.2 Testing a Web Service for a Business Service

After you create a Web service for the Siebel Business Service, test it to ensure it functions properly. Application Explorer includes a test tool for testing a Web service.

1. Expand the Business Services node.
2. Expand the Services node.
3. Select the name of the business service you want to test.
4. Expand the Methods node and select the name of the method you want to test.
 The test option appears in the right pane.
 If you are testing a Web service that requires XML input, then an input field is displayed.
5. Provide the appropriate input.
6. Click Invoke.
 Application Explorer displays the results in the results pane.

2.11.2.3 Identity Propagation

If you test or execute a Web service using a third party XML editor, for example XMLSPY, then the user name and password values that you specify in the SOAP
header must be valid and are used to connect to Siebel. The user name and password values that you provided for Siebel during target creation using Application Explorer are overwritten for this Web service request. The following is a sample SOAP header that is included in the WSDL file for a Web service:

```xml
<SOAP-ENV:Header>
  <m:ibsinfo xmlns:m="urn:schemas-iwaysoftware-com:iwse">
    <m:service>String</m:service>
    <m:method>String</m:method>
    <m:license>String</m:license>
    <m:disposition>String</m:disposition>
    <m:Username>String</m:Username>
    <m:Password>String</m:Password>
    <m:language>String</m:language>
  </m:ibsinfo>
</SOAP-ENV:Header>
```

You can remove the `<m:disposition>` and `<m:language>` tags from the SOAP header, since they are not required.

2.12 Generating WSDL (J2CA Configurations Only)

The Web Service Definition Language (WSDL) description of a Web service enables you to make the service available to other services within a host server. You use Application Explorer to create both request-response (outbound) and event notification (inbound) JCA services of the adapter.

Note: The Create Inbound JCA Service (Event) option is only available when the selected node supports events.

To generate a WSDL file for request-response service:

1. Under your connected Siebel target, expand Business Object, Account, Account. Navigate to an object and right-click the object.

 The following menu is displayed, as shown in Figure 2–36.

Figure 2–36 Create Outbound JCA Service (Request/Response) Option

<table>
<thead>
<tr>
<th>Export Schema(s)</th>
<th>Create Outbound JCA Service(Request/Response)</th>
<th>Apply Filter</th>
</tr>
</thead>
</table>

2. Select Create Outbound JCA Service (Request/Response).

 As shown in Figure 2–37, the Export WSDL dialog is displayed.
3. Accept the default name or provide a name (for example, J2CA_Outbound) for the file.

The .wsdl file extension is added automatically. By default, the names of WSDL files generated for request-response services end with _invoke, while those generated for event notification end with _receive.

4. Click OK.

The WSDL file is saved in the specified location.

The procedure for generating WSDL for event notification is similar to request-response. To generate WSDL for event notification, you must first create a channel for every event.

2.13 Configuring an Event Adapter

Events are generated by a specific business condition being satisfied or triggered in the Siebel system. You can use events to trigger an action in your application. For example, an update to a database can reflect an update to customer information. If your application must perform when this happens, then your application is a consumer of this event.

This section contains the following topic:

- **Section 2.13.1, "Creating and Modifying a Channel"

After you create a connection to your application system, you can add events using Application Explorer. To configure an event, you must create a channel.

Note: If you are using a J2CA configuration, then you must create a new channel for every different event object and select this channel when you generate WSDL. Creating a channel is required for J2CA configurations only. For example, if you are working with the Account and Contact Siebel objects, then two separate channels are required for this purpose.
A channel represents configured connections to particular instances of back-end systems. A channel binds one or more event ports to a particular listener managed by the adapter. For more information, see “Creating and Modifying a Channel” on page 2-29.

Please note that adding IO node functionality is not applicable in event configurations.

2.13.1 Creating and Modifying a Channel

This section contains the following topics:

- Section 2.13.1.1, "Creating an HTTP Channel"
- Section 2.13.1.2, "Creating an MQ Series Channel"
- Section 2.13.1.3, "Creating a File Channel"
- Section 2.13.1.4, "Editing a Channel"
- Section 2.13.1.5, "Deleting a Channel"

The following procedure describes how to create a channel for your event. All defined event ports must be associated with a channel.

When you create, modify, or delete a channel, you must restart the Oracle WebLogic Server to recognize the change and update the repository for run time purposes. After successfully creating the channel and inbound WSDL file, close Application Explorer before you restart the Oracle WebLogic Server.

Note: If you are planning to integrate Oracle Application Adapter for Siebel with BPM, BPEL, Mediator, or OSB inbound process components, then do not start the channel. The channel is managed by the run-time server after the BPM, BPEL, Mediator, or OSB process component is deployed. If you start the channel from Application Explorer for testing and debugging purposes, then stop it before run-time (when working with BPM, BPEL, Mediator, or OSB process components).

Three channel types are available:

- HTTP
- MQ Series
- File

Note: Channels can be configured only on the system where the Oracle Application Adapter for Siebel is installed.

2.13.1.1 Creating an HTTP Channel

To create an HTTP channel:

1. Click the Events node.

 The Events window is displayed. The adapters that appear in the left pane support events.

2. In the left pane, expand the Siebel node.

 The ports and channels nodes appear.
3. Right-click **channels** and select **Add channel**.

 The Add Channel dialog is displayed, as shown in Figure 2–38.

 Figure 2–38 Add Channel Dialog

 ![Add Channel Dialog](image)

 Perform the following steps:
 a. Enter a name for the channel, for example, NewChannel.
 b. Enter a brief description.
 c. From the Protocol list, select **HTTP Listener**.

4. Click **Next**.

 The Http Listener dialog is displayed, as shown in Figure 2–39.

 Figure 2–39 Http Listener Dialog

 ![Http Listener Dialog](image)

 5. Enter the system information as specified in the following table:
6. Click the PreParser tab, as shown in Figure 2–40.

Figure 2–40 PreParser Tab

7. Specify the location of the schema file that was generated for the Integration Object node using the Export Schema(s) option in Application Explorer.

 Note: During run time, the Oracle Application Adapter for Siebel adds the namespace to the Siebel published document using the schema that is specified in the PreParser tab. If the Schema location field in the PreParser tab is left blank, then BPEL, BPM, OSB, and Mediator processes do not work properly as the Siebel published documents do not contain any namespaces.

8. Click OK.

 A summary is displayed, which provides the channel description, channel status, and available ports. All the information is associated with the channel you created. The channel also appears under the channels node in the left pane, as shown in Figure 2–41.

Figure 2–41 Inactive SiebelHTTP Node

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listener port</td>
<td>Port on which to listen for Siebel event data.</td>
</tr>
<tr>
<td>Https</td>
<td>For a secure HTTP connection, select the Https check box. This option is currently not supported.</td>
</tr>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the Synchronization Type list, which is the recommended option.</td>
</tr>
<tr>
<td>Encoding Type</td>
<td>Choose an encoding type to be used from the Encoding Type list. By default, ASCII is selected.</td>
</tr>
</tbody>
</table>
An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

9. Right-click the channel and select **Start**.

The channel you created becomes active. The X over the icon in the left pane disappears.

10. To stop the channel, right-click the channel and select **Stop**.

2.13.1.2 Creating an MQ Series Channel

To create an MQ Series channel:

1. Click the **Events** node.

 The Events window is displayed. The adapters that appear in the left pane support events.

2. In the left pane, expand the **Siebel** node.

 The ports and channels nodes appear.

3. Right-click the **channels** node and select **Add channel**.

 The Add a new channel pane is displayed. Perform the following steps:
 - **a.** Enter a name for the channel, for example, NewChannel.
 - **b.** Enter a brief description.
 - **c.** From the Protocol list, select **MQ Series Listener**.

4. Click **Next**.

 The MQ Listener dialog is displayed, as shown in Figure 2–42.

Figure 2–42 MQ Listener Dialog

![MQ Listener Dialog](image)

Fields marked with ^ are required.

5. Enter the system information as specified in the following steps:
 - **a.** In the **Request** tab, enter values for the following parameters:
b. In the Response tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue manager name</td>
<td>The host on which the MQ Server is located (MQ Client only).</td>
</tr>
<tr>
<td>MQ server host for MQClient operation</td>
<td>Port on which the host database is listening.</td>
</tr>
<tr>
<td>MQ server port for MQClient operation</td>
<td>The number to connect to an MQ Server queue manager (MQ client only).</td>
</tr>
<tr>
<td>REQUEST</td>
<td>REQUEST_RESPONSE</td>
</tr>
<tr>
<td>REQUEST_ACK</td>
<td></td>
</tr>
<tr>
<td>MQ server channel for MQClient operation</td>
<td>The case-sensitive name of the channel that connects with the remote MQ Server queue manager (MQ client only). The default channel name for MQSeries is SYSTEM.DEF.SVRCONN.</td>
</tr>
<tr>
<td>Document type XML</td>
<td>Leave the default selection.</td>
</tr>
<tr>
<td>Request queue name</td>
<td>Queue where the message is routed and where request documents are received. The name of the queue is case-sensitive and conforms to the following format: Host\queue type\qName Host Is the system name where the MQ Series queuing system is running. queue type Private queues are queues that are not published in Active Directory and appear only on the local computer where they reside. Private queues are accessible only by Message Queuing applications that recognize the full path name or format name of the queue. qName Is the name of the queue where messages are placed, for example, iwaykxcl\Private\siebel</td>
</tr>
</tbody>
</table>

c. In the Advanced tab, enter values for the following parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message wait interval (msec)</td>
<td>The interval (in milliseconds) when to check for new input. The default is 3 seconds. Optional.</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Choose Sequential or Threaded.</td>
</tr>
<tr>
<td>Thread limit</td>
<td>If you selected threaded processing, then indicate the maximum number of requests that can be processed simultaneously.</td>
</tr>
</tbody>
</table>
6. Click OK.

A summary is displayed, which provides the channel description, channel status, and available ports. All the information is associated with the channel you created. The channel also appears under the channels node in the left pane.

An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

7. Right-click the channel and select Start.

The channel you created becomes active. The X over the icon in the left pane disappears.

8. To stop the channel, right-click the channel and select Stop.

2.13.1.3 Creating a File Channel

To create a File channel:

1. Click the Events node.

 The Events window is displayed. The adapters that appear in the left pane support events.

2. In the left pane, expand the Siebel node.

 The ports and channels nodes appear.

3. Right-click the channels node and select Add Channel.

 The Add Channel dialog is displayed. Perform the following steps:

 a. Enter a name for the channel, for example, NewChannel.
 b. Enter a brief description.
 c. From the Protocol list, select File Listener.

4. Click Next.

 The File Listener dialog is displayed, as shown in Figure 2–43.

Figure 2–43 File Listener Dialog

5. Enter the system information as specified in the following steps:

 a. In the Request tab, enter values for the following parameters:
b. In the **Response** tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polling Location</td>
<td>The target file system location for the Siebel XML file.</td>
</tr>
<tr>
<td>File Mask</td>
<td>The file name to be used for the output file generated by this operation.</td>
</tr>
</tbody>
</table>

c. In the **Advanced** tab, enter values for the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the Synchronization Type list, which is the recommended option.</td>
</tr>
<tr>
<td>Response/Ack Directory</td>
<td>Directory where responses or acknowledgments are sent.</td>
</tr>
</tbody>
</table>

6. Click **OK**.

A summary is displayed, which provides the channel description and channel status. All the information is associated with the channel you created. The channel also appears under the channels node in the left pane.

An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

7. Right-click the channel and select **Start**.

The channel you created becomes active.

The X over the icon in the left pane disappears.

8. To stop the channel, right-click the channel and select **Stop**.

2.13.1.4 Editing a Channel

To edit a channel:

1. In the left pane, select the channel you want to edit.

2. Right-click the channel and select **Edit**.

 The Edit channels dialog is displayed.

3. Make the required changes to the channel configuration and click **OK**.
2.13.1.5 Deleting a Channel
To delete a channel:

1. In the left pane, select the channel you want to delete.

2. Right-click the channel and select Delete.

 The channel disappears from the list in the left pane.
This chapter describes Oracle WebLogic Server (OracleWLS) deployment and integration with Oracle Application Adapter for Siebel. It contains the following sections:

- Section 3.1, "Adapter Integration with Oracle WebLogic Server"
- Section 3.2, "Deployment of Adapter"
- Section 3.3, "Updating Adapter Configuration"

See Also:
- Oracle Application Server Adapter Concepts Guide

3.1 Adapter Integration with Oracle WebLogic Server

Oracle Application Adapter for Siebel is deployed within an OracleWLS container during installation. All client applications run within the OracleWLS environment. In a J2CA deployment, the Common Client Interface (CCI) integrates an OracleWLS client application with a resource adapter.

See Also:
- Oracle Application Server Adapter Concepts Guide

3.2 Deployment of Adapter

Figure 3–1 shows deployment of the Connector to the Oracle WebLogic Server. In a run-time service scenario, an Enterprise Java Bean, Servlet, or Java program client makes CCI calls to J2CA resource adapters. The adapters process the calls as requests and send them to the EIS. The EIS response is then sent back to the client.
This section contains the following topics:

- Section 3.3.1, "Creating a Managed Connector Factory Object"
- Section 3.3.2, "Creating Multiple Managed Connector Factory Objects"
- Section 3.3.3, "Modifying WSDL Files for Additional Connection Factory Values"

During the J2CA deployment of OracleAS Adapter for Siebel, OracleWLS generates a deployment descriptor called `ra.xml`, located in:

```<ADAPTER_HOME>/iwafjca.rar/META-INF```

Your installation contains more than one file named `ra.xml`. The OracleWLS deployment descriptor that is described in this section is located in the directory specified above.

**Note:** Multiple managed connection factories are supported only for outbound processing (services).
3.3.1 Creating a Managed Connector Factory Object

The ra.xml descriptor provides OracleWLS-specific deployment information for resource adapters. For example, the default jca_sample configuration in Application Explorer is represented in the ra.xml file as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connector PUBLIC '-//Sun Microsystems, Inc.//DTD Connector 1.0//EN' 'http://java.sun.com/dtd/connector_1_0.dtd'>
<connector>
 <display-name>IWAFJCA10</display-name>
 <vendor-name>IWAY Software</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type>IWAF</eis-type>
 <version>1.0</version>
 <license>
 <license-required>false</license-required>
 </license>
 <resourceadapter>
 <managedconnectionfactory-class>com.ibi.afjca.spi.IWAFManagedConnectionFactory</managedconnectionfactory-class>
 </resourceadapter>
 <connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
 <connectionfactory-impl-class>com.ibi.afjca.cci.IWAFConnectionFactory</connectionfactory-impl-class>
 <connection-interface>javax.resource.cci.Connection</connection-interface>
 <connection-impl-class>com.ibi.afjca.cci.IWAFConnection</connection-impl-class>
 <transaction-support>NoTransaction</transaction-support>
 <config-property>
 <config-property-name>AdapterName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>C:\oracle\Middleware\Oracle_SOA1\soa\thirdparty\ApplicationAdapters</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayConfig</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>jca_sample</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoDriver</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoURL</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
</connector>
```
The parameters defined in the ra.xml file are described in the following table:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWayHome</td>
<td>The base installation directory for the OracleWLS packaged application adapter.</td>
</tr>
<tr>
<td>IWayConfig</td>
<td>The adapter configuration name as defined in Application Explorer. For example, Oracle Application Adapter for Siebel has a preconfigured jca_sample configuration in Application Explorer.</td>
</tr>
<tr>
<td>IWayRepoURL</td>
<td>The URL to use when opening a connection to the database. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>IWayRepoUser</td>
<td>User name to use when connecting to the database. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>IWayRepoPassword</td>
<td>Password. If provided, then it overwrites configuration. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>loglevel</td>
<td>It overwrites the level set by the ManagedConnectorFactory property.</td>
</tr>
</tbody>
</table>

### 3.3.2 Creating Multiple Managed Connector Factory Objects

To establish multiple managed connector factory objects, you must edit the weblogic-ra.xml file and add more `<connection-instance>` nodes. This file is located in:

```
<ADAPTER_HOME>\iwfjca.rar\META-INF
```
For example, the first jca_configuration in Application Explorer is represented in the weblogic-ra.xml file as follows:

```xml
<?xml version="1.0"?>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">
 <enable-access-outside-app>true</enable-access-outside-app>
 <enable-global-access-to-classes>true</enable-global-access-to-classes>
 <outbound-resource-adapter>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>0</initial-capacity>
 </pool-params>
 <transaction-support>LocalTransaction</transaction-support>
 </default-connection-properties>
 <connection-definition-group>
 <connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/OracleJCAAdapter/DefaultConnection</jndi-name>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
</weblogic-connector>
```

To create multiple managed connector factory objects, you must add new <connection-instance> nodes in the file. For example:

```xml
<?xml version="1.0"?>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">
 <enable-access-outside-app>true</enable-access-outside-app>
 <enable-global-access-to-classes>true</enable-global-access-to-classes>
 <outbound-resource-adapter>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>0</initial-capacity>
 </pool-params>
 <transaction-support>LocalTransaction</transaction-support>
 </default-connection-properties>
 <connection-definition-group>
 <connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/OracleJCAAdapter/DefaultConnection</jndi-name>
 </connection-instance>
 <connection-instance>
 <jndi-name>eis/OracleJCAAdapter/DefaultConnection1</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>IWayHome</name>
 <value>C:\oracle\Middleware\Oracle_SOA1\soa\thirdparty\ApplicationAdapters</value>
 </property>
 <property>
 <name>IWayConfig</name>
 <value>jca_sample2</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
</weblogic-connector>
```
<property>
    <name>IWayRepoURL</name>
    <value></value>
</property>
<property>
    <name>IWayRepoUser</name>
    <value></value>
</property>
<property>
    <name>IWayRepoPassword</name>
    <value></value>
</property>
<property>
    <name>LogLevel</name>
    <value>Debug</value>
</property>
</properties>
</connection-properties>
</connection-instance>
</connection-definition-group>
</outbound-resource-adapter>
</weblogic-connector>

If you do not specify a <property> element in the <connection-instance> section, then the value is taken from the ra.xml file. You can specify the default properties in the ra.xml file and then override them as required in the weblogic-ra.xml file. In addition, note that the J2CA configuration (for example, jca_sample2) must already be created in Application Explorer.

---

**Note:** When you modify the ra.xml and weblogic-ra.xml files, the Oracle WebLogic Server must be restarted. If the Oracle WebLogic Server is already running, then stop the Oracle WebLogic Server and then restart it.

In addition, the iwafjca.rar file must be redeployed in the Oracle WebLogic Administration Console to activate these changes.

### 3.3.3 Modifying WSDL Files for Additional Connection Factory Values

Application Explorer generates the J2CA properties file using the default connection factory name eis/OracleJCAAdapter/DefaultConnection. If you created additional connection factories, then the WSDLs generated for the additional configuration and connection factory must be changed to reflect the location field of the jca:address section in the J2CA properties file. The default J2CA properties file for the Oracle Application Adapter for Siebel with a configuration of isdsrv2_conn2 is shown in the following example.

```xml
<jca:address location="eis/OracleJCAAdapter/DefaultConnection"
 ConnectionSpec="com.ibi.afjca.cci.IWAFConnectionSpec"
 cs.AdapterName="Siebel" cs.Config="isdsrv2_conn2"
 UIConnectionName="Connection1"/>
```

The connection factory value must be changed to the following:

```xml
<jca:address location="eis/OracleJCAAdapter/DefaultConnection1"
 ConnectionSpec="com.ibi.afjca.cci.IWAFConnectionSpec"
 cs.AdapterName="Siebel" cs.Config="isdsrv2_conn2"
 UIConnectionName="Connection1"/>
```
For example:

```
<jca:address location='eis/OracleJCAAdapter/DefaultConnection1'
 ConnectionSpec='com.ibi.afjca.cci.IWAFConnectionSpec'
 cs.AdapterName='Siebel' cs.Config='isdsrv2_conn2'
 UIConnectionName='Connection1'/>
```

Note that only the value for the location field in the jca:address section should be modified. Do not modify any other field or section.
Integration With BPEL Service Components in the Oracle SOA Suite

Oracle Application Adapter for Siebel integrates seamlessly with Business Process Execution Language (BPEL) Process Manager to facilitate Web service integration. Oracle BPEL Process Manager is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following topics:

- Section 4.1, "Overview"
- Section 4.2, "Deployment of Adapter"
- Section 4.3, "Configuring a New Application Server Connection"
- Section 4.4, "Designing an Outbound BPEL Process for Service Integration (J2CA Configuration)"
- Section 4.5, "Designing an Inbound BPEL Process for Event Integration (J2CA Configuration)"
- Section 4.6, "Designing an Outbound BPEL Process for Service Integration (BSE Configuration)"

### 4.1 Overview

To integrate with Oracle BPEL Process Manager, Oracle Application Adapter for Siebel must be deployed in the same WLS container as Oracle BPEL Process Manager. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-27.

The generated WSDL files are used to design the appropriate BPEL processes for inbound or outbound adapter services. A completed BPEL process must be successfully compiled in Oracle JDeveloper and deployed to a BPEL server. Upon deployment to the BPEL server, every newly built process is automatically deployed to the Oracle Enterprise Manager console, where you run, monitor, administer BPEL processes, and listen to adapter events.
4.2 Deployment of Adapter

During installation, Oracle Application Adapter for Siebel is deployed as a J2CA 1.0 resource adapter within the WLS container. The adapter must be deployed in the same WLS container as Oracle BPEL Process Manager.

4.3 Configuring a New Application Server Connection

To configure a new Application Server connection in Oracle JDeveloper:

1. Open Oracle JDeveloper on your system.
2. From the menu bar, click Window and select Application Server Navigator, as shown in Figure 4–1.

Figure 4–1 Application Server Navigator

The Application Server tab is displayed, as shown in Figure 4–2.
3. Right-click Application Servers and select New Application Server.
   The Create Application Server Connection Wizard is displayed, as shown in Figure 4–3.

4. Accept the default selection (Standalone Server) and click Next.
   The Name and Type page is displayed, as shown in Figure 4–4.
5. Specify a new name for the Application Server connection and click Next.

The Authentication page is displayed, as shown in Figure 4–5.
6. Specify a valid user name (for example, weblogic) and a password (for example, welcome1) for your new connection.

7. Click Next.

The Configuration page is displayed, as shown in Figure 4–6.

---

**Figure 4–6 Configuration Page**

8. Specify the Oracle WebLogic host name (for example, localhost), which is the system IP where the process must deploy and Oracle WebLogic domain (for example, base_domain).

9. Click Next.

The Test page is displayed, as shown in Figure 4–7.
10. Click **Test Connection**.

11. Make sure that the test status is successful.

12. Click **Next**.

   The Finish page is displayed, as shown in Figure 4–8.
13. Click Finish.

The new Application Server connection is listed in the left pane (Application Server tab).

4.4 Designing an Outbound BPEL Process for Service Integration (J2CA Configuration)

This section describes how to design an outbound BPEL process for service integration.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SIEBEL_Samples.zip/SIEBEL_Samples/BPEL/J2CA/Outbound_Project

The following tools are required to complete your outbound design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- Section 4.4.1, "Generating WSDL for Request/Response Service"
Section 4.4.2, "Creating an Empty Composite for SOA"
Section 4.4.3, "Defining a BPEL Outbound Process"
Section 4.4.4, "Deploying the BPEL Outbound Process"
Section 4.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console"
Section 4.4.6, "Testing Outbound BPEL and Mediator Processes"

### 4.4.1 Generating WSDL for Request/Response Service

Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer. Perform the following steps to generate a WSDL for the request/response service:

1. Start **Application Explorer** and connect to a defined Siebel target or create a new target.
   
   For more information on starting the Application Explorer and on connecting a target, see Section 2.1, "Starting Application Explorer" on page 2-2 and Connecting to a Defined Target on page 2-9.

2. Expand the Siebel target to which you are connected.

3. As shown in **Figure 4–9**, expand **Business Object**, **Account**, and then **Account**.

**Figure 4–9 Create Outbound JCA Service (Request/Response) Option**

4. Right-click **queryWithView**, and then select **Create Outbound JCA Service (Request/Response)**.
   
   The Export WSDL dialog is displayed, as shown in **Figure 4–10**.
5. Accept the default name or provide a name (for example, J2CA_Outbound) for the file.
   The .wsdl file extension is added automatically. By default, the names of WSDL files generated for request-response services end with _invoke.

6. Click OK.

You can now create an empty composite for SOA, which is the first step that is required to define a BPEL outbound process in Oracle JDeveloper.

4.4.2 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.

2. Enter a name for the new SOA Application and click Next, as shown in Figure 4–11.
The Name your project page is displayed, as shown in Figure 4–12.

Figure 4–11 Name Your Application Page

Figure 4–12 Name Your Project Page
3. Enter a project name and click Next.
   The Configure SOA settings page is displayed, as shown in Figure 4–13.

**Figure 4–13 Configure SOA Settings Page**

4. From the Composite Template list, select Empty Composite and click Finish.

### 4.4.3 Defining a BPEL Outbound Process

This section describes how to define a BPEL outbound process, which consists of the following topics:

- Section 4.4.3.1, "Configuring a Third Party Adapter Service Component"
- Section 4.4.3.2, "Configuring an Outbound BPEL Process Component"
- Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c"

#### 4.4.3.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the External References pane, as shown in Figure 4–14.
The Create Third Party Adapter Service dialog is displayed, as shown in Figure 4–15.

2. Ensure that Reference is selected from the Type list (default).
3. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

   The WSDL Chooser dialog is displayed, as shown in **Figure 4–16**.

**Figure 4–16  WSDL Chooser Dialog**

4. Browse and select an outbound WSDL file from the following directory:

   `<ADAPTER_HOME>\wsdls`

5. Click **OK**.

   The Localize Files dialog is displayed, as shown in **Figure 4–17**.
6. Click **OK**.

The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 4–18.

---

**Figure 4–17  Localize Files Dialog**

![Localize Files Dialog](image)

- **Copy Options:** Maintain original directory structure for imported files
- **Files to be created in directory:**
  - C:\\adventure\work\Siebel\Application\J2CA_Outbound\Oracle: J2CA_OutboundInvoke.wsdl
  - J2CA_OutboundInvoke_request.xsd
  - J2CA_OutboundInvoke_response.xsd

---

**Figure 4–18  Create Third Party Adapter Service Dialog**

![Create Third Party Adapter Service Dialog](image)
7. Click the **Find JCA file** icon, which is located to the right of the JCA File field. The Transformation Chooser dialog is displayed, as shown in Figure 4–19.

*Figure 4–19 Transformation Chooser Dialog*

8. Browse and select the JCA properties file from the following directory:

   `<ADAPTER_HOME>/wsdl`

9. Click **OK**.

   The Copy File message is displayed, as shown in Figure 4–20.

*Figure 4–20 Copy File Message*

10. Click **Yes**.

    A copy of the JCA properties file is made in the project folder. You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 4–21.
11. Click OK.

The third party adapter service component is created and displayed in the External References pane.

You are now ready to configure an outbound BPEL process component.

4.4.3.2 Configuring an Outbound BPEL Process Component

Perform the following steps to configure an outbound BPEL process component:

1. Drag and drop the **BPEL Process** component from the Components pane to the Components pane.

The Create BPEL Process dialog is displayed, as shown in Figure 4–22.
In the Name field, enter a name to identify the new outbound BPEL process component or leave it to the default value. By default, the BPEL 2.0 Specification option is selected.

3. From the Template list, select Synchronous BPEL Process.

4. Click the Browse icon, which is located to the right of the Input field to select the associated XML request schema file.

