Oracle® Fusion Middleware Application Adapters
Application Adapter for SAP R/3 (SAP JCo 3.0) User’s Guide for Oracle WebLogic Server
12c Release 1 (12.1.3.0.0)
E58251-01

October 2014
Provides information on how to integrate with SAP R/3 systems and develop applications.
Preface .. ix
 Audience .. ix
 Documentation Accessibility ... ix
 Related Documents .. ix
 Conventions .. x

1 Introduction
 Adapter Features .. 1-1
 Supported Versions and Platforms ... 1-3
 Classical SAP Technologies for ABAP ... 1-3
 Integration with SAP R/3 ... 1-4
 Adapter Architecture ... 1-5
 Oracle Adapter Business Services Engine (BSE) Architecture .. 1-5
 Oracle Adapter J2CA Architecture .. 1-6
 BSE Versus Oracle Adapter J2CA Deployment ... 1-7
 Sample Projects .. 1-8
 Quick Start Guide ... 1-9
 Installation .. 1-9
 Copying Third-Party Library Files .. 1-10
 Configuration .. 1-10
 WebLogic Server Deployment and Integration ... 1-11
 Creating Configurations, Targets, and Channels in Application Explorer ... 1-11
 Working With Service Components in the SOA Suite ... 1-12
 Working With Oracle Service Bus .. 1-12
 Working With Synchronous SAP R/3 Events ... 1-12
 Additional Features .. 1-13
 Other Features .. 1-13

2 Getting Started
 Verifying the SAP Java Connector (SAP JCo) .. 2-1
 Verifying SAP JCo on Windows Platforms .. 2-1
 Verifying SAP JCo on UNIX Platforms ... 2-2
 Identifying SAP R/3 Logon Parameters ... 2-3
 User Parameters .. 2-3
 System Settings (Application Server) Parameters ... 2-4
3 SAP Java Connector 3.0xx Considerations

- Supported Platforms ... 3-1
- Connection Management .. 3-2
- Connection Pooling ... 3-2
- Single Server Support ... 3-4
- Server Threads ... 3-4
 - Uniqueness ... 3-4
 - Load Balancing Adapter Configuration 3-5
 - Load Balancing SAP Configuration ... 3-5
- Changing Parameters and Table Parameters 3-5
- Trace Level Parameter ... 3-6

4 Configuring Oracle Application Adapter for SAP R/3

- Starting Application Explorer ... 4-1
- Configuring Repository Settings ... 4-2
- Creating a Repository Configuration ... 4-2
 - Creating a Configuration for BSE ... 4-2
 - Creating a Configuration for J2CA .. 4-3
 - Connecting to a BSE or J2CA Configuration 4-4
- Establishing a Connection (Target) for SAP R/3 4-5
 - Defining a Target to SAP R/3 .. 4-5
 - Connecting to a Defined SAP R/3 Target 4-12
 - Managing a Connection to SAP R/3 4-13
- Viewing Application System Objects ... 4-15
- Creating XML Schemas ... 4-15
- Generating WSDL (J2CA Configurations Only) 4-16
- Creating and Testing a Web Service (BSE Configurations Only) ... 4-17
 - Creating a Web Service .. 4-18
 - Testing a Web Service ... 4-19
 - Identity Propagation ... 4-19
- Configuring an Event Adapter .. 4-20
 - Creating and Editing a Channel .. 4-20
 - Schema Validation ... 4-27
- Configuring the SAProuter Service .. 4-28
 - Configuring SAProuter .. 4-28
 - Testing SAProuter With Oracle Components 4-29
 - Verifying SAProuter Configuration 4-31
5 Oracle WebLogic Server Deployment and Integration

Adapter Integration with Oracle WebLogic Server ... 5-1
Deployment of Adapter ... 5-1
Updating Adapter Configuration ... 5-2
Creating a Managed Connector Factory Object .. 5-2
Creating Multiple Managed Connector Factory Objects ... 5-4
Modifying WSDL Files for Additional Connection Factory Values 5-6

6 Integration With BPEL Service Components in the Oracle SOA Suite

Overview .. 6-1
Deployment of Adapter ... 6-2
Configuring a New Application Server Connection ... 6-2
Designing an Outbound BPEL Process for Service Integration (J2CA Configuration) 6-7
Generating WSDL for Request/Response Service .. 6-8
Creating an Empty Composite for SOA .. 6-9
Defining a BPEL Outbound Process ... 6-12
Deploying the BPEL Outbound Process .. 6-29
Invoking the Input XML Document in the Oracle Enterprise Manager Console 6-33
Testing Outbound BPEL and Mediator Processes ... 6-35
Designing an Inbound BPEL Process for Event Integration (J2CA Configuration) 6-36
Generating WSDL for Event Integration .. 6-36
Creating an Empty Composite for SOA .. 6-43
Defining a BPEL Inbound Process ... 6-43
Deploying the BPEL Inbound Process ... 6-52
Triggering an Event in SAP R/3 .. 6-53
Working With Synchronous SAP R/3 Events Using BPEL (J2CA Configuration) 6-55
Overview .. 6-55
Configuring the Adapter Target .. 6-56
Configuring the Channel ... 6-56
Generating WSDL for a Message .. 6-57
Creating a BPEL Process in JDeveloper .. 6-58
Designing an Outbound BPEL Process for Service Integration (BSE Configuration) 6-63
Generating a WSDL File for Request and Response Services Using a Web Service 6-63
Creating an Empty Composite for SOA ... 6-64
Defining a BPEL Outbound Process ... 6-65

7 Integration With Mediator Service Components in the Oracle SOA Suite

Configuring a New Application Server Connection ... 7-2
Configuring a Mediator Outbound Process (J2CA Configuration) 7-2
Creating an Empty Composite for SOA .. 7-2
Defining a Mediator Outbound Process .. 7-3
Deploying the Mediator Outbound Process .. 7-12
Invoking the Input XML Document in the Oracle Enterprise Manager Console 7-12
Configuring a Mediator Inbound Process (J2CA Configuration) ... 7-12
Creating an Empty Composite for SOA .. 7-12
Defining a Mediator Inbound Process ... 7-13
8 Integration With BPM Service Components in the Oracle SOA Suite

Overview .. 8-1

Deployment of Adapter ... 8-2

Configuring a New Application Server Connection ... 8-2

Designing an Outbound BPM Process Using Transformations for Service Integration (J2CA Configuration) .. 8-2

- Creating an Empty Composite for BPM ... 8-2
- Defining a BPM Outbound Process ... 8-3
- Adjusting for Known Deployment Issues With 12c ... 8-25
- Deploying the BPM Outbound Process ... 8-25
- Invoking the Input XML Document in the Oracle Enterprise Manager Console 8-25

Designing an Inbound BPM Process Using Transformations for Event Integration (J2CA Configuration) .. 8-28

- Creating an Empty Composite for BPM ... 8-28
- Defining a BPM Inbound Process .. 8-28

Working With Synchronous SAP R/3 Events Using BPM (J2CA Configuration) 8-43

- Configuring the Adapter Target and Channels .. 8-43
- Generating a WSDL File for a Message .. 8-43
- Creating a BPM Process in JDeveloper ... 8-43

Designing an Outbound BPM Process Using Transformations for Service Integration (BSE Configuration) .. 8-50

- Creating an Empty Composite for BPM ... 8-50
- Defining a BPM Outbound Process ... 8-50

Configuring a Pipeline .. 8-50

- Configuring a File Type Business Service ... 8-50
- Configuring a WSDL-based Business Service .. 8-50
- Publishing a WSDL From Application Explorer to Oracle Service Bus...................................... 8-50
- Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 8-50

Defining a Mediator Outbound Process ... 8-50

- Creating an Empty Composite for SOA ... 8-50
- Defining a Mediator Outbound Process .. 8-50

Adjusting for Known Deployment Issues With 12c ... 8-50

- Configuring a Mediator Outbound Process .. 8-50
- Creating an Empty Composite for SOA ... 8-50
- Defining a Mediator Outbound Process .. 8-50

Creating an Empty Composite for SOA ... 8-50

Defining a Mediator Outbound Process .. 8-50

Deploying the BPM Outbound Process ... 8-50

Invoking the Input XML Document in the Oracle Enterprise Manager Console 8-50

Creating an Empty Composite for BPM ... 8-50

Defining a BPM Outbound Process ... 8-50

Creating a BPM Process in JDeveloper ... 8-50

Generating a WSDL File for a Message .. 8-50

Creating a BPM Process in JDeveloper ... 8-50

Configuring a Pipeline With Proxy Service ... 8-50

Configuring a File Type Business Service ... 8-50

Configuring a WSDL-based Business Service .. 8-50

Publishing a WSDL From Application Explorer to Oracle Service Bus 8-50

Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 8-50

Starting Oracle Service Bus and Creating Project Folders .. 8-50

Starting Oracle Service Bus and Creating Project Folders .. 8-50

Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 8-50

Publishing a WSDL From Application Explorer to Oracle Service Bus 8-50

Configuring a WSDL-based Proxy Service ... 8-50

Configuring a File Type Business Service ... 8-50

Configuring a Pipeline .. 8-50

Configuring an Outbound Process Using sbconsole (BSE Configuration) 9-37

- Starting Oracle Service Bus and Creating Project Folders .. 9-37
Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus 9-37
Publishing a WSDL From Application Explorer to Oracle Service Bus 9-38
Configuring a File Type Business Service .. 9-39
Configuring a WSDL-based Business Service ... 9-39
Configuring a Pipeline With Proxy Service .. 9-41

Working With Synchronous SAP R/3 Events Using Oracle Service Bus (J2CA Configuration) 9-50
Starting Oracle Service Bus and Creating Project Folders .. 9-51
Configuring Adapter Targets and Channels .. 9-51
Generating a WSDL File for a Message ... 9-51
Creating a Business Service in the Oracle Service Bus Console 9-52
Creating a Proxy Service in the Oracle Service Bus Console 9-53
Configuring a Pipeline in the Proxy Service ... 9-57

Configuring JMS Proxy Services Using Oracle Service Bus (J2CA Configuration) 9-58
Configuring HTTP Proxy Services Using Oracle Service Bus (J2CA Configuration) 9-76

10 Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper

Configuring an OSB Outbound Process Using JDeveloper (J2CA Configuration) 10-1
Creating a Service Bus Application for OSB ... 10-2
Defining an OSB Outbound Process .. 10-3
Deploying the OSB Outbound Process ... 10-17

Configuring an OSB Inbound Process Using JDeveloper (J2CA Configuration) 10-20
Creating a Service Bus Application for OSB ... 10-20
Defining an OSB Inbound Process .. 10-20
Deploying the OSB Inbound Process .. 10-30

Configuring an OSB Outbound Process Using JDeveloper (BSE Configuration) 10-30
Creating a Service Bus Application for OSB ... 10-31
Defining an OSB Outbound Process .. 10-31
Deploying the OSB Outbound Process ... 10-44

Working With Synchronous SAP R/3 Events of Oracle Service Bus Using JDeveloper (J2CA Configuration) ... 10-44
Creating a Service Bus Application for OSB ... 10-45
Defining an OSB Outbound Process .. 10-45
Deploying an OSB Process .. 10-50

Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration) 10-50

Configuring a JMS Outbound Process Using JDeveloper (J2CA Configuration) 10-56
Configuring an HTTP Outbound Process Using JDeveloper (J2CA Configuration) 10-65

11 Key Features

Exception Filter ... 11-1
Configuring the Exception Filter .. 11-1

Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM) 11-13
Configuring Credential Mapping ... 11-14

Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper 11-18
Configuring Credential Mapping ... 11-19
Preface

Welcome to *Oracle Fusion Middleware Application Adapter for SAP R/3 (SAP JCo 3.0) User’s Guide for Oracle WebLogic Server*. This document provides information on how to integrate with SAP R/3 systems and develop applications.

Audience

This document is intended for system administrators and developers who integrate with SAP R/3 systems and develop applications.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Enterprise Repository 12c Release 1 (12.1.3.0.0) documentation set:

- *Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server*
- *Oracle Fusion Middleware Application Adapter Upgrade Guide for Oracle WebLogic Server*
- *Oracle Fusion Middleware Application Adapter Best Practices Guide for Oracle WebLogic Server*
- Oracle’s Unified Method (OUM)

A wealth of additional Governance information can be found within Oracle’s Unified Method (OUM). OUM can be used by Oracle employees, Oracle Partner Network Certified Partners or Certified Advantage Partners, and Clients who either participate in the OUM Customer Program or are engaged on projects.
where Oracle provides consulting services. OUM is a web-deployed toolkit for planning, executing and controlling software development and implementation projects.

For more information about OUM, see the OUM FAQ at

http://my.oracle.com/portal/page/myo/ROOTCORNER/KNOWLEDGEAREAS1/BUSINESS_PRACTICE/Methods/Learn_about_OUM.html

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Oracle WebLogic Server connects to a SAP R/3 system through Oracle Application Adapter for SAP R/3. Oracle Application Adapter for SAP R/3 provides connectivity and carries out interactions on a SAP R/3 system.

Note: Throughout this document, `<ORACLE_HOME>` refers to the 12c installed home location.

<ADAPTER_HOME> refers to the following:

- For SOA:

 `<ORACLE_HOME>/soa/soa/thirdparty/ApplicationAdapters`

- For OSB:

 `<ORACLE_HOME>/osb/3rdparty/ApplicationAdapters`

This chapter contains the following sections:

- Section 1.1, "Adapter Features"
- Section 1.2, "Classical SAP Technologies for ABAP"
- Section 1.3, "Integration with SAP R/3"
- Section 1.4, "Adapter Architecture"
- Section 1.5, "BSE Versus Oracle Adapter J2CA Deployment"
- Section 1.6, "Sample Projects"
- Section 1.7, "Quick Start Guide"

1.1 Adapter Features

Oracle Application Adapter for SAP R/3 using SAP Java Connector (SAP JCo) 3.0xx is a remote function call adapter that provides a means to exchange real-time business data between SAP Enterprise Central Component (ECC) 5.0/6.0 systems and other application, database, or external business partner systems.
The adapter enables external applications for inbound and outbound processing with SAP R/3. Oracle Application Adapter for SAP R/3 can be deployed as a J2EE Connector Architecture (J2CA) version 1.0 resource adapter. This deployment is referred to as Oracle Adapter J2CA. It can also be deployed as a Web services servlet and is referred to as Oracle Adapter Business Services Engine (BSE).

This section contains the following topic:

- **Section 1.1.1, "Supported Versions and Platforms"**

Oracle Application Adapter for SAP R/3 uses XML messages to enable non-SAP R/3 applications to communicate and exchange transactions with SAP R/3 using services and events. The role of services and events is outlined. Services and events are described as follows:

- **Services (also known as outbound processing):** Enable applications to call an SAP R/3 business object or business operation.

- **Events (also known as inbound processing):** Enable applications to access SAP R/3 data only when an event occurs.

To support event functionality, channels are supported. A channel represents configured connections to particular instances of back-end or other types of systems.

The channel is the adapter component that receives events in real time from the EIS application. The channel component can be a File reader, an HTTP listener, a TCP/IP listener, or an FTP listener. A channel is always EIS specific. The adapter supports multiple channels for a particular EIS, which enables the user to choose the optimal channel component based on deployment requirements. In the case of this adapter, the channel is an RFC server.

Oracle Application Adapter for SAP R/3 provides:

- Support for bidirectional message interactions.

- Oracle Adapter Application Explorer (Application Explorer), a GUI tool which uses SAP R/3 object repository metadata to build XML schemas and Web services to handle adapter requests or event data.

- Support for Remote Function Calls (RFC), Business Application Programming Interfaces (BAPI), and Intermediate Documents (IDoc) interfaces to SAP R/3.

- XML schemas and WSDL files for the J2CA 1.0 and J2CA 1.5 resource adapter.

- Web services for BSE.

Data Type Limitation: Data types \(h \) and \(g \) are not supported. Type \(h \) represents a deep structure. Type \(g \) represents a variable length string. RFCTYPE_XSTRING and RFCTYPE_XMLDATA, as defined in SAPRFC.H, are not supported due to a limitation in the RFC Protocol.
1.1.1 Supported Versions and Platforms

The following SAP R/3 platforms are supported by Oracle Application Adapter for SAP R/3:

- SAP R/3 Enterprise 47x100
- SAP R/3 Enterprise 47x200
- mySAP ERP Central Component (ECC) 5.0, deployed on SAP NetWeaver 2004
- mySAP ERP Central Component (ECC) 6.0, deployed on SAP NetWeaver 2004s
- SAP Java Connector (SAP JCo) Version 3.0xx.

For the current release status of the SAP Java Connector, refer to SAP Note #549268 in the SAP Service Marketplace.

Note: Release versions may vary by product component. In addition, SAP functions may vary by SAP product version and support package.

1.2 Classical SAP Technologies for ABAP

Oracle Application Adapter for SAP R/3 is designed to provide standard access to SAP R/3 interfaces such as Remote Function Call (RFC) modules, BAPIs (Business Application Programming Interfaces), and IDocs (Intermediate Documents), that are used to support existing business processes.

The adapter only supports Enterprise Central Components (ECC) that are accessed by classical SAP technologies. If you require support for additional SAP functionality and components, then contact your Oracle Software Sales Representative.

These business components and methods are available to the adapter as requests of SAP R/3 and to the event adapter when SAP invokes its remote requests and work in the following ways:

- Business Application Programming Interfaces (BAPIs) are interfaces within the business framework that are used to link SAP components to one another or to third-party components. BAPIs are called synchronously and return information.
- Remote Function Call (RFC) Modules are SAP application interfaces that enable clients to invoke SAP technologies and receive responses.

See Also: *Oracle Application Server Adapter Concepts Guide*
1.3 Integration with SAP R/3

You can use Oracle Application Adapter for SAP R/3 to initiate a SAP R/3 business process, such as add/update account, or you can use the adapter as part of an integration effort to connect SAP R/3 and non-SAP R/3 systems.

All functions are processed synchronously, but all content in ALE IDocs is asynchronous.

In service mode, the Oracle Application Adapter for SAP R/3 can send requests to SAP using the BAPI, RFC, or ALE interfaces.

The adapter quickly and easily integrates your SAP R/3 IDocs, RFCs, and BAPIs with mission critical SAP R/3 system applications and other enterprise applications. The benefits of the adapter include:

- Elimination of the requirement for custom coding.
- Consistent data representation.
Provides a standard XML representation of event data and request/response documents for SAP R/3.

The developer is freed from the specific details of the SAP R/3 interface (BAPI, RFC, IDoc) and the specific configuration details of the target SAP R/3 system.

- Adherence to SAP R/3 ABAP serialization rules and SAP R/3 Interface Repository standards published by SAP AG.

During event processing, the adapter receives RFCs and IDocs directly from SAP R/3. The SAP R/3 system can be configured to send an IDoc or RFC to a logical system when a certain event occurs, in this case to the adapter. The output sent by SAP R/3 can be in any of the following forms:

- An RFC request, for example, `RFC_SYSTEM_INFO`
- A BAPI request, for example, `BAPI_COMPANYCODE_GETLIST`
- An IDoc

1.4 Adapter Architecture

This section describes the architecture of the Oracle Application Adapter for SAP R/3. It contains the following topics:

- **Section 1.4.1, "Oracle Adapter Business Services Engine (BSE) Architecture"**
- **Section 1.4.2, "Oracle Adapter J2CA Architecture"**

Oracle Application Adapter for SAP R/3 uses Application Explorer with the following components:

- Oracle Adapter Business Services Engine (BSE)
- Enterprise Connector for J2EE Connector Architecture (J2CA)

Application Explorer (used to configure SAP connections and create Web services and events) can be configured to work in a Web services environment with BSE. When working in a J2CA environment, the connector uses the Common Client Interface (CCI) to provide integration services using adapters instead of Web services.

1.4.1 Oracle Adapter Business Services Engine (BSE) Architecture

Figure 1–1 shows the generic architecture for BSE for packaged applications. The adapter works with BSE, as deployed to a Web container in a J2EE application server.

Application Explorer, a design-time tool deployed along with BSE, is used to configure adapter connections, browse EIS objects, configure services, and configure listeners to listen for EIS events. Metadata created while you perform these operations are stored in the repository by BSE.

BSE uses SOAP as a protocol for receiving requests from clients, interacting with the EIS, and sending responses from the EIS back to clients.

BSE supports both a file-based and an Oracle database repository. The BSE repository stores the EIS connection information and the Web Service Definition Language (WSDL) for adapter services. A single instance of BSE can connect to multiple EIS applications.

Note: Do not use a file repository for BSE in production environments.
1.4.2 Oracle Adapter J2CA Architecture

Figure 1–2 shows the generic architecture for Oracle Adapter J2CA for packaged applications. This is a pure J2CA 1.0 resource adapter deployed in managed mode to the Oracle WebLogic Server. It is a universal adapter. One adapter can connect to many EIS applications.

The Oracle Adapter J2CA repository contains the list of EIS connection names and the associated connection parameters. The repository can be a file system or an Oracle database. It is deployed as a RAR file and has an associated deployment descriptor called ra.xml. You can create multiple connector factories by editing the Oracle WebLogic Server deployment descriptor ra.xml. For more information, see Chapter 5, "Oracle WebLogic Server Deployment and Integration".
1.5 BSE Versus Oracle Adapter J2CA Deployment

If you are using Oracle Application Adapter for SAP R/3 with Oracle SOA Suite components (for example, BPEL, Mediator, BPM, or OSB), then note that:

- Only Oracle Adapter J2CA deployment supports inbound integration (event notification) with Oracle SOA Suite components.
- Oracle Adapter J2CA and BSE deployments support outbound integration (request-response service) with Oracle SOA Suite components.

The following two factors explain the differences between deploying BSE and Oracle Adapter J2CA. Understanding these factors can help in selecting a deployment option.

1. BSE has the following advantages:
 - Can be deployed in a separate instance of Oracle WebLogic Server.
 - Provides better distribution of load.
 - Conforms more closely to the Service Oriented Architecture (SOA) model for building applications.

See Also:
- Oracle Application Server Adapter Concepts Guide
- Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server
2. Oracle Adapter J2CA does provide slightly better performance than BSE.

1.6 Sample Projects

Sample projects for the Oracle Application Adapter for SAP R/3 that demonstrate outbound and inbound integration scenarios using Oracle BPEL, Mediator, BPM, and OSB tools are packaged with the Application Adapters installation. The following table lists the locations of the sample projects:

<table>
<thead>
<tr>
<th>Sample Project</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound BPEL Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPEL\J2CA\Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound BPEL Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPEL\J2CA\Inbound_Project</code></td>
</tr>
<tr>
<td>Synchronous BPEL Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPEL\J2CA\Synchronous_Events</code></td>
</tr>
<tr>
<td>Outbound BPEL Process (BSE)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPEL\BSE\Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound Mediator Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\Mediator\J2CA\Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound Mediator Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\Mediator\J2CA\Inbound_Project</code></td>
</tr>
<tr>
<td>Outbound Mediator Process (BSE)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\Mediator\BSE\Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound BPM Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPM\J2CA\Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound BPM Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPM\J2CA\Inbound_Project</code></td>
</tr>
<tr>
<td>Synchronous BPM Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPM\J2CA\Synchronous_Events</code></td>
</tr>
<tr>
<td>Outbound BPM Process (BSE)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPM\BSE\Outbound_Project</code></td>
</tr>
<tr>
<td>Outbound OSB sbconsole Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\OSB\J2CA\SAP_Sample_J2CA_OSB_Outbound_Project</code></td>
</tr>
<tr>
<td>Inbound OSB sbconsole Process (J2CA)</td>
<td><code><ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\OSB\J2CA\SAP_Sample_J2CA_OSB_Inbound_Project</code></td>
</tr>
</tbody>
</table>
1.7 Quick Start Guide

This section enables you to quickly learn the basic steps to install and configure Oracle Application Adapter for SAP R/3 and to use it immediately. It includes the following topics:

- Section 1.7.1, "Installation"
- Section 1.7.2, "Copying Third-Party Library Files"
- Section 1.7.3, "Configuration"
- Section 1.7.4, "WebLogic Server Deployment and Integration"
- Section 1.7.5, "Creating Configurations, Targets, and Channels in Application Explorer"
- Section 1.7.6, "Working With Service Components in the SOA Suite"
- Section 1.7.7, "Working With Oracle Service Bus"
- Section 1.7.8, "Working With Synchronous SAP R/3 Events"
- Section 1.7.9, "Additional Features"
- Section 1.7.10, "Other Features"

1.7.1 Installation

1. Download the Oracle Fusion Middleware Application Adapters installation file for the corresponding platform being used and execute the file.

- **Windows:** iwora12c_application-adapters_win.exe
- **Linux:** iwora12c_application-adapters_linux.bin
- **Solaris:** iwora12c_application-adapters_solaris.bin
- **HPUX:** iwora12c_application-adapters_hpux.bin
- **AIX**: `iwora12c_application-adapters_aix.bin`

2. The Oracle Fusion Middleware Application Adapters must be installed in one of the following directories:
 - **For SOA**: `<ORACLE_HOME>\soa\soa\thirdparty\ApplicationAdapters`
 - **For OSB**: `<ORACLE_HOME>\osb\3rdparty\ApplicationAdapters`

For more information on installing the Oracle Fusion Middleware Application Adapters, see the *Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server*.

1.7.2 Copying Third-Party Library Files

Once the adapter installation is completed, copy the required third-party library files (`sapjco3.jar` and `sapjco3.dll`) for SAP Java Connector (SAP JCo) to the following directories:

- `<ADAPTER_HOME>\lib`
- `<ORACLE_HOME>\user_projects\domains\base_domain\lib`

The `sapjco3.dll` file must be copied to the following directory:

C:\Windows\system32

For more information on installing SAP JCo on other operating systems, see the *Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server*.

1.7.3 Configuration

Navigate to `<ADAPTER_HOME>` and make the following changes:

1. Open `iwafjca.rar\META-INF\ra.xml` and add the following values under the specified config-property-name parameters, as shown in Table 1–1.

<table>
<thead>
<tr>
<th>Config-Property-Name</th>
<th>Config-Property-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWayHome</td>
<td><code><ADAPTER_HOME></code></td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>■ For SOA:</td>
</tr>
<tr>
<td></td>
<td>C:\12C_soa\soa\soa\thirdparty\ApplicationAdapters</td>
</tr>
<tr>
<td></td>
<td>■ For OSB:</td>
</tr>
<tr>
<td></td>
<td>C:\12c_OSB\osb\3rdparty\ApplicationAdapters</td>
</tr>
<tr>
<td>IWayConfig</td>
<td>The name of the configuration. For example:</td>
</tr>
<tr>
<td></td>
<td>jca_sample</td>
</tr>
</tbody>
</table>

2. Open `ibse.war\WEB-INF\web.xml` and add the following values under the specified param-name parameters, as shown in Table 1–2.
1.7.4 WebLogic Server Deployment and Integration

1. Start the WebLogic server and open the WebLogic console.

2. Deploy the adapter components (ibse.war, iwafjca.war, and iwafjca.rar files) and start the deployed adapter components.

For more information on deployment, integration, and target creation, see the Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server (Section 2.4, "Configuring and Deploying J2CA" and Section 2.5, "Configuring and Deploying Business Services Engine").

1.7.5 Creating Configurations, Targets, and Channels in Application Explorer

For more information on creating configurations, targets, and channels in Application Explorer, see the following sections in this user’s guide:

- Starting Application Explorer: Section 4.1, "Starting Application Explorer"
1.7.6 Working With Service Components in the SOA Suite

Oracle Application Adapter for SAP R/3 integrates with service components in SOA suite such as BPEL, Mediator, and BPM. Required processes are created in JDeveloper and then deployed to the SOA server.

For more information on working with BPEL, Mediator, and BPM service components, see:
- Chapter 6, "Integration With BPEL Service Components in the Oracle SOA Suite"
- Chapter 7, "Integration With Mediator Service Components in the Oracle SOA Suite"
- Chapter 8, "Integration With BPM Service Components in the Oracle SOA Suite"

1.7.7 Working With Oracle Service Bus

Oracle Application Adapter for SAP R/3 integrates with Oracle Service Bus (OSB) to facilitate Web service integration. Required processes are created in the Oracle Service Bus Console. The process can also be created in JDeveloper, and then deployed to the SOA server.

For more information on working with OSB, see Chapter 9, "Configuring an Outbound and Inbound Process for Oracle Service Bus Using sbconsole".

For more information on working with OSB Jdeveloper, see Chapter 10, "Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper".

1.7.8 Working With Synchronous SAP R/3 Events

Synchronous SAP R/3 events are supported with BPEL, BPM, and OSB. For more information on working with Synchronous events, see the following sections in this user’s guide:
- BPEL: Section 6.6, "Working With Synchronous SAP R/3 Events Using BPEL (J2CA Configuration)"
- BPM: Section 8.6, "Working With Synchronous SAP R/3 Events Using BPM (J2CA Configuration)"
- OSB: Section 9.5, "Working With Synchronous SAP R/3 Events Using Oracle Service Bus (J2CA Configuration)"
1.7.9 Additional Features

The following is list of additional features and their relevant sections in this user’s guide:

- Configuring Connection Pooling: Section 3.3, "Connection Pooling"
- Inbound Schema Validation: See step 7C in Section 6.5.1.2, "Generating WSDL for Event notification".

1.7.10 Other Features

The following is list of other features and their relevant sections in this user’s guide:

- JMS Proxy Services: Section 9.6, "Configuring JMS Proxy Services Using Oracle Service Bus (J2CA Configuration)"
- HTTP Proxy Services: Section 9.7, "Configuring HTTP Proxy Services Using Oracle Service Bus (J2CA Configuration)"
- Working With the Exception Filter: Section 11.1, "Exception Filter"
- Configuring Credential Mapping:
 - Section 11.2, "Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)"
 - Section 11.3, "Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper"
This section provides a quick start guide to use the Oracle Application Adapter for SAP R/3. This chapter contains the following sections:

- Section 2.1, "Verifying the SAP Java Connector (SAP JCo)"
- Section 2.2, "Identifying SAP R/3 Logon Parameters"

2.1 Verifying the SAP Java Connector (SAP JCo)

Once you have installed the SAP Java Connector (SAP JCo), as a best practice, you can verify the connector to make sure it is installed correctly and that all the required SAP JCo library files are available. This section contains the following topics:

- Section 2.1.1, "Verifying SAP JCo on Windows Platforms"
- Section 2.1.2, "Verifying SAP JCo on UNIX Platforms"

2.1.1 Verifying SAP JCo on Windows Platforms

Perform the following steps to verify SAP JCo on Windows:

1. Navigate to the directory where the sapjco3.jar file is located.
2. Right-click the sapjco3.jar file, select Open With from the context menu, and click Java 2 Platform Standard Edition binary.

 The SAP Java Connector (JCo) dialog is displayed, as shown in Figure 2–1.
Figure 2–1 SAP Java Connector (JCo) dialog

All the required information that pertains to the SAP Java Connector on your Windows platform is provided.

3. Once you have reviewed the SAP Java Connector files, click Close.

2.1.2 Verifying SAP JCo on UNIX Platforms

Perform the following steps to verify SAP JCo on UNIX:

1. Navigate to a UNIX command prompt.

2. Execute the following command:


   ```
   $ java -jar sapjco3.jar -stdout
   ```

 All the required information that pertains to the SAP Java Connector on your UNIX platform is provided, as shown in the following example.

   ```
   | SAP Java Connector (JCo) |
   ```
3. Review the information for the SAP Java Connector on your UNIX platform.

2.2 Identifying SAP R/3 Logon Parameters

This section identifies the SAP R/3 logon parameters, which are used to configure a
connection to SAP R/3 using the Oracle Application Adapter for SAP R/3. This
information can be used as a reference. This section contains the following topics:

- Section 2.2.1, "User Parameters"
- Section 2.2.2, "System Settings (Application Server) Parameters"
- Section 2.2.3, "System Settings (Message Server) Parameters"
- Section 2.2.4, "Connection Pool Parameters"
- Section 2.2.5, "SAP Gateway Parameters"
- Section 2.2.6, "ALE Parameters"
- Section 2.2.7, "Global Processing Parameters"
- Section 2.2.8, "SNC Parameters"

2.2.1 User Parameters

Table 2–1 lists and describes User parameters.
Table 2–1 User Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Identifies the SAP client.</td>
<td>800</td>
<td>In commercial, organizational, and technical terms, a self-contained unit in an SAP system with separate master records and its own set of tables. A client can, for example, be a corporate group.</td>
</tr>
<tr>
<td>User</td>
<td>SAP login ID.</td>
<td>“abc123”</td>
<td>User type for dialog-free communication between systems.</td>
</tr>
<tr>
<td>Password</td>
<td>Confidential authentication information.</td>
<td>“xyz999”</td>
<td>A protected word or string of characters that identifies or authenticates a user for access to an SAP system.</td>
</tr>
<tr>
<td>Language</td>
<td>A language key. EN (English) is the default.</td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>Codepage</td>
<td>A character code page value.</td>
<td>Cp1252</td>
<td></td>
</tr>
<tr>
<td>Authentication Mode</td>
<td>How the connection is validated.</td>
<td>Selection, see the next column.</td>
<td>Password - use the value in the supplied field. The password parameter that is mentioned here refers to the Password parameter field in Application Explorer.</td>
</tr>
</tbody>
</table>

2.2.2 System Settings (Application Server) Parameters

Table 2–2 lists and describes System Settings (Application Server) parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Server</td>
<td>Connects to an ABAP application server.</td>
<td>iwjpsap</td>
<td>Application programs in an R/3 System are run on application servers. To obtain metadata information, a connection to a single application server is required.</td>
</tr>
<tr>
<td>System Number</td>
<td>Identifies a unique instance on the application server.</td>
<td>00</td>
<td>An application server may have different system numbers. Use the one provided by your administrator.</td>
</tr>
</tbody>
</table>

2.2.3 System Settings (Message Server) Parameters

Table 2–3 lists and describes System Settings (Message Server) parameters.
2.2.4 Connection Pool Parameters

Table 2–4 lists and describes Connection Pool parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Server</td>
<td>Connects to an ABAP message server.</td>
<td>iwjpsap</td>
<td>For load balancing purposes, application servers from one SAP system are usually configured in logon groups, where each group serves a particular kind of user. The message server is responsible for communication between the application servers. It passes requests from one application server to another within the system. It also contains information about application server groups and the current load balancing within them. It uses this information to choose an appropriate server when a user logs onto the system.</td>
</tr>
<tr>
<td>R/3 Name</td>
<td>Identifies a unique instance on the application server.</td>
<td>P47</td>
<td>Symbolic SAP system name used to identify the system.</td>
</tr>
<tr>
<td>Server Group</td>
<td>Identifies the logon group</td>
<td></td>
<td>Logon group that the user ID belongs with.</td>
</tr>
</tbody>
</table>

2.2.5 SAP Gateway Parameters

Table 2–5 lists and describes SAP Gateway parameters.
2.2.6 ALE Parameters

Table 2–6 lists and describes ALE parameters.

Table 2–6 ALE Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDI Version</td>
<td>Specifies the ALE version of the target system.</td>
<td>3</td>
<td>Version "3" (Release 4.0 onwards) should be selected in the port description for all R/3 partner systems with Release 4.0 or higher. Version "2" (release 3.0/3.1) must be set in the port description for all R/3 partner systems with releases lower than 4.0.</td>
</tr>
<tr>
<td>IDOC Release</td>
<td>Specifies the version in which the IDOC definition was released.</td>
<td>Blank or a specific SAP release version, for example, "46C".</td>
<td>You can assign segment definitions from previous releases to an IDoc type in the current release. This may be necessary if, for example, the partner is using an older release which supports your current IDoc type but not your current segment definitions.</td>
</tr>
<tr>
<td>IDOC Release Provider</td>
<td>Specifies where the adapter receives the release information.</td>
<td>Selection, see the next column.</td>
<td>IDOCDOREL uses the information in the IDOC header. SAP release gets the information from the user account logon. USERINPUT uses the IDOC release field above to get the information.</td>
</tr>
</tbody>
</table>

2.2.7 Global Processing Parameters

Table 2–7 lists and describes Global Processing parameters.
Table 2–7 Global Processing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Handling</td>
<td>Specifies the error handling method of the adapter.</td>
<td>Selection, see the next column.</td>
<td>Creates error document writes an exception document with the full error text to the output destination. Throws exception creates a java exception, this may or may not display the full error text depending on the underlying component error.</td>
</tr>
<tr>
<td>Commit with Wait</td>
<td>Specifies the commit behavior.</td>
<td>Selection, see the next column.</td>
<td>Off - default Sends Commit Request to Application Server in the document. If there is a commit error, then it is not reflected back (Optimal performance). On (checked) - waits for a full database server commit in the document before returning. Commit errors are reflected back to the adapter level (slowest performance). For the recommended setting, see your SAP administrator.</td>
</tr>
<tr>
<td>SAP trace</td>
<td>Enables the SAP Java connectors trace behavior.</td>
<td>Selection, see the next column.</td>
<td>Off default - only hard errors are recorded in a trace file (dev rfc.trc) in append mode. ON - individual rfc*.trc and JCO*.trc are written for each request. Useful in finding errors, not recommended in a productive system.</td>
</tr>
<tr>
<td>Trace level</td>
<td>Indicates the level of detail in the SAP traces.</td>
<td>5</td>
<td>Select a value that ranges from 0 through 10 from the list.</td>
</tr>
</tbody>
</table>

2.2.8 SNC Parameters

Table 2–8 lists and describes SNC parameters.

Note: The SAP SNC parameters are documented in this documentation as this functionality is available from the SAP Java Connector (SAP JCo). It is strongly recommended that if SNC is to be used with the adapter, a SAP Router be configured with SNC enabled rather than direct SNC from the adapter. This is the strongest, most secured method of connection. Because SNC depends on the validity of certificates issued by the local SAP host server, it is the responsibility of the local SAP support staff to ensure the validity of SNC certificates and correct configuration of the SAP Router and SAP SNC.

Table 2–8 SNC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNC mode</td>
<td>Flag for activating SNC.</td>
<td>1 (on)</td>
<td>Required.</td>
</tr>
</tbody>
</table>
Table 2–8 (Cont.) SNC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNC Partner</td>
<td>Specifies the application server’s SNC name</td>
<td>p:CN=ABC, O=MyCompany, C=US</td>
<td>You can find the application server’s SNC name in the profile parameter snc/identity/as.</td>
</tr>
<tr>
<td>SNC level</td>
<td>Specifies the level of protection to use for the connection.</td>
<td>Selection, see the next column.</td>
<td>1: Authentication only
2: Integrity protection
3: Privacy protection (default)
8: Use the value from snc/data protection/use on the application server
9: Use the value from snc/data_protection/max on the application server
Default value = 3</td>
</tr>
<tr>
<td>SNC Name</td>
<td>Specifies SNC name.</td>
<td>p:CN=SAPJ2EE, O=MyCompany, C=US</td>
<td>Although this parameter is optional, we do recommend setting it to ensure that the correct SNC name is used for the connection.</td>
</tr>
<tr>
<td>SNC library path</td>
<td>Specifies the path and file name of the external library.</td>
<td>C:\SAP J2EE_Engine\SAPCry.ptolib\sa.pcrypto.dll</td>
<td>The default is the system-defined library as defined in the environment variable SNC LIB.</td>
</tr>
</tbody>
</table>
SAP Java Connector 3.0xx Considerations

This chapter describes the new usage considerations of the Oracle Application Adapter for SAP R/3 that are associated with SAP Java Connector (SAP JCo) 3.0xx. It contains the following sections:

- Section 3.1, “Supported Platforms”
- Section 3.2, “Connection Management”
- Section 3.3, “Connection Pooling”
- Section 3.4, “Single Server Support”
- Section 3.5, “Server Threads”
- Section 3.6, “Changing Parameters and Table Parameters”
- Section 3.7, “Trace Level Parameter”

Note: The xx in SAP JCo 3.0xx indicates the specific version of SAP Java Connector.

SAP policy indicates that only the currently released version of SAP JCo is the supported version.

Users with support issues may be required to test with a newer version of the SAP JCo (if one is present) to verify that a problem may already be resolved.

In addition, the Oracle JRockit JVM is not supported by SAP JCo.

3.1 Supported Platforms

SAP JCo 3.0xx removes 32-bit support on Unix platforms. Only Linux (with Intel processors) and Windows (with Intel processors) now support the 32-bit SAP JCo. All other platforms require true 64-bit processing throughout. Some JVM settings cause the JVM to read as “mixed mode”, which is not compatible with SAP JCo. Some platforms require a specific flag of `-d64` to enable complete 64-bit processing in the JVM.

For more information on supported platforms with SAP JCo 3.0xx, see Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server.

For supported JVM information that corresponds to each operating system, refer to SAP Note #1077727 in the SAP Service Marketplace. If a specific JVM is not included on the list of supported JVMs, then it is not supported by SAP R/3.
3.2 Connection Management

With SAP Java Connector (SAP JCo) 3.0xx, the adapter is the facilitator to a JCo instance that manages all connections to the SAP system from that instance. Each channel is configured with SAP-specific parameters, and these become SAP JCo destinations for SAP system connections.

3.3 Connection Pooling

This feature implements shared connection pooling for the mySAP adapter. The term "target" is used in the mySAP30 adapter to identify a saved set of SAP connection parameters used to locate a particular SAP instance (either an application server or a Message Server) and specific logon and password credentials. (A target for an application server will include application server id and system number, a target for a message server will include Message Server, Logon group and other parameters. The complete list of target parameters can be found in the mySAP 30 users guide.)

A target is created in the application explorer when the user enters and saves the SAP user and server parameters. At run time, the target is used to identify and connect to the relevant SAP system via a connection pool.

In a "connection pool", connections use the same user id and password, but a pool of connection handles is kept active so that the overhead of SAP logon and logoff is not incurred for every transaction. The connection handles are reused over and over and dynamically up and down sized with system load. Establishing a connection with an SAP system is a resource intensive and time consuming task, for both the client and the server, reusing an existing connection takes much less time and lessens the resource burden on client and server.

Using the shared JCo feature, a target can be shared among multiple adapter instances in the same Java Virtual Machine. Enabling this feature is highly recommended to lessen resource consumption on the application server and speed up application response times.

Description

An SAP connection pool is issued as a request to the SAP Java Connector to shape the connections opened according to the parameters provided. The adapter does not allocate or reserve connections; all of the connection handling is done by the SAP Java Connector.

It is possible to configure multiple targets or a single target for a single SAP system. If multiple SAP systems are installed, create a single or multiple target for each systems, it is possible to be connected to several SAP systems at the same time, each SAP system target will contain the base connection pool for the target system.

Limitations of the Share JCo Pools Feature

The shared JCo feature is an adapter wide feature. Once the feature is enabled, all connections using the same target name will share the same connection pool.

The adapter is managed by the application server within the Managed Connection Interface, and communicates with SAP via SAP JCo connection pools, only the SAP JCo pools are discussed here.

Note: The Oracle JRockit JVM is not supported by SAP JCo 3.0.11.
The same user and password are used in connection pools, so it may be desirable to separate connection pools by functional area and user id to obtain the correct SAP application authorizations.

Example, though 'accounting' and 'finance' share the same SAP system, the user id and password are different in each target, each target allocated according to SAP functional area.

If advanced adapter target options are used ("IDoc version" or "IDoc Release Provider", etc.) and dissimilar settings are required for different application types, two targets must be created as these parameters are not dynamic.

Connection Usage Without the Shared JCo Feature

Without Shared JCo, each adapter instance allocated by the application server (either thread or process) attempts to open a connection pool and repository connection. When the application server resource that requests a connection is removed or finishes, the connection pool and all resources with it are marked for removal by the timeout checker. Not using Shared JCo with multiple application server threads can open many adapter instances and consume application server resources.

Without shared SAP JCo, if a connection pool is marked for maximum 60 connections, and 10 application server threads are instantiated for adapter calls, it is possible for each adapter instance to attempt to obtain 60 connections.

How to Enable Shared JCo (Preferred Option)

Identify the target or targets to be created or used among processes. Create or modify the targets so sufficient connection handles are available for all resources consuming the pool.

Application Server Steps

1. Stop the application server if running.
2. In the ra.xml file (<ADAPTER_HOME>/iwafjca.rar/META-INF), set the ShareJCO option to true.
3. Restart the servers with the desired logging enabled
4. Update the iwafjca.rar and iwafjca.war files from the WebLogic Console.
5. If the update option does not work properly, then undeploy and redeploy the iwafjca.rar and iwafjca.war files. For more information on how to deploy these files, see the Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server.

If different targets exist for the same SAP system and user logon credentials, consider consolidating the target names for simplicity and maximum performance.

Verification (Optional)

A quick verification process can be done by configuring two outbound processes that share an adapter target, and in that target enable the "Sap trace" parameter. The trace should show the exact same connection pool servicing all requests to the same SAP destination. It is recommended to never run SAP traces in productive systems so perform the verification on a development or test system.

Connection Parameter Tuning (Optional)

A connection pool is determined by the parameters in the adapter target. Connection pools are dynamic entities, the pool grows as requests are added, up to the maximum size specified, and shrinks if no new requests arrive.
Connection pool size - maximum size the pool can grow to (connections start at 1 and will grow up to this limit. If the connections are no longer needed, the pool will be downsized back to the initial size).

Connection Timeout (in minutes): The maximum time a free, unused connection can remain in the pool before being removed.

Connection Wait Time (in seconds): The maximum time a request will wait for a connection when no connections are available. If a connection handle is not returned by the time this wait time is expired, a "Resource Exception" is triggered and processing on the request stops.

Depending on system topology, a new connection may take up to 300 milliseconds or more to connect to SAP, obtain the required metadata, and execute the request, where a connection taken from the pool will take 10 or less ms. This can impact considerably the total application performance.

Connection tuning is done by changing, one at a time, the parameters, and seeing the impact on the application performance. Some consequences of improper connection tuning include:

- Not allocating sufficient connections can lead to waiting requests on the application server.
- Too short a Connection Timeout will result in longer times for processing, as new connections are opened, too long a period means unused connections will sit in the pool.
- Too short a time wait period may result in excessive resource exceptions.

