ORACLE

Oracle® Fusion Middleware

Developing Swing Applications for Oracle Application
Development Framework

12¢(12.1.3)
E41267-01

May 2014

Describes how to create and deploy Swing desktop
applications using ADF Swing and Oracle Application
Development Framework (Oracle ADF).

Oracle Fusion Middleware Developing Swing Applications for Oracle Application Development Framework
12¢ (12.1.3)

E41267-01

Copyright © 2013, 2014 Oracle and/or its affiliates. All rights reserved.
Primary Author: Ralph Gordon

Contributing Author: David Mathews, Cindy Hall

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ...t s st vii
NS Lo = VT TSR RSO RRRTRTTN Vii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s Vii
ReElated DOCUITIEIESveiveieeiieceieeeeeetee ettt ettt e et e et e e teeeaeeeteeesesenseeeseeenseessessnseenseeensesnseesneeanes Vii
CONMVEIIEIONS ..ooiittieiieeieeitie ettt e e ettt e e e e et ae e e e e eaaaeeeseesaaaseseesasaaaeeeeseaasseeseessasesessesnsssaeseessssssseessnssaeesessns viii

1 Introduction to ADF Swing Applications

1.1 About ADF SWINEcoiciiiiiiiiiii 1-1
1.1.1 Advantages of Using ADF SWINGcccociiiiiiiiiiiii e 1-1
1.1.2 ADF SWing ATChItECTUTIEooiuiiiiiiiiiiiei e e 1-2
1.1.2.1 SWING MVC ..o e s 1-2
1.1.2.2 Oracle Application Development Frameworkcc.ccooiviiiiiiiiiiiiiine 1-3
1.2 Creating a Desktop Application That Works with Oracle ADFcccociiiiiiiiiiinnnns 1-3
1.3 What Happens When You Create a Desktop Application with ADF Swing 1-4
1.4 Connecting to Business COmMpPONENtsccccoviuiiiiiiiiiiiiin i 1-5
1.4.1 How to Modify the Configuration Nameccccociiiiiiiiiiiiie e 1-5
1.4.2 How to Modify the Configuration Fileccoocoiiiiiiii, 1-6
1.4.3 What You May Need to Know About the Client Application Libraries 1-6

2 Creating ADF Swing Forms and Panels

2.1 About Creating ADF Swing Forms and Panelscccoooiiiiiiiiiiiii s 2-1
2.1.1 ADF Swing Design Time Wizardscccoccooiiiiiiiiiiiicc 2-2
21.2 A Typical ADF SWing FOImcccoooiiiiiiiiic e, 2-2
2.1.3 Navigation in an ADF Swing Formcccccociiiiiiiiii e, 2-3
2.2 Process for Creating ADF Swing Panels and Formsccccociiiiiiiiiii 2-4
2.3 What Happens When You Create an ADF Swing Form ... 2-5
24 What You May Need to Know About ADF Swing Code Generationcccoeeuenne. 2-5
2.5 What You May Need to Know About Business Components Attribute Settings 2-6
2.6 How to Create a Client Data Model Definitionccccoooiii 2-6
2.7 How to Create a Single Table ADF Swing FOrmc.cccoviiiiiiiiiieiccccee 2-7
2.8 How to Create a Master-Detail ADF Swing Formcccccooiiiiiiii 2-8
2.9 How to Create an Empty ADF Swing FOrm ..., 2-9
2.10 How to Create an Empty ADF Swing Panelcccccoiiiiiiiiiiiii e 2-10
2.11 How to Create ADF Swing Edit Forms from the Data Controls Panel 2-11
2.12 How to Create ADF Swing Forms from the Databases Windowccccooeil. 2-12

Modifying ADF Swing Forms and Panels

3.1 About Modifying ADF Swing Forms and Panelsc.cccocooi, 3-1
3.1.1 Value Bindings for the Entire Collection or Data Objectccoocveiiiiiiiiiiiiicnees 3-1
3.1.2 Value Bindings for Individual Data Object Attribute Valuesccoccoeeiin 3-2
3.2 How to Assemble ADF Swing Forms Using the Java Visual Editor ... 3-3
3.3 How to Insert Ul Components into ADF Swing Panelsccccoocoiiiiiiiiiiiice 3-4
3.4 How to Change Client Data Model Referencesccccooooeiiiiiiiii, 3-5
3.5 How to Open an ADF Swing Form with an Action Handler ... 3-6
3.6 How to Drop Data Panels Onto an Empty ADF Swing Formcccooviiiiniiiiiininnen. 3-7
3.7 How to Lay Out Data Panels in an Empty Swing Form ..o, 3-7
3.8 Binding a Method with Parameters in an ADF Swing Formcccocooiii, 3-7
3.8.1 How to Populate the Data Controls Panel with JavaBean Methodscccccc...... 3-8
3.8.2 How to Create an ADF Swing Form with Method Bindingsc.ccocooo 3-8
3.8.3 What You May Need to Know About Displaying a Method Result Using a JTable
COMPONENL ..ottt 3-9

4 Working with Data Binding

4.1 About Working With Data BIndingccccoooiiiiiiii, 4-1
411 ADF Swing CONtaiNerscccooiiiiiiiiiiiiin s 4-2
4.1.2 Standard Java CONAINETScoiiiiiiiiiiiiiiiiee et e e e e e e e e e e e 4-2
4.2 Navigating the Ul Using ADF Swing Controlscccccoiiiiiiiiiiiiiic, 4-2
4.21 How to Navigate Using the Navigation Barcc.cccoooiiiiiniiiiii e 4-3
4.2.2 How to Navigate Using Tree Navigationccccocieniiiiiii i, 4-3
4.3 What You May Need to Know About the ADF Swing Data Contextcccceeueeniee. 4-4
4.4 What Happens at Runtime: How Panel Bindings Functionccccccooiiiiiiiinicnnnn 4-4
4.5 What You May Need to Know About the ADF Swing Bootstrap Codeccccce.. 4-5
4.6 How to Display Object Attributes in a Databound Text Fieldccccccoooooiiini 4-6
4.7 How to Create a New Row in a Databound Table or Tree Controlccccevveiiiiiennnene 4-6
4.8 How to Sort Columns in a Databound Tablec.cccccoiviiiiiiiiiiiiii 4-7
4.9 What Happens At Runtime: How Control Bindings Functionccccooiii 4-8
4.9.1 Populating Controls with Dataccoociiiiiiiiiiie e 4-8
4.9.2 Updating Data through Controls ... 4-8

5 Customizing ADF Bindings

5.1 About Customizing ADF Bindingsccociiiiiiiiiiii 5-1
5.2 How to Customize ADF Bindings for ADF Swing Panelsccccccooviiiiiiiiicicieee, 5-2
5.3 How to Customize an ADF Action Bindingcc.cccoeiiiiiiiiiiiiiii e 5-3
5.4 How to Customize an ADF Attribute Bindingcccocoooiiiiii, 5-5
5.5 How to Customize an ADF Array Combobox Bindingcccooviiiiiiiiiiiiiii, 5-6
5.6 How to Customize an ADF Boolean Bindingccccccoiiiiiiiiiiiiiii e 5-7
5.7 How to Customize an ADF Bounded Range Bindingcccccccooii, 5-8
5.8 How to Customize an ADF Formatted Text Field Bindingc..cccoovvviiiiiiiiinnnn. 5-10
5.9 How to Customize an ADF Iterator BIndingccoociiiiiiiiiiiiie e 5-11
5.10 How to Customize an ADF List Bindingcccccooiii, 5-12
5.11 How to Customize an ADF List Binding in Enumeration Modeccccocccooiiiiinns 5-13
5.12 How to Customize an ADF List Binding in LOV Modecccoooiiiiiiiiiiiiiece 5-14

5.13
5.14
5.15
5.16
5.17

How to Customize an ADF LOV Button Binding ..., 5-17
What You May Need to Know About the LOV Dialogccoooeiiiiiiiiii, 5-19
How to Customize an ADF Scroll Bindingccccooiiiiiiiiii e 5-20
How to Customize an ADF Table Bindingcccoooiiiiiiiiiiii, 5-21
How to Customize an ADF Tree Binding ..., 5-23

6 Displaying Graphs in ADF Swing Panels

6.1
6.2
6.3
6.4
6.5

About Graphs in ADF Swing Panelsccccooiiiiiii 6-1
How to Create a Graph for an ADF Swing Panel ... 6-3
What Happens When You Create a Graph Componentccccocviviiiiiiiiniiniieniinenn, 6-5
How to Customize the Graph Componentccooiiiiiiiiiiiiic 6-7
How to Change Graph Datacccooiiiiiiiiiiie e 6-7

7 Working with ADF Swing Controls

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
712
7.13
714

About ADF Swing-Specific CONLIOLScooouiiiiiiiiiiiene e 7-1
How to Use the JUArrayComboBox Controlcccooiiiiiiii 7-2
How to Use the JUImage CONtrolcccoiiiiiiiiiicce e 7-3
What You May Need to Know About Multimedia in ADF Swing Applications 7-4
How to Use the JULabel CONLIoleiiiiiiiiiiiiiiiie e 7-4
How to Use the Label For Controlcccoeiiiiiiiiiiiiiii e 7-5
How to Use the JULOVEditButton Controlcccccuviiiiiiieeei i ee e e e 7-6
How to Use the JUNavigationBar Controlccccooiiiiiiiiiiiii 7-6
How to Use the JUNavigationBar Control with Find Modecccceiiiiiiiiniiiiiinins 7-7
How to Disable Find Mode for ADF Swing Controls in a Panelcccoccocoiiiiiiinninns 7-8
What You May Need to Know About Iterator Bindings in Find Mode 7-8
How to Use the JURadioButtonGroupPanel Controlccccooiiiiiiiiiiiii, 7-10
How to Use the JUShuttlePanel CONtrolcceevieiiciiiieiiiieree e e sceieeeeeee e e e e e e e s ssnnnnes 7-10
How to Use the JUStatusBar CONtrol ... 7-11

8 Using Validation in the ADF Swing User Interface

8.1
8.2
8.3

About Validating Events ... 8-1
How to Use Validation With ADF Control Bindingscccccoecviiiiiiiiiiiiciccce, 8-1
How to Use Validation With ADF Swing Panelsccoooiiiiiiiiiiiiiiccceee 8-2

9 Working with an ADF Swing Login Dialog

10

9.1
9.2
9.3
9.4
9.5
9.6

About the ADF Swing Login Dialogccccoiiiiiiiiiiiii e 9-1
How to Create a Login Dialogcccooieiiiiiiii 9-2
How to Run the Application Using the Login Dialogcccovviiriiiiiieniciiiiieecic, 9-2
How to Run the Application Without the Login Dialogcc.ccccoiviiiiiiiiiiiiiies 9-3
What You May Need to Know About Customizing the Login Dialog Code 9-3
How to Modify the Login Dialog to Work with a JDBC Connectionccccceveevennenne. 9-4

Optimizing ADF Swing Application Runtime Performance

10.1
10.2

About Optimizing ADF Swing Application Runtime Performanceccccoeinennen 10-1
How to Delay Updates to ADF Business Components from ADF Swing 10-1

1

vi

10.3 What You May Need to Know About the Sync Mode Property ..., 10-3
10.4 How to Limit Fetching of ADF Business Components Attributes in ADF Swing 10-3

Using Java Web Start With ADF Swing Applications

11.1 About Working with Java Web Start ..., 11-1
11.1.1 Java Web Start TechnolOgycooeiiiiiiiiiici e 11-2
11.1.2 Java Web Start and Integrated WebLogic Server ..., 11-2
11.1.3 Java Web Start and Oracle WebLogic Server ..o 11-3
11.2 How to Define ADF Business Components Runtime Propertiesccccocceevieninnnenns 11-3
11.3 How to Set Up Runtime Configuration Informationcccoccooiiiiiiiiii, 11-4
11.4 How to Create a Java Web Start JNLP Definitionccccceeiiiiiiiiiiiiiiieiie e 11-5
11.5 What Happens When You Create a JNLP Definitioncccooiiiiiiiiiiiniiiicieee 11-6
11.6 How to Run ADF Swing Applications with Java Web Start in JDeveloper 11-7

Audience

Preface

Welcome to Developing Swing Applications with Oracle Application Development
Framework.

