

Oracle® Fusion Middleware
Developing Applications with Oracle ADF Data Controls

12c (12.1.3)

E41270-01

May 2014

Documentation for Oracle Application Development
Framework (Oracle ADF) developers that describes how to
create and configure data controls for Enterprise JavaBeans
(EJB) and plain Java objects and for SOAP and REST web
services.

Oracle Fusion Middleware Developing Applications with Oracle ADF Data Controls12c (12.1.3)

E41270-01

Copyright © 2013, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Landon Ott

Contributing Author: Patrick Keegan

Contributors: Jon Wetherbee, Jim Pham, Vinay Agarwal

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

What's New in This Guide .. xi

New and Changed Features for Release 12c (12.1.3).. xi
Other Significant Changes in this Document for Release 12c (12.1.3) ... xi

1 Introduction to ADF Model

1.1 About ADF Model .. 1-1
1.2 Data Control Types .. 1-4
1.3 Data Controls Not Covered By This Guide .. 1-4
1.4 What You May Need to Know About Non-Adapter Framework Data Controls 1-5

2 Using ADF Data Controls

2.1 Core Development Steps For Data Control Applications ... 2-1
2.2 Exposing Business Services with Data Controls ... 2-2
2.2.1 How to Create ADF Data Controls .. 2-2
2.2.2 What Happens in Your Project When You Create a Data Control 2-3
2.2.2.1 DataControls.dcx Overview Editor ... 2-3
2.2.2.2 Data Controls Panel ... 2-4
2.2.3 Display of Business Services in the Data Controls Panel ... 2-4
2.2.4 Data Control Built-in Operations ... 2-6
2.3 Creating Databound UI Components from the Data Controls Panel 2-7
2.3.1 How to Use the Data Controls Panel ... 2-10
2.3.2 What Happens When You Use the Data Controls Panel .. 2-12
2.3.3 What You May Need to Know About Iterator Result Caching 2-13
2.3.3.1 Setting an Iterator to Not Cache Its Result Set ... 2-14
2.3.3.2 Using a Button to Reexecute the Iterator ... 2-14

3 Creating and Configuring EJB Data Controls

3.1 About EJB Data Controls .. 3-1

iv

3.1.1 EJB Data Control Use Cases and Examples ... 3-1
3.1.2 Additional Functionality for EJB Data Controls .. 3-2
3.2 Preparing a Session Bean to Use With a Data Control ... 3-2
3.2.1 Supported Types and Constructs in EJB Data Controls ... 3-3
3.2.2 EJB Data Control Objects ... 3-3
3.2.3 About the Session Facade Pattern .. 3-5
3.2.4 EJB Data Control Prerequisites and Considerations .. 3-5
3.2.4.1 Recommended Entity Bean Elements .. 3-5
3.2.4.2 Recommended Session Facade Elements .. 3-6
3.2.4.3 What You May Need to Know About Overloaded Get Methods 3-7
3.2.5 Creating EJBs for a Data Control in JDeveloper ... 3-7
3.2.6 What You May Need to Know About How EJB and Bean Data Controls Use Getter

Methods ... 3-7
3.2.7 About Commit Models for EJB Session Beans ... 3-8
3.2.7.1 Implicit Commit Models ... 3-8
3.2.7.2 Explicit Commit Models .. 3-8
3.2.8 About Generating IDs for Primary Keys with the @GeneratedValue Annotation 3-9
3.2.9 How to Change a Persistence Unit’s Schema Generation Behavior 3-9
3.2.10 How to Automatically Update a Session Facade ... 3-10
3.2.11 What You May Need to Know About Refreshing JPA Queries 3-10
3.3 Exposing Session Bean Services with ADF Data Controls .. 3-11
3.3.1 How to Create EJB Data Controls .. 3-13
3.3.2 What Happens in Your Project When You Create an EJB Data Control 3-15
3.3.3 How EJB and Bean Data Controls Appear in the IDE .. 3-16
3.3.3.1 DataControls.dcx Overview Editor for EJB and Bean Data Controls 3-16
3.3.3.2 Data Controls Panel for EJB and Bean Data Controls .. 3-16
3.3.3.3 EJB and Bean Data Control Built-in Operations .. 3-16
3.3.4 What You May Need to Know About the Support Named Criteria Option and Paging

3-16
3.3.5 What You May Need to Know About CRUD Operations in an EJB Data Control ... 3-17
3.3.6 What You May Need to Know About the Merge and Persist Methods 3-17
3.3.7 What You May Need to Know About Remove Methods ... 3-18
3.3.8 About Automatically Persisting New Rows .. 3-18
3.3.9 How to Change the EagerPersist Property .. 3-19
3.3.10 What You May Need to Know About the Persistence Context and Resubmitting

Queries .. 3-19
3.3.11 How to Create Different Data Controls for a Single Bean .. 3-19
3.3.12 What Happens When You Create an Additional Data Control Instance 3-20
3.4 Paginated Fetching of Data in EJB Data Controls ... 3-20
3.4.1 How to Change Paging Mode for a Data Control .. 3-21
3.4.2 How to Set Range Size for a Data Control that Uses Range Paging 3-22
3.4.3 What You May Need to Know About the Scrollable and Range Paging Modes 3-23
3.4.4 How to Specify Access Mode for Individual Objects in the Data Control 3-23
3.4.5 What You May Need to Know About Sorting Tables Based on Range Paginated

Collections ... 3-24
3.5 Providing UI Hints for Attributes Using Annotations ... 3-24
3.6 Enabling Failover in an EJB Data Control .. 3-27

v

4 Creating and Configuring Bean Data Controls

4.1 About Bean Data Controls .. 4-1
4.1.1 About JPA-Based Bean Data Controls .. 4-1
4.1.2 About non-JPA Bean Data Controls ... 4-2
4.1.3 Additional Functionality for Bean Data Controls .. 4-2
4.2 Preparing a Bean to Expose with a Data Control .. 4-2
4.2.1 Supported Types and Constructs in Bean Data Controls ... 4-2
4.2.2 Bean Data Control Objects ... 4-3
4.2.3 Bean Data Control Prerequisites and Considerations .. 4-3
4.2.4 How to Create a Service Facade for a JPA-Based Bean Data Control 4-3
4.3 Exposing Java Collections and Methods With Bean Data Controls 4-4
4.3.1 How to Create a JPA-Based Bean Data Control ... 4-4
4.3.2 How to Create a non-JPA-Based Bean Data Control .. 4-5
4.3.3 What Happens in Your Project When You Create a Bean Data Control 4-7
4.3.4 What You May Need to Know About Primary Keys for Non-JPA Bean Data Controls ..

4-7
4.4 Paginated Fetching of Data in Bean Data Controls ... 4-8
4.4.1 How To Manually Implement Pagination Support in a Data Control 4-8
4.4.2 How to Implement a Custom Handler for Querying and Pagination 4-8
4.5 Enabling Failover in a Bean Data Control .. 4-9
4.5.1 What You May Need to Know About Calling PageFlowScope from the Constructor

4-10
4.6 Enabling Custom CRUD Operations in a Bean Data Control ... 4-10
4.7 Adding Transactional Behavior to a non-JPA Bean Data Control 4-11
4.8 Using Annotations to Declare Metadata for Bean Data Controls 4-11
4.9 Creating Custom Bean Data Controls ... 4-12

5 Exposing Web Services Using the ADF Model Layer

5.1 About Web Service Data Controls in ADF Applications .. 5-1
5.1.1 Web Service Data Control Use Cases and Examples .. 5-1
5.1.2 Additional Functionality for Web Service Data Controls in ADF Applications 5-1
5.2 Creating Web Service Data Controls .. 5-2
5.2.1 How to Create a Data Control for a SOAP-based Web Service 5-2
5.2.2 How to Create a Data Control for a RESTful Web Service ... 5-3
5.2.3 How to Include a Header Parameter for a Web Service Data Control 5-7
5.2.4 How to Adjust the Endpoint for a SOAP Web Service Data Control 5-8
5.2.5 How to Refresh a SOAP Web Service Data Control ... 5-8
5.2.6 What You May Need to Know About Primary Keys in SOAP Web Service Data

Controls ... 5-9
5.2.7 How to Add Custom Attributes to a REST Web Service Data Control 5-10
5.2.8 What You May Need to Know About Web Service Data Controls 5-12
5.2.9 What You May Need to Know About Making an XML Schema Available to a REST