Consider enabling the SAP JCo trace and viewing the connection request results for finer grade tuning.

3.4 Single Server Support

With SAP Java Connector (SAP JCo) 3.0xx, a single instance of a SAP JCo server is permitted for each SAP JCo installation. The Oracle Application Adapter for SAP R/3 maps between ports, channels, and server threads. The changes are transparent to the end-user, however in load balanced and multi-threaded installations, special care must be taken to match the server thread count of the adapter and the active server thread count of the SAP Gateway. This topic can be investigated further in the SAP R/3 help file “Configuring the SAP Gateway”, where comprehensive information is exposed on load balancing and server threads.

3.5 Server Threads

This topic describes the behavior of server threads within the context of load balancing. It contains the following sections:

- Section 3.5.1, "Uniqueness"
- Section 3.5.2, "Load Balancing Adapter Configuration"
- Section 3.5.3, "Load Balancing SAP Configuration"

3.5.1 Uniqueness

There can be only one server with a combination of SAP Gateway Server + SAP Gateway Service + Program ID active at one time. All messages sent through that
channel will arrive at the same adapter destination, unless routing by message schema is performed.

3.5.2 Load Balancing Adapter Configuration

By default, the SAP R/3 outbound Gateway creates one active connection for each RFC destination for non SAP R/3 systems. For maximum throughput, the *Thread count* parameter is set to three (three server threads for each RFC destination). This parameter is located in the Advanced tab of Application Explorer when configuring channels. Usually, this leaves one thread available to listen for requests, one thread to process a current request, and one thread to perform clean up tasks from processing.

3.5.3 Load Balancing SAP Configuration

In cases where a large amount of traffic on a particular RFC destination is required, increase the thread output size in SAP and increase the thread count and try and keep the ratio of Gateway threads to server threads at the same 1:3 ratio. For example, if the Gateway has 3 active threads for destination "X", on the outbound server channel side, the server thread count is now 9.

In addition to Gateway load balancing, the amount of SAP Gateway threads can be increased. For more information, consult your SAP R/3 system administrator.

When more than one Program ID with the same name is registered for one SAP Gateway (using a separate JVM), the Gateway can be enabled for a load balancing scenario, depending on the parameters in the Gateway profile on the SAP R/3 system. It is recommended to consult an SAP R/3 system administrator for more information. However, the profile is either set to 0 (no load balancing), 1 (lowest counter), or 2 (lowest load).

The SAP R/3 system administrator can provide the required information on how to configure your destinations to take advantage of each situation. If load balancing is not enabled and you register multiple server channels with the same Program ID without performing Oracle schema validation, then it is possible to receive IDocs in the wrong channel because there is no routing on the channels or destinations.

3.6 Changing Parameters and Table Parameters

SAP Changing parameters can take almost any SAP R/3 type, including nested structures (tables where a column is itself a structure) and data of no fixed length, such as String data types. Changing parameters can be used as input to a function module, exported from a function module, or both. This depends on the requirements of the designer for the specific SAP function. Table parameters are limited to Flat data structures (relational) with fixed columns of defined lengths and a required header line. Changing parameters can take almost any SAP R/3 type, including nested structures (tables where a column is itself a structure) and data of no fixed length, such as String data types. Changing parameters can be used as input to a function module, exported from a function module, or both. This depends on the requirements of the designer for the specific SAP function.

The XML schemas for functions that use Changing parameters do not list them as a separate category. However, just like Table parameters, they appear in the request and response XML schemas. Depending on the function design, if the parameters are marked as *optional*, you do not have to supply a value. The optional indicator displays in Application Explorer and in the XML schema. For more information on using Changing parameters, see your SAP R/3 documentation.
3.7 Trace Level Parameter

Oracle Application Adapter for SAP R/3 (using SAP JCo 3.0xx) includes a parameter called *Trace level*, which can be found in the Advanced tab of Application Explorer, as shown in Figure 3–1.

![Advanced Tab](image)

Figure 3–1 Advanced Tab

This parameter indicates the level of detail in the SAP traces. Select a value that ranges from 0 through 10 from the list. The common values that are used include:

- **0** - nothing
- **1** - errors and warnings
- **2** - execution path, errors, and warnings
- **3** - full execution path, errors, and warnings
- **4** - execution path, info messages, errors, and warnings
- **6** - full execution path, info messages, errors, and warnings
- **7** - debug messages, full execution path, info messages, errors, and warnings
- **8** - verbose debug messages, full execution path, info messages, errors, and warnings

Path values null, stdout, and stderr are allowed. An existing path is also allowed. If the path is equal to null, stdout, or stderr, then SAP JCo generates a trace to the standard output (error) stream. If at least one JCoTraceListener is registered, then the trace output is sent to the listener only. To redirect the SAP JCo trace into a file, the path value has to be set to an existing directory.

The following environment variables have to be set at ORACLE_JAVA_INVOKE_HOME:

```java
Java -Djco.trace_path=drive:/directory
```

The following is an example of a path on a Solaris platform:

```
/path1/dir1/
```
The following variables can be set at the operating system level:

RFC_TRACE=1
CPIC_TRACE=(1, 2, 3)
RFC_TRACE_DIR=
CPIC_TRACE_DIR=

Where 1 is an error trace, 2 is a complete process trace, and 3 is a complete process trace, short data trace.

It is recommended to check your environment settings, especially under a hosted environment.
This chapter describes how to use Oracle Adapter Application Explorer (Application Explorer) to define a target to connect to a SAP R/3 system, view system objects, and create XML schemas and Web services. This chapter also explains how to configure an event adapter.

This chapter contains the following sections:

- Section 4.1, "Starting Application Explorer"
- Section 4.2, "Configuring Repository Settings"
- Section 4.3, "Creating a Repository Configuration"
- Section 4.4, "Establishing a Connection (Target) for SAP R/3"
- Section 4.5, "Viewing Application System Objects"
- Section 4.6, "Creating XML Schemas"
- Section 4.7, "Generating WSDL (J2CA Configurations Only)"
- Section 4.8, "Creating and Testing a Web Service (BSE Configurations Only)"
- Section 4.9, "Configuring an Event Adapter"
- Section 4.10, "Configuring the SAProuter Service"

4.1 Starting Application Explorer

To start Application Explorer:

1. Ensure that Oracle WebLogic Server is started, which is where Application Explorer is deployed.
2. Open the command prompt.
3. Navigate to the following directory:

 `<ORACLE_HOME>\user_projects\domains\base_domain\bin`

4. Execute `setDomainEnv.cmd` (Windows) or `./setDomainEnv.sh` (UNIX/Linux).

This command sets the class path and other environment variables for Application Explorer in the Oracle WebLogic Server environment. In addition, it allows Application Explorer to access the Oracle WebLogic Server APIs to publish WSDL files to the Oracle Service Bus (OSB) Console.
5. Do not close the command prompt.

6. Navigate to the following directory:

 \<ADAPTER_HOME>\tools\iwae\bin

7. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer.

 Application Explorer starts. You are ready to define new targets to your SAP R/3 system.

Note: Before you run the `iwae.sh` file on UNIX or Linux platforms, the permissions must be changed. For example:

 `chmod +x iwae.sh`

4.2 Configuring Repository Settings

A repository holds information about configuration details, adapter targets, channels, and other configuration information. For more information on how to configure BSE and J2CA repository settings, see the *Oracle Fusion Middleware Application Adapters Installation Guide for Oracle WebLogic Server*.

4.3 Creating a Repository Configuration

Before you use Application Explorer with Oracle Application Adapter for SAP R/3, you must create a repository configuration. You can create two kinds of repository configurations, Web services and J2CA, depending on the container to which the adapter is deployed.

This section contains the following topics:

- Section 4.3.1, "Creating a Configuration for BSE"
- Section 4.3.2, "Creating a Configuration for J2CA"
- Section 4.3.3, "Connecting to a BSE or J2CA Configuration"

During design time, the repository is used to store metadata created when using Application Explorer to configure adapter connections, browse EIS objects, configure services, and configure listeners to listen for EIS events. The information in the repository is also referenced at run-time.

Web services and BSE refer to the same type of deployment. For more information, see "Adapter Features" on page 1-1.

4.3.1 Creating a Configuration for BSE

To create a configuration for BSE using Application Explorer, you must first define a new configuration.

This section contains the following topic:

- Section 4.3.1.1, "Defining a New Configuration for BSE"

4.3.1.1 Defining a New Configuration for BSE

To define a new configuration for BSE:

1. Start the Application Explorer.
2. Right-click Configurations and select New.
 The New Configuration dialog is displayed.
3. Enter a name for the new configuration, for example, SampleConfig, and click OK.

Figure 4–1 New Configuration Dialog

4. From the Service Provider list, select iBSE, as shown in Figure 4–1.
5. In the iBSE URL field, accept the default URL or replace it with a different URL with the following format:

 http://host name:port/ibse/IBSEServlet

 Where host name is the system on which Oracle WebLogic Server resides and port is the HTTP port number of the managed Oracle WebLogic Server (for example, soa_server1).
6. Click OK.
 A node representing the new configuration appears beneath the root Configurations node, as shown in Figure 4–2.

Figure 4–2 New Configuration Node

4.3.2 Creating a Configuration for J2CA

To create a configuration for Oracle Adapter J2CA using Application Explorer, you must first define a new configuration.

To define a new configuration for J2CA:

1. Start the Application Explorer.
2. Right-click Configurations and select New.
 The New Configuration dialog is displayed.
3. Enter a name for the new configuration, for example, SampleConfig, and click OK.
4. From the Service Provider list, select JCA, as shown in Figure 4–3.

5. Click OK.

A node representing the new configuration appears beneath the root Configurations node, as shown in Figure 4–4.

The Oracle Adapter J2CA configuration folder is stored in a location based on your adapter installation:

<ADAPTER_HOME>/config/configuration_name

The configuration_name is the name of the configuration you created (for example, SampleConfig).

4.3.3 Connecting to a BSE or J2CA Configuration

To connect to a new configuration:

1. Right-click the configuration to which you want to connect, for example, SampleConfig.

2. Select Connect.

Nodes appear for Adapters, Events, and Business Services (also known as Web services). The Business Services node is only available for BSE configurations. If you are connected to a J2CA configuration, then the Business Services node is not shown.

Events are not applicable when using a BSE configuration. You can configure events using a J2CA configuration only.

An example of a BSE configuration named SampleConfig, is shown in Figure 4–5.
Establishing a Connection (Target) for SAP R/3

4.4 Establishing a Connection (Target) for SAP R/3

Defining the application includes adding a target for Oracle Application Adapter for SAP R/3. Setting up the target in Application Explorer requires information that is specific to the target.

This section contains the following topics:

- Section 4.4.1, "Defining a Target to SAP R/3"
- Section 4.4.2, "Connecting to a Defined SAP R/3 Target"
- Section 4.4.3, "Managing a Connection to SAP R/3"

To browse the available business functions, you must first define a target to SAP R/3. After you define the target, it is automatically saved. You must connect to the SAP R/3 system every time you start Application Explorer or after you disconnect.

When you launch Application Explorer, the left pane displays (as nodes) the application systems supported by Application Explorer, based on the adapters that are installed.

4.4.1 Defining a Target to SAP R/3

To connect to SAP R/3 for the first time, you must define a new target. Oracle Application Adapter for SAP R/3 supports SAP R/3 standard security and the additional protocol of SNC. Once connected to the SAP R/3 application server, application security is managed by user ID, roles and profiles. For more information on SAP application security, see the appropriate SAP documentation.

When you are working with a J2CA configuration, creating, updating, and deleting a target requires you to restart the application server. The application server must also be restarted after you create a target, connect to a target, and generate a WSDL for a SAP R/3 business object. In addition, ensure to close Application Explorer before you restart the application server.

To define a target:

1. In the left pane, expand the Adapters node, as shown in Figure 4–6.

 The application systems supported by Application Explorer appear as nodes based on the adapters that are installed.
2. Right-click the MySAP node and select **Add Target**, as shown in Figure 4–7.

![Figure 4–7 MySAP Node](image)

The Add Target dialog is displayed. Provide the following information:

a. In the **Name** field, enter a descriptive name, for example, **SAPTarget**.

b. In the **Description** field, enter a description for the target (optional).

c. From the **Type** list, select the type of target you are connecting to. The supported target types include **Message Server** or **Application Server** (default).

Note: For load balancing purposes, application servers from one SAP R/3 system are usually configured in logon groups, where each group serves a particular kind of user. The application servers in each group are assigned to users by a least-heavily-loaded strategy. This load balancing is done by message servers. Each SAP R/3 system has exactly one message server, which can be reached through TCP on a specific message server port.

3. Click **OK**.

The Application Server dialog is displayed, as shown in Figure 4–8.
Figure 4–8 Application Server Dialog

The following tabs are available:

- User (Required)
- System (Required)
- Advanced
- Security

4. For the User tab (required), enter the appropriate information for your SAP R/3 target based on the information in the following table.

Table 4–1 User Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>The client number defined for the SAP R/3 application for client communications.</td>
</tr>
<tr>
<td>User</td>
<td>A valid user ID for the SAP R/3 application.</td>
</tr>
<tr>
<td>Password</td>
<td>A valid password for the SAP R/3 application.</td>
</tr>
<tr>
<td>Language</td>
<td>A language key. EN (English) is the default.</td>
</tr>
<tr>
<td>Codepage</td>
<td>A character code page value.</td>
</tr>
<tr>
<td>Authentication Mode</td>
<td>The authentication mode you want to use when connecting to your SAP R/3 system. By default, Password is selected from the list.</td>
</tr>
</tbody>
</table>

For more information, see your SAP R/3 system documentation.

5. For the System tab (required), enter the appropriate information for your SAP R/3 target based on the information in this section, as shown in Figure 4–9.
The System tab enables you to provide the application server name, system number, and connection pooling information for the SAP R/3 system to which you are connecting.

Table 4–2 System Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Server</td>
<td>The host name or IP address for the system that is hosting the SAP R/3 application.</td>
</tr>
<tr>
<td>System number</td>
<td>The system number defined to SAP R/3 for client communications.</td>
</tr>
<tr>
<td>Explicit Commit</td>
<td>Select this option to have the BAPI_TRANSACTION_COMMIT function called after every function call that is made by the adapter. Since enabling this option can increase the processing time, it is recommended to use this functionality only if explicit commit functionality is required. This option enables asynchronous commits. The BAPI_TRANSACTION_COMMIT function is called and returns immediately. It is still possible for the database commit to fail, but no notification would be received. This option is the equivalent to the COMMIT WORK ABAP statement.</td>
</tr>
<tr>
<td>Connection pool size</td>
<td>The number of client connections in a pool you want to make available to SAP R/3 for Web service calls. A default connection pool size of 2 is available by default. Important: The default value of 1 does not create a connection pool. Instead, a single SAP R/3 connection with sequential processing is shared. A pooled connection invokes multiple connections to SAP R/3 with parallel processing.</td>
</tr>
<tr>
<td>Connection timeout(min)</td>
<td>The timeout value for your connection pool in minutes. The default value is 10 minutes.</td>
</tr>
<tr>
<td>Connection wait time(sec)</td>
<td></td>
</tr>
</tbody>
</table>
Establishing a Connection (Target) for SAP R/3

For the Advanced tab (optional), enter the appropriate information for your SAP R/3 target based on the information in this section. The Advanced tab enables you to specify your EDI and IDoc versions, and configure error handling, as shown in Figure 4–10.

6. For the Advanced tab (optional), enter the appropriate information for your SAP R/3 target based on the information in this section.

The Advanced tab enables you to specify your EDI and IDoc versions, and configure error handling, as shown in Figure 4–10.

Table 4–2 (Cont.) System Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection wait time/sec</td>
<td>The wait time for your connection pool in seconds. The default value is 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>Connections to an ERP server take up valuable resources on both the client and the remote server. You can create a pool of connections to minimize the resource and time constraints. In estimating the size of the pool, you may calculate pool size by the amount of server resources to be consumed, the number and size of the documents to be received, and the size of your Java Virtual Machine. The section of SAP documentation “Memory Management (BC-CST-MM)” explains in detail the resources required on the SAP R/3 system.</td>
</tr>
</tbody>
</table>

Table 4–3 Advanced Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edi version</td>
<td>The Electronic Data Interchange (EDI) document version you are using with the adapter. Version 3 is the default value.</td>
</tr>
<tr>
<td>IDOC release</td>
<td>The IDOC versioning you want to use for your connection.</td>
</tr>
<tr>
<td>IDOC release provider</td>
<td>The IDOC release provider for your connection. Select IDOC DOCREL field (default), SAP release, or user input from the list.</td>
</tr>
</tbody>
</table>

Figure 4–10 Advanced Tab

![Advanced Tab](image-url)
Error Handling

From the list In the event of an exception, you can select Creates Error Document or Throws Exception. To receive more detailed error messages, select Creates Error Document.

As a rule:

- If your application is Java centric, then select Throws Exception so that code components can catch the exception and react accordingly.
- If your application is document based, then select Creates Document to create an XML document that contains the Java exception.

It is up to your application to read the XML document and obtain the error.

Commit with Wait

If a high degree of accuracy is required in your application, then select the Commit with Wait option.

The adapter waits until all records are physically written to the database before returning from the function call. The “Commit With Wait” has a performance impact on adapter performance, so consider carefully before selecting it. For more information about the commit behavior of BAPIs, see the SAP documentation under “BAPI Programming Guide and Reference (CA-BFA).”

All SAP Business Objects that change data must commit work to the database. Some BAPIs developed in version 3.1 of the R/3 system use an internal commit behavior, and their commit behavior cannot be changed by the adapter. As soon as they are called, they commit the work they did.

BAPIs developed since release 3.1 use the external commit method. The adapter issues a commit command, and the commit is put in the database queue. If there is an application error in the first part of the commit, then the error message “Posting could not be carried out” is returned, and the adapter rolls back the transaction. If writing to the database, a database error occurs, then a short dump is issued in the database records of SAP, but no message is returned to the adapter about the failure.

The Commit with Wait option must be used in conjunction with the Explicit Commit option enabled in the System tab. The Commit with Wait option enables synchronous commits. This commit function waits until the actual database commit is made or an error is generated. This process is time intensive, but the most accurate. If an error is generated, then it is returned in an exception message.

This option is disabled by default.
For the Security tab (optional), enter the appropriate information for your SAP R/3 target based on the information in this section, as shown in Figure 4–11.

Figure 4–11 Security Tab

The Security tab enables you to specify Secure Network Communication (SNC) information for the SAP R/3 system to which you are connecting.
Establishing a Connection (Target) for SAP R/3

SNC provides protection for the communication links between the distributed components of an SAP R/3 system. Using SNC, SAP R/3 can support products that adhere to the GSS-API Version 2 standard. SNC supports application level (end-to-end security), Smartcard authentication, and single sign-on.

If you are using SAP Enterprise Portal, then the J2EE engine generates the SAP logon ticket automatically. A possible SNC scenario would be from SAP Enterprise Portal to Oracle Application Adapter for SAP R/3.

If you want to use SAP logon tickets to enable single sign-on to non-SAP components, then consult the SAP documentation regarding Pluggable Authentication Services. A possible SNC scenario in this case would be from a non-SAP Enterprise Portal to Oracle Application Adapter for SAP R/3.

8. When you have provided all the required information for your target, click OK.

After the extraction finishes, the new target, MySAP Target, appears under the MySAP adapter node, as shown in Figure 4–12.

![Figure 4–12 MySAP Target](image)

You can now connect to your SAP R/3 target.

For information on how to create schemas for the adapter, see "Creating XML Schemas" on page 4-15.

4.4.2 Connecting to a Defined SAP R/3 Target

To connect to an existing target:

Note: The SAP SNC parameters are documented in this documentation as this functionality is available from the SAP Java Connector (SAP JCo). It is strongly recommended that if SNC is to be used with the adapter, a SAP Router be configured with SNC enabled rather than direct SNC from the adapter. This is the strongest, most secured method of connection. Because SNC depends on the validity of certificates issued by the local SAP host server, it is the responsibility of the local SAP support staff to ensure the validity of SNC certificates and correct configuration of the SAP Router and SAP SNC.

| Table 4–4 Security Tab Parameters |
|-------------------------------|--------------------------------|
| **Target Parameter** | **Description** |
| SNC mode | By default, SNC is disabled. To enable SNC, select 1 from the list. |
| SNC partner | Enter the name of the RFC server or message server (load balancing) that provides the SNC services. |
| SNC level | From the list select the version of the SNC library. |
| SNC name | Enter the name of the SNC library you are using. |
| SNC library path | Enter the path to the SNC library. |

SNC provides protection for the communication links between the distributed components of an SAP R/3 system. Using SNC, SAP R/3 can support products that adhere to the GSS-API Version 2 standard. SNC supports application level (end-to-end security), Smartcard authentication, and single sign-on.

If you are using SAP Enterprise Portal, then the J2EE engine generates the SAP logon ticket automatically. A possible SNC scenario would be from SAP Enterprise Portal to Oracle Application Adapter for SAP R/3.

If you want to use SAP logon tickets to enable single sign-on to non-SAP components, then consult the SAP documentation regarding Pluggable Authentication Services. A possible SNC scenario in this case would be from a non-SAP Enterprise Portal to Oracle Application Adapter for SAP R/3.

Table 4–4 Security Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNC mode</td>
<td>By default, SNC is disabled. To enable SNC, select 1 from the list.</td>
</tr>
<tr>
<td>SNC partner</td>
<td>Enter the name of the RFC server or message server (load balancing) that provides the SNC services.</td>
</tr>
<tr>
<td>SNC level</td>
<td>From the list select the version of the SNC library.</td>
</tr>
<tr>
<td>SNC name</td>
<td>Enter the name of the SNC library you are using.</td>
</tr>
<tr>
<td>SNC library path</td>
<td>Enter the path to the SNC library.</td>
</tr>
</tbody>
</table>

For information on how to create schemas for the adapter, see "Creating XML Schemas" on page 4-15.
1. In the left pane, expand the Adapters node.
2. Expand the MySAP node.
3. Click the target name under the MySAP node (for example, SAPTarget). The Connection dialog displays the values you entered for connection parameters.
4. Verify your connection parameters.
5. Right-click the target name and select Connect. The x icon disappears, indicating that the node is connected, as shown in Figure 4–13.

Figure 4–13 Connected MySAP Target

4.4.3 Managing a Connection to SAP R/3

This section contains the following topics:
- Section 4.4.3.1, "Disconnecting from a Connection to SAP R/3"
- Section 4.4.3.2, "Modifying Connection Parameters"
- Section 4.4.3.3, "Deleting a Connection to SAP R/3"

To manage SAP R/3 connections, you can:
- Disconnect from a connection that is not currently in use.
 Although you can maintain multiple open connections to different transaction processing systems, it is recommended to disconnect from connections not in use.
- Edit a target.
 You can modify the connection parameters when your system properties change. After you disconnect, you can modify an existing target.
- Delete a connection that is no longer needed.

4.4.3.1 Disconnecting from a Connection to SAP R/3

To disconnect a target:
1. Expand the Adapters node.
2. Expand the MySAP node.
3. Right-click the target to which you are connected, for example, SAPTarget, and select Disconnect, as shown in Figure 4–14.
Establishing a Connection (Target) for SAP R/3

4.4.3.2 Modifying Connection Parameters

After you create a target for SAP R/3 using Application Explorer, you can edit any of the information that you provided previously. After you edit the target, you must restart the Oracle WebLogic Server to update the repository for run time purposes.

To edit a target:

1. Verify that the target you want to edit is disconnected.
2. Right-click the target and select **Edit**, as shown in Figure 4–16.

 ![Figure 4–16 Edit Option](image)

 The Application Server dialog displays the target connection information.
3. Change the properties in the dialog as required and click **OK**.

4.4.3.3 Deleting a Connection to SAP R/3

You can delete a connection, rather than just disconnecting and closing it. When you delete the connection, the node disappears from the list of SAP R/3 connections in the left pane of Application Explorer.

When you delete a connection, you must restart the Oracle WebLogic Server to update the repository for run time purposes.

To delete a connection to SAP R/3:

1. Locate the target you want to delete.
2. Right-click the target (for example, SAPTarget), and select **Delete**, as shown in Figure 4–17.

 ![Figure 4–17 Delete Option](image)
4.5 Viewing Application System Objects

As you connect to SAP R/3, Application Explorer enables you to explore and browse SAP R/3 business objects that are used to support existing business processes.

Note: Depending on the release or service pack installed, certain RFCs, for example, RFC_CUSTOMER_GET, may not exist in your particular SAP R/3 system. Therefore, the examples included in this documentation may not be relevant to your system. If this is the case, then you should use the examples as a general reference for adapter functionality and choose an RFC that exists within your SAP R/3 application environment.

As described in SAP Release Note 109533, SAP Function Modules (RFCs) can be delivered with different release statuses. SAP supports only RFCs that are awarded the Released for Customer status. There is no claim to the release independencies of the interfaces and the continued existence/functionality of the modules. For more information on the status of a specific function module, consult your SAP Service Marketplace.

4.6 Creating XML Schemas

After you explore the SAP R/3 business function library and select an object, you can use Application Explorer to create the XML request schema and the XML response schema for that function.

To create request and response schemas for a SAP R/3 business function:

1. Connect to a SAP R/3 target as described in "Connecting to a Defined SAP R/3 Target" on page 4-12.
2. Expand the Business Object Repository node.
3. Click the icon to the left of the Financial Accounting node.
4. Scroll down and click the icon to the left of the CompanyCode business object.
5. Scroll down and select the BAPI named GetDetail.

The XML schema tabs appear on the right, as shown in Figure 4–18.
6. To view the XML for each schema type, click the appropriate tab.

4.7 Generating WSDL (J2CA Configurations Only)

The Web Service Definition Language (WSDL) description of a service enables you to make the service available to other services within a host server. You use Application Explorer to create both request-response (outbound) and event notification (inbound) J2CA services of the adapter.

Note: The Create Inbound JCA Service (Event) option is only available when the selected node supports events.

To generate a WSDL file for request-response service:

1. After you create a schema, right-click the respective object. The GetList menu is displayed, as shown in Figure 4–19.

 ![Figure 4–19 Create Outbound JCA Service (Request/Response)](image)

2. Select Create Outbound JCA Service (Request/Response).

 The Export WSDL dialog is displayed, as shown in Figure 4–20.
3. Accept the default name or provide a name (for example, J2CA_Outbound) for the file. The .wsdl file extension is added automatically. By default, the names of WSDL files generated for request-response services end with _invoke, while those generated for event notification end with _receive.

4. Click OK.

The WSDL file is saved in the specified location.

The procedure for generating WSDL for event notification is similar to request-response. To generate WSDL for event notification, you must first create a channel for every event. For more information, see “Generating WSDL for Event Integration” on page 6-36.

4.8 Creating and Testing a Web Service (BSE Configurations Only)

Using Application Explorer, you can explore the business function repository and generate Web services (also known as a business service) for the SAP R/3 functions you want to use with the adapter. The following procedure uses the SAP R/3 BAPI method called BAPI_MATERIAL_GETLIST as an example and returns a list of materials from SAP R/3.

This section contains the following topics:

- Section 4.8.1, "Creating a Web Service"
- Section 4.8.2, "Testing a Web Service"
4.8.1 Creating a Web Service

To create a Web service for a SAP R/3 business function:

1. Connect to your SAP R/3 target and expand the Business Object Repository node.

2. Select the BAPI_MATERIAL_GETLIST method from the Business Object Repository.

3. Right-click the node from which you want to create a business service and select Create Web Service.

 The Create Web Service dialog is displayed. You can add the business function as a method for a new Web service or as a method for an existing one, as shown in Figure 4–21.

Figure 4–21 Create Web Service Dialog

Perform the following steps:

a. From the Existing Service Names list, select either <new service> or an existing service.

b. If you are creating a new service, then specify a service name. This name identifies the Web service in the list of services under the Business Services node.

c. Enter a brief description for the service (optional).

4. Click Next.

The License and Method dialog is displayed.

Provide the following information:

a. In the License Name field, select one or more license codes to assign to the Web service. To make multiple selections, press the Ctrl key and click the licenses.

b. In the Method Name field, leave the default method name.

c. In the Method Description field, enter a brief description of the method (optional).

d. In the DTD Directory field, specify the location of the DTD you want to use.

5. Click OK.
Application Explorer switches the view to the Business Services node, and the new Web service appears in the left pane.

6. Right-click the new Web service and select Save WSDL from the menu.
 The Save dialog is displayed.

7. Provide a name for the WSDL file and a location to save the WSDL file on your file system.

8. Click Save.

4.8.2 Testing a Web Service

After a Web service is created, you can test it to ensure it functions properly. A test tool is provided for testing the Web service.

To test a Web service:

1. Click the Business Services node to access your Web services.

2. Expand the Services node.

3. Select the name of the business service you want to test.
 The business service name appears as a link in the right pane.

4. In the right pane, click the named business services link.
 The test option appears in a separate BSE Servlet page. If you are testing a Web service that requires XML input, then an input field is displayed.

5. Enter the appropriate input.

6. Click Invoke.
 The BSE Servlet page displays the results.

4.8.3 Identity Propagation

If you test or run a Web service using a third party XML editor, then the user name and password values that you specify in the SOAP header must be valid and are used to connect to SAP R/3. The user name and password values that you provided for SAP R/3 during target creation using Application Explorer are overwritten for this Web service request. The following is a sample SOAP header that is included in the WSDL file for a Web service:

```xml
<SOAP-ENV:Header>
   <m:ibsinfo xmlns:m="urn:schemas-iwaysoftware-com:iwse">
      <m:service>String</m:service>
      <m:method>String</m:method>
      <m:license>String</m:license>
      <m:disposition>String</m:disposition>
      <m:Username>String</m:Username>
      <m:Password>String</m:Password>
      <m:language>String</m:language>
   </m:ibsinfo>
</SOAP-ENV:Header>
```

You can remove the `<m:disposition>` and `<m:language>` tags from the SOAP header, since they are not required.
4.9 Configuring an Event Adapter

Events are generated by activity in a database or in an application system. You can use events to trigger an action in your application. For example, an update to a database can reflect an update to customer information. If your application must perform when this happens, then your application is a consumer of this event.

This section contains the following topics:

- Section 4.9.1, "Creating and Editing a Channel"
- Section 4.9.2, "Schema Validation"

After you create a connection to your application system, you can add events using Application Explorer. To create an event, you must create a channel.

Note: Before Oracle Application Adapter for SAP R/3 can be configured to process events (outbound activity) on a SAP system, there are important configuration steps that must take place on the SAP server before the adapter is connected to the SAP system through Application Explorer and channels can be created. For more information, see Section A.3, "SAP Outbound Message Processing" on page A-9.

This section contains the following topics:

- Section 4.9.1.1, "Creating a Channel"
- Section 4.9.1.2, "Editing a Channel"
- Section 4.9.1.3, "Deleting a Channel"

When you create, modify, or delete a channel, you must restart the Oracle WebLogic Server to recognize the change and update the repository for run time purposes.

Note: Channels can be configured and started only on the system where the Oracle Application Adapter for SAP R/3 is installed. Configuring and starting a channel for a remote host is not supported.
Events are not applicable when using a BSE configuration. You can configure events using a J2CA configuration only.

Creating and updating a channel requires you to restart the application server. The application server must also be restarted after you create a channel and generate an inbound WSDL. In addition, ensure to close Application Explorer before you restart the application server.

4.9.1.1 Creating a Channel

To create a channel:

1. Click the Events node, as shown in Figure 4–22.

Figure 4–22 Events Node

![Events Node Diagram](image)

2. Expand the MySAP node.

The ports and channels nodes appear in the left pane.

3. Right-click Channels and select Add Channel.

The Add Channel dialog is displayed, as shown in Figure 4–23.
Perform the following steps:

a. Enter a name for the channel, for example, TEST_CHANNEL.
b. Enter a brief description.
c. From the Protocol list, select Application Server - MySAP30 or Message Server - MySAP30.

4. Click Next.

The Message Server dialog is displayed. The following tabs are available:

- User (Required)
- System (Required)
- Security
- Advanced

5. For the User tab, enter the appropriate information for your SAP R/3 channel based on the information in the following table.

Table 4–5 User Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>The client number defined for the SAP application for client communications.</td>
</tr>
<tr>
<td>User</td>
<td>A valid user ID for the SAP application.</td>
</tr>
<tr>
<td>Password</td>
<td>A valid password for the SAP application.</td>
</tr>
</tbody>
</table>
6. For the System tab, enter the appropriate information for your SAP R/3 channel based on the information in the following table.

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway host</td>
<td>A host name for the SAP R/3 Gateway.</td>
</tr>
<tr>
<td>Gateway service</td>
<td>A service for the SAP R/3 Gateway.</td>
</tr>
<tr>
<td>Program ID of the server</td>
<td>A SAP R/3 program ID you want to use for this channel.</td>
</tr>
<tr>
<td>Application Server</td>
<td>A host name for the application server.</td>
</tr>
<tr>
<td>System Number</td>
<td>The system number defined to SAP R/3 for client communications.</td>
</tr>
<tr>
<td>Connection pool size</td>
<td>The number of client connections in a pool you want to make available to SAP R/3 for Web service calls. A default connection pool size of 2 is available by default. Important: The default value of 1 does not create a connection pool. Instead, a single SAP R/3 connection with sequential processing is shared. A pooled connection invokes multiple connections to SAP R/3 with parallel processing. If you are using Application Explorer to create Web services, then the connection pool size value is used by your Web service during run-time. As a result, ensure that the connection pool size is sufficient for your purposes.</td>
</tr>
<tr>
<td>Connection timeout(min)</td>
<td>The timeout value for your connection pool in minutes. The default value is 10 minutes.</td>
</tr>
<tr>
<td>Connection wait time(sec)</td>
<td>The wait time for your connection pool in seconds. The default value is 30 seconds.</td>
</tr>
</tbody>
</table>

7. For the Security tab (optional), enter the appropriate information for your SAP R/3 channel based on the information in the following table.

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNC mode</td>
<td>By default, SNC is disabled. To enable SNC, select 1 from the list.</td>
</tr>
<tr>
<td>SNC partner</td>
<td>Enter the name of the RFC server or message server (load balancing) that provides the SNC services.</td>
</tr>
</tbody>
</table>
8. For the Advanced tab (optional), enter the appropriate information for your SAP R/3 channel based on the information in the following table.

Table 4–8 Advanced Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDOC Confirm</td>
<td>If this option is selected, a STATUS IDOC is returned to SAP confirming receipt for every IDOC that is received. When a standard IDOC is sent, the usual last status available through the SAP IDOC monitor is "Data Sent to Port OK" = "03", in the WE02 transaction IDOC list. If you want to use the WE02 transaction to ensure that the IDOC was received at the target destination, then enable this option. When an IDOC is received, the adapter returns a STATUS IDOC to SAP and in the WE02 transaction IDOC list, the status of the IDOC is changed to "12", "Dispatch OK". Note that if a large number of IDOCs are sent in bursts, enabling this option may impact performance. If performance is an issue, then it is recommended to disable this option.</td>
</tr>
</tbody>
</table>
| IDOC Format | Select an IDOC type from the list:
 - XML (default)
 - XML-CDATA-ENVELOPED |
| IDOC release | The IDOC versioning you want to use for your connection. |
| IDOC release provider | The IDOC release provider for your connection. Select IDOC DOCREL field (default), SAP release, user input, or Automatic check from the list. For more information about the Automatic check option, see the extended description that follows this procedure. |
| SAP trace | Select this option to enable SAP traces. The SAP traces are stored in the following locations during design time and run time:
 - Design Time: `<ADAPTER_HOME>\tools\iwae\bin`
 - Run Time: `<ORACLE_HOME>\user_projects\domains\base_domain`
 - The file name formats that are used for the SAP traces are as follows (for design time and run time):
 - rfc02664_04332.trc
 - JCO100226_043846994.trc
 - Trace level Indicates the level of detail in the SAP traces. Select a value that ranges from 0 through 10 from the list. |
9. Click OK.

The channel appears under the channels node in the left pane, as shown in Figure 4–24.

![MySAP_Channel](image)

An X over the icon indicates that the channel is currently disconnected. You must start the channel to activate your event configuration.

Note: If you are planning to integrate Oracle Application Adapter for SAP R/3 with BPM, BPEL, or OSB inbound process components, then do not start the channel. The channel is managed by the run-time server after the BPM, BPEL, or OSB process component is deployed. If you start the channel from Application Explorer for testing and debugging purposes, then stop it before run-time (when working with BPM, BPEL, or OSB process components).

10. Right-click the channels node and select Start.

The channel you created becomes active, as shown in Figure 4–25.

![Active MySAP_Channel](image)

11. To stop the channel, right-click the connected channel node and select Stop.

The channel becomes inactive and an X appears over the icon.

IDOC Release Provider Parameter: Automatic Check Option

If you have non-standard IDOC releases, earlier versions of the adapter required you to select the **user input** option, and manually specify the IDOC releases. However, this option applies to all IDOCs that are handled by the target, which can be a limitation.

Table 4–8 (Cont.) Advanced Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread count</td>
<td>The number of open threads. By default, three threads are specified.</td>
</tr>
<tr>
<td>Processing Mode</td>
<td>Select the type of synchronous processing from the list. Possible values include REQUEST and REQUEST_RESPONSE. If a channel is created with a processing mode set to REQUEST_RESPONSE, then this channel is listed during the WSDL creation process only if the object has a reply schema. Otherwise, the channel will not be listed.</td>
</tr>
</tbody>
</table>

Figure 4–24 MySAP_Channel

![MySAP_Channel](image)

Figure 4–25 Active MySAP_Channel

![Active MySAP_Channel](image)
The **Automatic check** option allows the adapter to read the SAP Partner Profile from the Logical System that is available through the WE02 transaction.

The API matches the Logical System for the Program ID and the incoming IDOC type for the message, which retrieves the IDoc version from the Partner Profile through the EDI partner API.

The **Automatic check** option retains all IDOC metadata configuration on the SAP system where the IDOC is being sent, without requiring you to guess what version of SAP an IDOC type is configured.

The following options are also for the available for the IDOC Release Provider parameter:

- **IDOC DOCREL field** - Uses the DOCREL field of the IDOC to obtain the metadata release of the IDOC.
- **SAP release** - Uses the logon SAP release to obtain the metadata release of the IDoc.
- **user input** - Requires you to enter the SAP release of the IDOC that is being sent (for example, 40A, 40B, 45B, 700, and so on).

Consider the following about IDOC terms:

- **Message Types** - Describe business messages. The message type is not direction specific, but describes in general terms a business process, such as Order for Order Processing. A message type is usually independent of the release and version.

- **Segments** - IDOC data is composed of groups or segments of fields. Each segment is released or bound to a particular SAP release. There may be only one active segment version on a particular SAP release at a time.

A basic type or IDOC type describes a physical message composed of a hierarchy of segments composed in a particular order. Each segment belongs to a particular SAP version. Each IDOC type is an order of a type of segments. Each IDOC type is released or bound to a particular version of SAP. If you are required to send a message to a partner with an earlier version of SAP, then you must send it using an earlier IDOC version and an earlier SAP IDOC release. In an IDOC, the order of fields vary. However, the number of fields at the end of each segment continues to be added with each segment version increase and the number of segments increase with each IDOC version increase.

4.9.1.2 Editing a Channel

To edit a channel:

1. In the left pane, locate the channel you want to edit.
2. Right-click the channel and select **Edit**.

 The Edit Channel pane is displayed.
3. Make the required changes to the channel configuration and click **Finish**.

 When you edit a channel, you must restart the Oracle WebLogic Server to recognize the change and update the repository for run time purposes.

4.9.1.3 Deleting a Channel

To delete a channel:

1. In the left pane, locate the channel you want to delete.
2. Right-click the channel and select **Delete**.
The channel disappears from the list in the left pane.

When you delete a channel, you must restart the Oracle WebLogic Server to recognize the change and update the repository for run time purposes.

4.9.2 Schema Validation

Root validation, namespace validation, and schema validation for inbound processing (events) are supported for the Oracle Application Adapter for SAP R/3 with BPEL.

To validate inbound processing using the Oracle Application Adapter for SAP R/3, perform the following steps. This procedure uses MATMAS (Material Master) as an example for inbound processing.

1. Start Application Explorer.
2. Connect to the MySAP target.
3. Expand the IDOCs node.
4. Verify that you created a channel for the MySAP adapter.
5. Select and expand the MATMAS – Material Master node.
6. Right-click MATMAS01 select Create Inbound JCA Service (event).

 The Export WSDL dialog opens and includes three check boxes for Root, Namespace, and Schema validation, as shown in Figure 4–26.

![Figure 4–26 Export WSDL Dialog](image-url)
■ Selection of multiple validation options is allowed.
■ Root validation is used to validate the root element in the inbound XML document.
■ Namespace validation is used to validate the namespace in the inbound XML document.
■ Schema validation is used to validate the inbound XML document with the schema in the WSDL document.
■ During run time, validation is processed based on the validation options that are selected.
■ If multiple validation options are selected, then during run time if the first validation option fails, the remaining validation options are not processed.
■ Root and namespace validations are considered modest levels of validation. Schema validation is a stricter validation level.
■ It is recommended to use root and namespace validation options, unless the root element and namespace are different between the IDOCs in the SAP environment.

7. Generate the WSDL document and create the BPEL process.
8. Trigger the transactions (IDOCs) from the SAP GUI.
 Inbound transactions that fail for the validation are shown in the SAP Transaction Monitor (SM58).
 The status text field shows "java.lang.exception" for the documents that have failed the validation process.

4.10 Configuring the SAProuter Service

This section describes how to configure the SAProuter service. It includes the following topics:
■ Section 4.10.1, "Configuring SAProuter"
■ Section 4.10.2, "Testing SAProuter With Oracle Components"
■ Section 4.10.3, "Verifying SAProuter Configuration"

SAProuter can be considered as a proxy server or intermediate endpoint between different types of SAP connections (internal and external). It can act as a firewall or port filter to keep unwanted traffic from entering the internal SAP network or to confine network traffic between specific ports on specific systems.

For more information on SAProuter that is related to its functionality and configuration, refer to the SAProuter documentation at the following Web site:
http://help.sap.com

Once you have accessed this Web site, you can search for SAProuter.
The configuration and setup instructions for SAProuter may differ by platform and the version of SAP that is installed.

4.10.1 Configuring SAProuter

To configure SAProuter:

1. Edit or create a route table for SAProuter.
The following is a sample of the route string syntax:

/H/ hostname
/S/ service
/W/ password

Note: The characters between the forward slashes are case-sensitive.

2. Configure a route entry in the permissions table, using the following format:

\{P/S/D\} <source host> [<dest host>] <dest serv> <password>

where:

- Specifying P in front of the command instructs SAProuter to configure (permit) the connection. P(ermits) entries can contain a password in the <password> element.
- Specifying S in front of the command only allows connections to be made with the SAP protocol. Connections with other protocols (for example, TCP) are not allowed.
- Specifying D in front of the command prevents (denies) the connection from being configured.
- Source Host <source host> specifies the host from where the connection originates (from the viewpoint of SAProuter). This can be a host name, an IP address, or an IP subnetwork.
- Destination Host <dest host> specifies the host to which the connection is accessing (from the viewpoint of SAProuter). This can be a host name, an IP address, or an IP subnetwork.
- Destination Port <dest serv> specifies the port (service) of the destination host to which the connection is accessing. If required, you can also specify port ranges by separating the two ports that demarcate the range by using a period (.) character. If <dest serv> has the value 3200.3298, this means connections to the destination server on all ports between 3200 and 3298. For example:

```
 p 192.168.128.166 SAP-Server1 3300
```

3. Start SAProuter.

You can now test SAProuter with Oracle components.

4.10.2 Testing SAProuter With Oracle Components

After SAProuter has started without any issues, you can create:

- A target in Application Explorer with the route string for the Application Server.
- A channel with the route string for the Gateway Host and Application Server.

Ensure that connections can be made to the Gateway Host and Application Server without any issues.

For more information on creating a target, see Section 4.4, "Establishing a Connection (Target) for SAP R/3". For more information on creating a channel, see Section 4.9.1, "Creating and Editing a Channel".

The following is a sample of the route string syntax:
/H/host/H/host/S/service

where:
- host indicates the host name.
- service specifies the service (port).

For example:
/H/192.168.128.166/H/isdsrv2.ibi.com/S/3300

Figure 4–27 shows a route string configured for a target in Application Explorer.

Figure 4–27 Configured Target Route String

To access a message server, you must specify the service name and port for the message server (not the application host), and provide it to the router, as shown in Figure 4–28.

Figure 4–28 Message Server Connection Parameters

You must also specify the logon group to provide connection balancing.

Figure 4–29 shows a route string configured for a channel in Application Explorer.
Once connected, create outbound and inbound WSDL files, and check if the BPEL, Mediator, BPM, and OSB processes are working correctly. You can refer to the corresponding sections in this documentation for more information.

4.10.3 Verifying SAProuter Configuration

As a best practice, start SAProuter initially with traces enabled or the output displayed in the command prompt window to check for errors, and submit a sample command. Use the following command to specify the logging and logging level if required:

```
saprouter -r -T logfilename.name -V3
```

where:

- `-T` activates the tracing option.
- `-V(n)` specifies the logging level.
- `logfile.name` is a name for the log file (for example, logfile.trc).

1. Once SAProuter is started in the command prompt window, check for any errors in the command prompt or in the trace file, which is generated in the folder where SAProuter is started.

 Figure 4–30 shows SAProuter started in the command prompt window with the command to activate tracing.

2. After SAProuter is started, create a target in Application Explorer with the route string for the Application Server, and a channel with the route string for the Gateway Host and Application Server.

 Ensure that connections can be made to the Gateway Host and Application Server without any issues.