This document is intended for enterprise developers who need to create and deploy
database-centric desktop applications using the Oracle Application Development
Framework (Oracle ADF). This guide explains how to build ADF applications that
display databound Java forms using ADF Business Components and ADF Swing.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents:

Understanding the Oracle Application Development Framework

Developing Fusion Web Applications with Oracle Application Development Framework
Developing Applications with Oracle [Developer

Developing Applications with Oracle ADF Data Controls

Developing Applications with Oracle ADF Desktop Integration

Installing Oracle | Developer

Oracle JDeveloper Online Help

Oracle [Developer Release Notes, included with your JDeveloper installation, and on
Oracle Technology Network

vii

Java API Reference for Oracle ADF Model

Java API Reference for Oracle ADF Lifecycle

Java API Reference for Oracle ADF Share

Java API Reference for Oracle ADF Model Tester

Generic Domains Java API Reference for Oracle ADF Business Components

interMedia Domains Java API Reference for Oracle ADF Business Components

Conventions

viii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to ADF Swing Applications

This chapter describes ADF Swing technology and ADF Swing architecture.
This chapter includes the following sections:

» Section 1.1, "About ADF Swing"

» Section 1.2, "Creating a Desktop Application That Works with Oracle ADF"

= Section 1.3, "What Happens When You Create a Desktop Application with ADF
Swing"

s Section 1.4, "Connecting to Business Components"

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 About ADF Swing

ADF Swing is a technology for developing databound Java clients that simplifies
coding the interaction between Swing components and business services. ADF Swing
consists of the following:

= Java classes and an API for binding Swing components to business services
= XML data definition and configuration files

= Design-time tools, including wizards, for creating databound Java forms

= Several user interface components which extend certain Swing components

In Oracle Application Development Framework (Oracle ADF), you can use ADF
Swing to work with a number of business services on the back end, including ADF
Business Components, Enterprise Java Beans, and web services.

JDeveloper provides tools and wizards to enable your development with ADF Swing,
a technology for developing databound Java clients. These databound Java clients
simplify coding the interaction between Swing components and business services in
an Oracle ADF application.

In addition, JDeveloper also provides several ADF Swing-specific editing tools,
including the ADF Swing wizards to create and edit Swing panels and forms.

1.1.1 Advantages of Using ADF Swing

The advantages of using ADF Swing to build Java Swing clients include the following:
= Wizards create ADF Swing forms quickly

» Binding to data sources is supported for any model-based controls, including:

Introduction to ADF Swing Applications 1-1

About ADF Swing

- Standard Swing components
— JDeveloper-provided ADF Swing components
— Third party model-based add-in components
= XML data definitions provide for easy reuse of ADF Swing frames and panel.

= Remote methods from the model layer ADF Business Components are available to
the Java client through direct ADF bindings.

Desktop applications using ADF Swing and ADF Business Components do not need to
implement data access and update logic. ADF Swing and ADF Business Components
cleanly separate data access code from Ul code resulting in thin clients without the
burden on the view layer. Additionally, data access is improved with ADF Swing
because its binding to ADF Business Components allows it to take advantage of the
numerous performance features implemented in ADF Business Components. And
because ADF Swing relies on the model-view-controller architecture, designing ADF
Swing forms is no different than working with Swing components.

Your Java client code is further simplified because you'll never need to change the way
you access ADF Business Components, regardless of how they are deployed. Instead,
features of ADF Business Components let desktop applications connect to application
modules through a simple configuration definition file. The Java client code remains
unchanged for any deployment scenario, whether:

= ADF Business Components are deployed locally in the same VM as ADF Swing
= ADF Business Components are deployed remotely using EJB

1.1.2 ADF Swing Architecture

ADF Swing is the technology in Oracle ADF that facilitates building databound Java
clients using Swing components. The ADF Swing API consists of a set of Java classes
that take advantage of features in Oracle ADF to build a Java Ul that is bound to
back-end business services. Oracle ADF helper classes handle the communication
between the client and the business services.

1.1.2.1 Swing MVC

ADF Swing architecture is based on a Model-View-Controller (MVC) pattern. With
MVC there are three communication objects logically separated for each component:

s The Model represents the data or state of the component and is its underlying
logical representation.

s The View is the component's visual representation, which describes how it looks
(for example, whether it is a button or some other control, whether it uses text or
icons, or what border and color it uses).

s The Controller specifies the interaction with the client (how to interpret user
input). The controller notifies registered listeners when the user types text, clicks a
button, tabs to the next field, and so forth.

For example, a JCheckBox is a Swing component which has a defined Model, View,
and Controller. When the user interacts with the controller by clicking the checkbox,
the controller notifies the model that it should change its state (from false to true or the
reverse). The view, which is listening for changes in the state of the model, can then
update itself (for example, by making the checkbox appear selected). An important
point about this architecture is that the model is not aware of the view or views
displaying it, nor of the controller(s) being used to update it.

1-2 Developing Swing Applications for Oracle Application Development Framework

Creating a Desktop Application That Works with Oracle ADF

The Swing API lets you set the model for every component using the component's
model or, in some cases, document property. In Swing, the model for any subclass of
JTextComponent is named document which is accessed using the setDocument () and
getDocument () methods. The standard Swing JLabel component does not represent
data and therefore does not follow the MVC architecture. However, ADF Swing
provides a JULabel component to overcome this limitation when you want to assign
labels using business component data.

1.1.2.2 Oracle Application Development Framework

When you develop a desktop application using ADF Swing as the client technology,
you take advantage of the Java EE and Model-View-Controller architecture of Oracle
ADFE.

For more information about Oracle ADEF, see "Introduction to Building Fusion Web
Applications with Oracle ADF" in Developing Fusion Web Applications with Oracle
Application Development Framework.

1.2 Creating a Desktop Application That Works with Oracle ADF

You can create Java desktop applications that rely on standard Swing components and
obtain the advantages of Oracle ADF in your application. In this document, the ADF
Java desktop application is called the ADF Swing application. When you create ADF
Swing applications in JDeveloper:

= You can work with the ADF Swing wizards in the JDeveloper New Gallery to
quickly generate databound forms and panels.

= You can work with the Data Controls panel to quickly add databound Swing
components to your ADF Swing forms and panels.

After you generate ADF Swing forms and panels, you can proceed to customize the
appearance of your forms using the Java visual editor.

To create an ADF Swing application:
1. Choose File > New > From Gallery from the JDeveloper menu.

2. In the New Gallery, expand General category and double-click Java Desktop
Application from the Items list.

3. Use the Create Java Desktop Application wizard to name the application and the
project.

This creates an ADF Swing application that will include ADF Business
Components for the business services in the data model project. For more
information, see "Getting Started with ADF Business Components" in Developing
Fusion Web Applications with Oracle Application Development Framework, "Getting
Started with ADF Business Components".

Note: To avoid application errors, it is necessary to develop the
business services and Java client application in separate project
folders. The JDeveloper application template will create separate
project folders in your workspace.

4. In the Applications window, select the data model project and choose File > New
> From Gallery.

Introduction to ADF Swing Applications 1-3

What Happens When You Create a Desktop Application with ADF Swing

10.

11.

12.

13.

In the New Gallery, expand Business Tier - ADF Business Components and
double-click Business Components from Tables from the Items list.

Use the Initialize Business Components Project dialog to create a connection to the
database that contains the tables that you want to base your business components
on.

For more information, see "How to Initialize the Data Model Project With a
Database Connection" in Developing Fusion Web Applications with Oracle Application
Development Framework.

Use the Create Business Components from Tables wizard to populate the business
components in your data model project.

For more information, see "How to Create Multiple Entity Objects and
Associations from Existing Tables" in Developing Fusion Web Applications with
Oracle Application Development Framework.

In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

In the New Gallery, expand Client Tier and expand ADF Swing and then
double-click Empty Form or Empty Panel.

Use the ADF Swing wizard or dialog to add the ADF Swing form or panel to your
user interface project.

The file opens in the Java visual editor. For more information, see Chapter 2,
"Creating ADF Swing Forms and Panels."

Note: You must use the ADF Swing wizards to generate. java files
with the necessary bootstrap code. Do not use a generic Java panel or
class to design databound Java clients.

In the Applications window, expand the Data Controls panel and use it to insert
databound UI components into the open document.

For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

(Optionally) Use the Data Controls panel to insert business service actions into the
open document.

For more information, seeSection 3.8, "Binding a Method with Parameters in an
ADF Swing Form."

Define the ADF bindings in their corresponding binding editors to specify the
required properties of the binding.

For more information, see Chapter 5, "Customizing ADF Bindings."

1.3 What Happens When You Create a Desktop Application with ADF

Swing

In an ADF Swing application, data binding between the Swing controls and the
business services' data sources relies on the creation a set of ADF Swing objects that
closely resemble the UI containers used to assemble the ADF Swing forms. You can see
these containers and their ADF Swing-specific code when you use the ADF Swing
Form wizard to generate a complete application. For example, assuming a

1-4 Developing Swing Applications for Oracle Application Development Framework

Connecting to Business Components

master-detail type form, based on a Dept and Emp view object, the wizard generates the
following classes:

ms FrameDeptViewEmpViewl -- extends ADF SwingFrame (a dummy implementation of
the ADF SwingPanel interface)

= MDPanelDeptViewEmpViewl -- extends JPanel and implements ADF SwingPanel
m PanelDeptView -- extends JPanel and implements ADF SwingPanel
m PanelEmpViewl -- extends JPanel and implements ADF SwingPanel

where JPanel is a Swing class, and ADF SwingFrame and ADF SwingPanel are part of
ADF Swing and constitute your application’s data browsing panels.

The resulting project files, together with the model reference in the ADF Swing panel
or form shown in Example 1-1, permit the databound UI components to access the
ADF model layer at runtime.

Example 1-1 Model Reference in an ADF Swing Form

(panel.setBindingContext (JUTestFrame.startTestFrame ("DataBindings.cpx",
"null", panel, panel.getPanelBinding(), new Dimension (400, 300)));)

For more information, see to Section 4.1, "About Working With Data Binding."

The DataBindings. cpx file maps individual pages to page definition files and declares
usages of the data control defined in the DataControls.dcx file. The.cpx file defines
the Oracle ADF binding context for the entire application and provides the metadata
from which the Oracle ADF binding objects are created at runtime.

1.4 Connecting to Business Components

ADF Swing applications use ADF Business Components to connect to deployed
business service. The ADF Swing application relies on a bc4j.xcfg configuration file
to define the server connection information. The file defines all of the deployment
configurations of a particular application module in the data model project and
permits ADF Swing forms to access a specific view object belonging to the application
module.

You can edit the configuration file to update the connection information that the ADF
Swing application uses to identify the ADF Business Components application
module's deployment scenario.

