
Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide for Release 12.1.3

Part I Introduction and Concepts

1 Introduction to Oracle JCA Adapters

	1.1 Features of Oracle JCA Adapters
	1.2 Types of Oracle JCA Adapters
	1.2.1 Oracle Technology Adapters
	1.2.1.1 Architecture
	1.2.1.2 Design-Time Components
	1.2.1.3 Runtime Components
	1.2.1.3.1 Fusion Middleware Control Accessibility and Technology Adapters

	1.2.1.4 Deployment

	1.2.2 Legacy Adapters
	1.2.2.1 Architecture
	1.2.2.1.1 Oracle Connect
	1.2.2.1.2 Oracle Studio
	1.2.2.1.3 J2CA Adapter

	1.2.2.2 Design-Time Components
	1.2.2.3 Runtime Components
	1.2.2.4 Deployment

	1.2.3 Packaged-Application Adapters
	1.2.3.1 Architecture
	1.2.3.1.1 Application Explorer
	1.2.3.1.2 BSE
	1.2.3.1.3 J2CA 1.5 Resource Adapter

	1.2.3.2 Design-Time Components
	1.2.3.3 Runtime Components
	1.2.3.4 Deployment

	1.2.4 Oracle E-Business Suite Adapter

	1.3 Types of Oracle JCA Adapters Services
	1.3.1 Request-Response (Outbound Interaction) Service
	1.3.2 Event Notification (Inbound Interaction) Service
	1.3.3 Metadata Service

2 Adapter Framework

	2.1 Installing Oracle JCA Adapters
	2.2 Starting and Stopping Oracle JCA Adapters
	2.3 Defining Adapter Interface by Importing an Existing WSDL
	2.3.1 Adapter Configuration Wizard for Oracle MQ Series Adapter, Oracle JMS Adapter and the Oracle AQ Adapter
	2.3.1.1 Example of Use of Callbacks

	2.4 Configuring Message Header Properties for Oracle JCA Adapters
	2.5 Physically Deploying Oracle JCA Adapters
	2.5.1 The RAR Deployment Descriptor File and the weblogic-ra.xml Template File

	2.6 Creating an Application Server Connection for Oracle JCA Adapters
	2.7 Deploying Oracle JCA Adapter Applications from JDeveloper
	2.7.1 Deploying an Application Profile for the SOA Project and the Application
	2.7.2 Adapter Deployment Validation

	2.8 Manually Deploying an Adapter RAR File that Does Not Have a Jar File Associated With It
	2.8.1 Example of Manual Deployment

	2.9 Handling the Deployment Plan When Working on a Remote Oracle SOA Server
	2.10 Migrating Repositories from Different Environments
	2.11 Message Ordering
	2.12 How Oracle JCA Adapters Ensure No Message Loss
	2.12.1 XA Transaction Support
	2.12.2 Local Transactions and Global (XA) Transactions
	2.12.2.1 Adapter Support of Local Transactions
	2.12.2.2 Adapter Support of Global Transactions
	2.12.2.2.1 Global Transactions, Retries and Rollbacks and Fault Policies

	2.12.3 Basic Concepts of Transactions and Adapters
	2.12.3.1 Asynchronous Transaction Flow
	2.12.3.1.1 Example using JMS, BPEL, DB Adapter and a Database

	2.12.3.2 Synchronous Transaction Flow

	2.12.4 Inbound Transactions
	2.12.5 Outbound Transactions

	2.13 Composite Availability and Inbound Adapters
	2.14 Singleton (Active/Passive) Inbound Endpoint Lifecycle Support Within Adapters
	2.14.1 Multiple Activations of the Same Adapter Endpoint
	2.14.2 Hot-Standby State

	2.15 Correlation Support Within Adapters
	2.15.1 CorrelationID of Receive Message Not Matching Invoke: Log Error Message
	2.15.1.1 Rejecting Nonmatching Native Correlation IDs

	2.16 Setting Payload Size Threshold
	2.16.1 Payload Native Size
	2.16.1.1 Setting the Payload Threshold
	2.16.1.2 Limitations on Payload Size Enforcement
	2.16.1.2.1 Changing Global Payload Size to a Finite Value

	2.17 Streaming Large Payload
	2.18 Batching and Debatching Support
	2.19 Adding an Adapter Connection Factory
	2.19.1 Creating a Data Source
	2.19.2 Creating a Connection Pool

	2.20 Adding or Updating an Adapter Connection Factory
	2.20.1 Modify the JCA File
	2.20.2 Use a Config Plan
	2.20.3 Use the Web Logic Server Console to Create a New Connection

	2.21 Recommended Setting for Data Sources Used by Oracle JCA Adapters
	2.22 Error Handling
	2.22.1 Handling Rejected Messages
	2.22.1.1 How Errors or Faults that Arise Downstream are Handled
	2.22.1.2 Configuring Rejection Handlers
	2.22.1.2.1 Creating Fault Policies

	2.22.1.3 Checking for Rejected Messages
	2.22.1.3.1 Checking from the Database
	2.22.1.3.2 Checking from the Fusion Middleware
Control Console
	2.22.1.3.3 Handling Message Errors: A Sample Scenario

	2.22.2 Inbound Interaction Error Handling
	2.22.2.1 Message Error Rejection Handlers
	2.22.2.1.1 Web Service Handler
	2.22.2.1.2 Custom Java Handler
	2.22.2.1.3 JMS Queue
	2.22.2.1.4 File

	2.22.2.2 Inbound Retryable Errors
	2.22.2.2.1 Configuring Inbound Adapters to Handle Retryable Errors
	2.22.2.2.2 Specifying Inbound Retry Properties in the composite.xml File
	2.22.2.2.3 Changing the Default Value of jca.retry. count for Inbound Adapter Endpoints
	2.22.2.2.4 Global Property Modification using the MBeans Browser

	2.22.2.3 Inbound Non-Retryable Errors
	2.22.2.3.1 Examples of Non-Retryable Errors

	2.22.3 Outbound Adapter Interaction Error Handling
	2.22.3.1 Retryable Errors for Outbound Adapter Error Handling
	2.22.3.1.1 Setting Retryable Properties for Outbound Error Handling in the composite.xml File
	2.22.3.1.2 Example: How to Set Values for Retryable Exceptions for Outbound Interactions

	2.22.3.2 Non-Retryable Errors for Outbound Interaction Handling
	2.22.3.2.1 Fault Propagation
	2.22.3.2.2 Two Cases When the Fault Policy Mechanism Does Not Work

	2.23 Integrating JCA adapters with Oracle Web Services Manager to Protect Sensitive Data in Audit Trails
	2.23.1 Attaching the JCA Encryption on the Endpoint

	2.24 Testing Applications
	2.25 Setting the Trace Level of Oracle JCA Adapters
	2.25.1 How to Set the Trace Level of Oracle JCA Adapters

	2.26 Viewing Adapter Logs
	2.27 Adapter Diagnosability Dumps
	2.28 Creating a Custom Adapter
	2.28.1 Configuring a Custom Adapter
	2.28.1.1 Custom Adapter Screen Flow

	2.28.2 Frequently Asked Questions about Adapters
	2.28.2.1 Why are My Applications Timing Out?
	2.28.2.2 How do Transactional and Non-Transactional Adapters Differ?
	2.28.2.3 What Happened to My Application's Rejected Messages? Can One Do Anything With Them?

	2.29 Advanced Topic: Using the Execution Context ID Across Technologies
	2.29.1 Placing the ECID
	2.29.2 Configuring Composite Services/References
	2.29.3 Simple Database/File/JMS Example

3 Adapter Integration with Oracle Application Server Components

	3.1 Adapter Integration with Oracle WebLogic Server
	3.1.1 Oracle WebLogic Server Overview
	3.1.2 Oracle WebLogic Server Integration with Adapters
	3.1.2.1 Design Time
	3.1.2.2 Runtime

	3.2 Adapter Integration with Oracle Fusion Middleware
	3.2.1 Oracle BPEL Process Manager Overview
	3.2.2 Oracle Mediator Overview
	3.2.3 Oracle Fusion Middleware Integration with Adapters
	3.2.3.1 Design Time
	3.2.3.2 Runtime
	3.2.3.3 Use Case: Integration with Oracle BPEL Process Manager

	3.2.4 Oracle SOA Composite Integration with Adapters
	3.2.4.1 Oracle SOA Composite Overview
	3.2.4.2 Adapters Integration With Oracle SOA Composite

	3.3 Monitoring Oracle JCA Adapters

4 Oracle JCA Adapter for Files/FTP

	4.1 Introduction to Oracle File and FTP Adapters
	4.1.1 Oracle File and FTP Adapters Architecture
	4.1.2 Oracle File and FTP Adapters Integration with Oracle BPEL PM
	4.1.3 Oracle File and FTP Adapters Integration with Mediator
	4.1.4 Oracle File and FTP Adapters Integration with SOA Composite

	4.2 Oracle File and FTP Adapters Features
	4.2.1 File Formats
	4.2.2 FTP Servers
	4.2.3 Inbound and Outbound Interactions
	4.2.4 File Debatching
	4.2.5 File ChunkedRead
	4.2.5.1 Chunked Interaction File Adapter Processing
	4.2.5.1.1 File Chunked Interaction BPEL Invocation
	4.2.5.1.2 The ChunkSize Parameter

	4.2.5.2 Using the File Adapter Configuration Wizard to Perform Chunked Read Interaction Modelling
	4.2.5.2.1 Chunked Interaction Error Handling Summary
	4.2.5.2.2 Skipping Bad Records
	4.2.5.2.3 Examples of Chunked Interaction Header and Rejected Chunked Interaction Messages

	4.2.6 File Sorting
	4.2.7 Dynamic Outbound Directory and File Name Specification
	4.2.8 Security
	4.2.9 Nontransactional
	4.2.10 Proxy Support
	4.2.11 No Payload Support
	4.2.12 Large Payload Support
	4.2.13 File-Based Triggers
	4.2.14 Pre-Processing and Post-Processing of Files
	4.2.14.1 Mechanism For Pre-Processing and Post-Processing of Files
	4.2.14.2 Configuring a Pipeline
	4.2.14.2.1 Implementing and Extending Valves
	4.2.14.2.2 Compiling the Valves
	4.2.14.2.3 Creating a Pipeline
	4.2.14.2.4 Adding the Pipeline to the SOA Project Directory
	4.2.14.2.5 Registering the Pipeline

	4.2.14.3 Using a Re-Entrant Valve For Processing Zip Files
	4.2.14.4 Configuring the Batch Notification Handler

	4.2.15 Error Handling
	4.2.15.1 Sending a Malformed XML File to a Local File System Folder

	4.2.16 Threading Model
	4.2.16.1 Default Threading Model
	4.2.16.2 Modified Threading Model
	4.2.16.2.1 Single Threaded Model
	4.2.16.2.2 Partitioned Threaded Model

	4.2.17 Performance Tuning
	4.2.18 High Availability
	4.2.19 Multiple Directories
	4.2.20 Append Mode
	4.2.21 Recursive Processing of Files Within Directories in Oracle FTP Adapter
	4.2.21.1 Configure the Parameters in the Deployment Descriptor

	4.2.22 Securing Enterprise Information System Credentials

	4.3 Oracle File and FTP Adapter Concepts
	4.3.1 Oracle File Adapter Read File Concepts
	4.3.1.1 Inbound Operation
	4.3.1.2 Inbound File Directory Specifications
	4.3.1.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite
	4.3.1.2.2 Archiving Successfully Processed Files
	4.3.1.2.3 Deleting Files After Retrieval

	4.3.1.3 File Matching and Batch Processing
	4.3.1.3.1 Specifying a Naming Pattern
	4.3.1.3.2 Including and Excluding Files
	4.3.1.3.3 File Include and Exclude
	4.3.1.3.4 Debatching Messages

	4.3.1.4 File Polling
	4.3.1.4.1 Using Trigger Files

	4.3.1.5 Postprocessing
	4.3.1.6 Native Data Translation
	4.3.1.7 Inbound Service
	4.3.1.8 Inbound Headers

	4.3.2 Oracle File Adapter Write File Concepts
	4.3.2.1 Outbound Operation
	4.3.2.2 Outbound File Directory Creation
	4.3.2.2.1 Specifying Outbound Physical or Logical Directory Paths in Oracle BPEL PM
	4.3.2.2.2 Specifying Outbound Physical or Logical Directory Paths in Mediator
	4.3.2.2.3 Specifying a Dynamic Outbound Directory Name
	4.3.2.2.4 Specifying the Outbound File Naming Convention
	4.3.2.2.5 Specifying a Dynamic Outbound File Name
	4.3.2.2.6 Batching Multiple Outbound Messages

	4.3.2.3 Native Data Translation
	4.3.2.4 Outbound Service Files
	4.3.2.5 Outbound Headers

	4.3.3 Oracle File Adapter Synchronous Read Concepts
	4.3.4 Oracle File Adapter File Listing Concepts
	4.3.4.1 Listing Operation
	4.3.4.2 File Directory Specifications
	4.3.4.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite

	4.3.4.3 File Matching
	4.3.4.3.1 Specifying a Naming Pattern
	4.3.4.3.2 Including and Excluding Files

	4.3.5 Oracle FTP Adapter Get File Concepts
	4.3.6 Oracle FTP Adapter Put File Concepts
	4.3.7 Oracle FTP Adapter Synchronous Get File Concepts
	4.3.8 Oracle FTP Adapter File Listing Concepts
	4.3.9 File and FTP Adapter Extensions

	4.4 Configuring Oracle File and FTP Adapters
	4.4.1 Configuring the Credentials for Accessing a Remote FTP Server
	4.4.2 Configuring Oracle File and FTP Adapters for High Availability
	4.4.2.1 Prerequisites for High Availability
	4.4.2.2 High Availability in Inbound Operations
	4.4.2.2.1 Using Database Table as a Coordinator

	4.4.2.3 High Availability in Outbound Operations
	4.4.2.3.1 Using a Database Mutex

	4.4.3 Using Secure FTP with the Oracle FTP Adapter
	4.4.3.1 Secure FTP Overview
	4.4.3.2 Installing and Configuring FTP Over SSL on Solaris and Linux
	4.4.3.2.1 Installing and Configuring OpenSSL
	4.4.3.2.2 Installing and Configuring vsftpd
	4.4.3.2.3 Setting Up the Oracle FTP Adapter

	4.4.3.3 Installing and Configuring FTP Over SSL on Windows
	4.4.3.3.1 Installing OpenSSL
	4.4.3.3.2 Generating OpenSSL Server Key and Certificate
	4.4.3.3.3 Importing the Server Key and Certificate Into FileZilla Server
	4.4.3.3.4 Converting the Server Key From PEM to PKCS12 Format
	4.4.3.3.5 Configuring Oracle FTP Adapter Deployment Descriptor to Use the New Key

	4.4.4 Using SFTP with Oracle FTP Adapter
	4.4.4.1 SFTP Overview
	4.4.4.1.1 Encryption
	4.4.4.1.2 Authentication
	4.4.4.1.3 Integrity
	4.4.4.1.4 Data Compression

	4.4.4.2 Install and Configure OpenSSH for Windows
	4.4.4.3 Set Up Oracle FTP Adapter for SFTP
	4.4.4.3.1 Configuring Oracle FTP Adapter for Password Authentication
	4.4.4.3.2 Configuring Oracle FTP Adapter for Public Key Authentication
	4.4.4.3.3 Configuring OpenSSH for Public-Key Authentication
	4.4.4.3.4 Configuring Oracle FTP Adapter for Public Key Authentication with OpenSSH Running Inside a Firewall
	4.4.4.3.5 Configuring Oracle FTP Adapter for Public Key Authentication with OpenSSH Running Outside a Firewall

	4.4.5 Configuring Oracle FTP Adapter for HTTP Proxy
	4.4.5.1 Configuring for Plain FTP Mode
	4.4.5.1.1 Proxy Definition File

	4.4.5.2 Configuring for SFTP Mode

	4.4.6 Configuring File and FTP Adapters for High Availability
	4.4.6.1 Inbound Operations
	4.4.6.2 Outbound Operations
	4.4.6.3 Additional Considerations
	4.4.6.3.1 Inbound Operations
	4.4.6.3.2 Outbound Operations
	4.4.6.3.3 Configuring XA in High-Availability Scenarios

	4.5 Oracle File and FTP Adapters Use Cases
	4.5.1 Oracle File Adapter XML Debatching
	4.5.1.1 Prerequisites
	4.5.1.2 Splitting Input XML Document that Contains Repeating Element
	4.5.1.3 Designing the SOA Composite
	4.5.1.4 Creating the Inbound Oracle File Adapter Service
	4.5.1.5 Creating the Outbound File Adapter Service
	4.5.1.6 Wiring Services and Activities
	4.5.1.6.1 Add a Receive Activity
	4.5.1.6.2 Add an Invoke Activity
	4.5.1.6.3 Add a Transform Activity

	4.5.1.7 Deploying with JDeveloper
	4.5.1.8 Monitoring Using Oracle Enterprise Manager
Fusion Middleware Control Console (Fusion Middleware
Control Console)

	4.5.2 Flat Structure for Oracle BPEL PM
	4.5.2.1 Prerequisites
	4.5.2.2 Designing the SOA Composite
	4.5.2.3 Creating the Inbound Oracle File Adapter Service
	4.5.2.4 Creating the Outbound Oracle File Adapter Service
	4.5.2.5 Wiring Services and Activities
	4.5.2.5.1 Add a Receive Activity
	4.5.2.5.2 Add an Invoke Activity
	4.5.2.5.3 Add a Transform Activity

	4.5.2.6 Deploying with JDeveloper
	4.5.2.7 Monitoring Using Oracle Fusion Middleware
Control Console

	4.5.3 Flat Structure for Mediator
	4.5.3.1 Prerequisites
	4.5.3.2 Creating a Mediator Application and Project
	4.5.3.3 Importing the Schema Definition (.XSD) Files
	4.5.3.4 Creating the Inbound Oracle File Adapter Service
	4.5.3.5 Creating the Outbound Oracle FTP Adapter Service
	4.5.3.6 Wiring Services
	4.5.3.7 Creating the Routing Rule
	4.5.3.8 Deploying with JDeveloper
	4.5.3.9 Runtime Task

	4.5.4 Oracle File Adapter Scalable DOM
	4.5.4.1 Prerequisites
	4.5.4.2 Designing the SOA Composite
	4.5.4.3 Creating the Inbound Oracle File Adapter Service
	4.5.4.4 Creating the Outbound Oracle File Adapter Service
	4.5.4.5 Wiring Services and Activities
	4.5.4.5.1 Add a Receive Activity
	4.5.4.5.2 Add an Invoke Activity
	4.5.4.5.3 Add an Assign Activity

	4.5.4.6 Deploying with JDeveloper
	4.5.4.7 Monitoring Using Fusion Middleware
Control Console

	4.5.5 Oracle File Adapter Chunked Read
	4.5.5.1 Prerequisites
	4.5.5.2 Designing the SOA Composite
	4.5.5.3 Creating the Inbound Oracle File Adapter Service
	4.5.5.4 Creating the Outbound Oracle File Adapter Service
	4.5.5.4.1 Add Another Outbound Oracle File Adapter Service

	4.5.5.5 Wiring Services and Activities
	4.5.5.5.1 Add a Receive Activity
	4.5.5.5.2 Add an Assign Activity
	4.5.5.5.3 Add an Invoke Activity
	4.5.5.5.4 Add a Switch Activity
	4.5.5.5.5 Add a Transform Activity

	4.5.5.6 Deploying with JDeveloper
	4.5.5.7 Monitoring Using Fusion Middleware
Control Console

	4.5.6 Oracle File Adapter Read File As Attachments
	4.5.6.1 Prerequisites
	4.5.6.2 Designing the SOA Composite
	4.5.6.3 Creating the Inbound Oracle File Adapter Service
	4.5.6.4 Creating the Outbound Oracle File Adapter Service
	4.5.6.5 Wiring Services and Activities
	4.5.6.5.1 Add a Receive Activity
	4.5.6.5.2 Add an Invoke Activity
	4.5.6.5.3 Add an Assign Activity

	4.5.6.6 Deploying with JDeveloper
	4.5.6.7 Monitoring Using Fusion Middleware
Control Console

	4.5.7 Oracle File Adapter File Listing
	4.5.7.1 Prerequisites
	4.5.7.2 Designing the SOA Composite
	4.5.7.3 Creating the Outbound Oracle File Adapter Service
	4.5.7.4 Wiring Services and Activities
	4.5.7.4.1 Create a String Variable
	4.5.7.4.2 Add an Invoke Activity
	4.5.7.4.3 Add an Assign Activity

	4.5.7.5 Deploying with JDeveloper
	4.5.7.6 Monitoring Using Fusion Middleware
Control Console

	4.5.8 Oracle File Adapter Complex Structure
	4.5.8.1 Prerequisites
	4.5.8.2 Designing the SOA Composite
	4.5.8.3 Creating the Inbound Oracle File Adapter Service
	4.5.8.4 Creating the Outbound Oracle File Adapter Service
	4.5.8.5 Wiring Services and Activities
	4.5.8.5.1 Add a Receive Activity
	4.5.8.5.2 Add an Invoke Activity
	4.5.8.5.3 Add a Transform Activity

	4.5.8.6 Deploying with JDeveloper
	4.5.8.7 Monitoring Using Fusion Middleware
Control Console

	4.5.9 Oracle FTP Adapter Debatching
	4.5.9.1 Prerequisites
	4.5.9.2 Designing the SOA Composite
	4.5.9.3 Creating the Inbound Oracle FTP Adapter Service
	4.5.9.4 Creating the Outbound Oracle FTP Adapter Service
	4.5.9.5 Wiring Services and Activities
	4.5.9.5.1 Add a Receive Activity
	4.5.9.5.2 Add an Invoke Activity
	4.5.9.5.3 Add a Switch Activity

	4.5.9.6 Deploying with JDeveloper
	4.5.9.7 Monitoring Using Fusion Middleware
Control Console

	4.5.10 Oracle FTP Adapter Dynamic Synchronous Read
	4.5.10.1 Prerequisites
	4.5.10.2 Designing the SOA Composite
	4.5.10.3 Creating the Inbound Oracle File Adapter Service
	4.5.10.4 Creating the Outbound Oracle FTP Adapter Service
	4.5.10.4.1 Add an Outbound Oracle File Adapter Service

	4.5.10.5 Wiring Services and Activities
	4.5.10.5.1 Add a Receive Activity
	4.5.10.5.2 Create a Variable and add an Invoke Activity
	4.5.10.5.3 Add Another Invoke Activity
	4.5.10.5.4 Add an Assign Activity
	4.5.10.5.5 Add a Transform Activity

	4.5.10.6 Deploying with JDeveloper
	4.5.10.7 Monitoring Using Fusion Middleware
Control Console

	4.5.11 Copying, Moving, and Deleting Files
	4.5.11.1 Moving a File from a Local Directory on the File System to Another Local Directory
	4.5.11.2 Copying a File from a Local Directory on the File System to Another Local Directory
	4.5.11.3 Deleting a File from a Local File System Directory
	4.5.11.4 Using a Large CSV Source File
	4.5.11.5 Moving a File from One Remote Directory to Another Remote Directory on the Same FTP Server
	4.5.11.6 Moving a File from a Local Directory on the File System to a Remote Directory on the FTP Server
	4.5.11.7 Moving a File from a Remote Directory on the FTP Server to a Local Directory on the File System
	4.5.11.8 Moving a File from One FTP Server to another FTP Server

	4.5.12 Creating a Synchronous BPEL Composite using File Adapter
	4.5.12.1 Changing the Connection Factory JNDI Dynamically in the FTP Adapter
	4.5.12.2 Retrieving the Details of the File from an Outbound Write Operation

	4.5.13 Changing the Sequencing Strategy for FILE/FTP Adapter
	4.5.14 Controlling the Order in which Files Are Processed
	4.5.15 Extending FTP Adapter
	4.5.15.1 FTP and File Adapter Extension Use Cases
	4.5.15.2 FTP Adapter Extension of FTP Client Login
	4.5.15.2.1 Extending FTPClient Implementation to Override login()

	4.5.15.3 Configuring FTP Adapter to Handle Response from MLSD Command
	4.5.15.3.1 Extending MLSD
	4.5.15.3.2 Configuring Plugin Implementations to Support the MLSD Command
	4.5.15.3.3 Extend the Listing Operation to Send MLSD Commands Rather than the LIST Commands

	4.5.15.4 Extend the Store Operation to Send Additional Proprietary FTP Commands to FTP Server Running on the MVS Platform
	4.5.15.5 Additional Configuration Parameters, Implementations, Interfaces and Schema
	4.5.15.5.1 Sample FTPClient Implementation

	4.5.15.6 FtpListResponseParser Interface
	4.5.15.7 FtpTimestampParser Interface
	4.5.15.8 ftpmapping Schema
	4.5.15.8.1 Using a Manifest.MF file to Generate a fileftp.jar for Compilation
	4.5.15.8.2 Sample ListParser and TimeParser

5 Oracle JCA Adapter for Sockets

	5.1 Introduction to Oracle Socket Adapter
	5.1.1 Oracle Socket Adapter Architecture
	5.1.1.1 Socket Adapter Message Rejection and Resubmission Not Used

	5.1.2 Oracle Socket Adapter Integration with Mediator
	5.1.3 Oracle Socket Adapter Integration with Oracle BPEL PM
	5.1.4 Oracle Socket Adapter Integration with SOA Composite

	5.2 Oracle Socket Adapter Features
	5.3 Oracle Socket Adapter Concepts
	5.3.1 Communication Modes
	5.3.1.1 Inbound Synchronous Request/Response
	5.3.1.2 Outbound Synchronous Request/Response
	5.3.1.3 Inbound Receive
	5.3.1.4 Outbound Invoke

	5.3.2 Mechanisms for Defining Protocols
	5.3.2.1 Protocol with Handshake Mechanism Using Style Sheet
	5.3.2.2 Protocol with Handshake Mechanism Using Custom Java Code
	5.3.2.3 Protocol Without Handshake Mechanism

	5.3.3 Character Encoding and Byte Order
	5.3.4 Performance Tuning
	5.3.4.1 Configuring Oracle Socket Adapter Connection Pooling
	5.3.4.1.1 How to Configure Oracle Socket Adapter Connection Pooling

	5.4 Configuring Oracle Socket Adapter
	5.4.1 Modifying the weblogic-ra.xml File
	5.4.2 Modeling a Handshake
	5.4.2.1 Modeling an Outbound Handshake
	5.4.2.2 Modeling an Inbound Handshake

	5.4.3 Designing an XSL File Using the XSL Mapper Tool
	5.4.3.1 Designing XSL for Inbound Synchronous Request/Reply
	5.4.3.1.1 Design an SOA Composite
	5.4.3.1.2 Create an Inbound Oracle Socket Adapter

	5.4.3.2 Designing XSL for Outbound Synchronous Request/Reply
	5.4.3.2.1 Design an SOA Composite
	5.4.3.2.2 Create an Outbound Oracle Socket Adapter

	5.4.4 Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter
	5.4.5 Java Script Support
	5.4.5.1 Using the Socket Adapter Configuration Wizard to Define Scripts to Use
	5.4.5.2 Reporting
	5.4.5.3 Sample Script

	5.4.6 Socket Adapter NIO Support
	5.4.7 SSL Support for the Socket Adapter
	5.4.7.1 SSL Support within the Socket Adapter

	5.5 Oracle Socket Adapter Use Cases
	5.5.1 Oracle Socket Adapter Hello World
	5.5.1.1 Prerequisites
	5.5.1.2 Designing the SOA Composite
	5.5.1.3 Creating the Inbound Oracle Socket Adapter Service
	5.5.1.4 Creating the Outbound Oracle Socket Adapter Service
	5.5.1.5 Wiring Services and Activities
	5.5.1.5.1 Add a Receive Activity
	5.5.1.5.2 Add an Invoke Activity
	5.5.1.5.3 Add a Reply Activity
	5.5.1.5.4 Add Assign Activities

	5.5.1.6 Deploying with JDeveloper
	5.5.1.7 Monitoring Using the Oracle Enterprise Manager
Fusion Middleware Control Console (Fusion Middleware
Control Console)

	5.5.2 Flight Information Display System
	5.5.2.1 Prerequisites
	5.5.2.2 Designing the SOA Composite
	5.5.2.3 Creating the Inbound Oracle Socket Adapter Service
	5.5.2.4 Creating Outbound Oracle Socket Adapter Services
	5.5.2.5 Wiring Services and Activities
	5.5.2.5.1 Add a Receive Activity
	5.5.2.5.2 Add a Reply Activity
	5.5.2.5.3 Add a Flow Activity
	5.5.2.5.4 Design the Flow for Airline1 Server
	5.5.2.5.5 Design the Flow for Airline2 Server
	5.5.2.5.6 Design the Flow for Airline3 Server
	5.5.2.5.7 Add an Assign Activity

	5.5.2.6 Deploying with JDeveloper
	5.5.2.7 Monitoring Using the Fusion Middleware
Control Console

	5.5.3 Cluster Support for Socket Adapter
	5.5.3.1 Configuring the Socket Adapter for Use in a Clustered Environment
	5.5.3.1.1 Performance Optmization with Coherence
	5.5.3.1.2 Updating the Port Property of the JNDI Connection Factory to Enable Socket Adapter Support in a Clustered Environment

6 Native Format Builder Wizard

	6.1 Creating Native Schema Files with the Native Format Builder Wizard
	6.1.1 Supported File Formats
	6.1.1.1 Delimited
	6.1.1.2 Fixed Length (Positional)
	6.1.1.3 Complex Type
	6.1.1.4 DTD
	6.1.1.5 COBOL Copybook
	6.1.1.5.1 User Inputs
	6.1.1.5.2 COBOL Clauses
	6.1.1.5.3 Picture Editing Types

	6.1.1.6 MFL to be Converted into XSD
	6.1.1.7 JSON Interchange Format

	6.1.2 Editing Native Schema Files

	6.2 Native Schema Constructs
	6.2.1 Understanding Native Schema Constructs
	6.2.2 Using Native Schema Constructs
	6.2.2.1 Defining Fixed-Length Data
	6.2.2.2 Defining Terminated Data
	6.2.2.3 Defining Surrounded Data
	6.2.2.4 Defining Lists
	6.2.2.4.1 All Items Separated by the Same Mark, but the Last Item Terminated by a Different Mark (Bounded)
	6.2.2.4.2 All Items Separated by the Same Mark, Including the Last Item (Unbounded)

	6.2.2.5 Defining Arrays
	6.2.2.5.1 All Cells Separated by the Same Mark, but the Last Cell Terminated by a Different Mark (Bounded)
	6.2.2.5.2 All Cells Separated by the Same Mark, Including the Last Cell (Unbounded)
	6.2.2.5.3 Cells Not Separated by Any Mark, but the Last Cell Terminated by a Mark (Bounded)
	6.2.2.5.4 The Number of Cells Being Read from the Native Data
	6.2.2.5.5 Explicit Array Length

	6.2.2.6 Conditional Processing
	6.2.2.6.1 Processing One Element Within a Choice Model Group Based on the Condition
	6.2.2.6.2 Processing Elements Within a Sequence Model Group Based on the Condition

	6.2.2.7 Defining Dates
	6.2.2.7.1 Defining Dates: With Locale Support

	6.2.2.8 Using Variables
	6.2.2.9 Defining Prefixes and Suffixes
	6.2.2.10 Defining Skipping Data
	6.2.2.11 Defining fixed and default Values
	6.2.2.12 Defining write
	6.2.2.13 Defining LookAhead
	6.2.2.13.1 LookAhead: Type 1
	6.2.2.13.2 LookAhead: Type 2

	6.2.2.14 Defining Complex Look Ahead Strategies for Conditional Processing of Record Using Regular Expressions
	6.2.2.14.1 Including the Newline Character when Looking for a Pattern

	6.2.2.15 Defining outboundHeader
	6.2.2.16 Defining Complex Condition in conditionValue
	6.2.2.17 Defining Complex Condition in choiceCondition
	6.2.2.18 Defining dataLines
	6.2.2.19 Defining Date Formats with Time Zone
	6.2.2.20 Implementing Validation During Translation
	6.2.2.20.1 Payload Validation
	6.2.2.20.2 Schema Validation

	6.2.2.21 Processing Files with BOM

	6.2.3 Multi-Byte Translation for Inbound and Outbound Native Data
	6.2.3.1 The Initial Problem
	6.2.3.2 Solution
	6.2.3.3 Specifying Padded Data
	6.2.3.4 Specifying a Prefix or a Suffix
	6.2.3.5 Translator Behavior with Multi-Stream Data
	6.2.3.6 Outbound Translation Behavior
	6.2.3.7 Examples
	6.2.3.7.1 Base 64 Binary Padded Data
	6.2.3.7.2 Binary
	6.2.3.7.3 Shift JIS Encoding
	6.2.3.7.4 Identifier Length Example
	6.2.3.7.5 Identifier Example base64BInary
	6.2.3.7.6 Identifier-Padded Data with SJIS
	6.2.3.7.7 Identifier-Padded Binary
	6.2.3.7.8 Padded Multibyte Binary Element
	6.2.3.7.9 Padded Multi-Byte Decimal

	6.2.4 SOSI Support

	6.3 Translator XPath Functions
	6.3.1 Terminologies
	6.3.2 Translator XPath Functions
	6.3.2.1 doTranslateFromNative Function
	6.3.2.2 doTranslateToNative Function
	6.3.2.3 doStreamingTranslate Function
	6.3.2.4 Batching Transformation Features

	6.4 Use Cases for the Native Format Builder
	6.4.1 Defining the Schema for a Delimited File Structure
	6.4.1.1 Defining a Asterisk (*) Separated Value File Structure

	6.4.2 Defining the Schema for a Fixed Length File Structure
	6.4.3 Defining the Schema for a Complex File Structure
	6.4.4 Removing or Adding Namespaces to XML with No Namespace
	6.4.5 Defining the Choice Condition Schema for a Complex File Structure
	6.4.6 Defining Choice Condition With LookAhead for a Complex File Structure
	6.4.7 Defining Array Type Schema for a Complex File Structure
	6.4.8 Defining the Schema for a DTD File Structure
	6.4.9 Defining the Schema for a COBOL Copybook File Structure
	6.4.9.1 Multiple Root Levels
	6.4.9.2 Single Root Level, Virtual Decimal, Fixed-Length Array
	6.4.9.3 Variable Length Array
	6.4.9.4 Numeric Types

	6.5 Command Line Tool for Testing NXSD Translator
	6.5.1 Prerequisites
	6.5.2 Running the Test Tool
	6.5.3 Using the Native Format Builder to Perform MFL Conversion
	6.5.3.1 Converting an MFL Format File to Schema Format
	6.5.3.2 Generating the Schema File and Adding it to the SOA Composite Process
	6.5.3.2.1 Sample MFL File
	6.5.3.2.2 Sample Schema File Created from the Sample MFL File

	6.5.3.3 Native Format Builder Wizard Flow for MFL File Conversion

	6.5.4 Multi-Character Streaming Support
	6.5.5 Shared Delimiters
	6.5.5.1 Basic Concepts for NXSD Translator with Inbound Shared Delimiter Processing
	6.5.5.1.1 Terminating the Cell and the Array
	6.5.5.1.2 Important Terminology
	6.5.5.1.3 Sharing Cell Separator and Array Terminators
	6.5.5.1.4 Behavior

	6.5.5.2 Terminated Use Cases
	6.5.5.3 Fixed Length Use Cases
	6.5.5.4 Surrounded Use Cases
	6.5.5.5 Miscellaneous Use Cases
	6.5.5.5.1 Shared_array_Terminator.xsd
	6.5.5.5.2 Shared_trailing_array.xsd
	6.5.5.5.3 Shared_trailing_OptionalArray.xsd Use Case

Part II Message Adapters

7 Oracle JCA Adapter for AQ

	7.1 Introduction to the Oracle AQ Adapter
	7.1.1 Oracle AQ Adapter Integration with Oracle BPEL Process Manager and Oracle Mediator
	7.1.2 Oracle AQ Adapter Integration with Oracle Mediator

	7.2 Oracle AQ Adapter Features
	7.2.1 Enqueue-Specific Features (Message Production)
	7.2.2 Dequeue and Enqueue Features
	7.2.3 Synchronous Request-Response
	7.2.3.1 Configuration Wizard Flow for AQ Synchronous Request-Response Interaction Pattern
	7.2.3.1.1 Editing an AQ Adapter using the Synchronous Request-Reply Interaction Pattern

	7.2.4 Synchronous Dequeue
	7.2.4.1 Configuration Wizard Flow for AQ Synchronous Dequeue
	7.2.4.2 JCA File for Synchronous Request-Reply
	7.2.4.3 JCA File for Synchronous Dequeue

	7.2.5 Supported ADT Payload Types
	7.2.6 Native Format Builder Wizard
	7.2.7 Normalized Message Support
	7.2.8 Is DOM 2 Compliant
	7.2.9 Is Message-Size Aware
	7.2.10 Multiple Receiver Threads
	7.2.11 DequeueTimeout Property
	7.2.12 Control Dequeue Timeout and Multiple Inbound Polling Threads
	7.2.13 Stream Payload Support
	7.2.14 Oracle AQ Adapter Inbound Retries
	7.2.15 Error Handling Support
	7.2.16 Performance Tuning

	7.3 Oracle AQ Adapter Deployment
	7.4 Oracle AQ Adapter Use Cases
	7.4.1 Generic Use Case
	7.4.1.1 The Adapter Configuration Wizard Walkthrough
	7.4.1.1.1 Meeting Prerequisites
	7.4.1.1.2 Creating an Application and an SOA Project
	7.4.1.1.3 Defining an Oracle AQ Adapter Service
	7.4.1.1.4 Generated WSDL and JCA Files

	7.4.1.2 Dequeuing and Enqueuing Object and ADT Payloads
	7.4.1.3 Dequeuing One Column of the Object Payload
	7.4.1.4 Configuring the Enqueue/Dequeue Operation Type
	7.4.1.4.1 Meeting Prerequisites
	7.4.1.4.2 Creating an Application and an SOA Project
	7.4.1.4.3 Defining an Oracle AQ Adapter Service
	7.4.1.4.4 Wiring Services and Activities
	7.4.1.4.5 Deploying with JDeveloper
	7.4.1.4.6 Monitoring Using the Fusion Middleware
Control Console
	7.4.1.4.7 Generated WSDL and JCA Files

	7.4.1.5 Using Correlation ID for Filtering Messages During Dequeue
	7.4.1.6 Enqueuing and Dequeuing from Multisubscriber Queues

	7.4.2 Oracle AQ Adapter ADT Queue
	7.4.2.1 Meeting Prerequisites
	7.4.2.2 Creating an Application and an SOA Project
	7.4.2.3 Creating an Inbound Oracle AQ Adapter
	7.4.2.4 Creating an Outbound Oracle AQ Adapter
	7.4.2.5 Wiring Services and Activities
	7.4.2.6 Configuring Routing Service
	7.4.2.7 Configuring the Data Sources in the Oracle WebLogic Server Administration Console
	7.4.2.8 Deploying with JDeveloper
	7.4.2.9 Monitoring Using the Fusion Middleware
Control Console

	7.4.3 Oracle AQ Adapter RAW Queue
	7.4.3.1 Prerequisites
	7.4.3.2 Creating an Application and an SOA Project
	7.4.3.3 Creating an Inbound Adapter Service
	7.4.3.4 Creating an Outbound Adapter Service
	7.4.3.5 Wiring Services and Activities
	7.4.3.6 Configuring the Data Sources in the Oracle WebLogic Server Administration Console
	7.4.3.7 Deploying with JDeveloper
	7.4.3.8 Monitoring Using the Fusion Middleware
Control Console

8 Oracle JCA Adapter for JMS

	8.1 Introduction to the Oracle JMS Adapter
	8.1.1 Oracle JMS Adapter Integration with the Oracle BPEL Process Manager
	8.1.2 Oracle JMS Adapter Integration with Oracle Mediator

	8.2 Oracle JMS Adapter Features
	8.3 Oracle JMS Adapter Concepts
	8.3.1 Point-to-Point
	8.3.2 Publish/Subscribe
	8.3.3 Destination, Connection, Connection Factory, and Session
	8.3.4 Structure of a JMS Message
	8.3.5 Oracle JMS Adapter Header Properties
	8.3.6 Connecting with Third-Party Service Providers
	8.3.6.1 Binding

	8.4 Oracle JMS Adapter Use Cases
	8.4.1 Configuring Oracle JMS Adapter
	8.4.1.1 Creating an Application and a SOA Project
	8.4.1.2 Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter
	8.4.1.3 Generated Files
	8.4.1.4 weblogic-ra.xml file
	8.4.1.4.1 Creating a New Connection by Using the Oracle WebLogic Server Administration Console
	8.4.1.4.2 Adding a Third-Party JMS Provider

	8.4.1.5 Produce Message Procedure

	8.4.2 Configuring the Oracle JMS Adapter with TIBCO JMS
	8.4.2.1 Using Preconfigured Tibco Connection Factory for non-SSL Connections
	8.4.2.2 Using Dynamically Created Tibco Connection Factory for non-SSL Connections
	8.4.2.3 Using a Preconfigured Tibco Connection Factory for SSL Connections
	8.4.2.4 Using Dynamically Created Tibco Connection Factory for SSL Connections