 Figure 4–31 shows a route string configured for a target in Application Explorer.
3. To verify that the connection has been properly established, see the defined log file (for example, saprouterlog.trc), as shown in Figure 4–32.

4. After you have successfully verified the SAProuter configuration, you can stop SAProuter, disable the tracing options, and then restart SAProuter.

Note: After the SAProuter verification has been successfully completed, the Oracle Application Adapter for SAP R/3 target can work with the SAProuter. SAProuter configuration information that is defined in the adapter target is stored in the adapter repository. As a result, the Oracle Application Adapter for SAP R/3 makes use of the SAProuter settings that are defined in the adapter target during runtime when invoked from SOA components, such as BPEL, Mediator, BPM, and OSB.
This chapter describes Oracle WebLogic Server (OracleWLS) deployment and integration with Oracle Application Adapter for SAP R/3. It contains the following sections:

- Section 5.1, "Adapter Integration with Oracle WebLogic Server"
- Section 5.2, "Deployment of Adapter"
- Section 5.3, "Updating Adapter Configuration"

See Also:
- Oracle WebLogic Server Adapter Concepts

5.1 Adapter Integration with Oracle WebLogic Server

Oracle Application Adapter for SAP R/3 is deployed within an OracleWLS container during installation. All client applications run within the OracleWLS environment. In J2CA deployment, the Common Client Interface (CCI) integrates an OracleWLS client application with a resource adapter.

See Also:
- Oracle WebLogic Server Adapter Concepts

5.2 Deployment of Adapter

Figure 5–1 shows deployment of the J2CA Connector to the Oracle Application Server. In a run-time service scenario, an Enterprise Java Bean, servlet, or Java program client makes CCI calls to J2CA resource adapters. The adapters process the calls as requests and send them to the EIS. The EIS response is then sent back to the client.
5.3 Updating Adapter Configuration

This section contains the following topics:

- Section 5.3.1, "Creating a Managed Connector Factory Object"
- Section 5.3.2, "Creating Multiple Managed Connector Factory Objects"
- Section 5.3.3, "Modifying WSDL Files for Additional Connection Factory Values"

During the J2CA deployment of Oracle Application Adapter for SAP R/3, OracleWLS generates a deployment descriptor called `ra.xml`, located in:

```
<ADAPTER_HOME>\iwafjca.rar\META-INF
```

The OracleWLS deployment descriptor is located in the directory specified above.

Note: Multiple managed connection factories are supported only for outbound processing (services).

5.3.1 Creating a Managed Connector Factory Object

The `ra.xml` descriptor provides OracleWLS-specific deployment information for resource adapters. For example, the `jca_sample` configuration in Application Explorer is represented in the `ra.xml` file as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connector PUBLIC '-//Sun Microsystems, Inc.//DTD Connector 1.0//EN'
'http://java.sun.com/dtd/connector_1_0.dtd'>
<connector>
 <display-name>IWAFJCA10</display-name>
 <vendor-name>IWAY Software</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type>IWAF</eis-type>
 <version>1.0</version>
 <license>
 <license-required>false</license-required>
 </license>
 <resourceadapter>
 <managedconnectionfactory-class>com.ibi.afjca.spi.IWAFManagedConnectionFactory</managedconnectionfactory-class>
 <connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
 <connectionfactory-impl-class>com.ibi.afjca.cci.IWAFConnectionFactory</connectionfactory-impl-class>
 <connection-interface>javax.resource.cci.Connection</connection-interface>
 <connection-impl-class>com.ibi.afjca.cci.IWAFConnection</connection-impl-class>
 </resourceadapter>
 <transaction-support>NoTransaction</transaction-support>
 <config-property>
 <config-property-name>AdapterName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>Config</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayHome</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>C:\oracle\Middleware\Oracle_SOA1\soa\thirdparty\ApplicationAdapters</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayConfig</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>jca_sample</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoDriver</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoURL</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
 <config-property>
 <config-property-name>IWayRepoUser</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>
 </config-property>
</connector>
The parameters defined in the ra.xml file are described in the following table:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWayHome</td>
<td>The base installation directory for the OracleWLS packaged application adapter.</td>
</tr>
<tr>
<td>IWayConfig</td>
<td>The adapter configuration name as defined in Application Explorer. For example, Oracle Application Adapter for SAP R/3 has a preconfigured jca_sample configuration in Application Explorer.</td>
</tr>
<tr>
<td>IWayRepoURL</td>
<td>The URL to use when opening a connection to the database. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>IWayRepoUser</td>
<td>User name to use when connecting to the database. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>IWayRepoPassword</td>
<td>Password. If provided, then it overwrites the configuration. This is necessary only when using an Oracle database as the repository.</td>
</tr>
<tr>
<td>loglevel</td>
<td>It overwrites the level set by the ManagedConnectorFactory property.</td>
</tr>
</tbody>
</table>

5.3.2 Creating Multiple Managed Connector Factory Objects

To establish multiple managed connector factory objects, you must edit the weblogic-ra.xml file and add more <connection-instance> nodes. This file is located in:

```
<ADAPTER_HOME>\iwafjca.rar\META-INF
```

For example, the first jca_configuration in Application Explorer is represented in the weblogic-ra.xml file as follows:

```xml
<?xml version="1.0"?><weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90"
```
<enable-access-outside-app>true</enable-access-outside-app>
<enable-global-access-to-classes>true</enable-global-access-to-classes>
<outbound-resource-adapter>
 <default-connection-properties>
 <pool-params>
 <initial-capacity>0</initial-capacity>
 </pool-params>
 <transaction-support>LocalTransaction</transaction-support>
 </default-connection-properties>
 <connection-definition-group>
 <connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/OracleJCAAdapter/DefaultConnection</jndi-name>
 </connection-instance>
 </connection-definition-group>
</outbound-resource-adapter>
</weblogic-connector>

To create multiple managed connector factory objects, you must add new <connection-instance> nodes in the file. For example:

```xml
<?xml version="1.0"?>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">
  <enable-access-outside-app>true</enable-access-outside-app>
  <enable-global-access-to-classes>true</enable-global-access-to-classes>
  <outbound-resource-adapter>
    <default-connection-properties>
      <pool-params>
        <initial-capacity>0</initial-capacity>
      </pool-params>
      <transaction-support>LocalTransaction</transaction-support>
    </default-connection-properties>
    <connection-definition-group>
      <connection-factory-interface>javax.resource.cci.ConnectionFactory</connection-factory-interface>
      <connection-instance>
        <jndi-name>eis/OracleJCAAdapter/DefaultConnection</jndi-name>
      </connection-instance>
      <connection-instance>
        <jndi-name>eis/OracleJCAAdapter/DefaultConnection1</jndi-name>
      </connection-instance>
    </connection-definition-group>
    <connection-properties>
      <properties>
        <property>
          <name>IWayHome</name>
          <value>C:\oracle\Middleware\Oracle_SOA1\soa\thirdparty\ApplicationAdapters</value>
        </property>
        <property>
          <name>IWayConfig</name>
          <value>jca_sample2</value>
        </property>
        <property>
          <name>IWayRepoURL</name>
          <value></value>
        </property>
        <property>
          <name>IWayRepoUser</name>
          <value></value>
        </property>
      </properties>
    </connection-properties>
  </outbound-resource-adapter>
</weblogic-connector>
```
If you do not specify a <property> element in the <connection-instance> section, then the value is taken from the ra.xml file. You can specify the default properties in the ra.xml file and then override them as required in the weblogic-ra.xml file. In addition, note that the J2CA configuration (for example, jca_sample2) must be created in Application Explorer.

Note: When you modify the ra.xml and weblogic-ra.xml files, the application server must be restarted. If the application server is running, then stop the application server and then restart it.

In addition, the iwafjca.rar file must be redeployed in the Oracle WebLogic Administration Console to activate these changes.

5.3.3 Modifying WSDL Files for Additional Connection Factory Values

Application Explorer generates the J2CA properties file using the default connection factory name eis/OracleJCAAdapter/DefaultConnection. If you created additional connection factories, then the WSDLs generated for the additional configuration and connection factory should be changed to reflect the location field of the jca:address section in the J2CA properties file. The default J2CA properties file for the Oracle Application Adapter for SAP R/3 with a configuration of isdsrv2_conn2 is shown in the following example.

Notice that the J2CA properties file has the following default connection factory:
eis/OracleJCAAdapter/DefaultConnection

```xml
<jca:address location="eis/OracleJCAAdapter/DefaultConnection"
        ConnectionSpec="com.ibi.afjca.cci.IWAFConnectionSpec"
        cs.AdapterName="MySAP" cs.Config="isdsrv2_conn2"
        UIConnectionName="Connection1"/>
```

The connection factory value must be changed to the following:
eis/OracleJCAAdapter/DefaultConnection1

For example:

```xml
<jca:address location="eis/OracleJCAAdapter/DefaultConnection1"
        ConnectionSpec="com.ibi.afjca.cci.IWAFConnectionSpec"
        cs.AdapterName="MySAP" cs.Config="isdsrv2_conn2"
        UIConnectionName="Connection1"/>
```
Note that only the value for the location field in the `jca:address` section should be modified. Do not modify any other field or section.
Integration With BPEL Service Components in the Oracle SOA Suite

Oracle Application Adapter for SAP R/3 integrates seamlessly with Business Process Execution Language (BPEL) Process Manager to facilitate Web service integration. Oracle BPEL Process Manager is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following sections:

- Section 6.1, "Overview"
- Section 6.2, "Deployment of Adapter"
- Section 6.3, "Configuring a New Application Server Connection"
- Section 6.4, "Designing an Outbound BPEL Process for Service Integration (J2CA Configuration)"
- Section 6.5, "Designing an Inbound BPEL Process for Event Integration (J2CA Configuration)"
- Section 6.6, "Working With Synchronous SAP R/3 Events Using BPEL (J2CA Configuration)"
- Section 6.7, "Designing an Outbound BPEL Process for Service Integration (BSE Configuration)"

6.1 Overview

To integrate with Oracle BPEL Process Manager, Oracle Application Adapter for SAP R/3 must be deployed in the same WLS container as Oracle BPEL Process Manager. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 4-16.

The generated WSDL files are used to design the appropriate BPEL processes for inbound or outbound adapter services. A completed BPEL process must be successfully compiled in JDeveloper and deployed to a BPEL server. Upon deployment to the BPEL server, every newly built process is automatically deployed to the Oracle Enterprise Manager console, where you run, monitor, and administer BPEL processes, and listen to adapter events.
6.2 Deployment of Adapter

During installation, Oracle Application Adapter for SAP R/3 is deployed as a J2CA 1.0 resource adapter within the WLS container. The adapter must be deployed in the same WLS container as Oracle BPEL Process Manager.

6.3 Configuring a New Application Server Connection

To configure a new Application Server connection in Oracle JDeveloper:

1. Open Oracle JDeveloper on your system.
2. From the menu bar, click Window and select Application Server Navigator, as shown in Figure 6–1.

![Application Server Navigator](image)

The Application Server tab is displayed, as shown in Figure 6–2.
3. Right-click Application Servers and select New Application Server. The Create Application Server Connection Wizard is displayed, as shown in Figure 6–3.

4. Accept the default selection (Standalone Server) and click Next. The Name and Type page is displayed, as shown in Figure 6–4.
5. Specify a new name for the Application Server connection and click **Next**.

The Authentication page is displayed, as shown in **Figure 6–5**.

Figure 6–5 Authentication Page
6. Specify a valid user name (for example, weblogic) and a password (for example, welcome1) for your new connection.

7. Click **Next**.

 The Configuration page is displayed, as shown in Figure 6–6.

Figure 6–6 Configuration Page

![Configuration Page](image)

8. Specify the Oracle WebLogic host name (for example, localhost), which is the system IP where the process must deploy and Oracle WebLogic domain (for example, base_domain).

9. Click **Next**.

 The Test page is displayed, as shown in Figure 6–7.
10. Click **Test Connection**.

11. Make sure that the test status is successful.

12. Click **Next**.

 The Finish page is displayed, as shown in **Figure 6–8**.
13. Click Finish.

The new Application Server connection is listed in the left pane (Application Server tab).

6.4 Designing an Outbound BPEL Process for Service Integration (J2CA Configuration)

This section describes how to design an outbound BPEL process for service integration.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SAP_Samples.zip/SAP_Samples/BPEL/J2CA/Outbound_Project

The following tools are required to complete your outbound design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- Section 6.4.1, "Generating WSDL for Request/Response Service"
- Section 6.4.2, "Creating an Empty Composite for SOA"
6.4.1 Generating WSDL for Request/Response Service

Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer.

Perform the following steps to generate a WSDL for request/response service:

1. Start Application Explorer and connect to a defined MySAP target (a J2CA configuration).

 For more information on starting the Application Explorer and defining a target, and connecting to SAP R/3, see Section 4.1, "Starting Application Explorer" on page 4-1 and Section 4.4.1, "Defining a Target to SAP R/3" on page 4-5.

2. Expand the MySAP target to which you are connected.

3. Expand Remote Function Modules, Financial Accounting, 0002 -- Company Code Business Object, and then select BAPI_COMPANYCODE_GETDETAIL, as shown in Figure 6–9.

 Figure 6–9 Connected MySAP Target

4. Right-click the BAPI_COMPANYCODE_GETDETAIL node.

 A menu is displayed, as shown in Figure 6–10.
5. Click Create Outbound JCA Service (Request/Response).

The Export WSDL dialog is displayed, as shown in Figure 6–11.

6. Click OK.

You can now create an empty composite for SOA, which is the first step that is required to define a BPEL outbound process in JDeveloper.

6.4.2 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the new SOA Application and click Next, as shown in Figure 6–12.

Figure 6–12 Name Your Application Page

![Name Your Application Page](image)

The Name your project page is displayed, as shown in Figure 6–13.
3. Enter a project name and click Next.
 The Configure SOA settings page is displayed, as shown in Figure 6–14.
4. From the Composite Template list, select Empty Composite and click Finish.

6.4.3 Defining a BPEL Outbound Process

This section describes how to define a BPEL outbound process, which consists of the following topics:

- Section 6.4.3.1, "Configuring a Third Party Adapter Service Component"
- Section 6.4.3.2, "Configuring an Outbound BPEL Process Component"
- Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c"

6.4.3.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the External References pane, as shown in Figure 6–15.
The Create Third Party Adapter Service dialog is displayed, as shown in Figure 6–16.

Figure 6–15 Third Party Adapter Component

Figure 6–16 Create Third Party Adapter Service Dialog
2. Enter a name for the third party adapter service.
3. Ensure that Reference is selected from the Type list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

 The WSDL Chooser dialog is displayed, as shown in Figure 6–17.

Figure 6–17 WSDL Chooser Dialog

5. Browse and select an outbound WSDL file from the following directory:

 `<ADAPTER_HOME>\wsdls`

6. Click OK.

 The Localize Files dialog is displayed, as shown in Figure 6–18.
7. Click OK.

The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–19.

8. Click the Find JCA file icon, which is located to the right of the JCA File field.

The Transformation Chooser dialog is displayed, as shown in Figure 6–20.
9. Browse and select the JCA properties file from the following directory:

 \<ADAPTER_HOME>\wsdl\s

10. Click OK.

 The Copy File message is displayed, as shown in Figure 6–21.

Figure 6–21 Copy File Message

11. Click Yes.

 A copy of the JCA properties file is made in the project folder.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–22.
12. Click OK.

The third party adapter service component (GetDetail) is created and displayed in the External References pane.

You are now ready to configure an outbound BPEL process component.

6.4.3.2 Configuring an Outbound BPEL Process Component

Perform the following steps to configure an outbound BPEL process component:

1. Drag and drop the BPEL Process component from the Components pane to the Components pane.

The Create BPEL Process dialog is displayed, as shown in Figure 6–23.
2. In the Name field, enter a name to identify the new outbound BPEL process component (for example, cc_getdetail). By default, the BPEL 2.0 Specification option is selected.

3. From the Template list, select **Synchronous BPEL Process**.

4. Click the **Browse** icon, which is located to the right of the Input field to select the associated XML request schema file.

The Type Chooser dialog is displayed, as shown in Figure 6–24.
5. Expand **Project Schema Files**, *GetDetail_invoke_request.xsd*, and select *CompanyCode.GetDetail*.

6. Click **OK**.

 You are returned to the Create BPEL Process dialog, as shown in Figure 6–25.

Figure 6–25 Create BPEL Process Dialog

7. Click the **Browse** icon, which is located to the right of the **Output** field to select the associated XML response schema file.

 The Type Chooser dialog is displayed, as shown in Figure 6–26.

9. Click OK. You are returned to the Create BPEL Process dialog.

10. Click OK.

11. Create a connection between the outbound BPEL process component (cc_getdetail) and the third party adapter service component (GetDetail), as shown in Figure 6–27.
12. Double-click the outbound BPEL process component (cc_getdetail) in the Components pane.

13. Drag and drop the **Invoke** activity component under BPEL Constructs - Web Service, to the Components pane and place it between the **receiveInput** activity component and the **replyOutput** activity component, as shown in Figure 6–28.
14. Create a connection between the new Invoke activity component (Invoke1) and the third party adapter service component (GetDetail), as shown in Figure 6–29.

The Edit Invoke dialog is displayed.
15. Click the **Plus sign** icon, which is located to the right of the Input field to configure a new input variable.

The Create Variable dialog is displayed.

16. Accept the default values that are provided for the new input variable and click **OK**.

You are returned to the Edit Invoke dialog, as shown in Figure 6–30.

Figure 6–30 Edit Invoke Dialog

17. Select the **Output** tab and click the **Plus sign** icon, which is located to the right of the Output field to configure a new output variable.

The Create Variable dialog is displayed.

18. Accept the default values that are provided for the new output variable and click **OK**.

You are returned to the Edit Invoke dialog, as shown in Figure 6–31.
19. Click **Apply** and then **OK**.

20. Drag and drop the **Assign** activity under BPEL Constructs - Basic Activities component, to the Components pane and place it between the Receive activity component (receiveInput) and the Invoke activity component (Invoke1), as shown in Figure 6–32.
21. Double-click the new Assign activity component (Assign1).

 The Edit Assign dialog is displayed.

22. In the left pane, under Variables, expand InputVariable, and then select payload.

23. In the right pane, under Variables, expand Invoke1_GetDetail_InputVariable, and then select input_GetDetail.

24. Drag and map the payload variable to the input_GetDetail variable.

 The mapped variables are populated in the highlighted area as shown in Figure 6–33.

Figure 6–33 Edit Assign Dialog
25. Click **Apply** and then **OK**.

26. Drag and drop the **Assign** activity component to the Components pane and place it between the Invoke activity (Invoke1) and the Reply activity (replyOutput).

27. Double-click the new Assign activity component (**Assign2**), as shown in Figure 6–34.

Figure 6–34 New Assign Activity Component

The Edit Assign dialog is displayed.

28. In the left pane, under Variables, expand **Invoke1_GetDetail_OutputVariable**, and then select **output_GetDetail**.

29. In the right pane, under Variables, expand **outputVariable** and select **payload**.

30. Drag and map the **output_GetDetail** variable to the **payload** variable.

The mapped variables are populated in the highlighted area as shown in Figure 6–35.
31. Click **Apply** and then **OK**.

 You are returned to the Activity component pane, as shown in Figure 6–36.

Figure 6–36 Activity Component Pane

32. Click the **Save All** icon in the menu bar to save the new outbound BPEL process component that was configured.

 You are now ready to deploy the BPEL outbound process.
6.4.3.3 Adjusting for Known Deployment Issues With 12c

Perform the following steps to adjust for known deployment issues with 12c.

1. Double-click **J2CA_Outbound** (created BPEL process) of the created process, as shown in Figure 6–37.

![Figure 6–37 J2CA_Outbound Node](image)

2. Click the **Source** tab below the opened process, as shown in Figure 6–38.

![Figure 6–38 Source Tab](image)
3. Change the productVersion property value from 12.1.3.0.0 to 11, as shown in Figure 6–39.

Figure 6–39 Property Value

4. Save the changes and proceed to deploy the project.

6.4.4 Deploying the BPEL Outbound Process

Perform the following steps to deploy the BPEL outbound process.

1. Right-click the project name in the left pane, select **Deploy**, and then click **J2CA_Outbound**, as shown in Figure 6–40.

Figure 6–40 J2CA_Outbound Option
The Deployment Action page is displayed, as shown in Figure 6–41.

2. Ensure that Deploy to Application Server is selected.

3. Click Next.

The Deploy Configuration page is displayed, as shown in Figure 6–42.
4. Leave the default values selected and click **Next**.
 The Select Server page is displayed, as shown in Figure 6–43.

Figure 6–43 Select Server Page

5. Select an available application server that was configured and click **Next**.
 The SOA Servers page is displayed, as shown in Figure 6–44.
6. Select a target SOA server and click **Next**.

The Summary page is displayed, as shown in **Figure 6–45**.

7. Review and verify all the available deployment information for your project and click **Finish**.
The process is deployed successfully, as shown in Figure 6–46.

Figure 6–46 Successful Deployment Message

```
BUILD SUCCESSFUL
Total time: 3 seconds
```

6.4.5 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console.

1. Logon to the Oracle Enterprise Manager console.
2. Expand SOA, select `soa-infra (soa_server1)`, and then click Default.
3. Select an available project (for example, J2CA_Outbound).

Figure 6–47 Test Button

4. Click Test, as shown in Figure 6–47.
5. Click the **Request** tab, as shown in Figure 6–48.

6. Provide an appropriate input value in the Value field and click **Test Web Service**. The output response is received in the Oracle Enterprise Manager console, as shown in Figure 6–49.

Perform the following steps to invoke the input XML document using XML View:

- Select **XML View** from the list, as shown in Figure 6–50.
b. Provide an appropriate input XML document in the Input Arguments area and click Test Web Service.

The output response is received in the Oracle Enterprise Manager console, as shown in Figure 6–51.

6.4.6 Testing Outbound BPEL and Mediator Processes

When testing an outbound BPEL process or an outbound Mediator process from the Oracle Enterprise Manager console, do not use the XML envelopes that are generated by these consoles. Instead, remove them and use the XML payloads that are generated from the schemas, which conform to the WSDLs for namespace qualifications.

The Mediator data flows can be tested using the Enterprise Manager console. When creating a Mediator data flow and interactions, the Web services are created and registered with the Oracle Application Server. For more information on creating a
6.5 Designing an Inbound BPEL Process for Event Integration (J2CA Configuration)

This section demonstrates how Oracle Application Adapter for SAP R/3 integrates with SAP R/3 to receive event data. In this example, an SAP R/3 event occurs when a customer record is added to a SAP R/3 system.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\BPEL\J2CA\Inbound_Project

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPEL Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- **Section 6.5.1**, "Generating WSDL for Event Integration"
- **Section 6.5.2**, "Creating an Empty Composite for SOA"
- **Section 6.5.3**, "Defining a BPEL Inbound Process"
- **Section 6.5.4**, "Deploying the BPEL Inbound Process"
- **Section 6.5.5**, "Triggering an Event in SAP R/3"

6.5.1 Generating WSDL for Event Integration

Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer.

You must create a separate channel for every inbound J2CA service and select that channel when you generate WSDL for inbound interaction using Application Explorer.

Note: If two or more events share the same channel, then event messages may not be delivered to the right BPEL process.

This section contains the following topics:

- **Section 6.5.1.1**, "Creating a Channel"
- **Section 6.5.1.2**, "Generating WSDL for Event notification"

6.5.1.1 Creating a Channel

To create a channel:

1. Start **Application Explorer** and connect to a J2CA configuration.
2. In the left pane, expand the **Events** node.
3. Expand the MySAP node.
 The Ports and Channels nodes are displayed in the left pane, as shown in Figure 6–52.

Figure 6–52 MySAP Channel Node

4. Right-click Channels and select Add Channel.
 The Add Channel dialog is displayed, as shown in Figure 6–53.

Figure 6–53 Add Channel Dialog

Perform the following steps:

a. Enter a name for the channel, for example, SAP_Channel.

b. Enter a brief description (optional).

c. From the Protocol list, select Application Server - mySAP.

5. Click Next.
 The Application Server dialog is displayed, as shown in Figure 6–54. The following tabs are available:

 - User (Required)
 - System (Required)
 - Security
 - Advanced
6. For the User tab, enter the appropriate information for your SAP R/3 channel based on the information in the following table.

Table 6–1 User Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>The client number defined for the SAP R/3 application for client communications.</td>
</tr>
<tr>
<td>User</td>
<td>A valid user ID for the SAP R/3 application.</td>
</tr>
<tr>
<td>Password</td>
<td>A valid password for the SAP R/3 application.</td>
</tr>
<tr>
<td>Authentication Mode</td>
<td>The authentication mode you want to use when connecting to your SAP R/3 system. By default, Password is selected from the list.</td>
</tr>
</tbody>
</table>

7. Click the System tab, as shown in Figure 6–55.

Figure 6–55 System Tab

8. For the System tab, enter the appropriate information for your SAP R/3 channel based on the information in the following table.

Table 6–2 System Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway host</td>
<td>A host name for the SAP R/3 Gateway.</td>
</tr>
</tbody>
</table>
For the Security tab (optional), enter the appropriate information for your SAP R/3 channel based on the information in the following table.

Table 6–3 Security Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNC mode</td>
<td>By default, SNC is disabled. To enable SNC, select 1 from the list.</td>
</tr>
<tr>
<td>SNC partner</td>
<td>Enter the name of the RFC server or message server (load balancing) that provides the SNC services.</td>
</tr>
<tr>
<td>SNC level</td>
<td>From the list select the version of the SNC library.</td>
</tr>
<tr>
<td>SNC name</td>
<td>Enter the name of the SNC library you are using.</td>
</tr>
<tr>
<td>SNC library path</td>
<td>Enter the path to the SNC library.</td>
</tr>
</tbody>
</table>

For the Advanced tab (optional), enter the appropriate information for your SAP R/3 channel based on the information in the following table.

Table 6–4 Advanced Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDOC Confirm</td>
<td>If this option is selected, a STATUS IDOC is returned to SAP confirming receipt for every IDOC that is received. When a standard IDOC is sent, the usual last status available through the SAP IDOC monitor is "Data Sent to Port OK" - "03", in the WE02 transaction IDOC list. If you want to use the WE02 transaction to ensure that the IDOC was received at the target destination, then enable this option. When an IDOC is received, the adapter returns a STATUS IDOC to SAP and in the WE02 transaction IDOC list, the status of the IDOC is changed to "12", "Dispatch OK". Note that if a large number of IDOCs are sent in bursts, enabling this option may impact performance. If performance is an issue, then it is recommended to disable this option.</td>
</tr>
</tbody>
</table>
| IDOC Format | Select an IDOC type from the list:
 - XML (default)
 - XML-CDATA-ENVELOPED |
| IDOC release | The IDOC version you want to use for your connection. |
| IDOC release provider | The IDOC release provider for your connection. Select IDOC DOCREL field (default), SAP release, or user input from the list. |
Table 6–4 (Cont.) Advanced Tab Parameters

<table>
<thead>
<tr>
<th>Target Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| SAP trace | Select this option to enable SAP traces. The SAP traces are stored in the following locations during design time and run time:
 Design Time:
 "<ADAPTER_HOME>\tools\iwae\bin"
 Run Time:
 "<ORACLE_HOME>\user_projects\domains\base_domain"
 The file name formats that are used for the SAP traces are as follows (for design time and run time):
 - rfc02664_04332.trc
 - JCO100226_043846994.trc |
| Processing Mode | Select the type of synchronous processing from the list. Possible values include REQUEST and REQUEST_RESPONSE. |

11. Click **OK**.

 The channel is displayed under the channels node in the left pane. An X over the icon indicates that the channel is currently disconnected.

Note: Do not start the channel, as it is managed by BPEL PM Server. If you start the channel for testing and debugging purposes, then stop it before run-time.

6.5.1.2 Generating WSDL for Event notification

After you create a channel and verify that it is not started, you must generate WSDL for the event using Application Explorer.

1. Start Application Explorer.

2. Expand the **Adapters** node.

 A list of all adapters is displayed, as shown in Figure 6–56.

Figure 6–56 Adapters Node

Perform the following steps:

a. Expand the **MySAP** node.
A list of your available targets is displayed, as shown in Figure 6–57.

Figure 6–57 Disconnected MySAP Target Node

- Click a target name under the **MySAP** node, for example, **SAPTarget**.
 - The Connection dialog displays the saved parameters.

3. Verify your connection parameters.

4. Right-click the target name and select **Connect**.
 - The x icon disappears, indicating that the node is connected, as shown in Figure 6–58.

Figure 6–58 Connected MySAP Target

5. Expand the **ALE(IDOCs)** node and select **MATMAS - Material Master**.
 - The MATMAS list is displayed, as shown in Figure 6–59.

Figure 6–59 MATMAS Material Master List

6. Right-click **MATMAS01** from the MATMAS list.
7. Select **Create Inbound JCA Service (Event)**, as shown in **Figure 6–60**.

 The Export WSDL dialog is displayed, as shown in **Figure 6–61**.

 Figure 6–60 Create Inbound JCA Service (Event) Option

 ![Create Inbound JCA Service (Event) Option](image)

 Figure 6–61 Export WSDL Dialog

 ![Export WSDL Dialog](image)

 Perform the following steps:

 a. In the **Name** field, specify a name for the WSDL file.
 b. From the **Channel** list, select the channel you created for this inbound service.

 Important: You must create a separate channel for every event. Verify that the channel is stopped before run-time.
c. Three check boxes for Root, Namespace, and Schema validation are also available. Selection of multiple validation options is allowed.
 - Root validation is used to validate the root element in the inbound XML document.
 - Namespace validation is used to validate the namespace in the inbound XML document.
 - Schema validation is used to validate the inbound XML document with the schema in the WSDL document.

During run time, validation is processed based on the validation options that are selected. If multiple validation options are selected, then during run time if the first validation option fails, the remaining validation options are not processed. Root and namespace validations are considered modest levels of validation. Schema validation is a stricter validation level. It is recommended to use root and namespace validation options, unless the root element and namespace are different between the IDOCs in the SAP environment.

8. Click OK.
 You can now create an empty composite for SOA, which is the first step that is required to define a BPEL inbound process in JDeveloper.

6.5.2 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the new SOA Application and click Next.
 The Name your project page is displayed.
3. Enter a project name and click Next.
 The Configure SOA settings page is displayed.
4. From the Composite Template list, select Empty Composite and click Finish.
 For more information, see Section 6.4.2, "Creating an Empty Composite for SOA" on page 6-9.

6.5.3 Defining a BPEL Inbound Process

This section describes how to define a BPEL inbound process, which consists of the following topics:

- Section 6.5.3.1, "Creating a Third Party Adapter Service Component"
- Section 6.5.3.2, "Creating an Inbound BPEL Process Component"

6.5.3.1 Creating a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the Exposed Services pane, as shown in Figure 6–62.
The Create Third Party Adapter Service dialog is displayed, as shown in Figure 6–63.

![Figure 6–62 Third Party Adapter Component](image)

The Create Third Party Adapter Service dialog is displayed, as shown in Figure 6–63.

![Figure 6–63 Create Third Party Adapter Service Dialog](image)

2. Enter a name for the third party adapter service.
3. Ensure that Service is selected from the Type list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

 The WSDL Chooser dialog is displayed, as shown in Figure 6–64.
5. Browse and select an inbound WSDL file from the following directory:

 `<ADAPTER_HOME>/wsdls`

6. Click OK.

 The Localize Files dialog is displayed, as shown in Figure 6–65.

Figure 6–64 WSDL Chooser Dialog

![WSDL Chooser Dialog](image)

Figure 6–65 Localize Files Dialog

![Localize Files Dialog](image)
7. Click OK.

The inbound WSDL file and associated receive/request XML schema file (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–66.

Figure 6–66 Create Third Party Adapter Service Dialog

8. Click the **Find JCA file** icon, which is located to the right of the JCA File field.

The Transformation Chooser dialog is displayed, as shown in Figure 6–67.
9. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\wsdls`

10. Click OK.

 A Copy File message is displayed, as shown in Figure 6–68.

Figure 6–68 Copy File Confirmation Message

The jca file MATMAS01_receive.jca is external to the current project. In order to make this file available to your project at runtime, JDeveloper can now make a local copy. Do you want to copy file to MATMAS01_receive_3P.jca?

11. Click Yes.

 A copy of the JCA properties file is made in the project folder.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 6–69.
12. Click OK.

The third party adapter service component (matmas) is created and displayed in the Exposed Services pane, as shown in Figure 6–70.

You are now ready to configure an inbound BPEL process component.

6.5.3.2 Creating an Inbound BPEL Process Component

Perform the following steps to create an inbound BPEL process component:
1. Drag and drop the BPEL Process component from the Service Components pane to the Components pane, as shown in Figure 6–71.

![Figure 6–71 BPEL Process Component](image)

The Create BPEL Process dialog is displayed, as shown in Figure 6–72.

![Figure 6–72 Create BPEL Process Dialog](image)

2. In the Name field, enter a name to identify the new inbound BPEL process component (for example, matmas_inbound).
 By default, the BPEL 2.0 Specification option is selected.
3. From the Template list, select Base on a WSDL.
4. Uncheck the Expose as SOAP service check box.
5. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.
 The WSDL Chooser dialog is displayed, as shown in Figure 6–73.

Figure 6–73 WSDL Chooser Dialog

6. Select an inbound WSDL file from the following directory:
 `<ADAPTER_HOME>\wsdl`

7. Click **OK**.
 The Localize Files dialog is displayed, as shown in Figure 6–74.
Figure 6–74 Localize Files Dialog

8. Uncheck the Rename duplicate files option.
9. Click OK.

You are returned to the Create BPEL Process dialog.

10. Click OK.

Figure 6–75 Created Connection

11. Create a connection between the third party adapter service component (matmas) and the inbound BPEL process component (matmas_inbound), as shown in Figure 6–75.

12. Double-click J2CA_Inbound in the left pane.
13. Click the **Save All** icon in the menu bar to save the new inbound BPEL process component that was configured, as shown in Figure 6–76.

You are now ready to deploy the BPEL inbound process.

6.5.3.3 Adjusting for Known Deployment Issues With 12c

For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28

6.5.4 Deploying the BPEL Inbound Process

Perform the following steps to deploy the BPEL inbound process.

1. Right-click the project name in the left pane, select **Deploy**, and click **matmas01**.

 The Deployment Action page is displayed.

2. Ensure that **Deploy to Application Server** is selected.

3. Click **Next**.

 The Deploy Configuration page is displayed.

4. Leave the default values selected and click **Next**.

 The Select Server page is displayed.

5. Select an available application server that was configured and click **Next**.

 The SOA Servers page is displayed.

6. Select a target SOA server and click **Next**.

 The Summary page is displayed.

7. Review and verify all the available deployment information for your project and click **Finish**.

 The process is deployed successfully.

For more information, see Section 6.4.4, "Deploying the BPEL Outbound Process" on page 6-29.
Once event messages are triggered through SAP GUI, successful instances are received in the Oracle Enterprise Manager console, as shown in Figure 6–77.

Figure 6–77 Received Instances

6.5.5 Triggering an Event in SAP R/3

Events are generated by activity in an application system. For example, SAP R/3 may generate an event as customer information is updated in the system. For more information on events, see "Configuring an Event Adapter" on page 4-20.

This section contains the following topic:

- Section 6.5.5.1, "Verifying the Results"

The following topics describe how to trigger an event in SAP R/3 and verify event integration using Oracle Application Adapter for SAP R/3.

To trigger an event in SAP R/3:

1. Start the SAP Workbench and log in to the SAP R/3 system, as shown in Figure 6–78.
2. Run the \texttt{bd10} transaction.

Enter the following information in the Send Material window:

\begin{enumerate}
 \item In the Material field, enter a material number with a range from 1 to 100, as shown in Figure 6–79.
 \item In the Logical system field, specify the logical system you are using with SAP R/3.
\end{enumerate}

3. Click the \texttt{Execute} button.

Material master data is sent to the logical system specified. If a channel in Application Explorer defined the Program ID with the same value, then the channel receives this material master data from SAP R/3.

6.5.5.1 Verifying the Results

To verify your results:

1. Logon to the Oracle Enterprise Manager console by using the following URL:
2. Expand your domain in the left pane followed by the SOA folder.
3. Select an available inbound BPEL process.
4. Click the Instances tab.
 Recently received run-time event messages are displayed in the Instances tab.
5. Click the Instance ID to view the received event message.

6.6 Working With Synchronous SAP R/3 Events Using BPEL (J2CA Configuration)

This section describes how to work with synchronous SAP R/3 events using BPEL.

A sample project has been provided for this use case scenario in the following folder of the Application Adapters Installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\BPEL\J2CA\Synchronous_Events

This section includes the following topics:

- Section 6.6.1, "Overview"
- Section 6.6.2, "Configuring the Adapter Target"
- Section 6.6.3, "Configuring the Channel"
- Section 6.6.4, "Generating WSDL for a Message"
- Section 6.6.5, "Creating a BPEL Process in JDeveloper"

6.6.1 Overview

Oracle Application Adapter for SAP R/3 supports two ways of receiving SAP R/3 events: Remote Function Call (RFC) or Intermediate Document (IDoc). During event processing, the adapter receives RFCs and IDocs directly from SAP R/3. SAP Message Objects define SAP R/3 events and are published from SAP R/3. The SAP R/3 Integration Broker is used to configure a process for publishing SAP R/3 Message Objects to other third-party applications. Oracle Application Adapter for SAP R/3 can subscribe to SAP R/3 Message Objects.

Oracle Application Adapter for SAP R/3 supports events either asynchronously or synchronously. In the synchronous event model, the enterprise application publishes an output for an event and waits until it receives a response for the publication of the message. For example, when a user adds a customer in a banking application, it initiates an event by sending a request from the banking application to check the credit score of that customer with a credit check application. The credit check application responds with the credit score for the customer. The banking application receives the credit score details and updates the customer records in the banking application. All these constitute one single transaction.

Oracle Application Adapter for SAP R/3 supports inbound transactions through RFCs and IDocs and synchronous events with SAP R/3.

In the case of synchronous events with SAP R/3, when SAP R/3 publishes an event, it becomes the client. Oracle Application Adapter for SAP R/3 acts as a server by receiving the request and does the processing by invoking other applications and sends the response back to SAP. Until that point, the SAP R/3 application waits to
receive the response back from the adapter. RFC objects of SAP R/3 support synchronous events and the IDocs do not support synchronous events.

This use case scenario describes how Oracle Application Adapter for SAP R/3 works synchronously. In this use case, two SAP R/3 systems are configured to show how they communicate with each other using synchronous events. One SAP R/3 system acts as a source system, which initiates an event. The other SAP R/3 system acts as a target system from where details are extracted. This use case scenario can be used with any other EIS. However, the source system must always be an SAP R/3 system. For example, the synchronous event origination can be done only from an SAP R/3 system. The target system can be a non-SAP system (for example, Siebel, PeopleSoft, or J.D. Edwards).

Note: Synchronous events are supported only for objects that have reply schema and are not supported for IDocs.

6.6.2 Configuring the Adapter Target

The following section describes how to configure the adapter target.

1. Open Application Explorer and create two targets for SAP R/3 using a J2CA configuration, as shown in Figure 6–80.

Figure 6–80 SAP Targets

For more information on starting Application Explorer, creating a J2CA configuration, and defining a target to SAP R/3, see Chapter 4, “Configuring Oracle Application Adapter for SAP R/3”.

6.6.3 Configuring the Channel

This section describes how to configure the channel.

1. Create a channel and ensure that REQUEST_RESPONSE is selected from the Processing Mode list in the Advanced tab, as shown in Figure 6–81.
For more information on creating channels, see Section 4.9, "Configuring an Event Adapter".

The created channel is listed in Application Explorer. The channel is displayed under the channels node in the left pane. An X over the icon indicates that the channel is currently stopped, as shown in Figure 6–82.

Figure 6–81 Application Server Dialog

![Application Server Dialog](image)

Figure 6–82 New Channel

![New Channel](image)

Note: Do not start the channel, as it is managed by the BPEL PM Server. If you start the channel for testing and debugging purposes, then stop it before runtime.

6.6.4 Generating WSDL for a Message

Perform the following steps to generate WSDL for a message:

1. Ensure that the channel is not started before generating the WSDL.
2. Connect to the first SAP adapter target (target1).
4. Connect to the second SAP adapter target (target2).
6.6.5 Creating a BPEL Process in JDeveloper

This section describes how to create a BPEL process in JDeveloper.

6.6.5.1 Creating an Empty Composite for SOA

To create an empty composite for SOA:

1. In JDeveloper, select the SOA application and create a new project.
2. In the New Gallery window, select the SOA project and click **OK**.
3. Enter the project name and click **Next**.
4. Select **Empty Composite** as the template and click **Finish**.

6.6.5.2 Creating a Third Party Adapter Service for an Inbound WSDL File

To create a third party adapter service for an inbound WSDL file:

1. Drag and drop the **Third Party Adapter** component from the Custom/Thirdparty area to the Exposed Services pane.
 The Create Third Party Adapter Service dialog is displayed.
2. Enter a name in the **Name** field and click the icon next to the WSDL URL field.
 The WSDL Chooser dialog is displayed.
3. Select the **File System** tab, browse and select the inbound WSDL created from the default WSDL location and click **Yes**.
 The inbound WSDL and request and response XML schema files (.xsd) are imported to the created project folder.
4. Click the **Find jca file** icon to select the particular inbound JCA properties file.
5. Select the JCA properties file from the WSDL location and click **OK**.
6. Click **Yes**.
 A copy of the JCA properties file is made in the project folder.
7. Click **OK**.
 The third party adapter service for the inbound WSDL is created in the Exposed Services pane, as shown in **Figure 6–83**.
To create a third party adapter service for an outbound WSDL file:

1. Drag and drop the Third Party Adapter component from the Custom/Thirdparty area to the External References pane.

 The Create Third Party Adapter Service dialog is displayed.

2. Enter a name in the Name field and click the icon next to the WSDL URL field.

 The WSDL Chooser dialog is displayed.

3. Select the File System tab, browse and select the outbound WSDL created from the default WSDL location and click Yes.

 The outbound WSDL and request and response XML schema files (.xsd) are imported to the created project folder.

4. Click the Find jca file icon to select the particular outbound JCA properties file.

5. Select the JCA properties file from the WSDL location and click OK.

6. Click Yes.

 A copy of the JCA properties file is made in the project folder.

7. Click OK.

 The third party adapter service for the outbound WSDL is created in the External References pane, as shown in Figure 6–84.
6.6.5.4 Creating a Synchronous BPEL Process

To create a synchronous BPEL process:

1. Drag and drop the **BPEL Process** component from the Components area to the Components pane.

The Create BPEL Process window is displayed.

2. Enter a name for the BPEL process in the Name field and select **Define Service Later** from the Template list.

3. Click **OK**.

The BPEL Process component is created in the Components pane.

4. Connect the third party adapter service **Receive** to the BPEL process component **Synchronous_Events**.

5. Click **OK**.

6. Connect the BPEL process component **Synchronous_Events** to the third party adapter service component **Invoke**.

7. Double-click the BPEL Process component in the Components pane.

8. Drag and drop the **Receive** activity to the Visual Editor and place it in the designated placeholder labeled **Drop Activity Here**.

9. Connect the **Receive** activity to the **Receive** third party adapter service.

The Edit Receive dialog is displayed.

10. Click the **plus** icon to the right of the Variable field.

The Create Variable dialog is displayed.

11. Click **OK**.

 You are returned to Edit Receive dialog.

12. Select the **Create Instance** option.

13. Click **Apply** and then **OK**.
14. Drag and drop the **Assign** activity to the Visual Editor and place it below the **Receive1** icon.

15. Drag and drop the **Invoke** activity to the Visual Editor and place it below the **Assign1** icon.

16. Connect the **Invoke** activity to the **Invoke** third party adapter service.

The Edit Invoke dialog is displayed.

17. Under the Input tab, click the **plus** icon to the right of the **Input** field.

The Create Variable dialog is displayed.

18. Click **OK**.

 You are returned to the Edit Invoke dialog.

19. Select the **Output** tab, click the **plus** icon to the right of the Output field.

The Create Variable dialog is displayed.

20. Click **OK**.

 You are returned to the Edit Invoke dialog.

21. Click **Apply** then **OK**.

22. Drag and drop the **Assign** activity to the Visual Editor and place it below the **Invoke1** icon.

23. Drag and drop **Reply** activity to the Visual Editor and place it below the **Assign2** icon.

24. Connect the **Reply** activity to the **Receive** third party adapter service.

The Edit Reply dialog is displayed.

25. Click the **plus** icon in the Variable field.

The Create Variable dialog is displayed.

26. Click **OK**.

 You are returned to the Edit Reply dialog.

27. Click **Apply** and then **OK**.

28. Double-click the **Assign1** icon to open it in the edit mode.

29. In this assign activity, the input variable of the Receive activity must be assigned to the Input variable of the Invoke activity.

30. Click **Apply** and then **OK**.

 You are returned to the Visual Editor.

31. Double click the **Assign2** activity to open it in the edit mode.

32. In this assign activity, the output variable of the Invoke activity must be assigned to the output variable of the Reply activity.

33. Click **Apply** and then **OK**.

 You are returned to the Visual Editor. The BPEL process for synchronous events is completed, as shown in Figure 6–85.
34. Save all the process from the File menu, as shown in Figure 6–86.
6.6.5.5 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.

6.6.5.6 Deploying the BPEL Process
For more information on how to deploy the BPEL process, see Section 6.4.4, "Deploying the BPEL Outbound Process" on page 6-29.