Note: If you edit a configuration in the bc4j.xcfg file and change
the deployment platform (Middle Tier Server Type option), you will
need update your data model project to add the libraries for the new
platform. Choose Deploy to projectname.jar on the Common and
Middle Tier archives for the deployment archive your created in your
data model project.

1.4.1 How to Modify the Configuration Name

In JDeveloper you can create and edit the configurations using the Configuration
Manager by right-clicking on the application module node in the Databases Window
and selecting Configurations. In JDeveloper, the Configurations page of the overview
editor for application module lets you create a new configuration and change the
default configuration.

Introduction to ADF Swing Applications 1-5

Connecting to Business Components

1.4.2 How to Modify the Configuration File

JDeveloper places the bc4j . xcfg file in a common directory in the ADF Business
Components package it generates in /myclasses. For example, a bc4j . xcfg file that
you generate for an ADF Business Components package named OnlineOrders would
appear in:

<jdev_install>/myclasses/OnlineOrders/common/bc4j.xcfg

Note: If you modify the configuration file that the application uses,
you must rebuild the data model project to make the configuration
available to the ADF Swing client.

You do not deploy the configuration file when you deploy the ADF Swing application.
The person responsible for deploying the ADF Business Components application
module will automatically deploy the bc4j.xcfg file as a subdirectory of the
application module classes directory. You need only be sure that the deployed

bcdj . xcfg file contains a configuration that you specify for use with your ADF Swing
application and that the configuration information is correct.

1.4.3 What You May Need to Know About the Client Application Libraries

When you create or update a runtime configuration (for the bc4j.xcfg file),
JDeveloper updates several application libraries. One of the libraries contains class
files common to the ADF Swing user interface project and ADF Business Components
data model project (it will have a name like Workspacel_jws_Projectl_jpr_
ClassesMypackagelModuleLocal), which are required by JDeveloper to compile and
run your ADF Swing application. JDeveloper updates this library based on the most
recently saved configuration definition. Consequently, you may need to reedit a data
model definition to update the library with the desired classes. Also, when you move
the user interface project and the data model project to a new installation, you must
move all named user library' definitions. All the user libraries appear in the
libraries.xml file in the <jdev_install>/systenm folder, and it is necessary to copy
this file to the new JDeveloper installation.

1-6 Developing Swing Applications for Oracle Application Development Framework

2

Creating ADF Swing Forms and Panels

This chapter describes how to create ADF Swing forms and panels using design-time
wizards. The wizards help you to build Ul clients in Java that display ADF Swing
forms using standard JFC/Swing components bound to business service data
collections.

This chapter includes the following sections:

= Section 2.1, "About Creating ADF Swing Forms and Panels"

= Section 2.2, "Process for Creating ADF Swing Panels and Forms"

» Section 2.3, "What Happens When You Create an ADF Swing Form"

= Section 2.4, "What You May Need to Know About ADF Swing Code Generation"

= Section 2.5, "What You May Need to Know About Business Components Attribute
Settings"

s Section 2.6, "How to Create a Client Data Model Definition"

= Section 2.7, "How to Create a Single Table ADF Swing Form"

» Section 2.8, "How to Create a Master-Detail ADF Swing Form"

= Section 2.9, "How to Create an Empty ADF Swing Form"

= Section 2.10, "How to Create an Empty ADF Swing Panel"

= Section 2.11, "How to Create ADF Swing Edit Forms from the Data Controls Panel"
» Section 2.12, "How to Create ADF Swing Forms from the Databases Window"

2.1 About Creating ADF Swing Forms and Panels

A data browsing panel displays controls through which the user can view and edit
data. Therefore, it has a set of controls declared and instantiated as fields. The data
browsing panel receives its panel binding from the parent frame or panel (through a
setBindingContext () call):

panel.setBindingContext (panelBinding.getBindingContext ()) ;

After the parent container creates the data browsing panel and its panel binding,
jbInit () is called. In the jbInit () method, the control is bound to attributes.

In Example 2-1, textFieldDeptName is a JTextField component that is bound to the
DepartmentName attribute of the underlying business service, where the identifier
DepartmentName is a reference to a definition in the PageDef . xm1 file (the file defines
the binding container). The binding container keeps a list of iterator bindings. Each
iterator binding specifies the view object instance and (optionally) the row set iterator.

Creating ADF Swing Forms and Panels 2-1

About Creating ADF Swing Forms and Panels

Example 2-1 JTextField Component Bound to DepartmentName Attribute

textFieldDeptName. setDocument ((Document)panelBinding.bindUIControl
("DepartmentName", textFieldDeptName)) ;

At runtime, when setDocument () is called, ADF Swing looks for a control binding by
the specified name (DepartmentName). If one is found in the binding context for the
form, ADF Swing uses that control binding’s associated iterator binding to access the
value.

2.1.1 ADF Swing Design Time Wizards

Functionally, ADF Swing is divided into design time and runtime. Because the design
time is fully integrated with the JDeveloper IDE through a set of wizards and dialogs,
JDeveloper helps you to generate an ADF Swing application quickly. The ADF Swing
design time generates code with hooks into the ADF Swing runtime.

You can use ADF Swing wizards and dialogs without a full command of the ADF
Swing runtime APIs. The design time helps you to build desktop applications that
display ADF Swing forms using standard JFC/Swing components bound to business
service data collections. The control bindings you add to standard Swing controls,
using the ADF Swing design time, allow your ADF Swing forms to get and set values
on the business components.

The following list of ADF Swing wizards and dialogs together with the JDeveloper
IDE, help you to quickly build, run, and test an ADF Swing application or applet. You
can later modify ADF Swing forms by adding more sophisticated controls and Java
code to enhance your application.

s Create ADF Swing Form

s Create ADF Swing Panel

s Create ADF Swing Empty Form
s Create ADF Swing Empty Panel
m Create Java Web Start File

2.1.2 A Typical ADF Swing Form

When an ADF Swing form has been deployed to a client machine, users can use it to
display and manipulate data in the form. Figure 2-1 shows an example of an ADF
Swing form displayed in a frame window.

2-2 Developing Swing Applications for Oracle Application Development Framework

About Creating ADF Swing Forms and Panels

Figure 2-1 Typical ADF Swing Form

File Database Help

RiC/2 A+ XD 0 &>

Hame Acme Sporting Goods

Sales Rep Mame Mages

Address 770 4th Rve

City San Diego
State CA

Country 4
Zip code 92101

Order Average 5000

€< 2P XD R R

Customer Id Customer Mame Sales RepName Date Ordered Date Shipped Sales Rep Id
15-04-2013

|15-04-2013

1

h:w 3 Modified:false Navigating: Customers

At the top of the form is a menu bar. Below the menu bar is a navigation bar that
controls the navigation of data in the master table. A navigation bar at the bottom of
the form allows users to navigate and interact with the detail table.

In this example, the master table is the Orders table. Several databound text field
controls represent columns in the Orders table and display ORDER_ID, ORDER_
DATE, ORDER_SHIPPED_DATE, and ORDER_TOTAL. The form uses a databound
grid control to display data from the detail Orderltems table.

When data is entered in the Order Id field, the ADF Swing form uses the master-detail
association between the Orders and Orderltems tables to locate data that is displayed
in the grid control. The columns from the detail table displayed in the grid control are
ORDER_ID, PRODUCT_ID, QUANTITY, and UNIT_PRICE. Finally, the form contains
a status bar that provides status about the data displayed on the form.

2.1.3 Navigation in an ADF Swing Form

Table 2-1 highlights the actions you can take using the navigation bar to interact with
an ADF Swing form.

Table 2-1 Navigation Actions

To perform this action: Click

Navigate through data in a form
(first, previous, next, last).

Insert data in a row below the
selected row

Delete a selected row.

Save changes to the database.

Undo changes made in a form.

Creating ADF Swing Forms and Panels 2-3

Process for Creating ADF Swing Panels and Forms

Table 2-1 (Cont.) Navigation Actions

To perform this action: Click

Toggle the behavior of the panel to @
support Find mode or not. In Find

mode, you use the panel to enter
parameters to modify the query.

Executes the query associated with
the panel. When the panel is set to
use Find mode, this executes a query
by example.

2.2 Process for Creating ADF Swing Panels and Forms

The process you follow to create ADF Swing panels and forms for an ADF Swing
application is similar to the processes for creating user interfaces using other ADF
client technologies. The main differences are that you do not create a page flow based
on a controller, and there are several ADF Swing-specific editing tools, including the
ADF Swing wizards.

1.

9.

Create the application workspace and select the ADF Java Desktop Application
application template.

For more information, see Section 1.2, "Creating a Desktop Application That
Works with Oracle ADE."

Create the data model project for your business components.

Add an ADF Swing panel or form to the user interface project. There are several
ways to do this:

= Add an empty ADF Swing form to the user interface project.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form.".

» Create the ADF Business Components project.

= If you are using ADF Business Components, you can add an ADF Swing form
that is already bound to view objects and attributes you choose.

For more information, see Section 2.1.1, "ADF Swing Design Time Wizards."

= If you are using ADF Business Components, you can add to the user interface
project an ADF Swing panel that is already bound to view objects and
attributes.

Open the form or panel in the Java visual editor.

Use the Components window to insert Swing controls that will not be databound,
for example layout components such as JScrollPane.

Use the Data Controls panel to insert databound UI components into the ADF
Swing frame or panel.

Use the Structure window to browse the Ul components and data bindings of the
page.

Use the Properties window to modify attributes of the page's UI components and
data bindings.

Use the ADF binding editors to modify the characteristics of bound controls.

10. When all edits are complete, build the user interface project.

2-4 Developing Swing Applications for Oracle Application Development Framework

What You May Need to Know About ADF Swing Code Generation

11. Run or debug the application using JDeveloper.

12. After you have debugged your user interface project, you can test deployment
using Integrated WebLogic Server in JDeveloper and Java Web Start
application-deployment technology. Java Web Start lets users download
applications and applets using a web browser but runs the application entirely on
the client without the need for a web browser.

For more information, see
http://www.oracle.com/technetwork/java/javase/overview-137531
.html.

13. Deploy the production ADF Swing application and business services to the
production web server using the generated Web Application Archive (WAR) files.

14. With Java Web Start installed on the client machines, users can easily download
and launch the application. Java Web Start handles updates that you make to the
application on the web server each time the user launches the application.

2.3 What Happens When You Create an ADF Swing Form

When you use the Create ADF Swing Form wizard to generate an ADF Swing
application with master and detail panels based on an ADF Business Components data
model, the wizard generates a container panel within an ADF Swing frame. This panel
is known as the layout panel because it groups several data panels together. In
addition to functioning as a UI container for one or more data browsing panels, the
layout panel is able to maintain the data context for the contained data panels through
its shared binding context.

Note: While the layout panel is generated by the Create ADF Swing
Form wizard, it is not an essential part of the ADF Swing application.
It is described here primarily to demonstrate how the ADF Swing
application maintains a data context between data browsing panels
through a shared binding context.