Data Control .. 5-14
5.3 Securing Web Service Data Controls .. 5-15
5.3.1 Oracle WSM Policy Framework .. 5-16
5.3.2 Using Key Stores .. 5-16
5.3.3 How to Define SOAP Web Service Data Control Security 5-16

vi

6 Exposing URL Services Using the ADF Model Layer

6.1 About Using ADF Model with URL Services ... 6-1
6.1.1 URL Services Use Cases and Examples ... 6-2
6.1.2 Additional Functionality for URL Services .. 6-2
6.2 Exposing URL Services with ADF Data Controls ... 6-2
6.2.1 How to Create a URL Connection ... 6-2
6.2.2 How to Create a URL Service Data Control ... 6-3
6.2.3 What Happens When You Create a URL Service Data Control 6-5
6.2.4 What You May Need to Know About Generating URL Data Controls without Schema

6-5
6.2.5 How to Include a Custom Header Parameter for a URL Service Data Control 6-6
6.2.6 What You May Need to Know About Primary Keys in URL Service Data Controls . 6-7
6.2.7 What You May Need to Know About URL Service Data Controls 6-7
6.3 Using URL Service Data Controls .. 6-7

7 Adding Business Logic to Data Controls

7.1 Introduction to Adding Business Logic to Data Controls ... 7-1
7.2 Configuring Data Controls ... 7-2
7.2.1 How to Edit a Data Control ... 7-2
7.2.2 What Happens When You Edit a Data Control ... 7-2
7.2.3 How to Convert Data Controls from a Previous Release ... 7-4
7.2.4 What You May Need to Know About MDS Customization of Data Controls 7-5
7.3 Working with Attributes .. 7-6
7.3.1 How to Designate an Attribute as Primary Key .. 7-6
7.3.2 How to Control the Updatability of an Attribute .. 7-7
7.3.3 How to Define a Static Default Value for an Attribute .. 7-7
7.3.4 How to Define a Default Value Using a Groovy Expression 7-7
7.3.5 What Happens When You Create a Default Value Using a Groovy Expression 7-9
7.3.6 How to Set UI Hints on Attributes ... 7-9
7.3.7 What Happens When You Set UI Hints on Attributes ... 7-10
7.4 Adding Transient Attributes to a Data Object .. 7-11
7.4.1 How to Add a Transient Attribute ... 7-11
7.4.2 What Happens When You Add a Transient Attribute ... 7-11
7.5 Defining Validation Rules on Attributes Declaratively .. 7-12
7.5.1 How to Add Validation Rules to Attributes .. 7-12
7.5.2 What Happens When You Add a Validation Rule .. 7-13
7.5.3 How to Use the Built-in Declarative Validation Rules ... 7-14
7.5.3.1 Validating Based on a Comparison ... 7-14
7.5.3.2 What Happens When You Validate Based on a Comparison 7-15
7.5.3.3 Validating Using a List of Values .. 7-15
7.5.3.4 What Happens When You Validate Using a List of Values 7-16
7.5.3.5 Ensuring That a Value Falls Within a Certain Range .. 7-16
7.5.3.6 What Happens When You Use a Range Validator .. 7-16
7.5.3.7 Validating Against a Number of Bytes or Characters 7-17
7.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters 7-17
7.5.3.9 Validating Using a Regular Expression ... 7-18
7.5.3.10 What Happens When You Validate Using a Regular Expression 7-19

vii

7.5.4 How to Use Groovy Expressions For Validation Rules .. 7-19
7.5.4.1 Validating Using a Groovy Expression ... 7-20
7.5.4.2 What Happens When You Validate Based on a Groovy Expression 7-20
7.5.4.3 Referencing Data Object Methods in Groovy Validation Expressions 7-21
7.5.5 How to Create Validation Error Messages ... 7-21
7.5.5.1 Creating Validation Error Messages .. 7-21
7.5.5.2 What Happens When You Create a Validation Error Message 7-22
7.5.5.3 Localizing Validation Messages .. 7-23
7.5.5.4 Raising Error Message Conditionally Using Groovy ... 7-23
7.5.5.5 Embedding a Groovy Expression in an Error Message 7-24
7.5.6 How to Set the Severity Level for Validation Exceptions ... 7-24
7.6 Filtering Result Sets with Named Criteria .. 7-25
7.6.1 Use Case for Named Criteria ... 7-25
7.6.2 How to Create Named Criteria Declaratively .. 7-25
7.6.3 What Happens When You Create a Named Criteria ... 7-28
7.6.4 How to Use Bind Variables in Named Criteria .. 7-28
7.6.5 What Happens When You Use Bind Variables in Named Criteria 7-30
7.6.6 What You May Need to Know About Nested Expressions 7-30
7.6.7 How to Set User Interface Hints on Named Criteria .. 7-30
7.6.8 How to Create a Named Criteria Based on Multiple JPA Entities 7-32
7.7 Creating List of Values Objects ... 7-33
7.7.1 How to an Create LOV for an Attribute ... 7-33
7.7.2 What Happens When You Create an LOV ... 7-35
7.8 Testing Data Object Metadata Using the Oracle ADF Model Tester 7-35
7.8.1 How to Run the Oracle ADF Model Tester .. 7-35
7.8.2 What Happens When You Use the Oracle ADF Model Tester 7-37
7.8.3 How to Test Business Layer Validation ... 7-38
7.8.4 How to Test Row Creation and Default Value Generation 7-39
7.8.5 How to Test Named Criteria Using the Oracle ADF Model Tester 7-39
7.8.6 How to Update the Oracle ADF Model Tester to Display Project Changes 7-40
7.8.7 How to Test Alternate Language Message Bundles and UI Hints 7-41
7.9 Groovy Language Support ... 7-41
7.9.1 How to Reference ADF Objects in Groovy Expressions ... 7-42
7.9.2 How to Reference ADF Methods and Attributes in Groovy Expressions 7-43

A Data Control Feature Comparison

viii

ix

Preface

Welcome to Developing Applications with Oracle ADF Data Controls.

Audience
This document is intended for developers who use ADF data controls to abstract
business services such as EJBs, plain Java classes, and web services to simplify data
binding between those services and UI components.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents:

■ Understanding Oracle Application Development Framework

■ Developing Fusion Web Applications with Oracle Application Development Framework

■ Developing Web User Interfaces with Oracle ADF Faces

■ Developing Swing Applications with Oracle Application Development Framework

■ Developing Applications with Oracle JDeveloper

■ Developing ADF Skins with Oracle ADF Skin Editor

■ Administering Oracle ADF Applications

■ Developing Applications with Oracle ADF Desktop Integration

■ Developing Oracle ADF Mobile Browser Applications

■ Tuning Performance

x

■ Understanding Oracle Web Services Manager

■ Securing Web Services and Managing Policies with Oracle Web Services Manager

■ High Availability Guide

■ Installing Oracle JDeveloper

■ Installing Oracle ADF Skin Editor

■ Oracle JDeveloper Online Help

■ Oracle JDeveloper Release Notes, included with your JDeveloper installation, and on
Oracle Technology Network

■ Java API Reference for Oracle ADF Model

■ Java API Reference for Oracle ADF Controller

■ Java API Reference for Oracle ADF Lifecycle

■ Java API Reference for Oracle ADF Faces

■ Java API Reference for Oracle ADF Data Visualization Components

■ Java API Reference for Oracle ADF Share

■ Java API Reference for Oracle ADF Model Tester

■ Java API Reference for Oracle Generic Domains

■ Java API Reference for Oracle ADF Business Components: interMedia Domains

■ Java API Reference for Oracle Metadata Service (MDS)

■ Tag Reference for Oracle ADF Faces

■ Tag Reference for Oracle ADF Faces Skin Selectors

■ Tag Reference for Oracle ADF Faces Data Visualization Tools

■ Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

What's New in This Guide

The following topics introduce the new and changed features of Oracle JDeveloper
and Oracle Application Development Framework (Oracle ADF) and other significant
changes, which are described in this guide.

New and Changed Features for Release 12c (12.1.3)
Oracle Fusion Middleware Release 12c (12.1.3) of Oracle JDeveloper and Oracle
Application Development Framework (Oracle ADF) includes the following new and
changed development features, which are described in this guide:

■ New No Paging option in the wizards for creating EJB and bean data controls. See
Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

■ Ability to use the AccessMode annotation on either the session bean class or the
interface (remote or local) on which the data control is based. See Section 3.4.4,
"How to Specify Access Mode for Individual Objects in the Data Control."