6.7 Designing an Outbound BPEL Process for Service Integration (BSE Configuration)
This section describes how to design an outbound BPEL process for service integration.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:
<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\BPEL\BSE\Outbound_Project

The following tools are required to complete your outbound design-time configuration:
■ Oracle Adapter Application Explorer (Application Explorer)
■ Oracle JDeveloper BPEL Designer (JDeveloper)

This section includes the following topics:
■ Section 6.7.1, "Generating a WSDL File for Request and Response Services Using a Web Service"
■ Section 6.7.2, "Creating an Empty Composite for SOA"
■ Section 6.7.3, "Defining a BPEL Outbound Process"

6.7.1 Generating a WSDL File for Request and Response Services Using a Web Service
Before you design a BPEL process, you must generate the respective WSDL file using Application Explorer.

To generate a WSDL file for request and response services using a Web service:
1. Start Application Explorer and connect to a defined MySAP target (BSE configuration).

 For more information on defining a target and connecting to SAP R/3, see Section 4.4.1, "Defining a Target to SAP R/3".

2. Expand the MySAP target to which you are connected.

3. Expand Remote Function Modules, Financial Accounting, 0002 - Company Code Business Object, and then select BAPI_COMPANYCODE_GETDETAIL.

4. Right-click the GetDetail node and select Create Web Service from the menu, as shown in Figure 6–87.
5. Enter a service name, and click Next.

6. Click OK on the next dialog that is displayed.

 Application Explorer switches the view to the Business Services node, and the new
 Web service is displayed in the left pane.

7. Right-click the new Web service and select Save WSDL from the menu.

8. Save the WSDL in the wsdl folder and click Save.

 You can now create an empty composite for SOA, which is the first step that is
 required to define a BPEL outbound process in JDeveloper.

6.7.2 Creating an Empty Composite for SOA

To create an empty composite for SOA:

1. Create a new SOA application.

2. Enter a name for the SOA Application and click Next.

 The Name your project page is displayed.
3. Enter a project name and click Next.
The Configure SOA settings page is displayed.
4. From the Composite Template list, select Empty Composite and click Finish.
 For more information, see Section 6.4.2, "Creating an Empty Composite for SOA,” on page 6-9.

6.7.3 Defining a BPEL Outbound Process
This section describes how to configure a BPEL outbound process component.
This section includes the following topics:

- Section 6.7.3.1, "Creating a Partner Link"
- Section 6.7.3.2, "Creating BPEL Activities and Mappings With the Created Partner Link"

To define a BPEL outbound process:
1. Drag and drop the BPEL Process component from the Service Components pane to the Components pane, as shown in Figure 6–89.

2. In the Name field, enter a name to identify the new outbound BPEL process component.
 By default, the BPEL 2.0 Specification option is selected.
3. From the Template drop-down list, select Base on a WSDL.
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field, as shown in Figure 6–90.
The WSDL Chooser dialog is displayed.

5. Navigate to the location where the WSDL is exported from Application Explorer, select the WSDL, and click OK, as shown in Figure 6–91.
Figure 6–91 WSDL Chooser Dialog

The Localize Files window is displayed.

6. In the displayed Localize Files window, click OK. This imports the WSDL file to the project folder, as shown in Figure 6–92.

Figure 6–92 Localize Files Window

The Create BPEL Process window is displayed.

7. In the BPEL Process pane, click OK, as shown in Figure 6–93.
The BPEL Process component is created and displayed, as shown in Figure 6–94.

6.7.3.1 Creating a Partner Link

This section describes how to create a partner link.

To create a partner link:
1. Double-click the outbound BPEL process component in the Components pane.

2. Right-click on the Partner Links pane and select Create Partner Link, as shown in Figure 6–95.

Figure 6–95 Create Partner Link

3. In the displayed Create Partner Link window, provide an appropriate name and click on the SOA Resource Browser tool, as shown in Figure 6–96.

Figure 6–96 SOA Resource Browser Tool

4. In the WSDL Chooser dialog that is displayed, navigate to the location where the WSDL is exported from Application Explorer, select the WSDL, and click OK, as shown in Figure 6–97.
5. In the displayed Localize Files window, uncheck the **Rename duplicate files** check box and click **OK**, as shown in Figure 6–98.

6. Click **Yes** in the displayed Partner Link Type window, as shown in Figure 6–99.
7. In the displayed Create Partner Link window, expand the **Partner Role** drop-down list and select the available partner role.

8. Click **Apply**, and then **OK**, as shown in **Figure 6–100**.

Figure 6–100 Create Partner Link

6.7.3.2 Creating BPEL Activities and Mappings With the Created Partner Link

This section describes how to create BPEL activities and mappings with the created partner link.

To create BPEL Activities and map with the created partner link:

1. Drag and drop the **Invoke** activity component from BPEL Constructs to the Components pane. Place it between the **receiveInput** activity component and the **replyOutput** activity component, as shown in **Figure 6–101**.
2. Create a connection between the new **Invoke** activity component (Invoke1) and the **Partner Link** component (Partner link1), as shown in **Figure 6–102**.

Figure 6–102 Partner Link Component

3. In the displayed Edit Invoke window, click the Plus (+) icon, located to the right of the Input field, to configure a new input variable, as shown in **Figure 6–103**.
4. Accept the default values that are provided for the new input variable and click OK, as shown in Figure 6–104.

Figure 6–104 New Input Variable

5. Click the Plus (+) icon, which is located to the right of the Output field, to configure a new output variable, as shown in Figure 6–105.
6. Accept the default values that are provided for the new output variable and click **OK**, as shown in **Figure 6–106**.

Figure 6–106 New Output Variable

7. Click **Apply** and then **OK**, as shown in **Figure 6–107**.
8. Drag and drop the Assign activity component from BPEL Constructs to the Components pane. Place it between the Receive activity component (receiveInput) and the Invoke activity component (Invoke1), as shown in Figure 6–108.
Figure 6–108 Assign Activity Component

9. Double-click the new **Assign** activity component (Assign1), as shown in Figure 6–109.

Figure 6–109 Assign Activity Component

10. In the left pane, under Variables, expand **InputVariable**, and then select parameters.
11. In the right pane, under Variables, expand **Invoke1_GetDetail_InputVariable**, and then select parameters.
12. Drag and map the **InputVariable** parameters to the **Invoke1_GetDetail_InputVariable** parameters, as shown in Figure 6–110.
13. Click Apply and then OK.

14. Drag and drop the Assign activity component to the Components pane and place it between the Invoke activity (Invoke1) and the Reply activity (replyOutput), as shown in Figure 6–111.

15. Double-click the new Assign activity component (Assign2), as shown in Figure 6–112.
16. In the left pane, under Variables, expand **Invoke1_GetDetail_OutputVariable**, and then select **parameters**.

17. In the right pane, under Variables, expand **outputVariable**, and then select **parameters**.

18. Drag and map the **Invoke1_GetDetail_OutputVariable** parameters to the **outputVariable** parameters, as shown in Figure 6–113.

19. Click **Apply** and then **OK**.

You are returned to the component pane, as shown in Figure 6–114.
20. Click the **Save All** icon in the menu bar to save the new outbound BPEL process component that was configured, as shown in Figure 6–115.

![Figure 6–114 Component Pane](image1)

You are now ready to deploy the BPEL Outbound process. You can follow the same procedure as in Section 6.4.4, "Deploying the BPEL Outbound Process".

Once deployed you can invoke the input XML, as defined in Section 6.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console".
This chapter describes integration with Mediator service components in the Oracle SOA Suite. It contains the following sections:

- Section 7.1, "Configuring a New Application Server Connection"
- Section 7.2, "Configuring a Mediator Outbound Process (J2CA Configuration)"
- Section 7.3, "Configuring a Mediator Inbound Process (J2CA Configuration)"
- Section 7.4, "Configuring a Mediator Outbound Process (BSE Configuration)"

The scenarios shown in this chapter require the following prerequisites.

Prerequisites

The following are installation and configuration requirements:

- Oracle Application Adapter for SAP R/3 must be installed on Oracle WebLogic Server.
- SAP R/3 must be configured for inbound and outbound processing. For more information, see Appendix A, "Understanding the SAP System Role in Remote Processing".

The examples in this chapter present the configuration steps necessary for demonstrating service and event integration with SAP R/3. Prior to using this material, you must be familiar with the following:

- How to configure Oracle Application Adapter for SAP R/3 for services and events. For more information, see Chapter 4, "Configuring Oracle Application Adapter for SAP R/3".
- How to configure Oracle JDeveloper. For more information, see Chapter 6, "Integration With BPEL Service Components in the Oracle SOA Suite".

Overview of Mediator Integration

Mediator provides a comprehensive application integration framework. Oracle Application Adapter for SAP R/3 used with Mediator enables you to seamlessly integrate enterprise software, eliminating custom code. Functional modeling, as opposed to custom coding solutions, allows for software reuse and reduces the complexity and management challenges that arise over the software lifecycle. This integration model consists of two components—high-level integration logic and low-level platform services.

Adapter integration with Oracle Mediator is a two-step process:
1. **Design Time**: Oracle Application Adapter for SAP R/3 is configured in Application Explorer for services and events, as described in Chapter 4, "Configuring Oracle Application Adapter for SAP R/3". Integration logic is modeled in Mediator.

2. **Runtime**: The underlying platform treats this metadata as run-time instructions to enable the communication between participating applications.

7.1 Configuring a New Application Server Connection

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 6.3, "Configuring a New Application Server Connection".

7.2 Configuring a Mediator Outbound Process (J2CA Configuration)

This section describes how to configure a Mediator outbound process to your SAP R/3 system, using a Mediator project in Oracle JDeveloper.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

```
<ADAPTER_HOME>/etc/sample/SAP_Samples.zip/SAP_Samples/Mediator/J2CA/Outbound_Project
```

This section contains the following topics:

- Section 7.2.1, "Creating an Empty Composite for SOA"
- Section 7.2.2, "Defining a Mediator Outbound Process"
- Section 7.2.3, "Deploying the Mediator Outbound Process"
- Section 7.2.4, "Invoking the Input XML Document in the Oracle Enterprise Manager Console"

Prerequisites

Before you design a Mediator outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Request/Response Service" on page 6-8.

7.2.1 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the new SOA Application and click **Next**.
 - The Name your project page is displayed.
3. Enter a project name and click **Next**.
 - The Configure SOA settings page is displayed.
4. From the Composite Template list, select **Empty Composite** and click **Finish**.

For more information, see Section 6.4.2, "Creating an Empty Composite for SOA" on page 6-9.
7.2.2 Defining a Mediator Outbound Process

This section describes how to define a Mediator outbound process, which consists of the following topics:

- Section 7.2.2.1, "Configuring a Third Party Adapter Service Component"
- Section 7.2.2.2, "Configuring an Outbound Mediator Process Component"
- Section 7.2.2.3, "Configuring the Routing Rules"
- Section 7.2.2.4, "Adjusting for Known Deployment Issues With 12c"

7.2.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the External References pane.
2. Enter a name for the third party adapter service.
3. Ensure that Reference is selected from the Type drop-down list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
5. Browse and select an outbound WSDL file from the following directory:

 `<ADAPTER_HOME>\wsdl`

6. Click OK.
7. Click OK.

 The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

8. Click the Find JCA file icon, which is located to the right of the JCA File field.
9. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\wsdl`

10. Click OK.

 A Copy File confirmation message is displayed.
11. Click Yes.

 A copy of the JCA properties file is made in the project folder.
12. Click OK.

The third party adapter service component (GetDetail) is created in the External References pane.

You are now ready to configure an outbound Mediator process component.

For more information, see Section 6.4.3.1, "Configuring a Third Party Adapter Service Component" on page 6-12.

7.2.2.2 Configuring an Outbound Mediator Process Component

Perform the following steps to configure an outbound Mediator process component:

1. Drag and drop the **Mediator Process** component from the Components pane to the Components pane.

The Create Mediator dialog is displayed, as shown in Figure 7–2.
2. In the Name field, enter a name to identify the new outbound Mediator process component.

3. From the Template drop-down list, select **Synchronous Interface**.

4. Click the **Browse** icon, which is located to the right of the Input field to select the associated XML request schema file.

 The Type Chooser dialog is displayed, as shown in Figure 7–3.

6. Click OK.

 You are returned to the Create Mediator dialog.

7. Click the Browse icon, which is located to the right of the Output field to select the associated XML response schema file.

 The Type Chooser dialog is displayed, as shown in Figure 7–4.

9. Click OK.

You are returned to the Create Mediator dialog, as shown in Figure 7-5.
10. Click OK.

11. Create a connection between the outbound Mediator process component and the third party adapter service component (GetDetail), as shown in Figure 7–6.

You are now ready to configure the routing rules.

7.2.2.3 Configuring the Routing Rules

Perform the following steps to configure routing rules for the Mediator outbound process component:
1. Double-click the outbound Mediator process component in the Components pane. The Routing Rules dialog is displayed, as shown in Figure 7–7.

![Routing Rules Dialog](image)

Figure 7–7 Routing Rules Dialog

2. In the <<Filter Expression>> area, click the icon to the right of the Transform Using field.

 The Request Transformation Map dialog is displayed, as shown in Figure 7–8.

![Request Transformation Map Dialog](image)

Figure 7–8 Request Transformation Map Dialog

3. Click the Add (+) icon.

 The Create Transformation Map page is displayed.

4. Make sure the Type is selected as **XSLT** and click **OK**.

5. Click **OK**.

 The Auto Map Preferences dialog is displayed, as shown in Figure 7–9.
7. Retain the default values and click **OK**.

8. Return to the Routing Rules dialog, as shown in **Figure 7–10**.

Figure 7–10 Routing Rules Dialog

9. In the Synchronous Reply area, click the icon to the right of the Transform Using field.

The Reply Transformation Map dialog is displayed.

10. Click the Add (+) icon.
The create Transformation Page is displayed.

11. Make sure the type is selected as XSLT and click OK.

A mapping page is displayed.

12. Click OK.

The Auto Map Preferences dialog is displayed, as shown in Figure 7–11.

Figure 7–11 Auto Map Preferences Dialog

![Auto Map Preferences Dialog](image)

14. Retain the default values and click OK.

The mapping is completed, as shown in Figure 7–12.

Figure 7–12 Completed Mapping

![Completed Mapping](image)

15. Click the Save All icon in the menu bar to save the new outbound Mediator process component that was configured.

You are now ready to deploy the Mediator outbound process.
7.2.2.4 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.

7.2.3 Deploying the Mediator Outbound Process
Perform the following steps to deploy the Mediator outbound process.

1. Right-click the project name in the left pane, select Deploy, and then click J2CA_Outbound.
 The Deployment Action page is displayed.
2. Ensure that Deploy to Application Server is selected.
3. Click Next.
 The Deploy Configuration page is displayed.
4. Leave the default values selected and click Next.
 The Select Server page is displayed.
5. Select an available application server that was configured and click Next.
 The SOA Servers page is displayed.
6. Select a target SOA server and click Next.
 The Summary page is displayed.
7. Review and verify all the available deployment information for your project and click Finish.
 For more information, see Section 6.4.4, "Deploying the BPEL Outbound Process" on page 6-29.

7.2.4 Invoking the Input XML Document in the Oracle Enterprise Manager Console
For more information, see Section 6.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 6-33.

7.3 Configuring a Mediator Inbound Process (J2CA Configuration)
This section describes how to configure a Mediator inbound process to your SAP R/3 system, using a Mediator project in Oracle JDeveloper.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\Mediator\J2CA\Inbound_Project

This section contains the following topics:

- Section 7.3.1, "Creating an Empty Composite for SOA"
- Section 7.3.2, "Defining a Mediator Inbound Process"

Prerequisites
Before you design a Mediator inbound process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Event Integration" on page 6-36.
7.3.1 Creating an Empty Composite for SOA

Perform the following steps to create an empty composite for SOA:

1. Create a new SOA application.
2. Enter a name for the new SOA Application and click Next.
 The Name your project page is displayed.
3. Enter a project name and click Next.
 The Configure SOA settings page is displayed.
4. From the Composite Template list, select Empty Composite and click Finish.
 For more information, see Section 6.4.2, "Creating an Empty Composite for SOA" on page 6-9.

7.3.2 Defining a Mediator Inbound Process

This section describes how to define a Mediator inbound process, which contains the following topics:

- Section 7.3.2.1, "Configuring a Third Party Adapter Service Component"
- Section 7.3.2.2, "Configuring an Inbound Mediator Process Component With a File Adapter"
- Section 7.3.2.3, "Configuring the Routing Rules"
- Section 7.3.2.4, "Adjusting for Known Deployment Issues With 12c"

7.3.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party Adapter component from the Service Adapters pane to the Exposed Services pane.
 The Create Third Party Adapter Service dialog is displayed.
2. Enter a name for the third party adapter service.
3. Ensure that Service is selected from the Type drop-down list (default).
4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
 The WSDL Chooser dialog is displayed.
5. Browse and select an inbound WSDL file from the following directory:
 `<ADAPTER_HOME>\wsdls`
6. Click OK.
 The Localize Files dialog is displayed.
7. Click OK.
 The inbound WSDL file and associated receive/request schema file (.xsd) are imported to the project folder that has been created.
 You are returned to the Create Third Party Adapter Service dialog.
8. Click the Find JCA file icon, which is located to the right of the JCA File field.
 The Transformation Chooser dialog is displayed.
9. Browse and select the JCA properties file from the following directory:
 \<ADAPTER_HOME>\wsdl\s

10. Click OK.
 The Copy File Confirmation message is displayed.

11. Click Yes.
 A copy of the JCA properties file is made in the project folder.
 You are returned to the Create Third Party Adapter Service dialog.

12. Click OK.
 The third party adapter service component is created in the Exposed Services pane.
 You are now ready to configure an inbound Mediator process component.
 For more information, see Section 6.5.3.1, "Creating a Third Party Adapter Service Component" on page 6-43.

7.3.2.2 Configuring an Inbound Mediator Process Component With a File Adapter
Perform the following steps to configure an inbound Mediator process component with a File adapter.

1. Drag and drop the Mediator Process component from the Service Components pane to the Components pane.
 The Create Mediator dialog is displayed, as shown in Figure 7–13.

Figure 7–13 Create Mediator Dialog

2. In the Name field, enter a name to identify the new inbound Mediator process component.
3. From the Template drop-down list, select **Define Interface Later**.

4. Click the **OK**.

 The new Mediator process component is added to the Components pane.

5. Drag and drop the **File** component from the Technology Adapters pane to the External References pane.

 The File Adapter Configuration Wizard is displayed.

6. Type a name for the new File adapter and click **Next**.

 The Adapter Interface page is displayed.

7. Ensure that the **Define from operation and schema (specified later)** option is selected.

8. Click **Next**.

 The Operation page is displayed.

9. Click **Next**.

10. Select **Write File** from the list of Operation Type options and specify an Operation Name (for example, Write).

11. Click **Next**.

 The File Configuration page is displayed.

12. Specify a location on your file system where the output file is written.

13. In the File Naming Convention field, specify a name for the output file.

14. Click **Next**.

 The Messages page is displayed, as shown in Figure 7–14.
15. Click **Browse**, which is located to the right of the URL field.

 The Type Chooser dialog is displayed, as shown in Figure 7–15.
16. Expand **Project WSDL Files**, **BAPI_COMPANYCODE_GETDETAIL_receive.wsd**, **Imported Schemas**, **BAPI_COMPANYCODE_GETDETAIL_receive_request.xsd**, and select **BAPI_COMPANYCODE_GETDETAIL**.

17. Click **OK**.

 You are returned to the Messages page.

18. Click **Next**.

 The Finish page is displayed.

19. Click **Finish**.

20. Create a connection between the inbound Mediator process component and the third party adapter service component.

21. Create a connection between the inbound Mediator process component and the File adapter component, as shown in Figure 7-16.
You are now ready to configure the routing rules.

7.3.2.3 Configuring the Routing Rules

Perform the following steps to configure routing rules for the Mediator inbound process component:

1. Double-click the inbound Mediator process component in the Components page.

 The Routing Rules dialog is displayed, as shown in **Figure 7–17**.

![Routing Rules Dialog](image)

Figure 7–17 Routing Rules Dialog
2. In the <<Filter Expression>> area, click the icon to the right of the Transform Using field.
 The Request Transformation Map dialog is displayed.

3. Click the Add (+) icon and ensure that the selected Type is XSLT, then click OK.

4. Click OK.
 The mapping page is displayed, as shown in Figure 7–18.

\[Figure \ 7–18 \quad Mapping \ Page \]

5. Click OK.

6. Map the ns0:BAPI_COMPANYCODE_GETDETAIL source element to the ns0:BAPI_COMPANYCODE_GETDETAIL target element.
 The Auto Map Preferences dialog is displayed.

7. Retain the default values and click OK.
 The mapping is now complete.

8. Click the Save All icon in the menu bar to save the new inbound Mediator process component that was configured.

7.3.2.4 Adjusting for Known Deployment Issues With 12c

For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.

You are now ready to deploy the Mediator inbound process. You can follow the same procedure in "Deploying the BPEL Inbound Process" on page 6-52.

Once event messages are triggered through SAP GUI, output XML is received in the location that was specified for the File adapter component. For more information on triggering events in SAP R/3, see "Triggering an Event in SAP R/3" on page 6-53.

7.4 Configuring a Mediator Outbound Process (BSE Configuration)

This section describes how to configure a Mediator outbound process to your SAP R/3 system, using a Mediator project in Oracle JDeveloper.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

\[<\text{ADAPTER_HOME}\backslash\text{etc}\backslash\text{sample}\backslash\text{SAP_Samples.zip}\backslash\text{SAP_Samples}\backslash\text{Mediator}\backslash\text{BSE}\backslash\text{Outbound_Project} \]

This section contains the following topics:

- Section 7.4.1, "Creating an Empty Composite for SOA"
- Section 7.4.2, "Defining a Mediator Outbound Process"
Prerequisites
Before you design a Mediator outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.7.1, "Generating a WSDL File for Request and Response Services Using a Web Service".

7.4.1 Creating an Empty Composite for SOA
Perform the following steps to create an empty composite for SOA:
1. Create a new SOA application.
2. Enter a name for the SOA Application (for example, IBSE_OUTBOUND), and click Next.
3. Enter a project name (for example, IBSE_Outbound), and click Next.
4. From the Composite Template list, select Empty Composite and click Finish.
For more information, see Section 6.7.2, "Creating an Empty Composite for SOA" on page 6-64.

7.4.2 Defining a Mediator Outbound Process
This section describes how to define a Mediator outbound process. The following topics are included:
- Section 7.4.2.1, "Configuring a SOAP Service"
- Section 7.4.2.2, "Creating a Mediator Component"
- Section 7.4.2.3, "Configuring the Routing Rules"

7.4.2.1 Configuring a SOAP Service
Perform the following steps to configure a SOAP Service:
1. Drag and drop the SOAP node from the Technology Adapters pane to the External References pane.
2. Enter an appropriate name for the SOAP Service and click on the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
3. In the displayed SOA Resource Browser window, select the File system tab and navigate to the location where the WSDL is exported from the Application Explorer, select the WSDL, and click OK.
4. In the Create Web Service Window, click OK.
5. In the displayed Localize Files window, click OK. This imports the WSDL file to the project folder.

The Web Service is created and displayed, as shown in Figure 7–19.
7.4.2.2 Creating a Mediator Component

Perform the following steps to create a Mediator component:

1. Drag and drop the Mediator component from the Components pane in to the Components pane, as shown in Figure 7–20.

2. In the Name field, enter a name to identify the new outbound Mediator process component.
3. From the Template drop-down list, select **Synchronous Interface**.

4. Click the **Browse** icon, which is located to the right of the Input field, to select the associated XML request schema file.

5. In the Type Chooser dialog, expand **Project WSDL Files**, select **IBSE_Outbound.wsdl**, and click **GetDetail**, as shown in Figure 7–21.

![Figure 7–21 Type Chooser Dialog](image)

6. Click **OK**.

7. Click the **Browse** icon, which is located to the right of the Output field, to select the associated XML response schema file.

8. In The Type Chooser dialog, expand **Project WSDL Files**, select **IBSE_Outbound.wsdl**, and click **GetDetailResponse**, as shown in Figure 7–22.
9. Click OK, as shown in Figure 7–23.

10. Click OK.

The Mediator component is created and displayed.
11. Create a connection between the Mediator component and the SOAP service component, as shown in Figure 7–24.

Figure 7–24 Created Connection

7.4.2.3 Configuring the Routing Rules

Perform the following steps to configure the routing rules:

1. Double-click the Mediator component in the Components pane.
2. In the <<Filter Expression>> area of the Static Routing section, click the icon to the right of the Transform Using field.
3. In the displayed Request Transformation Map window, click the Add (+) icon and make sure the selected Type is XSLT in the Create Transformation Map dialog box and click OK.
4. Click OK.
5. Map the ns0:GetDetail source element to the ns0:GetDetail target element, as shown in Figure 7–25.

Figure 7–25 GetDetail_To_GetDetail.xsl Tab

6. In the displayed Auto Map Preferences window, retain the default values and click OK.
7. In the Synchronous Reply area, click the icon to the right of the Transform Using field.

8. In the displayed Reply Transformation Map window, click the Add (+) icon and make sure the Type is selected as XSLT in the Create Transformation Map dialog box, and then click OK.

9. Map the ns0:GetDetailResponse source element to the ns0:GetDetailResponse target element, as shown in Figure 7–26.

Figure 7–26 Source and Target Elements

![Source and Target Elements](image)

10. In the displayed Auto Map Preferences window, retain the default values and click OK.

11. Click the Save All icon in the menu bar to save the new outbound Mediator component that was configured, as shown in Figure 7–27.

Figure 7–27 Save All Icon

![Save All Icon](image)

You are now ready to deploy the Mediator IBSE outbound process. You can follow the same procedure found in Section 7.2.3, "Deploying the Mediator Outbound Process".

Once deployed, you can invoke the input XML, as defined in Section 7.2.4, "Invoking the Input XML Document in the Oracle Enterprise Manager Console".
Integration With BPM Service Components in the Oracle SOA Suite

Oracle Application Adapter for SAP R/3 integrates seamlessly with Business Process Management (BPM) to facilitate Web service integration. Oracle BPM is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following sections:

- Section 8.1, "Overview"
- Section 8.2, "Deployment of Adapter"
- Section 8.3, "Configuring a New Application Server Connection"
- Section 8.4, "Designing an Outbound BPM Process Using Transformations for Service Integration (J2CA Configuration)"
- Section 8.5, "Designing an Inbound BPM Process Using Transformations for Event Integration (J2CA Configuration)"
- Section 8.6, "Working With Synchronous SAP R/3 Events Using BPM (J2CA Configuration)"
- Section 8.7, "Designing an Outbound BPM Process Using Transformations for Service Integration (BSE Configuration)"

8.1 Overview

To integrate with Oracle BPM, Oracle Application Adapter for SAP R/3 must be deployed in the same WLS container as Oracle BPM. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter. For more information, see "Generating WSDL (J2CA Configurations Only)" on page 4-16.

The generated WSDL files are used to design the appropriate BPM processes for inbound or outbound adapter services. A completed BPM process must be successfully compiled in JDeveloper and deployed to a BPM server. Upon deployment to the BPM server, every newly built process is automatically deployed to the Oracle Enterprise Manager console, where you run, monitor, and administer BPM processes, and listen to adapter events.
8.2 Deployment of Adapter

During installation, Oracle Application Adapter for SAP R/3 is deployed as a J2CA 1.0 resource adapter within the WLS container. The adapter must be deployed in the same WLS container as Oracle BPM.

8.3 Configuring a New Application Server Connection

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 6.3, "Configuring a New Application Server Connection".

8.4 Designing an Outbound BPM Process Using Transformations for Service Integration (J2CA Configuration)

This section describes how to design an outbound BPM process using transformations for service integration.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\BPM\J2CA\Outbound_Project

The following tools are required to complete your outbound design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- Section 8.4.1, "Creating an Empty Composite for BPM"
- Section 8.4.2, "Defining a BPM Outbound Process"
- Section 8.4.3, "Adjusting for Known Deployment Issues With 12c"
- Section 8.4.4, "Deploying the BPM Outbound Process"
- Section 8.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console"

Before you design a BPM process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Request/Response Service" on page 6-8.

8.4.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for BPM:

1. Create a new BPM application.
2. Enter a name for the new BPM application and click **Next**.

 The Name your project page is displayed.

3. Enter a project name, in the project features select **BPM**, and then click **Next**.
The Configure SOA settings page is displayed.

4. From the Composite Template list, select **Empty Composite** and click **Finish**.

8.4.2 Defining a BPM Outbound Process

This section describes how to define a BPM outbound process, which contains the following topics:

- Section 8.4.2.1, "Configuring a Third Party Adapter Service Component"
- Section 8.4.2.2, "Configuring an Outbound BPM Process Component"
- Section 8.4.2.3, "Creating a File Adapter for the Write Operation"

8.4.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Double-click the created project to load the components.

2. Drag and drop the **Third Party Adapter** component from the Custom/Thirdparty pane to the External References pane.

 The Create Third Party Adapter Service dialog is displayed.

3. Enter a name for the third party adapter service.

4. Ensure that **Reference** is selected from the Type list (default).

5. Click the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

 The WSDL Chooser dialog is displayed.

6. Browse and select an outbound WSDL file from the following directory:

 `<ADAPTER_HOME>\wsdls`

7. Click **OK**.

 The Localize Files dialog is displayed.

8. Click **OK**.

 The outbound WSDL file and associated request and response XML schema files (.xsd) are imported to the project folder that has been created.

 You are returned to the Create Third Party Adapter Service dialog.

9. Click the **Find JCA file** icon, which is located to the right of the JCA File field.

 The Transformation Map dialog is displayed.

10. Browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>\wsdls`

11. Click **OK**.

 The Copy File message is displayed.

12. Click **Yes**.

 A copy of the JCA properties file is made in the project folder.

 You are returned to the Create Third Party Adapter Service dialog.

13. Click **OK**.
The third party adapter service component is created and displayed in the External References pane.

You are now ready to configure an outbound BPM process component.

For more detailed information, including screen shots, see Section 6.4.3.1, "Configuring a Third Party Adapter Service Component" on page 6-12.

8.4.2.2 Configuring an Outbound BPM Process Component

This section describes how to configure an outbound BPM process component.

Perform the following steps to configure an outbound BPM process component:

1. Drag and drop the BPMN Process component from the Components pane to the Components pane.

 The Create BPMN Process dialog is displayed, as shown in Figure 8–1.

 Figure 8–1 Create BPMN Process Dialog

2. Accept the default option that is selected under the Type area (Asynchronous Service) and click Finish.

 The BPMN process is displayed, as shown in Figure 8–2.
3. Click the Activity drop-down menu and select Service, as shown in Figure 8–3.

Figure 8–3 Activity Drop-down Menu

4. Drop the Service icon on the wire between the Start and End event components, as shown in Figure 8–4.
5. Click the **Implementation** tab.

6. Select **Service Call** from the Message Exchange Type list, as shown in Figure 8–5.

7. Click the Browse icon to the right of the Service field, as shown in Figure 8–6.

The Service dialog is displayed, as shown in Figure 8–7.
Select the Third Party Service that has been created and click OK.

You are returned to the Properties - ServiceTask dialog, as shown in Figure 8–8.
9. Click the Data Associations hyperlink.
 The Data Associations dialog is displayed.

10. Right-click the Data Objects node in the left pane under Process, and select New
 as shown in Figure 8–9.

 Figure 8–9 New Option

 ![Data Associations dialog](image)

 The Create Data Object dialog is displayed, as shown in Figure 8–10.

 Figure 8–10 Create Data Object Dialog

 ![Create Data Object dialog](image)

11. Enter a name in the Name field (for example, Request), click the drop-down
 button in the Type field, and select Browse from the list, as shown in Figure 8–11.

 Figure 8–11 Create Data Object Dialog

 ![Create Data Object dialog](image)

 The Browse Types dialog is displayed, as shown in Figure 8–12.

 ![Browse Types dialog](image)
12. Select the first component (for example, CompanyCodeGetDetail) and click **OK**.
You are returned to the Create Data Object dialog.

13. Click **OK**.

 The Data Object (for example, Request) that has been created is displayed under the Data Objects node in the Data Associations dialog.

14. Create another Data Object by right-clicking the **Data Objects** node in the right pane of the Output tab and selecting **New**, as shown in Figure 8–13.
The Create Data Object dialog is displayed.

15. Enter a name in the Name field (for example, Response), and then click the drop-down button in the Type field and select **Browse** from the list.

The Browse Types dialog is displayed, as shown in **Figure 8–14**.
16. Select the second component (for example, CompanyCodeGetDetailResponse) and click OK.

You are returned to the Create Data Object dialog.

17. Click OK.

The Data Object (for example, Response) that has been created is displayed under the Process node in the Data Associations dialog.

18. Select the Request Data Object under the Data Objects node in the left pane of the Input tab and drag and connect it to CompanyCodeGetDetail under the Arguments node in the right pane, as shown in Figure 8–15.

Figure 8–15 Request Data Object

19. Click on the Output tab and select CompanyCodeGetDetailResponse under the Arguments node in the left pane and drag and connect it to the Response Data Object under the Data Objects node, as shown in Figure 8–16.
20. Click OK.

You are returned to the Properties - ServiceTask dialog.

21. Click OK.

The Service Task is created between the Start and End Event components, as shown in Figure 8–17.

22. Save the process and double-click the Start event component.

The Properties - Start dialog is displayed, as shown in Figure 8–18.
23. Click the Implementation tab, as shown in Figure 8–19.

Figure 8–19 Implementation Tab

24. Click the Plus icon to the right of the Arguments Definition field.
 The Create Argument dialog is displayed.

25. Enter a name in the Name field (by default, argument1), and then click the drop-down button in the Type field and select Browse from the list, as shown in Figure 8–20.
The Browse Types dialog is displayed, as shown in Figure 8–21.

26. Select the first component (for example, CompanyCodeGetDetail) and click OK.

You are returned to the Create Argument dialog.

27. Click OK.

You are returned to the Properties - Start dialog.

28. In the Operation Name field, change start (default) to operation as shown in Figure 8–22.
Note: This change is necessary to work with old BPM payloads.

Figure 8–22 Operation Name Field

29. Click the Data Associations hyperlink.

The Data Associations dialog is displayed.

30. Select arguments1 under the Arguments node in the left pane and drag and connect it to the Request Data Object under Data Objects in the right pane.

31. Click OK as shown in Figure 8–23.
You are returned to the Properties - Start dialog.

32. Click **OK**.

You are returned to the Process workspace area, as shown in Figure 8–24.

33. Click the **Save All** icon in the menu bar to save the new outbound BPM process component that was configured.

You are now ready to create a File adapter for the write operation.

8.4.2.3 Creating a File Adapter for the Write Operation

This section describes how to create a File adapter for the write operation.

Perform the following steps to create a File adapter for the write operation:
1. Drag and drop the File Adapter component from the Technology Adapters pane to the External References pane, as shown in Figure 8–25.

Figure 8–25 File Adapter Component

The Adapter Configuration Wizard is displayed.

2. Provide a Reference Name (for example, FileWrite).

3. Click Next.

The Adapter Interface page is displayed.

4. Ensure that the Define from operation and schema (specified later) option is selected.

5. Click Next.

The File Server Connection page is displayed.

6. Click Next.

The Operation page is displayed.

7. Select Write File from the list of Operation Type options and specify an Operation Name (for example, Write).

8. Click Next.

The File Configuration page is displayed.

9. Specify a location on your file system where the output file is written.

10. In the File Naming Convention field, specify a name for the output file.

11. Click Next.

The Messages page is displayed.

12. Click Browse, which is located to the right of the URL field.

The Type Chooser dialog is displayed, as shown in Figure 8–26.
13. Expand **Project Schema Files** and **GetDetail_invoke_response.xsd**.

15. Click **OK**.

 You are returned to the Messages page.

16. Click **Next**.

 The Finish page is displayed.

17. Click **Finish**.

 The File Adapter service is created in the External References pane, as shown in **Figure 8–27**.
18. Double-click the BPMN Process component.

The BPMN process is displayed, as shown in Figure 8–28.

19. Click the Activity icon, and select Service.

20. Drop the Service icon on the wire between the Service Task and End event components, as shown in Figure 8–29.
21. Click the **Implementation** tab.

22. Select **Service Call** from the Type drop-down list in the Message Exchange section, as shown in **Figure 8–30**.

23. Click the **Browse** icon to the right of the Service field.

 The Service dialog is displayed, as shown in **Figure 8–31**.
24. Select the service for write operation that has been created (for example, FileWrite) and click OK.

You are returned to the Properties - ServiceTask1 dialog, as shown in Figure 8–32.
25. Click the **Data Associations** hyperlink.

The Data Associations dialog is displayed, as shown in **Figure 8–33**.

26. In the Input tab, click the XSL Transformation icon in the top right pane.

27. Drag and drop the XSL Transformation icon to the **companyCodeGetDetailResponse** node, as shown in **Figure 8–34**.
The Create Transformation dialog is displayed.

28. Select **Response** in the Sources section and click the right arrow symbol.

The Response object is added to the Selected elements area as shown in Figure 8–35.

Figure 8–35 Response Object

29. Accept the default value selected in the Target drop-down list and the default name in the Create field by clicking **OK**.

You are returned to the Data Associations dialog window with the XSL transformation created, as shown in Figure 8–36.
30. Click **OK**.
 You are returned to the Properties - ServiceTask1 dialog.

31. Click **OK**.
 The Response_body.xsl tab is displayed.

32. Automap the Source and Target elements.
 The Auto Map Preferences dialog is displayed.

33. Accept the default values and click **OK**.
 The transformation is completed, as shown in **Figure 8–37**.

34. Save the transformation.

35. Return to the Process workspace area.
 The ServiceTask1 component is created between the ServiceTask component and the End event component.

36. Click the **Save All** icon in the menu bar to save the new outbound BPM process component that was configured.
You are now ready to deploy the outbound BPM process.

8.4.3 Adjusting for Known Deployment Issues With 12c

For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.

8.4.4 Deploying the BPM Outbound Process

Perform the following steps to deploy the Mediator outbound process.

1. Right-click the project name in the left pane, select Deploy, and then click J2CA_Outbound.
 The Deployment Action page is displayed.

2. Ensure that Deploy to Application Server is selected.

3. Click Next.
 The Deploy Configuration page is displayed.

4. Leave the default values selected and click Next.
 The Select Server page is displayed.

5. Select an available application server that was configured and click Next.
 The SOA Servers page is displayed.

6. Select a target SOA server and click Next.
 The Summary page is displayed.

7. Review and verify all the available deployment information for your project and click Finish.
 For more information, see Section 6.4.4, "Deploying the BPEL Outbound Process" on page 6-29

8.4.5 Invoking the Input XML Document in the Oracle Enterprise Manager Console

Perform the following steps to invoke the input XML document in the Oracle Enterprise Manager console.

1. Logon to the Oracle Enterprise Manager console.

2. Expand your domain in the left pane followed by the SOA folder.

3. Select an available project (for example, Mysap_jca_outbound).

4. Click Test.

5. Click the Request tab.
6. Provide an appropriate input value in the Value field and click **Test Web Service**, as shown in **Figure 8–38**.

A response is received in the Response tab to indicate that invocation was successful in the Oracle Enterprise Manager console, as shown in **Figure 8–39**.