	8.4.3 Configuring Oracle JMS Adapter with IBM WebSphere MQ JMS
	8.4.3.1 Non-XA Data Sources
	8.4.3.1.1 Using a Multi-Instance Queue Manager

	8.4.3.2 XA Data Sources

	8.4.4 Configuring Oracle JMS Adapter with Active MQ JMS
	8.4.5 WebLogic Server JMS Text Message
	8.4.5.1 Meeting Prerequisites
	8.4.5.1.1 Creating Queues in the Oracle WebLogic Server Administration Console:
	8.4.5.1.2 Creating the Q2Qorders.xsd file

	8.4.5.2 Creating an Application Server Connection
	8.4.5.3 Creating an Application and an SOA Project
	8.4.5.4 Creating an Inbound Adapter Service
	8.4.5.5 Creating an Outbound Adapter Service
	8.4.5.6 Wiring Services and Activities
	8.4.5.7 Deploying with JDeveloper
	8.4.5.8 Monitoring Using the Fusion Middleware
Control Console

	8.4.6 Accessing Queues and Topics from WLS JMS Server in a Remote Oracle WebLogic Server Domain
	8.4.6.1 JMS Adapter Limitations When a Remote Server is Used

	8.4.7 Synchronous/Asynchronous Request Reply Interaction Pattern
	8.4.7.1 Synchronous Request Reply Pattern
	8.4.7.2 Asynchronous Request Reply Pattern

	8.4.8 AQ JMS Text Message
	8.4.8.1 Meeting Prerequisites
	8.4.8.1.1 Configuring AQ JMS in Oracle WebLogic Server Administration Console
	8.4.8.1.2 Creating Queues in Oracle Database

	8.4.8.2 Create an Application Server Connection
	8.4.8.3 Creating an Application and an SOA Project
	8.4.8.4 Creating an Inbound Adapter Service
	8.4.8.5 Creating an Outbound Adapter Service
	8.4.8.6 Wiring Services and Activities
	8.4.8.7 Deploying with JDeveloper
	8.4.8.8 Monitoring Using the Fusion Middleware
Control Console

	8.4.9 Accessing Queues and Topics Created in 11g from the OC4J 10.1.3.4 Server
	8.4.10 Configuring the 11G Server or Later Server to Access Queues Present in 10.1.3.X OC4J
	8.4.10.1 Copy Jar Files into the domains Folder of the Web Logic Server
	8.4.10.2 Add Connector factory in the weblogic-ra.xml File

	8.4.11 Accessing Distributed Destinations (Queues and Topics) on the WebLogic Server JMS
	8.4.11.1 Providing JMS Adapter Access to Distributed Topics
	8.4.11.2 The JMS Adapter with Distributed Queues and Distributed Topics
	8.4.11.3 One Copy of a Message Per Application (Default Behavior)
	8.4.11.4 One Copy Of a Message Per Adapter Endpoint
	8.4.11.4.1 Specifying the Message Selector when Defining an Activation Spec
	8.4.11.4.2 Compatibility and Migration

	8.4.12 Configuring Oracle JMS Adapter with IBM WebSphere Default JMS Provider
	8.4.13 Configuring Request-Reply in the JMS Adapter
	8.4.14 Using the WLS JMS Unit-Of-Order with the JMS Adapter
	8.4.14.1 Getting a Unit of Order Property

	8.4.15 JMS Synchronous Consume
	8.4.15.1 Configuring JMS Synchronous Consume

9 Oracle JCA Adapter for Database

	9.1 Introduction to the Oracle Database Adapter
	9.1.1 Functional Overview
	9.1.1.1 Oracle Database Adapter Integration with Oracle BPEL PM

	9.1.2 Design Overview

	9.2 Complete Walkthrough of the Database Adapter Configuration Wizard
	9.2.1 Creating an Application and an SOA Project
	9.2.2 Defining an Oracle Database Adapter
	9.2.3 Connecting to a Database
	9.2.4 Selecting the Operation Type
	9.2.5 Selecting and Importing Tables
	9.2.6 Defining Primary Keys
	9.2.6.1 Using ROWID as the Primary Key
	9.2.6.1.1 Using Rowid on the Primary Key Page

	9.2.7 Creating Relationships
	9.2.7.1 What Happens When Relationships Are Created or Removed
	9.2.7.2 Different Types of One-to-One Mappings
	9.2.7.3 When Foreign Keys Are Primary Keys

	9.2.8 Creating the Attribute Filter
	9.2.9 Defining a WHERE Clause
	9.2.10 Choosing an After-Read Strategy
	9.2.10.1 Delete the Rows That Were Read
	9.2.10.2 Update a Field in the Table (Logical Delete)
	9.2.10.3 Update a Sequencing Table
	9.2.10.4 Update an External Sequencing Table on a Different Database
	9.2.10.5 Update a Sequencing File

	9.2.11 Specifying Polling Options
	9.2.12 Specifying Advanced Options
	9.2.13 Entering the SQL String for the Pure SQL Operation

	9.3 Oracle Database Adapter Features
	9.3.1 Transaction Support
	9.3.1.1 Configuring Oracle Database Adapter for Global Transaction Participation
	9.3.1.2 Both Invokes in Same Global Transaction
	9.3.1.3 Failure Must Cause Rollback
	9.3.1.3.1 Using the Same Sessions for Both Invokes

	9.3.1.4 Transaction/XA Support
	9.3.1.4.1 Configuring an Oracle Database Adapter for Global Transaction Participation
	9.3.1.4.2 Failure Must Cause Rollback

	9.3.2 Pure SQL - XML Type Support
	9.3.3 Row Set Support Using a Strongly or Weakly Typed XSD
	9.3.4 Proxy Authentication Support
	9.3.5 Streaming Large Payload
	9.3.6 Schema Validation
	9.3.7 High Availability
	9.3.8 Scalability
	9.3.8.1 Distributed Polling First Best Practice: SELECT FOR UPDATE (SKIP LOCKED)
	9.3.8.1.1 SKIP LOCKED in Depth
	9.3.8.1.2 On a Non-Oracle Database
	9.3.8.1.3 Configuring PollingInterval, MaxTransactionSize, and ActivationInstances in Depth
	9.3.8.1.4 Partition Field
	9.3.8.1.5 activationInstances
	9.3.8.1.6 Indexing and Null Values
	9.3.8.1.7 Disabling Skip Locking
	9.3.8.1.8 MarkReservedValue and Skip Locking
	9.3.8.1.9 SequencingPollingStrategy (Last Read or Last Updated)

	9.3.8.2 Distributed Polling Second Best Practice: Tuning on a Single Node First

	9.3.9 Performance Tuning
	9.3.10 detectOmissions Feature
	9.3.11 OutputCompletedXml Feature
	9.3.12 QueryTimeout for Inbound and Outbound Transactions
	9.3.13 Doing Synchronous Post to BPEL (Allow In-Order Delivery)

	9.4 Oracle Database Adapter Concepts
	9.4.1 Relational-to-XML Mapping
	9.4.1.1 Relational Types to XML Schema Types
	9.4.1.2 Mapping Any Relational Schema to Any XML Schema
	9.4.1.3 Querying over Multiple Tables
	9.4.1.3.1 Using Relationship Queries (TopLink Default)
	9.4.1.3.2 Twisting the Original Select (TopLink Batch-Attribute Reading)
	9.4.1.3.3 Returning a Single Result Set (TopLink Joined-Attribute Reading)
	9.4.1.3.4 Comparison of the Methods Used for Querying over Multiple Tables

	9.4.2 SQL Operations as Web Services
	9.4.2.1 DML Operations
	9.4.2.2 Polling Strategies

	9.5 Database Adapter Deployment
	9.5.1 Deployment with Third-Party Databases

	9.6 JDBC Driver and Database Connection Configuration
	9.6.1 Creating a Database Connection Using a Native or Bundled Oracle WebLogic Server JDBC Driver
	9.6.2 Creating a Database Connection Using a Third-Party JDBC Driver
	9.6.3 Summary of Third-Party JDBC Driver and Database Connection Information
	9.6.3.1 Using a Microsoft SQL Server
	9.6.3.2 Using a SQLSERVER Weblogic JDBC Driver
	9.6.3.3 Using a Sybase Database
	9.6.3.3.1 Using a Sybase JConnect JDBC Driver

	9.6.3.4 Using an Informix Database
	9.6.3.4.1 Using an Informix JDBC Driver

	9.6.3.5 Using an IBM DB2 Database
	9.6.3.5.1 IBM DB2 Driver
	9.6.3.5.2 JT400 Driver (AS400 DB2)
	9.6.3.5.3 IBM Universal Driver

	9.6.3.6 Using a MySQL Database
	9.6.3.7 Using a Derby Database
	9.6.3.8 Using a Progress Database

	9.6.4 Location of JDBC Driver JAR Files and Setting the Class Path

	9.7 Stored Procedure and Function Support
	9.7.1 Design Time: Using the Adapter Configuration Wizard
	9.7.1.1 Using Top-Level Standalone APIs
	9.7.1.2 Using Packaged APIs and Overloading

	9.7.2 Supported Third-Party Databases
	9.7.2.1 Terms Used
	9.7.2.2 Important Notes
	9.7.2.2.1 Microsoft SQL Server
	9.7.2.2.2 DB2 Data Types
	9.7.2.2.3 IBM DB2 AS/400

	9.7.2.3 Creating Database Connections

	9.7.3 Design Time: Artifact Generation
	9.7.3.1 The WSDL–XSD Relationship
	9.7.3.2 JCA File
	9.7.3.3 Oracle Data Types
	9.7.3.4 Generated XSD Attributes
	9.7.3.5 User-Defined Types
	9.7.3.6 Complex User-Defined Types
	9.7.3.7 Object Type Inheritance
	9.7.3.8 Object References
	9.7.3.9 Referencing Types in Other Schemas
	9.7.3.10 XSD Pruning Optimization

	9.7.4 Run Time: Before Stored Procedure Invocation
	9.7.4.1 Value Binding
	9.7.4.2 Data Type Conversions

	9.7.5 Run Time: After Stored Procedure Invocation
	9.7.5.1 Data Type Conversions
	9.7.5.2 Null Values
	9.7.5.3 Function Return Values

	9.7.6 Run Time: Common Third-Party Database Functionality
	9.7.6.1 Processing ResultSets
	9.7.6.2 Returning an INTEGER Status Value

	9.7.7 Advanced Topics
	9.7.7.1 Row Set Support Using a Strongly Typed XSD
	9.7.7.1.1 Design Time
	9.7.7.1.2 Run Time

	9.7.7.2 Row Set Support Using a Weakly Typed XSD
	9.7.7.2.1 Design Time
	9.7.7.2.2 Run Time

	9.7.7.3 Support for PL/SQL Boolean, PL/SQL Record, and PL/SQL Table Types
	9.7.7.3.1 Default Clauses in Wrapper Procedures

	9.8 Oracle Database Adapter Use Cases
	9.8.1 Use Cases for Oracle Database Adapter
	9.8.2 Use Cases for Oracle Database Adapter - Stored Procedures
	9.8.2.1 Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer
	9.8.2.1.1 Prerequisites
	9.8.2.1.2 Creating an Application and an SOA Composite
	9.8.2.1.3 Creating the Outbound Oracle Database Adapter Service
	9.8.2.1.4 Add an Invoke Activity
	9.8.2.1.5 Change the Message Part of the Request Message
	9.8.2.1.6 Change the Message Part of the Response Message
	9.8.2.1.7 Add a Assign Activity for the Input Variable
	9.8.2.1.8 Add an Assign Activity for the Output Variable
	9.8.2.1.9 Deploying with JDeveloper
	9.8.2.1.10 Creating a DataSource in Oracle WebLogic Server Administration Console
	9.8.2.1.11 Monitoring Using the Fusion Middleware
Control Console

	9.8.2.2 File To StoredProcedure Use Case
	9.8.2.2.1 Prerequisites
	9.8.2.2.2 Creating an Application and an SOA Project
	9.8.2.2.3 Creating the Outbound Oracle Database Adapter Service
	9.8.2.2.4 Creating an Invoke Activity
	9.8.2.2.5 Creating the Inbound File Adapter Service
	9.8.2.2.6 Adding a Receive Activity
	9.8.2.2.7 Adding an Assign Activity
	9.8.2.2.8 Wiring Services and Activities
	9.8.2.2.9 Deploying with JDeveloper
	9.8.2.2.10 Creating a Data Source
	9.8.2.2.11 Adding a Connection-Instance
	9.8.2.2.12 Testing using the File Adapter Service and SQL*Plus
	9.8.2.2.13 Monitoring Using the Fusion Middleware
Control Console

	9.8.3 Database Adapter/Coherence Integration
	9.8.3.1 Inserts/Updates to a Database
	9.8.3.1.1 Select Optimization
	9.8.3.1.2 Queries that Do Not Benefit from Coherence Database Adapter Integration

	9.8.3.2 Database Adapter/Coherence Integration Architecture
	9.8.3.2.1 Using Coherence Database Adapter Integration with WebLogic Server 10.3.5
	9.8.3.2.2 Current Design of the Database Adapter (No Coherence Cache)
	9.8.3.2.3 Read-Write Coherence Cache Database Adapter Integration
	9.8.3.2.4 Read Coherence Cache Database Adapter Integration
	9.8.3.2.5 Enabling No Cache Using the Operations Type Screen
	9.8.3.2.6 Enabling Read-Write Caching Using the Operation Type Screen
	9.8.3.2.7 Enabling Read Caching Using the Operation Type Screen
	9.8.3.2.8 XA Transactions, Read-Write and Read Operations with Coherence/Database Adapter Integration
	9.8.3.2.9 Coherence Cache Lifecycle and Configuration

	9.8.3.3 Query by Example
	9.8.3.3.1 Combining Query by Example with a Regular Query
	9.8.3.3.2 Constraints on Use

	9.8.3.4 Modifying the or-mappings.xml File for UTF16 Character Data Insertions

10 Oracle JCA Adapter for MQ Series

	10.1 MQ Series Message Queuing Concepts
	10.1.1 MQ Series Concepts

	10.2 Introduction to Native Oracle MQ Series Adapter
	10.2.1 The Need for Oracle MQ Series Adapter
	10.2.2 Oracle MQ Series Adapter Integration with Oracle BPEL Process Manager and Oracle Mediator
	10.2.3 Oracle MQ Series Adapter Integration with Mediator

	10.3 Oracle MQ Series Adapter Features
	10.3.1 RFH Version 2 (RFH2) Header
	10.3.1.1 Fixed Portion
	10.3.1.2 Variable Portion

	10.3.2 SSL Enabling
	10.3.3 XA Transactions
	10.3.3.1 XA Recovery
	10.3.3.2 XA Support Available for JMS Adapter to Communcate with ActiveMQ Series 5.8

	10.3.4 High Availability
	10.3.4.1 Prerequisites for High Availability
	10.3.4.2 High Availability in Inbound/Outbound Operations

	10.3.5 Scalability
	10.3.6 Securing Enterprise Information System Credentials
	10.3.7 Fault Policy
	10.3.8 Inbound Rejection Handler
	10.3.9 Retry Mechanism
	10.3.9.1 JCA Inbound Retry Mechanism
	10.3.9.2 Message Backout Queue

	10.3.10 Performance Tuning

	10.4 Oracle MQ Series Adapter Concepts
	10.4.1 Messaging Scenarios
	10.4.1.1 Enqueue Message
	10.4.1.2 Dequeue Message
	10.4.1.3 Asynchronous Request-Response (Oracle BPEL PM As Client)
	10.4.1.4 Synchronous Request-Response (Oracle BPEL PM As Server)
	10.4.1.5 Asynchronous Request-Response (Oracle BPEL PM As Server)
	10.4.1.6 Synchronous Request-Response (Mediator As Server)
	10.4.1.7 Synchronous Request-Response (Oracle BPEL PM As Client)
	10.4.1.8 Synchronous Request-Response (Oracle Mediator as Client)
	10.4.1.9 Asynchronous Request-Response (Oracle Mediator As Client)
	10.4.1.10 Outbound Dequeue Scenario

	10.4.2 Message Properties
	10.4.2.1 Messages Types
	10.4.2.2 Message Format
	10.4.2.3 Message Expiry
	10.4.2.4 Message Priority
	10.4.2.5 Message Persistence

	10.4.3 Correlation Schemas
	10.4.4 Distribution List Support
	10.4.5 Report Messages
	10.4.6 Message Delivery Failure Options
	10.4.7 Message Segmentation
	10.4.8 Integration with CICS
	10.4.9 Using the MQ Series Client Channel Definition Table Feature
	10.4.10 Large Payload Support
	10.4.10.1 Configuring the Inbound MQ Adapter for Large Payloads
	10.4.10.2 Configuring the Outbound MQ Adapter for Large Payloads

	10.4.11 Attachment Support

	10.5 Configuring the Oracle MQ Series Adapter
	10.5.1 Adding jar Files to the Oracle MQ Series Adapter Classpath: MQ Series 6 and 7
	10.5.2 Adding JNDI Entry
	10.5.3 Enabling Binding Mode for Connections
	10.5.4 Selective Dequeue of Messages Using Message Selectors
	10.5.4.1 Message Selector in the MQ Adapter Configuration Wizard
	10.5.4.2 Using Message Selectors with MQ
	10.5.4.2.1 Message Selector Syntax: Literals
	10.5.4.2.2 Message Selector Identifiers
	10.5.4.2.3 Message Selector Expressions
	10.5.4.2.4 Message Selector Operators
	10.5.4.2.5 Message Selector Comparison
	10.5.4.2.6 Message Selector Arithmetic
	10.5.4.2.7 Message Selector Advanced Operators
	10.5.4.2.8 Message Selector Example
	10.5.4.2.9 Message Selector Use Case: One BPEL Process Receiving Selective Messages from a MQ Queue using Message Selector
	10.5.4.2.10 Usage with Sample Messages
	10.5.4.2.11 Two BPEL Processes Receiving Messages from the Same MQ Queue. Both Processes Have Defined Mutually Exclusive Message Selectors
	10.5.4.2.12 Creating the Message Selectors for the Two BPEL Process Use Case
	10.5.4.2.13 Usage with Sample Messages for Two BPEL Process Use Case

	10.6 Oracle MQ Series Adapter Use Cases
	10.6.1 Dequeue Enqueue
	10.6.1.1 Prerequisites
	10.6.1.2 Designing the SOA Composite
	10.6.1.3 Creating an Inbound Adapter Service
	10.6.1.4 Creating an Outbound Adapter Service
	10.6.1.5 Wiring Services and Activities
	10.6.1.6 Deploying with JDeveloper
	10.6.1.7 Monitoring Using Fusion Middleware Control

	10.6.2 Inbound Synchronous Request-Reply
	10.6.2.1 Prerequisites
	10.6.2.2 Designing the SOA Composite
	10.6.2.3 Creating an Inbound Adapter Service
	10.6.2.4 Wiring Services and Activities
	10.6.2.5 Deploying with JDeveloper
	10.6.2.6 Monitoring Using the Fusion Middleware
Control Console

	10.6.3 Inbound-Outbound Synchronous Request-Reply
	10.6.3.1 Prerequisites
	10.6.3.2 Designing the SOA Composite
	10.6.3.3 Creating an Inbound Adapter Service
	10.6.3.4 Creating an Outbound Adapter Service
	10.6.3.5 Wiring Services and Activities
	10.6.3.6 Deploying with JDeveloper
	10.6.3.7 Monitoring Using the Fusion Middleware
Control Console

	10.6.4 Asynchronous-Request-Reply
	10.6.4.1 Prerequisites
	10.6.4.2 Designing the SOA Composite
	10.6.4.3 Creating an Inbound Adapter Service
	10.6.4.4 Creating an Asynchronous Outbound Request Reply Adapter Service Outbound
	10.6.4.5 Creating Another Outbound Adapter Service
	10.6.4.6 Wiring Services and Activities
	10.6.4.7 Deploying with JDeveloper
	10.6.4.8 Monitoring Using the Fusion Middleware
Control Console

	10.6.5 Outbound Dequeue
	10.6.5.1 Prerequisites
	10.6.5.2 Designing the SOA Composite
	10.6.5.3 Creating an Outbound Dequeue Adapter Service
	10.6.5.4 Wiring Services and Activities
	10.6.5.5 Deploying with JDeveloper
	10.6.5.6 Monitoring Using the Fusion Middleware
Control Console

	10.6.6 Configuring a Backout Queue
	10.6.6.1 Prerequisites
	10.6.6.2 Designing the SOA Composite
	10.6.6.3 Creating an Inbound Adapter Service
	10.6.6.4 Creating an Outbound Adapter Service
	10.6.6.5 Wiring Services and Activities
	10.6.6.6 Deploying with JDeveloper
	10.6.6.7 Monitoring Using the Fusion Middleware
Control Console

	10.6.7 CCDT Use Cases
	10.6.7.1 Example Queue Manager Properties and CCDT Configuration
	10.6.7.2 Configuringa ConnectionFactoryJNDI
	10.6.7.3 Configuring the CCDTurl
	10.6.7.4 Configuring the QueueManagerName

	10.6.8 Reading Single or Multiple RFH2 Rules and Formatting Header Version 2 Headers
	10.6.8.1 Inbound and Outbound with Multiple RFH2 Headers on Both Sides
	10.6.8.1.1 Designing the SOA Composite
	10.6.8.1.2 Creating an Inbound Adapter Service
	10.6.8.1.3 Creating an Outbound Adapter Service
	10.6.8.1.4 Wiring Services and Activities
	10.6.8.1.5 Deploying with JDeveloper

	10.6.8.2 Outbound Dequeue with Multiple RFH2 Headers
	10.6.8.2.1 Designing the SOA Composite
	10.6.8.2.2 Creating an Outbound Dequeue Adapter Service
	10.6.8.2.3 Wiring Services and Activities
	10.6.8.2.4 Deploying with JDeveloper

	10.6.9 Processing Messages as Attachment
	10.6.9.1 Designing the SOA Composite
	10.6.9.2 Creating an Inbound Adapter Service
	10.6.9.3 Creating an Outbound Adapter Service
	10.6.9.4 Wiring Services and Activities
	10.6.9.5 Deploying with JDeveloper

11 Oracle JCA Adapter for UMS

	11.1 UMS and UMS Adapter Concepts
	11.1.1 User Messaging Service
	11.1.2 Oracle UMS Adapter

	11.2 Oracle UMS Adapter Features
	11.2.1 UMS Adapter Message Concepts
	11.2.1.1 Custom Java Callout
	11.2.1.1.1 Use Cases for Custom Java Callout
	11.2.1.1.2 Using the Custom Callout Facility

	11.2.2 Transaction Support
	11.2.2.1 Inbound Error Handling
	11.2.2.2 Outbound Error Handling
	11.2.2.2.1 Retry Mechanism for Failed Outgoing Notifications with Status Reporting
	11.2.2.2.2 Inbound Receive Notification in a Cluster (Through Polling or Through a Listener)
	11.2.2.2.3 UMS Adapter Properties and Mime Type Configuration
	11.2.2.2.4 Proprietary Headers

	11.2.2.3 Email Attachments
	11.2.2.4 Mail Attachment Handling
	11.2.2.4.1 Retrieving Mime Information Associated with an Attachment in BPEL
	11.2.2.4.2 Setting Mime Information for Multiple Attachments in BPEL

	11.2.2.5 UMS Adapter Inbound and Outbound Operations
	11.2.2.5.1 Oracle UMS Adapter Inbound ReceiveNotification Concepts
	11.2.2.5.2 Oracle UMS Outbound Send Notification Concepts
	11.2.2.5.3 Receive Message id as reply request

	11.2.3 Configuring the Oracle UMS Adapter
	11.2.3.1 Configuring the Email Driver for the UMS Adapter - Outbound Connectivity
	11.2.3.2 Configuring the Email Driver for UMS Adapter - Inbound Connectivity
	11.2.3.3 Configuring the User Messaging XMPP Driver
	11.2.3.4 Configuring the User Messaging SMPP Driver
	11.2.3.5 Configuring the HTTP Proxy for Firewall traversal
	11.2.3.6 Designing the Adapter Service and the BPEL Process for Inbound Connectivity
	11.2.3.7 Designing the Adapter Service and the BPEL Process for Outbound Connectivity

12 Oracle JCA Adapter for LDAP

	12.1 LDAP Concepts
	12.1.1 LDAP Entries, Attributes and Values
	12.1.2 LDAP Directory Structure
	12.1.3 Distinguished Names and Relative Distinguished Names
	12.1.4 LDAP Service and Service Client
	12.1.5 Referrals
	12.1.6 Aliases

	12.2 LDAP Adapter Configurations
	12.2.1 Controls
	12.2.1.1 Request Control Format
	12.2.1.2 LDAP Control Restrictions
	12.2.1.3 Non Default Control Configuration for Design Time Wizard
	12.2.1.3.1 Control Availability

	12.2.2 LDAP Browser
	12.2.2.1 Attribute Viewer
	12.2.2.1.1 Folding
	12.2.2.1.2 Searching

	12.3 Oracle LDAP Adapter Features
	12.3.1 Configuring the LDAP Adapter
	12.3.2 JNDI Connection Pool Properties for the LDAP Adapter
	12.3.3 Outbound Operations
	12.3.3.1 Add Operation
	12.3.3.2 Delete Operation
	12.3.3.3 Modify Operation
	12.3.3.4 ModifyDN Operation
	12.3.3.5 Compare Operation
	12.3.3.6 Search Operation
	12.3.3.7 DSML Operation

	12.3.4 Inbound LDAP Adapter Features
	12.3.4.1 LDAP Adapter Entry Change Notification
	12.3.4.1.1 LDAP Adapter Entry Change Notification Configuration Wizard Flow

	12.3.4.2 LDAP Adapter Change Log Notification
	12.3.4.2.1 Change Log Notification LDAP Adapter Configuration Wizard Flow

	12.3.4.3 Entry Change Notification Error Conditions

	12.3.5 Logging
	12.3.6 Security
	12.3.6.1 Creating Outbound Credential Mappings

	12.3.7 LDAP over SSL
	12.3.8 Payload Size Threshold
	12.3.9 High Availability
	12.3.10 LDAP Adapter Exception Handling
	12.3.10.1 Inbound Retriable Exceptions
	12.3.10.2 Inbound Non-Retriable Exceptions
	12.3.10.3 Outbound Retriable Exceptions
	12.3.10.4 Outbound Non-Retriable Exceptions

	12.4 LDAP Adapter Samples

13 Oracle JCA Adapter for Microsoft Message Queueing

	13.1 Oracle JCA Adapter for MSMQ Concepts and Features
	13.1.1 MSMQ Terminology
	13.1.1.1 jCOM and the MSMQ Adapter
	13.1.1.1.1 Background
	13.1.1.1.2 Implications for the MSMQ Adapter

	13.1.1.2 Security
	13.1.1.2.1 Component-managed Sign-On
	13.1.1.2.2 Container-Managed Sign-On

	13.1.1.3 Logging and Diagnosability
	13.1.1.4 MSMQ Adapter and High Availability

	13.1.2 Set Up MSMQ on Windows Server 2008
	13.1.3 Setup Oracle Weblogic Server for COM
	13.1.3.1 Transaction Management and Error Handling
	13.1.3.1.1 Transaction Management
	13.1.3.1.2 Fault Handling
	13.1.3.1.3 Outbound Retriable Errors
	13.1.3.1.4 Outbound Non-Retriable Errors

	13.1.4 MSMQ Adapter Features
	13.1.5 MSMQ Properties Supported

	13.2 MSMQ Adapter Configuration Wizard Flow
	13.2.1 Creating an Enqueue Operation
	13.2.2 Sample MSMQ Adapter Connection Factory Properties
	13.2.3 MSMQ Adapter Design-time Artifacts
	13.2.3.1 Sample JCA File for an MSMQ Enqueue Operation
	13.2.3.2 Sample JCA for an MSMQ Dequeue Operation
	13.2.3.3 Design-Time WSDL Artifacts
	13.2.3.3.1 WSDL for MSMQ Enqueue Operation
	13.2.3.3.2 WSDL for MSMQ Adapter Dequeue Operation

	13.3 MSMQ Use Cases
	13.3.1 Enqueue/Dequeue Message from Public Queue
	13.3.1.1 Designing the SOA Composite
	13.3.1.2 Creating the Inbound Oracle MSMQ Adapter Service
	13.3.1.3 Creating the Outbound Oracle MSMQ Adapter Service
	13.3.1.4 Wiring Services and Activities
	13.3.1.5 Add a Receive Activity
	13.3.1.6 Add an Invoke Activity
	13.3.1.7 Add an Assign Activity

	13.3.2 Enqueue/Dequeue Message from Private Queue
	13.3.2.1 Designing the SOA Composite
	13.3.2.2 Creating the Inbound Oracle MSMQ Adapter Service
	13.3.2.3 Creating the Outbound Oracle MSMQ Adapter Service
	13.3.2.4 Wiring Services and Activities
	13.3.2.5 Adding a Receive Activity
	13.3.2.6 Adding an Invoke Activity
	13.3.2.7 Adding an Assign Activity

	13.3.3 Enqueuing a Message to a Distribution List
	13.3.3.1 Designing the SOA Composite
	13.3.3.2 Creating the Inbound Oracle File Adapter Service
	13.3.3.3 Creating the Outbound Oracle MSMQ Adapter Service
	13.3.3.4 Wiring Services and Activities
	13.3.3.5 Adding a Receive Activity
	13.3.3.6 Adding an Invoke Activity
	13.3.3.7 Adding an Assign Activity

14 Oracle JCA Adapter for Coherence

	14.1 Oracle Coherence and Oracle JCA Coherence Adapter Concepts
	14.1.1 Coherence Cache
	14.1.2 The Coherence Adapter
	14.1.3 Compatibilty
	14.1.4 Oracle Coherence Adapter Features
	14.1.4.1 Basic Use Cases
	14.1.4.1.1 Configuring the Coherence Adapter Connection to a Remote Cluster
	14.1.4.1.2 Coherence Adapter Connection to Local Cluster

	14.2 Configuring the Coherence Adapter
	14.3 Querying Items in the Coherence Cache
	14.4 Defining Messages for Put, Get and Query Operations if XML is Chosen
	14.4.1 Defining Messages for Put, Get and Query Operations if Pojo is Chosen

	14.5 Coherence Adapter Files and Artifacts
	14.5.1 JCA File
	14.5.2 WSDL for Put Operation
	14.5.3 WSDL for Remove with Filter Expression Having Bind Variables
	14.5.4 WSDL for Get Operation
	14.5.5 WSDL for Query with Filter Expression having Bind Variables

	14.6 Tips for Using the Coherence Adapter

15 Oracle JCA Adapter for JDE Edwards World

	15.1 JD Edwards World System and JDE Edwards World Adapter Concepts
	15.2 JD Edwards World Adapter Features
	15.3 Configuring the JD Edwards World Adapter
	15.3.1 Configuring Connection Pooling for the JDEdwards World Adapter

	15.4 JD Edwards Word Adapter Configuration Wizard Flow: Insert Operation
	15.5 JD Edwards World Adapter: Select Operation
	15.5.1 Configuration Files
	15.5.1.1 Insert Operation Example WSDL and .jca File
	15.5.1.2 Select Operation Example WSDL and .jca File

16 Oracle JCA Adapter Tuning Guide

	16.1 Oracle JCA Adapter Framework Performance and Tuning
	16.1.1 payloadSizeThreshold
	16.1.1.1 DOM or Scalable DOM
	16.1.1.2 Synchronous Consume
	16.1.1.3 Symptoms if payloadSizeThreshold is Not Properly Tuned
	16.1.1.4 Downside of Tuning
	16.1.1.5 Recommendations if Symptoms Occur

	16.1.2 minimumDelayBetweenMessages
	16.1.2.1 Symptoms if Not Properly Tuned
	16.1.2.2 Downside of Tuning
	16.1.2.3 Recommendations if Symptoms Occur

	16.2 JMS Adapter
	16.2.1 adapter.jms.receive.threads
	16.2.1.1 Symptoms if Not Properly Tuned
	16.2.1.2 Downside of Tuning
	16.2.1.3 Recommendations if Symptoms Occur

	16.2.2 EnableStreaming
	16.2.2.1 Symptoms if Not Properly Tuned
	16.2.2.2 Downside of Tuning
	16.2.2.3 Recommendations if Symptoms Occur

	16.2.3 adapter.jms.receive.timeout
	16.2.3.1 Symptoms if Not Properly Tuned
	16.2.3.2 Downside of Tuning
	16.2.3.3 Recommendations if Symptoms Occur

	16.3 AQ Adapter
	16.3.1 adapter.aq.dequeue.threads
	16.3.1.1 Symptoms if Not Properly Tuned
	16.3.1.2 Downside of Tuning
	16.3.1.3 Recommendations if Symptoms Occur

	16.3.2 EnableStreaming
	16.3.2.1 Symptoms if Not Properly Tuned
	16.3.2.2 Downside of Tuning
	16.3.2.3 Recommendations if Symptoms Arise

	16.3.3 DequeueTimeOut
	16.3.3.1 Symptoms if Not Properly Tuned
	16.3.3.2 Downside of Tuning
	16.3.3.3 Recommendations if Symptoms Arise

	16.4 File/FTP adapter
	16.4.1 Thread Count and Single Thread Model
	16.4.1.1 Symptoms if Not Properly Tuned
	16.4.1.2 Downside of Tuning
	16.4.1.3 Recommendations if Symptoms Arise

	16.4.2 maxRaiseSize
	16.4.2.1 Symptoms if Not Properly Tuned
	16.4.2.2 Downside of Tuning
	16.4.2.3 Recommendations if Symptoms Arise

	16.4.3 PublishSize
	16.4.3.1 Symptoms if Not Properly Tuned
	16.4.3.2 Downside of Tuning
	16.4.3.3 Recommendations if Symptoms Arise

	16.4.4 ChunkSize
	16.4.4.1 Symptoms if Not Properly Tuned
	16.4.4.2 Downside of Tuning
	16.4.4.3 Recommendations if Symptoms Arise

	16.5 Database Adapter
	16.5.1 Use Indexes
	16.5.1.1 Symptoms if Not Properly Tuned
	16.5.1.2 Downside of Tuning
	16.5.1.3 Recommendations if Symptoms Arise

	16.5.2 MaxTransactionSize and MaxRaiseSize
	16.5.2.1 Symptoms if Not Properly Tuned
	16.5.2.2 Downside of Tuning
	16.5.2.3 Recommendations if Symptoms Arise

	16.5.3 Do not use RowsPerPollingInterval
	16.5.3.1 Symptoms if not Properly Tuned
	16.5.3.2 Downside of Tuning
	16.5.3.3 Recommendations if Symptoms Arise

	16.5.4 Enable Skip Locking true (Use Parameter usesSkipLocking)
	16.5.4.1 Symptoms if not Properly Tuned
	16.5.4.2 Downside of Tuning
	16.5.4.3 Recommendations if Symptoms Arise

	16.5.5 Increase NumberOfThreads
	16.5.5.1 Symptoms if not Properly Tuned
	16.5.5.2 Downside of Tuning
	16.5.5.3 Recommendations if Symptoms Arise

A Oracle JCA Adapter Properties

	A.1 Oracle File and FTP Adapters Properties
	A.2 Oracle Socket Adapter Properties
	A.3 Oracle AQ Adapter Properties
	A.4 Oracle JMS Adapter Properties
	A.5 Oracle Database Adapter Properties
	A.6 Oracle MQ Series Adapter Properties
	A.7 LDAP Adapter Properties
	A.8 Coherence Adapter Properties
	A.9 MSMQ JCA Adapter Properties
	A.10 UMS JCA Adapter Properties
	A.11 Generic Oracle JCA Adapter Properties
	A.12 Generic Oracle Adapter Binding Properties

B Oracle JCA Adapter Valves

	B.1 A Simple Unzip Valve
	B.2 A Simple Decryption Valve That Uses Staging File
	B.3 A Valve for Encrypting Outbound Files
	B.4 An Unzip Valve for processing Multiple Files

C Oracle MQ Series Adapter Supported Encodings

	C.1 Oracle MQ Series Adapter Encodings
	C.1.1 Adding Support for Other Standard Java Encodings

Part I Introduction and Concepts

Part I contains the following chapters:

	Introduction to Oracle JCA Adapters

	Adapter Framework

	Adapter Integration with Oracle Application Server Components

	Oracle File and FTP Adapters

	Oracle Socket Adapter

	Native Format Builder Wizard

3 Adapter Integration with Oracle Application Server Components

This chapter discusses how Adapters integrate with the Oracle SOA Suite and the Oracle Weblogic Server.

This chapter includes the following topics:

	Adapter Integration with Oracle WebLogic Server

	Adapter Integration with Oracle Fusion Middleware

	Monitoring

3.1 Adapter Integration with Oracle WebLogic Server

Oracle JCA Adapters are based on the J2CA 1.5 specification and are deployed to the Oracle WebLogic Server. The resource adapter runs in the same Java Virtual Machine (JVM) as Fusion Middleware does. This section provides an overview of the Oracle WebLogic Server and design-time and runtime integration with an adapter.

This section includes the following topics:

	Oracle WebLogic Server Overview

	Oracle WebLogic Server Integration with Adapters

3.1.1 Oracle WebLogic Server Overview

Oracle WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise Edition (Java EE) application server. The WebLogic Server infrastructure supports the deployment of many types of distributed applications. It is an ideal foundation for building applications based on Service Oriented Architecture (SOA).

All client applications run within the Oracle WebLogic Server environment. To integrate an Oracle WebLogic Server client application with a resource adapter, use the common client interface (CCI). The Oracle WebLogic Server adapter clients include a servlet, EJB, or Java application client that implements the CCI Application Programming Interface (API). The CCI defines a standard client API for application components to access the back-end application.

On the other hand, the contract between the Oracle WebLogic Server container and the resource adapter is defined by the service provider interface (SPI). Contracts define a standard between Oracle WebLogic Server and adapters. The system handles these contracts automatically and hides them from the application developer. Figure 3-1 illustrates the CCI and SPI contracts:

Figure 3-1 Contracts Between Oracle WebLogic Server and Resource Adapter
[image: Description of Figure 3-1 follows]

The Oracle WebLogic Server architecture includes the following set of system-level contracts:

	Connection management: Enables application components to connect to a back-end application and leverage any connection pooling support of the Oracle WebLogic Server container. This leads to a scalable and efficient environment that can support a large number of components requiring access to a back-end application. For more information, see Adding an Adapter Connection Factory.

	Transaction management: Enables an application server to use a transaction manager to manage transactions across multiple resource managers. Most of the adapters support only local transactions (single-phase commit) and not XA transactions (two phase commit). For more information, see How Oracle JCA Adapters Ensure No Message Loss.

All Oracle JCA Adapters are preconfigured with the correct value for transaction, and you must not change this configuration in the Oracle WebLogic Server Administration Console.

	Security management: The WebLogic Server security architecture provides a comprehensive, flexible security infrastructure designed to address the security challenges of making applications available on the web. WebLogic security can be used standalone to secure WebLogic Server applications or as part of an enterprise-wide security management system that represents a best-in-breed security management solution.

3.1.2 Oracle WebLogic Server Integration with Adapters

Oracle JCA Adapters are based on the J2CA 1.5 specification and are deployed as the J2CA resource adapter within the Oracle WebLogic Server container in this release. The J2CA resource adapter is packaged into a Resource Adapter Archive (RAR) file using the Java Archive (JAR) format. A RAR file contains a correctly formatted deployment descriptor (/META-INF/ra.xml). In addition, it contains declarative information about the contract between the Oracle WebLogic Server and resource adapter.

Oracle WebLogic Server generates the corresponding weblogic-ra.xml file during the deployment of the J2CA adapter. The weblogic-ra.xml file is the deployment descriptor for a resource adapter. It contains deployment configurations for deploying resource adapters to Oracle WebLogic Server, which includes the back-end application connection information as specified in the deployment descriptor of the resource adapter, Java Naming and Directory Interface (JNDI) name to be used, connection pooling parameters, and resource principal mapping mechanism and configurations.

3.1.2.1 Design Time

Use the adapter design-time tool to generate WSLD, XSD and JCA artifacts for the adapter request-response service. Information in these artifacts would be used a runtime while creating the JCA interaction.. The Oracle WebLogic Server clients use these XSD files during runtime for calling the J2CA outbound interaction.

Packaged-application adapters use OracleAS Adapter Application Explorer (Application Explorer), Legacy adapters use OracleAS Studio, and technology adapters use Oracle JDeveloper (JDeveloper).

For more information, see Design Time.

3.1.2.2 Runtime

Oracle JCA Adapters are deployed as the J2CA 1.5 resource adapter within the Oracle WebLogic Server container. The J2CA 1.5 specification addresses the life-cycle management, message-inflow (for Adapter Event publish), and work management contracts.

3.2 Adapter Integration with Oracle Fusion Middleware

Adapters integrate with the JCA Binding Component of the Oracle Fusion Middleware platform, thereby seamlessly integrating with service engines, such as Oracle BPEL Process Manager (Oracle BPEL PM) and Oracle Mediator.

Figure 3-2 shows the architecture of Oracle JCA Adapters.

Figure 3-2 Oracle Adapter Architecture in Oracle Fusion Middleware
[image: Description of Figure 3-2 follows]

. The Adapter Configuration Wizard, amongst others, generates a WSDL and a JCA properties file, which contain the binding information for that service.

Oracle technology adapters gather and publish statistics for every inbound and outbound message they process. For more information, see Monitoring .