The binding context from the application frame can be passed to its contained ADF
Swing panels by a call to the panel's setBindingContext () method, as shown in
Example 2-2:

Example 2-2 Passing Binding Context to ADF Swing Panel

// get the binding context from the frame
BindingContext _bctx = panelBinding.getBindingContext () ;
// pass the context to the first child panel
dataPanel.setBindingContext (_bctx) ;

//alternatively you can use
dataPanel.setBindingContext (panelBinding.getBindingContext ()) ;

2.4 What You May Need to Know About ADF Swing Code Generation

When you run an ADF Swing wizard in the ADF Swing section of the New Gallery,
the wizard helps you to generate:

= A complete, databound Swing application, consisting of multiple ADF Swing
forms

Creating ADF Swing Forms and Panels 2-5

What You May Need to Know About Business Components Attribute Settings

Individual ADF Swing forms that you can use to assemble your own databound
Swing application

Empty ADF Swing forms that you can use to add databound Swing components

The wizards generate ADF Swing forms that contain standard Swing components to
display the data. Before you run one of the ADF Swing wizards, you can change
aspects of the way code-generation works for these components. Specifically, you can
select among code-generation options in the ADF Swing pages of the Preferences
dialog.

You can specify that:

The Java visual editor should be opened whenever you create a new form or data
panel.

The user interface project should be built with the specified additional import
statements.

The user interface project should be built with additional libraries, for example
when you want to use your own form components. In this case, you may have
added custom components and choose to assemble an ADF Swing form starting
with an empty ADF Swing form.

The Create ADF Swing Form wizard and the Create ADF Swing Panel wizard
should generate forms that use standard Swing components or your own custom
implementations. Currently, you can substitute components for the navigation bar,
status bar, text field, and text area that appear in ADF Swing forms.

The Create ADF Swing Form wizard should generate a single navigation bar in
forms that contain more than one data panel (for example, a master-detail form).
Normally, the wizard will create each data panel with its own navigation bar.
Creating a form with only one navigation bar looks visually cleaner, but requires
the user to change focus between the data panels to navigate the desired row set.

2.5 What You May Need to Know About Business Components Attribute

Settings

You can specify whether a form allows querying or editing of specific attributes by
setting these flags for individual view object attributes in the data model project:

Queryable

You can prevent the displayed attribute from participating in a query that the user
initiates on the form in Find mode. Open the view object overview editor and
deselect Queryable in the Attributes Details panel for the attribute.

Updatable

You can prevent the user from editing displayed attributes. Open the view object
overview editor and select Never Updatable in the Attributes Details panel for the
attribute.

2.6 How to Create a Client Data Model Definition

ADF Swing applications require a client data model definition to connect to ADF
Business Components view objects. You use the Create ADF Business Components
Client Data Model Definition wizard to add one or more client data model definitions
to the DataBindings. cpx user interface configuration file.

2-6 Developing Swing Applications for Oracle Application Development Framework

How to Create a Single Table ADF Swing Form

Note:]Developer updates several application libraries based on the
most recently saved data model definition. If you create or edit a data
model definition, but want to run your project with a different data
model definition, then you must open the desired data model
definition in the Create ADF Business Components Client Data Model
Definition wizard as described below and save it. This action
generates the appropriate classes.

Before you begin:
You will need to complete these tasks:

1.

Create a data model project for your business components.

In order to define a client data model, you must first create a project with an ADF
Business Components application module.

Compile the data model project.

To create a client data model definition on a new user interface project:

1.

In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

You must launch the ADF Business Components Client Data Model Definition
wizard within the ADF Swing form and panel wizards.

In the New Gallery, select Client Tier and ADF Swing and then double-click Form
or Panel.

In the new form or panel wizard, on the Data Model page, click New.

Alternatively, you can complete the ADF Swing wizard that you launched to
create the form or panel. And, then you can delete the generated form or panel if
you do not want to use it in your project. The new DataBindings.cpx
configuration file will remain.

In the ADF Business Components Client Data Model Definition wizard, select the
desired application module and runtime configuration.

Click Finish to save the changes to the new DataBindings. cpx configuration file.

To edit a client data model definition in an existing user interface project:

1.

In the Applications window, expand the user interface project and select the
DataBindings.cpx configuration file.

From the main menu, choose Window > Structure.

In the Structure window, expand dataControlUsages and select the data control
definition that you want to modify.

Optionally, right-click the data control node and choose Delete.

In the Properties window, edit data control attributes.

2.7 How to Create a Single Table ADF Swing Form

Use the Create ADF Swing Form wizard to create a single table form derived from the
data model of an existing ADF Business Components project.

Creating ADF Swing Forms and Panels 2-7

How to Create a Master-Detail ADF Swing Form

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

To create a user interface project with single table ADF Swing forms:

1. In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

2. In the New Gallery, expand Client Tier and ADF Swing and then double-click
Form.

3. In the Create ADF Swing Form wizard, on the Form Types page, the ADF Swing
form type Form appears preselected for use in an application.

If you want to create an applet, choose type Applet.
4. On the Form Types page, select Single Table and click Next.
5. Make selections to define the form appearance.

6. On the Data Model page, select an existing data model definition or click New to
create a data model definition that specifies an application module that you wish
to develop against.

7. Click Next.

8. On the remaining pages, make selections appropriate to specify the data your form
is to display.

9. Click Finish.

2.8 How to Create a Master-Detail ADF Swing Form

A master-detail relationship is an association between two or more view objects
defined in an ADF Business Components data model. You can generate ADF Swing
forms which rely on those master-detail relationships. The values in the master form
determine which detail records will be displayed.

Within an ADF Business Components data model you can define the following types
of master-detail relationships:

= Master form to detail form
= Master form to multiple detail forms
s Cascading master-detail relationships (master-detail-detail forms)

The easiest way to generate this type of ADF Swing form is launch the ADF Swing
Form wizard and choose Master-Detail Tables in the wizard. When you are finish the
wizard, your project will contain:

= A main frame that contains the ADF Swing bootstrap code
= A master data panel that displays the master view object data
= A detail data panel that displays the detail view object data

= A master-detail data panel that is used to parent the individual master and detail
data panels

2-8 Developing Swing Applications for Oracle Application Development Framework

How to Create an Empty ADF Swing Form

By default, both data panels will contain their own navigation bar. The navigation bar
displayed in the master data panel lets users navigate the rows of the master row set
while viewing the accompanying details in the detail panel. Whereas, users navigate
the detail data panel to see individual rows bound to the current master.

You can force the ADF Swing Forms wizard to generate a master-detail form with a
single navigation bar by setting an ADF Swing code generation preference in the
Preference dialog. Creating an ADF Swing form with only one navigation bar looks
visually cleaner, but requires the user to change focus between the data panels to
navigate the row set.

Use the Create ADF Swing Form wizard to create master-detail forms derived from the
data model of an existing ADF Business Components project.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

To create a user interface project with single table ADF Swing forms:

1. In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

2. Inthe New Gallery, expand Client Tier and ADF Swing and then double-click
Form.

3. In the Create ADF Swing Form wizard, on the Form Type page, the ADF Swing
form type Form appears preselected for use in an application.

If you want to create an applet, choose type Applet.
4. Select Master-Detail Table and click Next.
5. Make selections to define the form appearance.

6. On the Data Model page, select an existing data model definition or click New to
create a data model definition that specifies an application module that you wish
to develop against.

7. Click Next.

8. On the remaining pages, make selections appropriate to specify the data your form
is to display.

9. Click Finish.

2.9 How to Create an Empty ADF Swing Form

Use the Create ADF Swing Empty Form dialog to create a frame that contains the ADF
Swing code to share a panel binding from the business components in an existing data
model project.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

Creating ADF Swing Forms and Panels 2-9

How to Create an Empty ADF Swing Panel

In order to use business components with your ADF Swing forms, you must first
create a project with business services implementation, for example an ADF
Business Components application module.

Compile the data model project.

To create a user interface project with an empty form:

1.

4.

In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

In the New Gallery, expand Client Tier and ADF Swing and then double-click
Empty Form.

In the Create ADF Swing Empty Form dialog, define the empty form and click
OK.

You can proceed to add data panels and databound controls to your new empty
form.

For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

2.10 How to Create an Empty ADF Swing Panel

You can use the Create ADF Swing Panel wizard or the Create ADF Swing Empty
Panel dialog to quickly create a data panel. While the Create ADF Swing Panel wizard
generates a complete data panel that you can add to a frame in your application, the
ADF Swing Empty Panel dialog contains no control bindings. Both wizards generate
the code needed to initialize an ADF Swing panel binding.

After you add the new panel class to your user interface project, you can add the panel
from an existing ADF Swing form or panel.

Before you begin:
You will need to complete these tasks:

1.

Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

Compile the data model project.

To add single table data panel using the Create ADF Swing Panel wizard:

1.

In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

In the New Gallery, expand Client Tier and ADF Swing and then double-click
Panel.

In the Create ADF Swing Panel wizard, select a template to lay out the panel
components.

On the Data Model page, select an existing data model definition or click New to
create a data model definition that specifies an application module that you wish
to develop against.

On the remaining pages, make selections appropriate to specify the data your form
is to display.

Click Finish.

2-10 Developing Swing Applications for Oracle Application Development Framework

How to Create ADF Swing Edit Forms from the Data Controls Panel

To add an ADF Swing data panel using the ADF Swing Empty Panel dialog:
1. In the Applications window, select the user interface project and from the main
menu, choose File > New > From Gallery.

2. Inthe New Gallery, expand Client Tier and ADF Swing and then double-click
Empty Panel.

3. In the Create ADF Swing Empty Panel dialog, enter a class name for the new
empty data panel and click OK.

4. You can open the new panel class in the Java visual editor and add controls.

For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

To link the completed ADF Swing data panel with your application:
After you have created a new ADF Swing data panel, you can reuse the data panel in
your application by:

= Adding it to an existing layout panel (for instance, the one created by your main
ADF Swing frame).

For more information, see Section 3.6, "How to Drop Data Panels Onto an Empty
ADF Swing Form."

s Creating an ADF Swing frame using the ADF Swing Empty Form wizard and add
it there.

For more information, see Section 3.6, "How to Drop Data Panels Onto an Empty
ADF Swing Form."

2.11 How to Create ADF Swing Edit Forms from the Data Controls Panel

You can use the Data Controls panel to create a databound form that permits editing of
the displayed values using controls that you select. The form will be created for the
objects of a data collection that you select.

Note: The Data Controls panel may appear empty when you first
open it. Compile the data model project to populate the panel with
data objects.

Before you begin:
You will need to complete these tasks:

1. Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

2. Compile the data model project.

When your data model project uses ADF Business Components as its business
service, JDeveloper registers the business service as an ADF data control for you.

To create the editable form in an existing panel in the Java visual editor:
1. Create an empty ADF Swing form or panel using the wizards.

For more information, see Section 2.2, "Process for Creating ADF Swing Panels and
Forms."

Creating ADF Swing Forms and Panels 2-11

How to Create ADF Swing Forms from the Databases Window

2. Open the form in the Java visual editor and click the Design tab.
3. In the Applications window, click the expand icon in the Data Controls header.

4. In the Data Controls panel, drag the desired data collection into the open form or
panel.

5. Select Add Edit Form from the popup list.

6. Inthe Create ADF Swing Edit Form dialog, select the attribute you don't want to
display and click the Delete button.

7. Optionally, select an attribute and click the up or down arrow to change the
attribute's display position in the form.

8. Optionally, select the Control dropdown and choose a control to display the
attribute value.

9. Optionally, deselect Create Label for an attribute if you do not want to display a
label.

By default, the attribute ID is used for the display label. Alternatively, if a control
hint label exists for the business object attribute, the label will use the control hint
instead of the attribute ID. Leave Create Label selected.

10. Click OK to save the settings.
JDeveloper creates the edit form as a new panel inside the open form or panel.
11. In the Java visual editor, resize the new edit form panel to view the controls.