Figure 8–39 Received Response

7. Navigate to the defined output directory on your file system and open the XML response document that was received.

The XML response document contains the generated output with values. For example:

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<bapi:CompanyCode.GetDetail.Response
 xmlns="urn:sap-com:document:sap:business.response">
 <bapi:COMPANYCODE_ADDRESS>
  <bapi:ADDR_NO>000000121</bapi:ADDR_NO>
  <bapi:FORMOFADDR>Firma</bapi:FORMOFADDR>
  <bapi:NAME>Ides AG</bapi:NAME>
  <bapi:NAME_2/>
  <bapi:NAME_3/>
```
8.5 Designing an Inbound BPM Process Using Transformations for Event Integration (J2CA Configuration)

This section demonstrates how Oracle Application Adapter for SAP R/3 integrates with SAP R/3 to receive event data.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\BPM\J2CA\Inbound_Project

The following tools are required to complete your adapter design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper)

Note: The examples in this chapter demonstrate the use of JDeveloper.

This section contains the following topics:

- Section 8.5.1, "Creating an Empty Composite for BPM"
- Section 8.5.2, "Defining a BPM Inbound Process"

Before you design a BPM process, you must generate the respective WSDL file using Application Explorer. For more information, see "Generating WSDL for Event Integration" on page 6-36.

8.5.1 Creating an Empty Composite for BPM

For more information on how to configure a new Application Server connection in Oracle JDeveloper, see Section 6.3, "Configuring a New Application Server Connection" on page 6-2.

8.5.2 Defining a BPM Inbound Process

This section describes how to define a BPM inbound process, which contains the following topics:

- Section 8.5.2.1, "Configuring a Third Party Adapter Service Component"
- Section 8.5.2.2, "Configuring an Inbound BPM Process Component"
- Section 8.5.2.3, "Creating a File Adapter for the Write Operation"
- Section 8.5.2.4, "Adjusting for Known Deployment Issues With 12c"

8.5.2.1 Configuring a Third Party Adapter Service Component

Perform the following steps to create a third party adapter service component:

1. Double-click the created project to load the components.
2. Drag and drop the Third Party Adapter component from the Custom/Thirdparty pane to the Exposed References pane, as shown in Figure 8–40.
The Create Third Party Adapter Service dialog is displayed.

3. Enter a name for the third party adapter service.

4. Ensure that Service is selected from the Type list (default).

5. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The WSDL Chooser dialog is displayed.

6. Select File System, and then browse and select an inbound WSDL file from the following directory:

 `<ADAPTER_HOME>/wsdls`

7. Click OK.

The Localize Files dialog is displayed.

8. Click OK.

The inbound WSDL file and associated receive_request XML schema file (.xsd) are imported to the project folder that has been created.

You are returned to the Create Third Party Adapter Service dialog.

9. Click the Find JCA file icon, which is located to the right of the JCA File field.

The Transformation Chooser dialog is displayed.

10. Select File System, and then browse and select the JCA properties file from the following directory:

 `<ADAPTER_HOME>/wsdls`

11. Click OK.

The Copy File message is displayed.
12. Click Yes.
 A copy of the JCA properties file is made in the project folder.
 You are returned to the Create Third Party Adapter Service dialog.

13. Click OK.
 The third party adapter service component (matmas) is created in the Exposed References pane.
 You are now ready to configure an inbound BPM process component.

 For more information, see Section 6.5.3.1, "Creating a Third Party Adapter Service Component" on page 6-43.

8.5.2.2 Configuring an Inbound BPM Process Component
This section describes how to configure an inbound BPM process component.
Perform the following steps to configure an inbound BPM process component:

1. Drag and drop the BPMN Process component from the Components pane to the Components pane.
 The Create BPMN Process dialog is displayed, as shown in Figure 8–41.

3. Click Finish.
 The BPMN process is displayed, as shown in Figure 8–42.
4. Right-click **UserTask** and select **Delete** from the menu.

5. Double-click the **Start** event component.
 - The Properties - Start dialog is displayed.

6. Click the **Implementation** tab.

7. Select **Message** from the Implementation Type list.

8. Select **Use Interface** from the Message Exchange Type drop-down list.

9. Click the **Browse** icon to the right of the Reference field, as shown in **Figure 8–43**.

Figure 8–42 BPMN Process

![BPMN Process Diagram](image)

Figure 8–43 Browse Icon

![Browse Icon](image)
The Service dialog is displayed, as shown in Figure 8–44.

Figure 8–44 Service Dialog

10. Select the Third Party Service that has been created and click **OK**.

You are returned to the Properties - Start dialog, as shown in Figure 8–45.
11. Click the Data Associations icon.

The Data Associations dialog is displayed, as shown in Figure 8–46.

Figure 8–45 Properties - Start Dialog

Figure 8–46 Data Associations Dialog
12. Right-click the Data Object node in the right pane and select New.
 The Create Data Object dialog is displayed.

13. Enter a name in the Name field, and then click the drop-down button in the Type field and select Browse from the list, as shown in Figure 8–47.

 Figure 8–47 Create Data Object Dialog

 ![Create Data Object Dialog](image1)

 The Browse Types dialog is displayed, as shown in Figure 8–48.

 Figure 8–48 Browse Types Dialog

 ![Browse Types Dialog](image2)

14. Select the component and click OK.
 You are returned to the Create Data Object dialog.

15. Click OK.
The Data Object that has been created is displayed under the Data Objects node in the Data Associations dialog, as shown in Figure 8–49.

Figure 8–49 Data Associations Dialog

16. Select and drag the `matmas01` Argument under the Start node in the left pane and drag it to the Data Object in the right pane.

17. Click OK.

 You are returned to the Properties - Start dialog.

18. Click OK.

 You are returned to the Process workspace area.

19. Click the Save All icon in the menu bar to save the new inbound BPM process component that was configured.

 You are now ready to create a File adapter for the write operation.

8.5.2.3 Creating a File Adapter for the Write Operation

This section describes how to create a File adapter for the write operation.

Perform the following steps to create a File adapter for the write operation:

1. Drag and drop the File Adapter component from the Technology Adapters pane to the External References pane.

 The Adapter Configuration Wizard is displayed.

2. Type a name for the new File adapter in the Name field and click Next.

 The Adapter Interface page is displayed.
3. Ensure that the **Define from operation and schema (specified later)** option is selected.

4. Click **Next**.

 The File Server Connection page is displayed.

5. Click **Next**.

 The Operation page is displayed, as shown in **Figure 8–50**.

Figure 8–50 Operation Page

![Operation Page](image)

6. Select **Write File** from the list of Operation Type options and specify an Operation Name (for example, Write).

7. Click **Next**.

 The File Configuration page is displayed.

8. Specify a location on your file system where the output file is written.

9. In the File Naming Convention field, specify a name for the output file.

10. Click **Next**.

 The Messages page is displayed.

11. Click **Browse**, which is located to the right of the URL field.

 The Type Chooser dialog is displayed, as shown in **Figure 8–51**.
12. Expand Project Schema Files and J2CA_Inbound_receive_request.xsd.

13. Select the available schema.

14. Click OK.

 You are returned to the Messages page.

15. Click Next.

 The Finish page is displayed.

16. Click Finish.

 The File Adapter service is created in the External References pane, as shown in Figure 8–52.
17. Double-click the BPMN Process component. The BPMN process is displayed.

18. Click the Activity icon, and select Service.

19. Drop the Service icon on the wire between the Start and End event components, as shown in Figure 8–53.

20. Click the Implementation tab.
21. Select **Service Task** from the Implementation Type list.

22. Select **Service Call** from the Message Exchange Type list.

23. Click the **Browse** icon to the right of the Service field.

 The Type dialog is displayed, as shown in Figure 8–54.

Figure 8–54 Type Dialog

24. Select the service for write operation that has been created and click **OK**.

 You are returned to the Properties - ServiceTask dialog, as shown in Figure 8–55.
25. Click the **Data Associations** hyperlink.

 The Data Associations dialog is displayed.

26. Right-click the **matmas01** argument on the right pane and select **XSL Transformation**, as shown in **Figure 8–56**.
The Create Transformation dialog is displayed.

27. Select the created data object in the Sources area and click the right arrow icon so that the created data object is added to the Selected elements area.

28. Click OK.

You are returned to the Data Associations dialog, as shown in Figure 8–57.

Figure 8–57 Data Associations Dialog
29. Click OK.
 You are returned to the Properties - ServiceTask dialog.

30. Click OK.
 The dataobject1_body.xsl tab is displayed.

31. Automap the Source and Target elements.
 The Auto Map Preferences dialog is displayed.

32. Accept the default values and click OK.
 The transformation is completed, as shown in Figure 8–58.

Figure 8–58 Completed Transformation

33. Save the transformation.

34. Return to the Process workspace area, as shown in Figure 8–59.

Figure 8–59 Process Workspace Area

The ServiceTask component is created between the Start event component and the End event component.

35. Click the Save All icon in the menu bar to save the new inbound BPM process component that was configured.

8.5.2.4 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.
You are now ready to deploy the inbound BPM process. You can follow the same procedure that is described in "Deploying the BPEL Inbound Process" on page 6-52. For more information on how to trigger events in SAP R/3, see "Triggering an Event in SAP R/3" on page 6-53.

8.6 Working With Synchronous SAP R/3 Events Using BPM (J2CA Configuration)

This section describes how to work with synchronous SAP R/3 events using BPM. For more information on synchronous SAP R/3 events, see Section 6.6.1, "Overview".

Note: Synchronous events are supported only for objects that have reply schema and are not supported for IDocs.

A sample project has been provided for this use case scenario in the following folder of the Application Adapters Installation:

<ADAPTER_HOME>/etc/sample\SAP_Samples.zip\SAP_Samples\BPM\J2CA\Synchronous_Events

This section includes the following topics:

- Section 8.6.1, "Configuring the Adapter Target and Channels"
- Section 8.6.2, "Generating a WSDL File for a Message"
- Section 8.6.3, "Creating a BPM Process in JDeveloper"

8.6.1 Configuring the Adapter Target and Channels

Open Application Explorer and create two targets and one channel for SAP using a J2CA configuration.

For more information, see Chapter 4, "Configuring Oracle Application Adapter for SAP R/3".

8.6.2 Generating a WSDL File for a Message

Perform the following steps to generate a WSDL file for a message:

1. Ensure that the channel is not started before generating the WSDL file.
2. Connect to the first SAP adapter target (target1).
4. Connect to the second SAP adapter target (target2).

For more information, see Section 6.4.1, "Generating WSDL for Request/Response Service" and Section 6.5.1, "Generating WSDL for Event Integration".

8.6.3 Creating a BPM Process in JDeveloper

This section describes how to create a BPM process in JDeveloper.
8.6.3.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for BPM:

1. Create a new BPM application.
2. Enter a name for the new BPM Application and click Next.
 The Name your project page is displayed.
3. Enter a project name and click Next.
4. From the Composite Template list, select Empty Composite and click Finish.
 For more information, see Section 6.4.2, "Creating an Empty Composite for SOA" on page 6-9.

8.6.3.2 Creating a Third Party Adapter Service for an Inbound WSDL File

To create a third party adapter service for an inbound WSDL file:

1. Drag and drop the Third Party Adapter component from the Custom/Third Party area to the Exposed Services pane.
 The Create Third Party Adapter Service dialog is displayed.
2. Enter a name in the Name field and click on the icon next to the WSDL URL field.
 The WSDL Chooser dialog is displayed.
3. Select the File System tab and then browse and select the inbound WSDL file from the WSDL location, and click OK.
4. In the Localize Files dialog, click OK.
 The inbound WSDL, request, and response XML schema files (.xsd), are imported to the created project folder.
5. Click the Find jca file icon to select the inbound JCA properties file.
 The Transformation Chooser dialog is displayed.
6. Select the JCA properties file from the WSDL location and click OK.
 The Copy File message window is displayed.
7. Click Yes.
 A copy of the JCA properties file is made in the project folder.
8. Click OK.
 The third party adapter service for the inbound WSDL file is created in the Exposed Services pane, as shown in Figure 8–60.
8.6.3.3 Creating a Third Party Adapter Service for an Outbound WSDL File

To create a third party adapter service for an outbound WSDL file:

1. Drag and drop the **Third Party Adapter** component from the Custom/Third Party area to the External References pane.
 The Create Third Party Adapter Service dialog is displayed.
2. Enter a name in the Name field and click on the icon next to the WSDL URL field.
 The WSDL Chooser dialog is displayed.
3. Browse and select the outbound WSDL created from the WSDL location and click **OK**.
 The Localize Files dialog is displayed.
4. Click **OK**.
 The outbound WSDL, request, and response XML schema files (.xsd) are imported to the created project folder.
5. Click the **Find jca file** icon to select the outbound JCA properties file.
6. Select the JCA properties file from the WSDL location and click **OK**.
7. The Copy File message window is displayed.
8. Click **Yes**.
 A copy of the JCA properties file is made in the project folder.
9. Click **OK**.
 The third party adapter service for the outbound WSDL is created in the External References pane, as shown in Figure 8–61.
8.6.3.4 Creating a Synchronous BPM Process

To create a synchronous BPMN process:

1. Drag and drop the BPMN Process component from the Components area to the Components pane.

 The BPMN2.0 Process Wizard window is displayed.

2. Select Manual Process in the Type section and then click Finish.

 The BPM process workspace area is displayed.

3. Right-click the UserTask icon and select Delete from the menu, as shown in Figure 8–62.

 Figure 8–62 Delete Option

4. Double-click the Start event component.

 The Properties - Start dialog is displayed.

5. Click the Implementation tab.

6. Click Message from the Implementation Type list and then select Use Interface from the Type list under the Message Exchange tab.
7. Click the **Browse** icon to the right of the Reference field under the Use Interface tab.

 The Service dialog is displayed.

8. Select the Third Party Service that has been created for the inbound WSDL and click **OK**.

 You are returned to the Properties - Start dialog.

9. Click **Data Associations**.

 The Data Associations dialog is displayed.

10. Right-click **Data Objects** under the Process node in the right pane and select **New**.

 The Create Data Object Dialog is displayed.

11. Enter a name (for example, receive_in) in the Name field.

12. Click the drop-down button in the Type field and select **Browse** from the list.

 The Browse Types dialog is displayed.

13. Select the corresponding Request component and click **OK**.

 You are returned to the Create Data Object dialog.

14. Click **OK**.

 The Data Object (for example, receive_in) that has been created is displayed under the Data Objects in the Data Associations dialog.

15. Select the component listed under the Arguments node in the left pane and drag and connect it to the created data object under the Data Objects in the right pane.

16. Click **OK**.

 You are returned to the Properties - Start dialog.

17. Click **OK**.

 You are returned to the Process workspace area.

18. Select and drop the **Service Activity** icon on the wire between the Start and End event components, as shown in **Figure 8–63**.

Figure 8–63 Service Activity Icon
The Properties - ServiceTask dialog is displayed.

19. Click the **Implementation** tab, and select **Service Call** from the Type list under the Message Exchange tab.

20. Click the **Browse** icon to the right of the Service field.

The Service dialog is displayed.

21. Select the Third Party Service that has been created for the outbound WSDL and click **OK**.

You are returned to the Properties - Start dialog window.

22. Click **Data Associations**.

The Data Associations dialog is displayed.

23. Below the Input Area, right-click **Data Objects** under the Process node in the left pane and select **New**.

The Create Data Object dialog is displayed.

24. Enter a name (for example, invoke_in) in the Name field, click the drop-down button in the Type field and select **Browse...** from the list.

The Browse Types dialog is displayed.

25. Select the corresponding Request component and click **OK**.

You are returned to the Create Data Object dialog.

26. Click **OK**.

The Data Object (for example, invoke_in) that has been created is displayed under the Data Objects in the Data Associations dialog.

27. Select the created data object under Data Objects in the left pane, and drag and connect it to the component listed under the Arguments node in the right pane.

28. Select the Output Area, right-click **Data Objects** under the Process node in the right pane and select **New**.

The Create Data Object dialog is displayed.

29. Enter a name (for example, invoke_out) in the Name field, click the drop-down button in the Type field and select **Browse...** from the list.

The Browse Types dialog is displayed.

30. Select the corresponding Response component and click **OK**.

You are returned to the Create Data Object dialog.

31. Click **OK**.

The Data Object (for example, invoke_out) that has been created is displayed under Data Objects in the Data Associations dialog.

32. Select the component listed under the Arguments node in the left pane, and drag and connect it to the created data object (Response) under Data Objects in the right pane.

33. Click **OK**.

You are returned to the Properties - Start dialog.

34. Click **OK**.

You are returned to the Process workspace area.
35. Double-click the End event component.
 The Properties - End dialog is displayed.

36. Click the Implementation tab.

37. Select Message from the Implementation Type list and select Use Interface from
 the Type list under the Message Exchange tab.

38. Select the Synchronous button in the Type field below User Interface.

39. Click the Browse icon to the right of the Reference field under the Use Interface
 tab.
 The Service dialog is displayed.

40. Select the Third Party Service that has been created for the inbound WSDL and
 click OK.

41. Click Data Associations.
 The Data Associations dialog is displayed.

42. Select the created data object for response (for example, invoke_out) displayed
 under Data Objects in the left pane, and drag and connect it to the component
 listed under Arguments in the right pane.

43. Click OK.
 You are returned to the Properties - End dialog.

44. Click OK and then Save All.
 You are returned to the Process workspace area, as shown in Figure 8–64.

Figure 8–64 Process Workspace Area

The BPM process creation for synchronous events is completed.

8.6.3.5 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see
Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.

8.6.3.6 Deploying the BPM Process
For more information on how to deploy the BPM process, see Section 8.4.4, "Deploying
the BPM Outbound Process" on page 8-25.
8.7 Designing an Outbound BPM Process Using Transformations for Service Integration (BSE Configuration)

This section describes how to configure a BPM outbound process to your SAP R/3 system, using a BPM project in Oracle JDeveloper.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\BPM\BSE\Outbound_Project

The following tools are required to complete your outbound design-time configuration:

- Oracle Adapter Application Explorer (Application Explorer)
- Oracle JDeveloper BPM Designer (JDeveloper)

This section contains the following topics:

- Section 8.7.1, "Creating an Empty Composite for BPM"
- Section 8.7.2, "Defining a BPM Outbound Process"

Prerequisites

Before you design a BPM outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.7.1, "Generating a WSDL File for Request and Response Services Using a Web Service".

8.7.1 Creating an Empty Composite for BPM

Perform the following steps to create an empty composite for SOA:

1. Create a new BPM application.
2. Enter a name for the BPM Application, and click Next.
3. Enter a name in the Project Name field, and click Next.
4. From the Composite Template list, select Empty Composite and click Finish.

For more information, see Section 6.4.2, "Creating an Empty Composite for SOA" on page 6-9.

8.7.2 Defining a BPM Outbound Process

This section describes how to define a BPM outbound process. It contains the following topics:

- Section 8.7.2.1, "Configuring a Web Service Component"
- Section 8.7.2.2, "Configuring a BPM Process Component"
- Section 8.7.2.3, "Creating a File Adapter for the Write Operation"

8.7.2.1 Configuring a Web Service Component

Perform the following steps to configure a Web Service component:

1. Double-click the created project to load the components.
2. Drag and drop the Web Service node from the Technology Adapters pane to the External References pane, as shown in Figure 8–65.
3. Enter an appropriate name for the Web Service and click on the **Find existing WSDLs** icon, which is located to the right of the WSDL URL field.

4. In the displayed WSDL Chooser window, navigate to the location where the WSDL is exported from the Application Explorer, and select the WSDL.

5. Click **OK**.

6. In the Web Service pane, click **OK**, as shown in **Figure 8–66**.

Figure 8–66 Web Service Pane

7. In the displayed Localize Files window, click **OK**.

This will import the WSDL file to the project folder.
8.7.2.2 Configuring a BPM Process Component

This section describes how to configure an outbound BPM process component.

Perform the following steps to configure a BPM Component:

1. Drag and drop the **BPMN Process** component from the Components pane in the Components pane.

2. Accept the default option that is selected under the Type area (Asynchronous Service) and click **Finish**, as shown in **Figure 8–67**.

![Figure 8–67 Type Area](image)

3. Double click on the Start Event component, as shown in **Figure 8–68**.

![Figure 8–68 Start Event Component](image)
4. In the displayed Properties-start window, click the **Implementation** tab.

5. Click the Plus (+) icon to the right of the Arguments Definition field. The Edit Argument window is displayed.

6. Enter a name in the Name field, and then click the Type drop-down list and select **Browse**.

7. Select the **Request** component (for example, GetDetail), and click **OK**, as shown in Figure 8–69.

 Figure 8–69 Request Component

8. In the Edit Argument window that is displayed, click **OK**.

 The Properties - Start window is displayed.

9. In the Operation Name field, change the default entry from **start** to **operation**.

10. Click the **Data Associations** hyperlink, as shown in Figure 8–70.
11. Right-click the Data Objects node in the right pane, under Process, and select New, as shown in Figure 8–71.

12. Enter a name in the Name field, click the Type drop-down list, and select Browse.

13. Select the Request component (for example, GetDetail) and click OK, as shown in Figure 8–72.
14. In the Create Data Object window, click **OK**.

 The Data Associations window is displayed.

15. Select **argument1** under the Arguments node in the left pane and drag and connect it to **dataObject1**, under Data Objects, in the right pane.

16. Click **OK**, as shown in Figure 8–73.
17. In the Properties - Start window that is displayed, click OK.
 You are returned to the Process workspace area.

18. Click the Activity drop-down menu and select Service.

19. Drop the Service icon on the wire between the Start and End event components.

20. In the displayed Properties - ServiceTask window, click the Implementation tab.

21. Select Service Call from the Message Exchange Type list.

22. Click the Browse icon to the right of the Service field, as shown in Figure 8–74.
Figure 8–74 Browse Icon

The Service window is displayed.

23. Select the Web Service that has been created and click OK, as shown in Figure 8–75.
24. In the Properties - ServiceTask window that is displayed, click the Data Associations hyperlink.

 The Data Associations window is displayed.

25. Create response Data Object by right-clicking the Data Objects node in the right pane of the Output tab and selecting New, as shown in Figure 8–76.

 The Create Data Object window is displayed.

26. Enter a name in the Name field, click the Type drop-down list, and select Browse.

27. Select the Response component (for example, GetDetailResponse) and click OK, as shown in Figure 8–77.
28. In the Create Data Object window, click **OK**.

The Data Associations window is displayed.

29. Select **dataObject1**, under the Data Objects node in the left pane of the Input tab, and drag and connect it to the **getDetail** node, under the Arguments node in the right pane, as shown in **Figure 8–78**.

Figure 8–78 Data Associations
30. Click on the **Output** tab and select **detailResponse** under the Arguments node in the left pane and drag and connect it to **dataObject2** under the Data Objects node.

31. Click **OK**, as shown in **Figure 8–79**.

Figure 8–79 Output Tab

32. In the Properties - ServiceTask window that is displayed, click **OK**.

33. Click the **Save All** icon in the menu bar to save the new outbound BPM process component that was configured.

34. Double-click the **IBSE_Outbound** node in the left pane, as shown in **Figure 8–80**.

Figure 8–80 Composite.xml Node
8.7.2.3 Creating a File Adapter for the Write Operation

This section describes how to create a File adapter for the write operation.

Perform the following steps to create a File adapter for the write operation:

1. Drag and drop the File Adapter component from the Technology Adapters pane to the External References pane, and provide a name for the File Adapter.

2. In the Adapter Interface pane that is displayed, ensure that the **Define from operation and schema (specified later)** option is selected, and click **Next**.

3. Click **Next**.

4. In the Operation pane that is displayed, select Write File from the list of Operation Type options, and click **Next**, as shown in **Figure 8–81**.

Figure 8–81 Operation Pane

The File Configuration pane is displayed.

5. In the Directory for Outgoing Files (physical path) field, specify a location on your file system where the output file is written.

6. In the File Naming Convention field, specify a name for the output file.

7. Click **Next**, as shown in **Figure 8–82**.
8. Click the **Browse**, which is located to the right of the URL field.

9. In the displayed Type Chooser window, expand **Project WSDL Files**, **IBSE_Outbound.wsdl**, **Inline Schemas** and then select **GetDetailresponse**.

10. Click **OK**, as shown in Figure 8–83.
11. In the Messages pane, click Next.

12. In the Finish pane that is displayed, click Finish.

13. Double-click the BPMN Process component, as shown in Figure 8–84.

14. Click the Activity icon.
15. Drop the Activity icon on the wire between the Service Task and End event components, as shown in Figure 8–85.

![Activity Icon](image)

Figure 8–85 Activity Icon

16. In the displayed Properties-ServiceTask1 window, click the Implementation tab.

17. Select Service Call from the Type drop-down list in the Message Exchange section.

18. Click the Browse icon to the right of the Service field.

19. Select the service for write operation that has been created and click OK, as shown in Figure 8–86.

![Service Window](image)

Figure 8–86 Service Window

20. In the Properties - ServiceTask1 window, click the Data Associations hyperlink, as shown in Figure 8–87.
21. In the Input tab, click the XSL Transformation icon in the top right pane, as shown in Figure 8–88.

22. Drag and drop the XSL Transformation icon to the getDetailResponse node, as shown in Figure 8–89.
23. In the displayed Create Transformation window, select `dataObject2` in the Sources section and click the right arrow symbol.

24. Accept the default value selected in the Target drop-down list and the default name in the Create field by clicking **OK**.

25. In the Data Associations window, click **OK**, as shown in Figure 8–90.

26. In the Properties - ServiceTask1 window, click **OK**.

27. In the response_body.xsl tab, map the `ns0:GetDetailResponse` source element to the `ns0:GetDetailResponse` target element.

28. In the displayed Auto Map Preferences window, retain the default values and click **OK**, as shown in Figure 8–91.
29. Return to the Process workspace area and double-click the End event component.

30. In the displayed Properties - End window, click the Implementation tab.

31. Select None from the Implementation Type drop-down list.

32. Click OK, as shown in Figure 8–92.

![Figure 8–92 Implementation Tab]

33. Click the Save All icon in the menu bar to save the new outbound BPM component that was configured, as shown in Figure 8–93.
You are now ready to deploy the BPM BSE Outbound process. You can follow the same procedure as Section 8.4.4, "Deploying the BPM Outbound Process".

Once deployed, you can invoke the input XML as defined in Section 8.4.5, "Invoking the Input XML Document in the Oracle Enterprise Manager Console".
Oracle Application Adapter for SAP R/3 integrates seamlessly with Oracle Service Bus (OSB) to facilitate Web service integration. OSB is based on the Service-Oriented Architecture (SOA). It consumes adapter services exposed as Web Service Definition Language (WSDL) documents.

This chapter contains the following sections:

- Section 9.1, "Overview of Application Adapter Integration with Oracle Service Bus"
- Section 9.2, "Configuring an Outbound Process Using sbconsole (J2CA Configuration)"
- Section 9.3, "Configuring an Inbound Process Using sbconsole (J2CA Configuration)"
- Section 9.4, "Configuring an Outbound Process Using sbconsole (BSE Configuration)"
- Section 9.5, "Working With Synchronous SAP R/3 Events Using Oracle Service Bus (J2CA Configuration)"
- Section 9.6, "Configuring JMS Proxy Services Using Oracle Service Bus (J2CA Configuration)"
- Section 9.7, "Configuring HTTP Proxy Services Using Oracle Service Bus (J2CA Configuration)"

9.1 Overview of Application Adapter Integration with Oracle Service Bus

To integrate with Oracle Service Bus (OSB), Oracle Application Adapter for SAP R/3 must be deployed in the same Oracle WebLogic Server as OSB. The underlying adapter services must be exposed as WSDL files, which are generated during design time in Oracle Adapter Application Explorer (Application Explorer) for both request-response (outbound) and event notification (inbound) services of the adapter.

9.2 Configuring an Outbound Process Using sbconsole (J2CA Configuration)

This section describes how to configure an outbound process using sbconsole for J2CA configurations.
A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SAP_Samples.zip\SAP_Samples\OSB\J2CA\SAP_Sample_J2CA_OSB_Outbound_Project

This section includes the following topics:

- Section 9.2.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 9.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 9.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 9.2.4, "Configuring a WSDL-based Business Service"
- Section 9.2.5, "Configuring a File Type Business Service"
- Section 9.2.6, "Configuring a Pipeline With Proxy Service"

9.2.1 Starting Oracle Service Bus and Creating Project Folders

This section describes how to start Oracle Service Bus (OSB) and create project folders. Perform the following steps to start Oracle Service Bus and create project folders:

1. Start the Oracle WebLogic Server for the Oracle WebLogic Server domain that you have configured.
2. Open the Oracle Service Bus Console in a Web browser by entering the following URL:

 http://hostname:port/sbconsole

 Where `hostname` is the name of the machine where Oracle WebLogic Server is running and `port` is the port for the domain you are using.

 The Oracle Service Bus Console logon page is displayed.

3. Log on to the Oracle Service Bus Console using a valid user name and password.

 The Oracle Service Bus Console home page is displayed, as shown in **Figure 9–1.**

 ![Oracle Service Bus Console Home Page](image)

4. Click **Create** in the right pane of the Oracle Service Bus session, as shown in **Figure 9–2.**
5. Select All Projects, click the down arrow in the left pane, and select Project, as shown in Figure 9–3.

The Create a new Project window is displayed, as shown in Figure 9–4.

6. Provide a valid name for the new project (for example, J2CA_Outbound) in the Resource Name field, and click Create.

The new project is successfully created and listed.

7. Right-click the newly created project, select Create, and click Folder, as shown in Figure 9–5.
8. In the Resource Name field, type Business Service and click Create.

9. Repeat steps 7 and 8 to create folders with the names Proxy Service and Wsdl.

The Business Service, Proxy Service, and Wsdl folders are listed in the left pane below the project node, as shown in Figure 9–6.
10. Click Activate in the right pane of the Oracle Service Bus session, as shown in Figure 9–7.

11. In the Confirm Session Activation page, click Activate to save the changes, as shown in Figure 9–8.
9.2.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

Before starting and using Application Explorer to publish a WSDL directly to the Oracle Service Bus (OSB) Console (project/folder), OSB users must perform the following steps:

1. Open the command prompt window.
2. Navigate to the following directory:
 `<ORACLE_HOME>\user_projects\domains\base_domain\bin`
3. Execute `setDomainEnv.cmd` (Windows) or `./setDomainEnv.sh` (UNIX/Linux).
 This command sets the class path for Application Explorer to access the Oracle WebLogic Server APIs to publish the WSDLs to the OSB Console.
4. Do not close the command prompt window.
5. Navigate to the following directory:
 `<ADAPTER_HOME>\tools\iwae\bin`
6. Execute `ae.bat` (Windows) or `iwae.sh` (UNIX/Linux) to start Application Explorer.
 You are now ready to publish WSDLs from Application Explorer to the OSB Console.

9.2.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

Perform the following steps to publish a WSDL from Application Explorer to Oracle Service Bus:

1. Start Application Explorer, connect to a J2CA configuration, and connect to a SAP R/3 target.
 For more information, see Chapter 4, "Configuring Oracle Application Adapter for SAP R/3".
3. Right-click the GetDetail method and select Create Outbound JCA Service(Request/Response) from the menu, as shown in Figure 9–9.
The Export WSDL dialog is displayed, as shown in Figure 9–10.

4. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

5. Select the Export to OSB option.

6. In the Location field, enter the folder name in Oracle Service Bus where you want to publish the WSDL document.
The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character "/".

7. In the Host field, enter the name of the machine where Oracle Service Bus is installed.
8. In the Port field, enter the port that is being used by Oracle Service Bus.
9. In the User field, enter your username to access Oracle Service Bus.
10. In the Password field, enter your password to access Oracle Service Bus.
11. Click OK.

The WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Business Service or Proxy Service in Oracle Service Bus.

9.2.4 Configuring a WSDL-based Business Service

Perform the following steps to configure a WSDL-based Proxy Service:

1. Open the Oracle Service Bus Console and click Create in the right pane of the Oracle Service Bus session, as shown in Figure 9–11.

 ![Create Button](image)

2. Double-click the created WSDL folder in the left pane (for example, Wsdl) and ensure that the exported WSDL is listed in the right pane, as shown in Figure 9–12.

 ![Wsdl Folder](image)

3. Click the icon that corresponds to the JCA Binding in the Actions column. The Generate WSDL and Service window is displayed, as shown in Figure 9–13.
4. Provide a new WSDL name and a new Business Service name in the corresponding fields.

5. In the Destination area, select an available project and the sub-folder that is designated for Business Services.

6. Click Generate.

7. Expand **Business Service** under the project folder and check if the generated WSDL and Business Service are listed, as shown in Figure 9–14.
9.2.5 Configuring a File Type Business Service

Perform the following steps to configure a File type Business Service:

1. Right-click the Business Service folder you created in the left pane, select Create, and click Business Service as shown in Figure 9–15.

Figure 9–14 Business Service Folder

![Business Service Folder]

Figure 9–15 Business Service Folder

![Business Service Folder]
The Create Business Service window is displayed.

2. In the Resource Name field, provide a name for the Business Service, select the File option in the Transport section under Service Definition, and click Next, as shown in Figure 9–16.

![Service Definition](image)

Figure 9–16 Service Definition

3. In the Service Type section, select **Messaging Service**. By default, the Request Type is set to XML, and the Response Type is set to None. Then click Next, as shown in Figure 9–17.
4. Enter the path to a destination folder on your file system in the Endpoint URI field.

5. Click Create, as shown in Figure 9–18.

Figure 9–17 Service Type Configuration Page

Figure 9–18 Transport Page
The Business Service **File_Out** is created and listed under Business Service, as shown in Figure 9–19.

Figure 9–19 File_Out Business Service

6. Double-click **File_Out**, click **Transport Detail** in the left pane, and enter the prefix and suffix for the output file to be received, as shown in Figure 9–20.

Figure 9–20 Transport Detail

7. Click the **Save** or **Save All** icon in the right corner, as shown in Figure 9–21.

Figure 9–21 Save/Save All Icons

9.2.6 Configuring a Pipeline With Proxy Service

Perform the following steps to configure a Pipeline:
1. Right-click the Proxy Service folder, select Create and click Pipeline, as shown in Figure 9–22.

Figure 9–22 Pipeline Option

The Create Pipeline window is displayed.

2. Enter a name in the Pipeline Name field. By default, Expose as a Proxy Service is selected. If you wish to change the Proxy Service Name, change it and set Transport as file, and click Create as shown in Figure 9–23.
The created Pipeline and the Proxy Service is listed under Proxy Service, as shown in Figure 9–24.

3. Double-click the created proxy service and click Transport in the left pane. Provide the input location in the Endpoint URI field, as shown in Figure 9–25.
4. Click **Transport Details** in the left pane and provide the location for the Stage Directory and the Error Directory fields, as shown in **Figure 9–26**.

![Figure 9–26 Transport Details](image)

5. Click the **Save All** icon in the right corner, as shown in **Figure 9–27**.

![Figure 9–27 Save All Icon](image)

6. Double-click the **Pipeline** node and click the **Open Message Flow** icon on the right pane to open the message flow, as shown in **Figure 9–28**.
7. Click the Proxy Service icon and select **Add Pipeline Pair** from the menu, as shown in Figure 9–29.

8. Click the **PipelinePairNode1** icon and select **Add Route** from the menu, as shown in Figure 9–30.

The **RouteNode1** icon is added below the **PipelinePairNode1** icon.

9. Click the **RouteNode1** icon and select **Edit Route** from the menu, as shown in Figure 9–31.
10. Click **Add an Action**, select **Communication** and click **Routing**, as shown in Figure 9–32.

![Figure 9–32 Edit Stage Configuration Workspace Area](image)

11. Click **<Service>**, as shown in Figure 9–33.

![Figure 9–33 Actions](image)
The Select Service dialog is displayed.

12. Select the WSDL type Business Service configured for SAP R/3 and click on Submit, as shown in Figure 9–34.

Figure 9–34 Select Service Dialog

13. Select the name of the SAP R/3 business object (for example, GetDetail) as the operational attribute from the list, and click Save, as shown in Figure 9–35.

Figure 9–35 Edit Stage Configuration

14. Click the Response Pipeline icon and select Add Stage from the menu, as shown in Figure 9–36.
The Stage1 icon is added below the Response Pipeline icon.

15. Click the Stage1 icon and select **Edit Stage** from the menu, as shown in Figure 9–37.

The Edit Stage Configuration workspace area is displayed.

16. Click **Add an Action**, select **Communication**, and then click **Publish**, as shown in Figure 9–38.
17. Click <Service>, as shown in Figure 9–39.

18. In the Select Service dialog, select a File type Business Service and click Submit, as shown in Figure 9–40.

19. Click Save All, as shown in Figure 9–41.
20. Click **Activate** in the right pane of the Oracle Service Bus session, as shown in Figure 9–42.

![Figure 9–42 Activate Button](image)

21. Click **Activate** to save the changes, as shown in Figure 9–43.

![Figure 9–43 Confirm Session Activation](image)

22. Copy and paste an input XML file in the input folder you have configured (for example, C:\input). Output is received in the configured output location (for example, C:\output).

9.3 Configuring an Inbound Process Using sbconsole (J2CA Configuration)

This section describes how to configure an inbound process using sbconsole for J2CA configurations.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

```
<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\OSB\J2CA\SAP_Sample_J2CA_OSB_Inbound_Project
```

This section includes the following topics:
9.3.1 Starting Oracle Service Bus and Creating Project Folders

For more information on starting Oracle Service Bus and creating project folders, see Section 9.2.1, "Starting Oracle Service Bus and Creating Project Folders" on page 9-2.

9.3.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

For more information on setting the class path for Application Explorer to integrate with Oracle Service Bus, see Section 9.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus" on page 9-6.

9.3.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

Perform the following steps to publish a WSDL from Application Explorer to Oracle Service Bus:

1. Start Application Explorer, connect to a J2CA configuration, and connect to a SAP R/3 target.

 For more information, see Chapter 4, "Configuring Oracle Application Adapter for SAP R/3".

2. Create a SAP R/3 channel.

 For more information, see Section 4.9, "Configuring an Event Adapter" on page 4-20.

3. Expand the ALE (IDOCs) node and then the MATMAS -- Material master node in the target.

 Figure 9–44 Create Inbound JCA Service(Event) Option
4. Right-click MATMAS01 and select Create Inbound JCA Service(Event) from the menu, as shown in Figure 9–44.

The Export WSDL dialog is displayed, as shown in Figure 9–45.

Figure 9–45 Export WSDL Dialog

5. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

6. From the Channel list, select the channel you created for this inbound service.

7. Three check boxes for Root, Namespace, and Schema validation are also available. Selection of multiple validation options is allowed.

8. Select the Export to OSB option.

9. In the Location field, enter the folder name in Oracle Service Bus where you want to publish the WSDL document.

 The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

10. In the Host field, enter the name of the machine where Oracle Service Bus is installed.

11. In the Port field, enter the port that is being used by Oracle Service Bus.

12. In the User field, enter your username to access Oracle Service Bus.

13. In the Password field, enter your password to access Oracle Service Bus.

14. Click OK.
The inbound WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Proxy Service in Oracle Service Bus.

9.3.4 Configuring a WSDL-based Proxy Service

Perform the following steps to configure a WSDL-based Proxy Service:

1. Open the Oracle Service Bus Console and click **Create** in the right pane of the Oracle Service Bus session, as shown in Figure 9–46.

 ![Create Button](image1)

2. Double-click the created WSDL folder in the left pane (for example, Wsdl), and ensure that the exported WSDL is listed in the right pane, as shown in Figure 9–47.

 ![Exported WSDL](image2)

3. Click the icon that corresponds to the JCA Binding in the Actions column. The Generate WSDL and Service page is displayed, as shown in Figure 9–48.
4. Provide a new WSDL name and a new Proxy Service name in the corresponding fields.

5. In the Destination area, select an available project and the sub-folder that is designated for Proxy Services.

6. Click Generate.

7. Expand Proxy Service under Project Explorer and check if the generated WSDL and Proxy Service are listed, as shown in Figure 9–49.

9.3.5 Configuring a File Type Business Service

Perform the following steps to configure a File type Business Service:
1. Right-click the Business Service folder you created in the left pane, select Create, and click Business Service, as shown in Figure 9–50.

Figure 9–50 Business Service Folder

The Create Business Service window is displayed.

2. In the Resource Name field, provide a name for the Business Service and select the File option from the Transport drop-down list in the Service Definition area, as shown in Figure 9–51.

Figure 9–51 Create Business Service Window

3. Click Next.
4. In the Service Type area, select **Messaging Service** as the service type, as shown in Figure 9–52.

Figure 9–52 Service Type Area

5. Click **Next**.

 The Transport page is displayed, as shown in Figure 9–53.

Figure 9–53 Transport Page
6. Enter the path to a destination folder on your file system in the Endpoint URI field and click Create.

The Business Service File_Out is created and listed under Business Service, as shown in Figure 9–54.

Figure 9–54 File_Out Business Service

7. Double-click File_Out, click Transport Detail in the left pane, and enter the prefix and suffix for the output file to be received, as shown in Figure 9–55.

Figure 9–55 Transport Detail Page

8. Click the Save or Save All icon in the right corner, as shown in Figure 9–56.
9.3.6 Configuring a Pipeline

Perform the following steps to configure a Pipeline:

1. Right-click the proxy service you created and select **Create**, and then click **Pipeline**, as shown in **Figure 9–57**.

 ![Figure 9–57 Pipeline Option](image)

 The Create Pipeline window is displayed.

2. In the Pipeline Name field, enter a name and select the Service Type as **WSDL Based Service**, as shown in **Figure 9–58**.
3. Click the Search icon, and in the displayed Search and Select: WSDL Resource window, select J2CA_Inbound_receive.wsdl, and click OK, as shown in Figure 9–59.

The Create Pipeline window opens.

4. Clear the check box for Expose as a Proxy Service, and click Create, as shown in Figure 9–60.
The pipeline is created and listed under Proxy Service, as shown in Figure 9–61.

5. Double-click the J2CA_Inbound_receive_PS node under Proxy Service in the left pane and click the Search icon in the Target area in right pane, as shown in Figure 9–62.
Figure 9–62 Proxy Service Definition Window

The Search and Select: Service Resource window appears.

6. From the Resource Type drop-down list, select Pipeline and then click the Search button.

The Pipeline is listed, as shown in Figure 9–63.

Figure 9–63 Search and Select: Service Resource Window

7. Select the Pipeline and click OK.

8. Click the Save or Save All icon in the right corner, as shown in Figure 9–64.

Figure 9–64 Save and Save All Icons
9. In the left pane, double-click **Pipeline** under the Proxy Service folder and click the down-pointing icon on the right pane to open the message flow, as shown in Figure 9–65.

![Figure 9–65 Message Flow](image)

10. Click the displayed Proxy service icon and select **Add Route** from the menu, as shown in Figure 9–66.

![Figure 9–66 Add Route Option](image)

The RouteNode1 icon is added.

11. Click the RouteNode1 icon and select **Edit Route** from the menu, as shown in Figure 9–67.
12. Click Add an Action, select Communication from the menu, and then click Routing, as shown in Figure 9–68.

13. Click <Service>, as shown in Figure 9–69.

The Select Service dialog is displayed.
14. Select the **File_Out** Business service and click **Submit** as shown in Figure 9–70.

Figure 9–70 Select Service Dialog

You are returned to the Edit Stage Configuration workspace area.

15. Click **Save All**, as shown in Figure 9–71.

Figure 9–71 Edit Stage Configuration Workspace Area

16. Click **Activate** in the right pane of the Oracle Service Bus session, as shown in Figure 9–72.

Figure 9–72 Activate Button

The Confirm Session Activation window appears.

17. Click **Activate** to save the changes, as shown in Figure 9–73.
18. Trigger an event from the SAP R/3 system and check if the output is received in the configured output location.

9.4 Configuring an Outbound Process Using sbconsole (BSE Configuration)

This section describes how to configure an outbound process using sbconsole for BSE configurations.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SAP_Samples.zip/SAP_Samples/OSB/BSE/SAP_Sample_BSE_OSB_Outbound_Project

This section includes the following topics:

- Section 9.4.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 9.4.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus"
- Section 9.4.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus"
- Section 9.4.4, "Configuring a File Type Business Service"
- Section 9.4.5, "Configuring a WSDL-based Business Service"
- Section 9.4.6, "Configuring a Pipeline With Proxy Service"

9.4.1 Starting Oracle Service Bus and Creating Project Folders

For more information on starting Oracle Service Bus and creating project folders, see Section 9.2.1, "Starting Oracle Service Bus and Creating Project Folders" on page 9-2.

9.4.2 Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus

For more information on setting the class path for Application Explorer to integrate with Oracle Service Bus, see Section 9.2.2, "Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus" on page 9-6.
9.4.3 Publishing a WSDL From Application Explorer to Oracle Service Bus

This section describes how to publish a WSDL from Application Explorer (BSE configuration) to Oracle Service Bus.

1. Start Application Explorer, connect to a BSE configuration, and connect to a SAP R/3 target.

Figure 9–74 Create Web Service Option

3. Right-click the GetDetail method and select Create Web Service from the menu, as shown in Figure 9–74.

 The Create Web Service dialog is displayed, as shown in Figure 9–75.

Figure 9–75 Create Web Service Dialog

4. Enter a service name and click Next.

5. Click OK on the next dialog that is displayed.

 Application Explorer switches the view to the Business Services node, and the new Web service appears in the left pane.

6. Right-click the new Web service and select Export WSDL from the menu.
The Export WSDL dialog is displayed, as shown in Figure 9–76.

Figure 9–76 Export WSDL Dialog

<table>
<thead>
<tr>
<th>Name</th>
<th>BSE_Outbound.wsdl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>defaultwsds</td>
</tr>
<tr>
<td>Host</td>
<td>localhost</td>
</tr>
<tr>
<td>Port</td>
<td>7001</td>
</tr>
<tr>
<td>User</td>
<td>weblogic</td>
</tr>
<tr>
<td>Password</td>
<td>**********</td>
</tr>
</tbody>
</table>

7. In the Name field, a default file name for the WSDL file is provided. You can accept the default or provide your own.

8. In the Location field, enter the location where you want to publish the WSDL document.
 The location is composed of an Oracle Service Bus project name and optionally, one or more folder names. The project name and any folder names must be separated by a forward slash character “/”.

9. In the Host field, enter the name of the machine where Oracle WebLogic Server is running.

10. In the Port field, enter the port for the domain you are using.

11. In the User field, enter your username to access Oracle Service Bus.

12. In the Password field, enter your password to access Oracle Service Bus.

13. Click OK.
 The WSDL is published to the location specified in the Export WSDL dialog and is now available for use with a Business Service or Proxy Service in Oracle Service Bus.

9.4.4 Configuring a File Type Business Service

For more information on configuring a file type business service, see Section 9.2.5, "Configuring a File Type Business Service" on page 9-10.

9.4.5 Configuring a WSDL-based Business Service

This section describes how to configure a WSDL type Business Service using the Oracle Service Bus Console.

Perform the following steps to configure a WSDL-based Proxy Service:

1. Right-click on the Business Service folder in the left pane and select **Business Service**.
 The Create Business Service window is displayed, as shown in Figure 9–77.
2. Provide a name for the Business Service, and in Service Definition area, select the WSDL Based Service option and click the search icon.

The Search and Select: WSDL Resource window is displayed, as shown in Figure 9–78.

3. Click the **Search** button, select the BSE Outbound WSDL, and click **OK**.

You are returned to the Create Business Service window.
4. Click Next.

5. Accept the default values and click the Create button, as shown in Figure 9–79.

Figure 9–79 Create Business Service Window

The created WSDL-based Business Service is listed under the Business Service folder, as shown in Figure 9–80.

Figure 9–80 WSDL-based Business Service

9.4.6 Configuring a Pipeline With Proxy Service

This section describes how to configure a Proxy Service using the Oracle Service Bus Console.

1. Right-click the Proxy Service folder, select Create and click Pipeline, as shown in Figure 9–81.
The Create Pipeline window is displayed.

2. Enter a name in the Pipeline Name field. By default, Expose as a Proxy Service is selected. If you wish to change the Proxy Service Name, change it and set Transport to file, and click Create as shown in Figure 9–82.

The created Pipeline and the Proxy Service is listed under Proxy Service, as shown in Figure 9–83.
3. Double-click the created proxy service and click Transport in the left pane. Provide the input location in the Endpoint URI field, as shown in Figure 9–84.

Figure 9–84 Transport

4. Click Transport Details in the left pane and provide the location for the Stage Directory and the Error Directory fields, as shown in Figure 9–85.
5. Click the **Save All** icon in the right corner, as shown in *Figure 9–86*.

Figure 9–86 Save All Icon

6. Double-click the **Pipeline** node and click the **Open Message Flow** icon on the right pane to open the message flow, as shown in *Figure 9–87*.

Figure 9–87 Open Message Flow Icon

7. Click the **Proxy Service** icon and select **Add Pipeline Pair** from the menu, as shown in *Figure 9–88*.

Figure 9–88 Add Pipeline Pair Icon
8. Click the PipelinePairNode1 icon and select Add Route from the menu, as shown in Figure 9–89.

9. Click the RouteNode1 icon and select Edit Route from the menu, as shown in Figure 9–90.

The RouteNode1 icon is added below the PipelinePairNode1 icon.
The Edit Stage Configuration workspace area is displayed.

10. Click **Add an Action**, select **Communication** and click **Routing**, as shown in Figure 9–91.

11. Click **<Service>**, as shown in Figure 9–92.
The Select Service dialog is displayed.

12. Select the WSDL type Business Service configured for SAP R/3 and click on Submit, as shown in Figure 9–93.

Figure 9–93 Select Service Dialog

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Path</th>
<th>Resource Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSE_Outbound_RW</td>
<td>BSE_Outbound/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>BSE_Outbound_Invoke_P5</td>
<td>BSE_Outbound/Proxy Service</td>
<td>Proxy Service</td>
</tr>
<tr>
<td>File_Out</td>
<td>BSE_Outbound/Business Service</td>
<td>Business Service</td>
</tr>
<tr>
<td>Pipeline</td>
<td>BSE_Outbound/Proxy Service</td>
<td>Pipeline</td>
</tr>
</tbody>
</table>
```

13. Select the name of the SAP R/3 business object (for example, GetDetail) as the operational attribute from the list, and click Save, as shown in Figure 9–94.

Figure 9–94 Edit Stage Configuration

14. Click the Response Pipeline icon and select Add Stage from the menu, as shown in Figure 9–95.
The Stage1 icon is added below the Response Pipeline icon.

15. Click the Stage1 icon and select **Edit Stage** from the menu, as shown in Figure 9–96.

The Edit Stage Configuration workspace area is displayed.

16. Click **Add an Action**, select **Communication**, and then click **Publish**, as shown in Figure 9–97.
17. Click `<Service>`, as shown in Figure 9–98.

Figure 9–98 `<Service>` Action

18. In the Select Service dialog, select a File type Business Service and click **Submit**, as shown in Figure 9–99.

Figure 9–99 Select Service Dialog

19. Click **Save All**, as shown in Figure 9–100.
20. Click **Activate** in the right pane of the Oracle Service Bus session, as shown in Figure 9–101.

21. Click **Activate** to save the changes, as shown in Figure 9–102.

22. Copy and paste an input XML file in the input folder you have configured (for example, C:\input).
 Output is received in the configured output location (for example, C:\output).

9.5 Working With Synchronous SAP R/3 Events Using Oracle Service Bus (J2CA Configuration)

This section describes how to work with synchronous SAP R/3 events using Oracle Service Bus. For more information on synchronous SAP R/3 events, see Section 6.6.1, "Overview".

Note: Synchronous events are supported only for objects that have reply schema and are not supported for IDocs.
A sample project has been provided for this use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SAP_Samples.zip\SAP_Samples\OSB\J2CA\SAP_Sample_J2CA_\OSB_Synchronous_Events

This section includes the following topics:

- Section 9.5.1, "Starting Oracle Service Bus and Creating Project Folders"
- Section 9.5.2, "Configuring Adapter Targets and Channels"
- Section 9.5.3, "Generating a WSDL File for a Message"
- Section 9.5.4, "Creating a Business Service in the Oracle Service Bus Console"
- Section 9.5.5, "Creating a Proxy Service in the Oracle Service Bus Console"
- Section 9.5.6, "Configuring a Pipeline in the Proxy Service"

9.5.1 Starting Oracle Service Bus and Creating Project Folders

Start Oracle Service Bus and create the required project folders, as shown in Figure 9–103.

![Figure 9–103 Project Explorer](image)

For more information, see Section 9.2.1, "Starting Oracle Service Bus and Creating Project Folders".