The Type Chooser dialog is displayed, as shown in Figure 4–23.
5. Expand Project Schema Files, J2CA_Outbound_invoke_request.xsd, and select Siebel.

6. Click OK.
   You are returned to the Create BPEL Process dialog.

7. Click the Browse icon, which is located to the right of the Output field to select the associated XML response schema file.
   The Type Chooser dialog is displayed, as shown in Figure 4–24.
8. Expand **Project Schema Files**, **J2CA_Outbound_invoke_response.xsd**, and select **SiebelResponse**.

9. Click **OK**.
   
   You are returned to the Create BPEL Process dialog.

10. Click **OK**.

11. Create a connection between the outbound BPEL process component and the third party adapter service component, as shown in **Figure 4–25**.
12. Double-click the outbound BPEL process component in the Components pane.

13. Drag and drop the Invoke activity component under BPEL Constructs - Web Service, to the Components pane and place it between the receiveInput activity component and the replyOutput activity component, as shown in Figure 4–26.

14. Create a connection between the new Invoke activity component Service and the third party adapter service component (Service), as shown in Figure 4–27.
The Edit Invoke dialog is displayed.

15. Click the **Plus sign** icon, which is located to the right of the Input field to configure a new input variable.

   The Create Variable dialog is displayed.

16. Accept the default values that are provided for the new input variable and click **OK**.

   You are returned to the Edit Invoke dialog, as shown in **Figure 4–28**.
17. Select the **Output** tab and click the **Plus sign** icon, which is located to the right of the Output field to configure a new output variable.

   The Create Variable dialog is displayed.

18. Accept the default values that are provided for the new output variable and click **OK**.

   You are returned to the Edit Invoke dialog, as shown in Figure 4–29.
19. Click Apply and then OK.

20. Drag and drop the Assign activity under BPEL Constructs - Basic Activities component, to the Components pane and place it between the Receive activity component (receiveInput) and the Invoke activity component (Invoke1), as shown in Figure 4–30.

21. Double-click the new Assign activity component (Assign1).
The Edit Assign dialog is displayed.

22. In the left pane, under Variables, expand InputVariable, and then select payload.

23. In the right pane, under Variables, expand Invoke1_queryWithView_inputVariable, and then select input_queryWithView.

24. Drag and map the payload variable to the input_queryWithView variable.

The mapped variables are populated in the highlighted area as shown in Figure 4–31.

![Figure 4–31  Edit Assign Dialog](image)

25. Click Apply and then OK.

26. Drag and drop the Assign activity component to the Components pane and place it between the Invoke activity (Invoke1) and the Reply activity (replyOutput).

27. Double-click the new Assign activity component (Assign2), as shown in Figure 4–32.
The Edit Assign dialog is displayed.

28. In the left pane, under Variables, expand `Invoke1_queryWithView_OutputVariable`, and then select `output_queryWithView`.

29. In the right pane, under Variables, expand `outputVariable` and select `payload`.

30. Drag and map the `output_queryWithView` variable to the `payload` variable.

The mapped variables are populated in the highlighted area as shown in Figure 4–33.

**Figure 4–33 Edit Assign Dialog**
31. Click **Apply** and then **OK**.
You are returned to the Activity component pane, as shown in **Figure 4–34**.

**Figure 4–34 Activity Component Pane**

32. Click the **Save All** icon in the menu bar to save the new outbound BPEL process component that was configured.
You are now ready to deploy the BPEL outbound process.

4.4.3.3 Adjusting for Known Deployment Issues With 12c
Perform the following steps to adjust for known deployment issues with 12c.
1. Double-click **J2CA_Outbound** (created BPEL process) of the created process, as shown in **Figure 4–35**.
2. Click the Source tab below the opened process, as shown in Figure 4–36.

Figure 4–36  Source Tab

3. Change the productVersion property value from 12.1.3.0.0 to 11, as shown in Figure 4–37.
4. Save the changes and proceed to deploy the project.

4.4.4 Deploying the BPEL Outbound Process

Perform the following steps to deploy the BPEL outbound process.

1. Right-click the project name in the left pane, select Deploy, and then click J2CA_Outbound, as shown in Figure 4–38.

The Deployment Action page is displayed, as shown in Figure 4–39.
2. Ensure that **Deploy to Application Server** is selected.

3. Click **Next**.

   The Deploy Configuration page is displayed, as shown in **Figure 4–40**.

**Figure 4–40  Deploy Configurations Page**

4. Leave the default values selected and click **Next**.
The Select Server page is displayed, as shown in Figure 4–41.

5. Select an available application server that was configured and click Next.
   The SOA Servers page is displayed, as shown in Figure 4–42.
6. Select a target SOA server and click **Next**.
   The Summary page is displayed, as shown in Figure 4–43.

![Figure 4–43 Summary Page](image)

7. Review and verify all the available deployment information for your project and click **Finish**.
   The process is deployed successfully, as shown in Figure 4–44.

![Figure 4–44 Successful Deployment Message](image)

### 4.4.5 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console.

1. Logon to the Oracle Enterprise Manager console.
2. Expand **SOA**, select **soa-infra (soa_server1)**, and then click **Default**.
3. Select an available project (for example, J2CA_Outbound) and click **Test** as shown in Figure 4–45.
4. Click the **Request** tab.
5. Select **XML View** from the list, as shown in **Figure 4–46**.

![Figure 4–45 Test Button](image)

![Figure 4–46 Input Arguments List](image)

6. Provide an appropriate input XML document in the Input Arguments area and click **Test Web Service**.

   The output response is received in the Oracle Enterprise Manager console, as shown in **Figure 4–47**.
4.4.6 Testing Outbound BPEL and Mediator Processes

When testing an outbound BPEL process or an outbound Mediator process from the Oracle Enterprise Manager console, do not use the XML envelopes that are generated by these consoles. Instead, remove them and use the XML payloads that are generated from the schemas, which conform to the WSDLs for namespace qualifications.

The Mediator data flows can be tested using the Enterprise Manager console. When creating a Mediator data flow and interactions, the Web services are created and registered with the Oracle Application Server. For more information on creating a Mediator outbound process, see Chapter 5, “Integration With Mediator Service Components in the Oracle SOA Suite”.

4.5 Designing an Inbound BPEL Process for Event Integration (J2CA Configuration)

This section describes Siebel event integration.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPEL\J2CA\Inbound_Project

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper)

**Note:** The examples in this chapter demonstrate the use of Oracle JDeveloper.

This section contains the following topics:

- Section 4.5.1, "Generating WSDL for Event Integration"
- Section 4.5.2, "Creating an Empty Composite for SOA"
Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Event Integration" on page 4-34.

4.5.1 Generating WSDL for Event Integration

You must create a separate channel for every inbound J2CA service and select that channel when you generate WSDL for inbound interaction using Application Explorer.

This section contains the following topics:

- Section 4.5.1.1, "Creating a Channel"
- Section 4.5.1.2, "Creating an Integration Object Node"
- Section 4.5.1.3, "Generating WSDL for Event Notification"

4.5.1.1 Creating a Channel

You must create a separate channel for every inbound J2CA service and select that channel when you generate WSDL for inbound interaction using Application Explorer.

To create a channel:

1. In the left pane, click Events.
2. Expand the Siebel node.
   
   The ports and channels nodes appear in the left pane, as shown in Figure 4–48.

   

   **Figure 4–48  Ports and Channels Nodes Under Siebel Node**

   ![Figure 4–48 Ports and Channels Nodes Under Siebel Node](image)

   3. Right-click Channels and select Add Channel.

   The Add Channel dialog is displayed, as shown in Figure 4–49.

   ![Add Channel Dialog](image)
Perform the following steps:

a. Enter a name for the channel, for example, SiebelEvent.

b. Enter a brief description.

c. From the Protocol list, select HTTP Listener, MQ Series Listener, or File Listener.

For demonstration purposes, this procedure uses the HTTP Listener as an example.

4. Click Next.

The Basic dialog is displayed, as shown in Figure 4–50.
5. Enter the system information as specified in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listener port</td>
<td>Port on which to listen for Siebel event data.</td>
</tr>
<tr>
<td>Https</td>
<td>For a secure HTTP connection, select the Https check box.</td>
</tr>
<tr>
<td></td>
<td>This option is currently not supported.</td>
</tr>
<tr>
<td>Synchronization Type</td>
<td>Select REQUEST_RESPONSE from the list, which is the recommended</td>
</tr>
<tr>
<td>Encoding Type</td>
<td>option.</td>
</tr>
<tr>
<td>Encoding Type</td>
<td>Choose an encoding type to be used from the list. By default, ASCII is selected.</td>
</tr>
</tbody>
</table>

6. Click the PreParser tab, as shown in Figure 4–51.

7. Specify the location of the schema file that was generated for the Integration Object node using the Export Schema(s) option in Application Explorer.
8. Click OK.

As shown in Figure 4–52, the channel is displayed under the channels node in the left pane. An X over the icon indicates that the channel is currently disconnected.

![Figure 4–52 New Channel Node](image)

**Figure 4–52 New Channel Node**

<table>
<thead>
<tr>
<th>Events</th>
<th>JDEdwards</th>
<th>MySAP</th>
<th>PeopleSoft</th>
<th>Siebel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Siebel</td>
<td>Ports</td>
<td>Channels</td>
<td>SiebelEvent</td>
</tr>
</tbody>
</table>

**Note:** During run time, the Oracle Application Adapter for Siebel adds the namespace to the Siebel published document using the schema that is specified in the PreParser tab. If the Schema location field in the PreParser tab is empty, then BPEL and Mediator processes do not work properly as the Siebel published documents do not contain any namespaces.

You must now create an Integration Object node.

### 4.5.1.2 Creating an Integration Object Node

1. Start Application Explorer.
2. Expand the **Adapters** node, as shown in Figure 4–53.

![Figure 4–53 Disconnected Siebel Target Node, Siebel, Under the Siebel Node](image)

- **Siebel**
  - Siebel_target

Perform the following steps:

- **a.** Expand the **Siebel** node.
  
The defined Siebel targets are displayed under the adapter node.

- **b.** Click the target name, for example, siebel, under the **Siebel** node.

  The Connection dialog displays the values you entered.

3. Verify your connection parameters.
4. Right-click the target name and select **Connect**.

  The x icon disappears, indicating that the node is connected, as shown in Figure 4–54.
5. Expand the Integration Object node and select Sample Account.

6. Right-click the Sample Account node and select Add IO Node.

The Add IO Node dialog is displayed, as shown in Figure 4–55.

7. Enter a node name (for example, Sample_Account) in the Node name field and a path to the Sample Account XSD file in the Schema location field.

   Please note:
   - For Siebel 7.5 or later: Generate XSD schemas directly from Siebel tools. You use the XSD schemas when you create Web services in Application Explorer. After you generate an XSD schema through Siebel tools, use it to create an IO node and a Web service.
   - For Siebel 7.0: You cannot generate XSD schemas directly from Siebel tools; only XDR schemas can be created. Before you create a Web service, you must first generate an XSD schema from the XDR schema using Application Explorer.

8. If the XSD schema has already been generated, then select XSD Schema. If you are using Siebel-generated XDR schemas, then do not select the XSD schema option.

9. Select a protocol (HTTP, FILE, or MQ Series) from the Protocol list.

10. Click Continue.

    The new Integration Object node is added, as shown in Figure 4–56.
4.5.1.3 Generating WSDL for Event Notification

After you create a channel and an associated Integration Object node, you must generate WSDL for the event using Application Explorer.

You must be connected to a Siebel target under the Adapters node in Application Explorer. For detailed information on how to define and connect to a target, see "Establishing a Connection (Target) for Siebel" on page 2-5.

After you connect to a Siebel target, generate WSDL for the event as follows:

1. Right-click the Integration Object node (for example, Sample_Account), and then select Create Inbound JCA Service (Event), as shown in Figure 4–57.

![Figure 4–57 Create Inbound JCA Service (Event) Option Selected in Application Explorer](image)

The Export WSDL dialog is displayed, as shown in Figure 4–58.

Note: You must restart the Oracle WebLogic Server after the Integration Object node and channel are created.
Perform the following steps:

a. In the Name field, specify a name for the WSDL file.
   The .wsdl file extension is added automatically. By default, the names of WSDL files generated for events end with _receive.

b. From the Channel list, select the channel you created for this inbound service (for example, SiebelEvent).
   **Important:** You must create a separate channel for every inbound service. Verify that the channel is stopped before run-time.

2. Click OK.

### 4.5.2 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.

2. Enter a name for the new SOA Application and click Next.
   The Name your project page is displayed.

3. Enter a project name and click Next.
The Configure SOA settings page is displayed.

4. From the Composite Template list, select **Empty Composite** and click **Finish**.

For more information, see Section 4.4.2, "Creating an Empty Composite for SOA" on page 4-9.

### 4.5.3 Defining a BPEL Inbound Process

This section describes how to define a BPEL inbound process, which consists of the following topics:

- Section 4.5.3.1, "Creating a Third Party Adapter Service Component"
- Section 4.5.3.2, "Creating an Inbound BPEL Process Component"

#### 4.5.3.1 Creating a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the **Third Party Adapter** component from the Service Adapters pane to the Exposed Services pane, as shown in Figure 4–59.

**Figure 4–59 Third Party Adapter Component**

The Create Third Party Adapter Service dialog is displayed, as shown in Figure 4–60.
2. Ensure that Service is selected from the Type list (default).

3. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The WSDL Chooser dialog is displayed, as shown in Figure 4–61.

4. Browse and select an inbound WSDL file from the following directory:
5. Click OK.

The Localize Files dialog is displayed, as shown in Figure 4–62.

*Figure 4–62 Localize Files Dialog*

6. Click OK.

The inbound WSDL file and associated receive/request XML schema file (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog.

7. Click the Find JCA file icon, which is located to the right of the JCA File field.

The Transformation Chooser dialog is displayed.

8. Browse and select the JCA properties file from the following directory:

   `<ADAPTER_HOME>\wsdls`

9. Click OK.

A Copy File message is displayed, as shown in Figure 4–63.
10. Click **Yes**.

A copy of the JCA properties file is made in the project folder.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 4–64.

11. Click **OK**.

The third party adapter service component is created and displayed in the Exposed Services pane.

You are now ready to configure an inbound BPEL process component.

### 4.5.3.2 Creating an Inbound BPEL Process Component

Perform the following steps to create an inbound BPEL process component:

1. Drag and drop the **BPEL Process** component from the Service Components pane to the Components pane.

The Create BPEL Process dialog is displayed, as shown in Figure 4–65.
2. In the Name field, enter a name to identify the new inbound BPEL process component or leave to default.

   By default, the BPEL 2.0 Specification option is selected.

3. From the Template list, select **Base on a WSDL**.

4. Uncheck the **Expose as SOAP service** check box.

5. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

   The WSDL Chooser dialog is displayed.

6. Select an inbound WSDL file from the following directory:

   `<ADAPTER_HOME>/wsdl`

7. Click **OK**.

   The Localize Files dialog is displayed, as shown in Figure 4–66.
8. Uncheck the Rename duplicate files option.

9. Click OK.

You are returned to the Create BPEL Process dialog.

10. Click OK.

11. Create a connection between the third party adapter service component and the inbound BPEL process component, as shown in Figure 4–67.
12. Double-click **J2CA_Outbound** in the left pane.

![Figure 4–68 Save All Icon](image)

13. Click the **Save All** icon in the menu bar to save the new inbound BPEL process component that was configured, as shown in Figure 4–68.

You are now ready to deploy the BPEL inbound process.

### 4.5.3.3 Adjusting for Known Deployment Issues With 12c

For more information on how to adjust for known deployment issues with 12c, see Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 4-26.

### 4.5.4 Deploying the BPEL Inbound Process

Perform the following steps to deploy the BPEL inbound process.

1. Right-click the project name in the left pane, select **Deploy**, and click **J2CA_Inbound**.

   The Deployment Action page is displayed.

2. Ensure that **Deploy to Application Server** is selected.

3. Click **Next**.

   The Deploy Configuration page is displayed.

4. Leave the default values selected and click **Next**.

   The Select Server page is displayed.

5. Select an available application server that was configured and click **Next**.

   The SOA Servers page is displayed.

6. Select a target SOA server and click **Next**.

   The Summary page is displayed.
7. Review and verify all the available deployment information for your project and click Finish.

The process is deployed successfully.

For more information, see Section 4.4.4, "Deploying the BPEL Outbound Process" on page 4-28.

Once event messages are triggered through Siebel, successful instances are received in the Oracle Enterprise Manager console, as shown in Figure 4–69.

Figure 4–69  Received Instances

4.5.5 Triggering an Event in Siebel

This section describes how to trigger an event in Siebel and verify event integration using Oracle Application Adapter for Siebel.

This section contains the following topics:

■ Section 4.5.5.1, "Triggering a Siebel Event to Test Event Runtime Integration"

■ Section 4.5.5.2, "Triggering an Event in Siebel 7.8 to Test Event Runtime Integration"

■ Section 4.5.5.3, "Triggering an Event in Siebel 8.0 to Test Event Runtime Integration"

■ Section 4.5.5.4, "Verifying the Results"

4.5.5.1 Triggering a Siebel Event to Test Event Runtime Integration

To trigger an event in Siebel:

1. As shown in Figure 4–70, start the Siebel Call Center by entering the following URL in a browser:

   http://host name/callcenter/start.swe
2. Click View and select Site Map from the list. The Site Map view is displayed, as shown in Figure 4–71.

3. Click Siebel Workflow Administration. The Siebel Workflow Administration page is displayed, as shown in Example 4–72.

4. Click Workflow Processes. The Workflow Processes page is displayed, as shown in Example 4–73.
5. Click **Query** to search for the Workflow needed to trigger a Siebel event, as shown in Figure 4–74.
6. As shown in **Figure 4–75**, enter a Siebel workflow name and click **Search**.

**Figure 4–75  Workflow Processes Page**

![Workflow Processes Page](image)

7. As shown in **Figure 4–76**, select the workflow.

**Figure 4–76  Process Designer Tab**

![Process Designer Tab](image)

8. Click the **Process Designer** tab and double-click the **Send Siebel Quote Data HTTP** workflow element.

   The Input Arguments tab is displayed, as shown in **Figure 4–77**.

**Figure 4–77  Input Arguments Tab**

![Input Arguments Tab](image)

9. Enter the IP address and port for the HTTPRequestURLTemplate input argument.

10. Click **Return To Designer**, as shown in **Figure 4–78**.
11. Click the Process Simulator tab, as shown in Figure 4–79.

Figure 4–79  Process Simulator Tab

The Simulator tab is displayed, as shown in Figure 4–80.

Figure 4–80  Simulator Tab

12. Click Start then Continue to complete the Siebel event triggering process.

4.5.5.2 Triggering an Event in Siebel 7.8 to Test Event Runtime Integration

To trigger an event in Siebel 7.8:

1. Log in to Siebel Tools 7.8 by using the following parameters:
Username = sadmin
Password = sadmin

2. Choose Server from the Connect to list and click OK as shown in Figure 4–81.

Figure 4–81  Siebel Tools 7.8 Log-in Pane

You are logged-in to Siebel Tools 7.8, as shown in Figure 4–82.

Figure 4–82  Siebel Tools 7.8 Startup Pane

3. On the left pane, click on Workflow Process.

The Workflow Processes pane is displayed, as shown in Figure 4–83.
4. Click on the **New Query** magnifying tool icon with the white glow, as shown in Figure 4–84.

![Figure 4–84 New Query Magnifying Tool Icon](image)

5. In the Process Name field, enter the name **HTTP Event** as shown in Figure 4–85.
6. Click on the Magnifying Tool icon with the yellow glow, as shown in Figure 4–86.

7. Click on the line, Copy Me! HTTP Event - Account -Siebel 7.7, as shown in Figure 4–87.
8. Right-click the arrow next to the selection and select **Edit Workflow Process**, as shown in Figure 4–88.

A diagram is displayed on the right pane, as shown in Figure 4–89.
9. Click the diagram box entitled, **Send Siebel Quote Data HTTP**, as shown in Figure 4–90.

Figure 4–90  **Send Siebel Quote Data HTTP**

10. Right-click **Send Siebel Quote Data HTTP** and select **Show Input Arguments**, as shown in Figure 4–91.
11. At the bottom pane, enter the value for `HTTPRequestURLTemplate`, as shown in Figure 4–92, by using the following URL:

   http://machineIP: portno

12. Right-click the diagram and select `Simulate`, as shown in Figure 4–93.
The Repository diagram is displayed, as shown in Figure 4–94.

13. Click Start and then minimize the Siebel 7 window that is displayed, as shown in Figure 4–95.
14. Click **Next Step**. The Convert Account Data to XML image is highlighted, as shown in Figure 4–96.

**Note:** A red outline highlights each diagram image on each step.

15. Click **Next Step**. The Encoding Converter image is highlighted, as shown in Figure 4–97.
16. Click Next Step. The Send Siebel Quote Data HTTP image is highlighted, as shown in Figure 4–98.

17. Click Next Step. The End image is highlighted, as shown in Figure 4–99.
18. Click **Next Step**. A success message is displayed, confirming that triggering has been completed successfully, as shown in Figure 4–100.

**Figure 4–100  Success Message**

19. Click **OK**.

20. Click the **File** menu and select **Exit**, as shown in Figure 4–101.
4.5.5.3 Triggering an Event in Siebel 8.0 to Test Event Runtime Integration

To trigger an event inSiebel 8.0:

1. Log in to Siebel Tools 8.0 by using the following parameters:
   
   Username = sadmin
   
   Password = sadmin

2. Choose **Server** from the Connect to list and click **OK** as shown in Figure 4–102.
3. Click **Workflow Process** on the left pane.

   The Workflow Process List is displayed on the right pane, as shown in Figure 4–103.

**Figure 4–103 Workflow Process List**

4. Click the **New Query** magnifying tool icon with the white glow, as shown in Figure 4–104.
5. Enter the process name `HTTP Event_Account_chatura` and click the **Execute Query** magnifying tool icon with the yellow glow to execute the query, as shown in Figure 4–105.

**Figure 4–105  Execute Query Icon**

6. Right-click the arrow next to the selected process and select **Edit Workflow Process**, as shown in Figure 4–106.
7. Click the **Send Siebel Account Data HTTP** box, as shown in **Figure 4–107**.

**Figure 4–107  Send Siebel Account Data HTTP Box**

8. In the Multi Value Property Window at the bottom, enter the value for `HTTPRequestURLTemplate` as `http://machineIP:portno` then save the values, as shown in **Figure 4–108**.
9. Right-click the diagram and select **Simulate**, as shown in Figure 4–109.

**Figure 4–109  Simulate**

10. Click the **Start Simulation** icon, as shown in Figure 4–110.
11. Click the **Simulate Next** icon. The Get New Account box is highlighted, as shown in **Figure 4–111**.

**Figure 4–111  Simulate Next**

12. Click the **Simulate Next** icon. The Convert Account Data to XML box is highlighted, as shown in **Figure 4–112**.
13. Click the Simulate Next icon. The Encoding Converter box is highlighted, as shown in Figure 4–113.

**Figure 4–113  Encoding Converter**

14. Click the Simulate Next icon. The Send Siebel Account Data HTTP box is highlighted, as shown in Figure 4–114.
15. Click the **Simulate Next** icon. The End image is highlighted as shown in Figure 4–115.

16. Click **Next Step** and then click **OK** when the Siebel success message is displayed, as shown in Figure 4–116.
17. Right-click the third **Workflow Process** tab and select **Close**, as shown in Figure 4–117.

18. Right-click the second **Workflow Process** tab and select **Close**, as shown in Figure 4–118.
19. Right-click the remaining Workflow Process tab and select Close, as shown in Figure 4–119.

20. From the File menu, click Exit to close the tool, as shown in Figure 4–120.
4.5.5.4 Verifying the Results

To verify your results:

1. Log in to the Oracle Enterprise Manager console by using the following URL:
   
   http://localhost:7001/em

2. Click SOA, select soa-infra (soa_server1), default, and then click J2CA_Inbound.

3. Click Flow Instances.

   Instances will be received as shown in Example 4–121.
4.6 Designing an Outbound BPEL Process for Service Integration (BSE Configuration)

This section describes how to design an outbound BPEL process for service integration.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPEL\BSE\Outbound_Project

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper)

This section includes the following topics:

- Section 4.6.1, "Generating a WSDL File for Request and Response Services Using a Web Service"
- Section 4.6.2, "Creating an Empty Composite for SOA"
- Section 4.6.3, "Defining a BPEL Outbound Process"

Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.6.1, "Generating a WSDL File for Request and Response Services Using a Web Service".

4.6.1 Generating a WSDL File for Request and Response Services Using a Web Service

To generate a WSDL file for request and response services using a Web service:

1. Start Application Explorer and connect to a defined Siebel target (BSE configuration).
For more information on defining a target and connecting to Siebel, see Section 2.4.1, "Defining a Target to Siebel".

2. Expand the Siebel target to which you are connected.

3. Expand Business Object, Account, and then Account.

4. Right-click queryWithView, and then select Create Web Service from the menu, as shown in Figure 4–122.

Figure 4–122 queryWithView Node

The Create Web Service dialog is displayed, as shown in Figure 4–123.

Figure 4–123 Create Web Service Dialog

5. Enter a service name, and click Next.

6. Click OK on the next dialog that is displayed.

   Application Explorer switches the view to the Business Services node, and the new Web service is displayed in the left pane.

7. Right-click the new Web service and select Save WSDL from the menu.
8. Save the WSDL in the wsdls folder and click **Save**.
You can now create an empty composite for SOA, which is the first step that is
required to define a BPEL outbound process in JDeveloper.

### 4.6.2 Creating an Empty Composite for SOA

To create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the SOA Application and click **Next**.
   The Name your project page is displayed.
3. Enter a project name and click **Next**.
   The Configure SOA settings page is displayed.
4. From the Composite Template list, select **Empty Composite** and click **Finish**.
   For more information, see Section 4.4.2, "Creating an Empty Composite for SOA," on page 4-9.

### 4.6.3 Defining a BPEL Outbound Process

This section describes how to configure a BPEL outbound process component.

This section includes the following topics:

- Section 4.6.3.1, "Creating a Partner Link"
- Section 4.6.3.2, "Creating BPEL Activities and Mappings With the Created Partner Link"

To define a BPEL outbound process:

1. Drag and drop the **BPEL Process** component from the Service Components pane
to the Components pane, as shown in **Figure 4–124**.
2. In the Name field, enter a name to identify the new outbound BPEL process component or leave it to the default value.
   By default, the BPEL 2.0 Specification option is selected.

3. From the Template drop-down list, select **Base on a WSDL**.

4. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field, as shown in Figure 4–125.
The WSDL Chooser dialog is displayed.

5. Navigate to the location where the WSDL is exported from Application Explorer, select the WSDL, and click OK, as shown in Figure 4–126.
6. In the displayed Localize Files window, click OK. This imports the WSDL file to the project folder, as shown in Figure 4–127.

7. In the BPEL Process pane, click OK, as shown in Figure 4–128.
The BPEL Process component is created and displayed, as shown in Figure 4–129.

### 4.6.3.1 Creating a Partner Link

This section describes how to create a partner link.

To create a partner link:
1. Double-click the outbound BPEL process component in the Components pane.

2. Right-click on the Partner Links pane and select Create Partner Link, as shown in Figure 4–130.

Figure 4–130  Create Partner Link

3. In the displayed Create Partner Link window, provide an appropriate name and click on the SOA Resource Browser tool, as shown in Figure 4–131.