The edit form uses the JGoodies FormLayout manager for flexible component
layout.

The source for the edit form panel appears in the file
Panel<collectionname>Helper.java and the panel's control binding definitions appear
in Panel<collectionname>HelperPageDef.java.

You can improve the performance of your ADF Swing application by defining the
fetchAttributeProperties () method in your form. This will ensure your form
performs in batch mode to fetch attribute values. For more information, see

Section 10.4, "How to Limit Fetching of ADF Business Components Attributes in ADF
Swing."

2.12 How to Create ADF Swing Forms from the Databases Window

Use the Databases Window to create a databound form that permits editing of the
displayed values using controls that you select. The form and the necessary data
bindings will be created for the database table that you select.

To create the form in an existing panel in the Java visual editor:
1. Create an empty ADF Swing form or panel using the wizards.

For more information, see Section 2.2, "Process for Creating ADF Swing Panels and
Forms."

2. Open the form in the Java visual editor and click the Design tab.
3. In the Properties window, select BorderLayout from the layout dropdown list.

For more information, see to Section 3.7, "How to Lay Out Data Panels in an
Empty Swing Form.".

2-12 Developing Swing Applications for Oracle Application Development Framework

How to Create ADF Swing Forms from the Databases Window

10.

In the Components window, open the Swing Containers page and select the
JScrollPane component.

Click inside the empty form in the Java visual editor to drop the scroll pane with
its default size.

Resize the scroll pane.
From the Window menu, choose Database > Databases.

In the Databases window, drag the desired database table onto the open form or
panel on top of the scroll pane.

When you want to create an editable form, select Add Edit Forms from the popup
list.

For more information, see Section 2.11, "How to Create ADF Swing Edit Forms
from the Data Controls Panel."

Alternatively, add a specific component to the empty form by choosing Add
Child.

For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

After you lay out the data panel or form, you can improve the performance of your
ADF Swing application by defining the fetchAttributeProperties () method in your
form. This will ensure your form performs in batch mode to fetch attribute values. For
more information, see Section 10.4, "How to Limit Fetching of ADF Business
Components Attributes in ADF Swing."

Creating ADF Swing Forms and Panels 2-13

How to Create ADF Swing Forms from the Databases Window

2-14 Developing Swing Applications for Oracle Application Development Framework

3

Modifying ADF Swing Forms and Panels

This chapter describes how to customize an ADF Swing application using the Java
visual editor. You use the Data Controls panel to insert databound UI components into
an ADF Swing-prepared form or panel.

This chapter includes the following sections:

= Section 3.1, "About Modifying ADF Swing Forms and Panels"

= Section 3.2, "How to Assemble ADF Swing Forms Using the Java Visual Editor"
= Section 3.3, "How to Insert Ul Components into ADF Swing Panels"

= Section 3.4, "How to Change Client Data Model References"

= Section 3.5, "How to Open an ADF Swing Form with an Action Handler"

= Section 3.6, "How to Drop Data Panels Onto an Empty ADF Swing Form"

= Section 3.7, "How to Lay Out Data Panels in an Empty Swing Form"

= Section 3.8, "Binding a Method with Parameters in an ADF Swing Form"

3.1 About Modifying ADF Swing Forms and Panels

After you generate ADF Swing forms and panels using the ADF Swing wizards, you
may want to customize the generated application files. JDeveloper helps you
customize the application using the visual tools. For example, you can use the Data
Controls panel to insert already databound UI components into an ADF
Swing-prepared form or panel.

3.1.1 Value Bindings for the Entire Collection or Data Object

The Data Controls panel provides Ul components that you can use to bind an entire
data collection (which consists of data objects that comprise a row set), as shown in the
Table 3-1.

Table 3-1 Ul Components That Can Be Bound to an Entire Data Collection

Ul Component Drag and Drop As ADF Binding Type
101 fvelles |constantin Table Table binding

102 Facing Harrizon

Manisha
104 SLtherland Hartizon

105 MacGrawy Matthiaz

Modifying ADF Swing Forms and Panels 3-1

About Modifying ADF Swing Forms and Panels

Table 3—-1 (Cont.) Ul Components That Can Be Bound to an Entire Data Collection

Ul Component Drag and Drop As ADF Binding Type
ayr_ Marisha] Combo Box List binding in

Bles onstartin

Navigation mode
Pacing

Harrizon

| Manizha
Futherland Harrison
acGrawe Matthias

ot Weles Constartin & List (inside a ScrollPane) List binding in
0z Pacing Harrizon j Navigation mode
Manizha
94 Emhfrland [—l‘alris.on LI
- Spinner List binding in
Navigation mode
 welles Radio Button Group List binding in
 Pacinn Navigation mode
i Taylor
. NavigationBar Iterator binding
RE 22 XD R a6
| Customers Tree Tree bll’ldlng
sl WElles
@ Pacing
Graph Graph binding
60
W s eries 1
:‘; Eﬁ O 5eriesz
A W 5 eriesz
Group A [&eries4
Graup B M Seriess
| Slider Scroll binding
1]
-l ScrollBar Scroll binding
Il
=

3.1.2 Value Bindings for Individual Data Object Attribute Values

The Data Controls panel provides Ul components that you can use to bind a single
data object attribute, as shown in Table 3-2.

Table 3-2 Ul Components That Can Be Bound to a Single Data Object Attribute

Ul Component Drag and Drop As ADF Binding Type
TextField Attribute binding
Tav\or|
Edit Pane Attribute binding
asdfasdi|
JULabel Attribute binding

Last Name

3-2 Developing Swing Applications for Oracle Application Development Framework

How to Assemble ADF Swing Forms Using the Java Visual Editor

Table 3-2 (Cont.) Ul Components That Can Be Bound to a Single Data Object Attribute

Ul Component

Drag and Drop As

ADF Binding Type

T Label For (for ADF Attribute binding
Business Components to
display attribute's label
control hint)
e Password Field Attribute binding
The dog jumped over the lazy Text Area Attribute binding
i |
Text Pane Attribute binding
The dog
junped
over the
lazv fox.
Button LOV LOV binding
§& List Of Values Using Customers¥iewllter. . [E3
Custlasthame CustFirstharms
ieles |Cons‘tamin
Pacing Harrisoh
|MacGraw Mtatthias
Help | oK | Cancel |
st Check Box Boolean binding
Formatted Edit Field Formatted Text binding
| mm—
T Combo Box List binding in
Enumeration mode
[oo0
11500
S00
000 List List binding in
1500 Enumeration mode
Spinner List binding in

IMr. 3:

Enumeration mode

(‘: HIElD Radio Button Group List binding in
i Enumeration mode
] Progress Bar Bounded Range binding
| Scroll Bar Bounded Range binding
_
[}

[Slider Bounded Range binding

3.2 How to Assemble ADF Swing Forms Using the Java Visual Editor

The Create ADF Swing Empty Form dialog lets you create an empty form that you can
use to assemble an ADF Swing form without the need to write additional Java code.
The main () defined in the ADF Swing empty form contains ADF Swing code, known
as bootstrap code, that:

Modifying ADF Swing Forms and Panels 3-3

How to Insert Ul Components into ADF Swing Panels

Establishes a connection to a business service instance, such as an ADF Business
Components application module, that provides the data model for the form.

Creates an instance of a panel binding from the data model to provide data access
to the databound Swing components.

The bootstrap code generated by the wizard permits the ADF Swing empty form to
share its panel binding with ADF Swing data panels that you add. You can use the
Java visual editor to add the ADF Swing data panels to assemble the final databound
ADF Swing form.

Note: The Create ADF Swing Form wizard helps you generate
databound ADF Swing forms to browse and edit ADF Business
Components view objects that you select during the process of using
the wizard. If you need to create an ADF Swing form of your own
design, start with an empty form that is initially databound.

To create a databound ADF Swing form entirely within the Java visual editor:

1.

Create an empty form using the Create ADF Swing Empty Form dialog. This adds
an ADF Swing frame to your user interface project that can share a panel binding.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

Drop an ADF Swing data panel onto the ADF Swing empty form.

For more information, see Section 3.6, "How to Drop Data Panels Onto an Empty
ADF Swing Form."

3.3 How to Insert Ul Components into ADF Swing Panels

Use the Data Controls panel to insert databound controls into an ADF Swing panel.

Note: The Data Controls panel may appear empty when you first
open it. Compile the data model project to populate the panel with
data objects.

Before you begin:
You will need to complete these tasks:

1.

Create a data model project for your business components.

In order to use business components with your ADF Swing forms, you must first
create a project with an ADF Business Components application module.

Compile the data model project.

When your data model project uses ADF Business Components as its business
service, JDeveloper registers the business service as an ADF data control for you.

To insert a databound Ul component into the panel in the Java visual editor:

1.

Create an empty ADF Swing form or panel using the wizards.
For more information, see Section 2.1.1, "ADF Swing Design Time Wizards."
Open the form in the Java visual editor and click the Design tab.

In the Applications window, click the expand icon in the Data Controls header.

3-4 Developing Swing Applications for Oracle Application Development Framework

How to Change Client Data Model References

4. In the Data Controls panel, drag the data collection, attribute, or action that you
want to bind to a Ul component into the open document.

5. From the Add Child popup list, select the UI component that you want to add to
the open document.

The new UI component appears in the document you are editing.

After you lay out the data panel or form, you may improve the performance of your
ADF Swing application by defining the fetchAttributeProperties () method in your
form. This ensures your form performs in batch mode to fetch attribute values.

3.4 How to Change Client Data Model References

You do not need to edit your application code to change the data model definition it
will use to connect to your business services data source. The definition is contained
entirely in the metadata for the user interface project in two files: DataBindings. cpx
and PageDef .xml.

You might want to do this because you had been using a local configuration to test
your application in JDeveloper and you now want to change to a data model
definition that uses a remote deployment configuration. You could also decide to use
an entirely different data model defined in a different business service project. Again,
no code changes are required to accomplish this task.

To reference the new client data model definition in the ADF Swing metadata:

1. Add a new client data model definition to the DataBindings.cpx file in your user
interface project and remember the name you chose (for example,
remotedatamodel).

For more information, see Section 2.6, "How to Create a Client Data Model
Definition."

Note: If you change your data model to use an ADF Business
Components application module from a package in a different project
and the new application module is defined as Session Bean (BMT),
then you must modify the <ejb-ref> entry in the web. xnl file, as well
as update the. cpx file.

2. Optionally, you can open the DataBindings. cpx file in the XML editor and edit the
attributes of the BC4JDataControl definition:

s Choose Window > Structure to display the Structure window for the file.
s In the Structure window, select the data control node you want to modify.

s Choose Window > Properties to display the data control definition and edit
its attributes.

3. Open the PageDef .xml file in the XML editor, click the Overview tab and select
any binding that references the old data control.

4. In the Properties window, expand the Common section and select the Data Source
for the desired collection from the dropdown list. You can then select the desired
Attribute for the selected data source from the dropdown list.

Repeat for each binding in the binding definition.

Modifying ADF Swing Forms and Panels 3-5

How to Open an ADF Swing Form with an Action Handler

3.5 How to Open an ADF Swing Form with an Action Handler

You can use the ADF Swing wizards to create ADF Swing forms with various
databound controls. Later, when you want your ADF Swing forms to run from a single
main window, you can create an ADF Swing frame that contains:

The bootstrap code to create the business service client data model connection

An action event handler to open the ADF Swing form and pass it a panel binding

When the user performs an action in the UI, such as clicking a button, an event is
issued. Events are objects that describe what happened and are only reported to
registered listeners. JDeveloper generates all of this code for you. The following
procedure describes the code you must supply to open an ADF Swing form when the
button is clicked.