■ New capability to add UI hints to a data control by adding annotations directly to
the bean classes (meaning that separate XML data control structure files are not
needed to define the UI hints). See Section 3.5, "Providing UI Hints for Attributes
Using Annotations."

■ Ability to specify a configuration class to hold the metadata for custom bean data
controls. See Section 4.9, "Creating Custom Bean Data Controls."

For other changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the What’s New page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

Other Significant Changes in this Document for Release 12c (12.1.3)
For Release 12c (12.1.3), this document has been changed in other ways. Following are
the sections that have been added or changed.

■ Updated the section on bean data control annotations to reflect new UI hint
annotations and to clarify that @Property annotations are for custom properties.
See Section 4.8, "Using Annotations to Declare Metadata for Bean Data Controls."

xii

1

Introduction to ADF Model 1-1

1Introduction to ADF Model

This chapter provides a brief overview of data controls and binding data from
business services to user interfaces in Oracle ADF applications. It includes information
on types of data controls and then using those data controls to create databound UI
components.

This chapter includes the following sections:

■ Section 1.1, "About ADF Model"

■ Section 1.2, "Data Control Types"

■ Section 1.3, "Data Controls Not Covered By This Guide"

■ Section 1.4, "What You May Need to Know About Non-Adapter Framework Data
Controls"

1.1 About ADF Model
ADF Model is a declarative data binding facility that enables a unified approach to
binding user interfaces to business services without requiring code. ADF Model
implements two concepts that enable the decoupling of the user interface technology
from the business service implementation: data controls and declarative ADF
bindings. Figure 1–1 shows how the elements of ADF Model fit within an application
architecture.

About ADF Model

1-2 Developing Applications with Oracle ADF Data Controls

Figure 1–1 ADF Architecture with ADF Model

Data controls abstract the implementation technology of a business service by using
standard metadata interfaces to describe the service’s operations and data collections,
including information about the properties, methods, and types involved. These
operations and collections are exposed as data control objects that developers and UI
designers can use to create databound UI components, largely without having to
consider the type of underlying business service.

Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. There are three basic categories of
declarative binding objects:

■ Value bindings: Used by UI components that display data. Value bindings range
from the most basic variety that work with a simple text field to more
sophisticated list and tree bindings that support the additional needs of list, table,
and tree UI controls.

■ Action bindings: Used by UI components like hyperlinks or buttons to invoke
built-in or custom operations on data collections or a data control without writing
code.

■ Executable bindings: Included in executable bindings are iterator bindings, which
simplify the building of user interfaces that allow scrolling and paging through
collections of data and drilling-down from summary to detail information.

About ADF Model

Introduction to ADF Model 1-3

Executable bindings also include bindings that allow searching and nesting a
series of pages within another page, as well as bindings that cause operations to
occur immediately.

At runtime, the ADF Model layer reads the information describing the data controls
and bindings from the appropriate XML files and then implements the two-way
connection between the user interface and the business service.

To use the ADF Model layer to bind data, you need to create a data control for your
services. The data control will then appear as a tree hierarchy in the Data Controls
panel where each subnode in the tree represents an element such as a collection,
operation, method or attribute. You then create databound components by dragging
and dropping those subnodes onto the visual editor for a web page or other user
interface component. When you drag a subnode from a data control to a page,
JDeveloper automatically creates the metadata that describes the bindings from the
page to the services.

For example, in an application that uses an EJB session facade, developers can create
data controls for the facade. Developers can then use the representation of the data
control displayed in JDeveloper’s Data Controls panel (as shown in Figure 1–2) to
create UI components that are automatically bound to the session facade.

Figure 1–2 Data Controls Panel

The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. The ADF Model layer uses this file
at runtime to instantiate the page’s bindings. These bindings are held in a
request-scoped map called the binding container.

Data Control Types

1-4 Developing Applications with Oracle ADF Data Controls

In a JSF application, the binding container is accessible during each page request using
the EL expression #{bindings}. This expression always evaluates to the binding
container for the current page.

Example 1–1 shows the code used for binding a checkbox in a form to the orderFilled
attribute of the OrdersSessionEJBLocal data control.

Example 1–1 Binding Code for a Checkbox in a JSF Web Page

<af:selectBooleanCheckbox value="#{bindings.orderFilled.inputValue}"
 label="#{bindings.orderFilled.label}"
 shortDesc="#{bindings.orderFilled.hints.tooltip}" id="sbc1"/>

1.2 Data Control Types
There are various data control implementations and they can be divided into these
categories:

■ ADF Business Components application modules

In an application that uses ADF Business Components, a data control is
automatically created when you create an application module, and it contains all
the functionality of the application module.

For a complete guide to using ADF Business Components application modules,
see "Implementing Business Services with Application Modules" in Developing
Fusion Web Applications with Oracle Application Development Framework.

■ Data controls that both extend the adapter data control framework ("adapter data
controls")

These include the data controls for EJBs, beans, web services (SOAP-based and
RESTful), and URLs, which are covered in this guide.

■ Custom data controls based on the bean data control type

■ Custom data controls based on the adapter data control framework that do not
extend the bean data control

■ Custom data controls that do not extend the adapter data control framework

This category primarily consists of data controls that were developed before the
adapter framework was developed.

This guide will primarily focus on creating and using adapter data controls, though
much of the information also applies to ADF Business Components data controls.

1.3 Data Controls Not Covered By This Guide
The following are some of the types of data controls that are not covered in this guide:

■ Placeholder data controls, which are empty data controls used to help design
databound pages for users who do not yet have concrete business services to work
with. After you design databound components with the placeholder data control
and the business services have been provided, you can rebind the components to
those business services. For more information, see "Designing a Page Using
Placeholder Data Controls" in Developing Fusion Web Applications with Oracle
Application Development Framework.

■ JMX data controls, which enable you to create a data control based on Java
Management Extension (JMX) MBeans.

What You May Need to Know About Non-Adapter Framework Data Controls

Introduction to ADF Model 1-5

■ JavaBean data controls, which are not to be confused with bean data control. The
JavaBean data control is a data control type that was developed before the adapter
data control framework. It is missing many of the key features that have since
been built into bean data controls, such as support for queryable collections.

■ Other data controls within the broader Fusion Middleware stack, such as BAM
data controls.

1.4 What You May Need to Know About Non-Adapter Framework Data
Controls

If you are working with legacy data controls, you might want to consider migrating to
new data controls based on the adapter data control framework. This framework
incorporates a number of useful features, such as validation rules and list of value
objects. You can use the adapter framework to create a new data control type from
scratch, or you can extend one of the existing data control types, such as the bean data
control type.

What You May Need to Know About Non-Adapter Framework Data Controls

1-6 Developing Applications with Oracle ADF Data Controls

2

Using ADF Data Controls 2-1

2Using ADF Data Controls

This chapter describes how to create data controls to abstract business services and use
the Data Controls panel to create databound pages. It also includes information on the
way declarative binding is specified at design time and implemented at runtime.

This chapter contains the following sections:

■ Section 2.1, "Core Development Steps For Data Control Applications"

■ Section 2.2, "Exposing Business Services with Data Controls"

■ Section 2.3, "Creating Databound UI Components from the Data Controls Panel"

2.1 Core Development Steps For Data Control Applications
At a high level, the declarative development process for an application that contains
data controls usually involves the following core steps:

■ Creating an application workspace in JDeveloper: Using a wizard, JDeveloper
automatically adds the libraries and configuration needed for the technologies you
select, and structures your application into projects with packages and directories.
For more information, see the "Creating Applications and Projects" section of
Developing Applications with Oracle JDeveloper.

■ Creating the business services: These can be ADF Business Components, EJB
session beans, POJOs, web services, or other services. For more information on
developing these services in JDeveloper, see Developing Applications with Oracle
JDeveloper.

■ Creating data controls for your services: Once you have created your business
services, you create the data controls that use metadata interfaces to abstract the
implementation of those services and describe their operations and data
collections, including information about the properties, methods, and types
involved. These data controls are displayed in the Data Controls panel and can be
dragged to pages to create databound UI components. For more information, see
Section 2.2, "Exposing Business Services with Data Controls."

■ Adding declarative metadata to your data controls: You can augment your data
controls with UI hints, validation rules, criteria for use in search forms, and other
features. For more information, see Chapter 7, "Adding Business Logic to Data
Controls."