Figure 4–131  SOA Resource Browser Tool

4. In the WSDL Chooser dialog that is displayed, navigate to the location where the WSDL is exported from Application Explorer, select the WSDL, and click OK, as shown in Figure 4–132.
5. In the displayed Localize Files window, uncheck the **Rename duplicate files** check box and click **OK**, as shown in Figure 4–133.

Figure 4–133  Localize Files Window

6. Click **Yes** in the displayed Partner Link Type window, as shown in Figure 4–134.
7. In the displayed Create Partner Link window, expand the **Partner Role** drop-down list and select the available partner role.

8. Click **Apply**, and then **OK**, as shown in Figure 4–135.

---

**Figure 4–134 Partner Link Type**

---

**Figure 4–135 Create Partner Link**

---

### 4.6.3.2 Creating BPEL Activities and Mappings With the Created Partner Link

This section describes how to create BPEL activities and mappings with the created partner link.

To create BPEL Activities and map with the created partner link:

1. Drag and drop the **Invoke** activity component from BPEL Constructs to the Components pane. Place it between the **receiveInput** activity component and the **replyOutput** activity component.

2. Create a connection between the new **Invoke** activity component (Invoke1) and the **Partner Link** component (Partner link1), as shown in Figure 4–136.
3. In the displayed Edit Invoke window, click the Plus (+) icon, located to the right of the Input field, to configure a new input variable.

4. Accept the default values that are provided for the new input variable and click OK.

5. Click the Plus (+) icon, which is located to the right of the Output field, to configure a new output variable, as shown in Figure 4–137.
6. Accept the default values that are provided for the new output variable and click OK.

7. Click Apply and then OK, as shown in Figure 4–138.
8. Drag and drop the **Assign** activity component from BPEL Constructs to the Components pane. Place it between the **Receive** activity component (receiveInput) and the **Invoke** activity component (Invoke1), as shown in Figure 4–139.
9. Double-click the new Assign activity component (Assign1), as shown in Figure 4–140.

Figure 4–140 Assign Activity Component

10. In the left pane, under Variables, expand InputVariable, and then select parameters.

11. In the right pane, under Variables, expand Invoke1_queryWithView_InputVariable, and then select parameters.

12. Drag and map the InputVariable parameters to the Invoke1_queryWithView_InputVariable parameters, as shown in Figure 4–141.

Figure 4–141 InputVariable Parameters

13. Click Apply and then OK.
14. Drag and drop the **Assign** activity component to the Components pane and place it between the **Invoke** activity (Invoke1) and the **Reply** activity (replyOutput), as shown in Figure 4–142.

**Figure 4–142 Assign Activity Component**

![Image of Assign Activity Component](image1)

15. Double-click the new **Assign** activity component (Assign2), as shown in Figure 4–143.

**Figure 4–143 New Assign Activity Component**

![Image of New Assign Activity Component](image2)

16. In the left pane, under Variables, expand **Invoke1_queryWithView_OutputVariable**, and then select **parameters**.

17. In the right pane, under Variables, expand **outputVariable**, and then select **parameters**.

18. Drag and map the **Invoke1_queryWithView_OutputVariable** parameters to the **outputVariable** parameters, as shown in Figure 4–144.
19. Click **Apply** and then **OK**.

   You are returned to the component pane, as shown in Figure 4–145.

   ![Component Pane](image)

**Figure 4–145 Component Pane**

20. Click the **Save All** icon in the menu bar to save the new outbound BPEL process component that was configured.

   You are now ready to deploy the BPEL Outbound process. You can follow the same procedure as in Section 4.4.4, "Deploying the BPEL Outbound Process" on page 4-28.

   Once deployed you can invoke the input XML, as defined in Section 4.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 4-31.
This chapter describes integration with Mediator service components in the Oracle SOA Suite. It contains the following sections:

- Section 5.1, "Configuring a New Application Server Connection"
- Section 5.2, "Configuring a Mediator Outbound Process (J2CA Configuration)"
- Section 5.3, "Configuring a Mediator Inbound Process (J2CA Configuration)"
- Section 5.4, "Configuring a Mediator Outbound Process (BSE Configuration)"

The scenarios shown in this chapter require the following prerequisites.

**Prerequisites**
The following are installation and configuration requirements:

- Oracle Application Adapter for Siebel must be installed on Oracle WebLogic Server.
- Siebel must be configured for inbound and outbound processing.
- OracleAS Technology adapters must be deployed and properly configured.

The examples in this chapter present the configuration steps necessary for demonstrating service and event integration with Siebel. Prior to using this material, you must be familiar with the following:

- How to configure Oracle Application Adapter for Siebel for services and events. For more information, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel".
- How to configure Oracle JDeveloper. For more information, see Chapter 4, "Integration With BPEL Service Components in the Oracle SOA Suite".
- How to use Siebel workflows. For more information on Siebel design requirements, see Appendix A, "Using Siebel Workflows".

**Overview of Mediator Integration**
Mediator provides a comprehensive application integration framework. Oracle Application Adapter for Siebel used with Mediator enables you to seamlessly integrate enterprise software, eliminating the need to write custom code. Functional modeling, as opposed to custom coding solutions, allows for software reuse and reduces the complexity and management challenges that arise over the software lifecycle. This integration model consists of two components—high-level integration logic and low-level platform services.
Adapter integration with Oracle WebLogic Server, Mediator is a two-step process:

1. **Design Time:** Oracle Application Adapter for Siebel is configured in Application Explorer for services and events, as described in Chapter 2, "Configuring Oracle Application Server Adapter for Siebel". Integration logic is modeled in iStudio. Metadata are stored in repositories.

2. **Runtime:** The underlying platform treats this metadata as run-time instructions to enable the communication between participating applications.

### 5.1 Configuring a New Application Server Connection

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 4.3, "Configuring a New Application Server Connection" on page 4-2.

### 5.2 Configuring a Mediator Outbound Process (J2CA Configuration)

This section describes how to configure a Mediator outbound process to your Siebel system, using a Mediator project in Oracle JDeveloper.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

`<ADAPTER_HOME>/etc/sample/SIEBEL_Samples.zip/SIEBEL_Samples/Mediator/J2CA/Outbound_Project`

This section contains the following topics:

- Section 5.2.1, "Creating an Empty Composite for SOA"
- Section 5.2.2, "Defining a Mediator Outbound Process"
- Section 5.2.3, "Deploying the Mediator Outbound Process"
- Section 5.2.4, "Invoking the Input XML Document in the Oracle Enterprise Manager Console"

**Prerequisites**

Before you design a Mediator outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.4.1, "Generating WSDL for Request/Response Service" on page 4-8.

#### 5.2.1 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the new SOA Application and click Next.
   
   The Name your project page is displayed.
3. Enter a project name and click Next.
   
   The Configure SOA settings page is displayed.
4. From the Composite Template list, select **Empty Composite** and click Finish.

For more information, see Section 4.4.2, "Creating an Empty Composite for SOA" on page 4-9.
5.2.2 Defining a Mediator Outbound Process

This section describes how to define a Mediator outbound process, which consists of the following topics:

- Section 5.2.2.1, "Configuring a Third Party Adapter Service Component"
- Section 5.2.2.2, "Configuring an Outbound Mediator Process Component"
- Section 5.2.2.3, "Configuring the Routing Rules"
- Section 5.2.2.4, "Adjusting for Known Deployment Issues With 12c"

5.2.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the External References pane.
2. Enter a name for the third party adapter service.
3. Ensure that Reference is selected from the Type drop-down list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
5. Browse and select an outbound WSDL file from the following directory:
   `<ADAPTER_HOME>\wsdl`
6. Click OK.
7. Click OK.
   The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.
8. Click the Find JCA file icon, which is located to the right of the JCA File field.
9. Browse and select the JCA properties file from the following directory:
   `<ADAPTER_HOME>\wsdl`
10. Click OK.
    A Copy File confirmation message is displayed.
11. Click Yes.
    A copy of the JCA properties file is made in the project folder.
12. Click **OK**.

   The third party adapter service component (GetDetail) is created in the External References pane.

   You are now ready to configure an outbound Mediator process component.

   For more information, see Section 6.4.3.1, "Configuring a Third Party Adapter Service Component" on page 6-12.

### 5.2.2.2 Configuring an Outbound Mediator Process Component

Perform the following steps to configure an outbound Mediator process component:

1. Drag and drop the **Mediator Process** component from the Components pane to the Components pane.

   The Create Mediator dialog is displayed, as shown in Figure 5–2.
2. In the Name field, enter a name to identify the new outbound Mediator process component or leave it to the default value.

3. From the Template drop-down list, select Synchronous Interface.

4. Click the Browse icon, which is located to the right of the Input field to select the associated XML request schema file.

   The Type Chooser dialog is displayed, as shown in Figure 5–3.
5. Expand Project WSDL Files, J2CA_Outbound_invoke.wsdl, Imported Schemas, J2CA_Outbound_invoke_request.xsd, and select Siebel.

6. Click OK.

You are returned to the Create Mediator dialog.

7. Click the Browse icon, which is located to the right of the Output field to select the associated XML response schema file.

The Type Chooser dialog is displayed, as shown in Figure 5–4.

9. Click OK.

You are returned to the Create Mediator dialog, as shown in Figure 5–5.

Figure 5–5  Create Mediator Dialog
10. Click OK.

11. Create a connection between the outbound Mediator process component and the third party adapter service component, as shown in Figure 5–6.

**Figure 5–6 Created Connection**

You are now ready to configure the routing rules.

### 5.2.2.3 Configuring the Routing Rules

Perform the following steps to configure routing rules for the Mediator outbound process component:

1. Double-click the outbound Mediator process component in the Components pane. The Routing Rules dialog is displayed, as shown in Figure 5–7.

**Figure 5–7 Routing Rules Dialog**
2. In the <<Filter Expression>> area, click the icon to the right of the Transform Using field.

   The Request Transformation Map dialog is displayed, as shown in Figure 5–8.

   **Figure 5–8 Request Transformation Map Dialog**

   ![Request Transformation Map Dialog](image)

3. Click the Add (+) icon.

   The Create Transformation Map page is displayed.
4. Make sure the Type is selected as XSLT and click OK.
5. Click OK.
6. Map the ns0:Siebel source element to the ns0:Siebel target element.

   The Auto Map Preferences dialog is displayed.
7. Retain the default values and click OK.
8. Return to the Routing Rules dialog, as shown in Figure 5–9.

   **Figure 5–9 Routing Rules Dialog**

9. In the Synchronous Reply area, click the icon to the right of the Transform Using field.
The Reply Transformation Map dialog is displayed.

10. Click the Add (+) icon. 
The create Transformation Page is displayed.

11. Make sure the type is selected as XSLT and click OK. 
A mapping page is displayed.

12. Click OK.

13. Map the ns0:SiebelResponse source element to the ns0:SiebelResponse target element. 
The Auto Map Preferences dialog is displayed.

14. Retain the default values and click OK. 
The mapping is completed, as shown in Figure 5–10.

Figure 5–10 Completed Mapping

15. Click the Save All icon in the menu bar to save the new outbound Mediator process component that was configured.

5.2.2.4 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 4-26.

5.2.3 Deploying the Mediator Outbound Process
Perform the following steps to deploy the Mediator outbound process.

1. Right-click the project name in the left pane, select Deploy, and then click J2CA_Outbound. 
The Deployment Action page is displayed.

2. Ensure that Deploy to Application Server is selected.

3. Click Next. 
The Deploy Configuration page is displayed.

4. Leave the default values selected and click Next. 
The Select Server page is displayed.

5. Select an available application server that was configured and click Next. 
The SOA Servers page is displayed.

6. Select a target SOA server and click Next. 
The Summary page is displayed.
7. Review and verify all the available deployment information for your project and click Finish.

For more information, see Section 4.4.4, "Deploying the BPEL Outbound Process" on page 4-28.

5.2.4 Invoking the Input XML Document in the Oracle Enterprise Manager Console

For more information, see Section 4.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 4-31.

5.3 Configuring a Mediator Inbound Process (J2CA Configuration)

This section describes how to configure a Mediator inbound process to your Siebel system, using a Mediator project in Oracle JDeveloper.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\Mediator\J2CA\Inbound_Project

This section contains the following topics:

- Section 5.3.1, "Creating an Empty Composite for SOA"
- Section 5.3.2, "Defining a Mediator Inbound Process"

Prerequisites

Before you design a Mediator inbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.5.1, "Generating WSDL for Event Integration" on page 4-34.

5.3.1 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the new SOA Application and click Next.

   The Name your project page is displayed.

3. Enter a project name and click Next.

   The Configure SOA settings page is displayed.

4. From the Composite Template list, select Empty Composite and click Finish.

   For more information, see Section 4.4.2, "Creating an Empty Composite for SOA" on page 4-9.

5.3.2 Defining a Mediator Inbound Process

This section describes how to define a Mediator inbound process, which contains the following topics:

- Section 5.3.2.1, "Configuring a Third Party Adapter Service Component"
- Section 5.3.2.2, "Configuring an Inbound Mediator Process Component With a File Adapter"
5.3.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the Exposed Services pane.
   The Create Third Party Adapter Service dialog is displayed.
2. Enter a name for the third party adapter service.
3. Ensure that Service is selected from the Type drop-down list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
   The WSDL Chooser dialog is displayed.
5. Browse and select an inbound WSDL file from the following directory:
   `<ADAPTER_HOME>\wsdl\`s
6. Click OK.
   The Localize Files dialog is displayed.
7. Click OK.
   The inbound WSDL file and associated receive/request schema file (.xsd) are imported to the project folder that has been created.
   You are returned to the Create Third Party Adapter Service dialog.
8. Click the Find JCA file icon, which is located to the right of the JCA File field.
   The Transformation Chooser dialog is displayed.
9. Browse and select the JCA properties file from the following directory:
   `<ADAPTER_HOME>\wsdl\`s
10. Click OK.
    The Copy File Confirmation message is displayed.
11. Click Yes.
    A copy of the JCA properties file is made in the project folder.
    You are returned to the Create Third Party Adapter Service dialog.
12. Click OK.
    The third party adapter service component is created in the Exposed Services pane.
    You are now ready to configure an inbound Mediator process component.
    For more information, see Section 4.5.3.1, "Creating a Third Party Adapter Service Component" on page 4-41.

5.3.2.2 Configuring an Inbound Mediator Process Component With a File Adapter

Perform the following steps to configure an inbound Mediator process component with a File adapter.

- Section 5.3.2.3, "Configuring the Routing Rules"
- Section 5.3.2.4, "Adjusting for Known Deployment Issues With 12c"
1. Drag and drop the Mediator Process component from the Service Components pane to the Components pane.
   The Create Mediator dialog is displayed, as shown in Figure 5–11.

Figure 5–11  Create Mediator Dialog

2. In the Name field, enter a name to identify the new inbound Mediator process component.
3. From the Template drop-down list, select Define Interface Later.
4. Click the OK.
   The new Mediator process component is added to the Components pane.
5. Drag and drop the File component from the Technology Adapters pane to the External References pane.
   The File Adapter Configuration Wizard is displayed.
6. Type a name for the new File adapter and click Next.
   The Adapter Interface page is displayed.
7. Ensure that the Define from operation and schema (specified later) option is selected.
8. Click Next.
   The Operation page is displayed.
9. Click Next.
10. Select Write File from the list of Operation Type options and specify an Operation Name (for example, Write).
11. Click Next.
The File Configuration page is displayed.

12. Specify a location on your file system where the output file is written.

13. In the File Naming Convention field, specify a name for the output file.

14. Click Next.

The Messages page is displayed, as shown in Figure 5–12.

**Figure 5–12 Messages Page**

15. Click **Browse**, which is located to the right of the URL field.

The Type Chooser dialog is displayed, as shown in Figure 5–13.
16. Expand **Project WSDL Files, J2CA_Inbound_receive.wsdl, Imported Schemas, J2CA_Inbound_receive_request.xsd**, and select **SiebelMessage SiebelMessage**.

17. Click OK.
   
   You are returned to the Messages page.

18. Click Next.
   
   The Finish page is displayed.

19. Click Finish.

20. Create a connection between the inbound Mediator process component and the third party adapter service component.

21. Create a connection between the inbound Mediator process component and the File adapter component, as shown in **Figure 5–14**.
You are now ready to configure the routing rules.

5.3.2.3 Configuring the Routing Rules
Perform the following steps to configure routing rules for the Mediator inbound process component:

1. Double-click the inbound Mediator process component in the Components page. The Routing Rules dialog is displayed, as shown in Figure 5–15.

2. In the <<Filter Expression>> area, click the icon to the right of the Transform Using field. The Request Transformation Map dialog is displayed.

3. Click the Add (+) icon and ensure that the selected Type is XSLT, then click OK.
4. Click OK.
   The mapping page is displayed, as shown in Figure 5–16.

**Figure 5–16  Mapping Page**

5. Click OK.

6. Map the `ns0:SiebelMessage` source element to the `ns0:SiebelMessage` target element.
   The Auto Map Preferences dialog is displayed.

7. Retain the default values and click OK.
   The mapping is now complete.

8. Click the Save All icon in the menu bar to save the new inbound Mediator process component that was configured.

### 5.3.2.4 Adjusting for Known Deployment Issues With 12c

For more information on how to adjust for known deployment issues with 12c, see Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 4-26.

You are now ready to deploy the Mediator inbound process. You can follow the same procedure in Section 4.5.4, "Deploying the BPEL Inbound Process" on page 4-47.

Once event messages are triggered through Siebel, output XML is received in the location that was specified for the File adapter component. For more information on triggering events in Siebel, see Section 4.5.5.3, "Triggering an Event in Siebel 8.0 to Test Event Runtime Integration" on page 4-63.

### 5.4 Configuring a Mediator Outbound Process (BSE Configuration)

This section describes how to configure a Mediator outbound process to your Siebel system, using a Mediator project in Oracle JDeveloper.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

```plaintext
<ADAPTER_HOME>/etc/sample\SIEBEL_Samples.zip\SIEBEL_Samples\Mediator\BSE\Outbound_Project
```

This section contains the following topics:

- **Section 5.4.1, "Creating an Empty Composite for SOA"
- **Section 5.4.2, "Defining a Mediator Outbound Process"

**Prerequisites**

Before you design a Mediator outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.6.1,
5.4.1 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the SOA Application (for example, IBSE_OUTBOUND), and click Next.
3. Enter a project name (for example, IBSE_Outbound), and click Next.
4. From the Composite Template list, select Empty Composite and click Finish.

For more information, see Section 4.4.2, "Creating an Empty Composite for SOA" on page 4-9.

5.4.2 Defining a Mediator Outbound Process

This section describes how to define a Mediator outbound process. The following topics are included:

- Section 5.4.2.1, "Configuring a SOAP Service"
- Section 5.4.2.2, "Creating a Mediator Component"
- Section 5.4.2.3, "Configuring the Routing Rules"

5.4.2.1 Configuring a SOAP Service

Perform the following steps to configure a SOAP Service:

1. Drag and drop the SOAP node from the Technology Adapters pane to the External References pane.
2. Enter an appropriate name for the SOAP Service and click on the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
3. In the displayed SOA Resource Browser window, select the File system tab and navigate to the location where the WSDL is exported from the Application Explorer, select the WSDL, and click OK.
4. In the Create Web Service Window, click OK.
5. In the displayed Localize Files window, click OK. This imports the WSDL file to the project folder.

The Web Service is created and displayed.

5.4.2.2 Creating a Mediator Component

Perform the following steps to create a Mediator component:

1. Drag and drop the Mediator component from the Components pane in to the Components pane.
2. In the Name field, enter a name to identify the new outbound Mediator process component.
3. From the Template drop-down list, select Synchronous Interface.
4. Click the Browse icon, which is located to the right of the Input field, to select the associated XML request schema file.
5. In the Type Chooser dialog, expand **Project WSDL Files**, select **IBSE_Outbound.wsdl**, and click **queryWithView**, as shown in Figure 5–17.

Figure 5–17 Type Chooser Dialog

6. Click **OK**.

7. Click the **Browse** icon, which is located to the right of the Output field, to select the associated XML response schema file.

8. In the Type Chooser dialog, expand **Project WSDL Files**, select **IBSE_Outbound.wsdl**, and click **queryWithViewResponse**, as shown in Figure 5–18.
9. Click OK.
10. Click OK.

The Mediator component is created and displayed.

11. Create a connection between the Mediator component and the SOAP service component, as shown in Figure 5–19.
5.4.2.3 Configuring the Routing Rules

Perform the following steps to configure the routing rules:

1. Double-click the Mediator component in the Components pane.

2. In the <<Filter Expression>> area of the Static Routing section, click the icon to the right of the Transform Using field.

3. In the displayed Request Transformation Map window, click the Add (+) icon and make sure the selected Type is XSLT in the Create Transformation Map dialog box and click OK.

4. Click OK.

5. Map the ns0:queryWithView source element to the ns0:queryWithView target element, as shown in Figure 5–20.

6. In the displayed Auto Map Preferences window, retain the default values and click OK.

7. In the Synchronous Reply area, click the icon to the right of the Transform Using field.

8. In the displayed Reply Transformation Map window, click the Add (+) icon and make sure the Type is selected as XSLT in the Create Transformation Map dialog box, and then click OK.

Figure 5–19 Created Connection

Figure 5–20 GetDetail_To_GetDetail.xsl Tab
9. Map the `ns0:queryWithViewResponse` source element to the `ns0:queryWithViewResponse` target element, as shown in Figure 5–21.

**Figure 5–21   Source and Target Elements**

10. In the displayed Auto Map Preferences window, retain the default values and click OK.

11. Double-click `composite.xml` in the left pane.

12. Click the **Save All** icon in the menu bar to save the new outbound Mediator component that was configured, as shown in Figure 5–22.

**Figure 5–22   Save All Icon**

You are now ready to deploy the Mediator IBSE outbound process. You can follow the same procedure found in Section 5.2.3, "Deploying the Mediator Outbound Process" on page 5-10.

Once deployed, you can invoke the input XML, as defined in Section 5.2.4, "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 5-11.
Integration With BPM Service Components in the Oracle SOA Suite

Oracle Application Adapter for Siebel integrates seamlessly with Oracle Business Process Management (BPM) to facilitate Web service integration. Oracle BPM is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following sections:

- Section 6.1, "Overview"
- Section 6.2, "Deployment of Adapter"
- Section 6.3, "Configuring a New Application Server Connection"
- Section 6.4, "Designing an Outbound BPM Process Using Transformations for Service Integration (J2CA Configuration)"
- Section 6.5, "Designing an Inbound BPM Process Using Transformations for Event Integration (J2CA Configuration)"
- Section 6.6, "Designing an Outbound BPM Process Using Transformations for Service Integration (BSE Configuration)"

6.1 Overview

To integrate with Oracle BPM, Oracle Application Adapter for Siebel must be deployed in the same WLS container as Oracle BPM. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-27.

The generated WSDL files are used to design the appropriate BPM processes for inbound or outbound adapter services. A completed BPM process must be successfully compiled in JDeveloper and deployed to a BPM server. Upon deployment to the BPM server, every newly built process is automatically deployed to the Oracle Enterprise Manager console, where you run, monitor, and administer BPM processes, and listen to adapter events.

6.2 Deployment of Adapter

During installation, Oracle Application Adapter for Siebel is deployed as a J2CA 1.0 resource adapter within the WLS container. The adapter must be deployed in the same WLS container as Oracle BPM.
6.3 Configuring a New Application Server Connection

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 4.3, "Configuring a New Application Server Connection" on page 4-2.

6.4 Designing an Outbound BPM Process Using Transformations for Service Integration (J2CA Configuration)

This section describes how to design an outbound BPM process using transformations for service integration.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPM\J2CA\Siebel_Sample_J2CA_BPM_Outbound_Project

The following tools are required to complete your outbound design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- Section 6.4.1, "Creating an Empty Composite for BPM"
- Section 6.4.2, "Defining a BPM Outbound Process"
- Section 6.4.3, "Adjusting for Known Deployment Issues With 12c"
- Section 6.4.4, "Deploying the BPM Outbound Process"
- Section 6.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console"

Before you design a BPM process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.4.1, "Generating WSDL for Request/Response Service" on page 4-8.

6.4.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for BPM:

1. Create a new BPM application.
2. Enter a name for the new BPM application and click Next.
   The Name your project page is displayed.
3. Enter a project name, in the project features select BPM, and then click Next.
   The Configure SOA settings page is displayed.
4. From the Composite Template list, select Empty Composite and click Finish.
6.4.2 Defining a BPM Outbound Process

This section describes how to define a BPM outbound process, which contains the following topics:

- Section 6.4.2.1, "Configuring a Third Party Adapter Service Component"
- Section 6.4.2.2, "Configuring an Outbound BPM Process Component"
- Section 6.4.2.3, "Creating a File Adapter for the Write Operation"

6.4.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Double-click the created project to load the components.
2. Drag and drop the Third Party Adapter component from the Custom/Thirdparty pane to the External References pane.
   The Create Third Party Adapter Service dialog is displayed.
3. Enter a name for the third party adapter service.
4. Ensure that Reference is selected from the Type list (default).
5. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
   The WSDL Chooser dialog is displayed.
6. Browse and select an outbound WSDL file from the following directory:
   `<ADAPTER_HOME>/wsdl`
7. Click OK.
   The Localize Files dialog is displayed.
8. Click OK.
   The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.
   You are returned to the Create Third Party Adapter Service dialog.
9. Click the Find JCA file icon, which is located to the right of the JCA File field.
   The Transformation Map dialog is displayed.
10. Browse and select the JCA properties file from the following directory:
    `<ADAPTER_HOME>/wsdl`
11. Click OK.
    The Copy File message is displayed.
12. Click Yes.
    A copy of the JCA properties file is made in the project folder.
    You are returned to the Create Third Party Adapter Service dialog.
13. Click OK.
    The third party adapter service component is created and displayed in the External References pane.
    You are now ready to configure an outbound BPM process component.
For more detailed information, including screen shots, see Section 4.4.3.1, "Configuring a Third Party Adapter Service Component" on page 4-11.

6.4.2.2 Configuring an Outbound BPM Process Component

This section describes how to configure an outbound BPM process component. Perform the following steps to configure an outbound BPM process component:

1. Drag and drop the BPMN Process component from the Components pane to the Components pane.
   
   The Create BPMN Process dialog is displayed, as shown in Figure 6–1.

   **Figure 6–1  Create BPMN Process Dialog**

   ![Create BPMN Process Dialog](image)

2. Accept the default option that is selected under the Type area (Asynchronous Service) and click Finish.
   
   The BPMN process is displayed, as shown in Figure 6–2.
3. Click the *Activity* drop-down menu and select *Service*, as shown in Figure 6–3.

**Figure 6–3  Activity Drop-down Menu**

4. Drop the Service icon on the wire between the Start and End event components, as shown in Figure 6–4.
5. Click the **Implementation** tab.

6. Select **Service Call** from the Message Exchange Type list, as shown in Figure 6–5.

7. Click the Browse icon to the right of the Service field, as shown in Figure 6–6.

The Service dialog is displayed, as shown in Figure 6–7.
8. Select the Third Party Service that has been created and click **OK**.

   You are returned to the Properties - ServiceTask dialog, as shown in Figure 6–8.

9. Click the **Data Associations** hyperlink.

   The Data Associations dialog is displayed.
10. Right-click the **Data Objects** node in the left pane under Process, and select **New** as shown in Figure 6–9.

**Figure 6–9   New Option**

The Create Data Object dialog is displayed, as shown in Figure 6–10.

**Figure 6–10   Create Data Object Dialog**

11. Enter a name in the Name field (for example, Request), click the drop-down button in the Type field, and select **Browse** from the list, as shown in Figure 6–11.