For information on using adapters with the Oracle Service Bus, see “Using the JCA Transport and JCA Adapters” in the Developing Services with Oracle Service Bus guide. For the Open Service Bus (OSB), the only difference is that rather than having the .jca file referenced by the composite.xml itself, for OSB the file is referenced by a proxy/business service.

This section includes the follows topics:

	Oracle BPEL Process Manager Overview

	Oracle Mediator Overview

	Oracle Fusion Middleware Integration with Adapters

	Oracle SOA Composite Integration with Adapters

3.2.1 Oracle BPEL Process Manager Overview

Oracle BPEL PM is a comprehensive solution for creating, deploying, and managing Oracle BPEL PM business processes. Oracle BPEL PM is based on the Service Oriented Architecture (SOA) to provide flexibility, interoperability, reusability, extensibility, and rapid implementation. Oracle BPEL PM reduces the overall cost of management, modification, extension, and redeployment of existing business processes. Each business activity is a self-contained, self-describing, modular application with an interface that is defined by a WSDL file and the business process that is modeled as a web service.

3.2.2 Oracle Mediator Overview

Oracle Mediator provides a lightweight framework to mediate between various producers and consumers of services and events. In most business environments, customer data resides in disparate sources including business partners, legacy applications, enterprise applications, databases, and custom applications. The challenge of integrating this data can be met by using Oracle Mediator to deliver appropriate real-time data access to all applications that update or have a common interest in the same data. For example, a Mediator can accept data contained in a text file from an application or service, transform it to a format appropriate for updating a database that serves as a customer repository, and then route and deliver the data to that database.

3.2.3 Oracle Fusion Middleware Integration with Adapters

The JCA Binding Component is used for the bidirectional integration of the J2CA 1.5 resource adapters with Oracle BPEL PM and Oracle Mediator. Oracle JCA Adapters generate a WSDL file and a JCA binding, and expose the underlying interactions as web Services.

The interface (input/output XML elements) to an adapter service is described through a WSDL file. However, in the 11g release, the binding element has been removed, making the WSDL file abstract. Instead the binding information, that the JCA Binding Component (referred to as adapter framework in the previous releases) and adapters must invoke for a particular call on a particular EIS, is stored in a separate binding.jca file.

This section describes:

	Design Time

	Runtime

	Use Case: Integration with Oracle BPEL Process Manager

	Oracle SOA Composite Overview

	Adapters Integration With Oracle SOA Composite

3.2.3.1 Design Time

While integrating adapters with Oracle BPEL PM and Oracle Mediator, the underlying adapter services are exposed as WSDL files with the J2CA extension. The following table lists the design-time tools used for generating WSDL and JCA files for various types of adapters.

	Adapter	Tool
	Oracle Technology Adapters

	Oracle JDeveloper

	Mainframe and TP-Monitor Adapters

	Oracle Studio

	Packaged-Application Adapters

	Application Explorer

	Oracle Adapter for Oracle Applications

	Oracle JDeveloper

WSDL files are created for both request-response and event-notification services of an adapter. The J2CA extension contains J2CA elements that are required by the JCA Binding Component during runtime to convert web service messages to J2CA Interactions and back. The J2CA WSDL extension elements contain the metadata for the JCA Binding Component to call any request-response service and activate any inbound J2CA 1.5 endpoint to receive inbound events. The J2CA extension elements for the request-response service contains the JNDI location and InteractionSpec details for calling an outbound interaction. The J2CA extension elements for the event-notification service contains the resource adapter class name and ActivationSpec parameters for publishing an adapter event through the J2CA inbound interaction.

Figure 3-3 illustrates the design-time tool, JDeveloper, used by Oracle JCA Adapters.

Figure 3-3 Design Time Configuration of Technology Adapters
[image: Description of Figure 3-3 follows]

Figure 3-4 illustrates the design-time tool for configuring packaged-application adapters. In this figure, the design-time tools are used to expose adapter metadata as WSDL files. The WSDL files are consumed by BPEL Process Manager during runtime.

Figure 3-4 Configuring Packaged-Application Adapters
[image: Description of Figure 3-4 follows]

3.2.3.2 Runtime

Oracle Application Server adapters are based on the J2CA 1.5 specification, and BPEL is deployed on the runtime on the Oracle WebLogic Server. The JCA Binding Component acts as a glue layer that integrates the standard J2CA 1.5 resource adapter with the Oracle BPEL Process Manager and Oracle Mediator during runtime.

The web service invocation launched by the BPEL Invoke activity is converted to a J2CA CCI outbound interaction, and the J2CA response is converted back to a web service response.

3.2.3.3 Use Case: Integration with Oracle BPEL Process Manager

From the Partner Link dialog in Oracle BPEL PM, shown in Figure 3-5, you can access the adapters that are provided with Oracle BPEL PM.

Figure 3-5 Partner Link dialog box
[image: Description of Figure 3-5 follows]

Click the Define Service icon, shown in Figure 3-6, to access the Configure Service or Adapter dialog.

Figure 3-6 Defining an Adapter
[image: Description of Figure 3-6 follows]

This dialog enables you to configure the types of adapters shown in Figure 3-7 for use with Oracle BPEL processes.

Figure 3-7 Adapter Types
[image: Description of Figure 3-7 follows]

When you select an adapter type (Oracle AQ Adapter in this example), and then click OK, the Adapter Configuration Wizard - Welcome page appears, as shown in Figure 3-8.

Figure 3-8 The Adapter Configuration Wizard- Welcome Page
[image: Description of Figure 3-8 follows]

Click Next, and the Service Name page appears, as shown in Figure 3-9. You are prompted to enter a name for the service.

For this example, AQ Adapter is selected, as shown in Figure 3-7. When the wizard completes, a WSDL file by this service name appears in the Application Navigator for the BPEL process (for this example, named DequeueDemo.wsdl). This file includes the adapter configuration settings you specify with this wizard. Other configuration files (such as header properties and files specific to the adapter) are also created and displayed in the Application Navigator.

Figure 3-9 The Adapter Configuration Wizard- Service Name Page
[image: Description of Figure 3-9 follows]

The Adapter Configuration Wizard windows that appear after the Service Name window are based on the adapter type you selected. These configuration windows and the information you must provide are described in later chapters of this guide.

3.2.4 Oracle SOA Composite Integration with Adapters

Oracle JCA Adapters can be integrated with Oracle SOA Suite.

This section includes the following:

	Oracle SOA Composite Overview

	Adapters Integration With Oracle SOA Composite

3.2.4.1 Oracle SOA Composite Overview

An SOA composite application is an assembly of services, service components, references, and wires designed and deployed to meet a business need.

SOA provides an enterprise architecture that supports building connected enterprise applications. SOA facilitates the development of enterprise applications as modular business web services that can be easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.

3.2.4.2 Adapters Integration With Oracle SOA Composite

A composite is an assembly of services, service components, wires, and references designed and deployed in a single application. The composite processes the information described in the messages.

For example, a composite includes an inbound service binding component (an inbound adapter), a BPEL process service component, and an outbound reference binding component (an outbound adapter). The details of this composite are stored in the composite.xml file.

An Oracle SOA composite typically comprises the following parts:

	Binding Components

The binding component establishes the connectivity between a SOA composite and the external world. There are two types of binding components:

	Service Binding Components

Provide the outside world with an entry point to the SOA composite application. The WSDL file of the service informs external applications of its capabilities. These capabilities are used for contacting the SOA composite application components. The binding connectivity of the service describes the protocols that can communicate with the service, for example, Oracle JCA adapter.

	Reference Binding Components

Enable messages to be sent from the SOA composite application to external services in the outside world.

The Oracle SOA Suite provides web Services, such as Oracle JCA adapters for integrating services and references with technologies (for example, databases, file systems, FTP servers, messaging: JMS, IBM MQ, and so on) and applications (Oracle E-Business Suite, PeopleSoft, and so on). This includes Oracle AQ Adapter, Oracle Database Adapter, Oracle File Adapter, Oracle FTP Adapter, Oracle JMS Adapter, Oracle MQ Series Adapter, and Oracle Socket Adapter.

	Service Infrastructure

Provides internal message transport. For example, receives the message from an inbound adapter and posts the message for processing to the BPEL process service engine.

	Service Engines (containers hosting service components)

Host the business logic or processing rules of the service components. Each service component has its own service engine. For example, an Oracle BPEL process engine or an Oracle Mediator Component.

For more information about adapter integration with service engines, see Adapter Integration with Oracle Fusion Middleware.

	UDDI and MDS

The MDS (Metadata Service) repository stores descriptions of available services. The UDDI advertises these services and enables discovery and dynamic binding at runtime.

	SOA Archive: Composite

The deployment unit that describes the composite application.

A composite is an assembly of services (for example, inbound adapters), service components, wires, and references (for example, outbound adapters) designed and deployed in a single application. The composite processes the information described in the messages. A composite.xml file is automatically created when you create a SOA project. This file describes the entire composite assembly of services, service components, references, and wires. The composite.xml file describes the entire SOA composite.

See the example below for a sample composite.xml file.

Example - composite.xml File

Composite.xml (JCA Bindings)<?xml version="1.0"
encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version
<! -- 1.0 at [2/23/09 3:02 PM]. -->
<composite name="MediatorFlatStructure"
 revision="1.0"
 label="2009-02-23_15-02-00_374"
 mode="active"
 state="on"
 xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">
 <import namespace="http://xmlns.oracle.com/pcbpel/
 adapter/file/SOA-FlatStructure/
 MediatorFlatStructure/MedFlatIn%2F"
 location="MedFlatIn.wsdl" importType="wsdl"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/
 adapter/file/SOA-FlatStructure/
 MediatorFlatStructure/MedFlatOut%2F"
 location="MedFlatOut.wsdl" importType="wsdl"/>
 <service name="MedFlatIn"
 ui:wsdlLocation="MedFlatIn.wsdl">
 <interface.wsdl interface=
 "http://xmlns.oracle.com/pcbpel/
 adapter/file/SOA-FlatStructure/
 MediatorFlatStructure/MedFlatIn%2F#wsdl.
 interface(Read_ptt)"/>
 <binding.jca config="MedFlatIn_file.jca"/>
 </service>
 <component name="MediatorFlat">
 <implementation.mediator
 src="MediatorFlat.mplan"/>
 </component>
 <reference name="MedFlatOut"
 ui:wsdlLocation="MedFlatOut.wsdl">
 <interface.wsdl interface=
 "http://xmlns.oracle.com/pcbpel/
 adapter/file/SOA-FlatStructure/
 MediatorFlatStructure/
 MedFlatOut%2F#wsdl.interface(Write_ptt)"/>
 <binding.jca config="MedFlatOut_file.jca"/>
 </reference>
 <wire>
 <source.uri>MedFlatIn</source.uri>
 <target.uri>
 MediatorFlat/MediatorFlat</target.uri>
 </wire>
 <wire>
 <source.uri>MediatorFlat/MedFlatOut</source.uri> <target.uri>MedFlatOut</target.uri>
 </wire>
</composite>

For more information about Oracle SOA composite and its integration with various service engines, see “Getting Started with Developing SOA Composite Applications” and other sections in the Developing SOA Applications with Oracle SOA Suite guide.

3.3 Monitoring Oracle JCA Adapters

In Oracle BPEL Process Manager and Oracle Mediator, Oracle JCA adapters such as File, JMS, and Database, gather and publish statistics for every message they process, either inbound or outbound. The statistics are broken down into categories and individual tasks. The following is an example of how statistics are broken down in an outbound (reference) process:

	Adapter Preprocessing

	Preparing InteractionSpec

	Adapter Processing

	Setting up Callable Statement

	Invoking Database

	Parsing Result

	Adapter Postprocessing

The adapter statistics can be viewed in the Fusion Middleware
Control Console. The following are the steps to view the adapter statistics:

	Navigate to http://servername:portnumber/em.
	In the SOA folder in the Target Navigation tree (in the extreme left pane), click soa_infra.The soa-infra page is displayed.

	From the SOA Infrastructure menu in the soa-infra page, click Services and References.Figure 3-10 Viewing the Adapter Statistics in the Fusion Middleware
Control Console using Diagnosability Reports
[image: Description of Figure 3-10 follows]
Description of "Figure 3-10 Viewing the Adapter Statistics in the Fusion Middleware
Control Console using Diagnosability Reports"

The SOA Infrastructure Home > Interfaces page is displayed, as shown in Figure 3-11.

This page shows a list of all currently active inbound (services) and outbound adapter interactions (references), and the average execution time for the various steps each adapter performs.

Figure 3-11 The SOA Infrastructure Home Page
[image: Description of Figure 3-11 follows]

For more information on monitoring and configuring SOA Adapters, including Adapter Reporting new to this release, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite, in particular, the Monitoring Oracle JCA Adapters, and Configuring Oracle JCA Adapters chapters, and the Diagnosing Problems with SOA Composite Applications, which has information on using Adapter logs to assist in diagnosing SOA Composite application problems that are related to Adapters.

5 Oracle JCA Adapter for Sockets

This chapter describes how to use Oracle JCA Adapter for Sockets (Oracle Socket Adapter), which works with Oracle BPEL Process Manager (Oracle BPEL PM) and Oracle Mediator (Mediator) as an external service.

This chapter includes the following sections:

	Introduction to Oracle Socket Adapter

	Oracle Socket Adapter Features

	Oracle Socket Adapter Concepts

	Configuring Oracle Socket Adapter

	Oracle Socket Adapter Use Cases

5.1 Introduction to Oracle Socket Adapter

Oracle Socket Adapter is a JCA 1.5 compliant adapter for modeling standard or nonstandard protocols for communication over TCP/IP sockets. You can use an Oracle Socket Adapter to create a client or a server socket, and establish a connection. The data that is transported can be text or binary.

This section includes the following topics:

	Oracle Socket Adapter Architecture

	Oracle Socket Adapter Integration with Mediator

	Oracle Socket Adapter Integration with Oracle BPEL PM

	Oracle Socket Adapter Integration with SOA Composite

5.1.1 Oracle Socket Adapter Architecture

Oracle Socket Adapter is based on the JCA 1.5 architecture. JCA provides a standard architecture for integrating heterogeneous enterprise information systems (EIS). The JCA Binding Component of the Oracle Socket Adapter exposes the underlying JCA interactions as services (WSDL with JCA binding) for Oracle BPEL PM integration. Figure 5-1 illustrates the architecture of Oracle Socket Adapter. For details about the Oracle JCA Adapter architecture, see Architecture.

Figure 5-1 Oracle Socket Adapter Architecture
[image: Description of Figure 5-1 follows]

5.1.1.1 Socket Adapter Message Rejection and Resubmission Not Used

Note that the Socket Adapter does not support the message rejection and retry functionality that is applicable to other JCA Adapters.

Usually the client socket application that connects to the server socket performs the error handling when there is an exception from the downstream adapter. Because message rejections in Socket adapter are not supported, thExaltessage re-submission feature is not used in the Socket Adapter.

5.1.2 Oracle Socket Adapter Integration with Mediator

Oracle Socket Adapter is automatically integrated with Mediator. When you create an Oracle Socket Adapter service in JDeveloper Designer, the Adapter Configuration Wizard is started. This wizard enables you to configure the Oracle Socket Adapter. When configuration is complete, a WSDL file of the same name is created in the Application Navigator section of Oracle JDeveloper (JDeveloper). This WSDL file contains the configuration information you specify in the Adapter Configuration Wizard.

The Operation Type page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information.

For more information about Oracle JCA Adapter integration with Mediator, see Adapter Integration with Oracle Fusion Middleware.

5.1.3 Oracle Socket Adapter Integration with Oracle BPEL PM

Oracle Socket Adapter is automatically integrated with Oracle BPEL PM. When you drag and drop Socket Adapter from the Components window of JDeveloper BPEL Designer, the Adapter Configuration Wizard starts with a Welcome page, as shown in Figure 5-2.

Figure 5-2 The Adapter Configuration Wizard - Welcome Page
[image: Description of Figure 5-2 follows]

This wizard enables you to configure an Oracle Socket Adapter. The Adapter Configuration Wizard then prompts you to enter a service name, as shown in Figure 5-3.

Figure 5-3 The Adapter Configuration Wizard Service Name Page
[image: Description of Figure 5-3 follows]

When configuration is complete, a WSDL file of the same name is created in the Application Navigator section of JDeveloper. This WSDL file contains the configuration information you specify in the Adapter Configuration Wizard.

The Operation Type page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information.

For more information about Oracle JCA Adapter integration with Oracle BPEL PM, see Adapter Integration with Oracle Fusion Middleware.

5.1.4 Oracle Socket Adapter Integration with SOA Composite

A composite is an assembly of services, service components (Oracle BPEL PM and Mediator), wires, and references designed and deployed in a single application. The composite processes the information described in the messages. The details of the composite are stored in the composite.xml file. For more information on integration of the Oracle Socket Adapter with SOA composite, see Oracle SOA Composite Integration with Adapters.

5.2 Oracle Socket Adapter Features

Oracle Socket Adapter enables you to configure a BPEL process or a Mediator service to read and write data over TCP/IP sockets. It includes the following features:

	Allows modeling of standard or nonstandard protocols for communication over TCP/IP sockets

	Supports both inbound and outbound communication

	Allows you to model complex protocol handshakes declaratively, by using XSL

	Allows you the option of plugging in custom Java code to model a protocol handshake

	Provides support for reading and writing native data over sockets as the adapter is integrated with the translator infrastructure (NXSD)

	Supports multiple character encoding

5.3 Oracle Socket Adapter Concepts

This section describes the following Oracle Socket Adapter concepts:

	Communication Modes

	Mechanisms for Defining Protocols

	Character Encoding and Byte Order

	Performance Tuning

5.3.1 Communication Modes

Oracle Socket Adapter supports inbound and outbound communication over sockets that can be unidirectional or bidirectional. The communication modes of Oracle Socket Adapter are discussed in the following sections:

	Inbound Synchronous Request/Response

	Outbound Synchronous Request/Response

	Inbound Receive

	Outbound Invoke

5.3.1.1 Inbound Synchronous Request/Response

As part of inbound activation, the Oracle Socket Adapter opens a server socket and waits for incoming connections. The adapter uses the connection to the server socket and reads the request message, which is published to BPEL or Mediator. The Oracle Socket Adapter then uses the same connection to send the response back synchronously.

Figure 5-4 illustrates an inbound synchronous request/response scenario.

Figure 5-4 BPEL Scenario of Inbound Synchronous Request/Response
[image: Description of Figure 5-4 follows]

5.3.1.2 Outbound Synchronous Request/Response

In the case of outbound synchronous request/response, a request comes from BPEL or Mediator. The Oracle Socket Adapter connects to the server socket to send the request message to the server socket on the output stream. The Oracle Socket Adapter then blocks the response from the server socket on the input stream and publishes the response back to BPEL or Mediator.

Figure 5-5 illustrates an outbound synchronous request/response scenario.

Figure 5-5 BPEL Scenario of Outbound Synchronous Request/Response
[image: Description of Figure 5-5 follows]

5.3.1.3 Inbound Receive

As part of inbound activation, the Oracle Socket Adapter opens a server socket and waits for incoming connections. The adapter uses the connection to the server socket and reads the request message, which is published to BPEL or Mediator. In this scenario, no reply is sent.

5.3.1.4 Outbound Invoke

In the case of an outbound one way invoke scenario, the request comes from BPEL or Mediator. Oracle Socket Adapter connects to the server socket and sends the request message to the server socket on the output stream without expecting a reply.

5.3.2 Mechanisms for Defining Protocols

Communication protocols or handshakes consist of different discrete steps such as authentication procedures, acknowledgments, and sending or receiving data depending on conditions. Oracle Socket Adapter supports the following mechanisms to define the protocol handshakes.

	Protocol with Handshake Mechanism Using Style Sheet

	Protocol with Handshake Mechanism Using Custom Java Code

	Protocol Without Handshake Mechanism

5.3.2.1 Protocol with Handshake Mechanism Using Style Sheet

Oracle Socket Adapter can be configured to use a protocol designed with a handshake mechanism, defined using style sheets that use XPath Extension functions exposed by the adapter. This can be granular read and write operation on the socket I/O stream or till the end of the stream. These functions also enable you to use native format constructs for reading and writing data. This handshake mechanism uses XSLT constructs to define operations such as assignments, validations, and control flow.

You can use the XPath Extension functions with the translator infrastructure in the following ways:

	By using StyleReader, which is exposed by the NXSD framework, to read and write from the socket stream using the following methods:

	socketRead(nxsdStyle:String, nxsdStyleAttributes:String):String

You can use this method to read from the socket input stream.

	socketWrite(value:String, nxsdStyle:String, nxsdStyleAttributes:String):String

You can use this method to write to the socket output stream.

The XSLT shown in Figure 5-6 demonstrates the usage of extension functions that use StyleReader.

Figure 5-6 XSLT with Extension Functions That Use StyleReader
[image: Description of Figure 5-6 follows]

	By annotating the schema, which defines the input and output variables, using NXSD constructs to read and write from the socket stream using the following methods:

	socketReadWithXlation():DocumentFragment

You can use this method to read from the socket input stream by using the schema and schema element configured for input.

	socketWriteWithXlation(xml:NodeList)

You can use this method to write to the socket output stream by using the schema configured for output.

The XSD file shown in Figure 5-7 demonstrates the usage of extension functions by annotating the schema, which defines the input and output variables, using NXSD constructs.

Figure 5-7 XSD with Extension Functions That Do Not Use StyleReader
[image: Description of Figure 5-7 follows]

To define a handshake using style sheet, you must select Use XSLT to define the handshake and browse to select the XSL file in the Protocol page, as shown in Figure 5-8.

Figure 5-8 Defining a Protocol with the Handshake Mechanism By Using a Style Sheet
[image: Description of Figure 5-8 follows]

5.3.2.2 Protocol with Handshake Mechanism Using Custom Java Code

Oracle Socket Adapter can be configured to use a protocol with a customized handshake mechanism, defined by plugging in custom Java code. The custom Java code must implement oracle.tip.pc.services.translation.util.ICustomParser, the ICustomParser interface, provided by Oracle Socket Adapter, which enables custom implementation of handshakes.

Note:
The ICustomParser interface files are in the bpm-infra.jar file. This jar file is available in the following directory:

$SOA_ORACLE_HOME/soa/modules/oracle.soa.fabric_11.1.1

The following methods must be implemented based on the appropriate communication paradigm:

	public Element executeOutbound(InputStream in, OutputStream out, Element payLoad) throws Exception;

The outbound handshake must implement this method.

Example:

public Element executeOutbound(InputStream in, OutputStream out, Element payLoad) throws Exception {
 BufferedReader in1 = new BufferedReader(new InputStreamReader(in));
 PrintWriter out1 = new PrintWriter(new OutputStreamWriter(out));

 out1.println(payLoad.getFirstChild().getNodeValue());

 String retVal = in1.readLine();

 StringBuffer strBuf = new StringBuffer();
 strBuf.append("<?xml version='1.0' encoding='" + enc + "' ?>"
 + "<out xmlns='http://xmlns.oracle.com/EchoServer/'>");
 strBuf.append(retVal + "</out>");

 DOMParser parser = new DOMParser();
 parser.setValidationMode(DOMParser.NONVALIDATING);
 Element elem = (Element) parser.getDocument().getElementsByTagName(
 "out").item(0);

 return elem;
}

	public Element executeInboundRequest(InputStream in) throws Exception;

The inbound request must implement this method.

Example:

public Element executeInboundRequest(InputStream in) throws Exception {
 BufferedReader in1 = new BufferedReader(new InputStreamReader(in));

 String input = in1.readLine();

 StringBuffer strBuf = new StringBuffer();
 strBuf.append("<?xml version='1.0' encoding='" + enc + "' ?>"
 + "<EchoClientProcessRequest xmlns='http://xmlns.oracle.com/EchoClient'>");

 strBuf.append("<input>" + input + "</input></EchoClientProcessRequest>");

 DOMParser parser = new DOMParser();
 parser.setValidationMode(DOMParser.NONVALIDATING);
 parser.parse(new InputSource(new StringReader(strBuf.toString())));
 Element elem = (Element) parser.getDocument().getElementsByTagName(
 "EchoClientProcessRequest").item(0);

 return elem;
}

	public void executeInboundReply(Element payLoad, OutputStream out) throws Exception;

The inbound reply must implement this method.

Example:

public void executeInboundReply(Element payLoad, OutputStream out) throws Exception {
 PrintWriter out1 = new PrintWriter(new OutputStreamWriter(out));

 NodeList list = payLoad.getChildNodes();
 String retVal = null;
 for(int i = 0; i < list.getLength(); i++) {
 Node node = list.item(i);
 NodeList list1 = node.getChildNodes();
 for(int j = 0; j < list1.getLength(); j++) {
 Node node1 = list1.item(j);
 if(node1.getNodeType() == Node.TEXT_NODE) {
 retVal = node1.getNodeValue();
 }
 }
 }
 out1.println(retVal);
 out1.flush();
}

Note:
in is the handle to the socket input stream and out is the handle to the socket output stream.

To use a custom Java code to define a handshake, you must select Use Custom Java Code to define the handshake and specify the Java class implementing the handshake in the Java Class field, as shown in Figure 5-9.

Figure 5-9 Defining a Protocol with Handshake Mechanism By Using Custom Java Code
[image: Description of Figure 5-9 follows]

5.3.2.3 Protocol Without Handshake Mechanism

Oracle Socket Adapter can be configured to use protocols that do not require handshakes involving translation to and from the socket I/O stream.

To use a protocol that does not require a handshake, you must select No Handshake in the Protocol page, as shown in Figure 5-10.

Figure 5-10 Defining a Protocol without a Handshake Mechanism
[image: Description of Figure 5-10 follows]

5.3.3 Character Encoding and Byte Order

The Encoding property represents the character encoding in which native data is stored, and the ByteOrder property is the byte order of the native data, which is either BIG_ENDIAN or LITTLE_ENDIAN.

Character encoding and byte order can be specified in the schema file (NXSD), using the Native Format Builder wizard. You can also specify the encoding and the byte order to be used, by using the Adapter Configuration Wizard. When encoding and byte order are not specified, the default values are US-ASCII and BIG_ENDIAN.

To specify the encoding and byte order values, which are applicable only if you are using translation, you must perform the following steps in the Protocol page of the Adapter Configuration Wizard:

	In the Encoding/ByteOrder section of the Protocol page, select the Specify Encoding/Byte Order option, as shown in Figure 5-11.

Figure 5-11 The Adapter Configuration Wizard - Protocol Page
[image: Description of Figure 5-11 follows]

	Perform one of these tasks to set the encoding:

	To use the encoding specified in the schema file, leave Encoding unchecked.

	To specify the encoding using the Adapter Configuration Wizard, select Encoding, and then select an encoding type from the Encoding list.

Note:
If you select Encoding, then the encoding type specified using the Adapter Configuration Wizard takes precedence over the encoding type specified in the NXSD file.

	Perform one of these tasks to set the byte order:

	To use the byte order specified in the schema file, select Use Byte Order Value from the schema.

	To specify the byte order using the Adapter Configuration Wizard, select ByteOrder, and then select a byte order from the ByteOrder list.

	Click Finish. Once you click Finish, the Configuration Wizard displays a page that indicates that you have finished configuring the Socket Adapter.

5.3.4 Performance Tuning

The Oracle Socket Adapter supports performance tuning features, including:

	Configuring Connection Pooling

For more information, see Oracle JCA Adapter Tuning Guide and Oracle JCA Adapter Properties.

5.3.4.1 Configuring Oracle Socket Adapter Connection Pooling

One way to optimize Oracle Socket Adapter performance is by using a Connection Pool. You can use a connection pool while the socket server you are connecting to does not close the socket with each interaction. A connection pool lets you use a socket connection repeatedly, avoiding the overhead of creating a new socket for each interaction. You must configure the connection pool for the Oracle Socket Adapter using the Oracle WebLogic Server console.

Note:
The Connection Pool feature is applicable to outbound interactions only.

5.3.4.1.1 How to Configure Oracle Socket Adapter Connection Pooling

	Log into your Oracle WebLogic Server console. To access the console navigate to http://servername:portnumber/console.
	Click Deployments in the left pane for Domain Structure. The Summary of Deployments page is displayed.Figure 5-12 Oracle WebLogic Server Console - Summary of Deployments Page
[image: Description of Figure 5-12 follows]

	Click SocketAdapter. The Settings for SocketAdapter page is displayed.
	Click the Configuration tab.
	Click the Outbound Connection Pools tab, and expand javax.resource.cci.ConnectionFactory to see the configured connection factories, as shown in Figure 5-13:Figure 5-13 Oracle WebLogic Server Console - Settings for SocketAdapter Page
[image: Description of Figure 5-13 follows]

	Click eis/socket/SocketAdapter. The Settings for javax.resource.cci.ConnectionFactory page is displayed.
	Set the KeepAlive connection factory property to true, as shown in Figure 5-14. The connection pool feature for the Oracle Socket Adapter is enabled.Figure 5-14 Oracle WebLogic Server Console - Settings for javax.resource.cci.Connectionfactory Page
[image: Description of Figure 5-14 follows]

	Click Save. The Settings for javax.resource.cci.ConnectionFactory page is displayed with the message, Deployment plan has been successfully updated, as shown in Figure 5-15.Figure 5-15 Oracle WebLogic Server Console - Settings for javax.resource.cci.Connectionfactory Page
[image: Description of Figure 5-15 follows]

Note:
You can modify connection pool parameters by using the Connection Pool tab of Oracle WebLogic Server Administration Console.

5.4 Configuring Oracle Socket Adapter

The following tasks are required for configuring Oracle Socket Adapter:

	Modifying the weblogic-ra.xml File

	Modeling a Handshake

	Designing an XSL File Using the XSL Mapper Tool

	Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter

5.4.1 Modifying the weblogic-ra.xml File

To configure Oracle Socket Adapter, you must specify the value of the properties listed in Table 5-1 in the weblogic-ra.xml file. You can update these properties from the Oracle WebLogic Server Administration Console. For more information, see Adding an Adapter Connection Factory.

	
Table 5-1 Oracle Socket Adapter Configuration Properties

	Property	Description
	Host

	In case of outbound interaction, the system name on which the socket server is running, to which you want to connect. In case of inbound interaction, it is always localhost.

	Port

	In case of outbound interaction, it is the port number on which a socket server is running, to which an adapter connects. In case of inbound interaction, it is the port number on which the socket adapter listens for incoming connections.

	Timeout

	With this value set to a nonzero timeout interval, a read() call on the InputStream associated with this socket blocks for only this amount of time. If the timeout interval expires, then a java.net.SocketTimeoutException is raised though the socket is still valid. The option must be enabled before entering the blocking operation to have effect. The timeout interval must be greater than 0. A timeout interval of 0 is interpreted as an infinite timeout. The value is in milliseconds.

	KeepAlive

	Applicable only in case of outbound interactions. Should be set to true to use connection pool feature.

	BacklogQueue

	Applicable in case of inbound interactions. This value indicates the maximum queue length for incoming connection indications (a request to connect). If a connection indication arrives when the queue is full, then the connection is refused.

Note:
There is a change in behavior in which the ServerSocket is created when you upgrade from Oracle Release 11g to Release 12g. Because of this, remote clients might not able to connect to the ServerSocket when the hostname is configured as localhost. As a workaround, the localhost should be changed to hostname.

The following is a sample weblogic-ra.xml file:

<wls:connection-instance>
 <wls:description>Socket Adapter</wls:description>
 <wls:jndi-name>eis/socket/SocketAdapter</wls:jndi-name>
 <wls:connection-properties>
 <wls:pool-params>
 <wls:initial-capacity>0</wls:initial-capacity>
 <wls:max-capacity>200</wls:max-capacity>
 <wls:capacity-increment>5</wls:capacity-increment>
 <wls:shrinking-enabled>true</wls:shrinking-enabled>

<wls:shrink-frequency-seconds>60</wls:shrink-frequency-seconds>

<wls:connection-creation-retry-frequency-seconds>2</wls:connection-creation-retry
-frequency-seconds>

<wls:connection-reserve-timeout-seconds>5</wls:connection-reserve-timeout-seconds>

<wls:match-connections-supported>true</wls:match-connections-supported>
 <wls:use-first-available>true</wls:use-first-available>
 </wls:pool-params>

<wls:transaction-support>NoTransaction</wls:transaction-support>

<wls:reauthentication-support>true</wls:reauthentication-support>
 <wls:properties>
 <wls:property>
 <wls:name>Host</wls:name>
 <wls:value>localhost</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>Port</wls:name>
 <wls:value>12110</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>Timeout</wls:name>
 <wls:value>10000</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>BacklogQueue</wls:name>
 <wls:value>0</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>KeepAlive</wls:name>
 <wls:value>True</wls:value>
 </wls:property>
 </wls:properties>
 <wls:res-auth>Application</wls:res-auth>
 </wls:connection-properties>
 </wls:connection-instance>
		

Note:
To set up connection pooling, you must set the KeepAlive property to true.

5.4.2 Modeling a Handshake

A handshake may be required to negotiate a connection with a client or a server socket.

5.4.2.1 Modeling an Outbound Handshake

The outbound XSLT uses an input corresponding to the invoked message. The outbound XSLT writes to the socket output stream by using extension functions. The output is dummy for unidirectional or a response for bidirectional communication.

The following example demonstrates the modeling of a Synchronous Request/Response communication paradigm:

<xsl:stylesheet
...
xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.adapter.socket.ProtocolTranslator" />
xmlns:request="http://www.TragetNameSpace.com/Request" >

 <xsl:template match="/">

 <!–- Write the entire content of "books" element using translator -->
 <xsl:variable name="username" select="socket:socketWriteWithXlation(.)" />

 <!–- Read the stream using translator -->
 <xsl:copy-of select="socket:socketReadWithXlation()" />

 </xsl:template>
</xsl:stylesheet>

5.4.2.2 Modeling an Inbound Handshake

The inbound XSLT uses a dummy input, reads the socket input stream through extension functions, and constructs the XML record to be published.

The following example demonstrates a handshake in which the client sends across a user identification terminated by a comma (,) and a password terminated by a semicolon (;) for validation, and then sends the message payload:

<xsl:stylesheet
...
xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.adapter.socket.ProtocolTranslator" />
 <xsl:template match="/">
 <!-- Read the user name -->
 <xsl:variable name="username"
select="socket:socketRead('terminated','terminatedBy=,')" />
 <!-- Read password if user name is correct -->
 <xsl:if test="normalize-space($username)='user'">
 <xsl:variable name="password"
select="socket:socketRead('terminated','terminatedBy=;')" />
 <!-- If password is correct proceed to read the payload using translator
-->
 <xsl:if test="normalize-space($password)='password'">
 <!-- Send an OK -->
 <xsl:variable name="ack1" select="socket:socketWrite('001','','')" />

 <output>
<!-- Wait for the payload -->
 <xsl:copy-of select="socket:socketReadWithXlation()" />
 </output>

 </xsl:if>
 <!-- Send an error -->
 <xsl:else><xsl:variable name="ack2"
select="socket:socketWrite('000','','')" /></xsl:else>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

5.4.3 Designing an XSL File Using the XSL Mapper Tool

You can design an XSL file by using the XSL mapper tool for Oracle Socket Adapter. The following sections describe the procedure for designing XSL for different communication scenarios:

	Designing XSL for Inbound Synchronous Request/Reply

	Designing XSL for Outbound Synchronous Request/Reply

5.4.3.1 Designing XSL for Inbound Synchronous Request/Reply

This section describes the procedure for designing XSL for an inbound synchronous request/reply scenario by using the XSL mapper tool:

Note:
To perform this use case, you require the following files from the artifacts.zip file contained in the Adapters-101SocketAdapterHelloWorld sample:

	artifacts/schemas/HelloWorld.xsd

You can access the Adapters-101SocketAdapterHelloWorld sample on the Oracle SOA Sample Code site.

Copy this file to the HelloWorldComposite\xsd folder under the HelloWorldComposite project.

5.4.3.1.1 Design an SOA Composite

To design an SOA composite, perform the steps described in Designing the SOA Composite.

Note:
The steps provided in Designing the SOA Composite are applicable to a composite with Oracle BPEL PM. Alternatively, you can create a composite with Mediator.

5.4.3.1.2 Create an Inbound Oracle Socket Adapter

To create an inbound Oracle Socket Adapter service, perform the following steps:

	Drag and drop Socket Adapter from the Components Palette to the Exposed Services swim lane. The Welcome page of the Adapter Configuration Wizard is displayed.

	Click Next. The Service Name page is displayed.

	Enter the service name, HelloWorld in the Service Name field and then click Next. The Adapter Interface page is displayed.

	Select Define from operation and schema (specified later), as shown in the Figure 5-16, and click Next. The Operation page is displayed.

Figure 5-16 The Adapter Configuration Wizard - Adapter Interface Page
[image: Description of Figure 5-16 follows]

	Select Inbound Synchronous Request/Reply as the Operation Type and then click Next. The Socket Connection page is displayed.

	Enter eis/socket/InboundSocketAdapter in the Socket Connection JNDI Name field, as shown in Figure 5-17, and click Next. The Messages page is displayed.

Figure 5-17 The Adapter Configuration Wizard Socket Connection Page
[image: Description of Figure 5-17 follows]

	Click Browse For Schema File that appears at the end of the URL field in the Request Message Schema box. The Type Chooser dialog is displayed.

	Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest, as shown in Figure 5-18.

Figure 5-18 The Type Chooser Dialog
[image: Description of Figure 5-18 follows]

	Click OK. The URL field in the Messages page is populated with the HelloWorld.xsd file.

	Click Browse For Schema File that appears at the end of the URL field in the Reply Message Schema box. The Type Chooser dialog is displayed.

	Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessResponse.

	Click OK. The URL fields in the Messages page are populated with the HelloWorld.xsd files, as shown in Figure 5-19.

Figure 5-19 The Adapter Configuration Wizard File Messages Page
[image: Description of Figure 5-19 follows]

	Click Next. The Protocol page is displayed, as shown in Figure 5-20.

Figure 5-20 The Adapter Configuration Wizard - Protocol Page
[image: Description of Figure 5-20 follows]

	Select Use XSLT to define the handshake.

	Click the create new xsl file icon that appears at the end of the XSLT field. The Input dialog appears, as shown in Figure 5-21.

Figure 5-21 The input Dialog of the Protocol Page
[image: Description of Figure 5-21 follows]

	Use the default value, request.xsl, as the name of the XSL file, as shown in Figure 5-21 and click OK.

	Click the create new xsl file icon that appears at the end of the ReplyXslt field. The Input dialog appears.

	Use the default value, reply.xsl, as the name of the XSL file, and click OK.

	Click Finish. The request.xsl and the reply.xsl files are created.

Figure 5-22 shows the request.xsl page.

Figure 5-22 The JDeveloper - request.xsl Page
[image: Description of Figure 5-22 follows]

Note:
A dummy.xsd file appears in the left Source pane of the request.xsl page, which is used as the source for the XSL mapper tool.

In an inbound request scenario, Oracle Socket Adapter reads native data that is received by the socket and converts it to an XML format. That is, on the source side there is no XML file. Because the XSLT mapper always requires source and target XSD files, a dummy XSD file appears in the mapper tool.

Figure 5-23 shows the reply.xsl page.

Figure 5-23 The JDeveloper - reply.xsl Page
[image: Description of Figure 5-23 follows]

Note:
A dummy.xsd file appears in the right target pane of the reply.xsl page. This dummy.xsd file is used as the target for the XSL mapper tool.

	Define the request part of the inbound synchronous request/reply operation as follows:

	In the request.xsl page, drag and drop socketRead from the Advanced Functions list of the Components Palette to the middle pane, as shown in Figure 5-24.

Figure 5-24 The JDeveloper - request.xsl Page
[image: Description of Figure 5-24 follows]

	Double-click the socketRead advanced function. The Edit Function - socketRead dialog appears.

	Enter the function parameters in the nxsdStyle and nxsdStyleAttributes fields, as shown in Figure 5-25.

Figure 5-25 The Edit Function - socketRead Dialog
[image: Description of Figure 5-25 follows]

Note:
The socketRead function reads from the socket input stream by using the StyleReader exposed by the NXSD framework.

	Click OK. The request.xsl (XSL mapper tool) page is displayed.

	Link the sockRead function in the middle pane to the target input node on the right pane. The request.xsl (XSL mapper tool) with the XSL mapping is displayed, as shown in Figure 5-26.

Figure 5-26 The JDeveloper - request.xsl Page
[image: Description of Figure 5-26 follows]

	Define the reply part of the inbound synchronous request/reply operation as follows:

	From the Components window list, select Advanced, and then select Advanced Functions. A list of advanced functions are displayed.

	In the reply.xsl page, drag and drop socketWrite from the Advanced Functions list of the Components window to the middle pane.

	Double-click the socketWrite advanced function. The Edit Function - socketWrite dialog appears.

	Enter the function parameters in the valueToWrite, nxsdStyle, and nxsdStyleAttributes fields, as shown in Figure 5-27.

Figure 5-27 The Edit Function - socketWrite Dialog
[image: Description of Figure 5-27 follows]

Note:
The socketWrite function writes to the socket output stream by using the StyleReader exposed by the NXSD framework.

	Click OK. The reply.xsl (XSL mapper tool) page is displayed.

	Link the sockWrite function in the middle pane to the target input node on the right pane. The reply.xsl (XSL mapper tool) with the XSL mapping is displayed, as shown in Figure 5-28.