To define an action to open an ADF Swing form:

1.

Create a empty ADF Swing frame that creates a connection to the business service
for the form.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

Open the empty ADF Swing frame in the Java visual editor and delete the
Navigation Bar and Status Bar generated by the Create ADF Swing Empty Form
dialog.

Add a JButton control from the Components window to the data panel of the
empty form.

For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

Select the button in the Java visual editor.

In the Properties window, expand the Events section and in the actionPerformed
field enter the name of the function you want executed whenever the button is
clicked and press the Enter key.

JDeveloper takes you to a stub of your function in the source editor.

Add code to the event stub to create the ADF Swing form you want to display and
set its visible property to true:

FrameMyNewView frame = new
FrameMyNewView (getPanelBinding ()) ; frame.setVisible (true) ;

The getPanelBinding () method allows you to share the panel binding from main
ADF Swing frame. This results in the iterator bindings to be shared between ADF
Swing forms. The new frame will automatically be synchronized with the
navigation bar and status bar in the first detail of the master-detail frames.

Or

Add code to create the ADF Swing form and set a new panel binding when you
don't want the form to be synchronized with the frame that opened it:

FrameMyNewView (new
JUPanelBinding (getPanelBinding () .getApplicationName(),null)); frame.setV
isible(true) ;

3-6 Developing Swing Applications for Oracle Application Development Framework

Binding a Method with Parameters in an ADF Swing Form

3.6 How to Drop Data Panels Onto an Empty ADF Swing Form

You can assemble an ADF Swing form using existing data panels from your current
project or you can insert a new empty data panel which you can lay out with specific
controls.

To add a data panel to an ADF Swing Empty Form:
1. Open the empty form in Java visual editor and click the Design tab.

2. Choose Window > Components to display the list of Swing controls.

3. In the Components window, select ADF Swing Regions to view the existing data
panels in your project.

4. Drag the ADF Swing panel you want to reuse onto the empty panel.
5. In the Select Controls dialog, select how you want the form to handle data panel.
6. Add controls to the data panel.

For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

The ADF Swing panel that you add to an ADF Swing form receives its databinding
from the ADF binding container. When setBindingContext () is called on the form,
the binding container for the form is created together with the panel's binding
container.

3.7 How to Lay Out Data Panels in an Empty Swing Form

You can lay out any Swing panel using the FormLayout layout manager provided with
the JGoodies Form framework. The FormLayout gives you excellent grid-based control
over the placement and alignment of controls. Unlike other layouts, you can fill
components across grid cells.

To set FormLayout on an ADF data panel:
1. Open the form in the Java visual editor and click the Design tab.

2. Choose Window > Properties.

3. In the Property window, expand the Visual section and select FormLayout from
the layout dropdown list.

For more information, see "Adding Components" in Developing Applications with
Oracle JDeveloper.

4. Customize the panel layout.

For more information, see "Working with Layout Managers" in Developing
Applications with Oracle [Developer.

3.8 Binding a Method with Parameters in an ADF Swing Form

You can use the Data Controls panel to insert a button that will allow the user to
initiate an action defined by a method of your business service. If your business
service is ADF Business Components, many standard actions are predefined (such as
Create, Delete, Next, Previous, Commit, and Rollback).

Modifying ADF Swing Forms and Panels 3-7

Binding a Method with Parameters in an ADF Swing Form

3.8.1 How to Populate the Data Controls Panel with JavaBean Methods

When your business service is a JavaBean class, you must define a public method and
register the bean as an ADF data control. The method that you create may define
arguments whose values can be supplied by the ADF Swing form user.

Alternatively, you can supply the parameter values of the method in the Properties
window.

To populate the Data Controls panel with your JavaBean methods:
1. Define the JavaBean that you want your Oracle ADF application to access.

The business services appear in your data model project

2. Register the business services in your data model project with the ADF data
controls.

When your data model project uses ADF Business Components as its business
service, JDeveloper registers the data control for you.

3.8.2 How to Create an ADF Swing Form with Method Bindings

When you can create an ADF Swing form, you have the option of displaying a method
binding as a Button or Method panel. The Method panel displays a component for
each parameter and a component that display each method result.

To create an ADF Swing Form with method bindings:
1. Open the data panel in the Java visual editor.

2. In the Data Controls panel, expand the Operations folder for the data collection or
data control that displays the desired custom method.

The Data Controls panel hierarchy represents operations (such as Create and
Delete) that apply to a specific data collection in the Operations folder below the
data collection. When supported by the ADF data control for your business
service, you can also select operations (such as Commit and Rollback) that apply
to all data collections in the current document's binding context in the Operations
folder at the top branch of the hierarchy.

3. Drag the desired operation into the open document.

A method with no parameters or result is automatically added as a JButton
component to initiate the action. If the method has parameters or a return value,
JDeveloper displays a popup that lets you select how you want to add the method.
Select one of these options depending on how you want the form to display the
method binding in your application.

= Select Button when you want to add a button that will initiate the action. You
are responsible for passing parameters to the method.

= Select Method when you want to add a method panel that will display a
component for each parameter and a component to display a method result, as
needed. In the Select Controls for Parameters and Results dialog that displays,
select the components the panel will display.

JDeveloper adds code to the class file to bind the JButton or JPanel to the
operation.

4. If you drop the method as a Button, and you want to supply parameter values
yourself, you can add a text field to the form and add a focusListener to the text
field and modify its focusLost () method in the data panel's. java file, using the

3-8 Developing Swing Applications for Oracle Application Development Framework

Binding a Method with Parameters in an ADF Swing Form

code in Example 3-1 to pass the parameter to the method:

Example 3—1 Code for Passing a Parameter to Method

private void jTextFieldl_focusLost (FocusEvent e) {
JUCtrlActionBinding action =
(JUCtrlActionBinding)panelBinding.getCtrlBinding (jButtonl) ;
ArrayList argl = new ArrayList();
argl.add(jTextFieldl.getText());
action.setParams (argl) ;

Repeat this step to create an event handler for each text field that supplies a
method parameter.

3.8.3 What You May Need to Know About Displaying a Method Result Using a JTable

Component

When you drop a custom method with a return value from the Data Controls panel,
JDeveloper prompts you for the component to bind to the method result. Note that if
you choose to display a result that is a collection in a JTable, your application may fail
at runtime with a NullPointerException when the Swing JTable component attempts
to prepare the renderer. This exception is due to a Swing JTable limitation that
prevents it from setting up renderers for the Integer type (Swing supports Numbers,
Doubles, Floats, Dates, and Booleans). You will need to subclass the JTable and set a
default renderer for types that Swing does not natively support.

For example, to install a custom renderer for Integer, you can use the code shown in
Example 3-2.

Example 3-2 Installing a Custom Renderer for Integer

private JTable jTablel = new JTable() {
protected void createDefaultRenderers() {
super.createDefaultRenderers() ;
setDefaultRenderer (Integer.TYPE,
super.getDefaultRenderer (java.lang.Number.class));

}

Modifying ADF Swing Forms and Panels 3-9

Binding a Method with Parameters in an ADF Swing Form

3-10 Developing Swing Applications for Oracle Application Development Framework

4

Working with Data Binding

This chapter describes how to create Swing containers and components that are bound
to data objects from ADF Business Components. It describes the easiest way to create
databound containers using the ADF Swing wizards.

This chapter contains the following sections:

= Section 4.1, "About Working With Data Binding"

= Section 4.2, "Navigating the Ul Using ADF Swing Controls"

» Section 4.3, "What You May Need to Know About the ADF Swing Data Context"

= Section 4.4, "What Happens at Runtime: How Panel Bindings Function"

= Section 4.5, "What You May Need to Know About the ADF Swing Bootstrap Code"
» Section 4.6, "How to Display Object Attributes in a Databound Text Field"

s Section 4.7, "How to Create a New Row in a Databound Table or Tree Control"

s Section 4.8, "How to Sort Columns in a Databound Table"

= Section 4.9, "What Happens At Runtime: How Control Bindings Function"

4.1 About Working With Data Binding

Data binding in ADF Swing is the ability to create Swing containers and components
that are bound to data in back-end business services. To enable data binding, ADF
Swing provides a small API that works with the Oracle ADF model layer. The API is
exposed in the application source code through a combination of ADF Swing
bootstrap code:

s Call loadCpx () --load the application metadata (specified in the
DataBindings.cpx file), which specifies a connection to the business service
implementation instance (for example, an ADF Business Components application
module instance) using the ADF data control for the instance, as well as the ADF
binding context.

s Call setBindingContext () -- make the ADF binding context available to the frame
or panel.
s Call createPanelBinding () -- to create an object that will access the business

service's contained data collections through Swing component models.

s Call bindUIControl () on the panel binding to set the ADF model for the
individual components of the ADF Swing form or panel.

To work with a data binding in your Swing application, each container (a frame or
panel) must either create a panel binding object or get one from the source from which

Working with Data Binding 4-1

Navigating the Ul Using ADF Swing Controls

it originated. The frame that creates the first panel binding also contains the ADF
Swing bootstrap code, where the connection to the business services is created.
Subsequent containers that your application creates either chain from the original
panel binding or they create their panel binding in order to display unrelated data.
How you want to partition the data views of your application determines whether a
container sets a new panel binding or whether it gets an existing one:

= If you want to create independent branches of the business services views, then
your application should open a frame that sets a new panel binding.

= If you want to maintain the same view along a continuous branch of your
application (say a master and detail branch for example), then secondary
containers all share the panel binding object created by the initial frame.

4.1.1 ADF Swing Containers

The easiest way to create databound containers is to use the ADF Swing wizards (see
the ADF Swing folder in the New Gallery). Specifically, if you use these two ADF
Swing wizards, then the source code will contain the bootstrap code and constructors
needed to create the panel binding:

= Use the Create ADF Swing Empty Form dialog to generate an empty frame that
creates an ADF Swing panel binding with a connection to the business service
used by your application, for example ADF Business Components.

= Use the Create ADF Swing Empty Panel dialog to generate an empty panel with
constructors to create a new panel binding or to share one from its parent frame.

An additional benefit to using these two wizards is their support for easy
drag-and-drop Ul design within JDeveloper. Because they are generated with the
bootstrap code for a specific data control object (which contains the business service's
collections, structured objects, attributes, and methods), all of the Swing components
that you insert from the Data Controls panel in JDeveloper will have access to any
business service that the data control object contains.

4.1.2 Standard Java Containers

If you start with a standard frame or panel (one generated without using the ADF
Swing wizards) that you want to enable an ADF Swing data binding for, you can add
the appropriate ADF Swing bootstrap code to the main frame and then handle the
panel binding in your secondary windows this way:

= If you want to share the panel binding with the parent frame:
BusinessCompViewName (getPanelBinding()); frame.setVisible(true);
= If you want the new frame to define its own panel binding:

BusinessCompViewName (new
JUPanelBinding (getPanelBinding () .getApplicationName () ,null)); frame.setV
isible(true);

The first creates the frame object and set the panel binding. The second call makes the
frame visible.

4.2 Navigating the Ul Using ADF Swing Controls

When you create a default master-detail form using ADF Swing, it will create and
place a navigation bar on both the master and the detail panel, which permits users to

4-2 Developing Swing Applications for Oracle Application Development Framework

Navigating the Ul Using ADF Swing Controls

scroll through the data in each panel independently. Or, you can create a single
navigation bar which responds to the panel which has current focus.