**Figure 6–11   Create Data Object Dialog**

The Browse Types dialog is displayed, as shown in Figure 6–12.
12. Select the first component (for example, Siebel) and click OK.
   You are returned to the Create Data Object dialog.

13. Click OK.
   The Data Object (for example, Request) that has been created is displayed under
   the Data Objects node in the Data Associations dialog.

14. Create another Data Object by right-clicking the Data Objects node in the right
   pane of the Output tab and selecting New, as shown in Figure 6–13.
15. Enter a name in the Name field (for example, Response), and then click the drop-down button in the Type field and select **Browse** from the list.

The Browse Types dialog is displayed, as shown in Figure 6–14.

16. Select the second component (for example, SiebelResponse) and click **OK**.

You are returned to the Create Data Object dialog.
17. Click OK.

The Data Object (for example, Response) that has been created is displayed under the Process node in the Data Associations dialog.

18. Select the **Request** Data Object under the Data Objects node in the left pane of the Input tab and drag and connect it to Siebel under the Arguments node in the right pane, as shown in **Figure 6–15**.

**Figure 6–15  Request Data Object**

![Request Data Object](image)

19. Click on the **Output** tab and select **SiebelResponse** under the Arguments node in the left pane and drag and connect it to the Response Data Object under the Data Objects node, as shown in **Figure 6–16**.
20. Click OK.

You are returned to the Properties - ServiceTask dialog.

21. Click OK.

The Service Task is created between the Start and End Event components, as shown in Figure 6–17.

22. Save the process and double-click the Start event component.

The Properties - Start dialog is displayed, as shown in Figure 6–18.
23. Click the **Implementation** tab, as shown in Figure 6–19.

**Figure 6–19  Implementation Tab**

24. Click the **Plus** icon to the right of the Arguments Definition field.

   The Create Argument dialog is displayed.

25. Enter a name in the Name field (by default, argument1), and then click the drop-down button in the Type field and select **Browse** from the list, as shown in Figure 6–20.
26. Select the first component (for example, Siebel) and click **OK**.

You are returned to the Create Argument dialog.

27. Click **OK**.

You are returned to the Properties - Start dialog.

28. In the Operation Name field, change **start** (default) to **operation** as shown in **Figure 6–22**.

**Note:** This change is necessary to work with old BPM payloads.
29. Click the Data Associations hyperlink.  
The Data Associations dialog is displayed.

30. Select arguments1 under the Arguments node in the left pane and drag and connect it to the Request Data Object under Data Objects in the right pane.

31. Click OK as shown in Figure 6–23.
You are returned to the Properties - Start dialog.

32. Click OK.

You are returned to the Process workspace area, as shown in Figure 6–24.

33. Double-click the created project to load the components.

34. Click the Save All icon in the menu bar to save the new outbound BPM process component that was configured.

You are now ready to create a File adapter for the write operation.

6.4.2.3 Creating a File Adapter for the Write Operation

This section describes how to create a File adapter for the write operation.
Perform the following steps to create a File adapter for the write operation:

1. Drag and drop the **File Adapter** component from the Technology Adapters pane to the External References pane, as shown in **Figure 6–25**.

![Figure 6–25 File Adapter Component](image)

The Adapter Configuration Wizard is displayed.

2. Provide a Reference Name (for example, FileWrite).

3. Click **Next**.

The Adapter Interface page is displayed.

4. Ensure that the **Define from operation and schema (specified later)** option is selected.

5. Click **Next**.

The File Server Connection page is displayed.

6. Click **Next**.

The Operation page is displayed.

7. Select **Write File** from the list of Operation Type options and specify an Operation Name (for example, Write).

8. Click **Next**.

The File Configuration page is displayed.

9. Specify a location on your file system where the output file is written.

10. In the File Naming Convention field, specify a name for the output file.

11. Click **Next**.

The Messages page is displayed.

12. Click **Browse**, which is located to the right of the URL field.

The Type Chooser dialog is displayed, as shown in **Figure 6–26**.
13. Expand **Project Schema Files** and **J2CA_Outbound_invoke_response.xsd**.

14. Select the available schema (for example, SiebelResponse).

15. Click **OK**.
   
   You are returned to the Messages page.

16. Click **Next**.
   
   The Finish page is displayed.

17. Click **Finish**.
   
   The File Adapter service is created in the External References pane, as shown in Figure 6–27.
18. Double-click the BPMN Process component.

The BPMN process is displayed, as shown in Figure 6–28.

Figure 6–28 BPMN Process

19. Click the Activity icon, and select Service.

20. Drop the Service icon on the wire between the Service Task and End event components, as shown in Figure 6–29.
The Properties - ServiceTask1 dialog is displayed.

21. Click the **Implementation** tab.

22. Select **Service Call** from the Type drop-down list in the Message Exchange section, as shown in **Figure 6–30**.

23. Click the **Browse** icon to the right of the Service field.
   The Service dialog is displayed, as shown in **Figure 6–31**.
Select the service for write operation that has been created (for example, FileWrite) and click OK.

You are returned to the Properties - ServiceTask1 dialog, as shown in Figure 6–32.
25. Click the **Data Associations** hyperlink.

   The Data Associations dialog is displayed, as shown in Figure 6–33.

![Figure 6–32 Properties - ServiceTask1 Dialog](image)

![Figure 6–33 Data Associations Dialog](image)
26. In the Input tab, click the XSL Transformation icon in the top right pane.

27. Drag and drop the XSL Transformation icon to the SiebelResponse node, as shown in Figure 6–34.

**Figure 6–34 CompanyCodeSiebelResponse Node**

The Create Transformation dialog is displayed.

28. Select **Response** in the Sources section and click the right arrow symbol.

The Response object is added to the Selected elements area as shown in Figure 6–35.
29. Accept the default value selected in the Target drop-down list and the default name in the Create field by clicking OK.

You are returned to the Data Associations dialog window with the XSL transformation created, as shown in Figure 6–36.

30. Click OK.

You are returned to the Properties - ServiceTask1 dialog.
31. Click OK.
   The Response_body.xsl tab is displayed.

32. Automap the Source and Target elements.
   The Auto Map Preferences dialog is displayed.

33. Accept the default values and click OK.
   The transformation is completed, as shown in Figure 6–37.

Figure 6–37  Completed Transformation

34. Save the transformation.

35. Return to the Process workspace area.
   The ServiceTask1 component is created between the ServiceTask component and
   the End event component.

36. Click the Save All icon in the menu bar to save the new outbound BPM process
   component that was configured.
   You are now ready to deploy the outbound BPM process.

6.4.3 Adjusting for Known Deployment Issues With 12c
   For more information on how to adjust for known deployment issues with 12c, see
   Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 4-26.

6.4.4 Deploying the BPM Outbound Process
   Perform the following steps to deploy the Mediator outbound process.
   1. Right-click the project name in the left pane, select Deploy, and then click J2CA_
      Outbound.
      The Deployment Action page is displayed.
   2. Ensure that Deploy to Application Server is selected.
   3. Click Next.
      The Deploy Configuration page is displayed.
   4. Leave the default values selected and click Next.
      The Select Server page is displayed.
   5. Select an available application server that was configured and click Next.
      The SOA Servers page is displayed.
   6. Select a target SOA server and click Next.
      The Summary page is displayed.
7. Review and verify all the available deployment information for your project and click Finish.

For more information, see Section 4.4.4, "Deploying the BPEL Outbound Process" on page 4-28.

### 6.4.5 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console.

1. Logon to the Oracle Enterprise Manager console.
2. Expand your domain in the left pane followed by the SOA folder.
3. Select an available project (for example, J2CA_Outbound).
4. Click Test.
5. Click the Request tab.

**Figure 6–38 Request Tab**

6. Provide an appropriate input value in the Value field and click Test Web Service, as shown in Figure 6–38.

A response is received in the Response tab to indicate that invocation was successful in the Oracle Enterprise Manager console, as shown in Figure 6–39.
Figure 6–39  Received Response

<table>
<thead>
<tr>
<th>Request</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Status</td>
<td>Request successfully received.</td>
</tr>
<tr>
<td>Response Time (ms)</td>
<td>5657</td>
</tr>
</tbody>
</table>

A new flow instance was generated.  
Launch Flow Trace

The web service invocation was successful.

7. Navigate to the defined output directory on your file system and open the XML response document that was received.

The XML response document contains the generated output with values.

6.5 Designing an Inbound BPM Process Using Transformations for Event Integration (J2CA Configuration)

This section demonstrates how Oracle Application Adapter for Siebel integrates with Siebel to receive event data.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>
\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPM\J2CA\Inbound_Project

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- Section 6.5.1, "Creating an Empty Composite for BPM"
- Section 6.5.2, "Defining a BPM Inbound Process"

Before you design a BPM process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.5.1, "Generating WSDL for Event Integration" on page 4-34.

6.5.1 Creating an Empty Composite for BPM

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 4.3, "Configuring a New Application Server Connection" on page 4-2.
6.5.2 Defining a BPM Inbound Process

This section describes how to define a BPM inbound process, which contains the following topics:

- Section 6.5.2.1, "Configuring a Third Party Adapter Service Component"
- Section 6.5.2.2, "Configuring an Inbound BPM Process Component"
- Section 6.5.2.3, "Creating a File Adapter for the Write Operation"
- Section 6.5.2.4, "Adjusting for Known Deployment Issues With 12c"

6.5.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Double-click the created project to load the components.
2. Drag and drop the Third Party Adapter component from the Custom/Thirdparty pane to the Exposed References pane, as shown in Figure 6-40.

The Create Third Party Adapter Service dialog is displayed.

3. Enter a name for the third party adapter service.
4. Ensure that Service is selected from the Type list (default).
5. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The WSDL Chooser dialog is displayed.

6. Select File System, and then browse and select an inbound WSDL file from the following directory:

<ADAPTER_HOME>\wsdl

7. Click OK.
The Localize Files dialog is displayed.

8. Click OK.

The inbound WSDL file and associated receive_request XML schema file (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog.

9. Click the Find JCA file icon, which is located to the right of the JCA File field.

The Transformation Chooser dialog is displayed.

10. Select File System, and then browse and select the JCA properties file from the following directory:

    `<ADAPTER_HOME>/wsdl`

11. Click OK.

The Copy File message is displayed.

12. Click Yes.

A copy of the JCA properties file is made in the project folder.

You are returned to the Create Third Party Adapter Service dialog.

13. Click OK.

The third party adapter service component (matmas) is created in the Exposed References pane.

You are now ready to configure an inbound BPM process component.

For more information, see Section 4.5.3.1, "Creating a Third Party Adapter Service Component" on page 4-41.

6.5.2.2 Configuring an Inbound BPM Process Component

This section describes how to configure an inbound BPM process component.

Perform the following steps to configure an inbound BPM process component:

1. Drag and drop the BPMN Process component from the Components pane to the Components pane.

The Create BPMN Process dialog is displayed, as shown in Figure 6–41.
2. Select **Manual Process** in the Type section.

3. Click **Finish**.

   The BPMN process is displayed, as shown in Figure 6–42.

**Figure 6–42  BPMN Process**

4. Right-click **UserTask** and select **Delete** from the menu.

5. Double-click the **Start** event component.

   The Properties - Start event dialog is displayed.

6. Click the **Implementation** tab.
7. Select **Message** from the Implementation Type list.
8. Select **Use Interface** from the Message Exchange Type drop-down list.
9. Click the **Browse** icon to the right of the Reference field, as shown in Figure 6–43.

**Figure 6–43  Browse Icon**

The Service dialog is displayed, as shown in Figure 6–44.
10. Select the Third Party Service that has been created and click **OK**.

You are returned to the Properties - Start dialog, as shown in Figure 6–45.
11. Click the Data Associations icon.

The Data Associations dialog is displayed, as shown in Figure 6–46.
12. Right-click the **Data Object** node in the right pane and select **New**.
   The Create Data Object dialog is displayed.

13. Enter a name in the Name field, and then click the drop-down button in the Type field and select **Browse** from the list, as shown in Figure 6–47.

![Figure 6–47  Create Data Object Dialog](image)

The Browse Types dialog is displayed, as shown in Figure 6–48.

![Figure 6–48  Browse Types Dialog](image)

14. Select the component and click **OK**.
   You are returned to the Create Data Object dialog.

15. Click **OK**.
   The Data Object that has been created is displayed under the Data Objects node in the Data Associations dialog, as shown in Figure 6–49.
16. Select and drag the `siebelMessage` Argument under the Start node in the left pane and drag it to the Data Object in the right pane.

17. Click OK.

You are returned to the Properties - Start dialog.

18. Click OK.

You are returned to the Process workspace area.

19. Double-click the created project to load the components.

20. Click the Save All icon in the menu bar to save the new inbound BPM process component that was configured.

You are now ready to create a File adapter for the write operation.

### 6.5.2.3 Creating a File Adapter for the Write Operation

This section describes how to create a File adapter for the write operation.

Perform the following steps to create a File adapter for the write operation:

1. Drag and drop the `File Adapter` component from the Technology Adapters pane to the External References pane.

   The Adapter Configuration Wizard is displayed.

2. Type a name for the new File adapter in the Name field and click Next.

   The Adapter Interface page is displayed.

3. Ensure that the **Define from operation and schema (specified later)** option is selected.

4. Click Next.

   The File Server Connection page is displayed.
5. Click Next.

The Operation page is displayed, as shown in Figure 6–50.

Figure 6–50 Operation Page

6. Select Write File from the list of Operation Type options and specify an Operation Name (for example, Write).

7. Click Next.

The File Configuration page is displayed.

8. Specify a location on your file system where the output file is written.

9. In the File Naming Convention field, specify a name for the output file.

10. Click Next.

The Messages page is displayed.

11. Click Browse, which is located to the right of the URL field.

The Type Chooser dialog is displayed, as shown in Figure 6–51.
12. Expand **Project Schema Files** and **J2CA_Inbound_receive_request.xsd**.
13. Select the available schema.
14. Click **OK**.
   You are returned to the Messages page.
15. Click **Next**.
   The Finish page is displayed.
16. Click **Finish**.
   The File Adapter service is created in the External References pane.
17. Double-click the BPMN Process component.
   The BPMN process is displayed.
18. Click the **Activity** icon, and select **Service**.
19. Drop the Service icon on the wire between the Start and End event components, as shown in **Figure 6–52**.
The Properties - ServiceTask dialog is displayed.

20. Click the **Implementation** tab.

21. Select **Service Task** from the Implementation Type list.

22. Select **Service Call** from the Message Exchange Type list.

23. Click the **Browse** icon to the right of the Service field.

   The Type dialog is displayed, as shown in Figure 6–53.

---

**Figure 6–52  Activity Icon**

![Activity Icon](image1)

**Figure 6–53  Type Dialog**

![Type Dialog](image2)
24. Select the service for write operation that has been created and click OK.

You are returned to the Properties - ServiceTask dialog, as shown in Figure 6–54.

**Figure 6–54  Properties - ServiceTask Dialog**

25. Click the **Data Associations** hyperlink.

The Data Associations dialog is displayed.

26. Right-click the **siebelMessage** argument on the right pane and select **XSL Transformation**, as shown in Figure 6–55.
The Create Transformation dialog is displayed.

27. Select the created data object in the Sources area and click the right arrow icon so that the created data object is added to the Selected elements area.

28. Click OK.

You are returned to the Data Associations dialog, as shown in Figure 6–56.

29. Click OK.
You are returned to the Properties - ServiceTask dialog.

30. Click OK.
    The dataobject1_body.xsl tab is displayed.

31. Automap the Source and Target elements.
    The Auto Map Preferences dialog is displayed.

32. Accept the default values and click OK.
    The transformation is completed, as shown in Figure 6–57.

Figure 6–57 Completed Transformation

33. Save the transformation.

34. Return to the Process workspace area, as shown in Figure 6–58.

Figure 6–58 Process Workspace Area

The ServiceTask component is created between the Start event component and the End event component.

35. Click the Save All icon in the menu bar to save the new inbound BPM process component that was configured.

6.5.2.4 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 4-26.
You are now ready to deploy the inbound BPM process. You can follow the same procedure that is described in Section 4.5.4, "Deploying the BPEL Inbound Process" on page 4-47. For more information on how to trigger events in Siebel, see Section 4.5.5.3, "Triggering an Event in Siebel 8.0 to Test Event Runtime Integration," on page 4-63.

6.6 Designing an Outbound BPM Process Using Transformations for Service Integration (BSE Configuration)

This section describes how to configure a BPM outbound process to your Siebel system, using a BPM project in Oracle JDeveloper.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\BPM\BSE\Outbound_Project

The following tools are required to complete your outbound design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper)

This section contains the following topics:

- Section 6.6.1, "Creating an Empty Composite for BPM"
- Section 6.6.2, "Defining a BPM Outbound Process"

Prerequisites

Before you design a BPM outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.6.1, "Generating a WSDL File for Request and Response Services Using a Web Service," on page 4-74.

6.6.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for SOA:

1. Create a new BPM application.
2. Enter a name for the BPM Application, and click Next.
3. Enter a name in the Project Name field, and click Next.
4. From the Composite Template list, select Empty Composite and click Finish.

For more information, see Section 4.5.2, "Creating an Empty Composite for SOA" on page 4-40.

6.6.2 Defining a BPM Outbound Process

This section describes how to define a BPM outbound process. It contains the following topics:

- Section 6.6.2.1, "Configuring a Web Service Component"
- Section 6.6.2.2, "Configuring a BPM Process Component"
- Section 6.6.2.3, "Creating a File Adapter for the Write Operation"
6.6.2.1 Configuring a Web Service Component

Perform the following steps to configure a Web Service component:

1. Double-click the created project to load the components.

2. Drag and drop the Web Service node from the Technology Adapters pane to the External References pane, as shown in Figure 6–59.

![Figure 6–59 Web Service Node](image)

3. Enter an appropriate name for the Web Service and click on the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

4. In the displayed WSDL Chooser window, navigate to the location where the WSDL is exported from the Application Explorer, and select the WSDL.

5. Click OK.

6. In the Web Service pane, click OK, as shown in Figure 6–60.
In the displayed Localize Files window, click **OK**.

This will import the WSDL file to the project folder.

### 6.6.2.2 Configuring a BPM Process Component

This section describes how to configure an outbound BPM process component. Perform the following steps to configure a BPM Component:

1. Drag and drop the **BPMN Process** component from the Components pane in to the Components pane.

2. Accept the default option that is selected under the Type area (Asynchronous Service) and click **Finish**, as shown in Figure 6–61.
3. Double click on the Start Event component, as shown in Figure 6–62.

**Figure 6–62  Start Event Component**

4. In the displayed Properties-start window, click the **Implementation** tab.

5. Click the Plus (+) icon to the right of the Arguments Definition field. The Edit Argument window is displayed.

6. Enter a name in the Name field, and then click the Type drop-down list and select **Browse**.

7. Select the **Request** component (for example, queryWithView), and click **OK**, as shown in Figure 6–63.
8. In the Edit Argument window that is displayed, click **OK**. The Properties - Start window is displayed.

9. In the Operation Name field, change the default entry from **start** to **operation**.

10. Click the **Data Associations** hyperlink, as shown in **Figure 6–64**.
11. Right-click the Data Objects node in the right pane, under Process, and select New, as shown in Figure 6–65.

The Create Data Object window is displayed.

12. Enter a name in the Name field, click the Type drop-down list, and select Browse.
13. Select the **Request** component (for example, queryWithView) and click **OK**, as shown in Figure 6–66.

*Figure 6–66  Request Component*

14. In the Create Data Object window, click **OK**.

The Data Associations window is displayed.

15. Select **argument1** under the Arguments node in the left pane and drag and connect it to **dataObject1**, under Data Objects, in the right pane.

16. Click **OK**, as shown in Figure 6–67.
17. In the Properties - Start window that is displayed, click OK.
   You are returned to the Process workspace area.

18. Click the Activity drop-down menu and select Service.

19. Drop the Service icon on the wire between the Start and End event components.

20. In the displayed Properties - ServiceTask window, click the Implementation tab.

21. Select Service Call from the Message Exchange Type list.

22. Click the Browse icon to the right of the Service field, as shown in Figure 6–68.
The Service window is displayed.

**23.** Select the Web Service that has been created and click OK, as shown in Figure 6–69.
24. In the Properties - ServiceTask window that is displayed, click the Data Associations hyperlink.

The Data Associations window is displayed.

25. Create response Data Object by right-clicking the Data Objects node in the right pane of the Output tab and selecting New, as shown in Figure 6–70.

Figure 6–70 Data Objects Node

The Create Data Object window is displayed.

26. Enter a name in the Name field, click the Type drop-down list, and select Browse.

27. Select the Response component (for example, QueryWithViewResponse) and click OK, as shown in Figure 6–71.
28. In the Create Data Object window, click OK.
   The Data Associations window is displayed.

29. Select dataObject1, under the Data Objects node in the left pane of the Input tab, and drag and connect it to the queryWithView node, under the Arguments node in the right pane, as shown in Figure 6–72.

Figure 6–71  Response Component (QueryWithViewResponse)

Figure 6–72  Data Associations
30. Click on the Output tab and select `queryWithViewResponse` under the Arguments node in the left pane and drag and connect it to `dataObject2` under the Data Objects node.

31. Click OK, as shown in Figure 6–73.

*Figure 6–73  Output Tab*

32. In the Properties - ServiceTask window that is displayed, click OK.

33. Click the Save All icon in the menu bar to save the new outbound BPM process component that was configured.

34. Double-click the composite.xml node in the left pane.

6.6.2.3 Creating a File Adapter for the Write Operation

This section describes how to create a File adapter for the write operation. Perform the following steps to create a File adapter for the write operation:

1. Drag and drop the File Adapter component from the Technology Adapters pane to the External References pane, and provide a name for the File Adapter.

2. In the Adapter Interface pane that is displayed, ensure that the Define from operation and schema (specified later) option is selected, and click Next.

3. Click Next.

4. In the Operation pane that is displayed, select Write File from the list of Operation Type options, and click Next, as shown in Figure 6–74.
The File Configuration pane is displayed.

5. In the Directory for Outgoing Files (physical path) field, specify a location on your file system where the output file is written.

6. In the File Naming Convention field, specify a name for the output file.

7. Click Next, as shown in Figure 6–75.
The Messages pane is displayed.

8. Click the **Browse**, which is located to the right of the URL field.

9. In the displayed Type Chooser window, expand **Project WSDL Files**, **IBSE_Outbound.wsdl**, **Inline Schemas** and then select **SiebelResponse**.

10. Click **OK**.

11. In the Messages pane, click **Next**.

12. In the Finish pane that is displayed, click **Finish**.

13. Double-click the **BPMN Process** component, as shown in **Figure 6–76**.

**Figure 6–76  Composite.xml Tab**

14. Click the **Activity** icon.

15. Drop the **Activity** icon on the wire between the **Service Task** and **End** event components, as shown in **Figure 6–77**.
16. In the displayed Properties-ServiceTask1 window, click the **Implementation** tab.

17. Select **Service Call** from the Type drop-down list in the Message Exchange section.

18. Click the **Browse** icon to the right of the Service field.

19. Select the service for write operation that has been created and click **OK**, as shown in *Figure 6–78*.

---

**Figure 6–78** Service Window

20. In the Properties - ServiceTask1 window, click the **Data Associations** hyperlink, as shown in *Figure 6–79*.
21. In the Input tab, click the XSL Transformation icon in the top right pane.
22. Drag and drop the XSL Transformation icon to the `queryWithViewResponse` node, as shown in Figure 6–80.

Figure 6–80  QueryWithView Node
23. In the displayed Create Transformation window, select `dataObject2` in the Sources section and click the right arrow symbol.

24. Accept the default value selected in the Target drop-down list and the default name in the Create field by clicking OK.

25. In the Data Associations window, click OK, as shown in Figure 6–81.

**Figure 6–81  Data Associations Window**

26. In the Properties - ServiceTask1 window, click OK.

27. In the response_body.xsl tab, map the `ns0:queryWithViewResponse` source element to the `ns0:queryWithViewResponse` target element.

28. In the displayed Auto Map Preferences window, retain the default values and click OK.

29. Return to the Process workspace area and double-click the End event component.

30. In the displayed Properties - End window, click the Implementation tab.

31. Select None from the Implementation Type drop-down list.

32. Click OK, as shown in Figure 6–82.
33. Click the **Save All** icon in the menu bar to save the new outbound BPM component that was configured, as shown in Figure 6–83.

You are now ready to deploy the BPM BSE Outbound process. You can follow the same procedure as Section 6.4.4, "Deploying the BPM Outbound Process" on page 6-25.

Once deployed, you can invoke the input XML as defined in Section 6.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 6-26.
Chapter 7

Configuring an Outbound and Inbound Process for Oracle Service Bus Using sbconsole

Oracle Application Adapter for Siebel integrates seamlessly with Oracle Service Bus (OSB) to facilitate Web service integration. OSB is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following sections:

- Section 7.1, "Overview of Application Adapter Integration with Oracle Service Bus"
- Section 7.2, "Configuring an Outbound Process Using sbconsole (J2CA Configuration)"
- Section 7.3, "Configuring an Inbound Process Using sbconsole (J2CA Configuration)"
- Section 7.4, "Configuring an Outbound Process Using sbconsole (BSE Configuration)"
- Section 7.5, "Configuring JMS Proxy Services Using Oracle Service Bus (J2CA Configuration)"
- Section 7.6, "Configuring HTTP Proxy Services Using Oracle Service Bus (J2CA Configuration)"

7.1 Overview of Application Adapter Integration with Oracle Service Bus

To integrate with Oracle Service Bus (OSB), Oracle Application Adapter for Siebel must be deployed in the same Oracle WebLogic Server as OSB. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter.

7.2 Configuring an Outbound Process Using sbconsole (J2CA Configuration)

This section describes how to configure an outbound process using sbconsole for J2CA configurations.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:
This section includes the following topics:

- Section 7.2.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 7.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 7.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 7.2.4, "Configuring a WSDL-based Business Service"
- Section 7.2.5, "Configuring a File Type Business Service"
- Section 7.2.6, "Configuring a Pipeline With Proxy Service"

7.2.1 Starting Oracle Service Bus and Creating Project Folders

This section describes how to start Oracle Service Bus (OSB) and create project folders. Perform the following steps to start Oracle Service Bus and create project folders:

1. Start the Oracle WebLogic Server for the Oracle WebLogic Server domain that you have configured.

2. Open the Oracle Service Bus Console in a Web browser by entering the following URL:

   http://hostname:port/sbconsole

   Where hostname is the name of the machine where Oracle WebLogic Server is running and port is the port for the domain you are using.

   The Oracle Service Bus Console logon page is displayed.

3. Log on to the Oracle Service Bus Console using a valid user name and password.

   The Oracle Service Bus Console home page is displayed, as shown in Figure 7–1.

   Figure 7–1 Oracle Service Bus Console Home Page

4. Click Create in the right pane of the Oracle Service Bus session, as shown in Figure 7–2.
5. Select All Projects, click the down arrow in the left pane, and select Project, as shown in Figure 7–3.

6. Provide a valid name for the new project (for example, J2CA_Outbound) in the Resource Name field, and click Create.

The new project is successfully created and listed.

7. Right-click the newly created project, select Create, and click Folder, as shown in Figure 7–5.
The Create a new Folder window is displayed.

8. In the Resource Name field, type Business Service and click Create.

9. Repeat steps 7 and 8 to create folders with the names Proxy Service and Wsdl.

The Business Service, Proxy Service, and Wsdl folders are listed in the left pane below the project node, as shown in Figure 7–6.
10. Click **Activate** in the right pane of the Oracle Service Bus session, as shown in Figure 7–7.