■ Implementing the user interface: JDeveloper’s Data Controls panel contains a
representation of the services for your application. You can drag an object from the
Data Controls panel onto a page and select the UI component you want to display
the underlying data. For UI components that are not databound, you use the

Exposing Business Services with Data Controls

2-2 Developing Applications with Oracle ADF Data Controls

Components window to drag and drop components. JDeveloper creates all the
page code for you.

For information about creating databound web pages, see "Creating a Databound
Web User Interface" in Developing Fusion Web Applications with Oracle Application
Development Framework.

As part of creating the user interface, you are likely to also want to define task
flows to organize the user’s workflow within the application. For more
information, see "Creating ADF Task Flows" in Developing Fusion Web Applications
with Oracle Application Development Framework.

For more detailed information on the UI components themselves, see the
"Implementing the User Interface with JSF" section in Developing Fusion Web
Applications with Oracle Application Development Framework.

■ Deploying the application: You use wizards and editors to create and edit
deployment descriptors, JAR files, and application server connections. For more
information, see "Deploying Fusion Web Applications" in Developing Fusion Web
Applications with Oracle Application Development Framework.

2.2 Exposing Business Services with Data Controls
Once you have your application’s services in place, you can use JDeveloper to create
data controls that provide the information needed to declaratively bind UI
components to those services.

For example, in a Java EE application, you normally create entity beans that represent
tables in a database and then create a session facade over all the EJBs. This facade
provides a unified interface to the underlying entities. In an Oracle ADF application,
you can create a data control for the session bean, and that data control will contain
representation of all the EJBs under the session bean.

You generate data controls with the Create Data Control menu item. Data controls
consist of one or more XML metadata files that define the capabilities of the services
that the bindings can work with at runtime. The data controls work in conjunction
with the underlying services.

2.2.1 How to Create ADF Data Controls
You create adapter-based data controls from within the Applications window of
JDeveloper.

Before you begin:
It may be helpful to have a general understanding of using data controls. For more
information, see Section 2.2, "Exposing Business Services with Data Controls."

You will need to complete this task:

Create an application workspace and add the business services on which you want
to base your data control. For information on creating an application workspace,

Note: For applications based on ADF Business Components, the data
controls are created automatically when you create an application
module. For more information, see "Implementing Business Services
with Application Modules" in Developing Fusion Web Applications with
Oracle Application Development Framework.

Exposing Business Services with Data Controls

Using ADF Data Controls 2-3

see "Creating Applications and Projects" in Developing Applications with Oracle
JDeveloper.

To create a data control:
1. Right-click the top-level node for the data model project in the application

workspace and choose New and then From Gallery.

2. In the New Gallery, expand Business Tier, select Data Controls, select the type of
data control that you want to create, and click OK.

3. Complete the remaining steps of the wizard.

For information on creating adapter-based data controls, see subsequent chapters
of this guide for the different types of data controls.

2.2.2 What Happens in Your Project When You Create a Data Control
When you create a data control, JDeveloper creates the data control definition file
(DataControls.dcx), opens the file in the overview editor, and displays the file’s
hierarchy in the Data Controls panel. This file enables the data control to work directly
with the services and the bindings.

You can see the code from the corresponding XML file by clicking the Source tab in the
editor window.

2.2.2.1 DataControls.dcx Overview Editor
The overview editor for the DataControls.dcx file provides a view of the hierarchies
of data control objects and exposed methods of your data model.

See Table 2–1 for a description of the icons that are used in the overview editor and
Data Controls panel.

You can change the settings for a data control object by selecting the object and
clicking the Edit icon. For more information about editing a data control, see
Section 7.2, "Configuring Data Controls."

Figure 2–1 shows the overview editor for an EJB data control.

Note: In some cases, you can create a data control by right-clicking
the class or object on which the data control will be based and
choosing Create Data Control.

Exposing Business Services with Data Controls

2-4 Developing Applications with Oracle ADF Data Controls

Figure 2–1 DataControls.dcx File in the Overview Editor

2.2.2.2 Data Controls Panel
The Data Controls panel serves as a palette, from which you can create databound UI
components by dragging nodes from the Data Controls panel to the design editor for a
web page. The Data Controls panel appears in the Applications window once you
have created a data control. Figure 2–2 shows the Data Controls panel for an EJB data
control.

Figure 2–2 Data Controls Panel

2.2.3 Display of Business Services in the Data Controls Panel
The Data Controls panel lists all the data controls that have been created for the
application’s business services and exposes the hierarchies of collections (row sets of
data objects), attributes, methods, and built-in operations that are available for binding
to UI components.

For example, Figure 2–3 shows the Data Controls panel with the
OrdersSessionEJBLocal data control. The collection nodes (such as customerFindAll,
customerFindById, empFindAll) represent data collections that are returned by query
methods (in this case, getter methods in the session facade). These collection objects
can be dropped on to pages to create UI components such as forms and tables.

Other service methods (in the case of JPA-based data controls, methods that are not
prefixed with get) are represented by method icons. These objects can be dropped on a
form as a command button or link. If a method accepts arguments, those arguments

Exposing Business Services with Data Controls

Using ADF Data Controls 2-5

appear in a Parameters node as parameters nested inside the method's node. Objects
that are returned by the methods appear as well.

Figure 2–3 Data Controls Panel Main Nodes

Each returned object displays any attributes, methods, and nested collections that were
defined on the associated object. Figure 2–4 shows the attributes and methods defined
on the Item bean that is returned by the itemFindAll collection.

Tip: If the Data Controls panel is not visible, see "How to Open the
Data Controls Panel" in Developing Fusion Web Applications with Oracle
Application Development Framework.

Note: Whenever changes are made to the services on which a data
control is based, the data control incorporates those changes. If
changes to the services are not immediately reflected in the Data
Controls panel, you can refresh the panel manually. For more
information, see "How to Refresh the Data Controls Panel" in
Developing Fusion Web Applications with Oracle Application Development
Framework.

Exposing Business Services with Data Controls

2-6 Developing Applications with Oracle ADF Data Controls

Figure 2–4 Child Nodes to Returned Collections

Depending on data control type, various built-in operations are exposed. For some
data controls, declarative named criteria are also available, which you can use to create
search forms.Figure 2–5 shows operations and the default named criteria for an EJB
data control.

Figure 2–5 Data Control Panel Operations and Named Criteria

2.2.4 Data Control Built-in Operations
The data control framework defines a standard set of operations for data controls.
These operations are implemented using functionality of the underlying business
service. At runtime, when one of these data collection operations is invoked by name
by the data binding layer, the data control delegates the call to an appropriate service

Creating Databound UI Components from the Data Controls Panel

Using ADF Data Controls 2-7

method to handle the built-in functionality. For example, in EJB and bean data
controls, the Next operation relies on the bean collection’s iterator.

Most of the built-in operations affect the current row. However, the execute operation
refreshes the data control itself, and the commit and rollback operations affect all
changes made within the boundaries of a transaction.

The operations available vary by data control type and the functionality of the
underlying business service. Here is the full list of built-in operations:

■ Create: Creates a new row that becomes the current row. For JPA-based data
controls, this new row is also added to the row set.

■ CreateInsert: Creates a new row that becomes the current row and inserts it into
the row set. Available only for ADF Business Components application modules.

■ Create With Parameters: Uses named parameters to create a new row that
becomes the current row and inserts it into the row set. Available only for ADF
Business Components application modules.

■ Delete: Deletes the current row.

■ Execute: Refreshes the data collection by executing or reexecuting the accessor
method.

ExecuteWithParams: Refreshes the data collection by first assigning new values to
variables that passed as parameters, then executing or reexecuting the associated
query. This operation is only available for data control collection objects that are
based on parameterized queries.

■ First: Sets the first row in the row set to be the current row.

■ Last: Sets the last row in the row set to be the current row.

■ Next: Sets the next row in the row set to be the current row.

■ Next Set: Navigates forward one full set of rows.

■ Previous: Sets the previous row in the row set to be the current row.

■ Previous Set: Navigates backward one full set of rows.

■ removeRowWithKey: Tries to find a row using the serialized string representation of
the row key passed as a parameter. If found, the row is removed.

■ setCurrentRowWithKey: Tries to find a row using the serialized string
representation of the row key passed as a parameter. If found, that row becomes
the current row.

■ setCurrentRowWithKeyValue: Tries to find a row using the primary key attribute
value passed as a parameter. If found, that row becomes the current row.

■ commit: Persists to the database all changes that are made in the current
transaction.