4.2.1 How to Navigate Using the Navigation Bar

In the ADF Swing form, you need to move the code for the navigation bar from the
individual panels to the layout panel where the navigation event will affect all the
child panels. For example, you can move the code from the department and employees
data panel to the layout panel.

The code that needs to be moved will be similar to Example 4-1.

Example 4-1 Navigation Bar Code

// The declaration of the navigation bar
private JUNavigationBar navBar = new JUNavigationBar () ;

// The code that binds the navigation bar to the individual panel.
navBar.setModel (JUNavigationBar.getModelInstance (getPanelBinding(),
"DepartmentsView", null, "DepartmentsViewIter"));

//Add the navigation bar to the panel
add (navBar, BorderLayout.NORTH) ;

Once you have moved the navigation bar code you need to add the control binding to
the layout panel which contains both the master and the detail panels. Example 4-2
shows the code that you will add to the layout panel to bind the model for the
navigation bar.

Example 4-2 Binding Model for Navigation Bar to Panel

//The declaration of the navigation bar
private JUNavigationBar navBar = new JUNavigationBar();

//Bind the model for the navigation bar to the panel
navBar.setModel (JUNavigationBar.getModelInstance (getPanelBinding(),navBar)) ;

//Add the navigation bar to the panel

add (navBar, BorderLayout.SOUTH) ;

add (masterScroller, BorderLayout.NORTH) ;
add (detailViewPanel, BorderLayout.CENTER) ;

4.2.2 How to Navigate Using Tree Navigation

When you add a tree control to your panel you create node-populating rules using the
property editor for the ADF Swing node model. The property editor does not allow
you to handle node selection. If you want to handle the node-selection event in order
to populate controls in a panel, you can use JUTreeDefaultMouseListener to
synchronize master and detail panels on the selected node. Example 4-3 shows how to
add the listener to the tree control.

Example 4-3 Adding Listener to Tree Control

myTreeControl .addMouseListener (new JUTreeDefaultMouseListener
(panelBindingVar, new String [][] {
{ "NodeTypel" , "DepartmentViewIter" }, "NodeType2" , "EmployeeViewIter" } }
)
)

Working with Data Binding 4-3

What You May Need to Know About the ADF Swing Data Context

4.3 What You May Need to Know About the ADF Swing Data Context

The ADF SwingPanel interface implemented by ADF SwingFrame or JPanel permits
your ADF Swing application to:

= Maintain a consistent data context between the databound panels (also known as
chaining between data panels)

= Access data through databound Swing controls

During design time, each data browsing panel that you add to the ADF Swing
application gets its context for marshaling interactions between the UI controls and the
business service’s row set iterator from the panel binding object created in the frame or
containing panel (such as the master-detail layout panel). The capability in ADF Swing
to chain data browsing panels is provided without the need to write additional code.
For example, the data browsing panels generated by the wizard, PanelDeptView and
PanelEmpViewl, share the same data context through an instance of a panel binding
(JUPanelBinding) when each JPanel implements the setPanelBinding () and
getPanelBinding () methods of the ADF SwingPanel interface.

Once you have a frame or panel that creates this panel binding, ADF Swing permits
you to assemble the application by adding new data browsing panels that either share
the existing panel binding object or create a new one.

Then you can use the Data Controls panel in JDeveloper to add databound controls
one by one to the data panel. At the level of the Swing component, this sets the data
binding by specifying an ADF Swing control model on the control's document or model
property. At runtime, each control in the data panel becomes databound through the
panel binding object as an argument to the control's setModel () or setDocument ()
method.

4.4 What Happens at Runtime: How Panel Bindings Function

To understand how the panel binding is created and used by the databound panels,
consider what happens when you run the application, starting with the ADF Swing
frame, and the following ADF Swing code is executed:

1. Themain() method bootstraps the application. It starts a binding context and
loads the ADF data control, based on entries in the DataBindings. cpx file. Then it
passes the binding context with initialized ADF model objects to the panel binding
to create the ADF data bindings.

For more information, see Section 4.5, "What You May Need to Know About the
ADF Swing Bootstrap Code."

2. The frame is initialized (FrameDeptViewEmpViewl, in the example above) through a
constructor that takes an application object. Initialization of the frame results in a
panel binding object (JUPanelBinding), based on an ADF model definition that
may have components that are bound to data from more than one data control.
The creation of the panel binding is an important part of the ADF Swing
functionality, which enables data binding for Swing components and chaining of
data panels.

3. The frame or applet class initializes a layout panel(MDPanelDeptViewEmpViewl, in
the example above) and sets the panel binding on the new layout panel, using the
setBindingContext () method.

For more information, see Section 2.3, "What Happens When You Create an ADF
Swing Form."

4-4 Developing Swing Applications for Oracle Application Development Framework

What You May Need to Know About the ADF Swing Bootstrap Code

4. In the layout panel's jbInit () method, the data browsing (children) panels are
created. For this, ADF Swing uses the shared binding context for binding the child
data panels (PanelDeptView and PanelEmpViewl, in the example above).

5. A control-to-attribute data binding occurs using the control's specified ADF Swing
model. (This binding information is stored in the binding container XML
metadata.)

6. The control binding handles events to populate and update data for the UI control

For more information, see Section 4.9, "What Happens At Runtime: How Control
Bindings Function."

4.5 What You May Need to Know About the ADF Swing Bootstrap Code

When you select the frame class in the navigator and choose Run, the main() method
“bootstraps” the application. It starts a binding context and loads data controls, based
on entries in the DataBindings. cpx file. Then it passes the binding context with
initialized data controls to the panel binding to create the ADF data bindings.

Example 4-4 shows the bootstrap code created by the Create ADF Swing Form wizard,
using selected columns from the Employees and Departments tables from the HR
schema.

Example 4-4 Bootstrap Code Created by Create Form Wizard

// bootstrap application
JUMetaObjectManager.setBaseErrorHandler (new JUErrorHandlerDlg());

// Lookup the *.cpx file and create all data controls listed in this file.
JUMetaObjectManager mgr = JUMetaObjectManager.getJUMom() ;

// Use the definition classes provided by ADF Swing. Change only if you do not
want to use custom DefClasses.
mgr.setJClientDefFactory (null) ;

// Create a new binding context that extends java.util.Hashtable.
BindingContext ctx = new BindingContext () ;

// Get user connection information if available. If not, display logon dialog.
ctx.put (DataControlFactory.APP_PARAM_ENV_INFO, new JUEnvInfoProvider());

// Set locale to the default locale of the JVM.
ctx.setLocaleContext (new DefLocaleContext (null));

// Load data binding container data binding file.

HashMap map = new HashMap (4); map.put(DataControlFactory.APP_PARAMS_BINDING_
CONTEXT, ctx);

mgr.loadCpx ("mypackage.DataBindings.cpx", map);

// Get handle to the ADF Business Components application module. The code lines

// below are added only when using the ADF Swing Form wizard. Declaratively
creating

// the frame, starting with an empty form wizard does not add the following lines.
DCDataControl app = (DCDataControl)ctx.get ("model_AppModuleDataControl");
app.setClientApp (DCDataControl .JCLIENT) ;

// Despite the following line of code, attribute sets and fetches are normally

// performed in one batch operation. This requires only one network round
// trip. Attributes that aren't needed are not loaded to the client. The code

Working with Data Binding 4-5

How to Display Object Attributes in a Databound Text Field

// line below is added only when using the ADF Swing Form wizard. Declaratively
creating

// the frame, starting with an empty form wizard does not add the following lines.
app.getApplicationModule() . fetchAttributeProperties (new Stringl]

{"DepartmentsViewl", "EmployeesView3"}, new String[][] {{"DepartmentId",
"DepartmentName" }, {"EmployeeId", "FirstName", "LastName" "DepartmentId" }},
null);

// Initialize application root class.
FormDepartmentsViewlEmployeesView3 frame = new
FormDepartmentsViewlEmployeesView3 () ;

// Set binding context to the frame.

frame.setBindingContext (ctx) ;

frame.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE) ;
Dimension screenSize = Toolkit.getDefaultToolkit ().getScreenSize();
Dimension frameSize = frame.getSize();

The frame is initialized by its constructor, which does not expect any arguments by
default. The binding context of the application is passed to the setBindingContext ()
method of the frame.

Initialization of the frame results in a panel binding object (JUPanelBinding) based on
an Oracle ADF model definition that may have components that are bound to data
from more than one data control. The creation of the panel binding is an important
part of the ADF Swing functionality, which enables data binding for Swing
components and chaining of data panels.

After you lay out the data panel or form, you can improve the performance of your
ADF Swing application by defining the fetchAttributeProperties () method in your
form. This will ensure that your form performs in batch mode to fetch attribute values.
For more information, see Section 10.4, "How to Limit Fetching of ADF Business
Components Attributes in ADF Swing."

4.6 How to Display Object Attributes in a Databound Text Field

When using databound text fields to display the attribute values of an object, such as
those defined by an Address object, the fields will not display the attribute values
(they will display instead some static text).

If you bind a text field to an object attribute, you can ensure the value is correctly
displayed in the ADF Swing panel by forcing the query to reexecute on the iterator
binding of the bound object.

To force executeQuery () on the object’s iterator binding, add this method call after
jbInit () is done in the panel, where Street is replaced by the name of your object
attribute binding:

panelBinding.findControlBinding ("Street").getIteratorBinding() .
executeQuery () ;

It is only necessary to call executeQuery () on one of the object domain attributes (like
Street) to force the iterator binding to refetch all attribute values of the same object.

4.7 How to Create a New Row in a Databound Table or Tree Control

If your business services supports create operation on the data collection, you can use
the operation in an ADF Swing panel to display a new row in your databound table or

4-6 Developing Swing Applications for Oracle Application Development Framework

How to Sort Columns in a Databound Table

tree control. The new row will appear when the user clicks a Create button that has
been bound to a create-and-insert action binding. Because the operation creates and
inserts the row in a single step, this operation is ideal for in-place editing of the
component by the user.

Note: Although the Data Controls panel displays this operation as
Create, the action binding editor will be set to CreateInsert. This
behavior differs in the case of web applications.

To create an ADF Swing bound control that uses a create operation to insert a
row:

1. Open the data panel in the Java visual editor.

For more information, see Section 2.10, "How to Create an Empty ADF Swing
Panel."

2. In the Data Controls panel, select the collection node that contains the attributes
you want your Ul component to display. This is the collection to which the control
will add the row. In the dropdown list, select the desired UI component to display
the new row.

Note: The data collection you select must not be a detail collection,
represented in the data control hierarchy as a child of another
collection node. This will ensure that the iterator binding does not
perform navigation.

3. Drag the collection into the open ADF Swing panel.
For more information, see Section 3.3, "How to Insert Ul Components into ADF
Swing Panels."

Tip: Optionally, your panel can display navigation buttons to the
allow the user to browse the collection. For more information, see
Section 7.8, "How to Use the JUNavigationBar Control."

4. To insert the operation to create the row, select Create in the operations folder for
the previously selected collection and select Button from the dropdown list.

5. Insert the button into the open ADF Swing panel.

Note: When you drag Create from the Data Controls panel, the
button's action binding is set to CreateInsert. This behavior differs in
the case of web applications.