Figure 5-28 The JDeveloper - reply.xsl Page
[image: Description of Figure 5-28 follows]

	Click File, Save All. The request.xsl and reply.xsl files for the inbound Oracle Socket Adapter are created.

5.4.3.2 Designing XSL for Outbound Synchronous Request/Reply

This section describes the procedure for designing XSL for an outbound synchronous request/reply scenario by using the XSL mapper tool:

Note:
To perform this use case, you require the following files from the artifacts.zip file contained in the Adapters-101SocketAdapterHelloWorld sample:

	artifacts/schemas/HellowWorld.xsd

You can access the Adapters-101SocketAdapterHelloWorld sample on the Oracle SOA Sample Code site.

Copy the HelloWorld.xsd file to HelloWorldComposite\xsd under the HelloWorldComposite project:

5.4.3.2.1 Design an SOA Composite

To design an SOA composite, perform the steps described in Designing the SOA Composite..

Note:
The steps provided in Designing the SOA Composite are applicable to a composite with Oracle BPEL PM. Alternatively, you can create a composite with Mediator.

5.4.3.2.2 Create an Outbound Oracle Socket Adapter

To create an outbound Oracle Socket Adapter reference, perform the following steps:

	Drag and drop Socket Adapter from the Components Palette to the External References swim lane. The Welcome page of the Adapter Configuration Wizard is displayed.

	Click Next. The Service Name page is displayed.

	Enter the service name, HelloWorld in the Service Name field and then click Next. The Adapter Interface page is displayed.

	Select Define from operation and schema (specified later), as shown in the Figure 5-16 and click Next. The Operation page is displayed.

	Select Outbound Synchronous Request/Reply as the Operation Type and then click Next. The Socket Connection page is displayed.

	Enter eis/socket/OutboundSocketAdapter in the Socket Connection JNDI Name field and click Next. The Messages page is displayed.

	Click Browse For Schema File that appears at the end of the URL field in the Request Message Schema box. The Type Chooser dialog is displayed.

	Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest, as shown in Figure 5-18.

	Click OK. The URL field in the Messages page is populated with the HelloWorld.xsd file.

	Click Browse For Schema File that appears at the end of the URL field in the Reply Message Schema box. The Type Chooser dialog is displayed.

	Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessResponse.

	Click OK. The URL fields in the Messages page are populated with the HelloWorld.xsd files, as shown in Figure 5-19.

	Click Next. The Protocol page is displayed.

	Select Use XSLT to define the handshake.

	Click the create new xsl file icon that appears at the end of the Xslt field. The Input dialog appears.

	Use the default value, invoke.xsl, as the name of the XSL file and click OK.

	Click Finish. The invoke.xsl file appears in the XSL mapper tool, as shown in Figure 5-29.

Figure 5-29 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-29 follows]

	Right-click the HelloWorldProcessResponse element on the target side. A menu is displayed, as shown in Figure 5-30.

Figure 5-30 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-30 follows]

	Click Add Variable.... The Add Variable dialog is displayed, as shown in Figure 5-31.

Figure 5-31 The Add Variable Dialog
[image: Description of Figure 5-31 follows]

	Enter var1 in the Local Name field, and click OK. The var1 variable is added to the target pane of the XSL mapper tool.

	From the Components window list, select Advanced; then, select Advanced Functions. A list of advanced functions is displayed.

	Define the request part of the outbound synchronous request/reply operation, to write the data to the socket server, as follows:

	Drag and drop socketWriteWithXlation from the Advanced Functions list of the Components window to the middle pane, as shown in Figure 5-32.

Figure 5-32 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-32 follows]

	Drag the var1 node to the socketWriteWithXlation function. A link is created, as shown in Figure 5-33.

Figure 5-33 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-33 follows]

	Double-click the socketWriteWithXlation advanced function. The Edit Function - socketWriteWithXlation dialog appears.

	Enter a dot (.) in the NodeList field, as shown in Figure 5-34.

Figure 5-34 The Edit Function - socketWriteWithXlation Dialog
[image: Description of Figure 5-34 follows]

Note:
The socketWriteWithXlation function writes to the socket output stream using the schema configured for the output.

The dot (.) specified in the NodeList field signifies writing the HelloWorldProcessRequest to the top level node.

	Click OK. A Warning dialog appears.

	Click Yes. The invoke.xsl page is displayed. The request part of the Synchronous Request/Reply operation is defined.

	Define the reply part of the outbound synchronous request/reply operation as follows:

	Drag and drop socketReadWithXlation from the Advanced Functions list of the Components window to the middle pane, as shown in Figure 5-35.

Figure 5-35 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-35 follows]

	From the Components window list, select General; then, select XSLT Constructs. A list of XSLT constructs is displayed.

	Drag copy-of from the Components window to HelloWorldProcessResponse in the target pane. The Copy-of Type Dialog appears, as shown in Figure 5-36.

Figure 5-36 The JDeveloper - invoke.xsl Page with Copy-of Type Dialog
[image: Description of Figure 5-36 follows]

	Click OK. The invoke.xsl (XSL mapper tool) page is displayed with the copy-of XSLT construct added to the target pane, as shown in Figure 5-37.

Figure 5-37 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-37 follows]

	Drag the copy-of XSLT construct to the socketReadWithXlation function. A link is created, as shown in Figure 5-38.

Figure 5-38 The JDeveloper - invoke.xsl Page
[image: Description of Figure 5-38 follows]

	Click File, Save All. The Outbound Synchronous Request/Reply handshake is defined.

5.4.4 Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter

To specify a TCP port in a configuration plan for an Oracle Socket Adapter, perform the following steps (where <service-name> is Service name):

	Add a port property to your <service-name>_tcp.jca file:<property name="Port" value="Port"/>

	Add the following code to your configuration plan XML file:<service_name=<XXXXXX">
 <property>
 <property name="Port">
 <replace>2222</replace>
 </property>
 <binding type'"jca"/>
</service>

	Add the port property to your .xml file under the service element and specify a default value, in this example, 1111<service name="XXXXX" ui:wsdlLocation
 <interface.wsdl.interface="..."/>
 <binding.jca config="XXXX_tcp.jca"/>
 <property name="Port" type=xs:string" many="false"
override="may">1111</property>
</service>

	Deploy your composite with the configuration plan.

When deployed, the Oracle Socket Adapter listens on port 2222, as provided in the configuration plan.

If you deploy the composite without a configuration plan or if the configuration plan does not override the Port property, then the Oracle Socket Adapter listens on the socket that the composite.xml file's default Port property specifies (in this example, port 1111).

5.4.5 Java Script Support

The Socket Adapter currently uses XSLT and a custom Java plug-in as a way of defining complex handshakes for both inbound and outbound transactions.

However, there is now an additional way to define handshakes for these transactions, through Javascript support. This feature enables you to write your own Javascripts that can be called to define simple and request-reply handshakes for both inbound and outbound transactions.

5.4.5.1 Using the Socket Adapter Configuration Wizard to Define Scripts to Use

To define handshakes for transactions, using Javascripts you have prepared:

	On the Protocol Screen, choose Use Javascript to Define the HandshakeFigure 5-39 The Socket Adapter Configuration Wizard with Javascript Chosen
[image: Description of Figure 5-39 follows]

	Click Finish. On the refreshed Protocol Screen, add or browse to a location where your scripts are defined. In Figure 5-40, a request and reply script are provided. The rest of the screen is for translation purposes.Figure 5-40 The Socket Adapter Configuration Wizard Protocol Screen with Additional Choices for Handshake Definition
[image: Description of Figure 5-40 follows]

	Click Next or Finish. You have completed configuring the Socket Adapter with Javascripts that help provide socket communication.

5.4.5.2 Reporting

Socket Adapter XSLT and Javascript use cases define a communication protocol to communicate with the client/server sockets; typically this communication does not involve much data transfer, compared to that seen in NXSD-based usecases. Because there is not much value in capturing the message size in these use cases, the message statistics are not captured when you deploy a Socket Adapter and enable the snapshots report options provided in the Fusion Middleware Control.

Note that Adapter Reports statistics are collected only for NXSD and XSD translation. These statistics are not supported for XSLT, Javascript and custom protocols.

5.4.5.3 Sample Script

The following Java Script is a sample Java Script for use with this feature.

importPackage(java.io);
importPackage(java.lang);
importPackage(javax.xml.parsers);

println("=====> Under Script Execution");
var inputStream = InputStreamKey;
var outputStream = OutputStreamKey;
var requestPayloadElement = RequestPayloadElementKey;
var ReplyDOMResult = ReplyDOMResultKey;

var isr = new InputStreamReader(inputStream);
var osw = new OutputStreamWriter(outputStream);
var br = new BufferedReader(isr);

println("=====> starting handshake");

var reply = doHandshake();

createDOM(reply);

function writeToServer(request) {
	println("=====> Under writeToServer");
	var bw = new BufferedWriter(osw);
	bw.write(request);
	bw.newLine();
	bw.flush();
}

function doHandshake() {
	println("=====> Under extractPayload ");
	var nodeList = requestPayloadElement.getChildNodes();
	var length = nodeList.getLength();
	println("=====> Length :" + length);
 //var i = 0;
 var name = "";
 var empId = "";
 for(var i=0 ; i < length; i++){
 println("===> Name" + i + "=" + nodeList.item(i).getNodeName()); // + "; Value=" + nodeList.item(i).getFirstChild().getNodeValue());
 if(nodeList.item(i).getNodeName().indexOf("Name")!= -1){
 name = nodeList.item(i).getFirstChild().getNodeValue();
 }
 else if(nodeList.item(i).getNodeName().indexOf("EmpId")!= -1){
 empId = nodeList.item(i).getFirstChild().getNodeValue();
 }
 }
	/*println("=====> name: "+ nodeList.item(0).getNodeName());
	name = nodeList.item(0).getFirstChild().getNodeValue();
	
	
	println("=====> name: "+nodeList.item(1).getNodeName());
	empId = nodeList.item(1).getFirstChild().getNodeValue();*/
	
	println("=====> name :"+name);
	println("=====> empId :"+empId);
	
 var xmlPayload = "Hello World";/*"<ns1:Inbound-Element xmlns:ns1=\"http://xmlns.oracle.com/pcbpel/demoSchema/csv\"><ns1:Name>" + name + "</ns1:Name>" +
 			"<ns1:EmpId>" + empId +"</ns1:EmpId></ns1:Inbound-Element>";*/
 println("=====> xmlPayload :"+xmlPayload);
	writeToServer(name);
	writeToServer(empId);
	osw.close();
	var code = readFromServer();
	return code;
}

function readFromServer() {
 println("=====> Under readFromServer ");
 var str = ""; //= br.readLine();
 var tmpStr = "";
 while (true){
 tmpStr = br.readLine();
 if(tmpStr == -1 || tmpStr == null)
 break;
 println("tmpStr=" + tmpStr);
 str += tmpStr;
 }

 println("=====> Reply from Server :"+str);
 return str;
}

function createDOM(code){
	println("=====> Under createDOM "); ;
 var fRootNode = null;
 var fDocument = null;
 var fTempNode = null;
 var NAMESPACE = "http://xmlns.oracle.com/pcbpel/demoSchema/csv";
 var ROOT_NODE = "Result";
 var dbf = DocumentBuilderFactory.newInstance();
 var db = dbf.newDocumentBuilder();
 fDocument = db.newDocument();

 fRootNode = fDocument.createElementNS(NAMESPACE, ROOT_NODE);
 fRootNode.appendChild(fDocument.createTextNode(code));

 ReplyDOMResult.setNode(fRootNode);
}

5.4.6 Socket Adapter NIO Support

The current socket adapter uses the thread-per-connection approach for inbound connections. The thread-per-connection approach uses an exclusive worker thread for each connection. Within the handling loop, a worker thread waits for new incoming data, processes the request, returns the response data. This behavior results in the blocking of the thread until an interaction completes.

However, in a scenario where a high number of concurrent users are using an inbound Socket Adapter, there is a wait for a thread once the operating system/thread pool limit reached. A large number of threads have their own memory footprints, which can cause "Out Of Memory" exceptions in certain cases.

The socket adapter now uses (New I/O) NIO APIs. The APIs of NIO have been designed to provide access to the low-level I/O operations of modern operating systems

NIO APIs reduce the number of threads to user-configurable values. This enables the Socket Adapter to achieve better performance and throughput in scenarios, where the system is loaded.

Note that the Socket Adapter supports NIO APIs only for the NXSD mode of translation. The reason for not supporting this in other modes is that NIO assumes an inherent request-reply model. a scenario where a request is always followed by a reply.

In other modes of translation, a request might not always followed by a reply. For example, a scenario where a Socket Server sends a welcome message once it receives a client connection.

Or, there could be a scenario where there are multiple handshakes (multiple reads followed by writes). In such scenario, the Socket Adapter would not know whether full data for the first read has arrived or not.

The Adapter provides support for configuring the number of nio processor threads for NIO events that are processing. The default value for this property is 1.

If you want to specify a value for the property NioProcessorThreadCount other then the default value of 1, you must manually add the property NioProcessorThreadCount to the appropriate JCA file(s) . In the following example, the value for NioProcessorThreadCount is set to 2.

Example - Manually Setting the Value for the Property NioProcessorThreadCount in the jca File

<adapter-config name="inboundRequestReplyService" adapter="Socket Adapter" wsdlLocation="inboundRequestReplyService.wsdl"
				xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/socket/SocketAdapter" adapterRef=""/>
 <endpoint-activation portType="InboundRequestReply_ptt" operation="InboundRequestReply"
 UITransmissionPrimitive="InboundRequestReply">
 <activation-spec className=
 "oracle.tip.adapter.socket.SocketActivationSpec">
 <property name="TransMode" value="NXSD"/>
 <property name="NioProcessorThreadCount" value="2"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

If you want to use the older implementation where a thread count is created per interaction, use the following in your JCA file:

Example - Sample jca File for Specifying Thread Count per Interaction

<adapter-config name="inboundRequestReplyService"
 adapter="Socket Adapter"
 wsdlLocation="inboundRequestReplyService.wsdl"
 				xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/socket/SocketAdapter" adapterRef=""/>
 <endpoint-activation portType="InboundRequestReply_ptt"
 operation="InboundRequestReply"
 UITransmissionPrimitive="InboundRequestReply">
 <activation-spec className=
 "oracle.tip.adapter.socket.SocketActivationSpec">
 <property name="TransMode" value="NXSD"/>
 <property name="SupportNIO" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

5.4.7 SSL Support for the Socket Adapter

SSL means Secure Socket Layer and is a Cryptographic Protocol that provides Communication Security over the Internet. It provides asymmetric cryptography for Key exchange and symmetric encryption for privacy, and encrypts a segment of network Connection at the Transport Layer.

The Oracle Platform Security Service Keystore Service, or OPSS Keystore Service enables you to manage keys and certificates for SSL, message security, encryption, and related tasks. You use the Keystore Service to create and maintain keystores that contain keys, certificates, and other artifacts.

If you do not provide TrustStoreName and TrustStoreStripeName when you use KSS (then Domain level Trust store, that is, system/trust, is used.)

5.4.7.1 SSL Support within the Socket Adapter

SSL Support within the Socket Adapter is required when you want to send or receive data over a Secure Socket connection. This adds a layer of security protection over the underlying network transport protocol, and includes:

	Integrity Protection

	Authentication

	Confidentiality (Privacy Protection)

SSL is supported only in non NIO scenarios.

Oracle JCA Adapter for AQ

7 Oracle JCA Adapter for AQ

This chapter describes how to use the Oracle JCA Adapter for AQ (Oracle AQ Adapter), which enables an Oracle BPEL Process Manager (Oracle BPEL PM) or an Oracle Mediator to interact with a single consumer or a multi consumer queue.

This chapter includes the following sections:

	Introduction to Oracle JCA Adapter for AQ

	Oracle JCA Adapter for AQ Features

	Oracle JCA Adapter for AQ Deployment

	Oracle JCA Adapter for AQ Use Cases

7.1 Introduction to the Oracle AQ Adapter

Oracle Streams Advanced Queuing (AQ) provides a flexible mechanism for bidirectional, asynchronous communication between participating applications. Advanced queues are an Oracle database feature, and are therefore scalable and reliable. Other features of Oracle database, such as backup and recovery (including any-point-in-time recovery), logging, transactional services, and system management, are also inherited by advanced queues. Multiple queues can also service a single application, partitioning messages in a variety of ways and providing another level of scalability through load balancing.

This section includes the following sections:

	Oracle AQ Adapter Integration with Oracle BPEL Process Manager and Oracle Mediator

	 Integration with Oracle Mediator

For more information on Oracle AQ, see “Introduction to Oracle Streams AQ" in the Oracle Streams Advanced Queuing User's Guide.

7.1.1 Oracle AQ Adapter Integration with Oracle BPEL Process Manager and Oracle Mediator

JCA Binding Component is used for the bidirectional integration of the JCA 1.5 resource adapters with Oracle BPEL Process Manager and Oracle Mediator. JCA Binding Component is based on standards and employs the Web service Invocation Framework (WSIF) technology for exposing the underlying JCA interactions as Web services.

For more information about Oracle AQ Adapter architecture, adapter integration with Oracle BPEL Process Manager and Oracle Mediator, and adapter deployments, see Adapter Integration with Components .

7.1.2 Oracle AQ Adapter Integration with Oracle Mediator

The Mediator Server supports Oracle AQ Adapter and enables you to define inbound and outbound adapter services for each. An inbound adapter service receives data from an Oracle AQ Adapter and transforms it into an XML message. An outbound adapter service sends data to a target application by transforming an XML message into the native format of the given adapter.

Using the Mediator Server, you can send or receive messages from Oracle Advanced Queuing single or multi consumer queues.

Note:
Oracle BPEL PM pre-dates Mediator and most of this guide and the samples implicitly assume use with Oracle BPEL PM. However, the Oracle AQ Adapter works equally well with either Oracle BPEL PM or Mediator. For any mention of Oracle BPEL PM here, you may substitute Mediator, instead.

7.2 Oracle AQ Adapter Features

The Oracle AQ Adapter is both a producer and a consumer of AQ messages. The enqueue operation is exposed as a JCA outbound interaction. The dequeue operation is exposed as a JCA inbound interaction.

The Oracle AQ Adapter supports ADT (Oracle object type), XMLType, and RAW queues as payloads. It also supports extracting a payload from one ADT member column.

The Oracle AQ Adapter supports normalized properties for enqueue and dequeue operations.

For more information about the properties supported by Oracle AQ Adapter, see Oracle AQ Adapter Properties.

You can obtain the Oracle AQ Adapter samples by accessing the Oracle SOA Sample Code site.

This section includes the following topics:

	Enqueue-Specific Features (Message Production)

	Dequeue and Enqueue Features

	Synchronous Request-Response

	Synchronous Dequeue

	Supported ADT Payload Types

	Native Format Builder Wizard

	Normalized Message Support

	Is DOM 2 Compliant

	Is Message-Size Aware

	Multiple Receiver Threads

	DequeueTimeout Property

	Control Dequeue Timeout and Multiple Inbound Polling Threads

	Stream Payload Support

	 Inbound Retries

	Error Handling Support

	Performance Tuning

7.2.1 Enqueue-Specific Features (Message Production)

The Oracle AQ Adapter supports the following features of Oracle Streams AQ:

	Correlation Identifier

In the Adapter Configuration Wizard, you can specify a correlation identifier when defining an enqueue operation, which you use to retrieve specific messages.

	Multi consumer Queue

In Oracle Streams AQ, multiple consumers can process and consume a single message. To use this feature, you must create multi consumer queues and enqueue the messages into these queues. In this configuration, a single message can be consumed by multiple AQ consumer (dequeue operation), either through the default subscription list or with an override recipient list. Under this scenario, a message remains in the queue until it is consumed by all of its intended consumer agents. The Oracle AQ Adapter enqueue header property (jca.aq.RecipientList) enables you to specify the override recipient list (string values separated by commas) that can retrieve messages from a queue. All consumers that are added as subscribers to a multi consumer queue must have unique values for the Recipient parameter. Two subscribers cannot have the same values for the NAME, ADDRESS, and PROTOCOL attributes.

	Message Priority

If you specify the priority of enqueued messages, then the messages are dequeued in priority order. If two messages have the same priority, then the order in which they are dequeued is determined by the enqueue time. You can also create a first-in, first-out (FIFO) priority queue by specifying the enqueue time priority as the sort order of the messages. This priority is a property of the Oracle AQ Adapter enqueue header. The enqueue time is set automatically by the underlying AQ application.

Here is an example of how to create the FIFO queue:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(\
queue_table => 'OE_orders_pr_mqtab', \
sort_list =>'priority,enq_time', \
comment => 'Order Entry Priority \
MultiConsumer Orders queue table',\
multiple_consumers => TRUE, \
queue_payload_type => 'BOLADM.order_typ', \
compatible => '8.1', \
primary_instance => 2, \
secondary_instance => 1);
EXECUTE DBMS_AQADM.CREATE_QUEUE (\
queue_name => 'OE_bookedorders_que', \
queue_table => 'OE_orders_pr_mqtab');

	Time Specification and Scheduling

In Oracle Streams AQ, you can specify a delay interval and an expiration interval. The delay interval determines when an enqueued message is marked as available to the dequeuers after the message is enqueued. When a message is enqueued with a delay time set, the message is marked in a WAIT state. Messages in a WAIT state are masked from the default dequeue calls. The expiration time property is used to specify an expiration time, and the message is automatically moved to an exception queue if the message is not consumed before its expiration.

7.2.2 Dequeue and Enqueue Features

Oracle Streams AQ provides the following dequeuing options:

	Poll option

	Notification option

The poll option involves processing the messages as they arrive and polling repeatedly for messages. The Oracle AQ Adapter supports a polling mechanism for consuming AQ messages.

The Oracle AQ Adapter supports the following features of Oracle Streams AQ:

	Multi consumer Queue

The Oracle AQ Adapter can retrieve messages from a multi consumer queue.

	Navigation of Messages for Dequeuing

Messages do not have to be dequeued in the same order in which they were enqueued. You can use a correlation identifier to specify dequeue order. The Adapter Configuration Wizard defines the correlation ID for the dequeue operation.

	Retries with Delays

The number of retries is a property of the Oracle AQ Adapter dequeue header. If the number of retries exceeds the limit, then the message is moved to an exception queue that you specify. The exception queue is a property of the Oracle AQ Adapter enqueue header.

	Rule-Based Subscription

Oracle Streams AQ provides content-based message filtering and subject-based message filtering. A rule defines one or more consumers' interest in subscribing to messages that conform to that rule. For a subject-based rule, you specify a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties (current priority and correlation ID), user data properties (object payloads only), and functions (as specified in the WHERE clause of a SQL query).

	Oracle AQ Adapter Header Properties

For more information about Oracle AQ Adapter header properties, see Oracle AQ Adapter Properties.

	Dequeue Condition

The Dequeue condition is an advanced queuing product feature that Oracle AQ Adapter uses. If a dequeue condition is specified and no messages meet the specified condition, then no dequeue happens.

A dequeue condition element is a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user object payload data properties, and PL/SQL or SQL functions. Message properties include priority, corrid, and other columns in the queue table.

When a dequeue is performed from a multi subscriber queue, it is sometimes necessary to screen the messages and accept only those that meet certain conditions. These conditions may concern header information, such as in selecting messages of only priority 1, or some aspect of the message payload, such as in selecting only loan applications above $100,000.

The Message Selector Rule field is displayed in Step 15 if you select a multi subscriber queue. Enter a subscription rule in the form of a Boolean expression using syntax similar to a SQL WHERE clause, such as priority = 1, or TAB.USER_DATA.amount > 1000. The adapter dequeues only those messages for which this Boolean expression is true.

You must select the Access to non-payload fields also needed check box to access header information.

When this check box is selected, the generated WSDL file has additional code in the type section:

<?xml version = '1.0' encoding = 'UTF-8'?>
<?binding.jca Inbound_aq.jca?>
<definitions name="Inbound" targetNamespace="http://xmlns.oracle.
 com/pcbpel/adapter/aq/Inbound/" xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/" xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT" xmlns:imp1="http://www.oracle.com/ipdemo">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified" targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/" xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
 <import namespace="http://xmlns.oracle.com/xdb/SCOTT" schemaLocation="xsd/SCOTT_MAGAZINE_TYPE.xsd"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/" schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
 <complexType name="HeaderCType">
 <sequence>
 <element name="QueueHeader"
 type="hdr:HeaderType"/>
 <element name="PayloadHeader"
 type="obj1:MAGAZINE_TYPE"/>
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/ipdemo" schemaLocation="xsd/simpleMagazine.xsd"/>
 </schema>
 </types>
 <message name="simpleMagazine_msg">
 <part name="simpleMagazine"
 element="imp1:simpleMagazine"/>
 </message>
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
 </message>
 <portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:simpleMagazine_msg"/>
 </operation>
 </portType>
 <plt:partnerLinkType name="Dequeue_plt">
 <plt:role name="Dequeue_role">
 <plt:portType name="tns:Dequeue_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
</definitions>

Note that PayloadHeader is the type for the whole ADT of the queue. The payload contains only the chosen payload field. If you selected Access to non-payload fields also needed, then the PayloadHeader (. jca.aq.HeaderDocument) contains the whole ADT (including the payload field, which is also present in the header, but ignored by the adapter.)

For more information about Oracle AQ Adapter architecture, adapter integration with Oracle BPEL Process Manager and Oracle Mediator, and adapter deployments, see Introduction to Oracle JCA Adapters.

7.2.3 Synchronous Request-Response

You can employ the AQ Adapter Configuration Wizard to model a process that enables the Oracle AQ Adapter to be used in a synchronous request-response interaction pattern.

In this scenario, the Oracle AQ Adapter sends a request to the request queue and waits for a response from the reply queue before further execution continues. Internally, the Oracle AQ Adapter uses a new interaction pattern, AQRequestReplyInteractionSpec. This interaction spec enables you to configure a request and reply destination name.

A variation enables you to use a temporary destination as part of the reply queue. In turn, the Adapter sets the AQReplyTo header to the reply destination.

7.2.3.1 Configuration Wizard Flow for AQ Synchronous Request-Response Interaction Pattern

Follow these steps to use the AQ Adapter Configuration Wizard to configure an AQ Adapter for synchronous request-response.

	Open the AQ Adapter Configuration Wizard and proceed through the initial steps. On the AQ Adapter Operation Page, select Enqueue/Dequeue. The Operation Name section on the page is enabled. Select Synchronous, and either use the supplied Operation Name Enqueue_Dequeue, or change the name to one of your own.

Figure 7-1 AQ Adapter Configuration Wizard Operation Screen with Enqueue/Dequeue and Synchronous Operation Selected
[image: Description of Figure 7-1 follows]

	On the Queue Name screen, provide Outbound Queue Information and Inbound Queue Information. You can browse for a Database Schema and select the appropriate Queue Name, or use the Default Schema and select a Queue Name from the list available with the Default Schema selected.

	The Queue Parameters screen appears. Provide the following, and then select Next. Note that 	In the Consumer field, provide the consumer name for a multi-consumer queue.

	In the Message Selector Rule field, provide a Message Selector Rule. Refer to Dequeue and Enqueue Features for more information on using Message Selector Rules.

	In the Dequeue Condition, provide conditions on messages. Refer to Dequeue and Enqueue Features for more information on using Dequeue Condition.

	The AQ Adapter Configuration Wizard Object Payload Screen appears. This screen enables you to enter information about the object payloads for both inbound and outbound Queues.Figure 7-2 AQ Adapter Configuration Wizard Object Payload Screen
[image: Description of Figure 7-2 follows]

	Text at the top specifies the name of a structured object payload. The rest of the text provides additional information about the payload. For the Business Payload either the Whole object or the Field within the Object.

	If you specified Field within the Object, the Payload Field Options section is enabled. There you can enter directly or Browse to enter the field name.

If you select Browse, the Select Payload Field Browser opens. Select the field or fields that contains the business payload and click OK to populate the field name on the Object Payload screen.

You can also select Validate Payload to validate the payload for the dequeue operation. When this option is selected, the resulting XML payload is validated against the schema before further processing. In case of failure, the message is rejected.

Figure 7-3 The AQ Adapter Configuration Wizard Select Payload Field Browser
[image: Description of Figure 7-3 follows]

Select the checkbox Access to non-payload fields needed if you also need the schema generated for these fields. Select this checkbox if you would want ADT object attributes to be available as header properties. For example, your payload may be a JPG image. You might want to specify a person's name in the non payload field. This selection generates an additional header schema file (object_name.xsd, where object_name is the structured payload object used by the queue. The xsd name is additionally prefixed by the schema; if you are connected to schema scott, the name would be SCOTT_object_name.xsd. If you select ADT fields on the Object page or if Whole ADT payload is selected, the Messages page is displayed for you to specify schemas.If you specify a ADT Field within the structured object, the outbound ADT field name must be same as the inbound ADT Field name.

	Fill in the information in a similar manner for the Outbound Queue in the second half of the AQ Adapter Configuration Wizard Object Payload Screen.

	Click Next.

	The AQ Adapter Configuration Wizard Messages Screen appears.	On this screen, you are prompted to define the message that is contained in the fields of both queues you have specified. As with other message screens for this and other adapters, you can indicate if the message is opaque and native format translation is required, or you can specify a schema by providing the schema and the URL and the schema element.

	Click Next to finish configuring the AQ Adapter in a Synchronous Request-Response interaction pattern.

Figure 7-4 The AQ Adapter Configuration Wizard Messages Screen
[image: Description of Figure 7-4 follows]

7.2.3.1.1 Editing an AQ Adapter using the Synchronous Request-Reply Interaction Pattern

Note that you can also select a previously-configured AQ Adapter using the SOA Composite Editor and invoking the AQ Adapter wizard in edit mode. However, using this method, you cannot modify the operation type, which you have already defined, but you can modify the selected queue and queue parameters, and modify the payload schema.

7.2.4 Synchronous Dequeue

You can configure an outbound Synchronous Dequeue for an AQ Adapter by selecting the Synchronous Dequeue operation type on the AQ Operation Type page.

7.2.4.1 Configuration Wizard Flow for AQ Synchronous Dequeue

Follow these steps to use the AQ Adapter Configuration Wizard to configure AQ for synchronous dequeue.

	Select Synchronous Dequeue as the operation type. The operation named for the Synchronous Dequeue is defaulted to Sync_Dequeue. However, you can overwrite this name if you wish.Figure 7-5 AQ Adapter Configuration Wizard Operation Screen with Synchronous Dequeue Operation Selected and Operation Name Sync_Dequeue Shown
[image: Description of Figure 7-5 follows]

	Click Next. The AQ Adapter Configuration Wizard Queue Name screen appears. On this screen, you can specify the database schema and the inbound and outbound queue to be used for this service. Click Next.Figure 7-6 AQ Adapter Configuration Wizard Queue Name Screen with Database Schema Defaulted and a Queue Name Selected
[image: Description of Figure 7-6 follows]

	On the Queue Parameters Screen, indicate the parameters for the Dequeue operator: the Consumer, the Message Selector Rule and the Dequeue Condition, and click Next. (Note that only if you select a Multi-Consumer Queue, do you get this screen which shows four fields. If we select just a Single-Consumer Queue, you get a screen with just two fields which are Correlation Id and Dequeue Condition. In that case, you do not get Consumer and Message Selector Rule in the Configuration Wizard.	Consumer: Specify the consumer name for a multi-consumer queue.

	Correlation ID: Enter an optional correlation ID from 1 to 30 characters in length.

	Message Selector Rule: Provide a Message Selector Rule. Refer to Dequeue and Enqueue Features for more information on using Message Selector Rules.

	Dequeue Condition: Displayed only when you select dequeue in the Operation page, this enables you to provide conditions on messages. Refer to Dequeue and Enqueue Features for more information on using Dequeue Condition.

Figure 7-7 The AQ Adapter Configuration Wizard Queue Parameters Screen
[image: Description of Figure 7-7 follows]

7.2.4.2 JCA File for Synchronous Request-Reply

The next sections provide file artifacts for both synchronous request-reply and synchronous dequeue. The following example shows the jca file for synchronous request-reply scenario:

<adapter-config name="AQService" adapter="AQ" wsdlLocation="../WSDLs/AQRequestReply.wsdl" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/slc01gid" UIConnectionName="slc01gid"/>
 <endpoint-interaction portType="Enqueue_Dequeue_ptt" operation="Enqueue_Dequeue" UITransmissionPrimitive="Request-response">
 <interaction-spec className="oracle.tip.adapter.aq.v2.jca.AQRequestReplyInteractionSpec">
 <property name="EnqueueQueue" value="EDN_OAOO_QUEUE"/>
 <property name="RecipientList" value="recp1"/>
 <property name="DequueQueue" value="EDN_EVENT_QUEUE"/>
 <property name="ObjectFieldName" value="PAYLOAD"/>
 <property name="Consumer" value="cons1"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

7.2.4.3 JCA File for Synchronous Dequeue

The following example shows the jca file for the Synchronous Dequeue scenario:

<adapter-config name="AQSyncDequeue" adapter="AQ" wsdlLocation="../WSDLs/AQSyncDequeue.wsdl" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/slc01gid" UIConnectionName="slc01gid"/>
 <endpoint-interaction portType="Sync_Dequeue_ptt" operation="Sync_Dequeue">
 <interaction-spec className="oracle.tip.adapter.aq.v2.jca.AQReceiveNoWaitInteractionSpec">
 <property name="Consumer" value="cons1"/>
 <property name="SchemaValidation" value="false"/>
 <property name="QueueName" value="EDN_OAOO_QUEUE"/>
 <property name="ObjectFieldName" value="PAYLOAD"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

7.2.5 Supported ADT Payload Types

The Oracle AQ Adapter supports the following RAW types:

	BLOB

	CHAR

	CLOB

	DATE

	DECIMAL

	DOUBLE PRECISION

	FLOAT

	INTEGER

	NUMBER

	REAL

	SMALLINT

	TIMESTAMP

	VARCHAR2

In addition to the RAW types mentioned in the preceding list, the Oracle AQ Adapter supports primitive types and arrays of objects.

Note:
The Oracle AQ Adapter does not currently support the following data types for ADT columns: TIMESTAMP WITH LOCAL TIMEZONE and TIMESTAMP WITH TIMEZONE.

If you choose a payload field instead of the whole ADT, then choose one of the following data types as the payload field:

	CLOB, either XSD or opaque schema

	VARCHAR2, either XSD or opaque schema

	BLOB, opaque schema only

	XMLTYPE, either XSD or opaque schema

7.2.6 Native Format Builder Wizard

JDeveloper BPEL Designer provides the Native Format Builder Wizard to define XSD files of various formats, including for the AQ RAW payload.

For more information about the Native Format Builder wizard, see Native Format Builder Wizard .

To obtain sample code that demonstrates usage of the Native Format Builder access the latest SOA Sample code under Middleware & Tools from Sample Code for Developers and Adminspage.

Payload Schema

The payload schemas depend on the payload type. In the whole ADT case, the schema is completely generated by the Adapter Configuration Wizard. In an ADT case where the payload case selected is BLOB, an opaque schema as defined in the following example must be used:

<element name="opaqueElement" type="base64Binary" />

In all other cases, you can either provide a schema or use an opaque schema, as shown in Table 7-1.

Table 7-1 Payload Schema

	Payload Type	Supported Schema
	RAW

	User-provided schema or opaque schema.

	Whole ADT

	Must use a schema generated by the Adapter Configuration Wizard, which is based on the queue structure.

	ADT with VARCHAR2 picked as payload

	User-provided schema or opaque schema.

	ADT with CLOB picked as payload user-provided schema or opaque schema

	User-provided schema or opaque schema.

	ADT with BLOB picked as payload opaque schema

	Opaque schema.

	XMLTYPE

	User-provided schema or opaque schema.

If you do not have an XSD file but the payload data is formatted (for example, in a comma-delimited value (CSV) format), you can use the Native Format Builder wizard to generate an appropriate XSD. The Adapter Configuration Wizard is integrated with the Native Format Builder wizard. In the Adapter Configuration Wizard Messages window, click Define Schema for Native Format to access the Native Format Builder wizard.

7.2.7 Normalized Message Support

Header manipulation and propagation is a key business integration messaging requirement. Oracle BPEL PM, Mediator, Oracle JCA, and B2B rely extensively on header support to solve customers' integration needs. For example, you can preserve a file name from the source directory to the target directory by propagating it through message headers. In Oracle BPEL PM and Mediator, you can access, manipulate, and set headers with varying degrees of UI support.

Note:
AQ Adapter inbound and outbound headers supported in the 10.1.3 release are supported in 11g through normalized message properties.

For more information, see Correlation Support Within Adapters

Propagating Headers in a Normalized Message:

A normalized message is simplified to have only two parts, properties and payload.Typically, properties are name-value pairs of scalar types. To fit the existing complex headers into properties, properties are flattened into scalar types.

Manipulating Headers in Design Time:

The user experience is simplified while manipulating headers in design time, because the complex properties are predetermined. In the Mediator or BPEL designer, you can manipulate the headers with some reserved key words. For example, currently in Mediator, you can access an inbound File adapter, fileName header using the following expression:

$nmproperty.InboundFileHeaderType.fileName

However, this method does not address the properties that are dynamically generated based on your input. For example, in the AQ Adapter Wizard, you can propagate some fields from an AQ object as headers. Based on your choice, the header definitions are defined. These definitions are not predetermined and hence cannot be accounted for in the list of predetermined property definitions. You cannot design header manipulation of the dynamic properties before they are defined. To address this limitation, you must generate all the necessary services (composite entry points) and references. This restriction applies to services that are expected to generate dynamic properties. Once dynamic properties are generated, they must be stored for each composite. Only then you can manipulate the dynamic properties in Mediator or BPEL designer.

Identifying Properties That Must Be Propagated over the Life Cycle of the Normalized Message:

Some properties must be propagated across the life cycle of the message, whereas some must not be propagated. The properties that must be propagated are referred to as propagatable properties, whereas properties that must not be propagated are referred to as non-propagatable properties.

7.2.8 Is DOM 2 Compliant

Oracle AQ Adapter is Document Object Model Level 2 (DOM 2) compliant, that is, the AQ adapter can generate document objects that are compliant with DOM2 specification.

7.2.9 Is Message-Size Aware

Oracle AQ Adapter is message-size aware, that is, Oracle AQ Adapter calculates the message size and reports the size back to JCA Binding Component. The API, related to size, exposed by JCA Binding Component can be used for reporting purposes.

7.2.10 Multiple Receiver Threads

Oracle AQ Adapter supports an activation endpoint property, adapter.aq.dequeue.threads. Setting this property is a preferred way to spawn multiple threads for the inbound message flow between the adapter and the Enterprise Information System (EIS). Earlier versions of the Oracle AQ Adapter relied on the activationInstances endpoint property, which was used by JCA Binding Component to initiate multiple endpoints.

7.2.11 DequeueTimeout Property

The DequeueTimeOut property supports multiple inbound dequeue threads. The value for this property determines how many seconds the dequeue() API waits for messages before it returns and the next polling cycle begins.

Add this property to the composite.xml file, as shown in the following example:

<service name="Inbound" ui:wsdlLocation="Inbound.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/aq/AQ_InboundRetry_Mediator/AQ2JMSInboundRetry/Inbound%2F#wsdl.interface(Dequeue_ptt)"/>
<binding.jca config="Inbound_aq.jca">
<property name="DequeueTimeOut" type="xs:integer" many="false"override="may">10
</property>
</binding.jca>
</service>

7.2.12 Control Dequeue Timeout and Multiple Inbound Polling Threads

Oracle AQ Adapter provides system properties to control dequeue timeout and multiple inbound polling threads for each Java Virtual Machine (JVM), systemwide, instead of for each process.

The system property provided by Oracle AQ Adapter to control dequeue timeout is oracle.adapter.aq.wait, and the property that controls inbound polling threads is adapter.aq.dequeue.threads.

7.2.13 Stream Payload Support

Oracle AQ Adapter provides support to stream payload. When you enable this feature, the payload is streamed to a database instead of getting manipulated in SOA runtime as in a memory DOM. You use this feature while handling large payloads. To enable support to stream payload, you must select the Enable Streaming check box while defining the dequeue operation parameters in Oracle JDeveloper (JDeveloper). When you select the Enable Streaming check box, a corresponding Boolean property EnableStreaming is appended to the ActivationSpec properties defined in the respective .jca file, as shown in the following example. If the EnableStreaming property does not exist, then the default value false is assumed. The property is applicable when processing Raw messages, XMLType messages, and ADT type messages for which a payload is specified though an ADT attribute.

<activation-spec className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="RAW_IN_QUEUE"/>
 <property name="DatabaseSchema" value="SCOTT"/>
 <property name="EnableStreaming" value="true"/>
</activation-spec>

7.2.14 Oracle AQ Adapter Inbound Retries

If you configure the Oracle AQ Adapter inbound retries to retry for more than 5 times by using the jca.retry.count service binding property for a retriable exception, then ensure that the queue is created with max_retries value that is greater then the value used for jca.retry.count. If nothing is specified, then the queue is created with a max_retries value of 5 which would mean that the message ends up in the exception queue after 5 retries and is not be delivered to adapter for further processing. If jca.retry.count is specified with a value of 5 or less, then you do not have to change the queue max_retries property.