■ rollback: Reverts all changes made within the context of the current transaction.

2.3 Creating Databound UI Components from the Data Controls Panel
You can design a databound user interface by dragging an item from the Data Controls
panel and dropping it on a page as a specific UI component. When you use data
controls to create a UI component, JDeveloper automatically creates the various code
and objects needed to bind the component to the data control you selected.

Creating Databound UI Components from the Data Controls Panel

2-8 Developing Applications with Oracle ADF Data Controls

In the Data Controls panel, each data control object is represented by a specific icon.
Table 2–1 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

Table 2–1 Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data control. Serves as a container for the other objects and is not used to
create anything.

Collection Represents a named data
collection returned by an
accessor method or
operation.

Forms, tables, graphs, trees, range navigation components, and
master-detail components.

For more information about using collections on a data control
to create forms, see "Creating a Basic Databound Page" in
Developing Fusion Web Applications with Oracle Application
Development Framework.

For more information about using collections to create tables,
see "Creating ADF Databound Tables" in Developing Fusion Web
Applications with Oracle Application Development Framework.

For more information about using master-detail relationships to
create UI components, see "Displaying Master-Detail Data" in
Developing Fusion Web Applications with Oracle Application
Development Framework.

For information about creating graphs, charts, and other
visualization UI components, see "Creating Databound Chart
and Gauge Components" in Developing Fusion Web Applications
with Oracle Application Development Framework.

Structured
Attribute

Represents a returned
object that is neither a
Java primitive type
(represented as an
attribute) nor a collection
of any type.

Label, text field, date, list of values, and selection list
components.

Attribute Represents a discrete data
element in an object (for
example, an attribute in a
row).

Label, text field, date, list of values, and selection list
components.

For information about using attributes to create fields on a page,
see "Creating Text Fields Using Data Control Attributes" in
Developing Fusion Web Applications with Oracle Application
Development Framework.

For information about creating lists, see "Creating Databound
Selection Lists and Shuttles" in Developing Fusion Web
Applications with Oracle Application Development Framework.

Key
Attribute

Represents an object
attribute that has been
declared as a primary key
attribute, either in data
control structure file or in
the business service itself.

Label, text field, date, list of values, and selection list
components.

Creating Databound UI Components from the Data Controls Panel

Using ADF Data Controls 2-9

Method Represents a method or
operation in the data
control or one of its
exposed structures that
may accept parameters,
perform some business
logic and optionally
return single value, a
structure, or a collection.

Command components.

For methods that accept parameters: command components
and parameterized forms.

For information about creating command components from
methods, see "Using Command Components to Invoke
Functionality in the View Layer" in Developing Fusion Web
Applications with Oracle Application Development Framework.

For information about creating parameterized forms, see "Using
Parameters to Create a Form" in Developing Fusion Web
Applications with Oracle Application Development Framework.

Method
Return

Represents an object that
is returned by a method or
other operation. The
returned object can be a
single value or a
collection.

A method return appears
as a child under the
method that returns it.
The objects that appear as
children under a method
return can be attributes of
the collection, other
methods that perform
actions related to the
parent collection, or
operations that can be
performed on the parent
collection.

For single values: text fields and selection lists.

For collections: forms, tables, trees, and range navigation
components.

When a single-value method return is dropped, the method is
not invoked automatically by the framework. To invoke the
method, you can drop the corresponding method as a button. If
the form is part of a task flow, you can create a method activity
to invoke the method. For more information about executables,
see "Executable Binding Objects Defined in the Page Definition
File" in Developing Fusion Web Applications with Oracle
Application Development Framework.

Operation Represents a built-in data
control operation that
performs actions on the
parent object.

UI command components, such as buttons, links, and menus.

For more information, see "Creating Command Components
Using Data Control Operations" and "Creating a Form to Edit
an Existing Record" in Developing Fusion Web Applications with
Oracle Application Development Framework.

Parameter Represents a parameter
value that is declared by
the method or operation
under which it appears.

Label, text, and selection list components.

Named
criteria

Represents a
metadata-based query
from which you can create
a user search form.
Named criteria are
available for EJB and
(JPA-based) bean data
controls.

You can create custom
view criteria and add
them to the Data Controls
panel. See Section 7.6,
"Filtering Result Sets with
Named Criteria."

Search forms.

For information on creating search forms, see "Creating ADF
Databound Search Forms" in Developing Fusion Web Applications
with Oracle Application Development Framework.

Table 2–1 (Cont.) Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Creating Databound UI Components from the Data Controls Panel

2-10 Developing Applications with Oracle ADF Data Controls

2.3.1 How to Use the Data Controls Panel
JDeveloper provides you with a predefined set of UI components from which to
choose for each data control item you can drop.

Before you begin:
It may be helpful to have an understanding of the different objects in the Data Controls
panel. For more information, see Section 2.3, "Creating Databound UI Components
from the Data Controls Panel."

You will need to complete these tasks:

■ Create a data control as described in Section 2.2.1, "How to Create ADF Data
Controls."

■ Create a web page as described in "Creating a Web Page" in Developing Fusion Web
Applications with Oracle Application Development Framework.

To use the Data Controls panel to create UI components:
1. Select an item in the Data Controls panel and drag it onto the visual editor for

your page. For a definition of each item in the panel, see Table 2–1.

2. From the ensuing context menu, choose a UI component.

When you drag an item from the Data Controls panel and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for
the item you dropped. The components displayed are based on the libraries in
your project.

Figure 2–6 shows the context menu displayed when a data collection from the
Data Controls panel is dropped on a page.

Tip: If you need to drop an operation or method onto a method
activity in a task flow, you can simply drag and drop it onto the
activity in the diagram.

Creating Databound UI Components from the Data Controls Panel

Using ADF Data Controls 2-11

Figure 2–6 Dropping Component From Data Controls Panel

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look.
For example, if you select ADF Table from the context menu, the Edit Table
Columns dialog launches.

The UI components selected by default are determined first by any UI hints set on
the corresponding business object. If no UI hints have been set, then JDeveloper
uses input components for standard forms and tables, and output components for
read-only forms and tables. Components for lists are determined based on the type
of list you chose when dropping the data control object.

Once you select a component, JDeveloper inserts the UI component on the page in
the visual editor. For example, if you drag a collection from the Data Controls
panel and choose ADF Table from the context menu, a table appears in the visual
editor, as shown in Figure 2–7.

Figure 2–7 Databound UI Component: ADF Table

By default, the UI components created when you use the Data Controls are bound
to attributes in the ADF data control and may have built-in features, such as:

■ Databound labels

■ Tooltips

■ Formatting

■ Basic navigation buttons

Creating Databound UI Components from the Data Controls Panel

2-12 Developing Applications with Oracle ADF Data Controls

■ Validation, if validation rules are attached to a particular attribute.

The default components are fully functional without any further modifications.
However, you can modify them to suit your particular needs. Each component
and its various features are discussed further in "Creating a Databound Web User
Interface" in Developing Fusion Web Applications with Oracle Application Development
Framework.

2.3.2 What Happens When You Use the Data Controls Panel
When a web application is built using the Data Controls panel, JDeveloper does the
following:

■ Creates a DataBindings.cpx file in the default package for the project (if one does
not already exist), and adds an entry for the page.

A DataBindings.cpx files defines the binding context for the application. The
binding context is a container object that holds a list of available data controls and
data binding objects. For more information, see "What Happens at Runtime: How
the Binding Context Works" in Developing Fusion Web Applications with Oracle
Application Development Framework. The DataBindings.cpx file maps individual
pages to the binding definitions in the page definition file and registers the data
controls used by those pages. For more information, see "Working with the
DataBindings.cpx File" in Developing Fusion Web Applications with Oracle Application
Development Framework.

■ Creates the adfm.xml file in the META-INF directory. This file creates a registry for
the DataBindings.cpx file, which allows the application to locate it at runtime so
that the binding context can be created.

■ Registers the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access to
the binding context. For more information about the binding filter configuration,
see "Configuring the ADF Binding Filter" in Developing Fusion Web Applications
with Oracle Application Development Framework.

■ Adds several libraries to the view project, including the following:

– ADF Faces Databinding Runtime

– ADF Model Runtime

– MDS Runtime

■ Adds a page definition file (if one does not already exist for the page) to the page
definition subpackage. The default subpackage is view.pageDefs in the adfmsrc
directory.