4.8 How to Sort Columns in a Databound Table

When you use the ADF iterator binding to create a databound Swing table, you can
specify the sort criteria (ascending or descending) in which the data of the table
columns display. You can use one or more columns as the sort criteria, and specify the
sort priority of each of those columns. For example, to sort an employee table you
could choose last name as the first sort criteria and first name as the second sort
criteria. In this example, the second sort criteria becomes useful when two or more

Working with Data Binding 4-7

What Happens At Runtime: How Control Bindings Function

employees have the same last name thus requiring sorting, in the specified order, by
first names.

When sorting the columns in a databound table, you use the iterator binding for the
table.

To sort the columns in a table bound to an ADF iterator binding:

1. In the Java visual editor, right-click the form or panel that contains the table you
want to sort and choose Go to Page Definition.

2. In the overview for the page definition editor, double-click the iterator binding in
the Executables list.

3. In the Edit Iterator Binding dialog, click the Sort Criteria tab.

4. Select an attribute and choose whether the sort should be performed in ascending
or descending order.

If the attribute is not a sort criteria for the table, leave the No Sort selection
assigned.

5. Use the up and down arrow buttons to change the sort priority of an attribute.

Moving the sort criteria attribute higher in the list, yields a higher sort priority,
which means the attribute will be sorted before the sort criteria attributes that
appear lower in the list.

4.9 What Happens At Runtime: How Control Bindings Function

After data browsing panels are initialized, the layout panel calls executeIfNeeded()
on the panel binding to execute the query on the ADF Business Components data
source.

4.9.1 Populating Controls with Data

The executeIfNeeded () method determines whether the query has executed on the
view object. If not, the method calls executeQuery () on it. This executed query brings
data from the database into the cache and causes the ADF Business Components row
set listener events to fire. The first among these is the
RowSetListener.rangeRefreshed event. This event is captured by the iterator binding
(because it implements RowSetListener and has registered itself as a listener). It
retrieves the rows of the range and calls updatevaluesFromRows () on the control
binding. The control binding takes the data out from the rows and assigns them to the
controls using the Swing APIL. As a result, the Swing API updates the panel UI with the
data.

4.9.2 Updating Data through Controls

The user’s interaction with an ADF Swing-bound control may cause ADF Business
Components to update the data. For example, in the case of the text field
(textFieldDname), if the user edits the text field’s content and leaves the control
(generating focusLost event), ADF Swing is notified of the event. As a result, ADF
Swing will retrieve the updated data from the control and call setAttribute() on the
Trow.

4-8 Developing Swing Applications for Oracle Application Development Framework

O

Customizing ADF Bindings

This chapter describes how to use ADF Model binding editors to customize control
bindings in ADF Swing applications. The control is bound to the data model using
ADF bindings. JDeveloper creates ADF bindings when you insert a control from the
Data Controls panel.

This chapter includes the following sections:

= Section 5.1, "About Customizing ADF Bindings"

= Section 5.2, "How to Customize ADF Bindings for ADF Swing Panels"
» Section 5.3, "How to Customize an ADF Action Binding"

= Section 5.4, "How to Customize an ADF Attribute Binding"

= Section 5.5, "How to Customize an ADF Array Combobox Binding"

= Section 5.6, "How to Customize an ADF Boolean Binding"

= Section 5.7, "How to Customize an ADF Bounded Range Binding"

= Section 5.8, "How to Customize an ADF Formatted Text Field Binding"
» Section 5.9, "How to Customize an ADF Iterator Binding"

= Section 5.10, "How to Customize an ADF List Binding"

» Section 5.11, "How to Customize an ADF List Binding in Enumeration Mode"
= Section 5.12, "How to Customize an ADF List Binding in LOV Mode"

= Section 5.13, "How to Customize an ADF LOV Button Binding"

= Section 5.14, "What You May Need to Know About the LOV Dialog"

» Section 5.15, "How to Customize an ADF Scroll Binding"

= Section 5.16, "How to Customize an ADF Table Binding"

» Section 5.17, "How to Customize an ADF Tree Binding"

5.1 About Customizing ADF Bindings

When you insert a control from the Data Controls panel, the control is bound to the
data model using ADF bindings. You can then edit the bindings using the binding
editors.

ADF Swing provides model objects for Swing controls that are responsible for
marshaling interaction between the Swing controls and the ADF Business Components
view object's row set iterator. The ADF Swing implementation of Swing models are
called control bindings.

Customizing ADF Bindings 5-1

How to Customize ADF Bindings for ADF Swing Panels

The UI components in an ADF Swing application bind to ADF Business Components
view objects. For example, an ADF Swing databound panel might have a text field
(JTextField) for the First name and Last name that allows the user to view and
modify business component attribute values.

The type of control binding used for a given Swing control depends on the actions
performed by the control. In some case, controls work with multiple control bindings
that define different interactions. Table 5-1 shows the bindings that ADF Swing
defines for the various Swing controls.

Table 5-1 Control Bindings for Controls in ADF Swing

ADF Control Binding

Swing Control

Action binding Button
Attribute binding Label For
Password
TextArea
TextField
TextPane
EditPane
Array Combobox binding JUArrayComboBox
Boolean binding Checkbox
Bounded Range binding ProgressBar
ScrollBar
Slider
Formatted Text Field binding Formatted Text Field

Iterator binding Navigation Bar
List binding ComboBox
List
Radio Button Group
Spinner
List binding in LOV Mode Spinner
Button LOV binding Button LOV
Scroll binding ScrollBar
Slider
Table binding Table
Tree Node binding Tree
Graph binding JUSingleTableGraphBinding

JUMasterDetailTableGraphBinding

5.2 How to Customize ADF Bindings for ADF Swing Panels

You can use the control binding editors in JDeveloper to customize the characteristics
of any databound UI component that you create using the Data Controls panel.

5-2 Developing Swing Applications for Oracle Application Development Framework

How to Customize an ADF Action Binding

Note: Modifications to a data binding may create discrepancies
between the data binding and the UI component used to display the
data. For example, if you edit the data binding of a table to display
one less column of attribute values, you must use the Java visual
editor to remove the column from the source.

To customize a Ul component's binding from the Java visual editor:
1. Use the Data Controls panel to insert the UI component into your Java panel.

For more information, see Section 2.11, "How to Create ADF Swing Edit Forms
from the Data Controls Panel."

2. With the Ul component displayed in the Java visual editor, right-click the
component and choose Edit Bindings to view the binding editor.

You can also click the Bindings tab in the Java visual editor and double-click the
binding in the Bindings list.

5.3 How to Customize an ADF Action Binding

You can customize an ADF action binding on the Button UI control that you insert
from the Data Controls panel.

An action binding lets users initiate actions on the attributes and collections of the
specific business service. Actions are defined by the business service's class methods
and will appear in the Operations folders displayed in the Data Controls panel.

When you use the Data Controls panel to insert the action as a button, the action
binding editor displays the corresponding selections. You can use the action binding
editor to change the data collection and action. Or, when you want the action to apply
to all data collections in the current document's binding context, you can select a data
control and a corresponding action.

Note: If the custom method accepts parameters, the actual value for
parameters may be specified through the Properties window. The
action binding editor does not support entering value for the method
arguments.

For certain business services, the ADF data control for that business service may
support standard actions. For example, in the case of ADF Business Components,
these standard actions are available:

s Commit or rollback the changes to all bound data collections in the binding
context of the data control.

= Move to the first, next, previous, or last row in the data collection's range.
n Create a row or delete the current row.

= Reset data from the data collection cache on all rows.

= Execute the data collection query to get the latest data from the database.
= Initiate a query on the data collection.

s Obtain the current row from the data collection.

Customizing ADF Bindings 5-3

How to Customize an ADF Action Binding

When users initiate the action, the bound data collection is immediately updated. The
Ul reflects the change through any control bindings that use the same data collection
as the action binding.

To set an action binding:
1. Open the data panel in the Java visual editor.

For more information, see Section 2.9, "How to Create an Empty ADF Swing
Form."

2. In the Data Controls panel, expand the Operations folder for the data collection or
data control.

Note: The Data Controls panel hierarchy represents operations (such
as Create and Delete) that apply to a specific data collection in the
Operations folder below the data collection. When supported by the
ADF data control for your business service, you can also select
operations (such as Commit and Rollback) that apply to all data
collections in the current document's binding context in the
Operations folder at the top branch of the hierarchy.

3. Drag the desired operation into the open document.
JDeveloper adds code to the class file to bind the component to the operation.
4. Display the action binding editor for the control.

For more information, see Section 5.2, "How to Customize ADF Bindings for ADF
Swing Panels."

5. In the Data Collection list, select the collection or data control on which you want
to perform the action.

Expand the Operations folder under the root data control node when you want to
select operations (such as Commit and Rollback) that apply to all data collections
in the current document's binding context.

Note: Add other Ul controls to your data panel to display the results
of the action on the data collection. Those controls need only set a
control binding on the same data collection as the action binding to
reflect the action in the UL

6. Select the Operation for the action to perform on the selected data collection.

7. You should leave Iterator empty if you have selected a custom method, such as
Commit or Rollback, which are actions on the ADF data control and do not
require an iterator.

If the Iterator list already displays a named iterator to access the selected data
collection, you may leave the selection unchanged, or if you have selected one of
the predefined actions provided by the business service data collection (for
example, Next, Next Set, Previous, and Previous Set), click New and create the
iterator so it appears in the dropdown list.

8. Click OK to save the binding settings.

9. Open the Properties window to define any method parameter values.

5-4 Developing Swing Applications for Oracle Application Development Framework

How to Customize an ADF Attribute Binding

You can also create an ADF Swing form that allows the user to supply the
parameters of the method. For more information, see Section 3.8, "Binding a
Method with Parameters in an ADF Swing Form."

JDeveloper adds the setModel () method in the jbInit () method to create the action
binding. Example 5-1 shows the method which references DataControlId to specify
the metadata after inserting a button from the Data Controls panel.

Example 5-1 Method Referencing DataControlld After Inserting Button

myButton.setModel ((ButtonModel)panelBinding.bindUIControl ("DataControlId",
myButton)) ;

Metadata for the new binding appears in the page definition file (PageDef . xml).

Notes: The custom method argument definitions, if any, appear
undefined until you use the Properties window to specify the values.

By default when you create an action binding for the same method
more than once, the return location of the method is the same. This
means if you want to create unique action bindings for the same
method, you must edit the ReturnName attribute to supply a unique
name for each binding. Normally, you will leave the location the same
for duplicate usages of the same action binding (where each usage
specifies different parameter values). This permits all bound controls
in the binding context to find the result under the same return name.

5.4 How to Customize an ADF Attribute Binding

You can set an ADF attribute binding on these basic Ul components that you insert
from the Data Controls panel:

= Password Field - mask the attribute value entered by the user
»s TextArea - display plain text with multiple lines

s TextField - display plain text in a single line

= JUImage - display an attribute of type BLOB or OrdMedia

= JULabel - display the attribute value as a label

= Label For - display the control hint label defined for ADF Business Components
attributes

You can set an ADF attribute binding on these UI components to display various kinds
of content (besides text):

s Edit Pane - display various kinds of components that can be edited
s TextPane - display various kinds of components, that should not be editable

The behavior of the attribute binding depends on the type of control used. Users may
view and, in some cases, edit the value of a single attribute defined by a data
collection. You use the attribute binding editor to select the data collection and
attribute.

Customizing ADF Bindings 5-5

How to Customize an ADF Array Combobox Binding

Note: In an ADF Business Components project, you can make
attribute values updatable by setting a control hint on the attribute. In
that case, users will be able to edit the updatable attribute's values
directl