![Figure 7–6  Project Node](image)

**Figure 7–7  Activate Button**

11. In the Confirm Session Activation page, click **Activate** to save the changes, as shown in Figure 7–8.

![Figure 7–8  Confirm Session Activation Window](image)
7.2.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

Before starting and using Application Explorer to publish a WSDL directly to the Oracle Service Bus (OSB) Console (project/folder), OSB users must perform the following steps:

1. Open the command prompt window.
2. Navigate to the following directory:
   `<ORACLE_HOME>\user_projects\domains\base_domain\bin`  
3. Execute `setDomainEnv.cmd` (Windows) or `. ./setDomainEnv.sh` (UNIX/Linux).  
   This command sets the class path for Application Explorer to access the Oracle WebLogic Server APIs to publish the WSDLs to the OSB Console.
4. Do not close the command prompt window.
5. Navigate to the following directory:
   `<ADAPTER_HOME>\tools\iwae\bin`  
6. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer.  
   You are now ready to publish WSDLs from Application Explorer to the OSB Console.

7.2.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

Perform the following steps to publish a WSDL from Application Explorer to Oracle Service Bus:

1. Start Application Explorer, connect to a J2CA configuration, and connect to a Siebel target.  
   For more information, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel" on page 2-1.
2. Expand the Siebel target to which you are connected.
3. Expand Business Object, Account, and then Account.
4. Right-click the `queryWithView` method and then select Create Outbound JCA Service (Request/Response) from the menu.  
   The Export WSDL dialog is displayed, as shown in Figure 7–9.
5. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

6. Select the Export to OSB option.

7. In the Location field, enter the folder name in Oracle Service Bus where you want to publish the WSDL document.
   
   The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

8. In the Host field, enter the name of the machine where Oracle Service Bus is installed.

9. In the Port field, enter the port that is being used by Oracle Service Bus.

10. In the User field, enter your username to access Oracle Service Bus.

11. In the Password field, enter your password to access Oracle Service Bus.

12. Click OK.
   
   The WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Business Service or Proxy Service in Oracle Service Bus.

7.2.4 Configuring a WSDL-based Business Service

Perform the following steps to configure a WSDL-based Proxy Service:

1. Open the Oracle Service Bus Console and click Create in the right pane of the Oracle Service Bus session, as shown in Figure 7–10.
2. Double-click the created WSDL folder in the left pane (for example, Wsdls) and ensure that the exported WSDL is listed in the right pane, as shown in Figure 7–11.

3. Click the icon that corresponds to the JCA Binding in the Actions column. The Generate WSDL and Service window is displayed, as shown in Figure 7–12.
4. Provide a new WSDL name and a new Business Service name in the corresponding fields.

5. In the Destination area, select an available project and the sub-folder that is designated for Business Services.

6. Click Generate.

7. Expand **Business Service** under the project folder and check if the generated WSDL and Business Service are listed, as shown in Figure 7–13.

![Business Service Folder](image)

**Figure 7–13**  Business Service Folder

### 7.2.5 Configuring a File Type Business Service

Perform the following steps to configure a File type Business Service:

1. Right-click the **Business Service** folder you created in the left pane, select **Create**, and click **Business Service** as shown in Figure 7–14.
The Create Business Service window is displayed.

2. In the Resource Name field, provide a name for the Business Service, select the File option in the Transport section under Service Definition, and click Next, as shown in Figure 7–15.
3. In the Service Type section, select **Messaging Service**. By default, the Request Type is set to XML, and the Response Type is set to None. Then click **Next**, as shown in Figure 7–16.

4. Enter the path to a destination folder on your file system in the Endpoint URI field.
5. Click **Create**, as shown in Figure 7–17.

![Figure 7–17 Transport Page](image)

The Business Service **File_Out** is created and listed under Business Service, as shown in Figure 7–18.

![Figure 7–18 File_Out Business Service](image)

6. Double-click **File_Out**, click **Transport Detail** in the left pane, and enter the prefix and suffix for the output file to be received, as shown in Figure 7–19.
7. Click the **Save** or **Save All** icon in the right corner, as shown in Figure 7–20.

7.2.6 Configuring a Pipeline With Proxy Service

Perform the following steps to configure a Pipeline:

1. Right-click the Proxy Service folder, select **Create** and click **Pipeline**, as shown in Figure 7–21.
2. Enter a name in the Pipeline Name field. By default, **Expose as a Proxy Service** is selected. If you wish to change the Proxy Service Name, change it and set Transport as **file**, and click **Create** as shown in Figure 7–22.

**Figure 7–22 Create Pipeline Window**
The created Pipeline and the Proxy Service is listed under Proxy Service, as shown in Figure 7–23.

Figure 7–23 Pipeline Node

3. Double-click the created proxy service and click Transport in the left pane. Provide the input location in the Endpoint URI field, as shown in Figure 7–24.

Figure 7–24 Transport

4. Click Transport Details in the left pane and provide the location for the Stage Directory and the Error Directory fields, as shown in Figure 7–25.
5. Click the **Save All** icon in the right corner, as shown in **Figure 7–26**.

6. Double-click the **Pipeline** node and click the **Open Message Flow** icon on the right pane to open the message flow, as shown in **Figure 7–27**.

7. Click the **Proxy Service** icon and select **Add Pipeline Pair** from the menu, as shown in **Figure 7–28**.
8. Click the PipelinePairNode1 icon and select **Add Route** from the menu, as shown in Figure 7–29.

**Figure 7–29 Add Route Option**

The RouteNode1 icon is added below the PipelinePairNode1 icon.

9. Click the RouteNode1 icon and select **Edit Route** from the menu, as shown in Figure 7–30.
Figure 7–30  Edit Route Option

The Edit Stage Configuration workspace area is displayed.

10. Click **Add an Action**, select **Communication** and click **Routing**, as shown in Figure 7–31.

Figure 7–31  Edit Stage Configuration Workspace Area

11. Click `<Service>`, as shown in Figure 7–32.

Figure 7–32  Actions
The Select Service dialog is displayed.

12. Select the WSDL type Business Service configured for Siebel and click on **Submit**, as shown in **Figure 7–33**.

![Figure 7–33 Select Service Dialog](image)

13. Select the name of the Siebel business object (for example, queryWithView) as the operational attribute from the list, and click **Save**.

14. Click the Response Pipeline icon and select **Add Stage** from the menu, as shown in **Figure 7–34**.

![Figure 7–34 Response Pipeline Icon](image)

The Stage1 icon is added below the Response Pipeline icon.

15. Click the Stage1 icon and select **Edit Stage** from the menu, as shown in **Figure 7–35**.
The Edit Stage Configuration workspace area is displayed.

16. Click **Add an Action**, select **Communication**, and then click **Publish**, as shown in Figure 7–36.

17. Click **<Service>**, as shown in Figure 7–37.
18. In the Select Service dialog, select a File type Business Service and click **Submit**, as shown in **Figure 7–38**.

**Figure 7–38 Select Service Dialog**

![](image1.png)

19. Click **Save All**, as shown in **Figure 7–39**.

**Figure 7–39 Save All Button**

![](image2.png)

20. Click **Activate** in the right pane of the Oracle Service Bus session, as shown in **Figure 7–40**.

**Figure 7–40 Activate Button**

![](image3.png)
21. Click **Activate** to save the changes, as shown in Figure 7–41.

**Figure 7–41 Confirm Session Activation**

22. Copy and paste an input XML file in the input folder you have configured (for example, C:\input). Output is received in the configured output location (for example, C:\output).

### 7.3 Configuring an Inbound Process Using sbconsole (J2CA Configuration)

This section describes how to configure an inbound process using sbconsole for J2CA configurations.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

```text
<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB\J2CA\Siebel_Sample_J2CA_OSB_Inbound_Project
```

This section includes the following topics:

- Section 7.3.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 7.3.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 7.3.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 7.3.4, "Configuring a WSDL-based Proxy Service"
- Section 7.3.5, "Configuring a File Type Business Service"
- Section 7.3.6, "Configuring a Pipeline"

#### 7.3.1 Starting Oracle Service Bus and Creating Project Folders

For more information on starting Oracle Service Bus and creating project folders, see Section 7.2.1, "Starting Oracle Service Bus and Creating Project Folders" on page 7-2.

#### 7.3.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

For more information on setting the class path for Application Explorer to integrate with Oracle Service Bus, see Section 7.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus" on page 7-6.
7.3.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

Perform the following steps to publish a WSDL from Application Explorer to Oracle Service Bus:

1. Start Application Explorer, connect to a J2CA configuration, and connect to a Siebel target.
   
   For more information, see Chapter 2, "Configuring Oracle Application Server Adapter for Siebel" on page 2-1.

2. Create a Siebel channel.
   
   For more information, see Section 4.5.1.1, "Creating a Channel" on page 4-34.

3. Create an Integration Object Node. For more information see Section 4.5.1.2, "Creating an Integration Object Node" on page 4-37.

4. Right-click the created Integration node and select Create Inbound JCA Service(Event) from the menu.

   The Export WSDL dialog is displayed, as shown in Figure 7–42.

**Figure 7–42 Export WSDL Dialog**

5. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

6. From the Channel list, select the channel you created for this inbound service.

7. Three check boxes for Root, Namespace, and Schema validation are also available. Selection of multiple validation options is allowed.

8. Select the Export to OSB option.
9. In the Location field, enter the folder name in Oracle Service Bus where you want to publish the WSDL document. The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

10. In the Host field, enter the name of the machine where Oracle Service Bus is installed.

11. In the Port field, enter the port that is being used by Oracle Service Bus.

12. In the User field, enter your username to access Oracle Service Bus.

13. In the Password field, enter your password to access Oracle Service Bus.

14. Click OK.

The inbound WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Proxy Service in Oracle Service Bus.

### 7.3.4 Configuring a WSDL-based Proxy Service

Perform the following steps to configure a WSDL-based Proxy Service:

1. Open the Oracle Service Bus Console and click Create in the right pane of the Oracle Service Bus session, as shown in Figure 7–43.

![Figure 7–43 Create Button](image)

2. Double-click the created WSDL folder in the left pane (for example, Wsdls), and ensure that the exported WSDL is listed in the right pane, as shown in Figure 7–44.

![Figure 7–44 Exported WSDL](image)

3. Click the icon that corresponds to the JCA Binding in the Actions column. The Generate WSDL and Service page is displayed, as shown in Figure 7–45.
4. Provide a new WSDL name and a new Proxy Service name in the corresponding fields.

5. In the Destination area, select an available project and the sub-folder that is designated for Proxy Services.

6. Click Generate.

7. Expand Proxy Service under Project Explorer and check if the generated WSDL and Proxy Service are listed, as shown in Figure 7–46.

### Figure 7–45  Generate WSDL and Service Page

![Generate WSDL and Service Page](image)

### Figure 7–46  Generated WSDL

![Generated WSDL](image)

#### 7.3.5 Configuring a File Type Business Service

Perform the following steps to configure a File type Business Service:
1. Right-click the Business Service folder you created in the left pane, select **Create**, and click **Business Service**, as shown in Figure 7–47.

![Business Service Folder](image)

The Create Business Service window is displayed.

2. In the Resource Name field, provide a name for the Business Service and select the **File** option from the Transport drop-down list in the Service Definition area, as shown in Figure 7–48.

![Create Business Service Window](image)

3. Click **Next**.
4. In the Service Type area, select **Messaging Service** as the service type, as shown in Figure 7–49.

**Figure 7–49 Service Type Area**

5. Click **Next**.

The Transport page is displayed, as shown in Figure 7–50.

**Figure 7–50 Transport Page**
6. Enter the path to a destination folder on your file system in the Endpoint URI field and click Create.
   The Business Service File_Out is created and listed under Business Service, as shown in Figure 7–51.

   **Figure 7–51  File_Out Business Service**

7. Double-click File_Out, click Transport Detail in the left pane, and enter the prefix and suffix for the output file to be received, as shown in Figure 7–52.

   **Figure 7–52  Transport Detail Page**

8. Click the Save or Save All icon in the right corner, as shown in Figure 7–53.
7.3.6 Configuring a Pipeline

Perform the following steps to configure a Pipeline:

1. Right-click the proxy service you created and select Create, and then click Pipeline, as shown in Figure 7–54.

Figure 7–54 Pipeline Option

The Create Pipeline window is displayed.

2. In the Pipeline Name field, enter a name and select the Service Type as WSDL Based Service, as shown in Figure 7–55.
3. Click the Search icon, and in the displayed Search and Select: WSDL Resource window, select J2CA_Inbound_receive_wsd1, and click OK, as shown in Figure 7–56.

4. Clear the check box for Expose as a Proxy Service, and click Create, as shown in Figure 7–57.
The pipeline is created and listed under Proxy Service, as shown in Figure 7–58.

5. Double-click the J2CA_Inbound_receive_PS node under Proxy Service in the left pane and click the Search icon in the Target area in right pane, as shown in Figure 7–59.
The Search and Select: Service Resource window appears.

6. From the Resource Type drop-down list, select Pipeline and then click the Search button.
   The Pipeline is listed, as shown in Figure 7-60.

Figure 7–60  Search and Select: Service Resource Window

7. Select the Pipeline and click OK.

8. Click the Save or Save All icon in the right corner, as shown in Figure 7-61.

Figure 7–61  Save and Save All Icons
9. In the left pane, double-click **Pipeline** under the Proxy Service folder and click the down-pointing icon on the right pane to open the message flow, as shown in Figure 7–62.

**Figure 7–62 Message Flow**

![Message Flow Diagram]

10. Click the displayed Proxy service icon and select **Add Route** from the menu, as shown in Figure 7–63.

**Figure 7–63 Add Route Option**

![Add Route Option]

The RouteNode1 icon is added.

11. Click the RouteNode1 icon and select **Edit Route** from the menu, as shown in Figure 7–64.
12. Click **Add an Action**, select **Communication** from the menu, and then click **Routing**, as shown in Figure 7–65.

13. Click **<Service>**, as shown in Figure 7–66.
14. Select the **File_Out** Business service and click **Submit** as shown in Figure 7–67.

![Select Service Dialog](image)

You are returned to the Edit Stage Configuration workspace area.

15. Click **Save All**, as shown in Figure 7–68.

![Edit Stage Configuration Workspace Area](image)

16. Click **Activate** in the right pane of the Oracle Service Bus session, as shown in Figure 7–69.

![Activate Button](image)

The Confirm Session Activation window appears.

17. Click **Activate** to save the changes, as shown in Figure 7–70.
18. Trigger an event from the Siebel system and check if the output is received in the configured output location.

For more information on triggering an event, see Section 4.5.5, "Triggering an Event in Siebel" on page 4-48.

7.4 Configuring an Outbound Process Using sbconsole (BSE Configuration)

This section describes how to configure an outbound process using sbconsole for BSE configurations.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB\BSE\Siebel_Sample_BSE_OSB_Outbound_Project

This section includes the following topics:

- Section 7.4.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 7.4.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 7.4.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 7.4.4, "Configuring a File Type Business Service"
- Section 7.4.5, "Configuring a WSDL-based Business Service"
- Section 7.4.6, "Configuring a Pipeline With Proxy Service"

7.4.1 Starting Oracle Service Bus and Creating Project Folders

For more information on starting Oracle Service Bus and creating project folders, see Section 7.2.1, "Starting Oracle Service Bus and Creating Project Folders" on page 7-2.

7.4.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

For more information on setting the class path for Application Explorer to integrate with Oracle Service Bus, see Section 7.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus" on page 7-6.
7.4.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

This section describes how to publish a WSDL from Application Explorer (BSE configuration) to Oracle Service Bus.

1. Start Application Explorer, connect to a BSE configuration, and connect to a Siebel target.


3. Right-click the GetDetail method and select Create Web Service from the menu, as shown in Figure 7–71.

   The Create Web Service dialog is displayed, as shown in Figure 7–72.

4. Enter a service name and click Next.

5. Click OK on the next dialog that is displayed.

   Application Explorer switches the view to the Business Services node, and the new Web service appears in the left pane.

6. Right-click the new Web service and select Export WSDL from the menu.
The Export WSDL dialog is displayed, as shown in Figure 7–73.

**Figure 7–73  Export WSDL Dialog**

<table>
<thead>
<tr>
<th>Export WSDL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
</tr>
<tr>
<td><strong>Location</strong></td>
</tr>
<tr>
<td><strong>Host</strong></td>
</tr>
<tr>
<td><strong>Port</strong></td>
</tr>
<tr>
<td><strong>User</strong></td>
</tr>
<tr>
<td><strong>Password</strong></td>
</tr>
</tbody>
</table>

7. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

8. In the Location field, enter the location where you want to publish the WSDL document.

   The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

9. In the Host field, enter the name of the machine where Oracle WebLogic Server is running.

10. In the Port field, enter the port for the domain you are using.

11. In the User field, enter your username to access Oracle Service Bus.

12. In the Password field, enter your password to access Oracle Service Bus.

13. Click OK.

   The WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Business Service or Proxy Service in Oracle Service Bus.

### 7.4.4 Configuring a File Type Business Service

For more information on configuring a file type business service, see Section 7.2.5, "Configuring a File Type Business Service" on page 7-9.

### 7.4.5 Configuring a WSDL-based Business Service

This section describes how to configure a WSDL type Business Service using the Oracle Service Bus Console.

Perform the following steps to configure a WSDL-based Proxy Service:

1. Right-click on the Business Service folder in the left pane and select **Business Service**.

   The Create Business Service window is displayed, as shown in Figure 7–74.
2. Provide a name for the Business Service, and in Service Definition area, select the WSDL Based Service option and click the search icon.

   The Search and Select: WSDL Resource window is displayed, as shown in Figure 7–75.

3. Click the Search button, select the BSE Outbound WSDL, and click OK.

   You are returned to the Create Business Service window.
4. Click Next.

5. Accept the default values and click the Create button, as shown in Figure 7–76.

**Figure 7–76  Create Business Service Window**

![Create Business Service Window](image)

The created WSDL-based Business Service is listed under the Business Service folder, as shown in Figure 7–77.

**Figure 7–77  WSDL-based Business Service**

7.4.6 Configuring a Pipeline With Proxy Service

This section describes how to configure a Proxy Service using the Oracle Service Bus Console.

1. Right-click the Proxy Service folder, select Create and click Pipeline, as shown in Figure 7–78.
The Create Pipeline window is displayed.

2. Enter a name in the Pipeline Name field. By default, **Expose as a Proxy Service** is selected. If you wish to change the Proxy Service Name, change it and set Transport to **file**, and click **Create** as shown in Figure 7–79.

The created Pipeline and the Proxy Service is listed under Proxy Service, as shown in Figure 7–80.
3. Double-click the created proxy service and click Transport in the left pane. Provide the input location in the Endpoint URI field, as shown in Figure 7–81.

4. Click Transport Details in the left pane and provide the location for the Stage Directory and the Error Directory fields, as shown in Figure 7–82.
5. Click the Save All icon in the right corner, as shown in Figure 7–83.

![Figure 7–83 Save All Icon](image)

6. Double-click the Pipeline node and click the Open Message Flow icon on the right pane to open the message flow, as shown in Figure 7–84.

![Figure 7–84 Open Message Flow Icon](image)

7. Click the Proxy Service icon and select Add Pipeline Pair from the menu, as shown in Figure 7–85.
8. Click the PipelinePairNode1 icon and select Add Route from the menu, as shown in Figure 7–86.

The RouteNode1 icon is added below the PipelinePairNode1 icon.

9. Click the RouteNode1 icon and select Edit Route from the menu, as shown in Figure 7–87.
Figure 7–87  Edit Route Option

The Edit Stage Configuration workspace area is displayed.

10. Click **Add an Action**, select **Communication** and click **Routing**, as shown in Figure 7–88.

Figure 7–88  Edit Stage Configuration Workspace Area

11. Click **<Service>**, as shown in Figure 7–89.

Figure 7–89  Actions
The Select Service dialog is displayed.

12. Select the WSDL type Business Service configured for Siebel and click on Submit, as shown in Figure 7–90.

**Figure 7–90  Select Service Dialog**

13. Select the name of the Siebel business object (for example, queryWithView) as the operational attribute from the list, and click Save.

14. Click the Response Pipeline icon and select Add Stage from the menu, as shown in Figure 7–91.

**Figure 7–91  Response Pipeline Icon**

The Stage1 icon is added below the Response Pipeline icon.

15. Click the Stage1 icon and select Edit Stage from the menu, as shown in Figure 7–92.
The Edit Stage Configuration workspace area is displayed.

16. Click **Add an Action**, select **Communication**, and then click **Publish**, as shown in Figure 7–93.

![Figure 7–93  Edit Stage Configuration Workspace Area](image)

17. Click **<Service>**, as shown in Figure 7–94.
18. In the Select Service dialog, select a File type Business Service and click Submit, as shown in Figure 7–95.

Figure 7–95 Select Service Dialog

19. Click Save All, as shown in Figure 7–96.

Figure 7–96 Save All Button

20. Click Activate in the right pane of the Oracle Service Bus session, as shown in Figure 7–97.

Figure 7–97 Activate Button

21. Click Activate to save the changes, as shown in Figure 7–98.
22. Copy and paste an input XML file in the input folder you have configured (for example, C:\input).
   Output is received in the configured output location (for example, C:\output).

7.5 Configuring JMS Proxy Services Using Oracle Service Bus (J2CA Configuration)

This section describes how to configure JMS Proxy Services using Oracle Service Bus for a J2CA configuration.

1. Start Oracle Service Bus and create the required project folder.
   For more information, see Section 7.2.1, "Starting Oracle Service Bus and Creating Project Folders".

2. Generate and publish the WSDL from Application Explorer to the created project folder. Using the published WSDL, create a Business Service.
   For more information, see Section 7.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus".

3. Open the Service Bus Console page, as shown in Figure 7–99.
4. Select the ProxyService project folder in the left pane, and click **Create**, as shown in **Figure 7–100**.

**Figure 7–100  Proxy Service**

5. In the right pane, select **Proxy Service** from the Create Resource list, as shown in **Figure 7–101**.

**Figure 7–101  Create Resource Menu**

6. Enter an appropriate name in the **Service Name** field, as shown in **Figure 7–102**.
7. In the Service Type section, under Create From Existing Service, select the **Business Service** radio button and click **Browse**, as shown in **Figure 7–103**.

8. Select the existing business service and click **Submit**, as shown in **Figure 7–104**.
9. Click Next, as shown in Figure 7–105.

10. Select jms from the Protocol list and click Next, as shown in Figure 7–106.
11. Provide the following parameters, as shown in Figure 7–107.
   
   a. Select Queue in the Destination Type section.
   
   b. Enable the Is Response Required check box.
   
   c. Select Text in the Response Message Type section.
   
   d. In the Response URI field, provide the Endpoint URI used in the Transport Configuration and change Request to Response.
   
   For example:
   
   jms://localhost:8001/weblogic.jms.XAConnectionFactory/Adapter_outbound_PSResponse

**Figure 7–107   Edit a Proxy Service**
12. Click Next.

The Operation Selection Configuration pane appears, as shown in Figure 7–108.

**Figure 7–108 Operation Selection Configuration Pane**

![Operation Selection Configuration Pane](Image)

13. Ensure the SOAP Body Type is selected and click Next.

14. Enable the Transaction Required box and click Next, as shown in Figure 7–109.

**Figure 7–109 Message Handling**

![Message Handling](Image)

15. Click Save, as shown in Figure 7–110.
The created Proxy Service is saved, as shown in Figure 7–111.

16. In the left pane, click Activate, and then Submit, as shown in Figure 7–112.
17. In the left pane, click **ProxyService** under the Projects folder, as shown in Figure 7–113.

18. Click the **Launch Test Console** icon for the created Proxy Service, as shown in Figure 7–114.

19. Provide the input values for **Payload**, uncheck the **Direct Call** box, and click **Execute**.

20. Review the Response document, and then click **Close**.

21. Click the **Oracle WLS Console** tab, as shown in Figure 7–115.
Figure 7–115  ProxyService

22. In the Oracle WLS Console, expand Services, expand Messaging, and click JMS Modules, as shown in Figure 7–116.

Figure 7–116  Oracle WLS Console

23. Click jmsResources, as shown in Figure 7–117.
24. Click Lock & Edit, as shown in Figure 7–118.

25. Click the appropriate request link, for example, Adapter_outbound_PSRequest, as shown in Figure 7–119.
26. Click the **Monitoring** tab, as shown in Figure 7–120.

**Figure 7–120  Monitoring Tab**

27. Enable the check box and click **Show Messages**, as shown in Figure 7–121.
28. Click **New**, as shown in Figure 7–122.

29. Provide the input payload in the **Body** field and click **OK**.

A Success message appears, as shown in Figure 7–123.
30. In the Oracle WLS Console, expand **Services**, expand **Messaging**, and click **JMS Modules**, as shown in Figure 7–124.

31. Click **jmsResources**, as shown in Figure 7–125.
32. Click the appropriate response link, for example, `Adapter_outbound_PSResponse`, as shown in Figure 7–126.

33. Click the Monitoring tab, as shown in Figure 7–127.
34. Enable the check box and click **Show Messages**, as shown in **Figure 7–128**.

**Figure 7–128 Destination Messages**

35. Click the ID link, as shown in **Figure 7–129**.
This section describes how to configure HTTP Proxy Services using Oracle Service Bus for a J2CA configuration.

1. Start the Oracle Service Bus and create the required project folders.
   
   For more information, see Section 7.2.1, "Starting Oracle Service Bus and Creating Project Folders".

2. Generate and publish the WSDL from Application Explorer to the created project folder, and create a Business Service using the published WSDL.
   
   For more information, see Section 7.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus".

3. Open the Service Bus console page, as shown in Figure 7–130.
4. In the Project Explorer, select the **ProxyService** project folder, and click **Create**, as shown in Figure 7–131.

5. In the Create Resource list on the right pane, select **Proxy Service**, as shown in Figure 7–132.
6. In the Service Name field, enter an appropriate name, as shown in Figure 7–133.

7. In the Service Type section, under Create From Existing Service, select the Business Service radio button and click Browse, as shown in Figure 7–134.
8. Select the existing Business Service and click **Submit**, as shown in Figure 7–135.

9. Click **Next**, as shown in Figure 7–136.
10. Select http in the Protocol list and click Next, as shown in Figure 7–137.

11. Click Next, as shown in Figure 7–138.
12. Click Next, as shown in Figure 7–139.

13. Enable the Transaction Required check box and click Next, as shown in Figure 7–140.
14. Click Save, as shown in **Figure 7–141**.

The created Proxy Service is saved, as shown in **Figure 7–142**.
15. Click **Activate** in the left pane, and then **Submit** on the right pane, as shown in Figure 7–143.

**Figure 7–143  Activate Session**

16. Click **ProxyService** in the Projects folder on the left pane, as shown in Figure 7–144.
17. Click the **Launch Test Console** icon for the created Proxy Service, as shown in Figure 7–145.

**Figure 7–145  Launch Test Console**

18. Uncheck the **Direct Call** check box, provide the input values for **Payload**, and click **Execute**.

19. Review the **Response Document**.
8

Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper

Oracle Application Adapter for Siebel integrates seamlessly with Oracle JDeveloper to facilitate Web service integration.