Use the following code to change the max_retries property when creating a queue:

begin
DBMS_AQADM.CREATE_QUEUE_TABLE (queue_table => 'RAW_IN_QUEUE_TABLE',queue_payload_type => 'RAW');
DBMS_AQADM.CREATE_QUEUE (queue_name => 'RAW_IN_QUEUE',queue_table=> 'RAW_IN_QUEUE_TABLE', max_retries=>1500);
DBMS_AQADM.START_QUEUE (queue_name => 'RAW_IN_QUEUE');
DBMS_AQADM.CREATE_QUEUE_TABLE (queue_table => 'RAW_OUT_QUEUE_TABLE', queue_payload_type => 'RAW');
DBMS_AQADM.CREATE_QUEUE (queue_name => 'RAW_OUT_QUEUE', queue_table => 'RAW_OUT_QUEUE_TABLE');
DBMS_AQADM.START_QUEUE (queue_name => 'RAW_OUT_QUEUE');
end;

7.2.15 Error Handling Support

For information about error handling, see Error Handling.

7.2.16 Performance Tuning

Oracle AQ Adapter supports performance tuning features.

For more information, see Oracle JCA Adapter Tuning Guide and Oracle JCA Adapter Properties.

7.3 Oracle AQ Adapter Deployment

The Oracle AQ Adapter comes deployed to the application server as part of the install. It contains a single adapter instance entry eis/AQ/aqSample, which points to the data source jdbc/aqSample. The data source is not created as part of install and must be created manually. The connection information to the database is inside the data source definition.

When deploying a SOA project that uses the Oracle AQ Adapter instance eis/AQ/aqSample that exists at the time of installation, you must first create a data source at jdbc/aqSample. On the other hand, if a new adapter instance is preferred, then you must add a new adapter instance and restart the application server. This is because you want to point to a data source other than the one referred in the existing adapter instance jdbc/aqSample, or because you chose a name for the adapter instance that does not yet exist. For instance, if you create a connection in JDeveloper named DBConnection1, then by default the AQ Adapter service points to eis/AQ/DBConnection1, as shown in Figure 7-13.

You can also check which adapter instance the service is pointing to by looking at the .jca file, as shown in the following code snippet:

<connection-factory location="eis/AQ/aqSample" … />

In the preceding example, the location is the JNDI name of the adapter instance at runtime.

You can create a new AQ Adapter instance through the Oracle WebLogic Administration Console, as mentioned in Adding an Adapter Connection Factory or by directly editing the weblogic-ra.xml file. The following are the steps to edit weblogic-ra.xml:

	Search fmwhome/ for AqAdapter.rar.

	Unzip the file.

	Edit META-INF/weblogic-ra.xml (and possibly ra.xml.)

	Jar the file again.

	Restart the application server.

The following is a sample AQ adapter instance in weblogic-ra.xml:

Example - Sample AQ Adapter Instance in weblogic-ra.xml

<connection-instance>
 <jndi-name>eis/AQ/aqSample</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>XADataSourceName</name>
 <value>jdbc/aqSample</value>
 </property>
 <property>
 <name>DataSourceName</name>
 <value></value>
 </property>
 <property>
 <name>ConnectionString</name>
 <value></value>
 </property>
 <property>
 <name>UserName</name>
 <value></value>
 </property>
 <property>
 <name>Password</name>
 <value></value>
 </property>
 <property>
 <name>DefaultNChar</name>
 <value>false</value>
 </property>
 <property>
 <name>UseDefaultConnectionManager</name>
 <value>false</value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

The mandatory properties are: jndi-name, XADataSourceName or DataSourceName. The jndi-name property must match the location attribute in the .jca file, and is the name of the adapter instance. The XADataSourceName or DataSourceName property is the name of the underlying data source (which has the connection information). Specify one of the properties XADataSourceName or DataSourceName. The usage depends on if the scenario involves and would require adapter to participate in global transaction or if local transaction semantics are sufficient. In the former case XADataSourceName must be specified while in the latter case DataSourceName must be specified. When specifying XADataSourceName property ensure that the physical data source it refers to is XA enabled while when specifying DataSourceName property the physical data source it refers to might or might not be XA enabled.

Most Common Mistakes

The following are the two most common mistakes with deployment:

	Not creating an adapter instance entry that matches the location attribute in your .jca file (or not creating a instance at all.)

	Setting the location attribute in the .jca file to the name of the data source directly.

For the latter, there is a level of indirection in that you give the name of the adapter instance (eis/AQ/...), which itself points to the data source pool (jdbc/...). It is a common mistake to miss this indirection and give the name jdbc/... directly in the location attribute.

Additional Adapter Instance Properties

There are additional properties in the AQ Adapter instance beyond xADataSourceName, dataSourceName.

For information about the Oracle AQ Adapter instance properties, see Oracle AQ Adapter Properties.

7.4 Oracle AQ Adapter Use Cases

This section includes the following topics:

	Generic Use Case

	 ADT Queue

	 RAW Queue

7.4.1 Generic Use Case

The following use cases include a general walkthrough of the Adapter Configuration Wizard, followed by examples of how you can modify the general procedure in different situations. Each example shows relevant parts of the generated WSDL and JCA files.

This section includes the following topics:

	The Adapter Configuration Wizard Walkthrough

	Dequeuing and Enqueuing Object and ADT Payloads

	Dequeuing One Column of the Object Payload

	Configuring the Enqueue/Dequeue Operation Type

	Using Correlation ID for Filtering Messages During Dequeue

	Enqueuing and Dequeuing from Multisubscriber Queues

7.4.1.1 The Adapter Configuration Wizard Walkthrough

In this example, you create an Oracle AQ Adapter service that dequeues messages to the service_in_queue queue, with a payload that is one field within the service_type object, and with a user-defined schema.

This section describes the tasks required to configure Oracle AQ Adapter by using the Adapter Configuration Wizard in JDeveloper.

This section includes the following topics:

	Meeting Prerequisites

	Creating an Application and an SOA Project

	Defining an Service

	Generated WSDL and JCA Files

7.4.1.1.1 Meeting Prerequisites

This example assumes that you are familiar with basic BPEL constructs, such as activities and partner links, and JDeveloper environment for creating and deploying BPEL composite.

You must have access to a database with the SCOTT schema.

To perform this use case, you require the following files from the artifacts.zip file contained in the adapters-aq-103-adtclobpayload sample:

	artifacts/sql/setup_user.sql

	artifacts/sql/create_type_service.sql

	artifacts/sql/create_queues.sql

	artifacts/sql/dequeue_service.sql

	artifacts/sql/enqueue_service.sql

To obtain the adapters-aq-103-adtclobpayload sample, access the Oracle Sample SOA Code site.

7.4.1.1.2 Creating an Application and an SOA Project

You must create a JDeveloper application to contain the SOA composite. Perform the following steps to create an application, a SOA project:

	Open JDeveloper.
	In the Application Navigator, click New Application. The Create Generic Application Name your application page is displayed, as shown in Figure 7-8.
	Enter a name for the application in the Application Name field.
	In the Application Template list, choose Generic Application.Figure 7-8 The Create Generic Application Name your application Page
[image: Description of Figure 7-8 follows]

	Click Next.The Create Generic Application Name your project page is displayed, as shown in Figure 7-9.

	In the Project Name field, enter a descriptive name.For example, SOAComposite.

	In the Available list in the Project Technologies tab, double-click SOA to move it to the Selected list.Figure 7-9 The Create Generic Application Name your Generic project Page
[image: Description of Figure 7-9 follows]

	Click Next.The Create Generic Application Configure SOA settings page is displayed, as shown in Figure 7-10.

Figure 7-10 The Create Generic Application Configure SOA settings Page
[image: Description of Figure 7-10 follows]

	Select Composite With BPEL from the Composite Template list, and then click Finish.You have created a new application and an SOA project. This automatically creates an SOA composite.

The Create BPEL Process page is displayed, as shown in Figure 7-11.

Figure 7-11 The Create BPEL Process Page
[image: Description of Figure 7-11 follows]

	Enter a name for the BPEL process in the Name field. For example, CustomerDetails.
	Select Define Service Later in the Template list, and then click OK.You have created the CustomerDetails BPEL process.

7.4.1.1.3 Defining an Oracle AQ Adapter Service

The next step is to define an Oracle AQ Adapter service. Perform the following steps to create an Oracle AQ Adapter service:

	In the Components window, select SOA.

	Drag and drop AQ Adapter from the Service Adapters list to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard Welcome page is displayed.

	Click Next.

The Adapter Configuration Wizard Service Name page is displayed, as shown in Figure 7-12.

Figure 7-12 The Adapter Configuration Wizard Service Name Page
[image: Description of Figure 7-12 follows]

	Specify a service name, and then click Next.

The Adapter Configuration Wizard Service Connection page is displayed, as shown in Figure 7-13.

Figure 7-13 Adapter Configuration Wizard Service Connection Page
[image: Description of Figure 7-13 follows]

	Click the plus icon to create a database connection.

The Create Database Connection page is displayed.

Note:
You must connect to the database where Oracle Applications is running.

	Enter the following information:

	For Create Connection In, choose Application Resources.

	In the Connection Name field, specify a unique name for the database connection.

In this example, type DBConnection1.

	From the Connection Type box, select Oracle (JDBC).

	In the UserName field, specify the user name to be authorized for access to the database.

In this example, type scott.

	In the Role field, enter a role, if applicable.

This must be a specific database role, such as SYSDBA, as defined in the database. This field is optional. In this example, leave the Role field blank.

	In the Password field, specify the password to be associated with the specified user name.

In this example, type tiger.

	Select Save Password and Deploy Password.

	From the Driver list, select Thin.

	In the Host Name field, enter a value to identify the computer running the Oracle server.

Use an IP address or a host name that can be resolved by TCP/IP, for example, myserver. The default value is localhost.

	In the JDBC Port field, enter a value to identify the TCP/IP port. The default is 1521.

	In the SID field, enter a value for the unique system identifier (SID) of an Oracle database instance.

The default is XE.

	Click Test Connection to determine whether the specified information establishes a connection with the database.

A Success message is displayed.

	Click OK.

The Connection you created is displayed in the Connection field in the Service Name page.

Notice that the Java Naming and Directory Interface (JNDI) name in the JNDI Name field is populated after you have created the database connection. The JNDI name acts as a placeholder for the connection used when your service is deployed to the BPEL server. Using JNDI as a placeholder enables you to use different databases for development and later production.

The value specified in the JNDI name must exist in the Oracle AQ Adapter weblogic-ra.xml file to ensure that the adapter runs in managed mode. A default connection instance eis/AQ/aqSample is shipped and can be used as the default value for this field. To use this connection instance, it would still require that a data source is created with the JNDI name jdbc/aqSample.

	Click Next.

The Adapter Configuration Wizard Adapter Interface page is displayed, as shown in Figure 7-14.

	In the Adapter Interface page, choose Define from operation and schema (specified later).

Figure 7-14 The Adapter Configuration Wizard Adapter Interface Page
[image: Description of Figure 7-14 follows]

	Click Next.

The Operation page is displayed.

	Oracle AQ Adapter supports three operations:

	Dequeue: Polls for incoming messages from a queue.

	Enqueue: Puts outgoing messages in a queue.

	Enqueue/Dequeue: Puts outgoing messages in a queue and expects response messages in a queue.

In this example, select Dequeue, as shown in Figure 7-15.

The operation is automatically named after the operation that you selected. However, you can edit the Operation Name field.

Figure 7-15 The Adapter Configuration Wizard Operation Page
[image: Description of Figure 7-15 follows]

Note:
When creating a SOA composite that uses an inbound Oracle AQ Adapter dequeuing from a queue based on an ADT (Oracle Object) data type - if the SchemaValidation property in the .jca config file is set to true, any empty (NULL) members of the ADT payload in the dequeued message results in the AQ_INVALID_PAYLOAD error being raised and further resulting in the message being rejected. To avoid the message being rejected, you must set the SchemaValidation property to false.

	Click Next.

The Adapter Configuration Wizard Queue Name page is displayed, as shown in Figure 7-16.

Figure 7-16 The Adapter Configuration Wizard Queue Name Page
[image: Description of Figure 7-16 follows]

	Select a database schema from the Database Schema list, or click Browse to browse for the schema. In this example, click Browse.

The Select Queue dialog is displayed, as shown in Figure 7-17.

Figure 7-17 The Select Queue Dialog
[image: Description of Figure 7-17 follows]

	Select the required queue, and then click OK.

In this example, select SERVICE_IN_QUEUE. The Queue Name page is displayed again with the Queue Name field populated with SERVICE_IN_QUEUE, as shown in Figure 7-18.

Figure 7-18 The Adapter Configuration Wizard Queue Name Page
[image: Description of Figure 7-18 follows]

	Click Next.

The Adapter Configuration Wizard Queue Parameters page is displayed, as shown in Figure 7-19.

Figure 7-19 The Adapter Configuration Wizard Queue Parameters Page
[image: Description of Figure 7-19 follows]

	Enter values for the parameters, and then click Next.

	Correlation ID: Enter an optional correlation ID from 1 to 30 characters in length. This is used to identify messages that can be retrieved at a later time by a dequeue activity using the same correlation ID.

The value to enter is agreed upon between the enqueuing sender and the dequeuing receiver for asynchronous conversations. The correlation ID maps to an AQ header property. Correlation IDs in the inbound direction enable you to be selective about the message to dequeue. This field is optional. If you do not enter a value, then all the messages in the queue are processed.

If you enter a value for the Correlation ID in the outbound direction, then all outbound messages have the correct ID set to the value entered. You can override this value on a per message basis in the correlation field of the outbound header.

	Dequeue Condition: Displayed only when you select dequeue in the Operation page.

Enter a Boolean expression similar to the WHERE clause of a SQL query. This expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions. If more than one message satisfies the dequeue condition, then the order of dequeuing is indeterminate, and the sort order of the queue is not honored.

This field is displayed for inbound single consumer and multi consumer queues.

	Click Next.

The Adapter Configuration Wizard Object Payload page is displayed, as shown in Figure 7-20.

Figure 7-20 The Adapter Configuration Wizard Object Payload Page
[image: Description of Figure 7-20 follows]

	In Business Payload, select Field within the Object.

	Click Browse in the Payload Fields Options section to select a field that contains the business payload.

The Select Payload Field dialog is displayed, as shown in Figure 7-21.

Figure 7-21 The Select Payload Field Dialog
[image: Description of Figure 7-21 follows]

	Select a field, and then click OK.

In this example, select PAYLOAD (CLOB).

The Object Payload field is displayed with all the payload details filled up, as shown in Figure 7-22.

Figure 7-22 The Adapter Configuration Wizard Object payload Page
[image: Description of Figure 7-22 follows]

	Select Access to non-payload fields also needed, and then click Next.

The Messages page is displayed.

The Message page has the following options:

	Native format translation is not required (Schema is Opaque): Select this option if you do not want to specify a schema. Selecting this option disables all the other fields under Message Schema.

	Define Schema for Native Format: Click this to start the Native Format Builder wizard, which guides you through the process of defining the native format.

	URL: You can enter the path for the schema file URL or click Browse to browse for the path.

	Schema Element: The name of the schema element.

	In this example, click the Browse for schema file icon to browse for the schema file URL.

The Type Chooser dialog is displayed, as shown in Figure 7-23.

Figure 7-23 The Type Chooser Dialog
[image: Description of Figure 7-23 follows]

	Select SERVICE from the list, as shown in Figure 7-23, and then click OK.

The Messages page reappears, with the Schema Location and Schema Element fields populated, as shown in Figure 7-24.

Figure 7-24 The Adapter Configuration Wizard Messages Page
[image: Description of Figure 7-24 follows]

	Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.

	Click Finish.

You have created an AQ Adapter service with dequeue operation.

	Click OK.

7.4.1.1.4 Generated WSDL and JCA Files

The adapter service generates a WSDL and a JCA file to serve as the defined adapter interface.

The following is the WSDL file generated for the dequeue operation:

<definitions name="Inbound" targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/" xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT" xmlns:imp1="http://www.oracle.com/service/contract">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified" targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/" xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
 <import namespace="http://xmlns.oracle.com/xdb/SCOTT" schemaLocation="xsd/SCOTT_SERVICE_TYPE.xsd"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/" schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
 <complexType name="HeaderCType">
 <sequence>
 <element name="QueueHeader" type="hdr:HeaderType"/>
 <element name="PayloadHeader" type="obj1:SERVICE_TYPE"/>
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/service/contract" schemaLocation="xsd/service.xsd"/>
 </schema>
 </types>
 <message name="SERVICE_msg">
 <part name="SERVICE" element="imp1:SERVICE"/>
 </message>
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
 </message>
 <portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:SERVICE_msg"/>
 </operation>
 </portType>
 <plt:partnerLinkType name="Dequeue_plt">
 <plt:role name="Dequeue_role">
 <plt:portType name="tns:Dequeue_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
</definitions>

7.4.1.2 Dequeuing and Enqueuing Object and ADT Payloads

Dequeuing and enqueuing is covered in ADT Queue.

To enqueue or dequeue the entire object as the payload, perform the following:

	Select Enqueue or Dequeue in Step 10.

	Select Whole Object CUSTOMER_TYPE, and skip to Step 16.

For a working example of an ADT payload use case, refer to any of the following samples:

	adapters-aq-102-adt

	adapters-aq-110-supportedadttypes

You can obtain these samples by accessing the Oracle SOA Sample Code site.

Note:
If you modify an ADT type using evolution commands such as ALTER OBJECT, the AQ Adapter throws an ORA-25215 SQL exception.

The workaround to this exception is to use only CREATE OBJECT (without issuing evolution commands such as ALTER OBJECT) to add attributes to the ADT TYPES.

7.4.1.3 Dequeuing One Column of the Object Payload

The walkthrough is an example of dequeuing one field or column within an object payload.

To create an Oracle AQ Adapter that dequeues one field in an object, you must perform the following steps in the Adapter Configuration Wizard Object Payload page:

	Select Field within the Object.
	Click Browse at the end of the Field Name field.The Select Payload Field dialog is displayed.

	Select a field that contains the business payload, and then click OK.The Adapter Configuration Wizard Object Payload page with Field Name field populated with the field that you selected is displayed, as shown in Figure 7-25.

Figure 7-25 The Adapter Configuration Wizard Object Payload Page
[image: Description of Figure 7-25 follows]

	Select Access to non-payload fields also needed, and then click Next.

The following segment of the generated JCA file specifies that one field, in this case the field named PAYLOAD, is dequeued in addition to payload header fields.

<adapter-config name="Inbound" adapter="AQ Adapter" xmlns="http://platform.integration.oracle/blocks
 /adapter/fw/metadata">
 <connection-factory location="eis/AQ/aqSample"
 UIConnectionName="Connection1" adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue">
 <activation-spec className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="SERVICE_IN_QUEUE"/>
 <property name="ObjectFieldName" value="PAYLOAD"/>
 <property name="PayloadHeaderRequired" value="true"/>
 <property name="SchemaValidation" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

For a working example of an ADT CLOB use case where one field or column within an object payload is dequeued, refer to the following samples:

	adapters-aq-103-adtclobpayload

	adapters-aq-105-adtclobopaquepayload

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.1.4 Configuring the Enqueue/Dequeue Operation Type

This use case walks you through the procedure for configuring the Enqueue/Dequeue operation type of the Oracle AQ Adapter, which lets the Oracle AQ Adapter put outgoing messages on a queue and expect response messages on a different queue.

This section includes the following topics:

	Meeting Prerequisites

	Creating an Application and an SOA Project

	Defining an Service

	Wiring Services and Activities

	Deploying with

	Monitoring Using the

	Generated WSDL and JCA Files

7.4.1.4.1 Meeting Prerequisites

To perform this use case, you must have access to a database with the SCOTT schema. Also, you require the following files from the artifacts.zip file contained in the adapters-aq-104-requestreply sample:

	create_queues.sql

	drop_queues.sql

	enqueue.sql

	SendReply.sql

	setup_user.sql

To obtain the adapters-aq-104-requestreply sample code, access the Oracle SOA Sample Code site.

7.4.1.4.2 Creating an Application and an SOA Project

You must create a JDeveloper application to contain the SOA composite. Follow the steps documented in Creating an Application and an SOA Project to create an application, and an SOA project.

7.4.1.4.3 Defining an Oracle AQ Adapter Service

Perform the following steps to create an Oracle AQ Adapter service to put outgoing messages on a queue and expect response messages on a queue:

	In the Components window, select SOA.

	Drag and drop AQ Adapter from the Service Adapters list to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard Welcome page is displayed.

	Click Next.

The Adapter Configuration Wizard Service Name page is displayed, as shown in Figure 7-12.

	Specify a service name, and then click Next.

The Adapter Configuration Wizard Service Connection page is displayed.

	Click the plus icon to create a database connection.

The Create Database Connection page is displayed.

Note:
You must connect to the database where Oracle Applications is running.

	Enter the following information:

	For Create Connection In, choose Application Resources.

	In the Connection Name field, specify a unique name for the database connection.

	From the Connection Type box, select Oracle (JDBC).

	In the UserName field, specify the user name to be authorized for access to the database.

In this example, type scott.

	In the Role field, enter a role, if applicable.

This must be a specific database role, such as SYSDBA, as defined in the database. This field is optional. In this example, leave the Role field blank.

	In the Password field, specify the password to be associated with the specified user name.

In this example, type tiger.

	Select Save Password and Deploy Password.

	From the Driver list, select thin.

	In the Host Name field, enter a value to identify the computer running the Oracle server.

Use an IP address or a host name that can be resolved by TCP/IP, for example, myserver. The default value is localhost.

	In the JDBC Port field, enter a value to identify the TCP/IP port. The default is 1521.

	In the SID field, enter a value for the unique system identifier (SID) of an Oracle database instance.

The default is XE.

	Click Test Connection to determine whether the specified information establishes a connection with the database.

A Success message is displayed.

	Click OK.

The Connection you created is displayed in the Connection field in the Service Connection page.

Also, the JNDI Name field is populated after you created the database connection.

The value specified in the JNDI name must exist in the Oracle AQ Adapter weblogic-ra.xml file to ensure that the adapter runs in managed mode. A default connection instance eis/AQ/aqSample is shipped and can be used as the default value for this field. To use this connection instance, it would still require that a data source is created with the JNDI name jdbc/aqSample.

	Click Next.

The Adapter Configuration Wizard Adapter Interface page is displayed.

	In the Adapter Interface page, choose Define from operation and schema (specified later).

	Click Next.

The Operation page is displayed.

	Select Enqueue/Dequeue, as shown in Figure 7-15.

Figure 7-26 The Adapter Configuration Wizard Operation Page
[image: Description of Figure 7-26 follows]

	Click Next.

The Adapter Configuration Wizard Queue Name page is displayed, as shown in Figure 7-16.

Figure 7-27 The Adapter Configuration Wizard Queue Name Page
[image: Description of Figure 7-27 follows]

	Click Browse to browse for a request queue.

The Select Queue dialog is displayed, as shown in Figure 7-28.

Figure 7-28 The Select Queue Dialog
[image: Description of Figure 7-28 follows]

	Select the required queue, and then click OK.

In this example, select CORRELATION_REQUEST. The Queue Name page is displayed with the Queue Name field populated with CORRELATION_REQUEST, as shown in Figure 7-29.

	Repeat Step 12 and 13 for the enqueue queue information.

The Queue Name page is displayed, as shown in Figure 7-29.

Figure 7-29 The Adapter Configuration Wizard Queue Name Page
[image: Description of Figure 7-29 follows]

	Click Next.

The Adapter Configuration Wizard Queue Parameters page is displayed, as shown in Figure 7-30.

Figure 7-30 The Adapter Configuration Wizard Queue Parameters Page
[image: Description of Figure 7-30 follows]

	Click Next.

The Adapter Configuration Wizard Object Payload page is displayed, as shown in Figure 7-31.

Figure 7-31 The Adapter Configuration Wizard Object Payload Page
[image: Description of Figure 7-31 follows]

	Select the Business Payload options, Whole Object CORRELATIONREQUEST_TYPE and Whole Object CORRELATIONREPLY_TYPE.

	Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.

	Click Finish.

You have created an AQ Adapter service for synchronous enqueue/dequeue operations.

	Click OK.

7.4.1.4.4 Wiring Services and Activities

You must assemble or wire the BPEL process and the Outbound adapter reference. Perform the following steps to wire the components:

	Drag the small triangle in the BPEL process in the Components area to the drop zone that appears as a green triangle in RequestReply in the External References area.

The JDeveloper Composite.xml appears, as shown in Figure 7-32.

Figure 7-32 The JDeveloper - Composite.xml
[image: Description of Figure 7-32 follows]

	Click File, Save All.

Add Invoke Activity

	Double-click BPELProcess1. The BPELProcess1.bpel page is displayed.

	Drag and drop an Invoke activity from the Components window to the design area.

	Double-click the Invoke activity. The Invoke dialog is displayed.

	Enter a name for the invoke activity in the Name field.

	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed, as shown in Figure 7-33.

Figure 7-33 The Partner Link Chooser Dialog
[image: Description of Figure 7-33 follows]

	Select RequestReply, and click OK.

	Click the Automatically Create Input Variable icon to the right of the Input variable field in the Invoke dialog, as shown in Figure 7-34. The Create Variable dialog is displayed.

Figure 7-34 The Invoke Dialog
[image: Description of Figure 7-34 follows]

	Select the default variable name and click OK. The Variable field is populated with the default variable name.

	Click OK. The JDeveloper BPELProcess1.bpel page appears, as shown in Figure 7-35.

Figure 7-35 The JDeveloper - BPELProcess1.bpel Page
[image: Description of Figure 7-35 follows]

Add an Assign Activity

	Drag and drop an Assign activity from the Components window to the design area.

	Double-click the Assign activity. The Assign dialog is displayed.

	Enter a name for the Assign activity in the Name field.

	Click the Copy Operation tab.

	Select Copy Operation. The Create Copy Operation dialog is displayed.

	Create a copy operation from inputVariable to outputVariable, as shown in Figure 7-36.

Figure 7-36 The Create Copy Operation Dialog
[image: Description of Figure 7-36 follows]

	Click OK in the Create Copy Operation dialog.

	Create another copy operation from inputVariable to Invoke_1_Enqueue_InputVariable, as shown in Figure 7-37.

Figure 7-37 The Create Copy Operation Dialog
[image: Description of Figure 7-37 follows]

	Click OK in the Create Copy Operation dialog.

	Click OK to return to the JDeveloper BPELProcess1.bpel page, as shown in Figure 7-38.

Figure 7-38 The JDeveloper - BPELProcess1.bpel
[image: Description of Figure 7-38 follows]

	Click File, Save All.

Add a Receive Activity

	Drag and drop a Receive activity from the Components window to the design area.
	Double-click the Receive activity. The Receive dialog is displayed.
	Enter a name for the Receive activity in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed.
	Select RequestReply, and click OK.
	Click the Auto-Create Variable icon to the right of the Variable field in the Receive dialog. The Create Variable dialog is displayed.
	Select the default variable name and click OK. The Variable field is populated with the default variable name.
	Check Create Instance, and click OK. The JDeveloper BPELProcess1.bpel page appears, as shown in Figure 7-39.Figure 7-39 The JDeveloper - BPELProcess1.bpel
[image: Description of Figure 7-39 follows]

7.4.1.4.5 Deploying with JDeveloper

You must deploy the application profile for the SOA project and the application you created in the preceding steps.

The following are the steps to deploy the application profile by using JDeveloper:

	Create an application server connection by using the procedure described in Creating an Application Server Connection for Oracle JCA Adapters.
	Deploy the application by using the procedure described in Deploying Oracle JCA Adapter Applications from .

7.4.1.4.6 Monitoring Using the Fusion Middleware
Control Console

You can monitor the deployed composite by using the Fusion Middleware
Control Console. Perform the following steps:

	Navigate to http://servername:portnumber/em. The composite you deployed is displayed in the Application Navigator.
	Click an instance. The Flow Trace page is displayed.
	Click the BPEL component instance. The Audit page is displayed.
	Click the Flow-Debug tab to debug the instance.

7.4.1.4.7 Generated WSDL and JCA Files

The following WSDL file is generated for the Enqueue/Dequeue operation:

<?xml version = '1.0' encoding = 'UTF-8'?>
<?binding.jca Inbound_aq.jca?>
<definitions name="Inbound" targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/" xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT" xmlns:imp1="http://www.oracle.com/ipdemo">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified" targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/" xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/" xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
 <import namespace="http://xmlns.oracle.com/xdb/SCOTT" schemaLocation="xsd/SCOTT_MAGAZINE_TYPE.xsd"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/" schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
 <complexType name="HeaderCType">
 <sequence>
 <element name="QueueHeader" type="hdr:HeaderType"/>
 <element name="PayloadHeader" type="obj1:MAGAZINE_TYPE"/>
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/ipdemo" 	schemaLocation="xsd/simpleMagazine.xsd"/>
 </schema>
<?xml version = '1.0' encoding = 'UTF-8'?>
 <?binding.jca Inbound_aq.jca?>
 <definitions name="Inbound"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT"
 xmlns:imp1="http://www.oracle.com/ipdemo">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"

xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
<import namespace="http://xmlns.oracle.com/xdb/SCOTT"
schemaLocation="xsd/SCOTT_MAGAZINE_TYPE.xsd"/>
<import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"

 schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
<complexType name="HeaderCType">
 <sequence>
<element name="QueueHeader" type="hdr:HeaderType"/>
<element name="PayloadHeader" type="obj1:MAGAZINE_TYPE"/>
 </sequence>
</complexType>

 <element name="Header" type="tns:HeaderCType"/>
</schema>

 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/ipdemo"
 schemaLocation="xsd/simpleMagazine.xsd"/>
</schema>
</types>
<message name="simpleMagazine_msg">

 <part name="simpleMagazine" element="imp1:simpleMagazine"/>
</message>
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
</message>
<portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:simpleMagazine_msg"/>
 </operation>
</portType>
 <plt:partnerLinkType name="Dequeue_plt">
 <plt:role name="Dequeue_role">
 <plt:portType name="tns:Dequeue_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
</definitions>

The following JCA file is generated for the Enqueue/Dequeue operation:

<adapter-config name="RequestReply" adapter="AQ Adapter" wsdlLocation="RequestReply.wsdl" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/AQ/aqSample" UIConnectionName="aqSample" adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue" UITransmissionPrimitive="Request-response">
 <activation-spec className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="CORRELATION_REPLY"/>
 </activation-spec>
 </endpoint-activation>

 <endpoint-interaction portType="Enqueue_ptt" operation="Enqueue" UITransmissionPrimitive="Request-response">
 <interaction-spec className="oracle.tip.adapter.aq.outbound.AQEnqueueInteractionSpec">
 <property name="QueueName" value="CORRELATION_REQUEST"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

7.4.1.5 Using Correlation ID for Filtering Messages During Dequeue

Perform the following steps to set up an adapter that dequeues messages with a certain correlation ID only.

	Select Dequeue operation in Step 10.

	Enter the correlation ID in Step 15.

The adapter dequeues messages enqueued with that same correlation ID only.

For a working example of this use case where an Oracle AQ Adapter dequeues messages enqueued with that same correlation ID, refer to the following samples:

	adapters-aq-106-messagerejection

	adapters-aq-109-nativecorrelation

	adapters-aq-112-prioritymessageselector

	adapters-aq-113-payloadbasedmessageselector

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.1.6 Enqueuing and Dequeuing from Multisubscriber Queues

Multisubscriber queues are accessible by multiple users, and sometimes, those users are concerned only with certain types of messages within the queue. For example, you may have a multiuser queue for loan applications where loans below $100,000 can be approved by regular loan-approval staff, whereas loans over $100,000 must be approved by a supervisor. In this case, the BPEL process can use one adapter to enqueue loan applications for big loans for supervisors, and another adapter to enqueue loan applications for smaller loans for regular staff in the same multisubscriber queue.

Specify an adapter that enqueues to a multisubscriber queue, and include queue parameters in the Recipients field.

In Step 15, specify Bob in the Recipients field.

The following code is from a JCA file generated by defining an Oracle AQ Adapter that enqueues with a recipient list of Bob:

<adapter-config name="Inbound" adapter="AQ Adapter" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/aqSample" UIConnectionName="aqSample" adapterRef=""/>
 <endpoint-interaction portType="Enqueue_ptt" operation="Enqueue">
 <interaction-spec className="oracle.tip.adapter.aq.outbound.AQEnqueueInteractionSpec">
 <property name="QueueName" value="PURCHASEORDER_APPROVAL"/>
 <property name="RecipientList" value="Bob"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

When dequeuing from a multisubscriber queue, the Queue Parameters window is displayed.

The Consumer field is where you specify the consumer name, or the name of the queue subscriber. This must match the Recipient entry on the enqueue process for the message to be dequeued. When subscribing to a multiconsumer queue, this field is required.

The following code is from a JCA file generated by defining an Oracle AQ Adapter with a consumer name:

<adapter-config name="Dequer_Bob" adapter="AQ Adapter" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/manas" UIConnectionName="aqSample" adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue">
 <activation-spec className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="PURCHASEORDER_APPROVAL"/>
 <property name="Consumer" value="Bob"/>
 <property name="SchemaValidation" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

For a working example of this use case which demonstrates enqueuing and dequeuing from multisubscriber queues, refer to the following samples:

	adapters-aq-114-multiconsumeroutbound

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.2 Oracle AQ Adapter ADT Queue

In this sample, the business process receives a message from the AQ Adapter, copies the payload to an outbound message, and invokes the AQ Adapter with the outbound message.The queues involved are ADT queues. In this scenario, where the user has chosen to use whole ADT as the payload, the AQ Adapter Wizard has generated the schema in SCOTT_CUSTOMER_TYPE.xsd, according to the queue structure. During runtime, an XML file that matches the schema is created by the adapter for each message.

This section includes the following topics:

	Meeting Prerequisites

	Creating an Application and an SOA Project

	Creating an Inbound Oracle AQ Adapter

	Creating an Outbound Oracle AQ Adapter

	Wiring Services and Activities

	Configuring Routing Service

	Deploying with

	Configuring the Data Sources in the

7.4.2.1 Meeting Prerequisites

You must have access to a database with the SCOTT schema.

To perform this use case, you require the following SQL files from the artifacts.zip file contained in the adapters-aq-102-adt sample. These files are located in the artifacts/sql subdirectory of the artifacts.zip file. Execute the SQL files in the order shown below:

	setup_user.sql

	create_type_customer.sql

	create_queues.sql

	enqueue_customer.sql

	dequeue_customer.sql

To obtain the adapters-aq-102-adt sample code, access the Oracle SOA Sample Code site

7.4.2.2 Creating an Application and an SOA Project

You must create an JDeveloper application to contain the SOA composite. Use the following steps to create an application and an SOA project:

	In the Application Navigator of JDeveloper, click New Application.The Create Generic Application Name your application page is displayed.

	Enter ADT in the Application Name field, and click Next.The Create Generic Application Name your project page is displayed.

	Enter ADT in the Project Name field.
	In the Available list in the Project Technologies tab, double-click SOA to move it to the Selected list.
	Click Next.The Create Generic Application Configure SOA settings page is displayed.

	Select Composite With Mediator from the Composite Template list, and then click Finish.You have created a new application and an SOA project.

The Create Mediator page is displayed, as shown in Figure 7-40.

Figure 7-40 The Create Mediator Page
[image: Description of Figure 7-40 follows]

	Enter a name for the Mediator component in the Name field. In this example, retain the default name Mediator1.
	Select Define Interface Later in the Template list, and then click OK.You have created a mediator component.

7.4.2.3 Creating an Inbound Oracle AQ Adapter

The following are the steps to create an inbound Oracle AQ Adapter service:

	In the Components window, select SOA.

	Drag and drop AQ Adapter from the Service Adapters list in the Components window to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

	Click Next.

The Service Name page is displayed.

	Specify a name for the service in the Service Name page. In this example, type dequeue.

	Click Next.

The Service Connection page is displayed. A database connection is required to configure an Oracle AQ Adapter. You can either create a new connection or select an existing database connection.

	Click the Create a new database connection icon to create a database connection.

The Create Database Connection page is displayed.

	Create a database connection, as mentioned in Step 6 of Defining an Service.

	Click OK to complete the process of creating a new database connection.

The Service Connection page is displayed, providing a summary of the database connection.

	Click Next.

The Adapter Interface page is displayed.

	In the Adapter Interface page, select Define from operation and schema (specified later).

	Click Next.

The Operation page is displayed.

	Select Dequeue.

	Accept the default operation name, and then click Next.

The Queue Name page is displayed.

	Select a database schema from the list, or click Browse to browse for the schema. In this example, click Browse.

The Select Queue dialog is displayed.

	In the Select Queue dialog, perform the following steps:

	For Queue Type, select all types.

	For Database Schema, select Scott.

	Retain the default values for the other fields.

	Under Queues, select CUSTOMER_IN_QUEUE.

Figure 7-41 shows the Select Queue dialog.

Figure 7-41 Selecting a Queue for the Inbound Operation
[image: Description of Figure 7-41 follows]

	Click OK.

The Queue Name dialog with all the fields populated is displayed, as shown in Figure 7-42.

Figure 7-42 The Queue Name Page
[image: Description of Figure 7-42 follows]

	Click Next.

The Queue Parameters page is displayed.

	In the Queue Parameters page, leave the fields empty, and then click Next.

The Object Payload page is displayed.

	Select a business payload: either the entire object, or just one field within the object.

In this example, select Whole Object CUSTOMER_TYPE.

	Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.

	Click Finish.

You have defined an inbound Oracle AQ Adapter

7.4.2.4 Creating an Outbound Oracle AQ Adapter

The following are the steps to create an outbound Oracle AQ Adapter service:

	In the Components window, select SOA.

	Drag and drop AQ Adapter from the Service Adapters list in the Components window to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

	Click Next.

The Service Name page is displayed.

	In the Service Name field, enter enqueue and click Next.

The Service Connection page is displayed.

	For Connection, select MyConnection, and then click Next.

The Adapter Interface page is displayed.

	In the Adapter Interface page, select Define from operation and schema (specified later), and then click Next.

The Operation page is displayed.

	In the Operation page, select Enqueue, and accept the default operation name.

	Click Next.

The Queue Name page is displayed.

	In the Queue Name page, select a database schema from the list, or click Browse to browse for the schema. In this example, click Browse.

The Select Queue dialog is displayed.

	In the Select Queue dialog, perform the following steps:

	For Queue Type, select all types.

	For Database Schema, select Scott.

	Retain the default values for the other fields.

	Under Queues, select CUSTOMER_OUT_QUEUE, as shown in Figure 7-43.

Figure 7-43 Selecting a Queue for the Outbound Operation
[image: Description of Figure 7-43 follows]

	Click OK.

The Queue Name page with all the fields populated is displayed, as shown in Figure 7-44.

Figure 7-44 The Queue Name Page
[image: Description of Figure 7-44 follows]

	Click Next.

The Queue Parameters page is displayed.

	In the Queue Parameters page, leave the fields empty, and then click Next.

The Object Payload page is displayed.

	Select a business payload, either the entire object, or just one field within the object. In this example, select Whole Object CUSTOMER_TYPE.

	Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.

	In the Finish window, click Finish.

You have defined an outbound Oracle AQ Adapter.

7.4.2.5 Wiring Services and Activities

You must assemble or wire the three components that you have created: Inbound adapter service, Mediator component, and Outbound adapter reference. Perform the following steps to wire the components:

	Drag the small triangle in the Inbound adapter in the Exposed Services area to the drop zone that appears as a green triangle in the Mediator component in the Components area.
	Drag the small triangle in the Mediator component in the Components area to the drop zone that appears as a green triangle in the Outbound adapter in the External References area.The JDeveloper composite.xml is displayed, as shown in Figure 7-45.

Figure 7-45 The JDeveloper composite.xml
[image: Description of Figure 7-45 follows]

	Click File, Save All.

7.4.2.6 Configuring Routing Service

The following are the steps to configure the routing service:

	Double-click Mediator1.The Mediator1.mplan window is displayed.

	Click the Select an existing mapper file or create a new one... icon that is displayed at the end of the Transform Using field.The Request Transformation Map dialog is displayed, as shown in Figure 7-46.

Figure 7-46 The Request Transformation Map Dialog
[image: Description of Figure 7-46 follows]

	Select Create New Mapper File, and then click OK.The Transformation window is displayed, as shown in Figure 7-47.

Figure 7-47 The Transformation Window
[image: Description of Figure 7-47 follows]

	Select the source root elements on the left-hand side of the mapper and drag them over to the destination root elements on the right-hand side to set the map preferences.The Auto Map Preferences dialog is displayed, as shown in Figure 7-48.

Figure 7-48 The Auto Map Preferences Dialog
[image: Description of Figure 7-48 follows]

	Click OK.The middle pane of the application window appears as shown in Figure 7-49.

Figure 7-49 The Application Window After Setting the Map Preferences
[image: Description of Figure 7-49 follows]

	Save and close the tab for the mapper.
	Save and close the tab for the routing service.

7.4.2.7 Configuring the Data Sources in the Oracle WebLogic Server Administration Console

	Navigate to http://servername:portnumber/console.
	Use the required credentials to open the Home page of the Oracle WebLogic Server Administration Console.The Home page of the Oracle WebLogic Server Administration Console is displayed, as shown in Figure 7-50.

Figure 7-50 Oracle WebLogic Server Administration Console Home Page
[image: Description of Figure 7-50 follows]

	Under Domain Structure, select Services, JBDC, and then click DataSources.The Summary of JDBC Data Sources page is displayed, as shown Figure 7-51.