Tip: If you want to change the type of ADF databound component
used on a page, the easiest method is to use either the visual editor or
the structure window to delete the component, and then drag and
drop a new one from the Data Controls panel. When you use the
visual editor or the structure window to delete a databound
component from a page, if the related binding objects in the page
definition file are not referenced by any other component, JDeveloper
automatically deletes those binding objects for you (automatic
deletion of binding objects will not happen if you use the source
editor).

Creating Databound UI Components from the Data Controls Panel

Using ADF Data Controls 2-13

The page definition file (pageNamePageDef.xml) defines the ADF binding container
for each page in an application’s view layer. The binding container provides
runtime access to all the ADF binding objects for a page. For more information
about the page definition file, see "Working with Page Definition Files" in
Developing Fusion Web Applications with Oracle Application Development Framework.

■ Configures the page definition file, which includes adding definitions of the
binding objects referenced by the page.

■ Adds the given component to the page.

These prebuilt components include ADF data binding expression language (EL)
expressions that reference the binding objects in the page definition file. For more
information, see "Creating ADF Data Binding EL Expressions" in Developing Fusion
Web Applications with Oracle Application Development Framework.

■ Adds all the libraries, files, and configuration elements required by the UI
components. For more information on the artifacts required for ADF Faces
databound components, see the "ADF Faces Configuration" appendix in
Developing Web User Interfaces with Oracle ADF Faces.

2.3.3 What You May Need to Know About Iterator Result Caching
When a data control modifies a collection, the data control must instantiate a new
instance of the collection in order for the ADF Model layer to understand that it has
been modified. In other words, although some action in the client may change the
collection, that change will not be reflected in the UI unless a new instance of the
collection is created. However, for performance reasons, accessor and method iterators
cache their results set (by default, the cacheResults attribute on the iterator is set to
true). This setting means that the iterator is refreshed and a new instance of the
collection is created only when the page is first rendered. The iterator is not refreshed
when the page is revisited, for example, if the page is refreshed using partial page
rendering, or if the user navigates back to the page.

For example, say you want to allow sorting on a table on your page. Because you want
the page to refresh after the sort, you add code to the listener for the sort event that
will refresh the table using partial page rendering (for more information, see the
"Rerendering Partial Page Content" chapter of Developing Web User Interfaces with
Oracle ADF Faces). Because the instance of the collection for the table has already been
instantiated and is cached, the accessor iterator will not reexecute, which means that a
new instance of the collection with the new sort order will not be created, so the sort
order on the page will remain the same.

To work around this issue, you can either configure the iterator so that it does not
cache the results, or you can place a button on the page that can be used to reexecute
the iterator when the page is refreshed.

Tip: You can set the package configuration (such as name and
location) in the ADF Model settings page of the Project Properties
dialog (accessible by double-clicking the project node).

Tip: The current binding container is also available from AdfContext
for programmatic access.

Creating Databound UI Components from the Data Controls Panel

2-14 Developing Applications with Oracle ADF Data Controls

2.3.3.1 Setting an Iterator to Not Cache Its Result Set

To set an iterator to not cache its result set:
1. Open the page definition file, and in the Structure window, select the iterator

whose results should not be cached.

2. In the Properties window, expand the Advanced section and select false from the
CacheResults dropdown list.

2.3.3.2 Using a Button to Reexecute the Iterator

To use a button to reexecute the iterator:
1. In the ADF Faces page of the Components window, expand the General Controls

panel, and drag a Button onto the page.

2. In the Structure window, right click the button and choose Bind to ADF Control.

3. In the Bind to ADF Control dialog, expand the collection associated with the
iterator to reexecute, expand that collection’s Operations node, and select Execute.

Note: If your page uses the navigation operations to navigate
through the collection, do not set CacheResults to false, as that will
cause navigation to stop working. You must use a button to reexecute
the iterator. For more information about using the navigation
operations, see "Incorporating Range Navigation into Forms" in
Developing Fusion Web Applications with Oracle Application Development
Framework.

3

Creating and Configuring EJB Data Controls 3-1

3Creating and Configuring EJB Data Controls

This chapter describes how to create data controls for EJB session beans and also
includes information on paging and failover support.

This chapter includes the following sections:

■ Section 3.1, "About EJB Data Controls"

■ Section 3.2, "Preparing a Session Bean to Use With a Data Control"

■ Section 3.3, "Exposing Session Bean Services with ADF Data Controls"

■ Section 3.4, "Paginated Fetching of Data in EJB Data Controls"

■ Section 3.5, "Providing UI Hints for Attributes Using Annotations"

■ Section 3.6, "Enabling Failover in an EJB Data Control"

3.1 About EJB Data Controls
Data controls are an abstraction provided by ADF Model than enable you to work
with data and business services in a declarative manner and easily create UI
components. For more general information, see Section 1.1, "About ADF Model."

You can create data controls for EJB session beans to simplify the creation of web
applications that rely on object model data, such as accessing data from a database. In
addition to the features that are common for all adapter data controls (such as
declarative UI hints and validation rules), EJB data controls have the following
features built in:

■ Range paging in order to improve performance of queries to large data sets

■ Declarative named criteria to simplify creation of search-by-example forms

■ Transactional operations (based on transactional business methods in the session
bean)

■ Failover support (based on failover methods that you implement)

3.1.1 EJB Data Control Use Cases and Examples
You can use EJB data controls to do the following kinds of things:

■ Create highly functional web pages that are bound to an EJB session facade,
without manually writing any binding code.

■ Create an application that integrates existing EJB business services with ADF
features such as ADF Model data binding, ADF Faces, and ADF task flows.

Preparing a Session Bean to Use With a Data Control

3-2 Developing Applications with Oracle ADF Data Controls

■ Take advantage of UI hints, validation rules, and other declarative metadata to
provide consistent application of prompts, tooltips, format masks, and error
messages throughout the application. For more information, see Chapter 7,
"Adding Business Logic to Data Controls."

■ Take advantage of ADF Model features to declaratively add query-by-example
forms and list-of-value (LOV) components to pages. For more information on
creating LOV components, see Section 7.7, "Creating List of Values Objects."

■ Enable MDS customization on the application, which allows customers to
customize an application without modifying the source code.

3.1.2 Additional Functionality for EJB Data Controls
You may find it helpful to understand other ADF and JDeveloper features before you
implement your data controls. Following are links to other sections that may be useful.

■ General data control features: Before beginning work with EJB data controls, it is
important to understand the broader data control concepts. For more information,
see Chapter 2, "Using ADF Data Controls."

■ ADF Model and data binding: When you create forms in an ADF web application,
you use ADF Model and data binding. For more information, see "Using ADF
Model in a Fusion Web Application" in Developing Fusion Web Applications with
Oracle Application Development Framework and Java API Reference for Oracle ADF
Model.

■ ADF Faces: When you create databound UI components, they are likely to be from
the ADF Faces component set. For more information, see "Creating a Databound
Web User Interface" in Developing Fusion Web Applications with Oracle Application
Development Framework.

■ ADF task flows: Task flows extend JSF page flows to provide a modular and
transaction-aware approach to navigation and application control. For more
information, see "Creating ADF Task Flows" in Developing Fusion Web Applications
with Oracle Application Development Framework.

■ Java EE support in JDeveloper: JDeveloper provides support for creating Java EE
components in a way that is optimized for use with EJB data controls. For more
information, see "Developing with EJB and JPA Components" in Developing
Applications with Oracle JDeveloper.

3.2 Preparing a Session Bean to Use With a Data Control
An EJB data control encapsulates an EJB session bean and exposes the bean’s code
elements as data control objects, which can then be used to bind those code elements
to UI components. When you create a data control based on an EJB session bean, the
data control relies on coding patterns in the bean. This section shows the mapping
between given code patterns and data control objects and shows patterns that you can
use in your beans to maximize the data control features.

Preparing a Session Bean to Use With a Data Control

Creating and Configuring EJB Data Controls 3-3

3.2.1 Supported Types and Constructs in EJB Data Controls
EJB (and bean) data controls are compatible with classes that use the following Java
types and constructs:

■ Java primitive types and arrays

■ Complex Java types, such as your own beans

■ Java scalar types, including types from the java.math, java.sql, and java.util
packages

■ Collection types encompassed by the java.util.Collection, java.util.List,
and java.util.Map packages

■ Generics, strongly-typed collections, and wildcards

■ Java Persistence API (JPA) features such as:

– @Id annotations to determine primary keys

– @NamedQuery annotations and the full range of JPQL syntax for named queries

– @JoinColumn annotations to denote master-detail and list-of-value (LOV)
relationships.