9.5.2 Configuring Adapter Targets and Channels

Start Application Explorer and create two adapter targets and one channel for SAP R/3 using a J2CA configuration.

For more information, see Chapter 4, "Configuring Oracle Application Adapter for SAP R/3".

9.5.3 Generating a WSDL File for a Message

Perform the following steps to generate a WSDL file for a message:

1. Ensure that the channel is not started before generating the WSDL file.
2. Connect to the first SAP adapter target (target1).

4. Connect to the second SAP adapter target (target2).

For more information, see Section 9.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus" and Section 9.3.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus".

9.5.4 Creating a Business Service in the Oracle Service Bus Console

This section describes how to create a Business Service in the Oracle Service Bus console.

1. In the Oracle Service Bus console, click Create, which is located on the top and select the created WSDL folder in the left pane.

 WSDL, JCA binding, and XSD files are listed in the right pane, as shown in Figure 9–104.

 Figure 9–104 Contents of the WSDL Folder

 ![Figure 9-104 Contents of the WSDL Folder](image)

2. Click the icon corresponding to the exported outbound JCA binding.

 The Generate WSDL and Service page opens, as shown in Figure 9–105.
3. Provide a new WSDL name and a new Business Service name in the corresponding fields.

4. In the Destination area, select the Business Service subfolder from the corresponding project.

5. Click Generate.

Select the Business Service folder in the left pane under the project folder (for example, SAP_Project) and check that the WSDL and service resources are successfully created, as shown in Figure 9–106.

9.5.5 Creating a Proxy Service in the Oracle Service Bus Console

This section describes how to create a Proxy Service in the Oracle Service Bus console.

1. In the Oracle Service Bus console, select the created WSDL folder in the left pane. WSDL, JCA binding, and XSD files are listed in the right pane, as shown in Figure 9–107.
2. Click the icon corresponding to the exported inbound JCA binding. The Generate WSDL and Service page is displayed, as shown in Figure 9–108.

Figure 9–108 Generate WSDL and Service Page

3. Provide a new WSDL name and a new Proxy Service name in the corresponding fields.

4. In the Destination area, select the Proxy Service subfolder from the corresponding project.

5. Click Generate.

Select the Proxy Service folder in the left pane under the project folder (for example, SAP_Project) and check that the WSDL and service resources are successfully created, as shown in Figure 9–109.
6. Right-click the Proxy Service, select Create and then click Pipeline.

 The Create Pipeline window is displayed, as shown in Figure 9–110.

Figure 9–110 Create Pipeline Window

7. Enter a Pipeline name, select WSDL Based Service as the Service Type, and then click the Search icon next to the Name field.

 The Search and Select: WSDL Resource window is displayed.

8. Click Search and in the displayed list, select BAPI_COMPANYCODE_GETLIST_receive_wsdl, which is available under the Proxy service, and then click Ok.

 You are returned to the Create Pipeline window, as shown Figure 9–111.
9. Uncheck the **Expose as a Proxy Service** option and then click **Create**. The Pipeline will be created and listed under the Proxy Service folder.

10. Double-click **BAPI_COMPANYCODE_GETLIST_receive_PS** under the Proxy Service folder and then click the **Search** icon in the Target area in left pane, as shown in Figure 9–112.

Figure 9–112 Search Icon

The Search and Select: Service Resource window is displayed.

11. Click **Search** and in the displayed list select **BAPI COMPANYCODE_GETLIST_PIPELINE**, which is available under the Proxy Service, and then click **Ok**.
12. Click Save/Save All in the left corner.

9.5.6 Configuring a Pipeline in the Proxy Service

This section describes how to configure a Pipeline in the Proxy Service.

1. Click the created Pipeline under the Proxy Service folder and click the Open Message Flow icon at the top of right pane.

2. In the Edit Message flow workspace area, click the displayed Proxy Service icon and select Add Route from the menu.

3. Click the RouteNode1 icon and select Edit Route from the menu.

4. Click Add an Action, select Communication from the menu, and then click Routing.

5. Click <Service>.

6. Select the created Business Service and click Submit.

7. Select the BAPI_COMPANYCODE_GETLIST operation from the list.

8. Under Request Actions, click Add an Action - Reporting, and select Log.

9. Click the Log <Expression>.

10. In the XQuery/XSLT Expression Editor page, type $body, click Validate, and then click Save.

11. Select Error from the Severity Level list under the Log area in the Request Actions section.

13. Click on the Log <Expression>.

14. In the XQuery/XSLT Expression Editor page, type $body, click Validate, and then click Save.

15. Select Error from the Severity Level list under the Log area in the Response Actions section.

The final pipeline structure is shown in Figure 9–113.
This section describes how to configure JMS Proxy Services using Oracle Service Bus for a J2CA configuration.

1. Start Oracle Service Bus and create the required project folder.
 For more information, see Section 9.2.1, "Starting Oracle Service Bus and Creating Project Folders".

2. Generate and publish the WSDL from Application Explorer to the created project folder. Using the published WSDL, create a Business Service.
 For more information, see Section 9.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus".

3. Open the Service Bus Console page, as shown in Figure 9–114.
Figure 9–114 Service Bus Console

4. Select the ProxyService project folder in the left pane, and click Create, as shown in Figure 9–115.

Figure 9–115 Proxy Service

5. In the right pane, select Proxy Service from the Create Resource list, as shown in Figure 9–116.
6. Enter an appropriate name in the **Service Name** field, as shown in Figure 9–117.

7. In the Service Type section, under Create From Existing Service, select the **Business Service** radio button and click **Browse**, as shown in Figure 9–118.
8. Select the existing business service and click Submit, as shown in Figure 9–119.

9. Click Next, as shown in Figure 9–120.
10. Select *jms* from the Protocol list and click **Next**, as shown in **Figure 9–121**.

Figure 9–121 Protocol List

11. Provide the following parameters, as shown in **Figure 9–122**.
 a. Select **Queue** in the Destination Type section.
 b. Enable the **Is Response Required** check box.
 c. Select **Text** in the Response Message Type section.
 d. In the Response URI field, provide the Endpoint URI used in the Transport Configuration and change **Request** to **Response**.

 For example:

 jms://localhost:8001/weblogic.jms.XAConnectionFactory/Adapter_outbound_PSResponse
12. Click Next.

The Operation Selection Configuration pane appears, as shown in Figure 9–123.

13. Ensure the SOAP Body Type is selected and click Next.

14. Enable the Transaction Required box and click Next, as shown in Figure 9–124.
15. Click Save, as shown in Figure 9–125.

The created Proxy Service is saved, as shown in Figure 9–126.
16. In the left pane, click **Activate**, and then **Submit**, as shown in Figure 9–127.

Figure 9–127 Activate Session

17. In the left pane, click **ProxyService** under the Projects folder, as shown in Figure 9–128.
18. Click the **Launch Test Console** icon for the created Proxy Service, as shown in Figure 9–129.

Figure 9–129 Launch Test Console Icon

19. Provide the input values for **Payload**, uncheck the **Direct Call** box, and click **Execute**, as shown in Figure 9–130.
20. Review the Response document, and then click Close, as shown in Figure 9–131.

21. Click the Oracle WLS Console tab, as shown in Figure 9–132.
22. In the Oracle WLS Console, expand Services, expand Messaging, and click JMS Modules, as shown in Figure 9–133.

![Figure 9–132 ProxyService](image1)

Figure 9–132 ProxyService

![Figure 9–133 Oracle WLS Console](image2)

Figure 9–133 Oracle WLS Console

23. Click jmsResources, as shown in Figure 9–134.
24. Click **Lock & Edit**, as shown in Figure 9–135.

25. Click the appropriate request link, for example, **Adapter_outbound_PSRequest**, as shown in Figure 9–136.
26. Click the Monitoring tab, as shown in Figure 9–137.

Figure 9–137 Monitoring Tab

27. Enable the check box and click Show Messages, as shown in Figure 9–138.
28. Click **New**, as shown in Figure 9–139.

Figure 9–139 JMS Messages

29. Provide the input payload in the **Body** field and click **OK**, as shown in Figure 9–140.
A Success message appears, as shown in Figure 9–141.

30. In the Oracle WLS Console, expand Services, expand Messaging, and click JMS Modules, as shown in Figure 9–142.
31. Click jmsResources, as shown in Figure 9–143.

32. Click the appropriate response link, for example, Adapter_outbound_PSResponse, as shown in Figure 9–144.
33. Click the Monitoring tab, as shown in Figure 9–145.

Figure 9–145 Monitoring Tab

34. Enable the check box and click Show Messages, as shown in Figure 9–146.
35. Click the ID link, as shown in **Figure 9–147**.

The response document is shown under the Text field, as shown in **Figure 9–148**.
9.7 Configuring HTTP Proxy Services Using Oracle Service Bus (J2CA Configuration)

This section describes how to configure HTTP Proxy Services using Oracle Service Bus for a J2CA configuration.

1. Start the Oracle Service Bus and create the required project folders.

 For more information, see Section 9.2.1, "Starting Oracle Service Bus and Creating Project Folders".

2. Generate and publish the WSDL from Application Explorer to the created project folder, and create a Business Service using the published WSDL.

 For more information, see Section 9.2.3, "Publishing a WSDL From Application Explorer to Oracle Service Bus".

3. Open the Service Bus console page, as shown in Figure 9–149.
4. In the Project Explorer, select the **ProxyService** project folder, and click **Create**, as shown in Figure 9–150.

5. In the Create Resource list on the right pane, select **Proxy Service**, as shown in Figure 9–151.
6. In the Service Name field, enter an appropriate name, as shown in Figure 9–152.

7. In the Service Type section, under Create From Existing Service, select the Business Service radio button and click Browse, as shown in Figure 9–153.
Figure 9–153 General Configuration

8. Select the existing Business Service and click Submit, as shown in Figure 9–154.

Figure 9–154 Business Service

9. Click Next, as shown in Figure 9–155.
10. Select http in the Protocol list and click Next, as shown in Figure 9–156.

11. Click Next, as shown in Figure 9–157.
12. Click **Next**, as shown in Figure 9–158.

Figure 9–158 Operation Selection Configuration

13. Enable the **Transaction Required** check box and click **Next**, as shown in Figure 9–159.
14. Click Save, as shown in Figure 9–160.

The created Proxy Service is saved, as shown in Figure 9–161.
15. Click **Activate** in the left pane, and then **Submit** on the right pane, as shown in Figure 9–162.

Figure 9–162 Activate Session

16. Click **ProxyService** in the Projects folder on the left pane, as shown in Figure 9–163.
17. Click the **Launch Test Console** icon for the created Proxy Service, as shown in Figure 9–164.

Figure 9–164 Launch Test Console

18. Uncheck the **Direct Call** check box, provide the input values for **Payload**, and click **Execute**, as shown in Figure 9–165.
19. Review the Response Document, as shown in Figure 9–166.
Chapter 10

Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper

Oracle Application Adapter for SAP R/3 integrates seamlessly with Oracle JDeveloper to facilitate Web service integration.

This chapter contains the following sections:

- Section 10.1, "Configuring an OSB Outbound Process Using JDeveloper (J2CA Configuration)"
- Section 10.2, "Configuring an OSB Inbound Process Using JDeveloper (J2CA Configuration)"
- Section 10.3, "Configuring an OSB Outbound Process Using JDeveloper (BSE Configuration)"
- Section 10.4, "Working With Synchronous SAP R/3 Events of Oracle Service Bus Using JDeveloper (J2CA Configuration)"
- Section 10.5, "Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration)"
- Section 10.6, "Configuring a JMS Outbound Process Using JDeveloper (J2CA Configuration)"
- Section 10.7, "Configuring an HTTP Outbound Process Using JDeveloper (J2CA Configuration)"

10.1 Configuring an OSB Outbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure an OSB outbound process to your SAP R/3 system, using Oracle JDeveloper for J2CA configurations.

A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SAP_Samples.zip/SAP_Samples/OSB_Jdeveloper/J2CA/SAP_Sample_J2CA.OSB_Outbound_Project

This section includes the following topics:

- Section 10.1.1, "Creating a Service Bus Application for OSB"
- Section 10.1.2, "Defining an OSB Outbound Process"
Prerequisites
Before you design an OSB outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see 4.7, "Generating WSDL (J2CA Configurations Only)" on page 4-16.

10.1.1 Creating a Service Bus Application for OSB

Perform the following steps in JDeveloper to create a service bus application for OSB.

1. Create a new OSB application.
2. Enter a name for the OSB Application (for example, J2CA_Outbound) and click Finish, as shown in Figure 10–1.

Figure 10–1 Name Your Application Pane

3. Enter a project name (for example, JCA_Outbound), and click Finish, as shown in Figure 10–2.
10.1.2 Defining an OSB Outbound Process

This section describes how to define an OSB outbound process. The following topics are included:

- Section 10.1.2.1, "Configuring a Third-Party Adapter Service Component"
- Section 10.1.2.2, "Configuring a File Transport Type Business Service"
- Section 10.1.2.3, "Creating a Proxy Service With Pipeline"
- Section 10.1.2.4, "Configuring the Routing Rules"

10.1.2.1 Configuring a Third-Party Adapter Service Component

Perform the following steps to create a third party adapter service component along with the Business Service:

1. Drag and drop the Third Party Adapter component from the Service Bus Components pane to the External Services pane, as shown in Figure 10–3.
The Create Third Party Adapter Service dialog is displayed, as shown in
Figure 10–4.

2. Enter an appropriate name for the Third Party Adapter Service which will be used as the Business Service name.

3. Ensure that Reference is selected from the Type drop-down list (by default).

4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

The WSDL Chooser dialog is displayed, as shown in Figure 10–5.
5. Select the **File System** tab, then browse, and select an outbound WSDL file from the WSDL directory.

6. Click **OK**.
 The Import Service Bus Resources dialog is displayed.

7. Click **Next**, as shown in **Figure 10–6**.

![Figure 10–6 Source Pane](image)

8. In the Configuration pane, click **Finish**, as shown in **Figure 10–7**.
You are returned to the Create Third Party Adapter Service Dialog.

9. Click the Find JCA file icon which is located to the right of the JCA File field, as shown in Figure 10–8.

The Transformation Chooser dialog is displayed, as shown in Figure 10–9.
10. Select the JCA properties file from the WSDL directory.

11. Click OK. The Copy File message is displayed, as shown in Figure 10–10.

12. Click Yes.

A copy of the JCA properties file is made in the project folder.

You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 10–11.
13. Click **OK**.

The Business service component is created in the External Services pane.

10.1.2.2 Configuring a File Transport Type Business Service

Perform the following steps to create a File Transport Business Service:

1. Drag and drop the **File Transport** component from the Advanced pane to the External Services pane.

 The Create Business Service dialog is displayed.

2. In the Service Name field, enter any name you wish for the Business Service (for example, FileOut), and click **Next**, as shown in Figure 10–12.
The Type pane is displayed. The Any XML option is selected by default.

3. Click Next, as shown in Figure 10–13.

The Transport pane appears.

4. Provide the output location in the Endpoint URI field (for example, c:/output) and click Finish, as shown in Figure 10–14.
The File Transport Business service Fileout is created and displayed.

5. Double-click the created Business service Fileout and provide the values for the Prefix and Suffix fields in the Transport Details Tab, as shown in Figure 10–15.

10.1.2.3 Creating a Proxy Service With Pipeline

Perform the following steps to create a Proxy Service with Pipeline:

1. Drag and drop the File Transport component from the Advanced Components pane to the Proxy Services pane, as shown in Figure 10–16.
2. In the Service Name field, enter any name you wish for the Proxy service (for example, JCA_Outbound_PS). By default, Generate Pipeline is selected.

3. Click Next, as shown in Figure 10–17.

4. Select the Messaging option, set the Request to XML and Response as None, and then click Next, as shown in Figure 10–18.
5. Provide the input location in the Endpoint URI field (for example, c:/input) and click **Finish**, as shown in **Figure 10–19**.

Figure 10–19 Transport Window

The Proxy service along with the pipeline is created and displayed.

6. Double-click the created Proxy Service (for example: JCA_Outbound_PS), as shown in **Figure 10–20**.
7. In the displayed Proxy Service configuration page, select Transport Details and provide the values for Stage and Error Directory, as shown in Figure 10–21.

8. Save and close the Proxy Service configuration page.

10.1.2.4 Configuring the Routing Rules
Perform the following steps to configure the routing rules:

1. Connect the Pipeline to the Business Service (for example, Service) as shown in Figure 10–22.
2. Double-click on the pipeline (for example, JCA_Outbound_PSPipeline) in the Pipelines/Split Joins pane. The Pipeline configuration page is displayed.

3. Drag and drop the **Pipeline Pair** node from Nodes pane to the area below the Pipeline (for example: JCA_Outbound_PSPipeline), as shown in Figure 10–23.

Figure 10–23 Pipeline Pair Node

4. Drag and drop the **Publish** node from the Communication pane to the area beneath Stage1 of the Response Pipeline, as shown in Figure 10–24.
5. Click on the browse icon to the right of the Service field in the right pane of Publish Properties, as shown in Figure 10–25.

6. In the displayed Resource Chooser window, select the Fileout.bix File Transport Business service and click OK, as shown in Figure 10–26.
In the right pane, the selected service is configured in the Publish pane, as shown in Figure 10–27.

Figure 10–27 Publish Pane

7. Click on the Routing to verify the Service is selected properly, as shown in Figure 10–28.
8. Save and Close the Pipeline configuration page.

9. Double-click the overview.xml file (for example: JCA_Outbound), and click **Save All** in the menu bar to save the OSB process, as shown in Figure 10–29.

10.1.3 Deploying the OSB Outbound Process

Perform the following steps to deploy the OSB outbound process.

1. Right-click the OSB project, select **Deploy**, and then select **OSB_Project1_ServiceBusProjectProfile...**, as shown in Figure 10–30.
The Deployment Action page is displayed.

2. Click Next, as shown in Figure 10–31.

Figure 10–31 Deployment Action Page

The Select Server page is displayed.

3. Select an available application server that was configured and click Next, as shown in Figure 10–32.
Figure 10–32 Select Server Page

The Summary page is displayed, as shown in Figure 10–33.

Figure 10–33 Summary Page

4. Review and verify all the available deployment information for your project and click **Finish**.

The process is deployed successfully, as shown in Figure 10–34.
5. Copy and paste an input XML file in the input folder you have configured (for example, C:\input).

 The output is received in the configured output location (for example, C:\output).

10.2 Configuring an OSB Inbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure an OSB inbound process to your SAP R/3 system, using Oracle JDeveloper for J2CA configurations.

A sample project has been provided for this inbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\OSB_Jdeveloper\J2CA\SAP_Sample_J2CA_OSB_Inbound_Project

This section includes the following topics:

- Section 10.2.1, "Creating a Service Bus Application for OSB"
- Section 10.2.2, "Defining an OSB Inbound Process"
- Section 10.2.3, "Deploying the OSB Inbound Process"

Prerequisites

Before you design an OSB inbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.5.1, "Generating WSDL for Event Integration" on page 6-36.

10.2.1 Creating a Service Bus Application for OSB

To configure an OSB inbound process, you must create service bus application for OSB. For more information, see Section 10.1.1, "Creating a Service Bus Application for OSB" on page 10-2.

10.2.2 Defining an OSB Inbound Process

This section describes how to define an OSB inbound process. The following topics are included:

- Section 10.2.2.1, "Configuring a Third-Party Adapter Service Component"
- Section 10.2.2.2, "Creating a Pipeline"
- Section 10.2.2.3, "Configuring a File Transport Type Business Service"
10.2.2.1 Configuring a Third-Party Adapter Service Component
Perform the following steps to create a third party adapter service component:

1. Drag and drop the Third Party adapter component from the Service Bus Components Pane to the Proxy Services, as shown in Figure 10–35.

Figure 10–35 Third Party Adapter Service Component

The Create Third Party Adapter Service dialog is displayed.

2. Enter any name you wish for the Third Party Adapter Service (for example, CC_GetDetail).

3. Ensure that Service is selected from the Type drop-down list (by default).

4. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field, as shown in Figure 10–36.
5. Select the File system folder, then browse and select an inbound WSDL file from the WSDL directory.

6. Click **OK**.

 The Import Service Bus Resources dialog is displayed.

7. Click **Next**.
8. In the Configuration window, click Finish, as shown in Figure 10–38.

Figure 10–38 Configuration Window

You are returned to the Create Third Party Adapter Service dialog.

9. Click the Find JCA file icon, which is located to the right of the JCA File field, as shown in Figure 10–39.

Figure 10–39 Create Third Party Adapter Service Dialog

The Transformation Chooser dialog is displayed, as shown in Figure 10–40.
10. Select the JCA properties file from the WSDL directory.

11. Click OK.

 The Copy File message is displayed, as shown in Figure 10–41.

12. Click Yes.

 A copy of the JCA properties file is created in the project folder.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 10–42.
13. Click OK.

The third party adapter service component is created in the Proxy Services pane.

10.2.2.2 Creating a Pipeline

Perform the following steps to generate inbound proxy service with Pipeline:

1. Under Service Bus, click **Resources**.
2. Drag and drop the Pipeline to the Pipelines/Split Joins pane.
3. Provide a name for the Pipeline and click next, as shown in Figure 10–43.
4. In the Create Pipeline Service window, select the **WSDL** option and click on the WSDL URL.

5. Select **Application** in the WSDL chooser window, then select `service-concrete.wsdl` in the appropriate OSB project, and then click **OK**, as shown in Figure 10–44.

6. Clear the Expose as a Proxy Service check box and click **Finish**, as shown in Figure 10–45.
7. Drag and drop the Proxy Service to the Pipelines/Split Joins pane.

10.2.2.3 Configuring a File Transport Type Business Service

Perform the following steps to create the File Transport Type Business Service:

1. Drag and drop the File Transport component from the Advanced pane to the External Services pane, as shown in Figure 10–46.

The Create Business Service dialog is displayed.

2. In the Service Name field, enter any name you wish for the Business Service (for example, FileOut), and click Next.

In the displayed Type Window, the Any XML option is selected by default.
3. Click **Next**.

4. In the displayed Transport window, provide the output location in the Endpoint URI field (for example, `c:\output`), and click **Finish**, as shown in Figure 10–47.

![Figure 10–47 Transport Pane](image)

The FileOut Business service is created.

5. Double-click the FileOut Business service, as shown in Figure 10–48.

![Figure 10–48 FileOut Business Service](image)

The Configuration page is displayed.

6. Navigate to the Transport Details tab and provide the values for the Prefix and Suffix fields, as shown in Figure 10–49.
7. Save and close the Configuration page.

10.2.2.4 Configuring the Routing Rules

Perform the following steps to configure the routing rules.

1. Create a connection between the Pipeline (for example, JCA_IB_receive_PSPipeline) and the File Type Business Service (for example, FileOut), as shown in Figure 10–50.

Figure 10–50 Mapping Proxy and FileOut

2. Double-click the Pipeline (for example, JCA_IB_receive_PSPipeline).

3. Click the Routing pane and ensure that the File Type Business Service (for example, FileOut) is properly configured in the Service field, as shown in Figure 10–51.
4. Save and close the Pipeline configuration page.

5. Double-click on the overview.xml file (for example, JCA_Inbound) and click **Save All** in the menu bar to save the OSB process, as shown in Figure 10–52.

Figure 10–52 Save All

10.2.3 Deploying the OSB Inbound Process

To deploy the created OSB inbound process, see steps 1 - 4 in Section 10.1.3, "Deploying the OSB Outbound Process" on page 10-17.

Once the OSB inbound process is deployed successfully, trigger an event from the SAP R/3 system and check if the output is received in the configured output location (for example, C:\output).

10.3 Configuring an OSB Outbound Process Using JDeveloper (BSE Configuration)

This section describes how to configure an OSB outbound process to your SAP R/3 system, using Oracle JDeveloper for BSE configurations.
A sample project has been provided for this outbound use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>/etc/sample/SAP_Samples.zip\SAP_Samples\OSB_Jdeveloper\BSE\SAP_Sample_BSE_OSB_Outbound_Project

This section includes the following topics:

- Section 10.3.1, “Creating a Service Bus Application for OSB”
- Section 10.3.2, “Defining an OSB Outbound Process”
- Section 10.3.3, “Deploying the OSB Outbound Process”

Prerequisites

Before you design an OSB outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.7.1, "Generating a WSDL File for Request and Response Services Using a Web Service" on page 6-63.

10.3.1 Creating a Service Bus Application for OSB

To configure an OSB outbound process, you must create a service bus application for OSB. For more information, see Section 10.1.1, "Creating a Service Bus Application for OSB" on page 10-2.

10.3.2 Defining an OSB Outbound Process

This section describes how to define an OSB outbound process. The following topics are included:

- Section 10.3.2.1, "Configuring a WSDL-based Business Service"
- Section 10.3.2.2, "Creating a Proxy Service With Pipeline"
- Section 10.3.2.3, "Configuring a File Transport Type Business Service"
- Section 10.3.2.4, "Configuring the Routing Rules"

10.3.2.1 Configuring a WSDL-based Business Service

Perform the following steps to configure a WSDL-based Business Service:

1. Drag and drop the HTTP component from the Technology Components pane to the External Services area, as shown in Figure 10–53.

![HTTP Component](image)
The Create Business Service window is displayed.

2. In the Service Name field, enter any name you wish for the Business Service and click Next, as shown in Figure 10–54.

Figure 10–54 Create Business Service

3. In the displayed Service Type window, select the WSDL option and click the Select WSDL icon, as shown in Figure 10–55.

Figure 10–55 Type Pane
The Select WSDL window is displayed.

4. Select the File System folder icon, browse to the iBSE WSDL file and select it from the WSDL location, and then click OK, as shown in Figure 10–56.

Figure 10–56 Select WSDL Window

5. In the displayed Source pane, click Next, as shown in Figure 10–57.

Figure 10–57 Source Pane

6. In the displayed Configuration pane, click Finish, as shown in Figure 10–58.
You are returned to the Create Business Service window.

7. In the displayed Type pane, click Next, as shown in Figure 10–59.

8. In the displayed Transport window, you can modify the Endpoint URI field if the hostname and port number varies, and then click Finish, as shown in Figure 10–60.
Configuring an Outbound and Inbound Process for Oracle Service Bus Using JDeveloper

The Business Service is created and displayed in the External Services pane, as shown in Figure 10–61.

10.3.2.2 Creating a Proxy Service With Pipeline

Perform the following steps to create a Proxy Service with Pipeline:

1. Drag and drop the File Transport component from the Advanced Components pane to the Proxy Services pane, as shown in Figure 10–62.
The Create Proxy Service pane is displayed.

2. In the Service Name field, enter any name you wish for the Proxy service (for example, JCA_Outbound_PS). By default, **Generate Pipeline** is selected.

3. Click **Next**, as shown in Figure 10–63.

The Type pane is displayed.

4. Select the **Messaging** option, set the Request to XML and Response as **None**, and then click **Next**, as shown in Figure 10–64.
Figure 10–64 Type Pane

The Transport window is displayed.

5. Provide the input location in the Endpoint URI field (for example, c:/input) and click Finish, as shown in Figure 10–65.

Figure 10–65 Transport Window

The Proxy service along with the pipeline is created and displayed.

6. Double-click the created Proxy Service (for example: iBSE_Outbound_PS), as shown in Figure 10–66.
7. In the displayed Proxy Service configuration page, select **Transport Details** and provide the values for Stage and Error Directory, as shown in Figure 10–67.

8. Save and close the Proxy Service configuration page.

9. Double-click the overview.xml file (for example, iBSE_Outbound).
 The Proxy service is updated and displayed, as shown in Figure 10–68.
10.3.2.3 Configuring a File Transport Type Business Service

Perform the following steps to create a File Transport Type Business Service:

1. Drag and drop the File Transport component from the Advanced pane to the External Services pane, as shown in Figure 10–69.

The Create Business Service dialog is displayed.

2. In the Service Name field, enter any name you wish for the Business Service (for example, FileOut), and click Next, as shown in Figure 10–70.
3. Click Next.

The Transport pane appears.

4. Provide the output location in the Endpoint URI field (for example, c:/output) and click Finish, as shown in Figure 10–71.

The File Transport Business service Fileout is created and displayed, as shown in Figure 10–72.
5. Double-click the created Business service **Fileout** and provide the values for the Prefix and Suffix fields in the Transport Details Tab, as shown in Figure 10–73.

![Figure 10–73 Transport Details](image)

6. Save and close the configuration page, and double-click on overview.xml (for example, iBSE_Outbound).

10.3.2.4 Configuring the Routing Rules

Perform the following steps to configure the routing rules:

1. Create a connection between the Pipeline Component (for example, iBSE_Outbound_PSPipeline) and the WSDL based Business Service (for example, iBSE_Outbound_BS), as shown in Figure 10–74.
Figure 10–74 Pipeline Component

2. Double-click on the Pipeline component (for example, iBSE_Outbound_PSPipeline) in the Pipelines/Split Joins pane.

3. Drag and drop the Pipeline Pair node from Nodes pane to the area between the Pipeline (for example: iBSE_Outbound_PSPipeline) and RouteNode1, as shown in Figure 10–75.

Figure 10–75 Pipeline Pair Node

4. Drag and drop the Publish node from the Communication pane to the area beneath Stage1 of the Response Pipeline, as shown in Figure 10–76.

Figure 10–76 Publish Node

5. Click on the browse icon to the right of the Service field in the right pane of Publish Properties, as shown in Figure 10–77.
6. In the displayed Resource Chooser window, select the `Fileout.bix` File Transport Business service and click **OK**, as shown in **Figure 10–78**.

You are returned to the Pipeline configuration page.

In the right pane, the selected service is configured in the Publish pane, as shown in **Figure 10–79**.
7. Save and close the Pipeline configuration page.
8. Double-click the overview.xml file (for example: iBSE_Outbound), and click **Save All** in the menu bar to save the OSB process, as shown in Figure 10–80.

10.3.3 Deploying the OSB Outbound Process

To deploy the created OSB outbound process and invoke the input XML document, see Section 10.1.3, "Deploying the OSB Outbound Process".

10.4 Working With Synchronous SAP R/3 Events of Oracle Service Bus Using JDeveloper (J2CA Configuration)

This section describes how to work with synchronous SAP R/3 events of Oracle service Bus using Oracle JDeveloper for J2CA configurations.
A sample project has been provided for this use case scenario in the following folder of the Application Adapters installation:

<ADAPTER_HOME>\etc\sample\SAP_Samples.zip\SAP_Samples\OSB_Jdeveloper\J2CA\SAP_Sample_J2CA_OSBOSB_Synchronous_Events

This section includes the following topics:

- Section 10.4.1, "Creating a Service Bus Application for OSB"
- Section 10.4.2, "Defining an OSB Process"
- Section 10.4.3, "Deploying an OSB Process"

Prerequisites

Before you design an OSB process, you must generate the respective WSDL files using Application Explorer.

Perform the following steps to generate a WSDL file for a message:

1. Create the first SAP adapter target (for example, target1) and channel. Ensure that the channel is not started before generating the WSDL file.
2. Connect to the first SAP adapter target (for example, target1).
3. Generate an inbound WSDL file for BAPI_COMPANYCODE_GETLIST by clicking Remote Function Modules, selecting Financial Accounting, and then clicking the 0002 - Company Code business object.
4. Connect to the second SAP adapter target (for example, target2).
5. Generate an outbound WSDL file for BAPI_COMPANYCODE_GETLIST by clicking Remote Function Modules, selecting Financial Accounting, and then clicking on the 0002 - Company Code business object.

For more information on creating a target, channel, and WSDL files, see Chapter 4, "Configuring Oracle Application Adapter for SAP R/3".

10.4.1 Creating a Service Bus Application for OSB

For more information on creating a Service bus application for OSB, see Section 10.1.1, "Creating a Service Bus Application for OSB" on page 10-2.

10.4.2 Defining an OSB Process

This section describes how to define an OSB process. The following topics are included:

- Section 10.4.2.1, "Configuring a Third Party Adapter Service Component for Outbound and Inbound WSDLs"
- Section 10.4.2.2, "Creating a Pipeline"
- Section 10.4.2.3, "Configuring the Routing Rules"

10.4.2.1 Configuring a Third Party Adapter Service Component for Outbound and Inbound WSDLs

Perform the following steps to create a third party adapter service component for Outbound and Inbound WSDLs:

1. Drag and drop the Third Party Adapter component from the Service Bus Components pane to the External Services pane.
The Create Third Party Adapter Service dialog is displayed.

2. Enter an appropriate name for the Business Service.

3. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.
 The WSDL Chooser dialog is displayed.

4. Select the **File System** tab, then browse, and select the **outbound WSDL** file from the WSDL directory.

5. Click **OK**.
 The Import Service Bus Resources dialog is displayed.

6. Click **Next**.

7. In the Configuration pane, click **Finish**.
 You are returned to the Create Third Party Adapter Service Dialog.

8. Click the Find JCA file icon which is located to the right of the JCA File field.
 The Transformation Chooser dialog is displayed.

9. Select the outbound JCA properties file from the WSDL directory.

10. Click **OK**.
 The Copy File dialog window is displayed.

11. Click **Yes**.
 A copy of the JCA properties file is made in the project folder.
 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 10–81.

Figure 10–81 Create Third Party Adapter Service Dialog

12. Click **OK**.
The Business Service will be created in the External Services.

13. Drag and drop the **Third Party Adapter** component from the Service Bus Components pane to the Proxy Services pane.

The Create Third Party Adapter Service dialog is displayed.

14. Enter an appropriate name for the Proxy Service.

15. Click the Find existing WSDLs icon, which is located to the right of the WSDL URL field.

 The WSDL Chooser dialog is displayed.

16. Under the **File System** tab, select the **inbound WSDL** file from the WSDL directory.

17. Click **OK**.

 The Import Service Bus Resources dialog is displayed.

18. Click **Next**.

19. In the Configuration pane, click **Finish**.

 You are returned to the Create Third Party Adapter Service Dialog.

20. Click the Find JCA file icon, which is located to the right of the JCA File field.

 The Transformation Chooser dialog is displayed.

21. Select the inbound JCA properties file from the WSDL directory.

22. Click **OK**.

 The Copy File dialog window is displayed.

23. Click **Yes**.

 A copy of the JCA properties file is made in the project folder.

 You are returned to the Create Third Party Adapter Service dialog, as shown in Figure 10–82.
24. Click **OK**.

Proxy Service will be created in the Proxy Services pane.

Note: A red mark will be shown in the created Proxy service which will be removed after mapping with the configured Pipeline.

10.4.2.2 Creating a Pipeline

Perform the following steps to create a Pipeline:

1. Drag and drop the Pipeline component from the Resources pane to the Pipelines/Split Joins pane.

 The Create Pipeline Service window is displayed.

2. Enter any name for the Pipeline and click **Next**.

3. Select the **WSDL** button and click on the Browse WSDLs icon near the field.

 The Select WSDL window is displayed.

4. Select the Application tab.

5. Click the appropriate project folder and select the inbound concrete WSDL (for example, ProxyService_Name-concrete.wsdl) and then click **OK**.

 You are returned to the Create Pipeline Service window.

6. Clear the check box for **Expose as a Proxy Service**.

7. Click **Finish**.

 The Proxy service is created.

8. Connect the Proxy Service and Pipeline, and then save the changes.

10.4.2.3 Configuring the Routing Rules

Perform the following steps to configure the routing rules:
1. Connect the Pipeline and the Business Service.
2. Double-click on the pipeline in the Pipelines/Split Joins pane. The Pipeline configuration page is displayed.
3. Drag and drop the Log node from the Reporting components pane to the area beneath Request Action.
4. In the Log - Properties pane, click the icon near <expression> in the Content field.
5. In the XQuery Expression Builder page, type $body in the text area below the Expression field and click Ok.
6. Enter any text message you wish in the Summary field (optional) and select Error from the Severity level drop-down list under the Log area, as shown in Figure 10–83.

![Figure 10–83 Severity Level Drop-down List](image)

7. Drag and drop the Log node from the Reporting components pane to the area beneath Response Action.
8. In the Log - Properties pane, click the icon near <expression> in the Content field.
9. In the XQuery Expression Builder page, type $body in the text area below the Expression field and click Ok.
10. Enter any text message you wish in the Summary field (optional) and select Error from the Severity level drop-down list under the Log area, as shown in Figure 10–84.

![Figure 10–84 Severity Level Drop-down List](image)

11. Save and Close the Pipeline configuration page, as shown in Figure 10–85.
You are now ready to deploy the OSB process.

10.4.3 Deploying an OSB Process

For more information on deploying an OSB process, see Section 10.1.3, "Deploying the OSB Outbound Process" on page 10-17.

10.5 Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure a JMS inbound process to your SAP R/3 system, using Oracle JDeveloper for J2CA configurations.

1. Before you design a JMS process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.5.1, "Generating WSDL for Event Integration" on page 6-36.

2. Start the Oracle JDeveloper and create a Service Bus Application for OSB. For more information, see Section 10.1.1, "Creating a Service Bus Application for OSB" on page 10-2.

3. Create a Third Party Adapter Service Component. For more information, see Section 7.3.2.1, "Configuring a Third Party Adapter Service Component" on page 7-13.

4. Create a Proxy Service along with the pipeline from the JCA Binding File. For more information, see Section 10.2.2.2, "Creating a Pipeline" on page 10-25.

5. Create a JMS Transport Business Service and perform the following steps:

 a. Drag and drop the JMS Transport component from the Technology Components pane to the External Services pane, as shown in Figure 10–86.
The Create Business Service dialog is displayed.

b. In the Service Name field, enter any name you wish for the Business service (for example, JMS_BS) and click **Next**, as shown in **Figure 10–87**.

c. In the displayed Type window, select **Any XML** and then click **Next**.

The Transport window is displayed.

d. Modify the appropriate hostname and port number by replacing `DestJndiName` with `QueueIn` in the Endpoint URI field (for example, `jms://localhost:7003/weblogic.jms.XAConnectionFactory/QueueIn`), and then click **Finish**, as shown in **Figure 10–88**.
The JMS Business service is created and displayed.

e. Double-click JMS_BS as shown in Figure 10–89.

Figure 10–89 JMS Business Service

f. In the displayed Business Service configuration page, provide the following parameters in the Transport Details tab, as shown in Figure 10–90.
g. In the Destination Type section, select Queue.

h. In the Message Type section, select Text.

6. Save and close the Configuration page of the business service.

7. Create a connection between Pipeline (for example, xxxx_PSPipeline) and JMS Business Service (for example, JMS_BS) as shown in figure Figure 10–91.

8. Double-click Pipeline.

The Pipeline Configuration page is displayed as shown in Figure 10–92.
9. Check that the details are configured properly, and then save and close the Pipeline configuration page.
 You are returned to the composite editor window.

10. Click Save All in the menu bar to save the OSB JMS process, as shown in Figure 10–93.

11. Deploy the OSB JMS inbound process. For more information, see Section 10.2.3, "Deploying the OSB Inbound Process" on page 10-30.

12. Once the process is deployed successfully, trigger the event messages. For more information, see Section 6.5.5, "Triggering an Event in SAP R/3" on page 6-53.

13. Log on to the Oracle WLS console.

14. In the Oracle WLS console, expand Services, click Messaging, select JMS Modules, and then click jmsResources.

15. Click the appropriate response link (for example, QueueIn) as shown in Figure 10–94.
Configuring a JMS Inbound Process Using JDeveloper (J2CA Configuration)

Figure 10–94 QueueIn Response Link

16. Click the Monitoring tab, as shown in Figure 10–95.

Figure 10–95 Monitoring Tab

17. Select the check box and click the Show Messages button, as shown in Figure 10–96.

Figure 10–96 Show Messages Button

18. Click the ID link with the appropriate time and date, as shown in Figure 10–97.
10.6 Configuring a JMS Outbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure a JMS outbound process to your SAP R/3 system, using Oracle JDeveloper for J2CA configurations.
1. Before you design a JMS process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.4.1, "Generating WSDL for Request/Response Service" on page 6-8.

2. Start the Oracle JDeveloper and create a Service Bus Application for OSB. For more information, see Section 10.1.1, "Creating a Service Bus Application for OSB" on page 10-2.

3. Create a Third Party Adapter Service Component. For more information, see Section 7.3.2.1, "Configuring a Third Party Adapter Service Component" on page 7-13.

4. Create a WSDL-based Business Service from the JCA Binding File. For more information, see Section 10.1.2.2, "Configuring a File Transport Type Business Service" on page 10-8.

5. Create a JMS Proxy Service with a Pipeline and perform the following steps:
 a. Drag and drop the JMS Transport component from the Technology Components pane to the Proxy Services pane, as shown in Figure 10–99.

 ![JMS Transport Component](image)

 The Create Business Service dialog is displayed.

 b. In the Service Name field, enter any name you wish for the Proxy service (for example, JMS_Proxy). By default, Generate Pipeline is selected.

 c. Click Next, as shown in Figure 10–100.
d. In the displayed Type window, select **Any XML** and then click **Next**.

The Transport window is displayed.

e. Modify the appropriate hostname and port number by replacing the Endpoint URI field (for example, `jms://localhost:7003/weblogic.jms.XAConnectionFactory/JMS_ProxyRequest`), and then click **Finish**, as shown in Figure 10–101.
The JMS Proxy service along with the pipeline is created and displayed.

f. Double-click the created Proxy Service (for example, JMS_Proxy), as shown in Figure 10–102.

Figure 10–102 JMS Proxy Service

![JMS Proxy Service](image)

Figure 10–103 JMS Transport Configuration

![JMS Transport Configuration](image)

In the displayed configuration page of the Proxy Service, provide the following parameters in the Transport Details tab, as shown in Figure 10–103.

h. In the Destination Type section, select **Queue**.

i. Select the **Is Response Required** check box.

j. In the Response Message Type section, select **Text**.

k. In the Response URI field, provide the Endpoint URI used in the JMS Transport Configuration and change Request to Response. For example,
jms://localhost:7003/weblogic.jms.XAConnectionFactory/JMS_ProxyResponse

6. Save and close the Configuration page of the Proxy service.

7. Configure the Routing Rules and proceed with the following steps:
 a. Double-click on the pipeline (for example, JMS_ProxyPipeline) in the Pipelines/Split Joins pane.
 The Pipeline configuration page is displayed.
 b. Drag and drop the Routing component from the Route section to the area below the Pipeline (for example, JMS_ProxyPipeline), as shown in Figure 10–104.

![Figure 10–104 Routing Component](image)

 c. In the Pipeline Configuration page, select Routing and click the browse icon to the right of the Service field in the Routing Properties pane, as shown in Figure 10–105.

![Figure 10–105 Browse Service](image)
d. In the displayed Resource Chooser window, select the WSDL-based Business service (for example, xxxxx_BS.bix) and click OK.
You are returned to the Pipeline configuration page.

e. Save and Close the Pipeline configuration page.
You are returned to the composite editor window.

f. Click Save All in the menu bar to save the OSB JMS process, as shown in Figure 10–106.

8. Deploy the OSB JMS outbound process. For more information, see Section 10.1.3, “Deploying the OSB Outbound Process” on page 10-17.

9. Once the process is deployed successfully, log on to the Oracle WLS Console.

10. In the Oracle WLS console, expand Services, click Messaging, select JMS Modules, and then click jmsResources, as shown in Figure 10–107.

11. Click the appropriate request link (for example, JMS_ProxyRequest) as shown in Figure 10–108.
12. Click the Monitoring tab, as shown in Figure 10–109.

![Figure 10–109 Monitoring Tab](image)

13. Select the check box and click the **Show Messages** button, as shown in Figure 10–110.

![Figure 10–110 Show Messages Button](image)
14. Click **New**, as shown in **Figure 10–111**.

Figure 10–111 JMS Messages

15. Provide the input payload in the Body field and click **OK**, as shown in **Figure 10–112**.

Figure 10–112 Input Payload

16. In the Oracle WLS console, expand **Services**, click **Messaging**, select **JMS Modules**, and then click **jmsResources**.

17. Click the appropriate response link (for example, JMS_ProxyResponse).

18. Click the Monitoring tab.

19. Select the check box and click **Show Messages**, as shown in **Figure 10–113**.
20. Click the ID link with the appropriate time and date, as shown in Figure 10-114.

The response document is shown under the Text field, as shown in Figure 10-115.
10.7 Configuring an HTTP Outbound Process Using JDeveloper (J2CA Configuration)

This section describes how to configure HTTP Outbound process to your SAP R/3 system, using Oracle JDeveloper for J2CA configurations.

1. Before you design an HTTP Outbound process, you must generate the respective WSDL file using Application Explorer. For more information, see Section 6.4.1, "Generating WSDL for Request/Response Service" on page 6-8.

2. Start the Oracle JDeveloper and create a Service Bus Application for OSB. For more information, see Section 10.1.1, "Creating a Service Bus Application for OSB" on page 10-2.

3. Create a Third Party Adapter Service Component. For more information, see Section 7.3.2.1, "Configuring a Third Party Adapter Service Component" on page 7-13.

4. Create an HTTP Proxy Service with a Pipeline and perform the following steps:
 a. Drag and drop the HTTP component from the Technology Components pane to the Proxy Services pane, as shown in Figure 10–116.
The Create Proxy Service dialog is displayed.

b. In the Service Name field, enter any name you wish for the Proxy service (for example, HTTP_Proxy). By default, Generate Pipeline is selected.

c. Click **Next**, as shown in Figure 10–117.

![Figure 10–117 Create Proxy Service Pane](image)

d. In the displayed Type window, select **Any XML** and then click **Next**.

 The Transport window is displayed.

e. Leave the default values and then click **Finish**, as shown in Figure 10–118.
The HTTP Proxy service along with the pipeline is created and displayed.

f. Double-click the created pipeline (for example, HTTP_ProxyPipeline) in the Pipelines/Split Joins pane, as shown in Figure 10–119.

The Pipeline Configuration page is displayed.