Figure 7-51 The Summary of JDBC Data Sources Page
[image: Description of Figure 7-51 follows]

	Click New. The Create a New JDBC Data Source page is displayed.
	Enter the values for the properties to be used to identify your new JDBC data source, as shown in Figure 7-52.Figure 7-52 The Create a New JDBC Data Source Page
[image: Description of Figure 7-52 follows]

	Click Next. The Create a New JDBC Data Source Transaction Options page is displayed, as shown in Figure 7-53.Figure 7-53 The Create a New JDBC Data Source Transaction Options Page
[image: Description of Figure 7-53 follows]

	Click Next. The Create a New JDBC Data Source Connection Properties page is displayed, as shown in Figure 7-54.Figure 7-54 The Create a New JDBC Data Source Connection Properties Page
[image: Description of Figure 7-54 follows]

	Enter the connection properties in the Connection Properties page.
	Click Next. The Create a New JDBC Data Source Test Database Connection page is displayed, as shown in Figure 7-55.Figure 7-55 The Create a New JDBC Data Source Test Database Connection Page
[image: Description of Figure 7-55 follows]

	Click Test Configuration to test the database availability and the connection properties you provided. A message stating that the connection test succeeded is displayed at the top of the Create a New JDBC Data Source Test Database Connection page.
	Click Next. The Create a New JDBC Data Source Select Targets page is displayed, as shown in Figure 7-56.Figure 7-56 The Create a New JDBC Data Source Select Targets Page
[image: Description of Figure 7-56 follows]

	Select a target, and then click Finish.The Summary of JDBC Data Sources page is displayed, as shown in Figure 7-57. This page summarizes the JDBC data source objects that have been created in this domain. The data source that you created appears in this list.

Figure 7-57 The Summary of JDBC Data Sources Page
[image: Description of Figure 7-57 follows]

	Close the Oracle WebLogic Server Administration Console.

7.4.2.8 Deploying with JDeveloper

You must deploy the application profile for the SOA project and the application you created in the preceding steps.

The following are the steps to deploy the application profile by using JDeveloper:

	Create an application server connection by using the procedure described in Creating an Application Server Connection for Oracle JCA Adapters.
	Deploy the application by using the procedure described in Deploying Oracle JCA Adapter Applications from .

7.4.2.9 Monitoring Using the Fusion Middleware
Control Console

You can monitor the deployed composite by using the Fusion Middleware
Control Console. Perform the following steps:

	Navigate to http://servername:portnumber/em. The composite you deployed is displayed in the Application Navigator.
	In the Last 5 Instances pane, there is an entry of a new instance. This new instance is the instance that was triggered when you enqueued a message.
	Click an instance. The Flow Trace page is displayed.
	Click the Mediator1 component instance. The Audit page is displayed.
	Click the Flow-Debug tab to debug the instance.

7.4.3 Oracle AQ Adapter RAW Queue

This use case demonstrates how to use Oracle AQ Adapter to dequeue from and enqueue to an AQ RAW queue.

This section includes the following topics:

	Prerequisites

	Creating an Application and an SOA Project

	Creating an Inbound Adapter Service

	Creating an Outbound Adapter Service

	Wiring Services and Activities

	Deploying with JDeveloper

	Configuring the Data Sources in the Oracle WebLogic Server Administration Console

	Monitoring Using the Fusion Middleware
Control Console

7.4.3.1 Prerequisites

You must have access to a database with the SCOTT schema.

To perform this use case, you require the following SQL files from the artifacts.zip file contained in the adapters-aq-101-raw sample. These files are located in the artifacts/sql subdirectory of the artifacts.zip file. Execute the SQL files in the order shown below:

	setup_user.sql

	create_queues.sql

	enqueue_raw.sql

	dequeue_raw.sql

	artifacts/schemas/emp.xsd

To obtain the artifacts.zip contained in the adapters-aq-101-raw sample code, access the Oracle SOA Sample Code site.

To obtain the adapters-aq-101-raw sample code, access the Oracle SOA Sample Code site.

7.4.3.2 Creating an Application and an SOA Project

You must create an JDeveloper application to contain the SOA composite. To create an application and an SOA project, perform the following steps:

	Open JDeveloper.
	In the Application Navigator, click New Application.The Create Generic Application Name your Application page is displayed.

	Enter Rawqueue in the Application Name field.
	In the Application Template list, select Generic Application.
	Click Next.The Create Generic Application Name your project page is displayed.

	In the Project Name field, enter a descriptive name, for example, Raw.
	In the Available list in the Project Technologies tab, double-click SOA to move it to the Selected list.
	Click Next.The Create Generic Application Configure SOA settings page is displayed.

	Select Composite With BPEL from the Composite Template list, and then click Finish.You have created a new application and an SOA project. This automatically creates an SOA composite.

The Create BPEL Process page is displayed.

	Enter a name for the BPEL process in the Name field. For example, BPELRawqueue.
	Select Define Service Later in the Template list, and then click OK.The Rawqueue application and the Raw project appear in the design area.

	Copy the emp.xsd file to the XSD folder in your project (see Prerequisites for the location of this file).

7.4.3.3 Creating an Inbound Adapter Service

Perform the following steps to create an inbound Oracle AQ Adapter service that dequeues the message to a queue:

	In the Components window, select SOA.
	Drag and drop AQ Adapter from the Service Adapters list in the Components window to the Exposed Services swim lane in the composite.xml page.The Adapter Configuration Wizard is displayed.

	Click Next.The Service Name page is displayed.

	In the Service Name field, enter Raw-Dequeuer, and then click Next.The Service Connection page is displayed.

	Create a database connection, as mentioned in Step 6 of Defining an Service.
	Click Next.The Adapter Interface page is displayed.

	In the Adapter Interface page, select Define from operation and schema (specified later), and then click Next. The Operation page is displayed.

	In the Operation page, select Dequeue, as shown in Figure 7-58.
	Accept the default operation name, and click Next.The Queue Name page is displayed.

Figure 7-58 The Adapter Configuration Wizard Operation Page
[image: Description of Figure 7-58 follows]

	In the Queue Name page, select SCOTT as Database Schema and RAW_IN_QUEUE as Queue Name, as shown in Figure 7-59.Figure 7-59 The Adapter Configuration Wizard Queue Name Page
[image: Description of Figure 7-59 follows]

	Click Next.The Queue Parameters page is displayed.

	Enter the Correlation ID and a Dequeue condition, and then click Next.The Messages page is displayed.

	Click Browse at the end of the URL field.The Type Chooser dialog is displayed.

	Select Project Schema Files, emp.xsd, and then AQRaw_End2End, as shown in Figure 7-60. Figure 7-60 The Type Chooser Dialog
[image: Description of Figure 7-60 follows]

	Click OK.The emp.xsd schema file is displayed in the URL field in the Message dialog, as shown in Figure 7-61.

Figure 7-61 The Adapter Configuration Wizard Messages Page
[image: Description of Figure 7-61 follows]

	Click Next. The Finish page is displayed.
	Click Finish. You have configured the Oracle AQ Adapter service, and the composite.xml page is displayed, as shown in Figure 7-62.Figure 7-62 The JDeveloper Window Composite.xml Page
[image: Description of Figure 7-62 follows]

7.4.3.4 Creating an Outbound Adapter Service

Perform the following steps to create an adapter service that enqueues the request messages and dequeue the corresponding response messages (report) from a queue:

	Drag and drop AQ Adapter from the Service Adapters list in the Components window to the Exposed Services swim lane in the composite.xml page.The Adapter Configuration Wizard Welcome page is displayed.

	Click Next. The Service Name page is displayed.
	Enter Raw-Enqueuer in the Service Name field, and click OK.The Service Connection page is displayed.

	Select XA Datasource, and then click Next.The Operation page is displayed.

	Select Enqueue.
	Accept the default operation name, and click Next.The Queue Name page is displayed.

	Select SCOTT as Database Schema and RAW_OUT_QUEUE as Queue Name, as shown in Figure 7-63.Figure 7-63 The Adapter Configuration Wizard Queue Name Page
[image: Description of Figure 7-63 follows]

	Click Next.The Queue Parameters page is displayed.

	Enter the Correlation ID, and then click Next.The Messages page is displayed.

	Click Browse for schema file at the end of the URL field.The Type Chooser dialog is displayed.

	Select Project Schema Files, emp.xsd, and AQRaw_End2End, as shown in Figure 7-60.
	Click Next.The emp.xsd schema file is displayed in the URL field in the Message dialog, as shown in Figure 7-61.

	Click Next.The Finish page is displayed.

	Click Finish.You have configured the Oracle AQ Adapter service, and the composite.xml page is displayed, as shown in Figure 7-64.

Figure 7-64 The JDeveloper Window Composite.xml Page
[image: Description of Figure 7-64 follows]

7.4.3.5 Wiring Services and Activities

You must assemble or wire the three components that you have created: Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:

	Drag the small triangle in the Raw-Dequeuer in the Exposed Services area to the drop zone that appears as a green triangle in the BPEL process in the Components area.
	Drag the small triangle in the BPEL process in the Components area to the drop zone that appears as a green triangle in Raw-Enqueuer in the External References area.Similarly, drag the small triangle in the BPEL process in the Components area to the drop zone in OutboundService in the External References.

The JDeveloper composite.xml file is displayed, as shown in Figure 7-65.

Figure 7-65 The JDeveloper- Composite.xml
[image: Description of Figure 7-65 follows]

	Click File, Save All.
	Double-click BPELRawqueue.The BPELRawqueue.bpel page is displayed.

	Drag and drop the Receive, Assign, and Invoke activities in the order mentioned, from the Components window to the Components area.The JDeveloper BPELRawqueue.bpel page is displayed, as shown in Figure 7-66.

Figure 7-66 The BPELRawqueue.bpel Page
[image: Description of Figure 7-66 follows]

	Double-click the Receive activity.The Receive dialog is displayed.

	Click the Browse Partner Links icon at the end of the Partner Link field.The Partner Link Chooser dialog is displayed.

	Select Raw-Dequeuer, and then click OK.The Receive dialog is displayed with the Partner Link field populated with the value Raw-Dequeuer.

	Click the Auto-Create Variable icon that is displayed at the end of the Variable field.The Create Variable dialog is displayed.

	Accept the default values, and click OK.
	Check the Create Instance box, as shown in Figure 7-67, and click OK.Figure 7-67 The Receive Dialog
[image: Description of Figure 7-67 follows]

	Double-click the Invoke activity.The Invoke dialog is displayed.

	Click the Browse Partner Links icon at the end of the Partner Link field.The Partner Link Chooser dialog is displayed.

	Select Raw-Enqueuer, and then click OK.The Invoke dialog is displayed with the Partner Link field populated with the value Raw-Enqueuer.

	Click the Automatically Create Input Variable icon that is displayed at the end of the Input Variable field.
	Accept the default values, and click OK.The Invoke dialog is displayed, as shown in Figure 7-68.

Figure 7-68 The Invoke Dialog
[image: Description of Figure 7-68 follows]

	Click OK.
	Double-click the Assign activity.The Assign dialog is displayed.

	Click the plus icon, and select Copy Operation.The Create Copy Operation dialog is displayed.

	Select the variables, as shown in Figure 7-69, and click OK.Figure 7-69 The Create Copy Operation Dialog
[image: Description of Figure 7-69 follows]

	Click OK in the Assign dialog.The JDeveloper BPELRawqueue.bpel page is displayed, as shown in Figure 7-70.

Figure 7-70 The BPELRawqueue.bpel Page
[image: Description of Figure 7-70 follows]

	Click File, Save All.

7.4.3.6 Configuring the Data Sources in the Oracle WebLogic Server Administration Console

	Navigate to http://servername:portnumber/console.
	Use the required credentials to open the Home page of the Oracle WebLogic Server Administration Console.
	In the Home page, under Domain Structure, select Services, JBDC, and then click DataSources.The Summary of JDBC Data Sources page is displayed.

	Click New. The Create a New JDBC Data Source page is displayed.
	Enter the values for the properties to be used to identify your new JDBC data source.
	Click Next. The Create a New JDBC Data Source Transaction Options page is displayed.
	Click Next. The Create a New JDBC Data Source Connection Properties page is displayed.
	Enter the connection properties in the Connection Properties page.
	Click Next. The Create a New JDBC Data Source Test Database Connection page is displayed.
	Click Test Configuration to test the database availability and the connection properties you provided. A message stating that the connection test succeeded is displayed at the top of the Create a New JDBC Data Source Test Database Connection page.
	Click Next. The Create a New JDBC Data Source Select Targets page is displayed.
	Select a target, and then click Finish.The Summary of JDBC Data Sources page is displayed. This page summarizes the JDBC data source objects that have been created in this domain. The Data Source that you created is displayed in this list.

	Close the Oracle WebLogic Server Administration Console.

7.4.3.7 Deploying with JDeveloper

You must deploy the application profile for the SOA project and the application you created in the preceding steps.

The following are the steps to deploy the application profile using JDeveloper:

	Create an application server connection by using the procedure described in Creating an Application Server Connection for Oracle JCA Adapters.
	Deploy the application by using the procedure described in Deploying Oracle JCA Adapter Applications from .

7.4.3.8 Monitoring Using the Fusion Middleware
Control Console

You can monitor the deployed composite by using the Fusion Middleware
Control Console. Perform the following steps:

	Navigate to http://servername:portnumber/em.The composite you deployed is displayed in the Application Navigator.

	In the Last 5 Instances pane, there is an entry of a new instance.This is the instance that triggered when you enqueued a message.

	Click an instance.The Flow Trace page is displayed.

	Click the BPELRawqueue component instance.The Audit page is displayed.

	Click the Flow-Debug tab to debug the instance.

Oracle JCA Adapter for UMS

11 Oracle JCA Adapter for UMS

This chapter describes how to use the Oracle User Messaging Service Adapter, which provides a JCA Adapter that wraps the Oracle User Message Service (UMS), an Oracle Fusion Middleware Component that enables communication between users and applications. The chapter also provides information on UMS Adapter concepts, features, configuration, and error handling.

This chapter includes the following sections:

	UMS and UMS Adapter Concepts

	Oracle UMS Adapter Features

11.1 UMS and UMS Adapter Concepts

This section includes the following topics:

	User Messaging Service

	 Oracle UMS Adapter

	UMS Adapter Message Concepts

	Transaction Support

	Configuring the Oracle UMS Adapter

11.1.1 User Messaging Service

The User Messaging Service is an Oracle Fusion Middleware Component that enables communication between users and application. It consists of the following:

	UMS Server: The UMS Server orchestrates message flows between applications and users. The server routes outbound messages from a client application to the appropriate driver, and routes inbound messages to the correct client application. The server also maintains a repository of previously sent messages in a persistent store, and correlates delivery status information with previously sent messages.

	UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting content to the various protocols supported by UMS. Drivers can be deployed or undeployed independently of one another depending on what messaging channels are available in a given installation.

	UMS client applications: UMS client applications implement the business logic of sending and receiving messages. A UMS client application might be a SOA application that sends messages as one step of a BPEL workflow, or a WebCenter Spaces application that can send messages from a web interface.

See Figure 11-1 for more context on the UMS Server.

Figure 11-1 The User Messaging Server in Context
[image: Description of Figure 11-1 follows]

UMS supports various messaging channels such as Email, SMS, Instant Messaging, and Voice. UMS provides a messaging proxy between the Oracle BPEL or Mediator products and the external world. The User Messaging Service provides two-way messaging: Inbound and Outbound messaging, and provides robust message delivery, including delivering delivery status, and message resend through Enterprise Messages. UMS also provides support for failover address. In summary, the UMS provides a scalable, highly available solution to communication between users and applications.

For additional information on the User Messaging Service, see the Oracle® Fusion Middleware Administering Oracle User Messaging Service.

11.1.2 Oracle UMS Adapter

The User Messaging Service Adapter implements the Java Enterprise Edition Connector Architecture (JCA) version 1.5. The UMS Adapter, in effect, wraps the User Messaging Service, thus enabling communication over messaging channels that include Email.

The UMS Adapter is part of the overall Adapter architecture.J2EE Applications, Mediator and BPEL processes communicate with the Oracle WebLogic Server. See the following diagram.

Figure 11-2 The UMS Adapter as Part of the Adapter Architecture
[image: Description of Figure 11-2 follows]

11.2 Oracle UMS Adapter Features

The UMS Adapter includes the following Outbound features

	Support of Email Messaging, IM and SMS Channels.

	Use of Message Filters-the UMS Adapter enables you to filter IM and SMS messages using Content, Recipient, Sender and Subject.

	Sending Email messages with Subject and Body and one or more attachments. The user can also send out IM, SMS messages.

	Receive message delivery status information from UMS.

	Translation Support for the message body.

	SSL/TLS security for the outbound SMTP server (this availability is provided through the Java Messaging Service).

	XA or global transaction support for outbound transactions.

The UMS Adapter provides the following Inbound features:

	Support for Email, IM and SMS Messaging channels.

	Use of Message Filters-the UMS Adapter enables you to filter email messages in two ways:

	Establishing Message filters through the Adapter Configuration Wizard Messages Filter Screen. These include Message filters, Blacklist and Whitelist filters. Message Filters provide the ability to filter incoming messages based on the Email To address, From address, CC address, Subject, and Mail Headers. Mails can similarly be ignored using this filtering. Note: there is no filtering available on the BCC address.

	Writing and packaging a Java Callout, and providing the name of the callout through the Adapter Configuration Wizard. Refer to Custom Java Callout for more information.

	Reception of messages with Subject, Body and one or more attachments along with internet mail and mime headers.

	A Polling/Listener interface. The UMS Adapter polls mailboxes for incoming email on various schedules you establish, which can be both sequential and parallel.

	Translation support for the message body.

	XA or global transaction support for inbound(applicable to both polling and listener mode) s. Note that if the UMS Adapter flow is Outbound, and even if the UMS Adapter is set for XA Transactions to False, if the flow is part of an-already initiated Transaction from BPEL or from an Inbound Adapter, then the same Outbound UMS Adapter behaves as if it were performing XA transactions.

	IMAP/POP3 servers with SSL (available through the UMS Server)

Note:
You cannot set and get headers with Keyword headers when you use the MS-2010 Mail server with the UMS Adapter

11.2.1 UMS Adapter Message Concepts

The UMS Adapter enables you to provide different message formats.

For many of your email use cases, you might not want to specify a schema as the message payload could be plain text and you want it received as is. In that case, you can then select the Message is String type checkbox on the Messages Screen.

XSD files are required for translation of messages. If you want to define a new schema or convert an existing data type definition (DTD) or COBOL Copybook you must select Define Schema for Native Format to supply an XSD file.

Selecting Define Schema for Native Format starts the Native Format Builder wizard. This wizard guides you through the creation of a native schema file from file formats that include comma-separated value (CSV), fixed-length, DTD, and COBOL Copybook.

After the native schema file is created, the Messages page is displayed, with the Schema File URL and Schema Element fields filled in. For more information, see Creating Native Schema Files with the Native Format Builder Wizard.

Unlike other adapters, the UMS Adapter uses a predefined Message Schema to represent the message it uses.

An example of the Message Schema that the UMS Adapter uses follows.

<?xml version= "1.0" encoding= "UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://platform.integration.oracle/blocks
 /adapter/fw/metadata/Inbound_UMS"
 targetNamespace="http://platform.integration.oracle/
 blocks/adapter/ fw/metadata/Inbound_UMS"
 xmlns:imp1="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
<xsd:import namespace="http://xmlns.oracle.com/pcbpel/adapter/opaque/" schemaLocation="opaque.xsd"/>
 <xsd:complexType name="MessageType">
 <xsd:sequence>
 <xsd:element ref="imp1:opaqueElement"/>
 <xsd:element name="attachment"
 type="AttachmentType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="AttachmentType">
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:complexType>
 <xsd:complexType name="ResponseType">
 <xsd:sequence>
 <xsd:element name="MessageId"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="message" type="MessageType"/>
 <xsd:element name="response" type="ResponseType"/>
</xsd:schema>Status OpenFixedClosed

You define the schema according to your translation requirement through the UMS Adapter Configuration Wizard Message screen, and as defined for the message body content). The UMS Adapter imports the xsd you specify into the message schema used by the UMS Adapter.

For example, see the schema snippet in the following example, where the user-defined schema singleString.xsd is imported through the UMS Adapter Configuration Wizard and refers to the element singleString, which is defined under singleString.xsd through the UMS Adapter Configuration Wizard.

Example - Schema Snippet for SingleString.xsd

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com
 /singleString"
 xmlns="http://xmlns.oracle.com/singleString"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 nxsd:encoding="US-ASCII" nxsd:
 useArrayIdentifiers="true"
 nxsd:stream="chars" nxsd:version="NXSD">
 <xsd:complexType name="singleString">
 <xsd:sequence>
 <xsd:element name="input" type="xsd:string"
 nxsd:style="terminated"
 nxsd:terminatedBy=";"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="payload" type="singleString"/>
</xsd:schema

11.2.1.1 Custom Java Callout

On the Java Callout Screen you can specify a custom Java class with custom logic that can be invoked before the Email, SMS, or IM message is processed by the UMS Adapter.

11.2.1.1.1 Use Cases for Custom Java Callout

One simple use case of the Custom Java Callout is to match the sender address with an address in the LDAP or that resides in a staging area and which has been recorded earlier. To provide this use case, you must implement the interface oracle.tip.pc.services.translation.util.ICustomCallout.

This interface defines a single method execute with a return value of boolean. Depending on the return value, the message is either processed or rejected:

public Inteface CustomCallout{
 public boolean execute (Message message) throws exception;
}

Where Message is the Message class from the UMS Session Description Protocol (SDP) Java API, a well-defined Java API provided by the UMS Server, which can be found at $MW_HOME./oracle_common/modules/oracle.sdp.client_12.1.2/messaging-api.jar. The Boolean value returned indicates whether to accept and process the message or to reject the message.

package oracle.adapter.custom;

import java.io.File;
import oracle.sdp.messaging.Message;
import oracle.tip.pc.services.translation.
 util.ICustomCallout;

public class UMSAdapter_CustomCall implements ICustomCallout{

 @Override
 public boolean execute(Message message) throws exception {
 String emailFromAddress = message.
 getSenders()[0].getValue();

String fileName = "/tmp/OracleStore/staging/".
concat(emailFromAddress).concat(".usr");
 File file = new File(fileName);
 if(file.exists()) {
 return true;
 }
 return false;
 }
}

In another use case, as provided through the sample code, a user with the email id of scott.tiger@example.com registers through an internet store web site. The user would be recorded under a staging area by using a file name scott.tiger@example.com.

An email is sent to the user directly to his email id to reply to the sent email.

If the user replies to the email, the UMS Adapter picks the email. You can subsequently use a Java Callout to check the user file under the staging area and ensure that the user is registered through the web site.

11.2.1.1.2 Using the Custom Callout Facility

To use the Custom Callout facility, you must

	Indicate the name of the class on the Java Callout Screen in the UMS Adapter Configuration Wizard.
	Bundle the class and other required custom classes as a jar file.
	Place the jar file under your Composite Application, under the SCA-INF/lib directory.
	Ensure that the compiled Java class (.class file) is directly placed under the Composite Project Folder \SCA-INF\classes:

11.2.2 Transaction Support

The UMS Adapter, by default, uses an XA Transaction with an Inbound Scenario for both polling and listener mode. For this purpose, the Adapter configures a connection factory instance with the property XATransaction set to true.A default JNDI instance is available, by default, which is configured to use XA. The name of this default JNDI instance is eis/ums/UMSAdapterInbound.For outbound scenarios, the UMS Adapter leverages the XA support from the UMS. UMS will participate in a global transaction if one is already started, for example through BPELYou can choose to define your own JNDI instances and use them, but you should keep in mind this discussion.

11.2.2.1 Inbound Error Handling

The UMS Adapter uses the default rejection handling mechanism on the Inbound side of the Adapter for rejecting bad messages. For example, any translation-related errors result in message rejection. Refer to Creating Fault Policies in this Guide for more information on fault policies and adapters.

Under retriable error conditions, and when you specify retry-related endpoint properties, the UMS Adapter tries to re-publish the Inbound message for the configured number of retries before rejecting the message. Transactions are then set for rollback under XA, per the previous JNDI and XA discussion.

11.2.2.2 Outbound Error Handling

The UMS Adapter throws an exception for transient (recoverable) error conditions such as connection errors. For retriable errors, you can use a retry policy supported by the Adapter framework; to do this, you can set the binding property jca.retry.count to a retry count you want. Again, as with other Adapters, if you do not set the property, the retry is carried through according to the fault policy.

You can define non-retriable connection errors for outbound transactions through a fault policy. The maximum number of re-connection attempts can be defined through fault-policy.xml.

Adapters translate data from Native representation to standard XML format and back based on the metadata captured by your work at design time, through the Adapter Configuration Wizard. A translation error is thrown when there is an exception thrown by carrying out the translation, and a corresponding binding fault is also thrown.

You can set Endpoint properties related to Oubound retriable errors, as shown in Table 11-1

	
Table 11-1 UMS Adapter Outbound Endpoint Properties

	Property 	Description
	jca.retry.count

	Indicates the maximum number of retries before throwing retriable error conditions back to the invoking service engine.

	jca.retry.interval

	Indicates the time interval between retries, measured in seconds.

	jca.retry.backoff

	Indicates the retry interval growth factor, measured in positive integers.

	jca.retry.maxInterval

	Indicates the maximum value of retry interval; that is a cap if the value is greater than 1.

	jca.retry.maxPeriod

	Indicates the maximum total retry period. Retries do not occur longer than the value specified in the parameter.

11.2.2.2.1 Retry Mechanism for Failed Outgoing Notifications with Status Reporting

The UMS Adapter makes use of the existing infrastructure provided by UMS for retrying failed outgoing exceptions. Currently, the UMS Server supports the viewing of failed notifications from Fusion Middleware Control, in addition to the resending of messages.

11.2.2.2.2 Inbound Receive Notification in a Cluster (Through Polling or Through a Listener)

The UMS API supports an environment where the UMS Server and its clients are deployed in a cluster environment.The UMS Adapter also supports high availability in an active-active setup.

The configuration details for UMS Adapter to work properly in a clustered environment follows. UMS deployment in a cluster must look the same. On a node in the cluster, you have the UMS adapter, the UMS server EAR and all driver EARs. They must all co-exist on the node.Note that in, for example, the Adapter Configuration Wizard when you create a cluster, you do target the UMS adapter and all UMS to the cluster. In a later step, in the Configuration Wizard you list all servers that are to be part of the cluster.

All UMS Adapter activations of the same composite application use the same unique ApplicationName configuration parameters. The UMS Adapter synthesizes the application name parameter from the Inbox address on which the specific endpoint is to listen.

This synthesis enables all activations of a specific composite in a cluster to share all configuration and artifacts such as Access Points and Message Filters

The ApplicationInstanceName configuration parameter is synthesized automatically through the UMS API implementation and the UMS Adapter depends on that synthesis.

Additionally, the UMS Adapter API implementation guarantees that in a cluster environment no two applications will receive the same message.

The UMS Adapter also supports active fail-over of an Inbound service that is active-passive in a clustered environment. You can enable this active fail-over for UMS Adapter support through a JCA service binding property (composite.xml)singleton, set to true.

Listening and Polling work the same way using a UMS adapter in a clustered environment as they do in a non-clustered environment.

11.2.2.2.3 UMS Adapter Properties and Mime Type Configuration

There are several properties associated with the UMS Adapter that you can use to provide additional configuration. Some of these are already set for you when you use the UMS Adapter Configuration Adapter Wizard. All applicable Internet Mail Headers and Mime headers can be configured through normalized message properties/headers.

Table 11-2 lists the Activation Spec properties applicable to the UMS Adapter.

Table 11-2 UMS Adapter Activation Spec Properties

	Property Name	Description
	JavaCalloutImpl

	Name of the Java class that defines custom logic for a message filtering or any other check. This class is a concrete implementation of the ICustomCallout interface.

	ConsumeMode

	Specifies how the adapter will receive messages from UMS. Set to poller for polling mode Or set to listener for listener mode.

	To

	Address from which to receive incoming messages. One or more comma separated IM, SMS, or Email addresses for the IM, SMS, or Email delivery type.

	Delivery Type

	Email support is provided for receiving and sending outgoing messages.

	PollingInterval

	Polling interval in seconds for poller consume mode.

	MessageFilters

	Specify one or more message filters. A single filter would comprise of a Java Pattern String to match the incoming message against, along with the field type and the action (Accept or reject) to be taken.

Table 11-3 provides a list of interaction specification properties available.

Table 11-3 UMS Adapter Interaction Specification Properties

	Property Name 	Description
	Delivery Type

	Email, IM and SMS support for receive and sending outgoing messages.

	Subject

	Subject of Outgoing Message.

	From

	Sender addresses of outgoing message.

	To

	One or more recipient addresses.

	Reply-to

	Reply-To address.

	CC

	One or more cc addresses for email delivery.

	Bcc

	One or more Bcc addresses for email delivery.

	SendEmailAsAttachment

	True, to send email as an attachment.

The UMS Adapter exposes all applicable internet messages headers and Mime message headers and mime part headers (within a multipart construct.)

Mime headers are applicable only for the first body part of the message that is the UMS Adapter payload.

Mime headers for attachments are stored along with the attachment as normalized message properties that can be manipulated from within a BPEL process.

Table 11-4 describes all the applicable headers defined by the internet message format along with mapping and corresponding adapter header.

Table 11-4 Message Headers

	Header Field Name	Minimum Occurrence	Maximum Occurrence
	Return-path

	0

	1

	Received

	0

	unlimited

	Resent-Date

	0

	unlimited

	Resent-From

	0

	unlimited

	Resent-Sender

	0

	1

	Resent-To

	0

	unlimited

	Resent-Cc

	0

	unlimited

	Resent-Bcc

	0

	unlimited

	Resent-Message-ID

	0

	unlimited

	Date

	1

	unlimited

	From

	1

	unlimited

	Sender

	0

	1

	Reply-to

	0

	1

	To

	0

	1

	Cc

	0

	1

	Bcc

	0

	1

	Message-ID

	0

	1

	In-Reply-To

	0

	1

	References

	0

	1

	Subject

	0

	1

	Comments

	0

	unlimited

	Keywords

	0

	unlimited

Note:
You can often use the BPEL Invoke activity's property tab to select jca.properties to set a value from the Invoke activity. However, you cannot set jca.ums.message-id, as these message IDs are auto-generated.

Table 11-5 describes all applicable Mime message headers.

For the outbound UMS Adapter, you can use the property JCA.UMS.MSG.CONTENT-TYPE, which can be used for specifying encoding. But if you do not set the value, the outbound UMS adapter uses UTF-8 encoding for email by default.

Table 11-5 Mime-Part Message Headers

	Header Field Name	Mapped Adapter Header Field Name	Notes
	Content-Type

	jca.ums.part.content-type

	-

	Content-Transfer-Encoding

	jca.ums.part.content- transfer-encoding

	-

	Content-ID

	jca.ums.part.content-id

	-

	Content-Description

	jca.ums.part.content- description

	-

	Content-Disposition

	jca.ums.part.content- disposition

	-

	Content-Language

	jca.ums.msg.content-language

	-

	Mime-Extension-field

	jca.ums.part.mime-extension-headers

	Any other mime header field hat begins with the string “Content-“. You can add more than one header as Content-* : value CRLF Content*- : value

CRLF - \r\n

11.2.2.2.4 Proprietary Headers

.

The UMS Adapter enables you to add any proprietary headers. Table 11-6 shows the information required for doing so.

Table 11-6 Proprietary Headers

	Header Name	Notes
	jca.ums.msg.proprietary-headers

	More than one proprietary header can be added in the following format:

Header Name : value CRLF Header Name : value

(Header Name – this should be similar to ums.adapter.xxxxx CRLF - \r\n)

11.2.2.3 Email Attachments

The UMS Message XML can contain a list of Attachment elements that have an href attribute. The Attachment Manager stores other mime details associated with the attachment as MimeType, Content ID along with a stream object (which is the attachment content).

Currently, the UMS Adapter supports both inbound and outbound attachments.

See the following example for a sample XML Message with attachment element.

Example - Sample XML Message with Attachment Element

<Receive1_ReceiveEmail_InputVariable>
<part name="body" >
 <Email>
 <payload>This is a test mail.-Sagar</payload>
 <attachment href=
 "0DF86C104BF511EoAF5977BAA7C7CFD9"/>
 </Email>
 </part>
</Receive1_ReceiveEmail_InputVariable>

On the inbound side, the UMS Adapter sets all mime details before passing the attachment to the Attachment Manager. The Attachment Manager is a fabric attachment manager internal component, responsible for storing attachment contents and MIME headers to the database. This functionality enables you to pass attachments as links/href ids between different SOA components.

11.2.2.4 Mail Attachment Handling

The UMS Adapter uses the Fabric Attachment Manager to store and retrieve attachments.

The UMS Message schema defines Attachment element with a href attribute:

Example - UMS Message Schema Defines Attachment Element with href Element

<Receive1_ReceiveEmail_InputVariable>
<part name="body" >
 <Email>
 <payload>This is a test mail.-Sagar</payload>
 <attachment href=
 "0DF86C104BF511EoAF5977BAA7C7CFD9"/>
 </Email>
 </part>
</Receive1_ReceiveEmail_InputVariable>

The UMS Message XML can have list of attachment elements with a href attribute. The The Attachment manager stores other mime details associated with attachment as MimeType; Content ID and others, in addition to a stream object (attachment content). Sample XML Message with attachment element

On the inbound side, the UMS adapter sets all mime details before passing attachment to Attachment Manager, while on the outbound, the UMS Adapter extracts any mime details received along with attachment object and uses them while creating the outgoing SDP message notification.

The Fabric Attachment Manager updates the href attribute with a key after storing the attachment to the database. You can use this key later to retrieve attachment content.

The sample Normalized Message payload map has an XML structure having attachment element, which is passed from UMS Adapter to BPEL/Mediator service engine.

A sample XML Message with attachment element follows:

<Receive1_ReceiveEmail_InputVariable>
<part name="body" >
 <Email>
 <payload>This is a test mail</payload>
 <attachment href=
 "0DF86C104BF511EoAF5977BAA7C7CFD9"/>
 </Email>
 </part>
</Receive1_ReceiveEmail_InputVariable>

11.2.2.4.1 Retrieving Mime Information Associated with an Attachment in BPEL

The following example shows how attachments can be retrieved in BPEL. First, obtain the Mime Information associated with the attachment.

Example - Obtaining the Mime Information Associated with an Attachment

<assign name"Assign1">
<copy>
 <from exporession="oraReadBnaryFromFileWithMimeHeaders
 ('/home/testuser/oracle_ sig_logo.gif','one',
 'image/gif', ", '7bit',
 'oracle_logo_gif_file', 'en/ja')"/>
 <to variable="invoke="1_SendNotification_InputVariable"
 part="body"
 query='/ns3:message/ns3:attachment[1]"/>
</copy>
<bpelx:InsertAfter>
 <bpelx:from variable=Invoke1_SendNotification
 _InputVariable"
 part="body" query=/ns3:message:
 /ns3:attachment"/>
<bpelx:to variable=Invoke1_SendNotification_InputVariable"
 part="body"
 part="body" query=/ns3:message:/ns3:
 attachment"/>

</bpelx:insertAfter>
<copy>
 <from expression="ora.
 readBinaryFromFileWithMimeHeaders
 {'/home/testuser/
 install-mq-7.0.txt',",","," '
 install_mq_file',''}"/>
 <to variable="Invoke1_SendNotification_InputVariable"
 part="body"
 query="/ns3:message/ns3:attachment[2]"/>
</copy>

11.2.2.4.2 Setting Mime Information for Multiple Attachments in BPEL

The following snippet shows how you can set Mime Information for multiple attachments in BPEL.

<assign name="Assign1">
<copy>
<from exporession="oraReadBnaryFromFileWithMimeHeaders
 ('/home/testuser/oracle_sig_logo.gif','one',
 'image/gif', ", '7bit',
 'oracle_logo_gif_file', 'en/ja')"/>
<to variable="invoke="1_SendNotification_InputVariable"
 part="body"
 query='/ns3:message/ns3:attachment[1]"/>

</copy>
<bpelx:InsertAfter>
 <bpelx:from variable=Invoke1_SendNotification_InputVariable"
 part="body" query=/ns3:message:/ns3:attachment"/>
<bpelx:to variable=Invoke1_SendNotification_InputVariable"
 part="body"
 part="body" query=/ns3:message:/ns3:attachment"/>

</bpelx:insertAfter>
 <from exporession=
 "oraReadBnaryFromFileWithMimeHeaders('/home/ testuser/oracle_ sig_logo.gif','one',
 'image/gif', ", '7bit', 'oracle_logo_gif_file', 'en/ja')"/>
<copy>
 <to variable="invoke="1_SendNotification_InputVariable"
 part="body"
 query='/ns3:message/ns3:attachment[2]"/>
</copy>

11.2.2.5 UMS Adapter Inbound and Outbound Operations

Operations you configure using the UMS Adapter Configuration Wizard include the following Inbound and Outbound Operations:

	Inbound Receive Notification

	Outbound Send Notification

	Outbound Send Notification (Message ID as Reply)

	Outbound Get Message Status- (An outbound synchronous request reply where you provide message id and optional recipient information to receive the message delivery status information from the UMS.)

11.2.2.5.1 Oracle UMS Adapter Inbound ReceiveNotification Concepts

In this scenario, the UMS Adapter registers an access point on the UMS Server to consume and process incoming notifications. This section provides an overview of different configurations and concepts associated with Oracle UMS Adapter Inbound Receive Notification.

11.2.2.5.2 Oracle UMS Outbound Send Notification Concepts

In this scenario, the UMS Adapter processes outgoing send notifications. This section provides an overview of different configurations and concepts associated with the Oracle UMS Adapter Outbound send notification, of which there are two types, the normal send and the send with Receive Message id as reply request.

11.2.2.5.3 Receive Message id as reply request

A type of outbound synchronous request is the Receive Message id as reply request. It is a variation of the one way invoke; however, with Receive Message id as reply request, a unique message ID is replied back from the UMS Server. You can use this type of request if you want to get this message id to check message delivery status information. UMS stores all delivery-related status information received from messaging gateways. The Message id can be used to retrieve this status information, using Fusion Middleware Control.

If you choose to use this type of request, you select the Receive Message Id as a reply request checkbox when selecting an Operation.

11.2.3 Configuring the Oracle UMS Adapter

You configure the User Message Service using the Fusion Middleware Control Console and the Email Adapter Configuration Wizard in JDeveloper when you configure the UMS Adapter.

To configure the User Messaging service drivers, use the Fusion Middleware Control Console. Specifically, to use the Email messaging channel, you must configure specific properties. The following section provides information on configuring the Email driver for the UMS Adapter.

For details on configuring SMPP, XMPP and VoiceXML driver, see "Configuring Oracle User Messaging Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

11.2.3.1 Configuring the Email Driver for the UMS Adapter - Outbound Connectivity

In this procedure, you provide the necessary input to setup the UMS Email Driver for outbound connectivity with the email server.

	To configure the Email Driver using the Fusion Middleware Control, click User Messaging Email Driver -> Email Driver Properties.
	Enter the name of the SMTP server in the OutgoingMailServer location.
	Enter the port number of the SMTP server in the OutgoingMailServerPort. Typically, this is 25.
	Enter the type of security you want to use with the SMTP server. Possible values are None, TLS and SSL. Default value is None.
	Provide the username used for SMTP authentication in OutgoingDefaultFromAddr. This is required only if SMTP authentication is supported by the SMTP server. (An alternative field is OutgoingUsername)
	Provide the password used for SMTP authentication for OutgoingPassword. This is required if SMTP authentication is supported by the SMTP server.Figure 11-3 The Fusion Middleware Control Console Showing the Email Driver Properties Screen
[image: Description of Figure 11-3 follows]

11.2.3.2 Configuring the Email Driver for UMS Adapter - Inbound Connectivity

The following is the minimum configuration which you must use to set up the UMS Email Driver for inbound scenarios.

	Enter the MailAccessProtocol. This is the E-mail receiving protocol. The possible values are IMAP and POP3. This value is required only if email receiving is supported on the driver instance.
	Enter the value for the ReceiveFolder. The name of the folder the driver is polling messages from. The default value is INBOX.
	Enter the value of the IncomingMailServer. This is the host name of the incoming mail server. Required only if e-mail receiving is supported on the driver instance.
	Enter the value of the IncomingMailServerPort. This is the port number of IMAP4 that is, 143 or 993) or POP3 (that is, 110 or 995) server.
	Enter the value of the IncomingMailServerSSL. This indicates if you want to enable SSL when connecting to the IMAP4 or POP3 server. The default value is disabled.
	Enter the email addresses for the IncomingMailIDs. These are the email addresses corresponding to the user names. This is required only if email receiving is supported on the driver instance.
	Enter the list of user name for the IncomingUserIDs. This is the list of user names of the mail accounts from which the driver instance is polling. Each name must be separated by a comma, for example, foo,bar. Required only if email receiving is supported on the driver instance.
	Enter the IncomingUserPasswords. This is the list of passwords corresponding to the user names. This is required only if the driver instance supports email receiving. Note:
If you specify a list of email ids, ensure you specify the userIds and passwords in the same order. They should correspond one to one in the same order that you specified in FMW Control.

For more details on configuration, see Oracle® Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

11.2.3.3 Configuring the User Messaging XMPP Driver

On the UMS side, you must configure the XMPP driver from the Fusion Middleware Control Console, as in Figure 11-4.