3.2.2 EJB Data Control Objects
When you create a data control based on an EJB session bean (or a POJO bean), the
data control exposes several different types of objects, each of which you can bind to a
variety of UI components.

For EJB and bean data controls, data control objects are exposed for collections that are
returned by any public method starting with get, as well as complex types and
primitives that are returned by a collection or a get method. In these cases, the name
of the data control object typically matches the name of the get method, but with the
leading get removed from the name.

If a returned object has a relationship to another object defined through a JoinColumn
annotation, then a child object is displayed in the Data Controls panel.

If the fields of a bean are exposed with public get methods, those fields are exposed as
child attributes of the collection or structured attribute in the Data Controls panel. For
get methods that return arrays and simple collections composed of primitives or
strings, a child attribute node called element is exposed the Data Controls panel.

For methods that are not pre-pended with get, the methods are exposed as method
objects in the Data Controls panel. Returns of these methods are exposed as method
return objects.

Note: The data control does not replace the bean code. Rather, it serves
as a thin adapter layer between the bean and the binding layer. The
methods in your bean are used at runtime as you have coded them.
Any declarative metadata that you specify in the data control, such as
UI hints or validation rules, augments the session bean’s business
logic. Likewise, if you add or change methods after you have created
the data control, the data control works with those new or revised
methods.

Preparing a Session Bean to Use With a Data Control

3-4 Developing Applications with Oracle ADF Data Controls

In addition, built-in data control operations become available for many of those
objects. See Section 2.2.4, "Data Control Built-in Operations" for the full list of those
operations.

Table 3–1 shows how the various data control objects map to the elements of EJB
classes. For information on using these objects, see Section 2.3, "Creating Databound
UI Components from the Data Controls Panel."

Note: EJB and bean data controls also expose bean constructors,
which you can use to create buttons in the UI for creating new
instances of the bean. This provides an alternative to using the data
control’s Create operation for creating instances. Buttons created from
constructor nodes in the Data Controls enable the user to create a new
object instance without adding that object to the persistence context
(which typically happens during the Create operation). You can
declaratively access that object instance by binding to the result
property of the binding object for the constructor.

Table 3–1 Important EJB and Bean Data Control Objects

Icon Name Description

Collection Is exposed for any public get method that returns a collection (any object implementing
java.util.Collection).

The children under a collection may be attributes of the collection, related collections,
custom methods that return a value from the collection, or built-in operations that can be
performed on the collection.

Structured
Attribute

Is exposed for any public get method that returns a complex Java type that is not a
collection.

Attribute Is exposed for any public get method that returns a Java primitive or String, such as a
column in an entity bean).

Key Attribute Is exposed for any attribute that is marked as the primary key (or which is part of a
composite primary key). A key attribute can be designated with an @Id annotation in the
entity bean class or in the data control structure file for a bean. For more information, see
Section 3.2.4.1, "Recommended Entity Bean Elements" and Section 7.3.1, "How to
Designate an Attribute as Primary Key."

Method Represents methods that are not pre-pended with get. These methods may return single
values, structures, or collections.

Method
Return

Represents an object that is returned by a method or other operation. The returned object
can be a single value or a collection.

A method return appears as a child under the method that returns it. The objects that
appear as children under a method return can be attributes of the collection, other
methods that perform actions related to the parent collection, or operations that can be
performed on the parent collection.

Operation Represents a built-in data control operation that performs actions on the parent object.
Data control operations are located in an Operations node under collections or method
returns, and also under the root data control node. The operations that are children of a
particular collection or method return operate on those objects only, while operations
under the data control node operate on all the objects in the data control.

If an operation requires one or more parameters, they are listed in a Parameters node
under the operation.

Preparing a Session Bean to Use With a Data Control

Creating and Configuring EJB Data Controls 3-5

3.2.3 About the Session Facade Pattern
EJB data controls are based on the EJB session facade design pattern, in which a
session bean mediates access to individual entity beans, which contain the code to
query database tables. When you create a data control based on a session bean, the
data control exposes top-level objects based on the session bean’s methods and lower
level objects based on the detail in the entity beans that is retrieved by the session
bean’s accessor methods.

3.2.4 EJB Data Control Prerequisites and Considerations
In order to take advantage of the full functionality of EJB data controls, you need to
include some elements in your classes that the data controls can use to present the
structure of the services.

Your project should contain the following types of classes:

■ JPA entity classes for every database table that your application needs to query.

■ One or more session beans that contain accessor methods to the entity beans and
other business methods. EJB data controls are based on sessions beans.

■ Optionally, (POJO) service facade classes that mirror the structure of the session
beans. These service facade classes are useful for testing the services without
having to run them in an application server container. You can also create data
controls for service facade classes in order to test the services with the data control.

3.2.4.1 Recommended Entity Bean Elements
Your entity beans should contain the following elements:

■ @NamedQuery annotations containing queries that return each row of the collection.
You can also take advantage of the constructs of the Java Persistence Query
Language (JPQL) to add more selective queries. For more information on JPQL,
see http://docs.oracle.com/javaee/6/tutorial/doc/bnbtg.html.

■ @JoinColumn annotations for any columns that reference other tables (or other
columns in the same table) by foreign key. The generated data control will then
expose these joined columns as master-detail relationships and simplify the
creation of UI components that rely on those relationships.

■ addEntityBeanName(CollectionType collectionParam) and
removeEntityBeanName(CollectionType collectionParam) methods for each of
the collections represented by the entity beans. The data control’s Create and
Delete operations rely on these methods to add and remove rows in a collection.

Parameter Represents a parameter value that is declared by the method or operation under which it
appears. Parameters appear in the Parameters node under a method or operation.

Named
criteria

Represents a metadata-based query from which you can create a user search form.

You can create custom view criteria and add them to the Data Controls panel. See
Section 7.6, "Filtering Result Sets with Named Criteria."

Constructor Represents a constructor for one of the creatable types encompassed by a bean or EJB
data control. You can use this data control object to create a command control that the
user can click to create a new instance of that type.

Table 3–1 (Cont.) Important EJB and Bean Data Control Objects

Icon Name Description

Preparing a Session Bean to Use With a Data Control

3-6 Developing Applications with Oracle ADF Data Controls

■ Primary keys designated for each entity bean. This is necessary for the Create
operation to function properly when creating new rows at runtime.

You can designate primary key columns in entity beans by adding (or generating)
@Id annotations for the appropriate columns.

■ A strategy for generating primary key values when creating new records. This is
particularly important when you are using explicit commit models where you
need to persist a new record upon its creation but before the user fills in the details
for the other fields. For more information, see Section 3.2.8, "About Generating IDs
for Primary Keys with the @GeneratedValue Annotation."

3.2.4.2 Recommended Session Facade Elements
It is recommended that your session beans (and/or Java service facade classes) contain
the elements in the following list in order to integrate with data control features. If you
use JDeveloper’s wizards to create your classes, these elements are generated for you
by default.

■ Getter methods that return the results of named queries specified in the entity
beans. For example, the method shown in Example 3–1 would return the results of
a named query called Customer.findById.

When you create a query that includes named parameters, the data control object
that is created for that query includes the ExecuteWithParams built-in operation,
which you can use to quickly create forms that are based on parameters that are
supplied at runtime.

■ The queryByRange(String jpqlStmt, int firstResult, int maxResults)
method, in order to take advantage of built-in support for JPA named queries,
named criteria metadata, scrollable access mode, and range paging access mode.
The data control will use this method to perform all named queries, instead of
invoking the getter methods for the queries in the session bean.

Example 3–2 shows the code that is generated for the queryByRange(String
jpqlStmt, int firstResult, int maxResults) method when you use
JDeveloper to generate a session bean (or a plain Java facade using the Java Service
Facade wizard). You can change the implementation of this method, but you need
to keep the signature as is, since that’s what the ADF Model runtime looks for.

■ (If your bean has transactional behavior), the following methods with these exact
signatures:

– public boolean isTransactionDirty()

– public void rollbackTransaction()

– public void commitTransaction()

These methods are used to implement the data control’s commit and rollback
operations. When you use the JDeveloper wizards for creating Java service facade
classes and EJB stateful container-managed session beans, working
implementations of these three methods are generated in the classes by default.