5. Configure the Routing Rules and proceed with the following steps:

a. Drag and drop the Routing component from the Route section to the area below the Pipeline (for example, HTTP_ProxyPipeline), as shown in Figure 10–120.
b. In the Pipeline Configuration page, select **Routing** and click the browse icon to the right of the Service field in the Routing Properties pane, as shown in Figure 10–121.

Figure 10–121 Browse Service

- In the displayed Resource Chooser window, select the WSDL-based Business service (for example, xxxxx_BS.bix) and click **OK**.

 You are returned to the Pipeline configuration page.

- Save and Close the Pipeline configuration page.

 You are returned to the composite editor window.

- Click **Save All** in the menu bar to save the OSB HTTP process, as shown in Figure 10–122.
6. Deploy the OSB HTTP outbound process. For more information, see Section 10.1.3, "Deploying the OSB Outbound Process" on page 10-17.

7. Once the process is deployed successfully, log on to the Service Bus Console.

8. In the Service Bus console, click on the deployed HTTP Outbound project (for example, HTTP_Outbound), as shown in Figure 10–123.

9. Click on the Test OSB Console icon for the created pipeline, as shown in Figure 10–124.
10. In the displayed Test OSB Console page, provide the input XML and click the **Execute** button, as shown as shown in Figure 10–125.

In the displayed Test OSB Console page, the response is received, as shown in Figure 10–126.
Figure 10–126 Response Document

```xml
<CompanyCode GetDetailResponse xmlns="urn:com.oracle.automation:soap:business.response">
  <COMPANY_CODE_ADDRESS>
    <COMPANY_CODE_NO>00000000</COMPANY_CODE_NO>
    <COMPANY_NAME>http://www.Oracle.com</COMPANY_NAME>
  </COMPANY_CODE_ADDRESS>
  <NAME>100 A1 <NAME>
  <NAME_2>Martin Strey, Kathrin Walthier</NAME_2>
  <NAME_3>Benno Dachy, Dorothea Buchmann</NAME_3>
  <NAME_4>DES Info</NAME_4>
  <C_D_MVNAME/>
  <CITY>NAME</CITY>
  <DISTRICT/>
  <D_MVNAME/>
  <POSTL_CODE1>60441</POSTL_CODE1>
  <POSTL_CODE2>60441</POSTL_CODE2>
  <PO_BOX>10029</PO_BOX>
  <PO_POST_CITY/>
  <DELV_DTN/>
  <STREET_NAME>Streer Stref 231</STREET_NAME>
  <STREET_NO/>
  <STREET_SURFULL/>
  <STREET_SURFULL/>
  <LOCATION/>
  <BUILDING/>
  <FLOOR/>
</CompanyCode GetDetailResponse>
```
11 Key Features

This chapter describes key features for the Oracle Application Adapter for SAP R/3. This chapter contains the following sections:

- Section 11.1, "Exception Filter"
- Section 11.2, "Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)"
- Section 11.3, "Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper"
- Section 11.4, "Filtering Unicode Characters From Text"

11.1 Exception Filter

This section describes how to configure exception filter functionality for the Oracle Application Adapter for SAP R/3 and includes a sample testing scenario. This section contains the following topic:

- Section 11.1.1, "Configuring the Exception Filter"

The exception filter is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.

The exception filter uses the `com.ibi.afjca.oracle.SAPExceptionFilter` class to filter the generated exceptions. This class filters the exceptions and categorizes them into the following categories:

- PCRetriableResourceException
- PCResourceException

The following exceptions are represented in the fault policies file:

- PCRetriableResourceException - A remote fault.
- PCResourceException - A binding fault.

Note: The `com.ibi.afjca.oracle.AdapterExceptionFilter` class can also be used to filter the generated exceptions.

11.1.1 Configuring the Exception Filter

This section contains the following topics:

- Section 11.1.1.1, "Generating a WSDL File"
Section 11.1.1.2, "Creating a BPEL Outbound Process With Exception Filter Functionality"

Section 11.1.1.3, "Creating Fault Policies and Fault Binding Files"

Section 11.1.1.4, "Adjusting for Known Deployment Issues With 12c"

Section 11.1.1.5, "Deploying and Testing the BPEL Outbound Process With Exception Filter Functionality"

Exception filter configuration consists of the following steps:

1. Generate a WSDL file.
 For more information, see "Generating a WSDL File" on page 11-2.

2. Create a BPEL outbound process with exception filter functionality.
 For more information, see "Creating a BPEL Outbound Process With Exception Filter Functionality" on page 11-2.

3. Create fault policies and fault binding files.
 For more information, see "Creating Fault Policies and Fault Binding Files" on page 11-3.

4. Deploy and test the BPEL outbound process with exception filter functionality.
 For more information, see "Deploying and Testing the BPEL Outbound Process With Exception Filter Functionality" on page 11-13.

11.1.1.1 Generating a WSDL File
To generate a WSDL file:

1. Open Application Explorer and create a J2CA configuration.
 For more information, see "Creating a Configuration for J2CA" on page 4-3.

2. Create a target for the SAP R/3 adapter and then connect to the target.
 For more information, see "Establishing a Connection (Target) for SAP R/3" on page 4-5.

3. Generate a WSDL for the appropriate object (for example, the GetDetail BAPI for the CompanyCode business object).
 For more information, see "Generating WSDL (J2CA Configurations Only)" on page 4-16.

11.1.1.2 Creating a BPEL Outbound Process With Exception Filter Functionality
To create a BPEL outbound process with exception filter functionality:

1. Open JDeveloper and create a new SOA application.
 For more information, see "Creating an Empty Composite for SOA" on page 6-9.

2. Create a new SOA project (for example, Exception_Filter).

3. Create a third party adapter service component.
 For more information, see "Configuring a Third Party Adapter Service Component" on page 6-12.

 Once the third party adapter service component is created, the WSDL file (with corresponding schemas and JCA file) is imported to the JDeveloper project.
 For more information, see "Defining a BPEL Outbound Process" on page 6-12.
4. Modify the imported JCA file.
 a. Right-click the imported JCA file and select **Open** from the menu, as shown in Figure 11–1.

 Figure 11–1 Application Navigator Tab

 ![Application Navigator Tab]

 b. In the `<interaction-spec>` element, add the `ExceptionFilter` property. For example:

   ```xml
   <interaction-spec className="com.ibi.afjca.cci.IWAFInteractionSpec">
   <property name="FunctionName" value="PROCESS"/>
   <property name="ExceptionFilter" value="com.ibi.afjca.oracle.SAPExceptionFilter"/>
   </interaction-spec>
   
   c. Save the modified JCA file.

5. Once the third party adapter service component is created and the JCA file is modified, continue with the remainder of the BPEL process creation.

   For more information, see "Defining a BPEL Outbound Process" on page 6-12.

11.1.1.3 Creating Fault Policies and Fault Binding Files
To create fault binding files:

1. Right-click the created SOA project (for example, Exception_Filter), select **New**, and then click **From Gallery**, as shown in Figure 11–2.
The New Gallery dialog is displayed. Under the General category, click **XML**, as shown in **Figure 11–3**.
2. Select **XML Document** under Items and then click **OK**.
   
The Create XML File dialog is displayed, as shown in Figure 11–4.

**Figure 11–4  Create XML File Dialog**

3. In the File Name field, type **fault-bindings.xml** and click **OK**.
4. Add the appropriate fault binding functions in the **fault-bindings.xml** file.
   
   To view a sample **fault-bindings.xml** file, see "Sample Fault-Bindings.xml File" on page 11-6.

---

**Note:** The parameter in the `<name>` element is the name of the created BPEL process.
5. Save the `fault-bindings.xml` file.

**Sample Fault-Bindings.xml File**

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <component faultPolicy="bpelFaultHandling">
 <name>BPELProcess1</name>
 </component>
</faultPolicyBindings>
```

**Creating Fault Policies Files**

To create fault policies files:

1. Right-click the created SOA project (for example, Exception_Filter), select New, and then click From Gallery, as shown in Figure 11–5.

*Figure 11–5 Applications Tab*

The New Gallery dialog is displayed. Under the SOA Tier category, select *Faults*, as shown in Figure 11–6.
2. Select **Fault Policy Document** under Items and then click **OK**.

3. In the fault-policies.xml tab, select **bpelx:bindingFault** from the Fault Name drop-down list and **[retry] default-retry** from the Default Action drop-down list, as shown in Figure 11–7.

4. Click the **Actions** tab and then double-click **default-retry**.
The Retry Properties dialog box is displayed, as shown in Figure 11–8.

**Figure 11–8  Retry Properties Dialog Box**


6. Click **OK**.

7. Click **Add** to create another fault handler, as shown in Figure 11–9.

**Figure 11–9  Fault-policies.xml Tab**
8. In the fault-policies.xml tab, select `bpelx:remoteFault` from the Fault Name drop-down list and `[abort] default-termination` from the Default Action drop-down list.

9. In the Actions tab, click Add and then select retry, as shown in Figure 11–10.

Figure 11–10  Actions Tab

The Retry Properties dialog is displayed, as shown in Figure 11–11.

Figure 11–11  Retry Properties Dialog Box

10. Provide values for the ID, Retry Count, and Retry Interval fields.


12. Click OK.
The created Retry ID will be listed under the Actions tab. From the Default Action drop-down list, select the newly created Retry ID (for example, remote_retry) as shown in Figure 11–12.

Figure 11–12 Fault-policies.xml Tab

13. Click Save All.

14. Click the **Source** tab to verify that the fault polices are added properly, as shown in Figure 11–13.
15. Double-click the **Exception_Filter** project and then click **Edit Composite Fault Policies**.

   The Composite Fault Policies window is displayed. Ensure that the Fault Policy and the fault-bindings are selected properly, as shown in **Figure 11–14**.
16. Click Save All.

17. Click the Source tab to verify that the fault-bindings.xml and fault-policies.xml files are added properly, as shown in Figure 11–15.
11.1.1.4 Adjusting for Known Deployment Issues With 12c
For more information on how to adjust for known deployment issues with 12c, see Section 6.4.3.3, "Adjusting for Known Deployment Issues With 12c" on page 6-28.

11.1.1.5 Deploying and Testing the BPEL Outbound Process With Exception Filter Functionality
To deploy and test the BPEL outbound process with exception filter functionality:

1. Deploy the created BPEL outbound process.
   For more information, see "Deploying the BPEL Outbound Process" on page 6-29.

2. Simulate a communication error by disconnecting the system (where the servers are running) from the network.

3. Invoke the deployed BPEL outbound process with a valid input.
   For more information, see "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 6-33.

4. Select the process ID.
   You can observe the BPEL outbound process being retried or aborted based on the configuration of the fault-policies.xml file.

11.2 Credential Mapping for Oracle SOA Suite (BPEL, Mediator, or BPM)
This section describes how to configure credential mapping functionality for the Oracle Application Adapter for SAP R/3 in a configuration that uses Oracle SOA Suite (BPEL, Mediator, or BPM). A sample testing scenario is also included. This section contains the following topic:

| Section 11.2.1, “Configuring Credential Mapping” |

Credential mapping is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.
Note: The J2CA connector is common to all four application adapters (SAP R/3, PeopleSoft, Siebel, and J.D. Edwards OneWorld). If credential mapping is required, then ensure that only one application adapter is used in a particular instance. For example, in one adapter instance only the SAP R/3 application adapter can be used. Credential mapping cannot be configured at the individual adapter level. If you require the use of credential mapping for two adapters, then both adapters must be running in two independent adapter instances.

To pass user credentials to the J2CA resource adapter, create a credential map from the Oracle WebLogic Server user credentials to the EIS user credentials (SAP R/3 adapter). These credentials are mapped to the EIS user credentials and then passed to the J2CA container, which uses them to connect with the EIS adapter (SAP R/3).

11.2.1 Configuring Credential Mapping

This section discusses configuring credential mapping, and consists of the following steps and topics:

1. Deploy the adapter.
   For more information, see Chapter 5, "Oracle WebLogic Server Deployment and Integration".

2. Associate Oracle WebLogic Server credentials with EIS credentials.
   For more information, see Section 11.2.1.1, "Associating Oracle WebLogic Server Credentials With EIS Credentials" on page 11-14.

   For more information, see Section 11.2.1.2, "Generating a WSDL File" on page 11-17.

4. Create and deploy an outbound process.
   For more information, see Section 11.2.1.3, "Creating and Deploying an Outbound Process" on page 11-17.

5. Invoke and verify that the EIS credentials have passed.
   For more information, see Section 11.2.1.4, "Verifying the EIS Credentials" on page 11-18.

11.2.1.1 Associating Oracle WebLogic Server Credentials With EIS Credentials

To associate Oracle WebLogic Server credentials with EIS credentials:

1. Log in to the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section in the left pane, click Deployments.
   The Deployments page is displayed, as shown in Figure 11–16.
3. Click the iwafjca resource adapter.
   The Settings for iwafjca page is displayed, as shown in Figure 11–17.

4. Click the **Outbound Credential Mappings** tab under the Security tab, and then click **New**.
   The Create a New Security Credential Mapping page is displayed, as shown in Figure 11–18.
Figure 11–18  Create a New Security Credential Mapping Page

5. Select the outbound connection pool.
   For example:
   eis/OracleJCAAdapter/DefaultConnection

6. Click Next.
   The WebLogic Server User page is displayed, as shown in Figure 11–19.

Figure 11–19  WebLogic Server User Page

7. Select Default User, enter a valid Oracle WebLogic Server user name, and then click Next.
   The EIS User Name and Password page is displayed, as shown in Figure 11–20.
8. Enter the user name and password for the EIS and click Finish.

The credentials for an Oracle WebLogic Server user are now mapped with an EIS user (SAP R/3). The mapping is invoked automatically before invoking the J2CA service.

11.2.1.2 Generating a WSDL File
To generate a WSDL file:
1. Open Application Explorer and create a J2CA configuration.
   For more information, see Section 4.3.2, "Creating a Configuration for J2CA" on page 4-3.
2. Create a target for the SAP R/3 adapter and then connect to the target.
   For more information, see Section 4.4, "Establishing a Connection (Target) for SAP R/3" on page 4-5.
3. Generate an outbound WSDL for the appropriate object.
   For more information, see Section 4.7, "Generating WSDL (J2CA Configurations Only)" on page 4-16.

11.2.1.3 Creating and Deploying an Outbound Process
This section describes how to configure an outbound process. For demonstration purposes, specific references to the BPEL outbound process are made. However, the same steps apply to Mediator and BPM outbound processes.

For more information about creating a Mediator outbound process, see Chapter 7, "Integration With Mediator Service Components in the Oracle SOA Suite".

For more information about creating a BPM outbound process, see Chapter 8, "Integration With BPM Service Components in the Oracle SOA Suite".

To create and deploy a BPEL outbound process, see the following sections:
- Section 6.4.2, "Creating an Empty Composite for SOA"
Section 6.4.3, "Defining a BPEL Outbound Process"

Section 6.4.4, "Deploying the BPEL Outbound Process"

11.2.1.4 Verifying the EIS Credentials

Invoke the input XML and ensure that the EIS target credentials are overridden with the credentials configured in the WebLogic Administration Console for the Default User as described in this section.

1. Invoke the deployed BPEL outbound process with a valid input.

   For more information, see "Invoking the Input XML Document in the Oracle Enterprise Manager Console" on page 6-33.

2. Check the J2CA log files and locate the encrypted password, which shows that the user credentials have been passed to the EIS through Oracle WebLogic Server.

   For example:

   FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util getPasswordCredential(78) InLoop:
   User-iwayqa:Password-ENCR(3109311731831131382333215315332323192322731773172)
   FINEST IWAFManagedConnectionFactory com.ibi.afjca.Util getPasswordCredential(90) Use the system PasswordCredential:
   User-iwayqa:Password-ENCR(3109311731831131382333215315332323192322731773172)

11.3 Credential Mapping for Oracle Service Bus (OSB) Using JDeveloper

This section describes how to configure credential mapping functionality for the Oracle Application Adapter for SAP R/3 in a configuration that uses Oracle Service Bus (OSB). A sample testing scenario is also included. This section contains the following topic:

- Section 11.3.1, "Configuring Credential Mapping"

Credential mapping is supported only for outbound processes that use J2CA configurations. This feature is not supported for BSE configurations and inbound processes that use J2CA configurations.

Note: The J2CA connector is common to all four application adapters (SAP R/3, PeopleSoft, Siebel, and J.D. Edwards OneWorld). If credential mapping is required, then ensure that only one application adapter is used in a particular instance. For example, in one adapter instance only the SAP R/3 application adapter can be used. Credential mapping cannot be configured at the individual adapter level. If you require the use of credential mapping for two adapters, then both adapters must be running in two independent adapter instances.

To pass user credentials to the J2CA resource adapter, create a credential map from the Oracle WebLogic Server user credentials to the EIS user credentials (SAP R/3 adapter). Then associate a credential policy with a Web service and invoke the Web service using Oracle WebLogic Server user credentials. These credentials are mapped to the EIS user credentials and then passed to the J2CA container, which uses them to connect with the EIS adapter (SAP R/3).
11.3.1 Configuring Credential Mapping

This section discusses configuring credential mapping, and consists of the following steps and topics:

1. Deploy the adapter.
   For more information, see Chapter 5, "Oracle WebLogic Server Deployment and Integration".

2. Associate Oracle WebLogic Server credentials with EIS credentials.
   For more information, see Section 11.3.1.1, "Associating Oracle WebLogic Server Credentials With EIS Credentials".

   For more information, see Section 11.3.1.2, "Generating a WSDL File".

4. Create an Oracle Service Bus (OSB) outbound process.
   For more information, see Section 11.3.1.3, "Creating an Oracle Service Bus (OSB) Outbound Process".

11.3.1.1 Associating Oracle WebLogic Server Credentials With EIS Credentials

To associate Oracle WebLogic Server credentials with EIS credentials:

1. Log in to the Oracle WebLogic Server Administration Console.

2. In the Domain Structure section in the left pane, click Deployments, as shown in Figure 11–21.

Figure 11–21  Domain Structure Section

The Deployments page is displayed, as shown in Figure 11–22.
3. Click the **iwafjca** resource adapter.
   The Settings for iwafjca page is displayed, as shown in Figure 11–23.

![Figure 11–23 Settings for iwafjca Page](image)

4. Click the **Credential Mappings** tab under the Security tab, and then click **New**.
   The Create a New Security Credential Mapping page is displayed, as shown in Figure 11–24.
5. Select the outbound connection pool. For example:
   eis/OracleJCAAdapter/DefaultConnection

6. Click Next.
The WebLogic Server User page is displayed, as shown in Figure 11–25.

Figure 11–24 Create a New Security Credential Mapping Page

Figure 11–25 WebLogic Server User Page

7. Select Configured User Name, enter a valid Oracle WebLogic Server user name, and then click Next.
The EIS User Name and Password page is displayed, as shown in Figure 11–26.
8. Enter the user name and password for the EIS and click **Finish**.

The credentials for an Oracle WebLogic Server user are now mapped with an EIS user (SAP R/3). The mapping is invoked automatically before invoking the J2CA service.

### 11.3.1.2 Generating a WSDL File

To generate a WSDL file:

1. Set the class path for Application Explorer to integrate with Oracle Service Bus (OSB).
   
   For more information, see “Setting the Class Path for Application Explorer to Integrate With Oracle Service Bus” on page 9-6.

2. Open Application Explorer and create a J2CA configuration.
   
   For more information, see “Creating a Configuration for J2CA” on page 4-3.

3. Create a target for the SAP R/3 adapter and then connect to the target.
   
   For more information, see “Establishing a Connection (Target) for SAP R/3” on page 4-5.

4. Publish a WSDL to OSB for the appropriate object (for example, the GetDetail BAPI for the CompanyCode business object).
   
   For more information, see “Publishing a WSDL From Application Explorer to Oracle Service Bus” on page 9-6.

### 11.3.1.3 Creating an Oracle Service Bus (OSB) Outbound Process

This section describes how to create an Oracle Service Bus (OSB) outbound process with credential mapping functionality, using Oracle JDeveloper.

1. Start the Oracle JDeveloper and create a Service Bus Application for OSB.
   
   For more information, see Section 10.2.1, “Creating a Service Bus Application for OSB” on page 10-20.
2. Create a Third Party Adapter Service Component.
   For more information, see Section 10.2.2.1, "Configuring a Third-Party Adapter Service Component" on page 10-21.

3. Create a WSDL-based Business Service from the JCA Binding File.
   For more information, see Section 10.3.2.1, "Configuring a WSDL-based Business Service" on page 10-31.

4. Create a File Transport Type Business Service for an output destination.
   For more information, see Section 10.2.2.3, "Configuring a File Transport Type Business Service" on page 10-27.

5. Create a Proxy Service with Pipeline.
   For more information, see Section 10.3.2.2, "Creating a Proxy Service With Pipeline" on page 10-35.

6. Configure the routing rules in the created Pipeline.
   For more information, see Section 10.2.2.4, "Configuring the Routing Rules" on page 10-29

7. Configure a Service account by right-clicking the OSB Project, selecting New, and then clicking Service Account, as shown in Figure 11–27.

   **Figure 11–27 Select Service Account Option**

   ![Select Service Account Option](image)

   The Create Service Account pane is displayed, as shown in Figure 11–28.
8. Provide a name for the Service Account and click **Finish**. The configuration page of Service Account is displayed.

9. In the Resource Type section, select **Static**.

10. Provide a valid user name and password for the Oracle WebLogic Server, as shown in **Figure 11–29**.

11. Save and close the configuration page.

12. In the composite Editor window, double-click the created WSDL-based Business Service from step 3.

   The configuration page of the WSDL-based Business Service is displayed.
13. Select the Transport Details tab, as shown in Figure 11–30.

**Figure 11–30  Transport Details Tab**

14. In the JNDI Service Account section, click the Browse icon.

The Select Service Account window is displayed.

15. Select the created service account and click OK, as shown in Figure 11–31.

**Figure 11–31  Select Service Account**

16. Save and close the configuration page, as shown in Figure 11–32.
17. Deploy the OSB process.

For more information, see Section 10.1.3, "Deploying the OSB Outbound Process" on page 10-17.

18. Once the process is deployed successfully, copy and paste a valid input XML file in the input folder you configured, and check to see that the output is received in the configured output location.

19. Check the J2CA log files and locate the encrypted password, which shows that the user credentials have been passed to the EIS through Oracle WebLogic Server.

For example:

```plaintext
FINEST| IWAPManagedConnectionFactory com.ubi.ajfca.Util
getPasswordCredential(78) InLoop:
User-iwayqa:Password-ENCR(31831973183113218233321532332323192322731773252)
FINEST| IWAPManagedConnectionFactory com.ubi.ajfca.Util
getPasswordCredential(90) Use the system PasswordCredential:
User-iwayqa:Password-ENCR(3109313331831131702333215320132323192322731773236)
```

### 11.4 Filtering Unicode Characters From Text

This section describes how to filter Unicode characters from text that are not valid for XML 1.0. It includes the following topics:

- Section 11.4.1, "Overview"
- Section 11.4.2, "Enabling the Filter"
- Section 11.4.3, "Specifying the Replacement Character"
- Section 11.4.4, "Saving the Settings File and Restarting the Server"
- Section 11.4.5, "Validating the Filter"
- Section 11.4.6, "Quick Start Guide"
- Section 11.4.7, "Known Limitations"
11.4.1 Overview

A Unicode special character filter for characters outside of the acceptable XML 1.0 parser specification that occur in SAP IDoc data is available. The filter screens certain Unicode characters from SAP to the adapter where exceptions can occur within the XML parser. The filter then removes the characters from the data stream before serialization, so no errors occur during parsing.

This feature implements a filter for the following significant invalid XML characters:

- VT: Vertical Tab, U+000B
- FF: Form Feed, U+000C
- CR: Carriage Return, U+000D
- NEL: Next Line, U+0085
- LS: Line Separator, U+2028
- PS: Paragraph Separator, U+2029

The following characters are explicitly not to be filtered:

- LF: Line Feed, U+000A
- CR+LF: CR (U+000D) followed by LF (U+000A)

This feature will replace all instances of designated Unicode characters in SAP outbound / Oracle inbound IDocs with a specific replacement character. There is one system-wide replacement character per adapter installation. This feature is controlled by a settings file and a designated replacement character.

11.4.2 Enabling the Filter

Open the **mysap.settings.xml** file using a XML or text editor. The **mysap.settings.xml** file is located in the following directory:

```xml
<ADAPTER_HOME>\lib\settings
```

The **filtering** tag controls the filter behavior. Setting **enabled** to **on** will filter incoming SAP data. Setting **enabled** to **off** disables the filter behavior. Do not enter any other values in the **enabled** field.

11.4.3 Specifying the Replacement Character

The **substitutionChar** field controls the character that will appear in place of the invalid character or characters in an IDoc.

The substitution character should be unique enough so that it does not occur naturally in the data, keeping in mind that the # (pound or hash) character is the SAP substitution character. You can use the # (pound or hash) character as a replacement character, keeping in mind that SAP itself may use the same character on occasion. The SAP replacement character is set in the RFC Destination maintenance transaction (SM59) on the SAP server, under the **MDMP & Unicode** tab.

The following is a sample file:

```xml
<mysap>
 <filtering>
 <enabled>on</enabled>
 <substitutionChar>'#'</substitutionChar>
 </filtering>
</mysap>
```
11.4.4 Saving the Settings File and Restarting the Server

Save the changes made to the `mysap.settings.xml` file using the chosen application editor. The Oracle Application Adapter for SAP R/3 adapter locates the settings file automatically upon activation. Restart the servers to activate the changes made to the `mysap.settings.xml` file.

11.4.5 Validating the Filter

When the adapter is activated, if `DEBUG` level is enabled in the log, a message indicating whether the settings file is located and whether the filter option is enabled is displayed in the log. The message is not displayed during normal trace levels.

11.4.6 Quick Start Guide

This section describes the key steps that are required to use the filter feature.

1. Browse to the `mysap.settings.xml` file, which is located in the following folder:
   `<ADAPTER_HOME>\lib\settings`

2. Edit the `mysap.settings.xml` file and set the `enabled` option for the `filtering` tag to `on`.

3. Specify a replacement character as described in Section 11.4.3, "Specifying the Replacement Character" on page 11-27.

4. Save the `mysap.settings.xml` file.

5. Restart the server.

6. Verify whether the `DEBUG` level is enabled in the log. If enabled, then a message indicating whether the settings file is located and whether the filter option is enabled is displayed in the log.

11.4.7 Known Limitations

This section describes known limitations for the Unicode special character filter. It includes the following topics:

- Section 11.4.7.1, "Adapter-Wide Installation"
- Section 11.4.7.2, "Replace All Restriction"
- Section 11.4.7.3, "SAP System Type"
- Section 11.4.7.4, "Character Restrictions"
- Section 11.4.7.5, "Document Type and Direction"
- Section 11.4.7.6, "Whitespace Rules Display"
- Section 11.4.7.7, "Sax Parser"

**Note:** If no substitution character is specified in the `mysap.settings.xml` file within the `<substitutionChar></substitutionChar>` element tag, then a space will be used as the default substitution character.
11.4.7.1 Adapter-Wide Installation
This feature operates per adapter installation and not by adapter channel target. Ensure that all configured channels for the adapter meet the requirements before deploying the feature.

11.4.7.2 Replace All Restriction
The replacement character will replace all instances of the designated replacement characters in an IDoc document. For more information, see Section 11.4.3, "Specifying the Replacement Character" on page 11-27.

11.4.7.3 SAP System Type
This feature is designed for Unicode SAP systems only. SAP MDMP systems use Code pages for languages and Unicode characters may not pass correctly through the RFC data stream without Unicode on both ends of the communication.

11.4.7.4 Character Restrictions
This feature is only enabled for characters explicitly listed in this document and no other characters. Different control characters may occur in IDoc documents and will pass through the filter because no rule exists for their handling.

11.4.7.5 Document Type and Direction
This feature is limited to SAP outbound into Oracle inbound IDocs. These documents are designed for intersystem communication and may contain characters from non-SAP or other systems that are not valid for XML communication. SAP outbound event data delivered through SAP Remote Function Calls are not filtered. Data sent from Oracle into SAP (request/response or client communication) is not impacted by this feature. The owner of the data is responsible for correctness of the data sent to SAP.

11.4.7.6 Whitespace Rules Display
Characters that have the is Whitespace attribute set to true in the Java Unicode definition can only be seen in raw text (not XML) format, using the UTF-8 hexadecimal code for the character. See the Unicode character guide using the following URL:

http://www.fileformat.info/unicode/char/search.htm

For more information, see Section 11.4.7.11, "Viewing Whitespace Characters" on page 11-30.

11.4.7.7 Sax Parser
The character sequence CR+LF is never filtered, even if it occurs in the middle of the IDoc text. When the XML IDoc is viewed in a text editor, only the LF character is found, is a usually done by the Sax parser. For more information, see the following rule:

http://www.w3.org/TR/REC-xml/#sec-line-ends
This rule translates \texttt{U+000D+U+000A} to a single \texttt{U+000A} character. The character sequence \texttt{U+000D} is filtered by the adapter.

\subsection*{11.4.7.8 Replacement Character Type}

The replacement character must come from the standard set of characters as defined in ISO/IEC 646, and not be a C0 or C1 control character itself. The control character is usually chosen from the ASCII \textit{punctuation and symbols} set and must be a single byte character on representation. The substitution character must be enclosed in single quote marks.

\subsection*{11.4.7.9 Replacement Character Number}

There can be only one substitution character in a filter file for an adapter installation.

\subsection*{11.4.7.10 Font Usage}

Ensure that the system receiving the data has the correct language packs and character sets for the data to be received. If an attempt to display character data not available in a font on the receiving system is sent, then a box character may appear indicating the raster or printer font has no character point to render the character to be displayed.

\subsection*{11.4.7.11 Viewing Whitespace Characters}

Character \texttt{U+0085} (NextLine) can only be seen by examining the XML in a special text editor, highlighting the blank area where the character is supposed to occur, and receiving the hex value, which displays as \texttt{c285} in UTF-8 hexadecimal, as shown in Figure 11–33.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{whitespace-character.png}
\caption{Viewing Whitespace Characters}
\end{figure}

Otherwise, the XML parser directive is to ignore the character as whitespace, and so will not display in the file.
This chapter explains the limitations and workarounds when connecting to SAP R/3. It contains the following sections:

- Section 12.1, "Troubleshooting"
- Section 12.2, "BSE Error Messages"

The adapter-specific errors listed in this chapter can arise whether using the adapter with an Oracle Adapter J2CA or with an Oracle Adapter Business Services Engine (BSE) configuration.

12.1 Troubleshooting

This section provides troubleshooting information for SAP R/3, separated into four topics:

- Section 12.1.1, "Application Explorer"
- Section 12.1.2, "SAP R/3"
- Section 12.1.3, "Oracle Adapter J2CA"

Log file information that can be relevant in troubleshooting can be found in the following locations based on your adapter installation:

- The Oracle Adapter J2CA trace information can be found under the following directory:
  
  `<ADAPTER_HOME>\config\configuration_name\log`

- BSE trace information can be found under the following directory:
  
  `<ORACLE_HOME>\user_projects\domains\base_domain\servers\soa_server1\stage\ibse\ibse.war\ibselogs`

- The log file for Application Explorer can be found under the following directory:
  
  `<ADAPTER_HOME>\tools\iwae\bin`

12.1.1 Application Explorer

This topic discusses the different types of errors that can occur when using Application Explorer.
### Error Solution

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP R/3 does not appear in the Application Explorer Adapter node list.</td>
<td>Ensure that the sapjco3.jar and sapjco3.dll files are added to the lib directory.</td>
</tr>
</tbody>
</table>
| Cannot connect to Oracle Application Adapter for SAP R/3 from Application Explorer. | Ensure that:  
  - SAP R/3 is running.  
  - The Application Server name, System Number, and Client Number are correct.  
  - The SAP R/3 user ID and password are correct. |
| Cannot connect to the SAP R/3 target through Application Explorer. The following error message appears: | Ensure that you enter the correct connection parameters when connecting to the SAP R/3 target. |
| Cannot connect to your SAP R/3 system through Application Explorer. The following error message appears: | Ensure that SAP R/3 is running and that you are using the correct parameter values to connect to your application server. |
| Cannot connect to your SAP R/3 system through Application Explorer even though SAP R/3 is running. The following error message appears: | Ensure that the sapjco3.dll file is added to the lib directory and to the Windows system32 folder. |

**Note:** Ensure that the sapjco3.dll file is added to the lib directory and to the Windows system32 folder.
Troubleshooting and Error Messages

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The dll is loaded in another classloader (BSE and J2CA are installed on the same server). The following error message appears: com.ibi.sapr3.SapAdapterException: java.lang.ExceptionInInitializerError: JCO.classInitialize(): Could not load middleware layer 'com.sap.mw.jco.rfc.MiddlewareRFC' JCO.nativeInit(): Could not initialize dynamic link library sapjco3 [Native Library F:\iWay55.008.0628\lib\sapjco3.dll loaded in another classloader]. java.library.path</td>
<td>Add sapjco3.jar to the server classpath.</td>
</tr>
<tr>
<td>Unable to start Application Explorer in a Solaris environment. The following exception is thrown in the console: javax.resource.ResourceException: IWAFManagedConnectionFactory: License violation at com.ibi.afjca.spi.IWAFManagedConnectionFactory.createConnectionFactory(IWAFManagedConnectionFactory.java:98) at com.iwaysoftware.iwae.common.JCATransport.getConnectionFactory(JCATransport.java:133) at com.iwaysoftware.iwae.common.JCATransport.initJCA(JCATransport.java:69) at com.iwaysoftware.iwae.common.JCATransport.&lt;init&gt;(JCATransport.java:62) at com.iwaysoftware.iwae.common.AdapterClient.&lt;init&gt;(AdapterClient.java:85) at com.ibi.bse.ConfigWorker.run(ConfigWorker.java:41) at java.lang.Thread.run(Thread.java:534)</td>
<td>JAVA_CMD is not set on the user system. Before starting Application Explorer, export JAVA_CMD as follows: JAVA_CMD=/&lt;jdk_home&gt;/bin/java, where &lt;jdk_home&gt; is the directory where JDK is installed on your system.</td>
</tr>
<tr>
<td>Could not create the connection factory. Logon failure error at run-time</td>
<td>If the password for connecting to your SAP R/3 system is not specified when creating a target or with the Edit option in Application Explorer, then you are unable to connect to SAP R/3. The connection password is not saved in repository.xml. Update the password using the Edit option in Application Explorer, then restart the application server.</td>
</tr>
<tr>
<td>The following exception occurs when you start Application Explorer by activating ae.bat (not iaexplorer.bat): java.lang.ClassNotFoundException: org.bouncycastle.jce.provider.BouncyCastleProvider</td>
<td>This is a benign exception. It does not affect adapter functionality. Download BouncyCastle files from: ftp://ftp.bouncycastle.org/pub</td>
</tr>
</tbody>
</table>
## 12.1.2 SAP R/3

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Check the syntax of your input XML document and make sure the name of the Remote Function module is correct, available in SAP R/3, and activated.</td>
</tr>
<tr>
<td>AdapterException:</td>
<td></td>
</tr>
<tr>
<td>java.lang.Exception: Function module CUSTOMER_GETDETAIL2 does NOT exist.</td>
<td></td>
</tr>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Check the syntax of your input XML document and verify that the Business Object type exists in SAP R/3 and is correct and activated. Also verify that the name of your document is correct.</td>
</tr>
<tr>
<td>AdapterException:</td>
<td></td>
</tr>
<tr>
<td>java.lang.Exception: Object type unknown for business object: CUST</td>
<td></td>
</tr>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Check the syntax of your input XML document and verify that the name of the BAPI is correct, available in SAP R/3, and activated.</td>
</tr>
<tr>
<td>AdapterException:</td>
<td></td>
</tr>
<tr>
<td>java.lang.Exception: Unable to retrieve BAPI name for: CUSTOMER.DETAIL2</td>
<td></td>
</tr>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Check the syntax of your input XML document and verify that the IDoc type or extension type is correct, available in SAP R/3, and activated.</td>
</tr>
<tr>
<td>java.lang.RuntimeException: com.sap.mw.jco.JCO$AbapException: (126) OBJECT_UNKNOWN: Basic type or extension does not exist.</td>
<td></td>
</tr>
<tr>
<td>When executing a request, the following error message appears:</td>
<td>Verify that your user ID has the correct permissions configured in SAP R/3. Consult your SAP R/3 administrator for more information.</td>
</tr>
<tr>
<td>AdapterException:</td>
<td></td>
</tr>
<tr>
<td>java.lang.Exception: BapiError/BapiAbort: You are not authorized to display customers.</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** Activation is an important SAP concept. If an object does not exist in an activated state, it may appear as present on the system, but is not available for use. This is especially important for IDOCs and SAP Business Objects. Consult your SAP documentation for further information.

## 12.1.3 Oracle Adapter J2CA

<table>
<thead>
<tr>
<th>Error</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Application Explorer, the following error message appears when you attempt to connect to an Oracle Adapter J2CA configuration:</td>
<td>In the Details tab in the right pane, ensure that the directory specified in the Home field points to the correct directory, for example:</td>
</tr>
<tr>
<td>Could not initialize JCA</td>
<td>&lt;ADAPTER_HOME&gt;\tools\iwae\bin........</td>
</tr>
</tbody>
</table>
12.2 BSE Error Messages

This topic discusses the different types of errors that can occur when processing Web services through BSE.

12.2.1 General Error Handling in BSE

BSE serves as both a SOAP gateway into the adapter framework and as the engine for the adapters. In both design-time and run-time, various conditions can cause errors in BSE when Web services that use adapters run. These conditions and resulting errors are exposed the same way, regardless of the specific adapter; others are exposed differently, based on the adapter being used. This topic explains what you can expect if you encounter the more common error conditions on an adapter-specific basis. Usually the SOAP gateway (agent) inside BSE passes a SOAP request message to the adapter required for the Web service. If an error occurs, then how it is exposed depends on the adapter and the API or interfaces that the adapter uses. A few scenarios cause the SOAP gateway to generate a SOAP fault. In general, anytime the SOAP agent inside BSE receives an invalid SOAP request, a SOAP fault element is generated in the SOAP response. The SOAP fault element contains fault string and fault code elements. The fault code contains a description of the SOAP agent error.

The following SOAP response document results when BSE receives an invalid SOAP request:

```xml
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>Parameter node is missing</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

In this example, BSE did not receive an element in the SOAP request message that is mandatory for the WSDL for this Web service.

12.2.2 Adapter-Specific Error Handling

This section contains the following topics:

- Section 12.2.2.1, "Oracle Application Adapter for SAP R/3 Invalid SOAP Request"
- Section 12.2.2.2, "Empty Result From SOAP Request"
- Section 12.2.2.3, "Failure to Connect to SAP R/3"
- Section 12.2.2.4, "Invalid SOAP Request"
- Section 12.2.2.5, "Empty Result From Oracle Application Adapter for SAP R/3 Request"

When an adapter raises an exception during run-time, the SOAP agent in BSE produces a SOAP fault element in the generated SOAP response. The SOAP fault element contains fault code and fault string elements. The fault string contains the native error description from the adapter target system. Since adapters use the target system interfaces and APIs, whether an exception is raised depends on how the target systems interface or API treats the error condition. If a SOAP request message is passed to an adapter by the SOAP agent in BSE and that request is invalid based on the WSDL for that service, then the adapter may raise an exception yielding a SOAP
fault. While it is almost impossible to anticipate every error condition that an adapter may encounter, the following is a description of how adapters handle common error conditions and how they are then exposed to the Web services consumer application.

12.2.2.1 Oracle Application Adapter for SAP R/3 Invalid SOAP Request

If Oracle Application Adapter for SAP R/3 receives a SOAP request message that does not conform to the WSDL for the Web services being carried out, then the following SOAP response is generated.

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

12.2.2.2 Empty Result From SOAP Request

If Oracle Application Adapter for SAP R/3 carries out an SAP R/3 object using input parameters passed in the SOAP request message that do not match records in SAP R/3, then the following SOAP response is generated.

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

12.2.2.3 Failure to Connect to SAP R/3

If Oracle Application Adapter for SAP R/3 cannot connect to SAP R/3 when executing a Web service, then the following SOAP response is generated:

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Error processing agent [XDSapIfrAgent] - XD[RETRY] Connect to SAP gateway failed Connect_PM GWHOST=ESDSUN, GWSERV=sapgw00, ASHOST=ESDSUN, SYSNR=00 LOCATION CPIC (TCP/IP) on local host ERROR partner not reached (host ESDSUN, service 3300) TIME Mon Jun 30 16:01:02 2003 RELEASE 620 COMPONENT NI (network interface) VERSION 36 RC -10 MODULE ninti.c LINE 976 DETAIL NIPConnect2
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```
SYSTEM CALL SO_ERROR ERNO 10061 ERNO TEXT WSAECONNREFUSED: Connection refused
 COUNTER 1</faultstring>
  </SOAP-ENV:Fault>
  </SOAP-ENV:Body>
  </SOAP-ENV:Envelope>

### 12.2.2.4 Invalid SOAP Request

If Oracle Application Adapter for SAP R/3 receives a SOAP request message that does not con conform to the WSDL for the Web services being carried out, then the following SOAP response is generated.

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>RPC server connection failed: Connection refused: connect</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

### 12.2.2.5 Empty Result From Oracle Application Adapter for SAP R/3 Request

If Oracle Application Adapter for SAP R/3 carries out a SOAP request using input parameters passed that do not match records in the target system, then the following SOAP response is generated.

```xml
 <SOAP-ENV:Body>
 <m:RunDBQueryResponse xmlns:m="urn:schemas-iwaysoftware-com:iwse" cid="2A3CB42703EB20203F91951B89F3C5AF">
 <RunDBQueryResult run="1" />
 </m:RunDBQueryResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

**Note:** The condition for this adapter does not yield a SOAP fault.
A

Understanding the SAP System Role in Remote Processing

The Oracle Application Adapter for SAP R/3 exchanges messages with SAP using three different message type scenarios and two communication roles. Each role has configuration options that must be enabled on the SAP server and on the adapter to enable communications and send messages. This appendix explains the role types, message types, and their related terms. In an SAP Productive system environment, only the proper administrator for a particular configuration role has the authority to change or create the communications entries. This appendix provides a checklist for administrators for the required tasks and describes the entire process of configuring inbound and outbound message processing. This information can be used to configure non-productive systems or for reference purposes.

This appendix contains the following sections:

- Section A.1, "Functionality of the Adapter"
- Section A.2, "SAP Inbound Message Processing"
- Section A.3, "SAP Outbound Message Processing"

A.1 Functionality of the Adapter

This section contains the following topics:

- Section A.1.1, "Roles"
- Section A.1.2, "Client"
- Section A.1.3, "Server"

Implementation of the Oracle Application Adapter for SAP R/3 uses the SAP Java Connector (JCo), a Java interface that communicates via Java Native Interface (JNI) to a native c communications layer. The RFC (Remote Function Call) API, implements the CPIC (Common Programming Interface - Communications) and TCP/IP protocols to communicate with a corresponding component on the SAP system. Each message is serialized to or from XML to RFC format, then marshaled into the current SAP message type for transmission to SAP. The SAP server unmarshalls the message into the current runtime object and executes the object. The response message is marshaled into RFC and returned to the adapter for unmarshalling and serialization to XML. This process is seamless and very rapid. Errors can arise from improper credentials, document encoding or actual application errors (for example, a wrong value for a given field).
A.1.1 Roles

The RFC protocol is a dynamic protocol depending on the mode of the request. When a request is inbound to a RFC connected node, the function of that node is a server to fill the request. When a request is outbound from a node, the function of that node is a client, waiting for a server to respond to the request. Outbound events, which need no response, are also processed by servers.

A.1.2 Client

The system instantiating a connection to another system is a client, and the client role processes request/response messages in a synchronous manner. A client system does not execute, but enables message processing. Messages begin and end on the client. The adapter functions as a client when it sends messages from Oracle to SAP.

Types of client connections include:

- Application Server, which connects to a single SAP application server.
- Message Server, which connects to an SAP logon load balancer message server for connection to a group of SAP application servers for distributed load processing.

Both connection types use a special type of connection called a Connection Pool, which is discussed later in this appendix.

Types of client message types include:

- BAPI messages, which are object-style messages with parameters as XML attributes.
- RFC messages, which are RFC-style messages with parameters as XML elements.
- Intermediate Documents (IDocs), which use the ALE message system to send positional delimited flat text or XML element parameters.

A.1.3 Server

The system receiving a connection request from another system is a server. A server executes message processing and returns results to a client. A server can reject a message request if it does not implement the processing for a given message with an exception for NOT_IMPLEMENTED. A server can process two types of messages:

- Inbound messages, which contain the message request and the parameters for the request.
- Synchronous messages, which take the inbound message request and either perform additional work, pass it to another system, or process it for additional processing before returning it to SAP.

The SAP application server waits for a synchronous message process to finish before continuing.

Types of server connections include:

- Processing Mode (Request), a simple receipt of message type and parameters.
- Response, which executes a synchronous process.

Types of server message types include:

- RFC messages, which are RPC-style messages with parameters as elements.
- Intermediate Documents (IDocs), which use the ALE message system to send positional delimited flat text or XML element parameters.
A.2 SAP Inbound Message Processing

This section contains the following topics:

- Section A.2.1, "Configuring SAP R/3 Inbound Processing"
- Section A.2.2, "Configuring a Logical System"
- Section A.2.3, "Configuring a Distribution Model for a Logical System"
- Section A.2.4, "Defining a Partner Profile"

Sending request / response (client) messages to an SAP system for Remote Function Call (RFC) or Business Application Interface (BAPI) objects requires a valid set of logon credentials. For more information on how to configure adapter targets, including the list of required parameters, see “Identifying SAP R/3 Logon Parameters” on page 2-3. For the valid values for the adapter target, see your SAP system administrator.