This chapter contains the following sections:

- Section 8.1, "Configuring an OSB Outbound Process Using JDeveloper (J2CA Configuration)"
- Section 8.2, "Configuring an OSB Inbound Process Using JDeveloper (J2CA Configuration)"
- Section 8.3, "Configuring an OSB Outbound Process Using JDeveloper (BSE Configuration)"
- Section 8.4, "Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration)"
- Section 8.5, "Configuring a JMS Outbound Process Using JDeveloper (J2CA Configuration)"
- Section 8.6, "Configuring an HTTP Outbound Process Using JDeveloper (J2CA Configuration)"

8.1 Configuring an OSB Outbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure an OSB outbound process to your Siebel system, using Oracle JDeveloper for J2CA configurations.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SIEBEL_Samples.zip/SIEBEL_Samples/OSB_Jdeveloper/J2CA/Siebel_Sample_J2CA_OSB_Outbound_Project

This section includes the following topics:

- Section 8.1.1, "Creating a Service Bus Application for OSB"
- Section 8.1.2, "Defining an OSB Outbound Process"
- Section 8.1.3, "Deploying the OSB Outbound Process"
Prerequisites
Before you design an OSB outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.4.1, "Generating WSDL for Request/Response Service" on page 4-8.

8.1.1 Creating a Service Bus Application for OSB
Perform the following steps in JDeveloper to create a service bus application for OSB.
1. Create a new OSB application.
2. Enter a name for the OSB Application (for example, J2CA_Outbound) and click Finish, as shown in Figure 8–1.

Figure 8–1 Name Your Application Pane

3. Enter a project name (for example, JCA_Outbound), and click Finish, as shown in Figure 8–2.
8.1.2 Defining an OSB Outbound Process

This section describes how to define an OSB outbound process. The following topics are included:

- Section 8.1.2.1, "Configuring a Third-Party Adapter Service Component"
- Section 8.1.2.2, "Configuring a File Transport Type Business Service"
- Section 8.1.2.3, "Creating a Proxy Service With Pipeline"
- Section 8.1.2.4, "Configuring the Routing Rules"

8.1.2.1 Configuring a Third-Party Adapter Service Component

Perform the following steps to create a third party adapter service component along with the Business Service:

1. Drag and drop the Third Party Adapter component from the Service Bus Components pane to the External Services pane, as shown in Figure 8–3.
The Create Third Party Adapter Service dialog is displayed, as shown in Figure 8–4.

Figure 8–4  Create Third Party Adapter Service Pane

2. Enter an appropriate name for the Third Party Adapter Service which will be used as the Business Service name.

3. Ensure that Reference is selected from the Type drop-down list (by default).

4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The WSDL Chooser dialog is displayed, as shown in Figure 8–5.
5. Select the File System tab, then browse, and select an outbound WSDL file from the WSDL directory.

6. Click OK.

The Import Service Bus Resources dialog is displayed.

7. Click Next, as shown in Figure 8–6.

8. In the Configuration pane, click Finish.
You are returned to the Create Third Party Adapter Service Dialog.

9. Click the Find JCA file icon which is located to the right of the JCA File field, as shown in Figure 8–7.

**Figure 8–7  Find JCA File Icon**

The Transformation Chooser dialog is displayed.

10. Select the JCA properties file from the WSDL directory.

11. Click OK. The Copy File message is displayed.

12. Click Yes.

A copy of the JCA properties file is made in the project folder.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 8–8.
13. Click OK.

The Business service component is created in the External Services pane.

8.1.2.2 Configuring a File Transport Type Business Service

Perform the following steps to create a File Transport Business Service:

1. Drag and drop the File Transport component from the Advanced pane to the External Services pane.

The Create Business Service dialog is displayed.

2. In the Service Name field, enter any name you wish for the Business Service (for example, FileOut), and click Next, as shown in Figure 8–9.
3. Click **Next**, as shown in **Figure 8–10**.

4. Provide the output location in the Endpoint URI field (for example, c:/output) and click **Finish**, as shown in **Figure 8–11**.
The File Transport Business service Fileout is created and displayed.

5. Double-click the created Business service **Fileout** and provide the values for the Prefix and Suffix fields in the Transport Details Tab, as shown in Figure 8–12.

### Figure 8–12 Transport Details

8.1.2.3 Creating a Proxy Service With Pipeline

Perform the following steps to create a Proxy Service with Pipeline:

1. Drag and drop the **File Transport** component from the Advanced Components pane to the Proxy Services pane, as shown in Figure 8–13.
The Create Proxy Service pane is displayed.

2. In the Service Name field, enter any name you wish for the Proxy service (for example, JCA_Outbound_PS). By default, Generate Pipeline is selected.

3. Click Next, as shown in Figure 8–14.

The Type pane is displayed.

4. Select the Messaging option, set the Request to XML and Response as None, and then click Next, as shown in Figure 8–15.
5. Provide the input location in the Endpoint URI field (for example, c:/input) and click Finish, as shown in Figure 8–16.

6. Double-click the created Proxy Service (for example: JCA_Outbound_PS), as shown in Figure 8–17.
7. In the displayed Proxy Service configuration page, select **Transport Details** and provide the values for Stage and Error Directory, as shown in **Figure 8–18**.

8. Save and close the Proxy Service configuration page.

### 8.1.2.4 Configuring the Routing Rules

Perform the following steps to configure the routing rules:

1. Connect the Pipeline to the Business Service (for example, Service) as shown in **Figure 8–19**.
2. Double-click on the pipeline (for example, JCA_Outbound_PSPipeline) in the Pipelines/Split Joins pane. The Pipeline configuration page is displayed.

3. Drag and drop the **Pipeline Pair** node from Nodes pane to the area below the Pipeline (for example: JCA_Outbound_PSPipeline), as shown in Figure 8–20.

4. Drag and drop the **Publish** node from the Communication pane to the area beneath Stage1 of the Response Pipeline, as shown in Figure 8–21.
5. Click on the browse icon to the right of the Service field in the right pane of Publish Properties, as shown in Figure 8–22.

6. In the displayed Resource Chooser window, select the **Fileout.bix** File Transport Business service and click **OK**, as shown in Figure 8–23.
In the right pane, the selected service is configured in the Publish pane, as shown in Figure 8–24.

7. Click on the Routing to verify the Service is selected properly, as shown in Figure 8–25.
8. Save and Close the Pipeline configuration page.

9. Double-click the overview.xml file (for example: JCA_Outbound), and click **Save All** in the menu bar to save the OSB process, as shown in **Figure 8–26**.

**Figure 8–25  Pipeline Configuration**

**Figure 8–26  Save All Icon**

### 8.1.3 Deploying the OSB Outbound Process

Perform the following steps to deploy the OSB outbound process.
1. Right-click the OSB project, select **Deploy**, and then select **OSB_Project1_ServiceBusProjectProfile...**, as shown in **Figure 8–27**.

![Figure 8–27 Deploy Option](image)

The Deployment Action page is displayed.

2. Click **Next**, as shown in **Figure 8–28**.

![Figure 8–28 Deployment Action Page](image)

The Select Server page is displayed.

3. Select an available application server that was configured and click **Next**, as shown in **Figure 8–29**.
The Summary page is displayed, as shown in Figure 8–30.

4. Review and verify all the available deployment information for your project and click Finish.

The process is deployed successfully, as shown in Figure 8–31.
Figure 8–31  Successful Deployment Message

[10:52:10 AM] ---- Deployment started. ----
[10:52:10 AM] Target platform is Standard Java EE.
[10:52:10 AM] Elapsed time for deployment: 1 second
[10:52:10 AM] ---- Deployment finished. ----

5. Copy and paste an input XML file in the input folder you have configured (for example, C:\input).

The output is received in the configured output location (for example, C:\output).

8.2 Configuring an OSB Inbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure an OSB inbound process to your Siebel system, using Oracle JDeveloper for J2CA configurations.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB_Jdeveloper\J2CA\Siebel_Sample_J2CA_OSB_Inbound_Project

This section includes the following topics:

- Section 8.2.1, "Creating a Service Bus Application for OSB"
- Section 8.2.2, "Defining an OSB Inbound Process"
- Section 8.2.3, "Deploying the OSB Inbound Process"

Prerequisites

Before you design an OSB inbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.5.1, "Generating WSDL for Event Integration" on page 4-34.

8.2.1 Creating a Service Bus Application for OSB

To configure an OSB inbound process, you must create service bus application for OSB. For more information, see Section 8.1.1, "Creating a Service Bus Application for OSB" on page 8-2.

8.2.2 Defining an OSB Inbound Process

This section describes how to define an OSB inbound process. The following topics are included:

- Section 8.2.2.1, "Configuring a Third-Party Adapter Service Component"
- Section 8.2.2.2, "Creating a Pipeline"
- Section 8.2.2.3, "Configuring a File Transport Type Business Service"
8.2.2.1 Configuring a Third-Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the **Third Party** adapter component from the Service Bus Components Pane to the Proxy Services, as shown in **Figure 8–32**.

![Third Party Adapter Service Component](image)

The Create Third Party Adapter Service dialog is displayed.

2. Enter any name you wish for the Third Party Adapter Service or leave it to the default value.

3. Ensure that **Service** is selected from the Type drop-down list (by default).

4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field, as shown in **Figure 8–33**.
5. Select the File system folder, then browse and select an inbound WSDL file from the WSDL directory.

6. Click OK.

The Import Service Bus Resources dialog is displayed.

7. Click Next.
8. In the Configuration window, click **Finish**.
   You are returned to the Create Third Party Adapter Service dialog.

9. Click the Find JCA file icon, which is located to the right of the JCA File field.
   The Transformation Chooser dialog is displayed.

10. Select the JCA properties file from the WSDL directory.

11. Click **OK**.
   The Copy File message is displayed.

12. Click **Yes**.
   A copy of the JCA properties file is created in the project folder.
   You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 8–35.

**Figure 8–35  Create Third Party Adapter Service Dialog**

13. Click **OK**.
   The third party adapter service component is created in the Proxy Services pane.

**8.2.2.2 Creating a Pipeline**

Perform the following steps to generate inbound proxy service with Pipeline:

1. Under Service Bus, click **Resources**.

2. Drag and drop the Pipeline to the Pipelines/Split Joins pane.

3. Provide a name for the Pipeline and click next, as shown in Figure 8–36.
4. In the Create Pipeline Service window, select the **WSDL** option and click on the WSDL URL.

5. Select **Application** in the WSDL chooser window, then select **service-concrete.wsdl** in the appropriate OSB project, and then click **OK**, as shown in **Figure 8–37**.

**Figure 8–37 Select WSDL Page**

6. Clear the **Expose as a Proxy Service** check box and click **Finish**, as shown in **Figure 8–38**.
7. Drag and drop the Proxy Service to the Pipelines/Split Joins pane.

8.2.2.3 Configuring a File Transport Type Business Service

Perform the following steps to create the File Transport Type Business Service:

1. Drag and drop the File Transport component from the Advanced pane to the External Services pane, as shown in Figure 8–39.

2. In the Service Name field, enter any name you wish for the Business Service (for example, FileOut), and click Next.

   In the displayed Type Window, the Any XML option is selected by default.
3. Click Next.

4. In the displayed Transport window, provide the output location in the Endpoint URI field (for example, c:\output), and click **Finish**, as shown in **Figure 8–40**.

*Figure 8–40  Transport Pane*

The FileOut Business service is created.

5. Double-click the FileOut Business service, as shown in **Figure 8–41**.

*Figure 8–41  FileOut Business Service*

The Configuration page is displayed.

6. Navigate to the Transport Details tab and provide the values for the Prefix and Suffix fields, as shown in **Figure 8–42**.
7. Save and close the Configuration page.

8.2.2.4 Configuring the Routing Rules

Perform the following steps to configure the routing rules.

1. Create a connection between the Pipeline (for example, JCA_IB_receive_PSPipeline) and the File Type Business Service (for example, FileOut), as shown in Figure 8–43.

Figure 8–43 Mapping Proxy and FileOut

2. Double-click the Pipeline (for example, J2CA_Inbound_receive_PSPipeline).

3. Click the Routing pane and ensure that the File Type Business Service (for example, FileOut) is properly configured in the Service field, as shown in Figure 8–44.
4. Save and close the Pipeline configuration page.

5. Double-click on the overview.xml file (for example, JCA_Inbound) and click **Save All** in the menu bar to save the OSB process, as shown in Figure 8-45.

8.2.3 Deploying the OSB Inbound Process

To deploy the created OSB inbound process, see steps 1 - 4 in Section 8.1.3, ”Deploying the OSB Outbound Process” on page 8-16.

Once the OSB inbound process is deployed successfully, trigger an event from the Siebel system and check if the output is received in the configured output location (for example, C:\output).

For more information on triggering an event, see Section 4.5.5, ”Triggering an Event in Siebel” on page 4-48.
8.3 Configuring an OSB Outbound Process Using JDeveloper (BSE Configuration)

This section describes how to configure an OSB outbound process to your Siebel system, using Oracle JDeveloper for BSE configurations.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

`<ADAPTER_HOME>\etc\sample\SIEBEL_Samples.zip\SIEBEL_Samples\OSB_Jdeveloper\BSE\Siebel_Sample_BSE_OSB_Outbound_Project`

This section includes the following topics:

- Section 8.3.1, "Creating a Service Bus Application for OSB"
- Section 8.3.2, "Defining an OSB Outbound Process"
- Section 8.3.3, "Deploying the OSB Outbound Process"

Prerequisites

Before you design an OSB outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.6.1, "Generating a WSDL File for Request and Response Services Using a Web Service" on page 4-74.

8.3.1 Creating a Service Bus Application for OSB

To configure an OSB outbound process, you must create a service bus application for OSB. For more information, see Section 8.1.1, "Creating a Service Bus Application for OSB" on page 8-2.

8.3.2 Defining an OSB Outbound Process

This section describes how to define an OSB outbound process. The following topics are included:

- Section 8.3.2.1, "Configuring a WSDL-based Business Service"
- Section 8.3.2.2, "Creating a Proxy Service With Pipeline"
- Section 8.3.2.3, "Configuring a File Transport Type Business Service"
- Section 8.3.2.4, "Configuring the Routing Rules"

8.3.2.1 Configuring a WSDL-based Business Service

Perform the following steps to configure a WSDL-based Business Service:

1. Drag and drop the HTTP component from the Technology Components pane to the External Services area, as shown in Figure 8–46.
The Create Business Service window is displayed.

2. In the Service Name field, enter any name you wish for the Business Service and click Next, as shown in Figure 8–47.

3. In the displayed Service Type window, select the WSDL option and click the Select WSDL icon, as shown in Figure 8–48.
The Select WSDL window is displayed.

4. Select the File System folder icon, browse to the iBSE WSDL file and select it from the WSDL location, and then click OK, as shown in Figure 8–49.

5. In the displayed Source pane, click Next, as shown in Figure 8–50.
6. In the displayed Configuration pane, click **Finish**, as shown in **Figure 8–51**.

7. In the displayed Type pane, click **Next**, as shown in **Figure 8–52**.
8. In the displayed Transport window, you can modify the Endpoint URI field if the
hostname and port number varies, and then click Finish, as shown in Figure 8–53.

The Business Service is created and displayed in the External Services pane, as
shown in Figure 8–54.
8.3.2.2 Creating a Proxy Service With Pipeline

Perform the following steps to create a Proxy Service with Pipeline:

1. Drag and drop the File Transport component from the Advanced Components pane to the Proxy Services pane, as shown in Figure 8–55.

The Create Proxy Service pane is displayed.

2. In the Service Name field, enter any name you wish for the Proxy service (for example, JCA_Outbound_PS). By default, Generate Pipeline is selected.

3. Click Next, as shown in Figure 8–56.
The Type pane is displayed.

4. Select the **Messaging** option, set the Request to XML and Response as **None**, and then click **Next**, as shown in Figure 8–57.

The Transport window is displayed.

5. Provide the input location in the Endpoint URI field (for example, c:/input) and click **Finish**, as shown in Figure 8–58.
The Proxy service along with the pipeline is created and displayed.

6. Double-click the created Proxy Service (for example: iBSE_Outbound_PS), as shown in Figure 8–59.

7. In the displayed Proxy Service configuration page, select **Transport Details** and provide the values for Stage and Error Directory, as shown in Figure 8–60.
Save and close the Proxy Service configuration page.

Double-click the overview.xml file (for example, iBSE_Outbound).

The Proxy service is updated and displayed, as shown in Figure 8–61.

**Figure 8–61  Proxy Service**

### 8.3.2.3 Configuring a File Transport Type Business Service

Perform the following steps to create a File Transport Type Business Service:

1. Drag and drop the **File Transport** component from the Advanced pane to the External Services pane, as shown in Figure 8–62.

**Figure 8–62  File Transport Configuration**
2. In the Service Name field, enter any name you wish for the Business Service (for example, FileOut), and click Next, as shown in Figure 8–63.

3. Click Next.

The Transport pane appears.

4. Provide the output location in the Endpoint URI field (for example, c:/output) and click Finish, as shown in Figure 8–64.
The File Transport Business service Fileout is created and displayed, as shown in Figure 8–65.

5. Double-click the created Business service Fileout and provide the values for the Prefix and Suffix fields in the Transport Details Tab, as shown in Figure 8–66.
6. Save and close the configuration page, and double-click on overview.xml (for example, iBSE_Outbound).

### 8.3.2.4 Configuring the Routing Rules

Perform the following steps to configure the routing rules:

1. Create a connection between the Pipeline Component (for example, iBSE_Outbound_PSPipeline) and the WSDL based Business Service (for example, iBSE_Outbound_BS), as shown in Figure 8–67.

#### Figure 8–67 Pipeline Component

2. Double-click on the Pipeline component (for example, iBSE_Outbound_PSPipeline) in the Pipelines/Split Joins pane.

3. Drag and drop the Pipeline Pair node from Nodes pane to the area between the Pipeline (for example: iBSE_Outbound_PSPipeline) and RouteNode1, as shown in Figure 8–68.
4. Drag and drop the Publish node from the Communication pane to the area beneath Stage1 of the Response Pipeline, as shown in Figure 8–69.

Figure 8–69  Publish Node

5. Click on the browse icon to the right of the Service field in the right pane of Publish Properties, as shown in Figure 8–70.

Figure 8–70  Browse Icon

6. In the displayed Resource Chooser window, select the Fileout.bix File Transport Business service and click OK, as shown in Figure 8–71.
You are returned to the Pipeline configuration page.

In the right pane, the selected service is configured in the Publish pane, as shown in Figure 8–72.

7. Save and close the Pipeline configuration page.

8. Double-click the overview.xml file (for example: iBSE_Outbound), and click **Save All** in the menu bar to save the OSB process, as shown in Figure 8–73.
8.3.3 Deploying the OSB Outbound Process

To deploy the created OSB outbound process and invoke the input XML document, see Section 8.1.3, "Deploying the OSB Outbound Process".

8.4 Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure a JMS inbound process to your Siebel system, using Oracle JDeveloper for J2CA configurations.

1. Before you design a JMS process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.5.1, "Generating WSDL for Event Integration" on page 4-34.

2. Start the Oracle JDeveloper and create a Service Bus Application for OSB. For more information, see Section 8.1.1, "Creating a Service Bus Application for OSB" on page 8-2.

3. Create a Third Party Adapter Service Component. For more information, see Section 8.2.2.1, "Configuring a Third-Party Adapter Service Component" on page 8-20.

4. Create a Proxy Service along with the pipeline from the JCA Binding File. For more information, see Section 8.2.2.2, "Creating a Pipeline" on page 8-22.

5. Create a JMS Transport Business Service and perform the following steps:
   a. Drag and drop the JMS Transport component from the Technology Components pane to the External Services pane, as shown in Figure 8–74.
The Create Business Service dialog is displayed.

b. In the Service Name field, enter any name you wish for the Business service (for example, JMS_BS) and click Next, as shown in Figure 8–75.

c. In the displayed Type window, select Any XML and then click Next.

The Transport window is displayed.

d. Modify the appropriate hostname and port number by replacing DestJndiName with QueueIn in the Endpoint URI field (for example, jms://localhost:7003/weblogic.jms.XAConnectionFactory/QueueIn), and then click Finish, as shown in Figure 8–76.
The JMS Business service is created and displayed.

e. Double-click **JMS_BS** as shown in **Figure 8–77**.

**Figure 8–77  JMS Business Service**

f. In the displayed Business Service configuration page, provide the following parameters in the Transport Details tab, as shown in **Figure 8–78**.
g. In the Destination Type section, select Queue.

h. In the Message Type section, select Text.

6. Save and close the Configuration page of the business service.

7. Create a connection between Pipeline (for example, xxxx_PSPipeline) and JMS Business Service (for example, JMS_BS) as shown in figure Figure 8–79.

8. Double-click Pipeline.

The Pipeline Configuration page is displayed as shown in Figure 8–80.
9. Check that the details are configured properly, and then save and close the Pipeline configuration page.
   You are returned to the composite editor window.

10. Click Save All in the menu bar to save the OSB JMS process, as shown in Figure 8–81.

11. Deploy the OSB JMS inbound process. For more information, see Section 8.2.3, "Deploying the OSB Inbound Process” on page 8-27.

12. Once the process is deployed successfully, trigger the event messages.
   For more information, see Section 4.5.5, "Triggering an Event in Siebel" on page 4-48.

13. Log on to the Oracle WLS console.

14. In the Oracle WLS console, expand Services, click Messaging, select JMS Modules, and then click jmsResources.

15. Click the appropriate response link (for example, QueueIn) as shown in Figure 8–82.
16. Click the Monitoring tab, as shown in Figure 8–83.

**Figure 8–83 Monitoring Tab**

![Monitoring Tab](image)

17. Select the check box and click the **Show Messages** button, as shown in Figure 8–84.

**Figure 8–84 Show Messages Button**

![Show Messages Button](image)

18. Click the ID link with the appropriate time and date.

The response document is shown under the Text field.
8.5 Configuring a JMS Outbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure a JMS outbound process to your Siebel system, using Oracle JDeveloper for J2CA configurations.

1. Before you design a JMS process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.4.1, "Generating WSDL for Request/Response Service" on page 4-8.

2. Start the Oracle JDeveloper and create a Service Bus Application for OSB. For more information, see Section 8.1.1, "Creating a Service Bus Application for OSB" on page 8-2.

3. Create a Third Party Adapter Service Component. For more information, see Section 8.1.2.1, "Configuring a Third-Party Adapter Service Component" on page 8-3.

4. Create a WSDL-based Business Service from the JCA Binding File. For more information, see Section 8.1.2.2, "Configuring a File Transport Type Business Service" on page 8-7.

5. Create a JMS Proxy Service with a Pipeline and perform the following steps:
   a. Drag and drop the JMS Transport component from the Technology Components pane to the Proxy Services pane, as shown in Figure 8–85.

   Figure 8–85  JMS Transport Component

   The Create Business Service dialog is displayed.

   b. In the Service Name field, enter any name you wish for the Proxy service (for example, JMS_Proxy). By default, Generate Pipeline is selected.

   c. Click Next, as shown in Figure 8–86.
d. In the displayed Type window, select Any XML and then click Next. The Transport window is displayed.

e. Modify the appropriate hostname and port number by replacing the Endpoint URI field (for example, jms://localhost:7003/weblogic.jms.XAConnectionFactory/JMS_ProxyRequest), and then click Finish, as shown in Figure 8–87.

Figure 8–87 Transport Window
The JMS Proxy service along with the pipeline is created and displayed.

f. Double-click the created Proxy Service (for example, JMS_Proxy), as shown in Figure 8–88.

Figure 8–88  JMS Proxy Service

---

In the displayed configuration page of the Proxy Service, provide the following parameters in the Transport Details tab, as shown in Figure 8–89.

Figure 8–89  JMS Transport Configuration

---

h. In the Destination Type section, select **Queue**.

i. Select the **Is Response Required** check box.

j. In the Response Message Type section, select **Text**.

k. In the Response URI field, provide the Endpoint URI used in the JMS Transport Configuration and change Request to Response. For example,
6. Save and close the Configuration page of the Proxy service.
7. Configure the Routing Rules and proceed with the following steps:
   a. Double-click on the pipeline (for example, JMS_ProxyPipeline) in the Pipelines/Split Joins pane.
      The Pipeline configuration page is displayed.
   b. Drag and drop the **Routing** component from the Route section to the area below the Pipeline (for example, JMS_ProxyPipeline), as shown in Figure 8–90.

   ![Routing Component](image)

   c. In the Pipeline Configuration page, select **Routing** and click the browse icon to the right of the Service field in the Routing Properties pane, as shown in Figure 8–91.

   ![Browse Service](image)
d. In the displayed Resource Chooser window, select the WSDL-based Business service (for example, xxxxx_BS.bix) and click OK. You are returned to the Pipeline configuration page.

e. Save and Close the Pipeline configuration page. You are returned to the composite editor window.

f. Click Save All in the menu bar to save the OSB JMS process, as shown in Figure 8–92.

Figure 8–92 Transport Window

8. Deploy the OSB JMS outbound process. For more information, see Section 8.1.3, “Deploying the OSB Outbound Process” on page 8-16.

9. Once the process is deployed successfully, log on to the Oracle WLS Console.

10. In the Oracle WLS console, expand Services, click Messaging, select JMS Modules, and then click jmsResources, as shown in Figure 8–93.

Figure 8–93 JMS Resources

11. Click the appropriate request link (for example, JMS_PROXYRequest) as shown in Figure 8–94.
12. Click the Monitoring tab, as shown in Figure 8–95.

Figure 8–95 Monitoring Tab

13. Select the check box and click the Show Messages button, as shown in Figure 8–96.

Figure 8–96 Show Messages Button
14. Click New, as shown in Figure 8–97.

**Figure 8–97  JMS Messages**

![Image of JMS Messages]

15. Provide the input payload in the Body field and click OK.

16. In the Oracle WLS console, expand Services, click Messaging, select JMS Modules, and then click jmsResources.

17. Click the appropriate response link (for example, JMS_ProxyResponse).

18. Click the Monitoring tab.

19. Select the check box and click Show Messages, as shown in Figure 8–98.

**Figure 8–98  Destination Messages**

![Image of Destination Messages]

20. Click the ID link with the appropriate time and date, as shown in Figure 8–99.
8.6 Configuring an HTTP Outbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure HTTP Outbound process to your Siebel system, using Oracle JDeveloper for J2CA configurations.

1. Before you design an HTTP Outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 4.4.1, “Generating WSDL for Request/Response Service” on page 4-8.

2. Start the Oracle JDeveloper and create a Service Bus Application for OSB. For more information, see Section 8.1.1, “Creating a Service Bus Application for OSB” on page 8-2.

3. Create a Third Party Adapter Service Component. For more information, see Section 8.1.2.1, "Configuring a Third-Party Adapter Service Component" on page 8-3.

4. Create an HTTP Proxy Service with a Pipeline and perform the following steps:
   a. Drag and drop the HTTP component from the Technology Components pane to the Proxy Services pane, as shown in Figure 8–100.
The Create Proxy Service dialog is displayed.

b. In the Service Name field, enter any name you wish for the Proxy service (for example, HTTP_Proxy). By default, Generate Pipeline is selected.

c. Click Next, as shown in Figure 8–101.

d. In the displayed Type window, select Any XML and then click Next.
The Transport window is displayed.

e. Leave the default values and then click Finish, as shown in Figure 8–102.
The HTTP Proxy service along with the pipeline is created and displayed.

f. Double-click the created pipeline (for example, HTTP_ProxyPipeline) in the Pipelines/Split Joins pane, as shown in Figure 8–103.

The Pipeline Configuration page is displayed.

5. Configure the Routing Rules and proceed with the following steps:

a. Drag and drop the **Routing** component from the Route section to the area below the Pipeline (for example, HTTP_ProxyPipeline), as shown in Figure 8–104.
b. In the Pipeline Configuration page, select **Routing** and click the browse icon to the right of the Service field in the Routing Properties pane, as shown in Figure 8–105.