Figure 11-4 Configuring the User Messaging XMPP Driver
[image: Description of Figure 11-4 follows]

11.2.3.4 Configuring the User Messaging SMPP Driver

On the UMS side, you must configure the SMPP driver from the Fusion Middleware Control Console, as below.

Figure 11-5 Configuring the User Messaging SMPP Driver
[image: Description of Figure 11-5 follows]

11.2.3.5 Configuring the HTTP Proxy for Firewall traversal

If your Email/XMPP or SMPP Server is outside your firewall and requires an HTTP Proxy configuration, traversal should be configured outside of configuring the UMS Adapter.

For example, such traversal could be configured as JVM arguments in the setDomainEnv.sh. file. For example,

JAVA_OPTIONS="${JAVA_OPTIONS} -Dhttp.proxySet=true
 -Dhttp.proxyHost=www.proxy.myserver.com -Dhttp.proxyPort=80

11.2.3.6 Designing the Adapter Service and the BPEL Process for Inbound Connectivity

Use the UMS Adapter Configuration Wizard within JDeveloper to design the inbound UMS Adapter reference.

	Drag and drop the UMS Adapter from the Components window to the External References swim lane. The Adapter Configuration Wizard Welcome page is displayed. The UMS Adapter also displays a Service or Reference name, which you can choose to modify, as required.

Figure 11-6 UMS Adapter Configuration Wizard, Welcome Screen
[image: Description of Figure 11-6 follows]

	On the UMS Adapter Connection page, enter the Connection JNDI Name. Here, eis/ums/UMSAdapterInbound is specified as the JNDI name, which is the default JNDI name for Inbound Connections.

	Figure 11-7 UMS Adapter Configuration Wizard Connection Screen
[image: Description of Figure 11-7 follows]

	On the Operation Type screen of the UMS Adapter Configuration wizard, select the operation to perform. Based on your selection, different adapter configuration wizard pages appear and prompt you for configuration information. For Inbound connectivity, on the Operation screen, select Inbound Receive Notification as the operation type and click Next.

Figure 11-8 The UMS Adapter Configuration Wizard Operation Screen, Inbound Receive Operation Type Chosen
[image: Description of Figure 11-8 follows]

	The Notification Details page of the Adapter Configuration Wizard enables you to specify the mode, Polling or Listener, in which to receive incoming notifications from the UMS Server.

Figure 11-9 UMS Adapter Configuration Wizard Notification Details Screen
[image: Description of Figure 11-9 follows]

	Selecting the Polling mode enables you to specify inbound polling parameters:

	Polling Frequency. The frequency with which to poll the UMS for new notifications to retrieve. The default values displayed for Polling Frequency = 6, the Frequency Unit =seconds, and the InboundThreadCount=1 .

	Frequency unit. Specify seconds, minutes, hours, days or weeks as the unit for frequency.

	Inbound Thread Count. Specify the number of polling threads.

The UMS Adapter receives messages until the messages are available in the Inbox. When there are no more messages, and only then, the UMS Adapter sleeps for the polling interval you specify on this screen. This sleeping activity avoids mounting large number of messages in the Inbox, within high-incoming message volume scenarios. Each polling thread retrieves one message at a time, processes it and then publishes it.

	Selecting the Listener Mode enables you to specify the number of Message Listener Threads. This property controls the number of listener worker threads on the UMS Server side. The default value is 1. Specifying this property means the UMS Server will provide multi-threaded asynchronous receiving of incoming notifications.

Note that Polling Mode is a pull mechanism, which you can use to fetch messages intermittently. You can use Listening Mode to get messages in real time, as and when they arrive. Your use of either depends on your business implementation scenario.

Figure 11-10 UMS Adapter Configuration Wizard Notification Details with Listener Mode Selected
[image: Description of Figure 11-10 follows]

	The second page of the Notification Details Page of the UMS Adapter configuration wizard enables you select the type of notification to receive with the Notification Endpoint Configuration. It configures the end point attributes after selecting the type of Notification as Email, SMS, or IM. For example, selecting Email, users enters other attribute details as one or more incoming mail addresses. You can specify more than one comma-separated email mail box address from which you want to receive email notifications.

Figure 11-11 The UMS Adapter Configuration Wizard Inbound Notification Details Screen, Second Page
[image: Description of Figure 11-11 follows]

If you choose SMS, the recipient address is a mobile number. You can also specify a mobile number range, for example “16501230000, 16501234999" means all numbers from 16501230000 to 16501234999 (inclusive).

Figure 11-12 Inbound Notification Details Screen with SMS Selected
[image: Description of Figure 11-12 follows]

For Instant Messaging inbound notification, you can indicate an instant messaging id.

Figure 11-13 Inbound Notification Details with Instant Messaging Selected
[image: Description of Figure 11-13 follows]

	Click Next to continue, or Finish to complete using the UMS Adapter Configuration Wizard without configuring message filters against incoming messages.

	You can use message filters against incoming messages. A message filter contains a matching criterion and an action. You can register a series of message filters. They are applied in order against an incoming (received) message; if the specified criterion matches the message, the action is taken.

For example, you can implement any required blacklists, by rejecting all messages from a given sender address.

You can specify three different types of filters on this screen. (For more information on Java Patterns, or Regular Expressions, see the reference at http://download.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html and the tutorial at http://download.oracle.com/javase/tutorial/essential/regex)

	Blacklist Filter-Blacklist filters match against an incoming message's sender address, and reject the message if the sender address matches the given Java pattern. (That is, a Java regular expression).

	Whitelist Filter-Whitelist filters match against an incoming message's sender address and accepts the message if the sender address matches the given Java pattern.

	Message Filter-A Message Filter matches against any of the fields you indicate with a given pattern and accepts or rejects the messages depending upon the action you specify. These fields include: CONTENT, HEADER, RECIPIENT, REPLYTO, SENDER, SUBJECT

There are only two types of Actions that apply to the Message Filters, either ACCEPT or REJECT the message. Message Filters are applied in the same order in which you define them on the Message Filter page.

Click Finish to complete the configuration through the Wizard, or click Next to proceed to the Java Callout Screen to specify a Java class through which you can apply additional filtering.

Figure 11-14 UMS Adapter Message Filters Screen
[image: Description of Figure 11-14 follows]

	On the Java Callout page, specify the name of the Java class you want the UMS Adapter to invoke and which will run custom logic you provide.

Figure 11-15 UMS Adapter Configuration Wizard Custom Java Callout Screen
[image: Description of Figure 11-15 follows]

	If you want to provide a custom Java callout, select the checkbox and provide a classname in the text box. See the description in the custom Java Callout class section in this chapter.

	Click Finish on the page below to complete configuring the UMS Adapter service. When you finish configuring the Oracle UMS Adapter, a JCA file is generated for the inbound service. The file is named after the service name you specified on the Service Name page of the Adapter Configuration Wizard. You can rerun the Wizard later to change your operation definitions.

11.2.3.7 Designing the Adapter Service and the BPEL Process for Outbound Connectivity

Use the UMS Adapter Configuration Wizard within JDeveloper to design the outbound UMS Adapter reference.

	Drag and drop the UMS Adapter from the Components window to the External References swim lane.The Adapter Configuration Wizard Services/References page is displayed.Figure 11-16 UMS Adapter Configuration Wizard Reference Welcome Screen
[image: Description of Figure 11-16 follows]

	The UMS Adapter Service Name screen is displayed. Enter SendMail for the Outbound Service Name, for example.Figure 11-17 UMS Adapter Configuration Wizard Service Name Screen, Outbound Send Mail Operation
[image: Description of Figure 11-17 follows]

	On the Operation screen, select Outbound as the Operations type. The Operation Name defaults to SendNotification. Here, it is changed to SendEmail. If the message is outbound, it is a syncrhonous or one-way invoke for external notifications, and there is an option included to receive the unique message as a reply, which can be returned by the UMS Server after accepting the outbound notification request.Figure 11-18 UMS Adapter Configuration Wizard Operation Screen with Outbound Send Operation Selected
[image: Description of Figure 11-18 follows]

	The Outbound Notification Details screen appears. The Email button is selected. Enter the Endpoint Configuration detail items, or browse to find them. You also can specify a failover address for any primary address you provide. For example, scott.tiger@sport.com:failover-id@example.com. This failover addressing applies to To, CC and Bcc addresses. You can click each browse button and browse the identity service using the Identity Look-up Dialog to search and fill address attributes, as required.Click Next to proceed or Finish to complete using the Wizard.

Figure 11-19 The Outbound Notification Details Screen with Email Selected
[image: Description of Figure 11-19 follows]

	Define the message for the UMS Send operation using the Messages Screen. If you choose Message is Opaque(Base64Binary) or Message is String Type, you do not have to specify a URL for the Schema and a Schema Element. If you choose a URL for the Schema, you must specify a Schema Element.Note that when creating outbound notifications, you can also use SMS or Intant Messaging. In this example, you are using email notifications.

The screen shot below shows Instant Messaging selected. In this case, the end point address is an Instant Messaging address. Addresses can be separated by commas; you can specify more than one comma-separated IM address from which you want to receive IM notifications. The address you supply must be in Instant Messaging format. You can use the browser button to reach the Identity Lookup screen to perform a lookup of the IM address you want to select.

Figure 11-20 Outbound Notification Details Screen with IM Selected
[image: Description of Figure 11-20 follows]

The screen shot below shows the Outbound Notification Screen with SMS selected. The end point is a mobile number. You can specify more than one comma-separated SMS mailbox address from which you want to receive email notifications. Ensure that the addresses are separated by a comma. You can also specify a mobile number range, for example, “16501230000, 16501234999" means all numbers from 16501230000 to 16501234999 (inclusive).

Figure 11-21 Outbound Notification Details Screen with SMS Selected
[image: Description of Figure 11-21 follows]

With any of these, you can use the magnifier icon to browse the identity service using the Identity Look-up Dialog to search and fill address attributes.

For all the messaging channels, you can opt to specify a user or a group rather than a device address. For example, USER:weblogic or GROUP:admins.

Figure 11-22 UMS Adapter Configuration Wizard Messages Screen
[image: Description of Figure 11-22 follows]

	Click Finish to complete using the UMS Adapter Configuration Wizard.
	The Finish Screen appears. You have completed using the UMS Adapter Configuration Wizard. Click Finish to complete creating the xsd and WSDL at the locations indicated on the screen.

Note:
Within Fusion Middleware Control, you can use Monitoring reports for the UMS Adapter as you would with other deployed Adapters. Note, however that for UMS Adapter in Fusion Middleware Control, the EIS connection shows as connected though in fact the connection is down.

Oracle JCA Adapter for Microsoft Message Queueing

13 Oracle JCA Adapter for Microsoft Message Queueing

The chapter describes Oracle JCA Adapter for Microsoft MQ concepts, features, configuration and use cases.

This chapter describes how to use the Oracle JCA Adapter for Microsoft Message Queueing, which provides access to MSMQ functionality and works with the Oracle BPEL Process Manager (Oracle BPEL PM) and Oracle Service Bus (OSB). The Adapter also supports processing of various message formats from MSMQ through the Native Format Translation framework (nXSD).

This chapter consists of the following sections:

	Oracle JCA Adapter for MSMQ Concepts and Features

	MSMQ Adapter Configuration Wizard Flow

	MSMQ Use Cases

13.1 Oracle JCA Adapter for MSMQ Concepts and Features

Microsoft Message Queueing (MSMQ) is a message infrastructure and a development platform for creating distributed, loosely-coupled messaging applications for the Microsoft Windows operating system.

Message queuing applications use message queuing to communicate across heterogeneous networks with computers that might be offline. Microsoft message queuing provides guaranteed message delivery, routing, security, transaction support and priority based routing.

Message Queues are logical containers that MSMQ uses to store and later forward those messages, thus providing the basis for loosely-coupled aspects of Message Queuing. Queuing applications send messages to the queue without needing to know when the messages are processed and which receiving application actually processes the message.

Applications that use MSMQ create/locate a queue, connect to the queue, navigate the queue, send/receive messages from a queue and use the MSMQ queue properties to define the behavior of the queue where applicable and needed.

This section has the following subsections:

	MSMQ Terminology

	Set Up MSMQ on Windows Server 2008

	Setup Oracle Weblogic Server for COM

	MSMQ Adapter Features

	MSMQ Properties Supported

13.1.1 MSMQ Terminology

In addition to having familiarity with basic MSMQ concepts, it is important to understand basic MSMQ terminology as background to using the MSMQ Adapter. While you should consult the relevant Microsoft documentation for a thorough understanding of the MSMQ technology, the following definitions help you understand the MSMQ product at a level that complement your use of the MSMQ Adapter.

	Public Queues – A queue registered in the directory service that can be located by any Message Queuing application. This enables the MSMQ application to locate and open a queue anywhere within its domain. Public queues enable multi-hop scenarios, where messages are replicated throughout the Active Directory Service.

	Private Queues–A queue registered on the local computer (and not in the directory service) that typically cannot be located by other applications.

	MSMQ queue – A temporary storage location from where messages can be sent and received reliably, as and when conditions permit.

	MSMQ user message queues – Queues that are either private or public.

	Remote Queue – A queue manager is a Message Queuing service that delivers, receives, authenticates, and routes messages, and maintains information in the directory service. For an application, a remote queue is a queue that is hosted by a queue manager other than the one with which the application communicates.

	Distribution Lists – Distribution lists are public lists of destinations that are stored in Active Directory Domain Services (ADDS).

	ADDS – Active Directory Domain Services is a directory service implemented by Microsoft for Windows domain networks. It is included in most Windows Server operating systems.

	Transactional Queues – A queue that contains transactional messages. Transactional queues can only contain transactional messages, which are messages sent within a transaction. You can use transactional messages to pair the sending or receiving of any message with an action in another operation. Using transactional messages ensures that the unit of work is carried out as an atomic operation.

	NonTransactional Queues – A queue that contains only non-transactional messages. Message Queuing does not allow transactional messages in non-transactional queues.

	Foreign Queue – A queue that resides on a computer that does not run Message Queuing (a foreign computer).

13.1.1.1 jCOM and the MSMQ Adapter

The MSMQ Adapter uses Oracle WebLogic jCOM to enable interaction with MSMQ v5.0. jCOM assists in providing Java-to-COM integration.

13.1.1.1.1 Background

Specifically, WebLogic jCOM provides a runtime component that implements both COM/DCOM over Distributed Computing Environment Remote Procedure Call, and Remote Method Invocation (RMI) over the Java Remote Method protocol/Internet Inter-ORB Protocol distributed components infrastructures. This makes the objects on the other side of an interaction appear as if they were native objects for each environment.

The DCOM (Distributed Component Object Model) mode uses the Component Object Model (COM) to support communication among objects on different computers.

In a WebLogic jCOM application running in DCOM mode, the COM client communicates with WebLogic Server DCOM protocol.

In native mode, COM clients make native calls to WebLogic Servers (COM-to-WLS) and WebLogic Servers make native calls to COM applications.

For both COM-to-WLS and WLS-to-COM applications, because native mode uses native code dynamically loaded libraries (DLLs)—compiled and optimized specifically for the local operating system and CPU—using Native mode results in better performance.

13.1.1.1.2 Implications for the MSMQ Adapter

The implications for use with the MSMQ Adapter are that you can use Native Mode when the MSMQ server and the SOA server are installed on the same machine. The SOA server installed must be a Windows Platform and not another platform, such as a Linux Platform.If the MSMQ Adapter and MSMQ are installed on the same system, you can enable Native Mode at both the jCOM protocol level and at the MSMQ Adapter level. When you use Native Mode, the MSMQ Adapter can directly interact with the MSMQ server because they are on the same system, rather than your having to use DCOM protocols to communicate (which are used when the MSMQ adapter and the MSMQ server are on two different machines). Ensuring that MSMQ Adapter does not use the DCOM protocol to interact with MSMQ COM components provides you with performance benefits.

13.1.1.2 Security

When the MSMQ Adapter needs to make an outbound connection to the MSMQ server, it must sign on with valid security credentials. In accordance with the J2CA 1.5 Specification, the WebLogic Server supports both container-managed and application-managed sign-on for outbound connections. The MSMQ Adapter can leverage either of these methods to sign on to the Enterprise Information System.

13.1.1.2.1 Component-managed Sign-On

With component-managed sign-on, the component itself supplies the necessary security credentials when making the call to obtain a connection to an Enterprise Information System.The application server invokes the createManagedConnection method of ManagedConnectionFactory by passing a null Subject instance.

13.1.1.2.2 Container-Managed Sign-On

Container managed sign-on enables a user to sign-on to Oracle WeblogicServer and also to access the Enterprise Information System through the resource adapter without having to sign-in separately to the Enterprise Information System.

Because the Oracle WebLogic server and MSMQ maintain independent security realms, this is achieved by using credentials mapping. Oracle WebLogic Server security principals are mapped to the corresponding credentials required to access the Enterprise Information System.

13.1.1.3 Logging and Diagnosability

The MSMQ Adapter employs the MSMQ Adapter logging framework provided by the Adapter Framework component to capture any runtime logs.

The MSMQ adapter produces the following logs:

	oracle.soa.adapter.msmq

	oracle.soa.adapter.msmq.transaction

	oracle.soa.adapter.msmq.connection

	oracle.soa.adapter.msmq.inbound

	oracle.soa.adapter.msmq.outbound

Each logger can be set to TRACE:32 to enable debug logging for that area or the oracle.soa.adapter.msmq logger can be set to TRACE:32 to enable complete logging for the MSMQ Adapter. Any exception emanating from the MSMQ Adapter has a corresponding error code and error message

13.1.1.4 MSMQ Adapter and High Availability

The MSMQ Adapter is deployable in an active-active topology. As part of its implementation, the MSMQ Adapter enables each poller thread to poll the queue for the next available message. Each poller thread uses the receive API; on a successful read the message is removed from the queue. This ensures there is no message duplication when the MSMQ Adapter is deployed in an active/active topology.

13.1.2 Set Up MSMQ on Windows Server 2008

To use MSMQ on a Windows Server 2008 installation, enable the following features for a Windows Server on which MSMQ is to be installed. Consult the relevant Microsoft documentation for more setup and configuration information.

	Message Queuing Server. For more information on installation, see the Microsoft document Installing Message Queuing (MSMQ) at http://msdn.microsoft.com/en-us/library/aa967729.aspx

	Directory Service Integration (for Public Queues and Distribution Lists). The prerequisite specifically requires Active Directory Domain Services (AD_DS) configured on a Windows 2008 Server system. Active Directory Domain Services is required to access MSMQ public queues, otherwise only private queues are available for MSMQ Adapter use cases.

	Message Queuing DCOM Proxy

After successful installation, Message Queuing appears under the Features link in the Microsoft Server Manager console window.

13.1.3 Setup Oracle Weblogic Server for COM

To set up the Oracle WebLogic server for use with COM:

	Enable jCOM for the server that deploys the SOA MSMQ Adapter. For complete information on enabling jCOM, see the online version of the help at Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help 12c Release 1 (12.1.3).

Note that if jCOM is enabled on the SOA server, while activating the MSMQ Adapter, the target on which it should be deployed must be the SOA server itself. The jCOM must be enabled on the managed server to which the adapter is targeted.

	When Weblogic is installed on a Windows machine which is running Microsoft Message Queuing, you can configure native mode though the configuration option ‘Enable Native Mode' as outlined in this documentation: http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24401/pagehelp/Corecoreserverserverprotocolsjcomtitle.html

Enable Native Mode for jCOM. For more information on enabling Native Mode for jCOM, see http://docs.oracle.com/cd/E15051_01/wls/docs103/jcom/comtowls.html#wp1074435

	Finally, enabling jCOM requires a restart of the corresponding server that deploys the SOA MSMQ Adapter; restart the WebLogic Server.

13.1.3.1 Transaction Management and Error Handling

For more information on Transaction Management and Error handling as it applies to Adapters in general, see Adapter Framework.

13.1.3.1.1 Transaction Management

MSMQ Adapter transaction support defaults to LocalTransaction. The MSMQ Adapter does not support XA Transactions. Transactional queues are supported when used in local transaction semantics.

For both inbound and outbound error cases, the MSMQ Adapter starts an internal MSMQ transaction if the TransactionMode property of the JCA-managed connection factory is set to Single.

If the TransactionMode property of the JCA-managed connection factory is set to None, the MSMQ Adapter does not start a transaction on the MSMQ side; the messages are produced and consumed in a non-transactional way.

The TransactionMode property value of None is required when receiving and sending messages to or from a Non-transactional queue.

13.1.3.1.2 Fault Handling

The MSMQ Adapter can handle faults encountered when producing or consuming a message to or from an MSMQ queue

If a fault occurs, the message is delivered to a BPEL recovery queue and/or is retried based on the nature of the fault, and depending if the error is retriable or non-retriable. For more information on handling Adapter Faults, see Error Handling.

Because the MSMQ Adapter does not support XA transactions, XA-retriable errors are not supported.

XA retriable errors refer to the errors that occur in context of an XA transaction. The adapters can throw PCRetriable or XARetriable exceptions. However, because there is no XA when used with MSMQ Adapter, the MSMQ Adapter does not allow for XA errors.

13.1.3.1.3 Outbound Retriable Errors

The MSMQ Adapter performs retries according to configured binding properties. If these binding properties are not specified, the retry is carried out by fault policies, if they are included as part of the composite application.

For more information on MSMQ binding properties, see the Adapter Properties chapter, Table 13-3.

13.1.3.1.4 Outbound Non-Retriable Errors

Fault policies are executed if an outbound non-retriable fault occurs.

13.1.4 MSMQ Adapter Features

The Oracle MSMQ Adapter provides the following features:

	Sending Messages to MSMQ Private Queues

	The MSMQ Adapter enables sending a message to a local private queue. When using the MSMQ Adapter Configuration Wizard to model an MSMQ Adapter reference, you can model an enqueue operation that is used to send (or Put) a message to an MSMQ queue.

	The MSMQ Adapter enables sending a message to a local transactional private queue. When using the MSMQ Adapter Configuration Wizard to model an MSMQ Adapter reference, you can model an enqueue operation that is used to send a message to a local transactional MSMQ queue.

Note:
It is important to understand the relevance of the MSMQ TransactionMode property, which indicates if the connection participates in a transaction when sending and receiving a message. Values for this property are [Single|None].

If the value is Single, the local and remote MSMQ queues to which the message is sent should be transactional. If the value is Single, the local MSMQ queue from which the message is retrieved should be Transactional.

If the value is None and the queues to which the message is sent are transactional, a ResourceException occurs.

	Sending messages to MSMQ Public Queues

	The MSMQ Adapter enables sending a message to a local public queue. When using the MSMQ Adapter Configuration Wizard to model an MSMQ Adapter reference, you can model an enqueue operation. You can use this enqueue operation to send a message to a public MSMQ queue.

	The MSMQ Adapter enables you to send a message to a local transactional public queue. When using the MSMQ Adapter Configuration Wizard to model an MSMQ Adapter reference, you can model an enqueue operation. You can use this enqueue operation to send a message to a MSMQ queue.

	Sending Messages to MSMQ Distribution Lists

	The MSMQ Adapter enables you to send a message to a Distribution List. When using the MSMQ Adapter Configuration Wizard to model an MSMQ Adapter reference, you can configure an enqueue operation to send a message to a MSMQ distribution list.

	Consuming or Receiving Messages from a Private MSMQ Queue

	The MSMQ Adapter enables you to consume or receive of a message from a local private MSMQ queue. The default behavior is for the next available message on the queue to be available for consumption.

To do this, use the MSMQ Adapter Configuration wizard to model a Dequeue operation that enables consumption of a message from an MSMQ private queue.The MSMQ Adapter enables message consumption from a local private transactional MSMQ queue and supports an operation called dequeue.

To do this, use the Configuration Wizard to create the dequeue that consumes or receives a message from a transactional MSMQ queue.

	Receiving Messages from a Public MSMQ Queue

	The MSMQ Adapter enables reception of a message from a public MSMQ queue. The MSMQ Adapter supports an operation called dequeue that you configure when modeling an adapter service and is used to consume or receive a message from a MSMQ queue.

	The MSMQ Adapter enables reception of a message from a public transactional MSMQ queue. You can use the MSMQ Adapter Configuration Wizard operation called dequeue that is used to receive a message from a transactional MSMQ queue.

13.1.5 MSMQ Properties Supported

The MSMQ Adapter includes several JCA properties. They are provided here and in the properties appendix for your convenience.

See Table 13-1 for a list of JCA properties.

Table 13-1 MSMQ Adapter JCA Properties

	Property	Description	Default Value	Required
	DestinationType

	Indicates if the message is sent to a public queue, private queue or a group of queues as identified by the distribution list name. The values are;

PUBLIC_QUEUE

PRIVATE_QUEUE

DISTRIBUTION_LIST

	None

	Yes

	DestinationName

	Name of the MSMQ queue.

	None

	Yes, if UseActiveDirectoryPath is False

	DestinationPath

	The string that identifies a DistributionList or Public queue as represented in ActiveDirectory. An example string is listed below;

LDAP://MyLDAPServer/CN=MyQueue,CN=msmq,CN=MyComputer,CN=Computers,DC=MyDomain,DC=MyCompany,DC=COM

	None

	Yes, if UseActiveDirectoryPath is True

	UseActiveDirectoryPath

	Boolean that allows for Active Directory Path to be used to identify a public queue instead of queue name. This property is applicable when DestinationType is ‘DISTRIBUTION_LIST' or ‘PUBLIC_QUEUE'

	False

	-

	UseDirectFormatName

	Boolean that allows for Direct Format name to be used for public and private queues.

	False

	-

	Priority

	Priority can be set to any integer value between 7 and 0 (the default is 3). 7 means higher priority. 0 means lowest priority. Highest priority implies faster processing

	3

	-

	TimeToLive

	This property specifies a time limit (in seconds) for the message to be retrieved from the target queue. The value is assigned to MaxTimeToReceive property for a given MSMQ message.

	-1 (infinite

	-

	Delivery

	The property is used to specify express (non-persistent) or recoverable (persistent) messaging. Express messaging provides faster throughput. Recoverable messaging guarantees that the message is delivered even if a computer crashes while the message is en route to the queue. The values are: Persistent, Non-Persistent.

	Persistent

	-

	OperationType

	The operation to be carried out. The supported values for OperationType are enqueue and dequeue.

	None

	Yes

	BodyType

	Values are String (default) and ByteArray. When opaque (schema) processing option is selected that would imply BodyType value of ByteArray.

	String

	Yes

	EnableStreaming

	Boolean that enables payload to be streamed

	False

	-

See Table 13-2 for a list of Normalized Properties related to the MSMQ Adapter. Also indicated is the Adapter processing direction for each property.

Table 13-2 MSMQ Adapter Normalized Properties

	Property Name	Description	Direction
	jca.msmq.message.SentTime

	The property indicates when a message is sent.

	Inbound

	jca.msmq.message.Priority

	The property specifies a message's priority. This overrides Priority in MSMQInteractionSpec.

	Inbound/Outbound

	jca.msmq.message.TimeToLive

	The property specifies a time limit (in seconds) for the message to be retrieved from the target queue. This overrides TimeToLive in the MSMQInteractionSpec.

	Inbound/Outbound

	jca.msmq.message.MaxTimeToReachQueue

	The property specifies a time limit (in seconds) for the message to reach the queue. Message Queuing uses the enterprise-wide setting for the time-to-reach-queue interval if none is specified here.

	Inbound/Outbound

	jca.msmq.message.Id

	Identifies the message using an MSMQ-generated message identifier.

	Inbound

	jca.msmq.message.Delivery

	The property specifies how Message Queuing delivers the message. This overrides Delivery in MSMQInteractionSpec

	Inbound/outbound

	jca.msmq.message.BodyLength

	The property provides the length of the message body in bytes.

	Inbound

	jca.msmq.message.ArrivedTime

	The property indicates when the message arrived at the queue.

	Inbound

See Table 13-3 for a list of Binding Properties that apply to the MSMQ Adapter.

Table 13-3 MSMQ Adapter Binding Properties

	Property Name	Description
	adapter.msmq.receive.timeout

	The time (in milliseconds) that Message Queuing waits for a message to arrive before starting another poll-cycle. The default value is one second (1).

	adapter.msmq.dequeue.threads

	Number of poller threads that is initialized when endpoint activation occurs. This enables the adapter to wait for a specified time to receive a message before next poll cycle is initiated. When specified, the value of adapter.msmq.dequeue.threads is used to spawn multiple inbound poller threads; multiple inbound threads can be used to improve performance The default value is 1.

Use the Connection Factory Configuration properties when you configure Connection Factories for the MSMQ Adapter. See Table 13-4. Also indicated is the processing direction for each property.

Table 13-4 MSMQ Adapter Connection Factory Configuration

	Property Name	Description	Default
	Host

	IP Address of the MSMQ host.

	-

	AccessMode

	Identifies if the connection factory allows for native access or not. Values are [Native | DCOM]. If Native, the Oracle WebLogic Server should be installed on the same host as MSMQ.

	DCOM

	TransactionMode

	Indicates if the connection participates in a transaction when sending and receiving a message. Values are [Single|None].If Single, the local and remote MSMQ queues to which the message is sent should be transactional. If Single, the local MSMQ queue from which the message is retrieved should be Transactional.If None and the queues to which the message is sent are transactional, there is a ResourceException.

	-

	User

	Identifies a user.

	-

	Password

	Password for the specified user.

	-

	Domain

	Domain of the MSMQ host.

	-

13.2 MSMQ Adapter Configuration Wizard Flow

Use the MSMQ Adapter Configuration Wizard to create and configure an MSMQ Adapter.

13.2.1 Creating an Enqueue Operation

In this example walkthrough, you create an Enqueue Operation.

	When you drag and drop MSMQ Adapter from the Component Palette of JDeveloper BPEL Designer, the Adapter Configuration Wizard starts with a Adapter Configuration Wizard Welcome page. Click Next.
	The MSMQ Adapter Configuration Wizard prompts you to enter a service or reference name, as shown in Figure 13-1Figure 13-1 MSMQ Configuration Wizard Service or Reference Name Screen
[image: Description of Figure 13-1 follows]

	Next, specify a the JNDI name for the MSMQ Service connection, as shown in Figure 13-2. Figure 13-2 MSMQ Adapter Configuration Wizard MSMQ Connection Screen
[image: Description of Figure 13-2 follows]

	On the MSMQ Configuration Wizard Adapter Interface page, you can either create a new MSMQ adapter WSDL file using the selected operation, or import an existing WSDL that already specifies the operation.Figure 13-3 MSMQ Adapter Configuration Wizard Adapter Interface Screen
[image: Description of Figure 13-3 follows]

	On the MSMQ Adapter Configuration Wizard Operation type page, you can select a valid operation for the MSMQ adapter configuration. If you are updating the operation, the operation is pre-selected on this page and the operation name is pre-populated. If you have imported an existing WSDL, the operation name on this page is pre-populated.Figure 13-4 MSMQ Adapter Operation Type Screen
[image: Description of Figure 13-4 follows]

	The next step is to create an Enqueue Operation. This page captures the configuration parameters for the Enqueue operation.Figure 13-5 Enqueue Operation
[image: Description of Figure 13-5 follows]

Enter the following:

	In the Destination Type field, specify Public Queue, Private Queue or Distribution List.

	If Public queue or Distribution List is selected, the Use active directory path checkbox is enabled, and Private queue is disabled.

	If Use active directory path checkbox is selected, you can specify the Destination Path of the queue, otherwise you can specify the Destination Name of the queue.

	Values for Message Body Type are String (default) and ByteArray.

	Values for Priority are from 0 (lowest priority) to 7 (highest priority). The default priority is 3.

	Values for Persistence: are Yes (default), or No.

	Expiry units are seconds, minutes, hours and day. The MSMQ Adapter Configuration Wizard converts Units other than seconds into seconds, while setting the value for the TimeToLive interaction spec property value.

	If you had chosen the Dequeue, or Get Message, Operation, the Dequeue message appears. On this screen, you can enter the parameters to dequeue message. There is a checkbox for direct format name. Direct format names are used to reference public or private queues without accessing the directory service. Direct format names are used when sending messages directly to a computer, to computers over the Internet, sending messages to any queue while operating in domain, workgroup, or offline mode, reading messages while operating in domain, workgroup, or offline mode, or sending messages across forest boundaries.

Figure 13-6 Dequeue Operation (Get Message from MSMQ) Screen
[image: Description of Figure 13-6 follows]

On this screen, you can specify the following:

	Specify the Destination Type, Public Queue or Private Queue.

	Specify the Destination Name of the queue.

	Choose either String (the default) or ByteArray as the Message Body Type.

	Enable streaming by checking the Enable streaming checkbox. When you enable this feature, the payload is streamed to a database rather than being manipulated in SOA runtime as in a memory DOM. You use this feature while handling large payloads. When you select the Enable streaming check box, a corresponding Boolean property StreamPayload is appended to the Activation Spec properties defined in the respective .jca file

	The Adapter Configuration Wizard displays the Schema Page. If you need the message payload translated using a certain schema, enter the schema details, which define the incoming notification body content. Use the Native Format builder to define the Schema for native format. If the message payload is opaque, you can choose the Schema is Opaque option.Figure 13-7 MSMQ Adapter Configuration Wizard Messages Screen
[image: Description of Figure 13-7 follows]

	Click Next. The MSMQ Adapters Finish Page appears. Click Finish to create the indicated files in your project directory.Figure 13-8 The MSMQ Adapter Configuration Wizard Finish Page
[image: Description of Figure 13-8 follows]

13.2.2 Sample MSMQ Adapter Connection Factory Properties

The following are sample MSMQ Adapter connection factory properties, within Fusion Middleware Control, to see them proceed to Home >Summary of Deployments >MSMQAdapter > Configuration> Outbound Connection Pools. Select the New option and provide the JNDI a name, for example, eis/MSMQ/MSMQAdapter_NonTrans1

Properties include:

MSMQ_AccessMode=DCOM
MSMQ_Domain=adapter.test.msmq
MSMQ_Host=slc04lya.us.mydomain.com
MSMQ_Password=Welcome12
MSMQ_TransactionMode= NONE
MSMQ_User=Administrator

13.2.3 MSMQ Adapter Design-time Artifacts

The Adapter configuration Wizard generates the JCA, WSDL and the XML Schema artifacts based on the interaction and message definition.

13.2.3.1 Sample JCA File for an MSMQ Enqueue Operation

Following is the sample JCA file, specifying a WSDL for an MSMQ Enqueue Operation.

Example - Sample JCA File for an MSMQ Enqueue Operation

<adapter-config name="enqueueOp" adapter="msmq" wsdlLocation="../WSDLs/enqueueOp.wsdl"
 xmlns="http://platform.integration.oracle/
 blocks/adapter/fw/metadata">
 <connection-factory location="eis/MSMQ/MSMQAdapter"/>
 <endpoint-interaction portType="EnqueueOperation_ptt" operation="EnqueueOperation">
 <interaction-spec
 className="oracle.tip.adapter.msmq.v2.jca.
 MSMQInteractionSpec">
 <property name="BodyType" value="ByteArray"/>
 <property name="DestinationPath" value="dest"/>
 <property name="TimeToLive" value="-1"/>
 <property name="Delivery" value="Persistent"/>
 <property name="DestinationType" value="PUBLIC_QUEUE"/>
 <property name="UseDirectFormatName" value="true"/>
 <property name="OperationType" value="Enqueue"/>
 <property name="Priority" value="5"/>
 <property name="UseActiveDirectoryPath" value="true"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

13.2.3.2 Sample JCA for an MSMQ Dequeue Operation

The following sample JCA, specifying for a WSDL for a Dequeue Operation.

Example - Sample JCA for an MSMQ Dequeue Operation

<adapter-config name="dequeueOp" adapter="msmq"
 wsdlLocation="../WSDLs/dequeueOp.wsdl"
 xmlns="http://platform.integration.oracle/blocks/adapter/
 fw/metadata">
 <connection-factory location="eis/MSMQ/MSMQAdapter"/>
 <endpoint-activation portType="DequeueOperation_ptt"
 operation="DequeueOperation">
 <activation-spec
 className="oracle.tip.adapter.msmq.v2.
 jca.MSMQActivationSpec">
 <property name="BodyType" value="String"/>
 <property name="DestinationType"
 value="PUBLIC_QUEUE"/>
 <property name="UseDirectFormatName" value="false"/>
 <property name="DestinationName" value="dest"/>
 <property name="OperationType" value="Dequeue"/>
 <property name="EnableStreaming" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

13.2.3.3 Design-Time WSDL Artifacts

A WSDL file is generated when you click Finish in the MSMQ Adapter Configuration Wizard. The schema you specified within the Schema Page is imported in the generated WSDL.

13.2.3.3.1 WSDL for MSMQ Enqueue Operation

The following WSDL is generated for a Base64Binary Enqueue operation.

Example - MSMQ Adapter WSDL for Enqueue Operation

<wsdl:definitions
 name="msmqService" targetNamespace="http://xmlns.oracle.com/
 pcbpel/adapter/msmq/ MSMQAdapterUseCases/Project1/msmqReference"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/ msmq/MSMQAdapterUseCases/Project1/msmqReference"
 xmlns:opaque="http://xmlns.oracle.com/
 pcbpel/adapter/opaque/"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/
 partner-link/">
 <plt:partnerLinkType name="Enqueue_plt" >
 <plt:role name="Enqueue_role" >
 <plt:portType name="tns:Enqueue_ptt" />
 </plt:role>
 </plt:partnerLinkType>
 <wsdl:types>
 <schema targetNamespace="http://xmlns.oracle.com/
 pcbpel/adapter/opaque/"
 xmlns="http://www.w3.org/2001/XMLSchema" >
 <element name="opaqueElement"
 type="base64Binary" />
 </schema>
 </wsdl:types>
 <wsdl:message name="Enqueue_msg">
 <wsdl:part name="opaque" element=
 "opaque:opaqueElement"/>
 </wsdl:message>
 <wsdl:portType name="Enqueue_ptt">
 <wsdl:operation name="Enqueue">
 <wsdl:input message="tns:Enqueue_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

13.2.3.3.2 WSDL for MSMQ Adapter Dequeue Operation

The following example shows a WSDL for an MSMQ Adapter Dequeue Operation.

MSMQ Adapter Dequeue Operation WSDL

<wsdl:definitions
 name="mqService"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter
 /msmq/MSMQAdapterUseCases/Project1/msmqService"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter /msmq/MSMQAdapterUseCases/
 Project1/msmqService"
 xmlns:pc="http://xmlns.oracle.com/pcbpel/"
 xmlns:imp1="http://platform.integration.oracle/
 blocks/adapter/fw/metadata/
 msmqSchema"
 xmlns:plt="http://schemas.xmlsoap.org/ws/
 2003/05/partner-link/">
 <plt:partnerLinkType name="Dequeue_plt" >
 <plt:role name="Dequeue_role" >
 <plt:portType name="tns:Dequeue_ptt" />
 </plt:role>
 </plt:partnerLinkType>
 <wsdl:types>
 <schema xmlns="http://www.w3.org/
 2001/XMLSchema" >
 <import namespace="http://platform.integration.oracle/
 blocks/adapter /fw/metadata/msmqSchema"
 schemaLocation="../Schemas/msmqSchema.xsd" />
 </schema>
 </wsdl:types>
 <wsdl:message name="Dequeue_msg">
 <wsdl:part name="body" element="imp1:message"/>
 </wsdl:message>
 <wsdl:portType name="Dequeue_ptt">
 <wsdl:operation name="Dequeue">
 <wsdl:input message="tns:Dequeue_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

13.3 MSMQ Use Cases

The following use cases provide a description and walkthrough of various uses of the MSMQ Adapter. The use cases include:

	Enqueue/Dequeue Message from Public Queue

	Enqueue/Dequeue Message from Private Queue

	Enqueuing a Message to a Distribution List

13.3.1 Enqueue/Dequeue Message from Public Queue

This use case consists of the following steps

	Designing the SOA Composite

	Creating the Inbound Oracle MSMQ Adapter Service

	Creating the Outbound Oracle MSMQ Adapter Service

	Wiring Services and Activities

	Adding a Receive Activity

	Add an Invoke Activity

	Add an Assign Activity

13.3.1.1 Designing the SOA Composite

You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following steps:

	In the Application Navigator of JDeveloper, click New Application. The select SOA Application - Name your application page is displayed.
	Enter Enq_Deq_PublicApp in the Application Name field, and click Next. Name your project page is displayed.
	Enter Enq_Deq_Public in the Project Name field, and click Next.
	Select Composite With BPEL in the Composite Template box, and click Finish. The MSMQ Adapter Configuration Wizard displays the Create BPEL Process - BPEL Process page.
	Enter BPELPublic in the Name field, select Define Service Later from the Template list.
	Click OK. The Enq_Deq_PublicApp application and the Enq_Deq_Public project appear in the design area.

13.3.1.2 Creating the Inbound Oracle MSMQ Adapter Service

Perform the following steps to create an inbound Oracle MSMQ Adapter service to dequeue message from Microsoft messaging queue.