Obtain the following values before initial logon:

- Valid SAP connection parameters.
- SAP Communications user (a SAP GUI DIALOG user is not recommended for security reasons).
- The correct SAP authorizations for the tasks the adapter is expected to perform.

SAP Authorizations

The proper SAP authorizations must be obtained before connecting to the server. It is a recommended SAP security practice to not allow RFC and DIAG access to the same user ID.

The basic authorization object used to secure RFC access is:

**S_RFC**: Secures the Function Group (located in authorization object class AAAB).

- **Authorization Object** + **S_RFC**:
  - **Authorization Field**: RFC_TYPE
  - **Authorization Value**: 'FUGR' is the only valid value.
  - **Authorization Field**: RFC_NAME
  - **Authorization Value**: The name of an activated function group. For example: ('ABCD') or '*'.
  - **Authorization Field**: ACTVT
  - **Authorization Value**: 16 (Execute) is the only valid value.

Individual function modules may have additional security inside their executable code. It is the requirement of the function developer or application creator to inform the users of the function or application of the authorization requirements to use the function or application. Consult the administrator to determine if there are additional authorizations required.

Individual tables may be secured from access by using the following authorization object:

**S_TABU_DIS**: Secures tables (located in authorization object class BC_A)

- **Authorization Object** + **S_TABU_DIS**:
  - **Authorization Field**: DICBERCLS: Or ('Authorization Group').
Authorization Value: For example, Table: MARA is in group “MA”.

Authorization Field: ACTVT

Authorization Value: 03 (Display)

For a complete explanation on using this authorization object, see the SAP system documentation.

Once the correct credentials are specified for the adapter target and the correct authorizations are assembled on the SAP application system, the adapter is ready to be initialized.

Request / Response (Client) Messages

Business Object Repository

Use Application Explorer to expand the appropriate application tree branch, such as Financial Accounting, and then navigate to and expand a Business Object, such as Company Code. Click the object to view the methods of that object. BAPIs have release and versioning. All BAPIs used at runtime must be in "release" status or a runtime exception is generated. Select a method to generate the XML schema. Create an XML instance document from the XML schema and populate it with data. Create an Oracle process with an appropriate input and output (file/html/etc) transmission method. Submit the document to the adapter for processing to receive a result.

Remote Function Call

Use Application Explorer to expand the appropriate application tree branch such as Financial Accounting and then navigate to and expand a Function Group, such as 0002 - Company Code. Each function exposes a different method of processing. All BAPIs are present as RFC objects because their implementation is via RFC. They can be called in this manner allowing for event processing, for example, when BAPI processing does not. Not all RFCs are present as BAPIs. Select a function and generate the XML schema. Create an XML instance document from the XML schema and populate it with data. Create an Oracle process with an appropriate input and output (file/html/etc) transmission method. Submit the document to the adapter for processing to receive a result.

ALE IDOC Message

SAP ERP ALE* Inbound Message processing, where IDocs are sent and stored in the SAP R/3 system, requires some configuration on the SAP server to be used. In this role, messages are sent to SAP as transactional data and stored on the SAP server. The document data is processed in a second step inside SAP, during a triggered workflow.

A.2.1 Configuring SAP R/3 Inbound Processing

This section contains the following topic:

- Section A.2.1.1, "Adapter Checklist"

Sending an IDoc to SAP ERP requires the following information about the message parties:

- Sender of the message
- Receiver of the message
- Type of message that is being sent

The Sender and Receiver must be defined in the ALE system, and for each party, what kind of message each party is accepting and how it is being processed.
The Sending and Receiving system information are defined in units called Logical Systems, because the connection information does not involve physical connection information. A Logical System acts as a container for all the information about a particular Sender or Receiver.

Once a Logical System is defined, information about the different messages it sends and receives is stored in a Distribution Model. This model must be defined before any processing can occur, and it must be defined precisely to avoid Sender or Receiver errors. In the Distribution Model, the IDoc Message Application may also enable filters, which allow only specific parts of the IDoc to be sent, or distributed. There is a one-to-one correspondence between Logical System, Distribution Model, and Message Type. Complex filter rules can be configured by filter groups, filter objects, rules, and dependencies. For a complete explanation on configuring distribution models with filters, see the SAP system documentation.

Processing an IDoc by the SAP system is defined in Partner Profiles. For each partner and message, it is possible to define process codes to (possibly) process messages differently.

**A.2.1.1 Adapter Checklist**

For sending messages to SAP, an ALE administrator must assign (after logon credentials):

1. Logical System name.
2. Message Types and IDoc Basic Types to be transmitted to the SAP application server.

Inside the SAP ERP system, the ALE Administrator must:

1. Create the Logical System.
2. Create the Distribution Model.
   - a. Assign the Sender for the model.
   - b. Assign the Receiver for the model.
   - c. Assign the Message Types.
3. Create a Partner Profile for the Logical System.
   - a. For each message type, assign a process code for SAP to process the message.

**Example**

- Logical System "ORACLIENT" is created (via SAP transaction SALE).
- Distribution Model "ZORACLNT" is created (via SAP transaction BD64).
- Message Type "MATMAS" is added for sending partner "ORACLIENT" and receiving partner "T90ALECNT" (ALE component of central host).
- Partner Profile "ORACLIENT" is created (via SAP transaction WE20) and Inbound Message "MATMAS" is assigned with Process code "MATM".

---

**Note:** The steps for configuring SAP ERP for inbound messages are described here as a reference. For more comprehensive information, see the SAP ERP documentation.

You must perform the following steps to configure SAP R/3 for inbound IDoc processing:
1. Configure a Logical System.
2. Configure a Distribution Model.
3. Define an inbound Partner Profile.

A.2.2 Configuring a Logical System

This section contains the following topics:

- Section A.2.2.1, "SAP Transaction Shortcuts"
- Section A.2.2.2, "Defining a Logical System"

A Logical System is the container object for configuration information about the Sender or Receiver party of a message. It is a Logical System because no connection information is stored, only information about the message that the end point is able to process and the method used to process the message(s).

A.2.2.1 SAP Transaction Shortcuts

- /n - Ends the current transaction and opens a new one immediately.
- /o - Keeps the current transaction context and opens a new transaction in a new window.

A.2.2.2 Defining a Logical System

A Logical System definition is created by creating an entry in the SAP Implementation Guide for Customizing (IMG).

ALE is the SAP ERP Application Link Enablement system, so use the /nSALE transaction to navigate to the IMG for ALE.

1. Navigate to the SALE transaction.

   The Display IMG window displays the ALE configuration tree.

2. Perform the following steps:
   a. Expand the Basic Settings node.
   b. Expand Logical Systems.
   c. Click Define Logical System.
   d. Since SAP R/3 users may see a slightly different screen, expand the extra node, Sending and Receiving Systems.

   The "Caution: The table is cross-client" message is displayed.

   This message appears to inform you that changes to customizing data in Logical Systems applies to all users of the SAP ERP server. This is in contrast to most application data, which is specifically bound to a logon client. Do not make any changes to Logical System entries. Only add the new information. Use an SAP logon ID with the correct privileges to do so.

3. Click the green check mark to continue.

   The Change View "Logical Systems" window is displayed.

4. Click the New Entries button.

   The New Entries: Overview of Added Entries window is displayed.

5. Enter the Logical System (for example, ORACLETDS) in the Log.System column and provide a description in the Name column.
6. Click the **Save** icon on the top menu bar.

   The Prompt for Workbench request dialog is displayed.

   **Note:** Depending on system usage, the last workbench request number appears in the dialog. Do not use it and proceed to the next step.

7. Click the **New Request** icon to create a new request.

8. Enter the description for your entry in the request system. The remaining fields are filled in automatically and do not need to be changed.

   The Prompt for Workbench Request dialog is displayed again, with the new request number filled in with the last request number created in the Workbench; do not use it.

9. Click the check mark to create a new request number.

   The Logical System Entries window refreshes with the new Logical System information. The new Logical System is highlighted in blue to indicate the successful completion of this step.

---

**A.2.3 Configuring a Distribution Model for a Logical System**

This section contains the following topic:

- **Section A.2.3.1, "Defining a Distribution Model"**

A Distribution Model contains a Sender Logical System and a Receiver Logical System the type of Messages sent and received. If a given Sender or Receiver does not have a valid Distribution Model, then the message is not processed and routed to an error location. For advanced topics in Distribution Model, including SAP BAPI Objects and filtering, see the SAP documentation.

---

**A.2.3.1 Defining a Distribution Model**

To define a distribution model:

1. Run the **bd64** transaction.

   The Display Distribution Model window is displayed in the default Display mode, which shows the current model view entries.

2. Expand the tree to view the entries for each model view.

   To add items, the transaction must be switched into "change mode".

3. Click **Distribution model** and select **Switch processing mode**.

   The screen refreshes and the model view window is switched to Change Distribution Model.

4. From the available menu buttons, select **Create Model View**.

   The Create Model View dialog is displayed.
5. Enter a Model View name in the Short text field and a name in the Technical name field, which also serves as a description.

A good convention is to use names starting with the letter Z, since SAP does not overwrite these names in case of system updates. This is only the name of the Model View.

6. Click the green check mark icon to enter the information.

The screen refreshes and returns to the main Change Distribution Model window. The Distribution Model configured is now added to the list.

The Model View is in temporary transaction storage (and the entry appears in lighter color) until you click the Save icon. If the system connection is lost or times out, then the entry is lost. As a best practice, save your changes after each dialog during the Distribution Model configuration process to avoid losing changes.

7. Place the cursor on the entry previously defined.

The entry is now highlighted.

8. In the middle menu bar, click the Add Message Type button.

The Add Message Type dialog is displayed.

9. Perform the following steps:
   a. In the Sender field, enter the name of the sending Logical System for the Oracle system (for example, ORACLETDS). For more information, see "Configuring a Logical System" on page A-6.
   b. In the Receiver field, enter the name of the Client ALE Logical System for the SAP system (ALE receiver), or select from the drop-down (for example, T90CLNT090).
   c. In the Message type field, enter the message type you want to use (for example, MATMAS).

      You can click the drop-down icon to the right of each field to browse available values from a list.
   d. Click the green check mark icon to enter the information.

      The main Change Distribution Model window refreshes.

10. Click Save.

11. Navigate the ALE Hierarchy tree to the Distribution Model recently created. The Sender and Receiver are depicted in a graphical relationship with Sender, Receiver, and Message.

    For subsequent message types for the same systems, expand the Model View to the receiver name and place the cursor on the name. Then click the Add Message Type button. All the fields are populated automatically. You can then add the message type.

A.2.4 Defining a Partner Profile

A Partner Profile defines for each logical system, the messages processed, and how the message is processed. This allows for flexible configuration of processing details for partners. Each message type may have only one entry in a Partner Profile. To define a Partner Profile:

1. Run the we20 transaction by typing /nwe20 at the command bar, which is located at the upper-left of the screen.
The Partner profiles window is displayed.

2. Select **Partner Type LS** and click the white icon on the middle menu bar. You can also select **Create** from the top menu.

   The right side of the screen changes to a blank Partner Profile form.

3. Enter the name of the Logical System (for example, ORACLETDS) in the partner number field and click the **Save** icon.

   The screen changes with the new profile.

4. Scroll down until the embedded text "Inbound parmtrs" entry is displayed.

5. Click the green plus sign icon.

   The Partner profiles: Inbound parameters dialog is displayed.

6. Enter **MATMAS** as the Message Type.

7. Use the Process code drop down to find and select **MATM** for MATMAS.

8. Select **Immediate** or **Background** as the Process Mode.

   ![Note: Consult your SAP administrator for the proper settings.](image)

9. Click the **Save** icon on the menu bar to save the Inbound Partner Profile entry for MATMAS.

10. Click the **Back** (left facing arrow) button on the menu bar to return to the previous window.

    MATMAS is displayed in the entry list.

This completes the inbound configuration for Logical System/Partner Profile: OracleTDS/MATMAS. To add additional inbound IDoc Message Type entries, repeat the steps beginning with "Configuring a Distribution Model for a Logical System" on page A-7. To add another Logical System and Message Type, repeat the steps from "Configuring a Logical System" on page A-6.

You can now begin sending IDocs after configuring the appropriate Oracle process.

From the SAP IDoc monitor console, you can monitor the IDoc transactions in SAP transaction **WE02**. The processing state and status of IDocs are available, as well as the Sender, Receiver, and the data. For more information, see the **IDoc Display** topic on the online SAP Help page.

### A.3 SAP Outbound Message Processing

The Oracle Application Adapter for SAP R/3 can process outbound from SAP messages with interface style Remote Function Module, BAPI ALE, or Transactional RFC messages with transaction IDs. The message types can be Remote Function Calls or IDocs. All processing through the SAP JCo is synchronous (request / response), but message processing can either be asynchronous (Delivery only) or synchronous (Event/Reply), where an orchestrated process performs work and returns information to the waiting SAP application server. RFC messages can be sent from SAP ABAP programs or the SAP workflow system. IDocs are sent through system transactions or standard programs. BAPI events in SAP are for internal use unless specifically programmed and enabled for the ALE interface.
Events in SAP are enabled by event linkages to event handlers that do the work of processing the event. The mechanisms of sending the events are all enabled on the SAP system, the adapter is the recipient of the end process of the SAP event handler.

Outbound messages are defined in the adapter as events. Events are either asynchronous, delivering a message only, or synchronous, returning a reply. For an adapter inbound event to be two way (event-reply), the receiving process must implement a request handler in the process flow. The request handler takes the incoming SAP data, manipulates it, then returns the data in valid event reply format to the adapter to return to SAP.

For RFC outbound messages, only a SAP RFC Destination and Program ID are required to receive the Remote Function Call. For IDoc processing, a Logical System, Distribution Model, Partner Profile, and Port must be created to receive message events through RFC.

**SAP Outbound Terminology**

- **Event Creator** - JCO/RFC Client, which is the SAP system creating the event (request), and optionally waiting for a event reply (response).
- **Event Listener** - JCO/RFC Server, which is the adapter receiving the event, handling the request, and optionally returning a response.

This section contains the following topics:

- **Section A.3.1, “SAP Gateway”**
- **Section A.3.2, “Program IDs and Load Balancing”**
- **Section A.3.3, ”Registering a RFC Destination and Program ID in SAP GUI”**
- **Section A.3.4, ”Application Link Embedding Configuration for the Event Adapter”**
- **Section A.3.5, ”Defining a Port”**
- **Section A.3.6, ”Configuring a Logical System”**
- **Section A.3.7, ”Configuring a Distribution Model for a Logical System”**
- **Section A.3.8, ”Defining a Partner Profile”**
- **Section A.3.9, ”Testing the SAP R/3 ALE Configuration”**

Outbound processing often is implemented as Events. On the SAP application server, there are many stages of defined events. Event processing is held together by linkages. Not all linkages are enabled by default on a Productive SAP server. For an Event to be active, and capable of sending messages, there must be an object capable of sending changes in the status of the object, a link to list of valid events, and event handlers. An event handler implements the processing of the message.

Active SAP Events are status changes on defined components with implemented event handlers. There are many types of events in the SAP application server, the most well known event handler is ALE Message Control, implemented by SAP around objects like the Material Master and Customer Master. Changes in these objects can generate outbound event IDocs.

Event creation is usually implemented by SAP, but many objects can be enabled for event handling, but this often requires advanced configuration or programming. Consult the SAP documentation for information on the type of SAP events and how they are configured.

For RFC outbound messages, only a SAP RFC Destination and Program ID are needed to receive the Remote Function Call.
For IDoc processing, a Logical System, Distribution Model, Partner Profile and Port must be created to receive message control events via tRFC.

**SAP Outbound Terminology**

- JCO/RFC Client, which is the system making the RFC request, and optionally waiting for a response.
- JCO/RFC Server, which is the system receiving the RFC request, handling the request, and optionally receiving a response.

**A.3.1 SAP Gateway**

The SAP Gateway is a process that runs on an SAP application server or a dedicated gateway server. The gateway process manages all connections to SAP. No server connections to SAP are accepted unless they are configured previously as registered programs in the SAP application and present the required program identifier.

A server connection presents itself to the Gateway and exposes a Program Identifier. If the Program Identifier is found in the list of registered Program IDs, then the Gateway server offers a connection to the server, which “accepts” a connection. This ProgramID is then linked with an RFC Destination within SAP, which enables SAP Function Modules and ALE documents (IDocs or BAPI IDocs) to be routed to the destination. The RFC Destination functions as a key to identify the SAP Program ID. The Program ID is also exposed by the application server making the connection to SAP and is the direct link to the IP address of the connecting server. Messages are routed to the application server via the RFC Destination. A good security practice is to separate Oracle Application Adapter for SAP R/3 users with access to the adapter instance implementing the Program id and the users with SAP transaction authority to change or view the Program ID inside SAP, all requests are routed through the RFC Destination.

**Note:** An RFC server program is registered with the SAP gateway and waits for incoming RFC call requests. An RFC server program registers itself under a Program ID at a SAP Gateway and not for a specific SAP system. In SAPGUI, the destination must be defined with transaction SM59, using connection type T and Register Mode. Moreover, this entry must contain information on the SAP gateway at which the RFC server program is registered.

**A.3.2 Program IDs and Load Balancing**

This section contains the following topics:

- Section A.3.2.1, "SAP RFC Outbound Outline"
- Section A.3.2.2, "SAP IDoc Events"

If the Gateway Server has a connection to a particular server instance and another server instance presents itself to the gateway, then the gateway offers the connection and then begins functioning in Load Balancing mode. Using a proprietary algorithm, the Gateway sends different messages to each server depending on demand and total processing time. This may cause unpredictable results when messages are validated by schema and application.

When configuring multiple events in the Oracle using a single SAP program ID, SAP load balances the event data. For example, if multiple remote function calls or BAPIs use the same program ID (for example, ORACLETDS) and multiple SAP listeners are configured with this programID, then SAP sends one request to one listener and the
next to another listener, and so on. There is a load-balancing algorithm present in the
SAP Gateway Server. This mechanism is proprietary to SAP application development
and might work by comparing total throughput of the connection, the number of times
in wait state, and so on. One connection might receive nine messages and a second
connection might receive one message. If five of the nine messages are rejected for
schema validation and the one message on the other connection is rejected for schema
validation, then you might suspect that you are missing SAP event handling messages.

Load balancing in server (inbound to adapter from SAP) situations is handled by
connecting multiple instances of the adapter to the SAP system. The SAP system then
load balances the connections. You cannot tune this performance.

A.3.2.1 SAP RFC Outbound Outline

1. Create a RFC Destination (via SM59).
   a. Enter a Destination Name.
   b. Enter a Registered Program ID.
   c. In the MDMP & Unicode tab, ensure that the Unicode option is selected.
   d. Start Oracle BPEL/Mediator.
   e. Enter the same registered Program ID value from step b for the BPEL or
      Mediator channel.
   f. Start the channel.
   g. Test the connection using the Test button in SAP.

2. Simulate a SAP RFC message (via SE37).
   ABAP Workbench authorization is required.
   a. Enter the RFC Destination name from step 1a in the Destination field.
   b. Enter a valid SAP RFC Function name in the Function field.
   c. Enter data in the parameters for the function.
   d. Click the Execute (clock) button.
      Data arrives at the BPEL channel.

A.3.2.2 SAP IDoc Events

Before IDocs can be received from SAP, a channel for the Oracle Application Adapter
for SAP R/3 must be configured using Application Explorer. In addition, configuration
on the SAP application server is also required.

1. Create a RFC Destination (via SM59) or use the same destination defined in the
   previous section (SAP RFC Outbound Outline).
   a. Enter a Destination Name.
   b. Enter a Registered Program ID.
   c. In the MDMP & Unicode tab, ensure that the Unicode option is selected.
   d. Start Oracle BPEL/Mediator.
   e. Enter the same Registered Program ID value from step b for the BPEL or
      Mediator channel.
   f. Start the channel.
   g. Test the connection using the Test button in SAP.
2. Create or use a Logical System as described in "Configuring a Logical System" on page A-6.

3. Define or use a Distribution Model as described in "Configuring a Distribution Model for a Logical System" on page A-7.


5. Create an SAP Outbound Partner Profile via transaction WE20.

A.3.3 Registering a RFC Destination and Program ID in SAP GUI

This section contains the following topics:

- Section A.3.3.1, "Registering a Program ID"
- Section A.3.3.2, "Testing the Configuration"
- Section A.3.3.3, "Synchronous RFC Calls"

To enable your SAP R/3 system to issue the following calls or interfaces to the SAP R/3 event adapter, you must register your program ID under an RFC destination.

- Remote Function Calls (RFC)
- Business Application Programming Interfaces (BAPI) - Bapis have no external events, use the RFC form
- Intermediate Documents (IDocs)

The RFC Destination is a symbolic name (for example, ORACLETDS) that is used to direct events to a target system, masking the Program ID. The Program ID is configured in SAP GUI and the event adapter.

A.3.3.1 Registering a Program ID

To register a Program ID:

1. Launch the SAP GUI and log in to the SAP R/3 system.
2. Select Tools, Administration, Network, and then RFC destination.
3. Run the SM59 transaction.
   The Configuration of RFC Connections window is displayed.
4. Select TCP/IP connections and click Create (white paper icon).
   The RFC Destination window is displayed.
5. Provide the following information:
   a. In the RFC destination field, enter a name, for example, ORACLETDS.
      This field value is case-sensitive. Match the same case in the sending programs.
   b. In the Connection type field, enter T for destination type TCP/IP.
   c. In the Description field, enter a brief description.
6. Click the Save icon (Disk) from the tool bar or select Connection, Save from the top menu bar.
   The window refreshes and the Technical Settings tab is highlighted in the second panel.
7. Immediately click the Registered Server Program button.
The screen refreshes again.

8. Enter the case sensitive Program Id, this must match the same name in the adapter channel

9. Click the Save icon (Disk) from the tool bar or select Connection, Save from the top menu bar.

10. Select the MDMP & Unicode tab and click the Unicode button.

11. Click the Save icon (Disk) from the tool bar or select Connection, Save from the top menu bar.

The RFC Destination and Program ID are now defined. Any Remote Function Call (RFC) can now be sent to the server via the Destination parameter of the Call Function API. The data for the function must be marshaled and sent to the adapter as this is a reverse invocation.

A.3.3.2 Testing the Configuration
To test the configuration:

1. Enter the Program ID in the BPEL process / channel for Oracle Application Adapter for SAP R/3 and start the channel.

2. Enter SAP GUI and navigate to SE37.
   ABAP Workbench authorization is required.

3. Enter a valid function name and click the Test Run (tool) icon.
   The Test Function Module: Initial Screen window is displayed.

4. Enter the name of the RFC Destination, any data, and then click the Execute (clock) icon.
   After a successful test, the execution time is displayed. The first run is always the longest, subsequent runs are faster, because the adapter must first obtain the metadata for the function and cache the metadata.

A.3.3.3 Synchronous RFC Calls
Synchronous RFC calls are defined in the same way as asynchronous on the SAP side. On the adapter side, ensure "request_response" is selected as the mode for the call. Orchestrate a process that takes the SAP delivered data, processes it, and returns it to SAP in the function format. Any format errors immediately terminate the request.
Example (in pseudo code):

```plaintext
Function: MY_COMPANY_GETLIST DESTINATION 'ORACLETDS'
tables mycompanies
 field1: name(20)
 field2: company(20)

The synchronous Get List call passes the empty table mycompanies to BPEL server and SAP waits. BPEL orchestration includes an object that has the following SQL statement:

select name(20), company(20) into mycompanies where country eq us

The SQL statement is executed on an Oracle database and the result set is returned and passed into the mycompanies table by an assignment statement in the orchestration. Remember that the SAP application is waiting during the entire process, and that the
SAP server may have a maximum online process time at which the process is automatically terminated by SAP.

The function returns to SAP via synchronous call and the table is returned with data to the calling process.

Time outs can occur if the execution time is longer than the connection pool execution time. Format exceptions can occur for type, length, or decimal places.

A.3.4 Application Link Embedding Configuration for the Event Adapter

The SAP R/3 event adapter receives IDocs (Intermediate Documents) from SAP R/3. To configure an SAP R/3 system to send IDocs to the SAP R/3 event adapter, use the ALE (Application Link Embedding) configuration to:

1. Register your program ID in SAP GUI.
2. Define a Port.
3. Create a Logical System.
4. Create a Partner Profile.
5. Create a Distribution Model for the Partner and Message Type.
6. Test the SAP R/3 event adapter.

A.3.5 Defining a Port

A Port identifies where to send messages. The Port type used by Oracle Application Adapter for SAP R/3 is the Transactional RFC port. By defining an ALE port and linking it to the RFC Destination, this creates the message execution process pathway.

To define a port:

1. In the ALE configuration, select Tools, Business Communications, IDocs Basis, IDoc, and then Port Definition.

 You can also run the WE21 transaction.

 The Ports in IDoc processing window is displayed.
2. In the left pane under Ports, select Transactional RFC and click Create (white paper icon).
3. Click Generate port name.

 The system generates the port name.
4. Enter the version of the IDocs to send through this port (usually 4).
5. Type or select the name of the RFC Destination created (for example, ORACLETDS) or enter the first letters and an asterisk for the select list.
6. Save the session, making note of the generated RFC port.

A.3.6 Configuring a Logical System

Note: You can skip this section if you are reusing a Logical System that has been previously defined.
A Logical System is the container object for configuration information about the Sender or Receiver party of a message. It is a Logical System because no connection information is stored, only information about the message that the end point is able to process and the method used to process the message(s).

This section contains the following topics:

- Section A.3.6.1, "SAP Transaction Shortcuts"
- Section A.3.6.2, "Defining a Logical System"

A.3.6.1 SAP Transaction Shortcuts

- `/n` - Ends the current transaction and opens a new one immediately.
- `/o` - Keeps the current transaction context and opens a new transaction in a new window.

A.3.6.2 Defining a Logical System

A Logical System definition is created by creating an entry in the SAP Implementation Guide for Customizing (IMG).

ALE is the SAP ERP Application Link Enablement system, so use the `/nSALE` transaction to navigate to the IMG for ALE.

1. Navigate to the SALE transaction.

 The Display IMG window displays the ALE configuration tree.

2. Perform the following steps:

 a. Expand the **Basic Settings** node.

 b. Expand **Logical Systems**.

 c. Click **Define Logical System**.

 d. Since SAP R/3 users may see a slightly different screen, expand the extra node, **Sending and Receiving Systems**.

 The "Caution: The table is cross-client" message is displayed.

 This message appears to inform you that changes to customizing data in Logical Systems applies to all users of the SAP ERP server. This is in contrast to most application data, which is specifically bound to a logon client. Do not make any changes to Logical System entries. Only add the new information. Use an SAP logon ID with the correct privileges to do so.

3. Click the green check mark to continue.

 The Change View "Logical Systems" window is displayed without highlighting.

4. Click the **New Entries** button.

 The New Entries: Overview of Added Entries window is displayed.

5. Enter the Logical System (for example, ORACLETDS) in the **Log.System** column and provide a description in the **Name** column.

 Note: The fields are highlighted in yellow to remind you that they are required fields.

6. Click the **Save** icon (floppy disk icon) on the top menu bar.
The Prompt for Workbench request dialog is displayed.

Note: Depending on system usage, the last workbench request number appears in the dialog. Do not use it and proceed to the next step.

7. Click the **New Request** icon to create a new request.
8. Enter the description for your entry in the request system. The remaining fields are filled in automatically and do not need to be changed.

The Prompt for Workbench Request dialog is displayed again, with the new request number filled in with the last request number created in the Workbench; do not use it.

9. Click the check mark to create a new request number.

The new Logical System is highlighted in blue to indicate the successful completion of this step.

A.3.7 Configuring a Distribution Model for a Logical System

A Distribution Model contains a Sender Logical System and a Receiver Logical System the type of Messages sent and received. If a given Sender or Receiver does not have a valid Distribution Model, then the message is not processed and routed to an error location. For advanced topics in Distribution Model, including SAP BAPI Objects and filtering, see the SAP documentation.

This section contains the following topic:

■ **Section A.3.7.1, "Defining a Distribution Model"**

A.3.7.1 Defining a Distribution Model

To define a distribution model:

1. Run the **bd64** transaction by typing `/nbd64` at the command bar, which is located at the upper-left of the screen.

The Display Distribution Model window is displayed in the default Display mode, which shows the current model view entries.

2. Expand the tree to view the entries for each model view.

To add items, the transaction must be switched into "change mode".

3. From the top menu, click **Distribution model** and select **Switch processing mode** from the list.

The screen refreshes and returns to the main Change Distribution Model window.

4. From the available menu buttons, select **Create Model View**.

The Create Model View dialog is displayed.

5. Enter a Model View name in the Short text field and a name in the Technical name field, which also serves as a description.

A good convention is to use names starting with the letter Z, since SAP does not overwrite these names in case of system updates. This is only the name of the Model View.

6. Click the green check mark icon to enter the information.
The screen refreshes and returns to the main Change Distribution Model window. The Distribution Model configured is now added to the list.

The Model View is in temporary transaction storage (and the entry appears in lighter color) until you click the Save icon. If the system connection is lost or times out, then the entry is lost. As a best practice, save your changes after each dialog during the Distribution Model configuration process to avoid losing changes.

7. Place the cursor on the entry previously defined.
 The entry is now highlighted.

8. In the middle menu bar, click the **Add Message Type** button.
 The Add Message Type dialog is displayed.

9. Enter the ALE Central Instance Sender.
 Consult your SAP administrator for this information.

10. Enter the Receiver (for example, ORACLETDS) in the Receiver field.

11. Enter a valid Message Type.

12. Repeat this procedure for each outbound Message Type in this partner scenario.

A.3.8 Defining a Partner Profile

A Partner Profile defines for each logical system, the messages processed, and how the message is processed. This allows for flexible configuration of processing details for partners. Each message type may have only one entry in a Partner Profile. To define a Partner Profile:

1. Run the `we20` transaction by typing `/nwe20` at the command bar, which is located at the upper-left of the screen.
 The Partner profiles window is displayed.

2. Select **Partner Type LS** and click the white icon on the middle menu bar. You can also select **Create** from the top menu.
 The right side of the screen changes to a blank Partner Profile form.

3. Enter the name of the Logical System (for example, ORACLETDS) in the partner number field and click the **Save** icon.
 The screen changes with the new profile.

4. Enter the Message Type in the Message Type field.

5. Enter the Port Number in the Receiver Port field.

6. Select the **Transfer IDoc immed.** button or select **Collect IDoc**, specify a batch size, and use bd87 to release IDocs for processing.

7. Enter the Basic Type (MATMAS05 for MATMAS, and so on).

8. Click the **Save** icon.

Note: You can skip this section if you are reusing a Partner Profile that has been previously defined.
A.3.9 Testing the SAP R/3 ALE Configuration

In the SAP Server, the BD12 transaction enables the sending of Master Data IDocs to any logical system, for example, to an event adapter.

This section contains the following topics:
- Section A.3.9.1, "Testing the SAP R/3 ALE Configuration"
- Section A.3.9.2, "SAP IDoc Events"
- Section A.3.9.3, "Working With IDoc Versions"

A.3.9.1 Testing the SAP R/3 ALE Configuration

To test the SAP R/3 Application Link Embedding (ALE) configuration:

1. In the Send Customers window, enter the IDoc message type (for example, DEBMAS) in the Output type field.
2. In the Logical system field, enter the logical system, for example, ORACLETDS
3. Click Run.

The SAP R/3 event adapter receives the IDoc in XML format. No response is expected from the event adapter.

A confirmation message is displayed.

The same number of communication IDocs should also be generated. If a different number appears for Communication IDoc count versus the Master IDoc count, some IDocs may have failed the syntax check. Check with the IDoc application developer. Usually, the IDocs should appear at the adapter server almost immediately. If no IDocs appear, then check the following:

1. The Collect IDocs option is selected in the Partner Profile (go to bd87 to release them for processing).
2. No other server is exposing the same Program ID.

A.3.9.2 SAP IDoc Events

Before IDocs can be received from SAP, a channel for the Oracle Application Adapter for SAP R/3 must be configured using Application Explorer. In addition, configuration on the SAP application server is also required.

1. Create a RFC Destination (via SM59) or use the same destination defined in the previous section (SAP RFC Outbound Outline).
 a. Enter a Destination Name.
 b. Enter a Registered Program ID.
 c. In the MDMP & Unicode tab, ensure that the Unicode option is selected.
 d. Start Oracle BPEL/Mediator.
 e. Enter the same Registered Program ID value from step b for the BPEL or Mediator channel.
 f. Start the channel.
 g. Test the connection using the Test button in SAP.
2. Create or use a Logical System as described in "Configuring a Logical System" on page A-6.
3. Define or use a Distribution Model as described in "Configuring a Distribution Model for a Logical System" on page A-7.

5. Create an SAP Outbound Partner Profile via transaction WE20.

A.3.9.3 Working With IDoc Versions
IDoc Outbound Segments in an SAP outbound IDoc must match the metadata appropriate for the release.

The adapter has three settings for IDoc release version:

■ SAP logon release - The current version.

■ IDoc release - The sending application would have to modify the IDoc control record to output the correct version, if not, it defaults to the SAP logon release.

■ User input

The user input field can have two types of input. If the input is an SAP release, such as 700, then the metadata from that release will be used.

A blank value in this field causes SAP to return the highest version metadata it has, released or not. This is often the best option when working with unknown or recent IDocs. If the Segment name cannot be found in the released Segments list, SAP will return (through the adapter) the message "Segment unknown". The only option to process the IDoc in this case is to either release the segment or change the adapter setting to "user input" with a blank value.
adapter
Provides universal connectivity by enabling an electronic interface to be accommodated (without loss of function) to another electronic interface.

agent
Supports service protocols in listeners and documents.

business service
Also known as a Web service. A Web service is a self-contained, modularized function that can be published and accessed across a network using open standards. It is the implementation of an interface by a component and is an executable entity.

channel
Represents configured connections to particular instances of back-end systems. A channel binds one or more event ports to a particular listener managed by an adapter.

listener
A component that accepts requests from client applications.

port
Associates a particular business object exposed by the adapter with a particular disposition. A disposition is a URL that defines the protocol and location of the event data. The port defines the end point of the event consumption.
adapter configuration, updating, 5-2
adapter exceptions, 12-4 to 12-6
adapter types
resource, 1-2, 5-1 to 5-2
adapters
configuring, 4-1 to 4-27, 5-2
deploying, 1-5, 5-1 to 5-2, 6-2, 8-2
integrating with BPEL Process Manager, 6-1, 8-1
troubleshooting, 12-1 to 12-7
Adapters node, 6-40
Add Channel dialog box, 4-20
Add Target dialog box, 4-6
Advanced tab, 4-9, 4-23, 6-39
application adapters
configuring, 4-1 to 4-27, 5-2
deploying, 5-1 to 5-2, 6-2, 8-2
integrating with BPEL Process Manager, 6-1, 8-1
troubleshooting, 12-1 to 12-7
Application Explorer, 1-2, 6-7, 6-36
application systems and, 4-5
channels and, 4-20
debugging and, 12-3
J2CA configuration and, 5-2
OracleAS Adapter J2CA and, 12-4
schemas and, 4-15
testing and, 12-3
troubleshooting, 12-2 to 12-3
WSDL files and, 6-36
Application Server dialog box, 4-6
Application Server parameter, 4-8
application systems
Application Explorer and, 4-5
supported, 4-5

OracleAS Adapter for MySAP ERP and, 6-1, 8-1
BSE (OracleAS Adapter Business Services Engine), 1-2, 1-5
troubleshooting, 12-5
BSE URL field, 4-3
Business Application Programming Interfaces (BAPI), 12-4
business events, 1-2
business functions, 4-5, 4-15 to 4-19
creating schemas for, 4-15
business processes, 1-4
business services
creating, 4-17 to 4-19
testing, 4-19
CCI calls, 5-1
channels, 4-20
Application Explorer and, 4-20
creating, 4-20, 6-36 to 6-40
deleting, 4-26
ing, 4-26
starting, 4-25, 6-40
stopping, 4-25, 6-40
testing and debugging and, 6-40
Channels node, 4-21, 6-37
channels. See also listeners
Client parameter, 4-7, 4-23, 6-38
Code page parameter, 4-7, 4-23, 6-38
Commit with wait parameter, 4-9, 4-23, 6-39
configuration parameters, 5-4
IWayConfig, 5-4
IWayHome, 5-4
IWayRepoPassword, 5-4
IWayRepoURL, 5-4
IWayRepoUser, 5-4
Loglevel, 5-4
configurations
connecting to, 4-4
defining, 4-2 to 4-4
overwriting, 5-4
Configurations node, 4-3
configuring adapters, 4-1 to 4-27, 5-2
connecting to MySAP ERP, 4-5 to 4-13, 6-8,
6-40 to 6-41, 12-2, 12-6

Index
connecting to OracleAS Adapter J2CA, 12-4
Connection dialog box, 4-13, 6-41
connection parameters, 4-7 to 4-13, 4-22 to 4-24, 12-2
 Advanced, 4-9, 4-23, 6-39
 Application Server, 4-8
 BAPI Exception Handling, 4-9
 Client, 4-7, 4-23, 6-38
 Code page, 4-7
 Commit with wait, 4-9
 Connection pool name, 4-9
 Connection pool size, 4-9
 EDI Version, 4-8
 Language, 4-7
 Logon ticket (SSO2), 4-11
 Logon ticket (X509), 4-11
 MySAP ERP Trace, 4-7
 Password, 4-7, 4-23, 6-38
 Security, 4-11
 SNC level, 4-11
 SNC library path, 4-12, 4-24, 6-39
 SNC mode, 4-11
 SNC name, 4-11
 SNC partner, 4-11
 System, 4-7, 4-22, 6-38
 System Number, 4-8
 User, 4-7, 4-23, 6-38
 Connection pool name parameter, 4-9, 4-23, 6-39
 Connection pool size parameter, 4-9, 4-23, 6-39
connections
 closing, 4-13
 deleting, 4-13
 establishing, 4-5 to 4-13, 6-41
Connector
 deploying to Oracle Application Server, 5-1
 connector factories, 5-2
 connector factory objects, 5-2
 multiple, 5-4
Create Outbound JCA Service
 (Request/Response), 6-9
Create Web Service dialog box, 4-18
create channels, 6-36 to 6-40
creating events, 6-40 to 6-43
creating repository projects, 4-2 to 4-4
customer master data, 6-54

D
database connections
 opening, 5-4
databases
 connecting to, 5-4
 Oracle, 5-4
DEBMAS05
 locating, 6-40
deploying adapters, 5-1 to 5-2, 6-2, 8-2
Description field, 4-6, 4-18
design time, 6-36
 configuring, 6-7, 6-36
disconnecting from MySAP ERP, 4-13

E
 Eclipse. See JDeveloper
 EDI Version parameter, 4-8
 editing channels, 4-26
 editing targets, 4-14
 EJB (Enterprise Java Beans), 5-1
 Enterprise Connector for J2EE Connector Architecture (J2CA), 1-5
 Enterprise Java Beans (EJB), 5-1
error messages, 12-2 to 12-7
target systems and, 12-5
event adapters
 configuring, 4-20
 event handling, A-1
 event integration
 verifying, 6-53
 event messages, 6-36
 event ports
 creating, 6-40 to 6-43
events, 1-2, 4-20, A-1
 configuring, 4-20
 creating, 6-40 to 6-43
 triggering, 6-53
Existing Service Names list, 4-18
Export WSDL dialog box, 6-42

F
 fault code elements, 12-5
 fault string elements, 12-5

H
 Hostname parameter, 4-3

I
 IDoc (Intermediate Documents), 12-4
 IDoc requests, 1-5
 in, 4-23
 inbound J2CA services, 6-36
 input XML documents, 12-4
 installation directories, 5-4
 Intermediate Documents (IDoc), 12-4
 IWayConfig parameter, 5-4
 IWayHome parameter, 5-4
 IWayRepoPassword parameter, 5-4
 IWayRepoURL parameter, 5-4
 IWayRepoUser parameter, 5-4

J
 J2CA (Enterprise Connector for J2EE Connector Architecture), 1-5
 OracleAS Adapter and, 5-1
 J2CA configuration
 Application Explorer and, 5-2
 J2CA resource adapters, 1-2, 5-1
 J2CA services, 6-36
 Java program clients, 5-1
Index-3

JDeveloper, 6-1, 8-1

L
Language parameter, 4-7, 4-23, 6-38
License and Method dialog box, 4-18
License field, 4-18
licenses, 4-18
list of nodes, 12-2
listeners, 1-5, 4-5
listeners. See also channels
locating DEBMAS05, 6-40
log files, 12-1
log levels
 overwriting, 5-4
logical systems, 6-54
Loglevel parameter, 5-4
Logon ticket (SS02) parameter, 4-11
Logon ticket (X509) parameter, 4-11

M
managed connector factories, 5-2
managed connector factory objects, 5-2
 multiple, 5-4
ManagedConnectionFactory parameter, 5-4
Mediator Inbound Process, 7-12
Mediator Outbound Process, 7-2
Message Server dialog box, 4-20
message types
 event, 6-36
messages, 1-2
Method Name field, 4-18
MySAP Easy Access window, 6-53
MySAP ERP
 connecting to, 1-4, 4-5 to 4-13, 6-8, 6-40 to 6-41, 12-2, 12-6
disconnecting from, 4-13
 integrating, 1-4
MySAP ERP business functions, 4-5, 4-15 to 4-19
 creating schemas for, 4-15
MySAP ERP business processes, 1-4
MySAP ERP platforms, 1-4
MySAP ERP Trace parameter, 4-7, 4-23, 6-38
MySAP node, 6-40 to 6-41
MySAP program ID (identifiers), 6-54
MySAP Workbench, 6-53

N
Name field, 4-6
New Configuration dialog box, 4-3 to 4-4
Node list, 12-2
nodes
 Adapters, 6-40
 Channels, 4-21, 6-37
 Configurations, 4-3
 connected, 4-13, 6-41
disconnected, 4-14
MySAP, 6-40 to 6-41
Ports, 6-37

O
Object type, 12-4
OC4J-ra.xml file, 5-2 to 5-4
Oracle Application Server
 deployment of Connector to, 5-1
Oracle databases, 5-4
Oracle JDeveloper, 6-1, 8-1
Oracle JDeveloper BPEL Designer. See BPEL Designer, JDeveloper, or Oracle JDeveloper
Oracle’s Unified Method (OUM), ix
OracleAS Adapter
 installation directory and, 5-4
 J2CA and, 5-1
OracleAS Adapter Application Explorer. See Application Explorer
OracleAS Adapter Business Services Engine (BSE), 1-2, 1-5
troubleshooting, 12-5
OracleAS Adapter for MySAP ERP
 BPEL Process Manager and, 6-1, 8-1
 configuring, 4-1 to 4-27
deploying, 1-2, 6-2, 8-2
troubleshooting, 12-1 to 12-7
OracleAS Adapter J2CA
 Application Explorer and, 12-4
 connecting to, 12-4
outbound MySAP ERP processing, A-1 to ??

P
parameter types
 channel configuration, 4-26
 configuration, 5-4
 connection, 4-22 to 4-24, 12-2
Password parameter, 4-7, 4-23, 6-38
passwords, 4-7, 4-23, 5-4, 6-38
permissions
 configuring, 12-4
Port Number parameter, 4-3
ports
 creating, 6-40 to 6-43
Ports node, 6-37
Process Manager. See BPEL Process Manager
program ID (identifiers), 6-54
properties, 5-4

R
Remote Function module, 12-4
repository projects
 creating, 4-2 to 4-4
 Web services and, 4-2
request processing
 BAPI, 1-5
 IDoc, 1-5
 RFC, 1-5
request schemas, 4-15
requests
 executing, 12-4
resource adapters, 5-1 to 5-2
deploying, 1-2
response schemas, 4-15
Restrictions page, 6-54
RFC requests, 1-5

S
sapco3.dll file, 12-2
sapco3.jar file, 12-2 to 12-3
schemas
 Application Explorer and, 4-15
 creating, 4-15
Security tab, 4-11
Send Customers window, 6-54
service names, 4-18
Service Provider list, 4-3 to 4-4
Service-Oriented Architecture (SOA), 6-1, 8-1
services, 1-2
 creating, 4-17 to 4-19
 testing, 4-19
servlets, 5-1
SNC level parameter, 4-11
SNC library path parameter, 4-11
SNC mode parameter, 4-11
SNC name parameter, 4-11
SNC partner parameter, 4-11
SOA (Service-Oriented Architecture), 6-1, 8-1
SOAP agents, 12-5
SOAP faults, 12-5
SOAP requests, 12-5 to 12-7
 errors and, 12-6 to 12-7
System Number parameter, 4-8
System tab, 4-7, 4-22, 6-38

T
target systems
 errors and, 12-5
Target Type list, 4-6
targets
 connecting to, 4-12, 6-41, 12-6
 defining, 4-5
 deleting, 4-13
 disconnecting from, 4-13
 editing, 4-14
testing Web services, 4-19
trace information, 12-1
transaction processing, 1-2
triggering events in MySAP ERP, 6-53
troubleshooting, 12-1 to 12-7
 Application Explorer, 12-2 to 12-3
 BSE, 12-5
 Web services, 12-5 to 12-7

U
updating adapter configuration, 5-2
User parameter, 4-7, 4-23, 6-38
User tab, 4-7, 4-23, 6-38

W
Web Service Definition Language (WSDL), 4-16 to 4-17
Web service names, 4-18
Web service projects
 creating, 4-2
Web services, 1-2
 creating, 4-17 to 4-19
 deploying, 12-5 to 12-7
 integrating, 6-1, 8-1
 repository projects and, 4-2
 testing, 4-19
troubleshooting, 12-5 to 12-7
WSDL (Web Service Definition Language), 4-16 to 4-17
WSDL documents, 6-1, 8-1
WSDL files, 6-1, 8-1
 Application Explorer and, 6-36

X
XML documents
 input, 12-4
XML messages, 1-2
XML schemas
 creating, 4-15