![Figure 8–104 Routing Component](image)

**Figure 8–104 Routing Component**

In the displayed Resource Chooser window, select the WSDL-based Business service (for example, xxxxx_BS.bix) and click **OK**. You are returned to the Pipeline configuration page.

c. In the displayed Resource Chooser window, select the WSDL-based Business service (for example, xxxxx_BS.bix) and click **OK**. You are returned to the Pipeline configuration page.

d. Save and Close the Pipeline configuration page. You are returned to the composite editor window.

e. Click **Save All** in the menu bar to save the OSB HTTP process, as shown in Figure 8–106.

![Figure 8–105 Browse Service](image)

**Figure 8–105 Browse Service**
6. Deploy the OSB HTTP outbound process. For more information, see Section 8.1.3, "Deploying the OSB Outbound Process" on page 8-16.

7. Once the process is deployed successfully, log on to the Service Bus Console.

8. In the Service Bus console, click on the deployed HTTP Outbound project (for example, HTTP_Outbound), as shown in Figure 8–107.

9. Click on the Test OSB Console icon for the created pipeline, as shown in Figure 8–108.
10. In the displayed Test OSB Console page, provide the input XML and click the **Execute** button.

In the displayed Test OSB Console page, the response is received.
This chapter describes new features for the Oracle Application Adapter for Siebel. This chapter contains the following sections:

- Section 9.1, "Exception Filter"
- Section 9.2, "Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)"
- Section 9.3, "Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper"

### 9.1 Exception Filter

This section describes how to configure exception filter functionality for the Oracle Application Adapter for Siebel and includes a sample testing scenario.

This section contains the following topic:

- Section 9.1.1, "Configuring the Exception Filter"

The exception filter is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.

The exception filter uses the `com.ibi.afjca.oracle.AdapterExceptionFilter` class to filter the generated exceptions. This class filters the exceptions and categorizes them into the following categories:

- `PCRetriableResourceException`
- `PCResourceException`

The following exceptions are represented in the fault policies file:

- `PCRetriableResourceException` - A remote fault.
- `PCResourceException` - A binding fault.

#### 9.1.1 Configuring the Exception Filter

Exception filter configuration consists of the following steps and topics:

1. Section 9.1.1.1, "Generating a WSDL File"
2. Section 9.1.1.2, "Creating a BPEL process With Exception Filter Functionality"
3. Section 9.1.1.3, "Creating Fault Policies and Fault Binding Files"
4. Section 9.1.1.4, "Adjusting for Known Deployment Issues With 12c"
5. Section 9.1.1.5, "Deploying and Testing the BPEL Process With Exception Filter Functionality"
9.1.1.1 Generating a WSDL File
To generate a WSDL file:

1. Open Application Explorer and create a J2CA configuration.
   For more information, see "Creating a Configuration for J2CA" on page 2-4.

2. Create a target for the Siebel adapter and then connect to the target.
   For more information, see "Establishing a Connection (Target) for Siebel" on page 2-5.

3. Generate a WSDL for the appropriate object.
   For more information, see "Generating WSDL (J2CA Configurations Only)" on page 2-27.

9.1.1.2 Creating a BPEL process With Exception Filter Functionality
To create a BPEL process with exception filter functionality:

1. Open JDeveloper and create a new SOA application.
   For more information, see "Creating an Empty Composite for SOA" on page 4-9.

2. Create a new SOA project (for example, Exception_Filter).

3. Create a third party adapter service component.
   For more information, see "Configuring a Third Party Adapter Service Component" on page 4-11.
   Once the third party adapter service component is created, the WSDL file (with corresponding schemas and JCA file) is imported to the JDeveloper project.
   For more information, see "Defining a BPEL Outbound Process" on page 4-11.

4. Modify the imported JCA file.
   a. Right-click the imported JCA file and select Open from the menu, as shown in Figure 9–1.
b. In the `<interaction-spec>` element, add the `ExceptionFilter` property. For example:

```xml
<interaction-spec className="com.ibi.afjca.cci.IWAFInteractionSpec">
 <property name="FunctionName" value="PROCESS"/>
 <property name="ExceptionFilter" value="com.ibi.afjca.oracle.AdapterExceptionFilter"/>
</interaction-spec>
```

c. Save the modified JCA file.

5. Once the third party adapter service component is created and the JCA file is modified, continue with the remainder of the BPEL process creation.

For more information, see "Defining a BPEL Outbound Process" on page 4-11.

9.1.1.3 Creating Fault Policies and Fault Binding Files

To create fault binding files:

1. Right-click the created SOA project (for example, Exception_Filter), select **New**, and then click **From Gallery**, as shown in *Figure 9–2*. 
The New Gallery dialog is displayed. Under the General category, click XML, as shown in Figure 9–3.
2. Select **XML Document** under Items and then click **OK**.

   The Create XML File dialog is displayed, as shown in Figure 9–4.

3. In the **File Name** field, type `fault-bindings.xml` and click **OK**.

4. Add the appropriate fault binding functions in the `fault-bindings.xml` file.

   To view a sample `fault-bindings.xml` file, see "Sample Fault-Bindings.xml File" on page 9-6.

---

**Note:** The parameter in the `<name>` element is the name of the created BPEL process.
5. Save the `fault-bindings.xml` file.

Sample Fault-Bindings.xml File

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<component faultPolicy="bpelFaultHandling">
 <name>BPELProcess1</name>
</component>
</faultPolicyBindings>
```

Creating Fault Policies Files

To create fault policies files:

1. Right-click the created SOA project (for example, Exception_Filter), select New, and then click From Gallery, as shown in Figure 9–5.

Figure 9–5 Applications Tab

The New Gallery dialog is displayed. Under the SOA Tier category, select Faults, as shown in Figure 9–6.
2. Select **Fault Policy Document** under Items and then click **OK**.

3. In the fault-policies.xml tab, select **bpelx:bindingFault** from the Fault Name drop-down list and `[retry] default-retry` from the Default Action drop-down list, as shown in **Figure 9–7**.

4. Click the **Actions** tab and then double-click **default-retry**.
The Retry Properties dialog box is displayed, as shown in Figure 9–8.

**Figure 9–8  Retry Properties Dialog Box**


6. Click OK.

7. Click Add to create another fault handler, as shown in Figure 9–9.

**Figure 9–9  Fault-policies.xml Tab**
8. In the fault-policies.xml tab, select `bpelx:remoteFault` from the Fault Name drop-down list and `[abort] default-termination` from the Default Action drop-down list.

9. In the Actions tab, click **Add** and then select **retry**, as shown in Figure 9–10.

![Figure 9–10 Actions Tab](image)

The Retry Properties dialog is displayed, as shown in Figure 9–11.

![Figure 9–11 Retry Properties Dialog Box](image)

10. Provide values for the ID, Retry Count, and Retry Interval fields.


12. Click **OK**.
The created Retry ID will be listed under the Actions tab.

From the Default Action drop-down list, select the newly created Retry ID (for example, remote_retry) as shown in Figure 9–12.

**Figure 9–12  Fault-policies.xml Tab**

13. Click Save All.
14. Click the Source tab to verify that the fault polices are added properly, as shown in Figure 9–13.
15. Double-click the Exception Filter project and then click Edit Composite Fault Policies.

The Composite Fault Policies window is displayed. Ensure that the Fault Policy and the fault-bindings are selected properly, as shown in Figure 9–14.
16. Click Save All.

17. Click the Source tab to verify that the `fault-bindings.xml` and `fault-policies.xml` files are added properly, as shown in Figure 9–15.
9.1.1.4 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 4.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 4-26.

9.1.1.5 Deploying and Testing the BPEL Process With Exception Filter Functionality
To deploy and test the BPEL process with exception filter functionality:

1. Deploy the created BPEL process.
   For more information, see "Deploying the BPEL Outbound Process" on page 4-28.

2. Simulate a communication error by disconnecting the system (where the servers are running) from the network.

3. Invoke the deployed BPEL process with a valid input.
   For more information, see "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 4-31.

4. Select the process ID.
   You can observe the BPEL process being retried or aborted based on the configuration of the fault-policies.xml file.

9.2 Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)
This section describes how to configure credential mapping functionality for the Oracle Application Adapter for Siebel in a configuration that uses Oracle SOA Suite (BPEL, Mediator, or BPM). A sample testing scenario is also included. This section contains the following topic:

■ Section 9.2.1, "Configuring Credential Mapping"

Credential mapping is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.
To pass user credentials to the J2CA resource adapter, create a credential map from the Oracle WebLogic Server user credentials to the EIS user credentials (Siebel adapter). Then associate a credential policy with a BPEL, Mediator, or BPM Web service and invoke the Web service using Oracle WebLogic Server user credentials. These credentials are mapped to the EIS user credentials and then passed to the J2CA container, which uses them to connect with the EIS adapter (Siebel).

9.2.1 Configuring Credential Mapping

This section discusses configuring credential mapping, and consists of the following steps and topics:

1. Deploy the adapter.
   
   For more information, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".

2. Associate Oracle WebLogic Server credentials with EIS credentials.
   
   For more information, see Section 9.2.1.1, "Associating Oracle WebLogic Server Credentials With EIS Credentials" on page 9-14.

   
   For more information, see Section 9.2.1.2, "Generating a WSDL File" on page 9-17.

4. Create and deploy an outbound process.
   
   For more information, see Section 9.2.1.3, "Creating and Deploying an Outbound Process" on page 9-17.

5. Invoke and verify that the EIS credentials have passed.
   
   For more information, see Section 9.2.1.4, "Verifying the EIS Credentials" on page 9-18.

9.2.1.1 Associating Oracle WebLogic Server Credentials With EIS Credentials

To associate Oracle WebLogic Server credentials with EIS credentials:

1. Log in to the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section in the left pane, click Deployments, as shown in Figure 9–16.
3. Click the iwafjca resource adapter.
   The Settings for iwafjca page is displayed, as shown in Figure 9–17.

4. Click the Outbound Credential Mappings tab under the Security tab, and then click New.
   The Create a New Security Credential Mapping page is displayed, as shown in Figure 9–18.
5. Select the outbound connection pool.  
   For example:
   
   eis/OracleJCAAdapter/DefaultConnection

6. Click Next.
   
   The WebLogic Server User page is displayed, as shown in Figure 9–19.

![Figure 9–19  WebLogic Server User Page](image)

7. Select Default User, enter a valid Oracle WebLogic Server user name, and then click Next.
   
   The EIS User Name and Password page is displayed, as shown in Figure 9–20.
8. Enter the user name and password for the EIS and click **Finish**.

   The credentials for an Oracle WebLogic Server user are now mapped with an EIS user (Siebel). The mapping is invoked automatically before invoking the J2CA service.

### 9.2.1.2 Generating a WSDL File

To generate a WSDL file:

1. Open Application Explorer and create a J2CA configuration.
   
   For more information, see Section 2.3.2, "Creating a Configuration for J2CA" on page 2-4.

2. Create a target for the Siebel adapter and then connect to the target.
   
   For more information, see Section 2.4, "Establishing a Connection (Target) for Siebel" on page 2-5.

3. Generate a WSDL for the appropriate object.
   
   For more information, see Section 2.12, "Generating WSDL (J2CA Configurations Only)" on page 2-27.

### 9.2.1.3 Creating and Deploying an Outbound Process

This section describes how to configure an outbound process. For demonstration purposes, specific references to the BPEL outbound process are made. However, the same steps apply to Mediator and BPM outbound processes.

For more information about creating a Mediator outbound process, see Chapter 5, "Integration With Mediator Service Components in the Oracle SOA Suite".

For more information about creating a BPM outbound process, see Chapter 6, "Integration With BPM Service Components in the Oracle SOA Suite".

To create a BPEL outbound process, see the following sections:

- Section 4.4.2, "Creating an Empty Composite for SOA"
Section 4.4.3, "Defining a BPEL Outbound Process"

Section 4.4.4, "Deploying the BPEL Outbound Process"

9.2.1.4 Verifying the EIS Credentials
Invoke the input XML and ensure that the EIS target credentials are overridden with
the credentials configured in the WebLogic Administration Console for the Default
User as described in this section.

1. Invoke the deployed BPEL outbound process with a valid input.
   For more information, see Section 4.4.5, "Invoking the Input XML Document in the
   Oracle Enterprise Manager Console" on page 4-31.

2. Check the J2CA log files and locate the encrypted password, which shows that the
user credentials have been passed to the EIS through Oracle WebLogic Server.
   For example:

   `FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util
   getPasswordCredential(78) InLoop:
   User-iwayqa:Password-ENCR(3109311731831131382333215315332323192322731773172)
   FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util
   getPasswordCredential(90) Use the system PasswordCredential:
   User-iwayqa:Password-ENCR(3109311731831131382333215315332323192322731773172)`

9.3 Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper
This section describes how to configure credential mapping functionality for the
Oracle Application Adapter for Siebel in a configuration that uses Oracle Service Bus
(OSB). A sample testing scenario is also included. This section contains the following
topic:

Section 9.3.1, "Configuring Credential Mapping"

Credential mapping is supported only for outbound processes that use J2CA
configurations. This feature is not supported for BSE configurations and inbound
processes that use J2CA configurations.

Note: The J2CA connector is common to all four application adapters
(SAP R/3, PeopleSoft, Siebel, and J.D. Edwards OneWorld). If
credential mapping is required, then ensure that only one application
adapter is used in a particular instance. For example, in one adapter
instance only the Siebel application adapter can be used. Credential
mapping cannot be configured at the individual adapter level. If you
require the use of credential mapping for two adapters, then both
adapters must be running in two independent adapter instances.

To pass user credentials to the J2CA resource adapter, create a credential map from the
Oracle WebLogic Server user credentials to the EIS user credentials (Siebel adapter).
Then associate a credential policy with a Web service and invoke the Web service using
Oracle WebLogic Server user credentials. These credentials are mapped to the EIS user
credentials and then passed to the J2CA container, which uses them to connect with
the EIS adapter (Siebel).
9.3.1 Configuring Credential Mapping

Configuring credential mapping consists of the following steps and topics:

1. Deploy the adapter.
   For more information, see Chapter 3, "Oracle WebLogic Server Deployment and Integration".

2. Section 9.3.1.1, "Associating Oracle WebLogic Server Credentials With EIS Credentials"

3. Section 9.3.1.2, "Generating a WSDL File"

4. Section 9.3.1.3, "Creating an Oracle Service Bus (OSB) Outbound Process"

9.3.1.1 Associating Oracle WebLogic Server Credentials With EIS Credentials

To associate Oracle WebLogic Server credentials with EIS credentials:

1. Log in to the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section in the left pane, click Deployments, as shown in Figure 9–21.

*Figure 9–21  Domain Structure Section*

The Deployments page is displayed, as shown in Figure 9–22.
3. Click the iwafjca resource adapter.
   The Settings for iwafjca page is displayed, as shown in Figure 9–23.

4. Click the Credential Mappings tab under the Security tab, and then click New.
   The Create a New Security Credential Mapping page is displayed, as shown in Figure 9–24.
5. Select the outbound connection pool.
   For example:
   eis/OracleJCAAdapter/DefaultConnection

6. Click Next.
   The WebLogic Server User page is displayed, as shown in Figure 9–25.

7. Select Configured User Name, enter a valid Oracle WebLogic Server user name, and then click Next.
   The EIS User Name and Password page is displayed, as shown in Figure 9–26.
8. Enter the user name and password for the EIS and click **Finish**.

The credentials for an Oracle WebLogic Server user are now mapped with an EIS user (Siebel). The mapping is invoked automatically before invoking the J2CA service.

### 9.3.1.2 Generating a WSDL File

To generate a WSDL file:

1. Set the class path for Application Explorer to integrate with Oracle Service Bus (OSB).
   
   For more information, see "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus" on page 7-6.

2. Open Application Explorer and create a J2CA configuration.
   
   For more information, see "Creating a Configuration for J2CA" on page 2-4.

3. Create a target for the Siebel adapter and then connect to the target.
   
   For more information, see "Establishing a Connection (Target) for Siebel" on page 2-5.

4. Generate a WSDL for the appropriate object.
   
   For more information, see Section 4.4.1, "Generating WSDL for Request/Response Service" on page 4-8.

### 9.3.1.3 Creating an Oracle Service Bus (OSB) Outbound Process

For more information on creating an Oracle Service Bus (OSB) outbound process, see Section 8.1.2, "Defining an OSB Outbound Process" on page 8-3.

1. Configure a Service account by right-clicking the OSB Project, selecting **New**, and then clicking **Service Account**, as shown in Figure 9–27.
The Create Service Account pane is displayed, as shown in Figure 9–28.

Figure 9–28 Create Service Account Pane

2. Provide a name for the Service Account and click Finish.
The configuration page of Service Account is displayed.

3. In the Resource Type section, select Static.

4. Provide a valid user name and password for the Oracle WebLogic Server, as shown in Figure 9–29.

![Figure 9–29 Service Account Configuration Page](image)

5. Save and close the configuration page.

6. In the composite Editor window, double-click the created WSDL-based Business Service from step 3.

   The configuration page of the WSDL-based Business Service is displayed.

7. Select the Transport Details tab, as shown in Figure 9–30.
8. In the JNDI Service Account section, click the Browse icon.
   The Select Service Account window is displayed.

9. Select the created service account and click **OK**, as shown in Figure 9–31.

10. Save and close the configuration page, as shown in Figure 9–32.
11. Deploy the OSB process. For more information, see Section 8.1.3, "Deploying the OSB Outbound Process" on page 8-16.

12. Once the process is deployed successfully, copy and paste a valid input XML file in the input folder you configured, and check to see that the output is received in the configured output location.

13. Check the J2CA log files and locate the encrypted password, which shows that the user credentials have been passed to the EIS through Oracle WebLogic Server. For example:

```
FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util getPasswordCredential(78) InLoop:
User-iwayqa:Password-ENCR(3189319731831132182333215323332323192322731773252)
FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util getPasswordCredential(90) Use the system PasswordCredential:
User-iwayqa:Password-ENCR(3109313331831131702333215320132323192322731773236)
```
This chapter explains the limitations and workarounds when connecting to Siebel. It contains the following topics:

- Section 10.1, "Troubleshooting"
- Section 10.2, "BSE Error Messages"

10.1 Troubleshooting

This topic provides troubleshooting information for Siebel, separated into four categories:

- Section 10.1.1, "General Usage Notes for the Oracle Application Adapter for Siebel"
- Section 10.1.2, "Application Explorer"
- Section 10.1.3, "Siebel"
- Section 10.1.4, "Oracle Adapter J2CA"

Log file information that can be relevant in troubleshooting can be found in the following locations based on your adapter installation:

- The Oracle Adapter J2CA trace information can be found under the following directory:
  
  `<ADAPTER_HOME>\config\configuration_name\log`

- BSE trace information can be found under the following directory:
  
  `<ORACLE_HOME>\user_projects\domains\base_domain\servers\soa_server1\stage\ibse\ibse.war\ibselogs`

- The log file for Application Explorer can be found under the following directory:
  
  `<ADAPTER_HOME>\tools\iwae\bin`

10.1.1 General Usage Notes for the Oracle Application Adapter for Siebel

The Oracle Application Adapter for Siebel is subject to the following limitations:

- The HTTPS protocol is not supported for services and events.
- Updates for multi-value (MVG) fields with join specifications are not supported.
- When a connection is lost, the adapter does not automatically reconnect to Siebel.
## 10.1.2 Application Explorer

This topic discusses the different types of errors that can occur when using Application Explorer.

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siebel does not appear in the Application Explorer Adapter node list.</td>
<td>Ensure that the Siebel jar files supplied with your Siebel distribution media have been placed in the <code>&lt;ADAPTER_HOME&gt;\Oracle_SOA1\soa\thirdparty\ApplicationAdapters\lib</code> directory. For example, for Siebel 7.03 environments, the <code>SiebelJI_Common.jar</code> and <code>SiebelJI_enu.jar</code> should be placed in this directory.</td>
</tr>
<tr>
<td>Target Type drop down contains only Java Data Bean Connection and COM connection type is desired.</td>
<td>Ensure that the Siebel thin client is installed correctly on the system hosting Application Explorer so that appropriate COM environment is available.</td>
</tr>
<tr>
<td>An error message that includes the name of the Siebel Gateway server appears when you try to connect to a Siebel target. For example, <code>Problem activating adapter (&lt;server_name&gt;). Check logs for more information.</code></td>
<td>Ensure that the name of the Siebel Gateway server is correctly defined for the target you are using.</td>
</tr>
<tr>
<td>You receive the following error when trying to connect to a Siebel target: <code>Problem activating adapter. (You have entered an invalid set of logon parameters. Please type in your logon parameters again.). Check logs for more information.</code></td>
<td>Ensure that the User ID and password parameter values to connect to your Siebel system are correct.</td>
</tr>
<tr>
<td>You receive the following error when trying to connect to a Siebel target: <code>Problem activating adapter. (Couldn't get nameserver connection). Check logs for more information.</code></td>
<td>Check on network connectivity to Siebel environment. Correct networking problem and retry connection.</td>
</tr>
<tr>
<td>You receive the following error when attempting to connect to a Siebel target: <code>Problem activating adapter. (NSReadKey request failed (no error information)...). Check logs for more information.</code></td>
<td>Ensure that the values defined for Siebel Server, Enterprise Name, and Object Manager for the target you are using are correct, and retry the connection.</td>
</tr>
<tr>
<td>You receive the following error when attempting to connect to a Siebel target: <code>Problem activating adapter. (Error loading translatable messages: com.siebel.locale.enux.messages.SS AMessages_enux). Check logs for more information</code></td>
<td>Ensure that the value of the Language parameter on the Advanced tab is defined correctly for the target you are using to connect to your Siebel system (for example, <code>enu</code> for English).</td>
</tr>
</tbody>
</table>
10.1.3 Siebel

The error messages listed can occur when using the adapter with either a BSE or Oracle Adapter J2CA repository project.
<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A successful connection is made to Siebel environment but no values are available in Business Object, Business Service, and Integration Object nodes in Application Explorer tree.</td>
<td>The Repository Name specified on the Advanced tab in the Siebel Target configuration is either void or empty of any components in the targeted Siebel environment or that Repository Name is not valid for the targeted Siebel environment. Verify that the Repository Name is valid and contains components for interrogation then re-connect.</td>
</tr>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Verify that method is available for specific request by verifying schema.</td>
</tr>
<tr>
<td>AdapterException: Unsupported Action: {0} Tquery</td>
<td>Ensure that field names are valid within request document by referring to schema for that specific object, and then re-submit the request.</td>
</tr>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Restart Oracle WebLogic Server and Application Explorer to log in successfully to the Siebel application. This is a known Siebel API issue. For more information, see Siebel Alert 984.</td>
</tr>
<tr>
<td>AdapterException: Field ‘NFame’ does not exist in definition for business component ‘Account’. Please ask your systems administrator to check your application configuration.</td>
<td>The method argument XMLCharEncoding is not supported. Leave this element blank in the XML payload.</td>
</tr>
<tr>
<td>The following error may occur when adding a service node for a Business Service that includes methods containing method arguments having hierarchy data types.</td>
<td>In the Details tab in the right pane, ensure that the directory specified in the Home field points to the correct directory, for example: &lt;ADAPTER_HOME&gt;\tools\iwae\bin...|</td>
</tr>
<tr>
<td>If you enter a valid XMLCharEncoding value such as UTF-8 or UTF-16, then the following error is received:</td>
<td></td>
</tr>
<tr>
<td>Invocation of Service failed.</td>
<td></td>
</tr>
</tbody>
</table>

### 10.1.4 Oracle Adapter J2CA

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Application Explorer, the following error message appears when you attempt to connect to an Oracle Adapter J2CA configuration:</td>
<td>In the Details tab in the right pane, ensure that the directory specified in the Home field points to the correct directory, for example: &lt;ADAPTER_HOME&gt;\tools\iwae\bin...</td>
</tr>
<tr>
<td>Could not initialize JCA</td>
<td></td>
</tr>
</tbody>
</table>

### 10.2 BSE Error Messages

This topic discusses the different types of errors that can occur when processing Web services through BSE.
This section contains the following topics:

- Section 10.2.1, "General Error Handling in BSE"
- Section 10.2.2, "Adapter-Specific Error Handling"

### 10.2.1 General Error Handling in BSE

BSE serves as both a SOAP gateway into the adapter framework and as the engine for some of the adapters. In both design time and run-time, various conditions can cause errors in BSE when Web services that use adapters run. Some of these conditions and resulting errors are exposed the same way, regardless of the specific adapter; others are exposed differently, based on the adapter being used. This topic explains what you can expect when you encounter some of the more common error conditions on an adapter-specific basis.

Usually the SOAP gateway (agent) inside BSE passes a SOAP request message to the adapter required for the Web service. If an error occurs, then how it is exposed depends on the adapter and the API or interfaces that the adapter uses. A few scenarios cause the SOAP gateway to generate a SOAP fault. In general, anytime the SOAP agent inside BSE receives an invalid SOAP request, a SOAP fault element is generated in the SOAP response. The SOAP fault element contains fault string and fault code elements. The fault code contains a description of the SOAP agent error.

The following SOAP response document results when BSE receives an invalid SOAP request:

```xml
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>Parameter node is missing</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

In this example, BSE did not receive an element in the SOAP request message that is mandatory for the WSDL for this Web service.

### 10.2.2 Adapter-Specific Error Handling

This section contains the following topics:

- Section 10.2.2.1, "Oracle Application Adapter for Siebel Invalid SOAP Request"
- Section 10.2.2.2, "Empty Result From Siebel Request"
- Section 10.2.2.3, "Oracle WebLogic Server Integration Adapters"
- Section 10.2.2.4, "Invalid SOAP Request"
- Section 10.2.2.5, "Empty Result From Oracle WebLogic Server Adapter Request"

When an adapter raises an exception during run-time, the SOAP agent in BSE produces a SOAP fault element in the generated SOAP response. The SOAP fault element contains fault code and fault string elements. The fault string contains the native error description from the adapter target system. Since adapters use the target system interfaces and APIs, whether an exception is raised depends on how the target systems interface or API treats the error condition. If a SOAP request message is passed to an adapter by the SOAP agent in BSE, and that request is invalid based on
the WSDL for that service, then the adapter may raise an exception yielding a SOAP fault.

While it is almost impossible to anticipate every error condition that an adapter may encounter, the following is a description of how adapters handle common error conditions and how they are then exposed to the Web services consumer application.

10.2.2.1 Oracle Application Adapter for Siebel Invalid SOAP Request

If Oracle Application Adapter for Siebel receives a SOAP request message that does not conform to the WSDL for the Web services being executed, then the following SOAP response is generated.

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>XD[FAIL] Parse failure (IS) 3: org.xml.sax.SAXParseException: Premature end of file.</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

10.2.2.2 Empty Result From Siebel Request

If Oracle Application Adapter for Siebel cannot connect to Siebel when executing a Web service, then the following SOAP response is generated.

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring><Exception> - major:4096 minor: -1 message:NSReadKey request 11 was abandoned after 37846ms connection:12a due to Connection shutdown request
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

10.2.2.3 Oracle WebLogic Server Integration Adapters

Oracle Adapters connect BSE to adapters whose engines are other Oracle servers. Therefore, since this type of adapter is used to connect BSE to many different target systems, the error handling behavior is consistent. Check the user guide for your adapter to see if you require the Oracle WebLogic Server Integration Adapter when running Web services.

10.2.2.4 Invalid SOAP Request

If Oracle Application Adapter for Siebel receives a SOAP request message that does not conform to the WSDL for the Web services being executed, then the following SOAP response is generated.