	Drag and drop MSMQ Adapter from the Components to the Exposed Services swim lane. The Adapter Configuration Wizard Welcome page is displayed.
	Enter PublicIn in the Service Name field.
	Click Next. The Adapter Connection page is displayed.
	Provide the JNDI connection name of the MSMQ Server. It can be used to either to connect for Transactional queues or for Non-Transactional queues. For example, in this use case, the JNDI used for the Non-Transactional Queue is eis/MSMQ/MSMQAdapter_NonTrans.
	Click Next. The MSMQ Adapter Configuration Wizard displays the Adapter Interface page.
	Click Next. The Adapter Operation Type page is displayed.
	Select Operation Type as Get message from MSMQ and Operation Name as Dequeue.
	Click Next. The MSMQ Adapter Configuration Wizard Get Message from MSMQ page is displayed.
	Select Destination Type as Public Queue. Enter Public_Queue_Deq in the Destination Name field.
	Click Next. The wizard displays the Messages page.
	Select the Native format translation is not required (Schema is Opaque) checkbox. Note: If you have a schema, you can provide the schema for translation.
	Click Next. The wizard displays the Finish page.
	Click Finish. You have now configured the inbound Oracle MSMQ Adapter and the composite.xml appears, as shown in Figure 13-9.Figure 13-9 The composite.xml for the Enqueue-Dequeue from Public Queue Use Case
[image: Description of Figure 13-9 follows]

13.3.1.3 Creating the Outbound Oracle MSMQ Adapter Service

Perform the following steps to create an outbound Oracle MSMQ Adapter service to enqueue the message from one Microsoft messaging queue to the other Microsoft messaging queue.

	Drag and drop MSMQ Adapter from the Components to the External References swim lane. The Adapter Configuration Wizard Welcome page is displayed.
	Enter PublicOut in the Reference Name field.
	Click Next. The MSMQ Adapter Configuration Wizard indicates the Connection.
	Provide the JNDI connection name of the MSMQ Server. It can be used to either connect for Transactional queues or Non-Transactional queues. For example, in this use case the JNDI is used for the Non-Transactional Queue is eis/MSMQ/MSMQAdapter_NonTrans.
	Click Next. The Adapter Interface page is displayed.
	Click Next. The Adapter Operation Type page is displayed.
	Select Put message into MSMQ for Operation Type and Enqueue for Operation Name.
	Click Next. The Adapter Put Message into MSMQ page is displayed.
	Select Destination Type as Public Queue. Enter Public_Queue_Enq in the Destination Name field.Note:
If you have the active directory path of the queue, you must select the Use active directory path checkbox and provide the appropriate value. Also, if you have the direct format name of the queue, you must provide the direct format name of the queue by selecting the checkbox Use direct format name.

	Click Next. The MSMQ Adapter Messages page is displayed
	Select the Native format translation is not required (Schema is Opaque) checkbox. Note that if you have a schema, you can provide the schema for translation
	Click Next. The Adapter Configuration Wizard displays the Finish page.
	Click Finish. The outbound Oracle MSMQ Adapter is now configured and the composite.xml appears.

13.3.1.4 Wiring Services and Activities

You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components.

	Drag the small triangle in the PublicIn in the Exposed Services area to the drop zone that appears as a green triangle in the BPEL process in the Components area.
	Choose Delivery Type as async.persist.
	Drag the small triangle in the BPEL process in the Components area to the drop zone that appears as a green triangle in the PublicOut in the External References area. The JDeveloper composite.xml appears, as shown in Figure 13-10.Figure 13-10 Wiring the composite.xml
[image: Description of Figure 13-10 follows]

	Click File, Save All.

13.3.1.5 Add a Receive Activity

Follow these steps to add a Receive Activity.

	Double-click BPELPublic. The BPELPublic.bpel page is displayed.
	Drag and drop a Receive activity from the Components area to the design area.
	Double-click the Receive activity. The Receive dialog is displayed.
	Enter ReceiveInput in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed.
	Select PublicIn, as shown in Figure 13-11 and click OK.Figure 13-11 Selecting PublicIn in Partner Link Chooser
[image: Description of Figure 13-11 follows]

	Click the Auto-Create Variable icon to the right of the Variable field in the Receive dialog, as shown in Figure 13-12. The Create Variable dialog is displayed.Figure 13-12 Clicking Auto-Create Variable Icon in Receive Dialog
[image: Description of Figure 13-12 follows]

	Select the default variable name and click OK. The Variable field is populated with the default variable name.
	Check Create Instance, and click OK. The JDeveloper BPELPublic.bpel page appears, as shown in Figure 13-13.Figure 13-13 The JDeveloper BPELPublic.bpel Page
[image: Description of Figure 13-13 follows]

13.3.1.6 Add an Invoke Activity

Next step is to add an invoke activity.

	Drag and drop an Invoke activity from the Components area to the design area.
	Double-click the Invoke activity. The Invoke dialog is displayed.
	Enter Enqueue_Message in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed.
	Select PublicOut, as shown in Figure 13-14, and click OK.Figure 13-14 Partner Link Chooser Dialog with PublicOut Selected
[image: Description of Figure 13-14 follows]

	Click the Automatically Create Input Variable icon to the right of the Input variable field in the Invoke dialog. The Create Variable dialog is displayed.
	Select the default variable name and click OK. The Variable field is populated with the default variable name. The Invoke dialog is displayed, as shown in Figure 13-15.Figure 13-15 Invoke Dialog for Enqueue Message
[image: Description of Figure 13-15 follows]

	Click OK. The JDeveloper BPELPublic.bpel page appears. See Figure 13-16.Figure 13-16 The BPELPublic.bpel Page after Invoke Has Been Added
[image: Description of Figure 13-16 follows]

13.3.1.7 Add an Assign Activity

Next, you add an Assign activity. Follow these steps to do so.

	Drag and drop an Assign activity from the Components area in between the Receive and Invoke activities in the design area.
	Double-click the Assign activity. The Assign dialog is displayed.
	Click the General tab and enter AssignReference in the Name field.
	Click the Copy Rules tab.
	Wire between the opaque element of the variable ReceiveInput_Dequeue_InputVariable to opaque element of the variable Enqueue_Message_Enqueue_InputVariable as shown in Figure 13-17.Figure 13-17 Using the Assign Dialog to Wire Elements
[image: Description of Figure 13-17 follows]

	Click OK, the JDeveloper BPELPublic.bpel page is displayed, as shown in Figure 13-18.Figure 13-18 The BPELPublic.bpel Page After the Assign Dialog has Wired Elements
[image: Description of Figure 13-18 follows]

13.3.2 Enqueue/Dequeue Message from Private Queue

In this use case, you create an application that enqueues and dequeues messages from an MSMQ private queue.,

	Designing the SOA Composite

	Creating the Inbound Oracle MSMQ Adapter Service

	Creating the Outbound Oracle MSMQ Adapter Service

	Wiring Services and Activities

	Adding a Receive Activity

	Adding an Invoke Activity

	Adding an Assign Activity

13.3.2.1 Designing the SOA Composite

You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:

	In the Application Navigator of JDeveloper, click New Application. Then select SOA Application. The Name your application page is displayed. Enter Enq_Deq_PrivateApp in the Application Name field, and click Next.
	Name your project page is displayed. Enter Enq_Deq_Private in the Project Name field, and click Next.
	Select Composite With BPEL in the Composite Template box, and click Finish. The Create BPEL Process - BPEL Process page is displayed.
	Enter BPELPrivate in the Name field, select Define Service Later from the Template list.
	Click OK. The Enq_Deq_PrivateApp application and the Enq_Deq_Private project appear in the design area, as shown in Figure 13-19.Figure 13-19 The Enq_Deq_PrivateApp and the Enq_Deq_Private Project in the Design Area
[image: Description of Figure 13-19 follows]

13.3.2.2 Creating the Inbound Oracle MSMQ Adapter Service

Perform the following steps to create an inbound Oracle MSMQ Adapter service to dequeue message from Microsoft messaging queue.

	Drag and drop the MSMQ Adapter from the Components area to the Exposed Services swim lane. The Adapter Configuration Wizard Welcome page is displayed.
	Enter PrivateIn in the Service Name field.
	Click Next. The Adapter Connection page is displayed.
	Provide the JNDI connection name of the MSMQ Server. It can be to connect for Transactional queues or for Non-Transactional queues. In this use case, the JNDI used for Non-Transactional Queue is eis/MSMQ/MSMQAdapter_NonTrans.
	Click Next. The Adapter Interface page is displayed.
	Click Next. The Adapter Operation Type page is displayed
	Select Operation Type as Get message from MSMQ and Operation Name as Dequeue. See
	Click Next. The Adapter Get Message from MSMQ page is displayed.Figure 13-20 MSMQ Adapter Configuration Wizard Get Message Screen
[image: Description of Figure 13-20 follows]

	Select Destination Type as Private Queue. Enter Private_Queue_Deq in the Destination Name field. (You might have indicated that the MSMQ adapter uses direct format name to access the private queue. If that option is preferred, you would have to check the Use Direct Format Name checkbox.
	Click Next. The Adapter Configuration Wizard displays the Messages page.
	Select the Native format translation is not required (Schema is Opaque) checkbox. Note: If you have a schema, you can provide the schema for translation.
	Click Next. The MSMQ Adapter Configuration Wizard displays the Finish page.
	Click Finish. You have now configured the inbound Oracle MSMQ Adapter and the composite.xml appears, as shown in Figure 13-21Figure 13-21 Inbound MSMQ Adapter Configured with composite.xml
[image: Description of Figure 13-21 follows]

13.3.2.3 Creating the Outbound Oracle MSMQ Adapter Service

Perform the following steps to create an outbound Oracle MSMQ Adapter service to enqueue the message from one Microsoft messaging queue to other Microsoft messaging queue.

	Drag and drop MSMQ Adapter from the Components area to the External References swim lane. The Adapter Configuration Wizard Welcome page is displayed.
	Enter PrivateOut in the Reference Name field.
	Click Next. The Adapter Connection page is displayed.
	Provide the JNDI connection name of the MSMQ Server. It can be either to connect for Transactional queues or Non-Transactional queues. For example, in this use case the JNDI used for Non-Transactional Queue is eis/MSMQ/MSMQAdapter_NonTrans.
	Click Next. The Interface page is displayed.
	Click Next. The Operation Type page is displayed.
	Select Operation Type as Put message into MSMQ and Operation Name as Enqueue.
	Click Next. The Adapter Put Message into MSMQ page is displayed.
	Select Destination Type as Private Queue. Enter Private_Queue_Enq in the Destination Name. Note: If you have the direct format name of the queue, provide direct format name of the queue by selecting the checkbox Use direct format name. Figure 13-22 MSMQ Adapter Configuration Wizard Put Message Into MSMQ Screen
[image: Description of Figure 13-22 follows]

	Click Next. Messages page is displayed.
	Select Native format translation is not required (Schema is Opaque) checkbox. Note: If you have a schema, you can provide the schema for translation.
	Click Next. The MSMQ Adapter Configuration Wizard displays the Finish page.
	Click Finish. The outbound Oracle MSMQ Adapter is now configured and the composite.xml appears, as shown in Figure 13-23.Figure 13-23 MSMQ Outbound Adapter Configured with Private Out External Reference
[image: Description of Figure 13-23 follows]

13.3.2.4 Wiring Services and Activities

You must assemble or wire the three components that you have created: Inbound Adapter service, BPEL process, Outbound Adapter reference. Perform the following steps to wire the components.

	Drag the small triangle in the PrivateIn in the Exposed Services area to the drop zone that appears as a green triangle in the BPEL process in the Components area.
	Choose async.persist for Delivery Type.
	Drag the small triangle in the BPEL process in the Components area to the drop zone that appears as a green triangle in the PrivateOut in the External References area. The JDeveloper composite.xml appears, as shown in Figure 13-24.Figure 13-24 The MSMQ Adapter JDeveloper composite.xml Wired
[image: Description of Figure 13-24 follows]

	Click File, Save All.

13.3.2.5 Adding a Receive Activity

The next step is to add a Receive activity to the composite application.

	Double-click BPELPrivate. The BPELPrivate.bpel page is displayed.
	Drag and drop a Receive activity from the Components area to the design area.
	Double-click the Receive activity. The Receive dialog is displayed.
	Enter ReceiveInput in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Configuration Wizard displays the Partner Link Chooser dialog.
	Select PrivateIn, as shown in Figure 13-25 and click OK.Figure 13-25 Private Link Chooser Dialog with PrivateIn Selected as Partner LInk
[image: Description of Figure 13-25 follows]

	Click the Auto-Create Variable icon to the right of the Variable field in the Receive dialog, as shown in Figure 13-26. The Adapter Configuration Wizard displays the Create Variable dialog.Figure 13-26 The Edit Receive Create Variable Dialog
[image: Description of Figure 13-26 follows]

	Select the default variable name and click OK. The Variable field is populated with the default variable name.
	Check Create Instance, and click OK. The JDeveloper BPELPrivate.bpel page appears, as shown in Figure 13-27.Figure 13-27 The BPELPrivate.bpel Page, Showing the PrivateIn Partner Link Wired to the Receive Activity
[image: Description of Figure 13-27 follows]

13.3.2.6 Adding an Invoke Activity

The next step is to add an Invoke Activity.

	Drag and drop an Invoke activity from the Components area to the design area.
	Double-click the Invoke activity. The Invoke dialog is displayed.
	Enter Enqueue_Message in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed
	Select PrivateOut, as shown in Figure 13-28, and click OK.Figure 13-28 The Partner Link Chooser Dialog, with PrivateOut Selected
[image: Description of Figure 13-28 follows]

	Click the Automatically Create Input Variable icon to the right of the Input variable field in the Invoke dialog. The Create Variable dialog is displayed.
	Select the default variable name and click OK. The Variable field is populated with the default variable name. The Invoke dialog is displayed, as shown in Figure 13-29.Figure 13-29 The Edit Invoke Dialog
[image: Description of Figure 13-29 follows]

	Click OK. The JDeveloper BPELPrivate.bpel page appears, as shown in Figure 13-30.Figure 13-30 BPELPrivate.bpel Page After Invoke Activity Has Been Added
[image: Description of Figure 13-30 follows]

13.3.2.7 Adding an Assign Activity

The final step is to add an Assign activity.

	Drag and drop an Assign activity from the Components area in between the Receive and Invoke activities in the design area.
	Double-click the Assign activity. The Assign dialog is displayed.
	Click the General tab and enter AssignReference in the Name field.
	Click the Copy Rules tab.
	Wire between the opaque element of the variable ReceiveInput_Dequeue_InputVariable to the opaque element of the variable Enqueue_Message_Enqueue_InputVariable as shown in Figure 13-31.Figure 13-31 Editing the Assign Activity to Wire Variables
[image: Description of Figure 13-31 follows]

	Click OK, the JDeveloper BPELPrivate.bpel page is displayed.Figure 13-32 The BPELPrivate.bpel Page After the Variables Are Assigned
[image: Description of Figure 13-32 follows]

	Click File, Save All.

13.3.3 Enqueuing a Message to a Distribution List

Follow these steps to design a use case that includes enqueueing MSMQ messages to a distribution list.

	Designing the SOA Composite

	Creating the Inbound Oracle File Adapter Service

	Creating the Outbound Oracle MSMQ Adapter Service

	Wiring Services and Activities

	Adding a Receive Activity

	Adding an Invoke Activity

	Adding an Assign Activity

13.3.3.1 Designing the SOA Composite

You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:

	In the Application Navigator of JDeveloper, click New Application. Then select SOA Application. The Adapter Configuration Wizard displays the Name your application page.
	Enter Enq_DistListApp in the Application Name field, and click Next. The Adapter Configuration Wizard displays Name your project page.
	Enter Enq_DistList in the Project Name field, and click Next.
	Select Composite With BPEL in the Composite Template box, and click Finish. The Create BPEL Process - BPEL Process page is displayed.
	Enter BPELDistList in the Name field, select Define Service Later from the Template list.
	Click OK. The Enq_DistListApp application and the Enq_DistList project appear in the design area, as shown in Figure 13-33.Figure 13-33 The Enq_DistListApp Application and the Enq_DistList Project in the Design Area
[image: Description of Figure 13-33 follows]

13.3.3.2 Creating the Inbound Oracle File Adapter Service

Perform the following steps to create an inbound Oracle File Adapter service to read file from local directory.

	Drag and drop a File Adapter from the Components area to the Exposed Services swim lane. The Adapter Configuration Wizard Welcome page is displayed.
	Enter FileIn in the Service Name field.
	Click Next. The File Adapter Configuration Wizard displays the File Server Connection page is displayed.
	Click Next. The File Adapter Configuration Wizard displays the Operation page.
	Select Operation Type as Read File.
	Click Next. The File Directories page is displayed.
	Enter the physical path for the input directory as shown in Figure 13-34.Figure 13-34 The File Adapter Configuration Wizard File Directories Page
[image: Description of Figure 13-34 follows]

	Click Next. The File Adapter Configuration Wizard displays the File Filtering page.
	Enter *.txt in the Include Files With Name Pattern field.
	Click Next. The File Adapter Configuration Wizard displays the File Polling page.
	Click Next. The File Adapter Configuration Wizard displays the Messages page.
	Select the Native format translation is not required (Schema is Opaque) checkbox.
	Click Next. The File Adapter Configuration Wizard displays the Finish page.
	Click Finish. The inbound Oracle File Adapter is now configured and composite.xml appears, as shown in Figure 13-35.Figure 13-35 The Configured Inbound File Adapter with the composite.xml
[image: Description of Figure 13-35 follows]

13.3.3.3 Creating the Outbound Oracle MSMQ Adapter Service

Perform the following steps to create an outbound Oracle MSMQ Adapter service to enqueue the message from a local directory to distribution list:

	Drag and drop the MSMQ Adapter from the Components area to the External References swim lane. The Adapter Configuration Wizard displays the Welcome page.
	Enter DistListOut in the Reference Name field.
	Click Next. The Adapter Configuration Wizard displays the Connection page.
	Provide the JNDI connection name of the MSMQ Server. You can use the name to connect either Transactional queues or Non-Transactional queues. In this use case, the JNDI used for Non-Transactional Queue is eis/forMSMQ/MSMQAdapter_NonTrans.
	Click Next. The Adapter Configuration Wizard displays the Interface page.
	Click Next. The Adapter Configuration Wizard displays the Operation Type page.
	Select Operation Type as Put message into MSMQ and Operation Name as Enqueue.
	Click Next. The Adapter Configuration Wizard displays the Put Message into MSMQ page.
	Select Destination Type as Distribution List. Enter DistList_Enq in the Destination Name.Note:
: If you have active directory path of the distribution list, you must select the Use active directory path checkbox and provide the value. Also, if you have the direct format name of the distribution list you can provide direct format name of the queue by selecting the checkbox Use direct format name.

	Click Next. The Adapter Configuration Wizard displays the Messages page.
	Select Native format translation is not required (Schema is Opaque) checkbox. Note: If you have a schema, you can provide the schema for translation.
	Click Next. The Adapter Configuration Wizard displays the Finish page.
	Click Finish. You have configured the outbound Oracle MSMQ Adapter and the composite.xml appears, as shown in Figure 13-36.Figure 13-36 The Configured Outbound File Adapter with the composite.xml
[image: Description of Figure 13-36 follows]

13.3.3.4 Wiring Services and Activities

You have to assemble or wire the three components that you have created: Inbound adapter service, the BPEL process, and the Outbound adapter reference. Perform the following steps to wire the components:

	Drag the small triangle in the FileIn in the Exposed Services area to the drop zone that appears as a green triangle in the BPEL process in the Components area.
	Choose Delivery Type as async.persist.
	Drag the small triangle in the BPEL process in the Components area to the drop zone that appears as a green triangle in the DistListOut in the External References area. The JDeveloper composite.xml appears, as shown in Figure 13-37.Figure 13-37 The composite.xml for the Distribution List Use Case After Wiring
[image: Description of Figure 13-37 follows]

	Click File, Save All.

13.3.3.5 Adding a Receive Activity

Follow these steps to add a Receive Activity.

	Double-click BPELDistList. The BPELDistList.bpel page is displayed.
	Drag and drop a Receive activity from the Component area to the design area.
	Double-click the Receive activity. The MSMQ Adapter Configuration Wizard displays the Receive dialog.
	Enter ReceiveInput in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed.
	Select FileIn, as shown in Figure 13-38 and click OK.Figure 13-38 The Partner Link Chooser Dialog with the Inbound File Adapter Selected
[image: Description of Figure 13-38 follows]

	Select the Auto-Create Variable icon to the right of the Variable field in the Receive dialog, as shown in Figure 13-39. The Create Variable dialog is displayed.Figure 13-39 The Receive Dialog
[image: Description of Figure 13-39 follows]

	Select the default variable name and click OK. The Variable field is populated with the default variable name.
	Check Create Instance, and click OK. The JDeveloper BPELDistList.bpel page appears, as shown in Figure 13-40.Figure 13-40 BPELDistList.bpel Page after ReceiveInput Created
[image: Description of Figure 13-40 follows]

13.3.3.6 Adding an Invoke Activity

Follow these steps to add an Invoke activity.

	Drag and drop an Invoke activity from the Component area to the design area.
	Double-click the Invoke activity. The Invoke dialog is displayed.
	Enter Enqueue_Message in the Name field.
	Click Browse Partner Links at the end of the Partner Link field. The Partner Link Chooser dialog is displayed.
	Select DistListOut, as shown in Figure 13-41 and click OK.Figure 13-41 The Partner Link Chooser, with DistListOut Selected
[image: Description of Figure 13-41 follows]

	Select the Automatically Create Input Variable icon to the right of the Input variable field in the Invoke dialog. The Create Variable dialog is displayed.
	Select the default variable name and click OK. The Variable field is populated with the default variable name. The JDeveloper Invoke dialog is displayed, as in Figure 13-42Figure 13-42 The JDeveloper Invoke Dialog with the Enqueue_Message_Enqueue_inputVariable
[image: Description of Figure 13-42 follows]

	Click OK. The JDeveloper BPELDistList.bpel page appears, as shown in Figure 13-45.Figure 13-43 The BPELDistList.bpel Page After the Invoke Activity is Created
[image: Description of Figure 13-43 follows]

13.3.3.7 Adding an Assign Activity

Follow these steps to add an Assign activity.

	Drag and drop an Assign activity from the Component area in between the Receive and Invoke activities in the JDeveloper design area.
	Double-click the Assign activity. The Assign dialog is displayed.
	Click the General tab and enter AssignReference in the Name field.
	Click the Copy Rules tab.
	Wire between the opaque element of the variable ReceiveInput_Dequeue_InputVariable to the opaque element of the variable Enqueue_Message_Enqueue_InputVariable as shown in Figure 12.Figure 13-44 The Jdeveloper Edit Assign Dialog, Wiring ReceiveInput_Dequeue_InputVariable to Enqueue_Message_Enqueue_InputVariable
[image: Description of Figure 13-44 follows]

	Click OK, the JDeveloper BPELDistList.bpel page is displayed, as shown in Figure 13Figure 13-45 The Completed BPELDistList.bpel Page
[image: Description of Figure 13-45 follows]

	Click File, Save All.

Oracle JCA Adapter for Coherence

14 Oracle JCA Adapter for Coherence

This chapter describes how to use the Oracle JCA Adapter for Coherence. It describes the basic rationale for using the Adapter, concepts and Coherence Adapter Configuration Wizard flow.

This chapter includes the following sections:

	Oracle Coherence and Oracle JCA Coherence Adapter Concepts

	 Oracle Coherence Adapter Features

	Configuring the Coherence Adapter

	Querying Items in the Coherence Cache

	Defining Messages for Put_ Get and Query Operations if XML is Chosen

	Defining Messages for Put_ Get and Query Operations if Pojo is Chosen

	Coherence Adapter Files and Artifacts

14.1 Oracle Coherence and Oracle JCA Coherence Adapter Concepts

Coherence provides replicated and distributed (partitioned) data management and caching services on top of a reliable, highly scalable peer-to-peer clustering protocol.

14.1.1 Coherence Cache

A Coherence cache is a collection of data objects that serves as an intermediary between the database and the client applications. Database data can be loaded into a cache and made available to different applications. Thus, Coherence cache reduces load on the database and provides faster access to database data. Objects in the cache can either be of XML or POJO (Plain Old Java Object) type.

Note:
A POJO Java class must be Serialized to use with the Coherence Adapter. That is, a Java class you use with the Coherence Adapter should implement either java.io.Serializable or com.tangosol.io.pof.PortableObject.

For more information on Coherence, see the Oracle Coherence Library. You can also refer to the Oracle Coherence Security Guide for information related to Coherence security.

14.1.2 The Coherence Adapter

The Coherence Adapter is a JCA 1.5-compliant resource adapter for Oracle Coherence. When deployed in a SOA environment, the Coherence Adapter is used as an integration vehicle by SOA composite applications when they integrate with Oracle Coherence.

The Coherence Adapter enables you to perform useful Coherence operations such as adding an item to a Coherence cache, obtaining an item from a Coherence cache, removing an item and querying from a Coherence cache.

14.1.3 Compatibilty

Note that when using the Coherence adapter in 12.1.3, you would not be able to interact with a remote Coherence cluster other than version 12.1.3. or a newer version.

This is due to a Coherence product limitation on the use of the Coherence extend client with older versions of the extend proxy.

Specifically, regarding compatibility between a Coherence server and an extend client, only forward compatibility is maintained from extend clients to cluster proxy servers. That is, an extend client can connect to cluster servers that have either the same or higher version numbers, but not the lower version numbers.

See the link below for the limitation imposed by the Coherence product.

http://docs.oracle.com/cd/E24290_01/coh.371/e22839/gs_install.htm#CBHJGGBG

14.1.4 Oracle Coherence Adapter Features

You can use the Oracle Coherence Adapter to perform the following activities associated with Oracle Coherence:

	Add a Cache Entry: Create a new entry in the Coherence Cache.

	Remove Cache entries: Identify an item to be removed from the Cache, and the system removes the entry from the Cache. You can also remove multiple entries from the cache by providing a filter or search criteria which match the multiple records in cache.

	Get Cache entry value: After specifying an entry to obtain the associated value, the system returns the value of that entry to you.

	Query Cache: After you identify the Cache, and specify search criteria, the system returns the entries that match the search criteria.

14.1.4.1 Basic Use Cases

There are two basic use cases for the Coherence Adapter.

	A Coherence Adapter connecting to a local cluster. This configuration supports transactional caches.

	A Coherence Adapter connecting to a standalone Coherence cluster or a WebLogic Server. This configuration does not support transactional caches.

Note that the local Coherence Adapter operations described in this chapter are similar for a remote cache, with limitations as noted. The main difference is that the name of the cache you specify when you do operations against a remote cache is the name of the remote cache and not that related to a local cluster.

The Coherence Adapter uses the Coherence extend client to connect to the remote cluster. See the next section for a discussion of configuring a remote cache that you can access using the Coherence Adapter.

14.1.4.1.1 Configuring the Coherence Adapter Connection to a Remote Cluster

You can use the SOA Coherence Adapter to access remote caches.

The name of the remote cache is captured in a configuration file; in the following example, the file is called extend-config.xml file. The location of this configuration file needs to be specified as the value for property CacheConfigLocation.In addition to containing the cache name, the configuration file also requires information to connect to a remote Coherence cluster.

Note that the ManagedConnectionFactory example here also points to a location for the PojoJarFile.

For more information, see the whitepaper on Configuring and Using Coherence Extend.

Also, see Chapter 3 of the documentation, Setting Up Coherence*Extend.

Example - ManagedConnectionFactory for a Remote Cluster

<connection-instance>
<jndi-name>eis/Coherence/Remote</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>CacheConfigLocation</name>
 <value>/scratch/amahajan/Temp/coherence/dhqa/extend-config.xml</value>
 </property>
 <property>
 <name>ClassLoaderMode</name>
 <value>CUSTOM</value>
 </property>
 <property>
 <name>PojoJarFile</name>
 <value>/scratch/amahajan/Temp/coherence/dhqa/book.jar</value>
 </property>
 <property>
 <name>WLSExtendProxy</name>
 <value>false</value>
</property>
</properties>
</connection-properties>
</connection-instance>

Example - Sample extend-config to Define a Remote Cache

In this example, the extend configuration enables the adapter to connect to an extend proxy running at address 10.240.82.123 and listening on port 14777.

<?xml version="1.0"?>

<!DOCTYPE cache-config SYSTEM "cache-config.dtd">

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>samples-cache</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>samples-cache-binxml</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>10.240.82.123</address>
 <port>14777</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

14.1.4.1.2 Coherence Adapter Connection to Local Cluster

-

The Coherence Adapter provides a default connection factory to connect to an out-of-box Coherence cache and also a cache called adapter-local.

14.2 Configuring the Coherence Adapter

To use the Coherence Adapter Configuration Wizard:

	In the Application Navigator of JDeveloper, select New Application. The Create Generic Application - Name your application page is displayed.
	Drag and drop the Coherence Adapter from the Components window of JDeveloper BPEL Designer. The Coherence Adapter Welcome Screen appears. Click Next.
	On the Coherence Connection screen, specify a JNDI name for the Coherence Connection. Select Next.Figure 14-1 The Coherence Adapter Configuration Wizard Service Name Screen
[image: Description of Figure 14-1 follows]

	On the Operation Type Page, specify a valid operation against the Coherence cache that you want to perform. When you import an existing WSDL, the operation name is pre-populated. Operations are Put (Put item in cache), Get (Get item from cache), Remove (Remove item from cache) or Query (Query item from cache). In the screen example below, Put is selected.Figure 14-2 Coherence Adapter Configuration Wizard Operation Type Page with Put Selected
[image: Description of Figure 14-2 follows]

	If you selected Put, the Put Page appears. This page captures the configuration parameters for the Put operation. On this screen, you indicate the following fields:	Cache Type – This is a drop-down combo-box with values – XML, POJO. Use the value that corresponds to the type of item you want to put into the cache.

	Cache Name – Enter a cache name in this text field. This is the name that uniquely identifies the Coherence cache.

	Key – Either enter a key in the text field, or check the auto-generate checkbox to have the key generated. If checked, the key is automatically generated by the Coherence runtime. The key auto-generate process sets the Key Type to String.

	Key Type – Key Type and Key are disabled, if you choose to enter a filter It is enabled if you choose to enter a Key Type and Key. Here Key Type combo-box with list of Java simple types: string, integer, long, float, double.

	Auto-generate Key – Check this box if you want the Coherence Adapter Configuration Wizard to generate a key for you.

	Time to Live – Choose Default, Always, or Custom. If you choose Custom, you can specify a value in milliseconds. This value indicates how long an entry should remain in the Coherence cache. The default is that the message never expires. The Time To Live property is applicable more for Remote Caches than for Local caches. For a Local cache, the entry always remains in the cache until you remove it or the SOA server terminates.

Figure 14-3 The Coherence Adapter Configuration Wizard Configure Put Operation Page
[image: Description of Figure 14-3 follows]

	If you had specified the Get item from cache operation on the Coherence Adapter Operation Type page, the Configure Get Operation screen appears:Figure 14-4 The Coherence Adapter Configure Get Operation Page
[image: Description of Figure 14-4 follows]

Fill in the following fields to retrieve items from cache:

	Cache Type – This is a drop-down combo-box with values – XML, POJO. Choose the value that corresponds to the type of entry you want to retrieve.

	Cache Name – Enter a cache name from where the item is to be retrieved.

	Key Type – This field is always enabled for a Get operation.

	Key – Enter the key of the cache entry in this text field.

	If you had chosen the Remove from cache option on the Operation Type screen, the Remove Item from Cache screen would appear:Figure 14-5 The Coherence Adapter Configuration Configure Remove Operation Screen
[image: Description of Figure 14-5 follows]

Enter the configuration parameters to remove an item from Cache, and click Next:

	Cache Name –The name of the cache item.

	Key Type – This is enabled when performing a Remove operation.

	Key – The key for the cache item.

	Filter – A string filter for the cache name.You can specify a key or a filter but you cannot specify both.

Note:
When using a filter for a Remove operation, the Coherence Adapter does not report the count of entries affected by the remove operation, regardless of whether the remove operation is successful.

When using a key to remove a specific entry, the Coherence Adapter does report the count, which is always 1 if a Coherence Remove operation is successful.

14.3 Querying Items in the Coherence Cache

You can also query items in the Coherence cache.

	To do, select Query from the Operations Screen. The Coherence Adapter Configure Query Operation screen appears.Figure 14-6 The Coherence Adapter Configure Query Operation Screen
[image: Description of Figure 14-6 follows]

	On the Configure Query Operation screen fill in the following:	Cache Type - Select XML or POJO from the dropdown list.

	Cache Name -The name of the cache.

	Filter - You can enter a Coherence Query Language filter expression manually. If you do not specify a Filter, the Coherence Adapter Configuration Wizard warns that all items are to be returned.

	Item Count - An integer to specify the limit to the item count returned from the query.

	Index Name - (Optional) A index name to be created in the cache. Select the Sorted checkbox to create a sorted index.

	Return Keys ONLY - Check the box and supply a return key type. If this box is checked, only the keys will be returned whose values match the entries that are returned from the query.

Index and Ordered field key types are only valid for the POJO Cache Type. For the XML Cache Type, you can only use key() token in the filter expression.

This means that when you specify a filter expression you can only use the special token key(), which means the cache object key. For example, you could use either of these keys:

key() = 1234
key() = 5678

If you are using the POJO cache type, you can create a filter expression that uses both tokens from the POJO object as well as the special built-in key() token.

14.4 Defining Messages for Put, Get and Query Operations if XML is Chosen

If you have chosen XML as the cache type on any of the Put, Get or Query operations, the Specify Schema Page appears. On this page, you select a schema for the Coherence cache object. See Figure 14-7.

Figure 14-7 Coherence Adapter Configuration Wizard Messages (Specify Schema) Screen
[image: Description of Figure 14-7 follows]

	Specify the Schema File Location in the URL field and select the Schema element that defines the elements in the incoming files. Use the Browse button to find an existing schema definition.
	Some considerations that are applicable to your choices at this point: 	For a Put operation, a request message is generated that corresponds to schema generated for the value type specified, or to a schema you supplied on the Schema Page. A response message is with the ReturnIdentifier of the cache entry created in the Coherence server.

	For Get operation, the response message points to the schema for the value type, or the schema you supplied on the Schema Page. An empty request message is created.

	For Query operation, if the filter expression has bind variables, a request message containing elements for these bind variables will be generated. The response message will be the schema generated for the value type, or the schema you supplied on the Schema Page.

14.4.1 Defining Messages for Put, Get and Query Operations if Pojo is Chosen

If you choose POJO as the cache type for a Get, Put, or Query operation, the Specify Value Type Class Screen appears.

Figure 14-8 Coherence Adapter Configuration Wizard Value Type Class Screen
[image: Description of Figure 14-8 follows]

To define messages when you have specified POJO as the cache type:

	Enter the value type for the POJO cache type for the PUT operation in the Value Type box. You can use the browser to find a value type.
	Optionally, enter the metadata mapping file for the schema in the Metadata Mapping field. The Metadata mapping file helps in POJO to XML and XML to POJO conversion. The mapping file you selected is copied to the JDeveloper project. You can use the browser to find the metadata mapping file. The mapping file is stored in the JDeveloper project. (When you provide XML, the Adapter converts the XML to an object before adding it to the cache. The reverse happens when a you query an object in the cache. The Adapter converts the object stored in cache to XML and passes it along as output to you.)

If a mapping file is specified, the Coherence Adapter automatically generates the schema.

If you do not specify a metadata file, the Coherence Adapter Configuration wizard automatically generates the mapping file by introspecting the value type class.

Note:
: For a Query Operation type, if you select Return Keys, the Messages page is not displayed for either XML or POJO Cache Types.

14.5 Coherence Adapter Files and Artifacts

This section provides examples of Coherence Adapter design-time artifacts.

14.5.1 JCA File

The JCA file stores JCA property values for each of the supported operations.

Example - JCA File Created

<adapter-config name="cohPut1" adapter="Coherence Adapter" 	 wsdlLocation="../WSDLs/cohPut1.wsdl" xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/coherence"/>
 <endpoint-interaction portType="Put_ptt" operation="Put">
 <interaction-spec className= "oracle.tip.adapter.coherence.CoherenceInteractionSpec">
 <property name="CacheName" value="TestCache"/>
 <property name="Key" value="ABC12345678"/>
 <property name="KeyType" value="String"/>
 <property name="ValueType" value="com.coherence.vt.Book"/>
 <property name="TimeToLive" value="60"/>
 <property name="MappingsMetadataFile" value="book-oxm-mappings.xml"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

14.5.2 WSDL for Put Operation

The following example shows the WSDL for the Coherence Adapter Put Operation

Example - WSDL for Coherence Adapter Put Operation

<wsdl:definitions name="cohPut1" targetNamespace= "http://xmlns.oracle.com/pcbpel/adapter/coherence/Application1/Project1/cohPut1"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns=http://xmlns.oracle.com/pcbpel/adapter/coherence/Application1/ 	 Project1/cohPut1
 xmlns:imp1=" http://xmlns.oracle.com/pcbpel/adapter/coherence"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
 <plt:partnerLinkType name="Put_plt">
 <plt:role name="Put_role">
 <plt:portType name="tns:Put_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
 <wsdl:types>
 <schema targetNamespace= “http://xmlns.oracle.com/pcbpel/adapter/coherence/Application1/Project1/cohPut1" xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace=" http://xmlns.oracle.com/pcbpel/adapter/coherence " schemaLocation="xsd/book_cache.xsd"/>
 </schema>
 <schema <schema targetNamespace= “http://xmlns.oracle.com/pcbpel /adapter/coherence/Application1/Project1/cohPut1" xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="returnId" type="xsd:string"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="Request_msg">
 <wsdl:part name="body" element="imp1:book"/>
 </wsdl:message>
 <wsdl:message name="Response_msg">
 <wsdl:part name="body" element="tns: returnId "/>
 </wsdl:message>
 <wsdl:portType name="Put_ptt">
 <wsdl:operation name="Put">
 <wsdl:input message="tns:Request_msg"/>
 <wsdl:output message="tns:Response_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

14.5.3 WSDL for Remove with Filter Expression Having Bind Variables

shows the WSDL for the Coherence Remove Operation with a Filter Expression

Example - WSDL for Coherence Remove Operation with a Filter Expression

<wsdl:definitions name="cohRem1"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter
 /coherence/Application1/Project1/cohRem1"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns=http://xmlns.oracle.com/pcbpel/adapter/coherence
/Application1/Project1/cohRem1
 xmlns:plt="http://schemas.xmlsoap.org/ws/
 2003/05/partner-link/">
 <plt:partnerLinkType name="Remove_plt">
 <plt:role name="Remove_role">
 <plt:portType name="tns:Remove_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
 <wsdl:types>
 <schema targetNamespace=
 “http://xmlns.oracle.com/pcbpel/adapter
 /coherence/Application1/Project1/cohRem1" xmlns="http://www.w3.org/2001/XMLSchema">
<element name="RemoveRequest">
 <complexType>
 <element name="bind1" type="string"/>
 <element name="bind2" type="string"/>
 </complexType>
 </element>
 </schema>
<schema targetNamespace= “http://xmlns.oracle.com/
 pcbpel/adapter/coherence
 /Application1/Project1/cohRem1"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="ReturnCount" type="integer"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="Request_msg">
 <wsdl:part name="body" element="tns:RemoveRequest "/>
 </wsdl:message>
 <wsdl:message name="Response_msg">
 <wsdl:part name="body" element="tns: ReturnCount "/>
 </wsdl:message>
 <wsdl:portType name="Remove_ptt">
 <wsdl:operation name="Remove">
 <wsdl:input message="tns:Request_msg"/>
 <wsdl:output message="tns:Response_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

14.5.4 WSDL for Get Operation

The following example shows a generated WSDL for the Coherence Get Operation.

Example - WSDL for Get Operation

<wsdl:definitions name="cohRem1" targetNamespace=
 "http://xmlns.oracle.com/
 pcbpel/adapter/coherence/Application1/Project1/cohGet1"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns=http://xmlns.oracle.com/pcbpel/
 adapter/coherence/Application1/Project1/cohGet1
 xmlns:imp1=" http://xmlns.oracle.com/pcbpel/ adapter/coherence"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
 <plt:partnerLinkType name="Get_plt">
 <plt:role name="Get_role">
 <plt:portType name="tns:Get_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
 <wsdl:types>
 <schema targetNamespace= “http://xmlns.oracle.com/pcbpel/adapter
 /coherence/Application1/Project1/cohGet1"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="empty"><complexType/></element>
 </schema>
 <schema targetNamespace=
 “http://xmlns.oracle.com/pcbpel/adapter/
 coherence/Application1/Project1/cohGet1" xmlns="http://www.w3.org/2001/XMLSchema">
<import namespace=
 "http://xmlns.oracle.com/pcbpel/adapter/coherence
 "schemaLocation="xsd/book_cache.xsd"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="Request_msg">
 <wsdl:part name="body" element="tns:empty "/>
 </wsdl:message>
 <wsdl:message name="Response_msg">
 <wsdl:part name="body" element="imp1:book "/>
 </wsdl:message>
 <wsdl:portType name="Get_ptt">
 <wsdl:operation name="Get">
 <wsdl:input message="tns:Request_msg"/>
 <wsdl:output message="tns:Response_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

14.5.5 WSDL for Query with Filter Expression having Bind Variables

The following example shows the WSDL for the Query Operation, with a Filter Expression including Bind variables.

Example - WSDL for Query with Filter Expression Having Bind Variables

<wsdl:definitions name="cohQuery1" targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/coherence /Application1/Project1/cohQuery1"
 xmlns:jca="http://xmlns.ora