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
 <SOAP-ENV:Body>
```

---

10.2.2.5 Empty Result From Oracle WebLogic Server Adapter Request

If Oracle Application Adapter for Siebel executes a SOAP request using input parameters passed that do not match records in the target system, then the following SOAP response is generated.

**Note:** The condition for this adapter does not yield a SOAP fault.
When using Siebel XML to integrate with Siebel Integration Objects, the interface uses a Siebel Workflow.

Note: This appendix is intended as a supplement to the documentation designed for Oracle Application Adapter for Siebel user and is not intended as a substitute for Siebel documentation. For complete and up-to-date information on Siebel Workflow and policy topics, see the Siebel Bookshelf for your Siebel system.

This appendix contains the following sections:

- Section A.1, "Overview"
- Section A.2, "Creating a Siebel Workflow"

### A.1 Overview

A Siebel Workflow is defined within Siebel to emit or to receive Siebel XML. In either case, emitting or receiving is handled by Siebel transport services for MQSeries, File, or HTTP. This section contains the following topics that describe the use and creation of workflows that employ the supported transport services:

- Section A.1.1, "Siebel Workflows"
- Section A.1.2, "Using a Policy to Invoke a Siebel EAI Workflow"
- Section A.1.3, "Siebel Workflow - Outbound"
- Section A.1.4, "Siebel Workflow - Inbound"

#### A.1.1 Siebel Workflows

A Siebel Workflow is a series of Siebel Business Services linked together to accomplish a business task. You create workflows using the Siebel Client Workflow Administration screens. Workflows are invoked through one of the following methods:

- Using a workflow policy
- Using a run-time event (Siebel Event)
- Using a script (eScript or Siebel VB)

The following topic briefly describes how to invoke the workflow through a policy condition.
A.1.2 Using a Policy to Invoke a Siebel EAI Workflow

A workflow policy is defined by a set of conditions that performs a set of defined actions. A Siebel workflow policy consists of:

- Conditions that define circumstances, based on changes in the state of a Siebel database.
- Actions that define steps taken when conditions are fulfilled.

Creating a policy to invoke a workflow as an action involves the following steps:

1. Define an action to be executed after a policy is triggered. Use the Run Integration Process program.
2. Create a policy by setting conditions and selecting appropriate policy groups and actions.
3. Activate the policy by choosing an activation date.
4. Run the Generate Triggers server task from Server Administration windows to set the conditions to be monitored.
5. Start the Workflow Monitor agent after editing with the appropriate policy group (to which your policy belongs) to evaluate whether to perform an action.
6. Start the Workflow Action Agent server task from Server Administration windows to perform the action.

A.1.3 Siebel Workflow - Outbound

When a Siebel Workflow is triggered based on a Siebel policy, run-time, or script (eScript or Siebel VB) event, the result is the generation of a Siebel XML document that is placed on one of the Siebel transports. For example, when you add a new account in the Siebel Call Center application, you can design and configure a workflow to be triggered on the account transaction. You can design the workflow to extract the data for the new record, convert it to Siebel XML, and then, place it on an MQSeries message queue.

In this example, the Siebel Workflow process executes the following series of Siebel Business Services:

1. Calls the Siebel EAI Siebel Adapter that queries for the newly updated account record and places the data in its original internal structure into memory.
2. Calls the Siebel EAI XML Converter that converts the data into an XML message.
3. Calls the Siebel EAI MQSeries Transport that places the newly created XML message into the appropriate MQSeries message queue.

After the message is placed in the message queue, it is retrieved by Oracle Application Adapter for Siebel 6.3 and higher. The following Workflow sequence illustrates the previous steps, as shown in Figure A–1.

See Also:

Siebel Bookshelf documentation for more information on policy and other methods.
A.1.4 Siebel Workflow - Inbound

A Siebel Workflow that is triggered by an external event begins by receiving a Siebel XML document placed on one of its transports. The result might be the update of a Siebel record using the XML as input, for example, when a new account is added in another CRM system but also must be updated in the Siebel Call Center application. You can design and configure a Workflow to receive or listen on an MQSeries message queue. Upon receipt of the XML message, the Workflow processes the transaction into the Siebel system to update the record.

In this example, upon receipt of the Siebel XML message in the message queue, the Siebel MQSeries Receiver server task initiates a Siebel Workflow process, which in turn executes a series of Siebel Business Services as follows:

1. Calls the Siebel EAI XML Converter, which converts the XML message into Siebel internal format.
2. Calls the Siebel EAI Siebel Adapter, which applies the newly updated account record based on the methods defined in its service.

The following is a sample of the Workflow process, as shown in Figure A–2.

A.2 Creating a Siebel Workflow

This section contains the following topics that include procedures for creating Siebel Workflows in the Siebel Workflow Administration window:

- Section A.2.1, "Creating a Siebel Workflow for an Event Using MQSeries Transport"
- Section A.2.2, "Creating a Siebel Workflow for an Event Using File Transport"
- Section A.2.3, "Creating a Siebel Workflow for an Event Using HTTP Transport"
- Section A.2.4, "Creating a Siebel Workflow for a Service Using MQSeries Transport"
A.2.1 Creating a Siebel Workflow for an Event Using MQSeries Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for exporting Siebel Account record information using the MQSeries transport.

The following is a Siebel Workflow Administration window, as shown in Figure A–3.

Figure A–3 Siebel Workflow Administration Window

The following procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application. The Workflow is then placed on an MQSeries message queue.

To create a Siebel Workflow:

1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties.
   - The Account message contains Siebel Account data in hierarchical format.
   - Account XML specifies the Siebel Account data that the workflow has converted to XML.
   - The following window is displayed, showing the Process Properties tab active, as shown in Figure A–4.
2. Use the Siebel Workflow Administration windows to create a Workflow.


   The Business Service obtains the Account information from Siebel using the Query method.

   Output from this Business Service is generated in hierarchical format, as shown in Figure A–5.
4. Define an EAI XML Converter Business Service step and call it `Convert to XML`.

It is defined to receive the Account data from the EAI Siebel Adapter Business Service in hierarchical format and convert it to XML format, as shown in Figure A–6.
5. Define an EAI MQSeries server transport Business Service step and call it Send to Q, as shown in Figure A–7.

   It is defined to receive the Account data from the EAI XML Converter Business Service in Siebel XML format and send the Account XML to MQSeries using the Send method.
A.2.2 Creating a Siebel Workflow for an Event Using File Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for exporting Siebel Account record information using the File transport.

The following window is displayed with the Process Designer tab active, as shown in Figure A–8.
This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application and then places Siebel XML on the file system.

To create a Siebel Workflow:
1. On the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–9. Account message contains the Siebel Account data in hierarchical format. Account XML specifies which Siebel Account data the Workflow converted to XML.

2. Use the Siebel Workflow Administration windows to create a Workflow. As shown in Figure A–10, the following is an example of a Siebel Workflow Administration window.

The Business Service obtains the Account information from Siebel using the Query method.

Output from this Business Service is generated in hierarchical format.
4. As shown in Figure A–11, define an EAI XML Converter Business Service step and call it Convert Account Data to XML.

This Business Service is defined to receive the Account data from the EAI Siebel Adapter Business Service in hierarchical format and convert it to XML format.
5. As shown in Figure A–12, define an EAI File Transport Business Service step and call it Send Account Data.

This Business Service is defined to receive the Account data from the EAI XML Converter Business Service in Siebel XML format and send the Account XML to the file system in a specified directory using the Send method.

### A.2.3 Creating a Siebel Workflow for an Event Using HTTP Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for exporting Siebel Account record information using the HTTP transport.

This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application.

To create a Siebel Workflow:
1. As shown in Figure A–13, in the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties. Account message contains the Siebel Account data in hierarchical format. Account XML specifies the Siebel Account data that the Workflow has converted to XML.

2. Use the Siebel Workflow Administration windows to create a Workflow.
3. As shown in Figure A–14, define an EAI Siebel Adapter Business Service step to receive an instance of Account data and call it Get New Account.

The Business Service obtains the Account information from Siebel using the Query method.

Output from this Business Service is generated in hierarchical format.

4. Define an EAI XML Converter Business Service step and call it Convert to XML.

This Business Service is defined to receive the Account data from the EAI Siebel Adapter Business Service in hierarchical format and convert it to XML format.
5. Define an EAI HTTP Transport Business Service step and call it Send HTTP, as shown in Figure A–15.

This Business Service is defined to receive the Account data from the EAI XML Converter Business Service in Siebel XML format and send the Account XML to HTTP using the Send method.

A.2.4 Creating a Siebel Workflow for a Service Using MQSeries Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The Workflow was designed for importing Siebel Account record information through the MQSeries Transport.

Figure A–16 shows a sample Siebel Workflow Administration window.
This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application.

To create a Siebel Workflow:
1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–17.

Account message contains the Siebel Account data in hierarchical format.

Account XML specifies the Siebel Account data that the Workflow converted to XML.
2. Define an EAI MQSeries Server Transport Business Service step and call it **Receive**, as shown in **Figure A–18**.

   The Business Service is defined to receive the Account data from the MQSeries message queue.

   The EAI MQSeries Server Transport Business Service receives the Account data in Siebel XML format and sends it to the EAI XML Converter Business Service.
3. Define an EAI XML Converter Business Service step and call it Get XML from MQ & Convert to XML, as shown in Figure A–19.

This Business Service is defined to receive the Account data from the EAI MQSeries Server Transport Business Service in XML format and convert it to hierarchical format.
Figure A–20  Update Account Configuration for the EAI XML Converter that Uses MQ Series Transport

4. Define an EAI Siebel Adapter Business Service step and call it Update Account, as shown in Figure A–20.

This Business Service is defined to receive from the EAI XML Converter Business Service the instance of Account data in hierarchical format.

The Business Service applies the Account information into Siebel using the Insert or Update method.

A.2.5 Creating a Siebel Workflow for a Service Using File Transport

The following procedure is an example of a Siebel Workflow illustrated in the Siebel Workflow Administration window. The workflow was designed for importing Siebel Account record information through the File transport.

This procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application and then places Siebel XML on the file system.

The following is a Siebel Workflow Administration window with the Process Designer tab active, as shown in Figure A–21.
To create a Siebel Workflow:

**Figure A–21  Siebel Workflow Administration Window**

**Figure A–22  Process Properties Tab of the Workflow Process Window**
1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–22.

Account message contains the Siebel Account data in hierarchical format.

Account XML specifies the Siebel Account data that the workflow converted to XML.

![EAI File Transport Business Service Step](image)

2. Define an EAI FileTransport Business Service step and call it Receive Account Data, as shown in Figure A–23.

The Business Service is defined to receive the Account data from the file system. The EAI File Transport Business Service receives the Account data in Siebel XML format and sends it to the EAI XML Converter Business Service.
3. Define an EAI XML Converter Business Service step and call it `Convert from XML`, as shown in Figure A–24.

This Business Service is defined to receive the Account data from the EAI File Transport Business Service in XML format and convert it to hierarchical format.
4. Define an EAI Siebel Adapter Business Service step and call it Update or Insert New Account, as shown in Figure A–25.

This Business Service is defined to receive from the EAI XML Converter Business Service the instance of Account data in hierarchical format.

The Business Service applies the Account information into Siebel using the Insert or Update method.

**A.2.6 Creating a Siebel Workflow for a Service Using HTTP Transport**

The following procedure is an example of a Siebel workflow illustrated in the Siebel Workflow Administration window, as shown in Figure A–26. The Workflow was designed for importing Siebel Account record information through the HTTP transport, as shown in .
The following procedure describes how to create a Siebel Workflow that generates Siebel XML when an Account record is updated in the Siebel Call Center application and then places Siebel XML on the file system.

To create a Siebel Workflow:
1. In the Process Properties tab of the Workflow Process window, define the Account message and Account XML process properties, as shown in Figure A–27.

Account message contains the Siebel Account data in hierarchical format.

Account XML specifies the Siebel Account data that the workflow converted to XML.
2. Define an EAI XML Converter Business Service step and call it **XML to Property Set**, as shown in **Figure A–28**.

The Business Service is defined to receive the Account data from the EAI HTTP Transport Business Service in XML format and convert it to hierarchical format.
3. Define an EAI Siebel Adapter Business Service step and call it Update Siebel, as shown in Figure A–29.

The Business Service is defined to receive from the EAI XML Converter Business Service the instance of Account data in hierarchical format.

The Business Service applies the Account information into Siebel using the Insert or Update method.
adapter
Provides universal connectivity by enabling an electronic interface to be accommodated (without loss of function) to another electronic interface.

agent
Supports service protocols in listeners and documents.

business service
Also known as a Web service. A Web service is a self-contained, modularized function that can be published and accessed across a network using open standards. It is the implementation of an interface by a component and is an executable entity.

channel
 Represents configured connections to particular instances of back-end systems. A channel binds one or more event ports to a particular listener managed by an adapter.

listener
A component that accepts requests from client applications.

port
Associates a particular business object exposed by the adapter with a particular disposition. A disposition is a URL that defines the protocol and location of the event data. The port defines the end point of the event consumption.
adapter configuration, 3-3
adapter exceptions, 10-4
adapter types
resource, 3-3
adapters, 1-1
configuring, 3-3
deploying, 3-1 to 3-3, 4-2
integrating with BPEL Process Manager, 4-1, 6-1
troubleshooting, 10-1 to 10-7
Adapters node, 4-37, 4-39
Add Channel dialog box, 2-29, 4-35
Add Target dialog box, 2-6
Advanced tab, 2-7, 2-33, 2-35
ae batch script, 10-2
application adapters
configuring, 3-3
deploying, 3-1 to 3-3, 4-2
integrating with BPEL Process Manager, 4-1, 6-1
troubleshooting, 10-1 to 10-7
Application Explorer, 1-2, 1-5, 2-10 to 2-12, 4-7
debugging and, 10-2 to 10-3
J2CA configuration and, 3-3
OracleAS Adapter J2CA and, 10-4
targets and, 4-39
testing and, 10-2 to 10-3
troubleshooting, 10-2 to 10-3
WSDL files and, 4-34
application system objects
viewing, 2-10

B
BPEL Designer, 4-1, 6-1
BPEL Process Manager
integrating with adapters, 4-1, 6-1
OracleAS Adapter for Siebel and, 4-1
browsing metadata, 2-9
BSE (OracleAS Adapter Business Services Engine)
configuring, 2-3
troubleshooting, 10-4
BSE URL field, 2-4
Business Components, 1-2 to 1-6, 2-13, 2-24
business events, 1-2
Business Integration Manager, 1-5
Business Objects, 1-4, 2-24
browsing, 2-9
Business Service list, 2-18
business services, 1-2 to 1-6, 2-13, A-1 to A-3
browsing, 2-9
creating, 2-24 to 2-25
testing, 2-25 to 2-26
CCI (Common Client Interface), 3-1
CCI calls, 3-1
channel configuration parameters
Document type XML, 2-32
Error Directory, 2-33, 2-35
File Mask, 2-34
Message wait interval, 2-33
Mode of operation, 2-33
MQ server channel, 2-32
MQ server host, 2-32
MQ server port, 2-32
Poll interval, 2-35
Polling Location, 2-34
Port, 2-30, 4-36
Processing Mode, 2-35
Queue manager name, 2-32
Request queue name, 2-33
Response/Ack Directory, 2-35
Server port, 2-30, 4-36
Synchronization Type, 2-30, 2-33, 2-35, 4-36
Thread limit, 2-33, 2-35
Channel field, 4-40
channel types
File, 2-34
HTTP, 2-29, 4-34 to 4-37
MQSeries, 2-32
channels
creating, 1-2, 2-29 to 2-35, 4-34 to 4-37
deleting, 2-36
ing, 2-35
starting, 2-32 to 2-35, 4-37
stopping, 2-32 to 2-35, 4-37
testing and debugging, 4-37
Channels node, 2-29, 4-34
channels. See also listeners

Index
closing connections, 2-9
COM environment, 10-2
Common Client Interface (CCI), 3-1
configuration parameters, 3-4
  IWayConfig, 3-4
  IWayHome, 3-4
  IWayRepoPassword, 3-4
  IWayRepoURL, 3-4
  IWayRepoUser, 3-4
  Loglevel, 3-4
configurations
  connecting to, 2-5
  defining, 2-3 to 2-4
  overwriting, 3-4
Configurations node, 2-4
configuring adapters, 3-3
configuring events, 2-28 to 2-35
connecting to OracleAS Adapter J2CA, 10-4
connecting to Siebel, 2-5 to 2-9, 4-37, 4-39, 10-2 to 10-4, 10-6
Connection dialog box, 4-37
collection parameters, 10-2
  Language, 2-7
  Object Manager, 2-7
  Repository Manager, 2-7
connection types, 10-2
connections
  closing, 2-9
  deleting, 2-10
  establishing, 2-5 to 2-9, 2-19, 4-37
Connector
  deploying to Oracle Application Server, 3-1
  connector factories, 3-3
  connector factory objects, 3-3
    multiple, 3-5
Create Web Service dialog box, 2-24
creating channels, 4-34 to 4-37
creating events, 4-39 to 4-40
creating repository projects, 2-3 to 2-4
creating schemas, 2-12 to 2-14
creating Web services, 2-24 to 2-25

D
database connections
  opening, 3-4
databases
  connecting to, 3-4
  Oracle, 3-4
defining targets to Siebel, 2-6
deleting channels, 2-36
deleting targets, 2-10
deploying adapters, 3-1 to 3-3, 4-2
Description field, 2-24
design time, 2-3, 4-1, 4-33
configuring, 4-7
disconnecting from Siebel, 2-9
Document type XML parameter, 2-32

E
EAI (Enterprise Application Integration), 1-5
Eclipse. See JDeveloper
editing channels, 2-35
editing targets, 2-10
EJB (Enterprise Java Beans), 3-1
Enterprise Application Integration (EAI), 1-5
Enterprise Connector for J2EE Connector Architecture (J2CA), 1-1
Enterprise Java Beans (EJB), 3-1
Envelope type list, 2-18
Error Directory parameter, 2-33, 2-35
target systems and, 10-5
eScript script, A-1
event adapters, 2-28 to 2-35
event integration, 4-33
event messages, 4-34
event ports
  creating, 4-39 to 4-40
event schemas, 2-16
events, 1-2
  configuring, 2-28 to 2-35
  creating, 4-39 to 4-40
  triggering, 4-48 to 4-52
  workflows and, A-4 to A-16
Events node, 2-29
Existing Service Names list, 2-24
Export WSDL dialog box, 4-8

F
fault code elements, 10-5
fault string elements, 10-5
File channel, 2-34
File Mask parameter, 2-34
File transport, A-8 to A-13, A-21

G
Generate XML Schema wizard, 2-18

H
Hostname parameter, 2-4
HTTP channel, 2-29, 4-34 to 4-37
HTTP transport, A-13, A-25

I
inbound J2CA services, 4-34
inbound processing, 1-1 to 1-5, A-3
input arguments, 4-51
Input Arguments tab, 4-51
installation directories, 3-4
integration access methods
  OracleAS Adapter for Siebel and, 1-5
Integration Object (IO) node, 2-20
  creating, 4-38
Integration Objects, 1-2, 2-17
browsing, 2-9
IO (Integration Object) node, 2-20
creating, 4-38
IWayConfig parameter, 3-4
IWayHome parameter, 3-4
IWayRepoPassword parameter, 3-4
IWayRepoURL parameter, 3-4
IWayRepoUser parameter, 3-4

J
J2CA (Enterprise Connector for J2EE Connector Architecture), 1-1
J2CA architecture
Oracle Application Server Adapter and, 3-1
J2CA configuration
Application Explorer and, 3-3
J2CA resource adapters, 1-1, 3-1
J2CA services, 4-34
JAR files, 10-2
Java Data Bean, 1-5
Java program clients, 3-1
JDeveloper, 6-1

L
Language parameter, 2-7, 10-2
License and Method dialog box, 2-24
License field, 2-24
licenses, 2-24
list of nodes, 10-2
listeners. See also channels
log files, 10-1
log levels
overwriting, 3-4
Loglevel parameter, 3-4
logon parameters, 10-2

M
managed connector factories, 3-3
managed connector factory objects, 3-3
multiple, 3-5
ManagedConnectionFactory parameter, 3-4
Mediator Inbound Process, 5-11
Mediator Outbound Process, 5-2
message interactions
asynchronous, 1-2
synchronous, 1-2
message types
event, 4-34
Message wait interval parameter, 2-33
messages, 1-2
metadata
browsing, 2-9
viewing, 2-10
metadata tables, 2-11
Method Name field, 2-24
Methods node, 2-25
Mode of operation parameter, 2-33
MQ server channel parameter, 2-32
MQ server host parameter, 2-32
MQ server port parameter, 2-32
MQSeries channel, 2-32
MQSeries transport, A-4, A-16

N
navigation paths, 1-4
New Configuration dialog box, 2-3 to 2-4
Node list, 10-2
Node name field, 4-38
nodes
Adapters, 4-37, 4-39
Channels, 2-29, 4-34
Configurations, 2-4
connected, 2-9, 4-37
disconnected, 2-9
Events, 2-29
Integration Object, 2-20, 4-38
Methods, 2-25
Ports, 4-34
Sample Account, 2-20, 4-38
Services, 2-25
Siebel, 4-37 to 4-39

O
Object Manager, 1-2
Object Manager parameter, 2-7
Oracle Application Server
deployment of Connector to, 3-1
Oracle Application Server Adapter
J2CA architecture and, 3-1
troubleshooting, 10-6
Oracle databases, 3-4
Oracle JDeveloper, 6-1
Oracle JDeveloper BPEL Designer. See BPEL Designer, JDeveloper, or Oracle JDeveloper
Oracle’s Unified Method (OUM), ix
OracleAS Adapter
installation directory and, 3-4
OracleAS Adapter Application Explorer. See Application Explorer
OracleAS Adapter Business Services Engine (BSE), 1-1, 2-3
troubleshooting, 10-4
OracleAS Adapter for Siebel
BPEL Process Manager and, 4-1
deploying, 1-1, 4-2
integration access methods and, 1-5
troubleshooting, 10-1 to 10-7
OracleAS Adapter J2CA, 2-3 to 2-4
Application Explorer and, 10-4
correcting to, 10-4
outbound processing, 1-1 to 1-5, A-2

P
parameter types
channel configuration, 2-30 to 2-35, 4-36
configuration, 3-4
connection, 2-7, 10-2
Password parameter, 10-2
passwords, 3-4
Poll interval parameter, 2-35
Polling Location parameter, 2-34
Port Number parameter, 2-4
Port parameter, 2-30, 4-36
ports
creating, 2-28, 4-39 to 4-40
Ports node, 4-34
Process Designer tab, 4-51
Process Manager. See BPEL Process Manager
Process Simulator tab, 4-52
Processing Mode parameter, 2-35
projects
repository, 2-3 to 2-4
properties, 3-4
Protocol list, 2-20, 4-35, 4-38
Q
Query method, A-11
Queue manager name parameter, 2-32
R
Repository Manager parameter, 2-7
Repository Name parameter, 10-3 to 10-4
repository projects
creating, 2-3 to 2-4
Web services and, 2-3
REQUEST option, 2-33
Request queue name parameter, 2-33
request schemas, 2-13
Request tab, 2-32, 2-34
REQUEST_ACK option, 2-33
REQUEST_RESPONSE option, 2-33
requests
executing, 10-4
response schemas, 2-13
Response tab, 2-33 to 2-35
Response/Ack Directory parameter, 2-35
runtime, 2-3, 4-37 to 4-40
runtime events (Siebel Events), A-1
runtime integration, 4-48
S
Sample Account node, 2-20, 4-38
schema considerations, 2-13
Schema location field, 4-38
schemas
creating, 2-12 to 2-14, 2-16
scripts, A-1
Server port parameter, 2-30, 4-36
service names, 2-24
Service Provider list, 2-3 to 2-4
service schemas
creating, 2-12 to 2-14
Service-Oriented Architecture (SOA), 4-1
services, 1-2
creating, 2-24 to 2-25
testing, 2-25 to 2-26
workflows and, A-16 to A-29
Services node, 2-25
servlets, 3-1
Siebel
connecting to, 1-4, 2-5 to 2-9, 4-37, 10-2 to 10-4, 10-6
disconnecting from, 2-9
Siebel Business Components, 1-2 to 1-6, 2-13, 2-24
Siebel Business Objects, 1-4, 2-24
browsing, 2-9
Siebel business processes
invoking, 1-4
Siebel Business Services, 1-2 to 1-6, 2-13, A-1 to A-3
browsing, 2-9
Siebel Call Center
starting, 4-48
Siebel Client Workflow Administration screens, A-1
Siebel COM Data Interface, 1-5
Siebel Events (run-time events), A-1
Siebel Gateway server, 10-2
Siebel Integration Objects, 1-2, 2-17
browsing, 2-9
Siebel Java Data Bean, 1-5
Siebel node, 4-37 to 4-39
Siebel Object Manager, 1-2
Siebel Tools Schema Wizard, 2-16, 2-19
Siebel Tools window, 2-17
Siebel transports, 1-5
Siebel VB script, A-1
Siebel Workflow Administration window, 4-49
Siebel workflow policies, A-2
Siebel Workflows, 1-5, A-1 to A-29
creating, A-3
SiebelJL_Common.jar file, 10-2
SiebelJL_enu.jar file, 10-2
SOA (Service-Oriented Architecture), 4-1
SOAP agents, 10-5
SOAP faults, 10-5
SOAP requests, 10-5 to 10-7
errors and, 10-5 to 10-7
SOAP responses, 10-5 to 10-7
starting the Siebel Call Center, 4-48
Synchronization Type parameter, 2-30, 2-33 to 2-35, 4-36
system objects
viewing, 2-10
T
target systems
errors and, 10-5
Target Type list, 2-7
targets
connecting to, 2-5 to 2-9, 4-37, 4-39, 10-2 to 10-4
defining, 2-6
deleting, 2-10
disconnecting from, 2-9
Index-5

editing, 2-10
testing Web services, 2-25 to 2-26
thin clients, 10-2
Thread limit parameter, 2-33, 2-35
trace information, 10-1
transaction processing, 1-2
transports, 1-5
   File, A-8 to A-13, A-21
   HTTP, A-13, A-25
   MQSeries, A-4, A-16
triggering an event, 4-48 to 4-52
troubleshooting, 10-1 to 10-7
   Application Explorer, 10-2 to 10-3
   BSE, 10-4
   Web services, 10-4 to 10-7

U
updating adapter configuration, 3-3
UserName parameter, 10-2

V
viewing system objects, 2-10

W
Web Service Definition Language (WSDL), 2-27 to 2-28
Web service names, 2-24
Web services, 1-1 to 1-2, 1-6, 2-3
   creating, 2-24 to 2-25
   integrating, 4-1
   repository projects and, 2-3
tenning, 2-25 to 2-26
dromleshooting, 10-4 to 10-7
work flow elements, 4-51
workflow policies, A-2
Workflow Process window, A-4 to A-23, A-27
Workflow Processes window, 4-49
Workflows, A-1 to A-29
   creating, A-3
WSDL (Web Service Definition Language), 2-27 to 2-28
WSDL documents, 4-1
WSDL File Name field, 4-40
WSDL files, 4-1, 6-1
   Application Explorer and, 4-34
   creating, 4-34

X
XDR schemas
   creating, 2-16
XML documents, 1-4, A-2
XML messages, 1-2, A-2 to A-3
XML schemas, 1-2, 1-6
   creating, 2-12 to 2-14, 2-16