Example 3–1 Getter Method That Returns the Results of a Named Query

/** <code>select o from Customer o where o.id = :custId</code> */

Tip: If you have multiple named queries for an entity bean, you can
create a getter method for each named query to create distinct data
control collection objects for each query.

Preparing a Session Bean to Use With a Data Control

Creating and Configuring EJB Data Controls 3-7

public List<Customer> getCustomerFindById(BigDecimal custId) {
 if (custId != null) {
 Long custIdLong = new Long(String.valueOf(custId));
 return em.createNamedQuery("Customer.findById").setParameter("custId",
custIdLong).getResultList();
 } else {
 return getCustomerFindAll();
 }

Example 3–2 Code Listing for queryByRange() Method

public Object queryByRange(String jpqlStmt, int firstResult, int maxResults) {
 Query query = em.createQuery(jpqlStmt);
 if (firstResult > 0) {
 query = query.setFirstResult(firstResult);
 }
 if (maxResults > 0) {
 query = query.setMaxResults(maxResults);
 }
 return query.getResultList();
}

3.2.4.3 What You May Need to Know About Overloaded Get Methods
When you create a session bean or service facade class to be consumed by a data
control, the class should not use overloaded getXxx() methods (i.e. multiple versions
of a method that have the same name but each of which takes different parameters). At
runtime, the data control is unable to properly distinguish between the different
versions of the method. To work around this constraint, rename any overloaded
getXxx() methods you may have and give them names that are unique within their
class.

3.2.5 Creating EJBs for a Data Control in JDeveloper
JDeveloper’s wizards enable you to create EJB entity classes and session beans that are
optimized for use with data controls. For more information, see "How to Work with an
EJB Business Services Layer" in Developing Applications with Oracle JDeveloper.

3.2.6 What You May Need to Know About How EJB and Bean Data Controls Use Getter
Methods

When you use the queryByRange(String jpqlStmt, int firstResult, int
maxResults) in your session bean (and the data control uses the
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler handler), the data
control will use this method to perform all named queries, instead of invoking the
getter methods for the queries in the session bean. If you have custom logic that you
have added to the getter methods, it will not be called when the query is run. If you
need that custom logic to run, you can incorporate it into the queryByRange(String
jpqlStmt, int firstResult, int maxResults) method.

When you do not include the queryByRange(String jpqlStmt, int firstResult,
int maxResults) in your session bean, the data control based on that bean is
generated with the oracle.adf.model.adapter.bean.DataFilterHandler handler. In
this case, the data control will invoke the session bean’s getter methods directly, but
you will not be able to use declarative named criteria on objects in the data control and
you will need to manually implement methods for scrollable and range paging to

Preparing a Session Bean to Use With a Data Control

3-8 Developing Applications with Oracle ADF Data Controls

work. For more information on the use of named criteria, see Section 7.6, "Filtering
Result Sets with Named Criteria." For more information on paging, see Section 3.4,
"Paginated Fetching of Data in EJB Data Controls."

3.2.7 About Commit Models for EJB Session Beans
EJB data controls can be used for different varieties of EJB session beans, whether they
are bean-managed or container managed or whether they are stateful or stateless.
JDeveloper’s Create Session Bean wizard can generate code for the following types of
session beans on which you can create a data control for updating data:

■ stateless container-managed transactions (CMT) with implicit commit

■ stateless bean-managed transactions (BMT) with implicit commit

■ stateful CMT with implicit commit

■ stateful BMT with implicit commit

■ stateful CMT with explicit commit

■ stateful BMT with explicit commit

3.2.7.1 Implicit Commit Models
For data controls based on any of the implicit commit variants, the transactional
operations Commit and Rollback are not provided. For these beans, any use of the
persistEntity or mergeEntity methods update the data in the underlying data
source.

3.2.7.2 Explicit Commit Models
When you work with beans with an explicit commit model, the underlying data
source is not updated until the Commit operation is called. This enables a user to create
or make changes to multiple rows in multiple tables and then later commit them all to
the data source with one click.

For data controls based on any of the explicit commit variants, you still might need to
add steps to merge or persist changes to the persistence context before those changes
can be committed. For example, you might need to have the user click buttons both to
persist new rows and to commit the group of changes.

However, for some session beans, it is possible to configure the data control so that its
Create operation automatically calls the entity’s persist method when it is invoked.
This is the default behavior for data controls for session beans created with
JDeveloper’s Create Session Bean wizard that are configured as stateful with
container-managed transactions and an explicit commit model. For more information,
see Section 3.3.8, "About Automatically Persisting New Rows."

Where it is not possible to persist new rows immediately upon their creation, you can
use a managed bean to override or combine operations and methods. For more
information, see "Overriding Declarative Methods" in Developing Fusion Web
Applications with Oracle Application Development Framework.

Also for many beans, and particularly for stateful CMT beans with explicit commit,
you need to implement ID generation for the primary key columns. For more
information, see Section 3.2.8, "About Generating IDs for Primary Keys with the
@GeneratedValue Annotation."

Preparing a Session Bean to Use With a Data Control

Creating and Configuring EJB Data Controls 3-9

3.2.8 About Generating IDs for Primary Keys with the @GeneratedValue Annotation
In general it is convenient to let JPA auto-generate primary key values when you
create a new instance of an entity. For many data models, you must generate values to
populate the primary key columns of your tables to avoid constraint violation errors
when the user tries to persist a new row. In JPA entity classes that use a simple
primary key type (like Integer, long, String, etc.), you can use @GeneratedValue
annotation for an entity’s primary key column to designate how and from where the
new record obtains that value. You then need to ensure that those values are generated
by the database.

The Create Entities from Tables wizard in JDeveloper can help you configure your
entities to have their primary key values automatically generated and assigned. This
option is available to entities which use a simple primary key type, such as Integer,
String, long, int, etc. When this option is enabled, the entity's primary key field is
annotated with @GeneratedValue, which indicates how the key value should be
generated. The wizard enables you to choose between the SequenceGenerator and
TableGenerator strategies.

Once your classes have the @GeneratedValue annotation, you need to make sure that
the values are generated by the database upon creation of a new row and passed to the
entity. You can do this in one of the following ways:

■ Update the persistence unit for the entities to have the schema objects
automatically created upon deployment by setting the
eclipselink-ddl-generation property to create-tables or
drop-and-create-tables. For more information, see Section 3.2.9, "How to
Change a Persistence Unit’s Schema Generation Behavior."

■ Manually update the online database schema to incorporate the ID generation
objects specified in the @GeneratedValue annotations.

When you use the Create Entities from Tables wizard in JDeveloper, schema
objects for any sequence or table generators are created and displayed under the
Offline Database Sources node for the data model project in the Applications
window. You can add the object to the online schema by right-clicking the node for
the object, choosing Generate to > ConnectionName, and completing the ensuing
Generate Database Objects from Database wizard.

■ If you already have ID generation objects in the live database schema, manually
change the annotation attributes to refer to those objects. For example, for the
@SequenceGenerator annotation, you would change the sequenceName attribute.

3.2.9 How to Change a Persistence Unit’s Schema Generation Behavior
By default, when you use the Create Entities from Tables wizard to create entities, it
creates a persistence unit with the eclipselink-ddl-generation property configured
to use its default value (none). This means that EclipseLink, which is the default
persistence provider for the generated entities, will not generate any Data Definition
Language (DDL) statements or schema changes at runtime.

However, when you are developing the application, it might be useful to configure
this property so that schema objects are created or re-created in the database schema
each time that you test deploy the application. That will save you from having to
manually keep the database schema in sync with incremental changes that you make
as you develop the data model. For example, if you set the
eclipselink-ddl-generation property to create-tables, EclipseLink will try to
generate any schema objects that are specified by the entities and which do not yet
exist in the schema, including sequences and tables for ID generation.

Preparing a Session Bean to Use With a Data Control

3-10 Developing Applications with Oracle ADF Data Controls

To change a persistence unit’s schema generation behavior:
1. In the Applications window, expand the data model project and double-click the

persistence unit file (which is located at Application Sources > META-INF >
persistence.xml by default).

2. If there are multiple persistence units, in the overview editor for the persistence
unit file, select the persistence unit for your project and click the Go to the
Persistence Unit icon.

3. In the overview editor for the persistence unit, select the Schema Generation
page.

4. From the Generation Type dropdown list, select the type of schema generation
that you want.

For more information on the eclipselink-ddl-generation options, see the
EclipseLink documentation at
http://www.eclipse.org/eclipselink/documentation/2.4/jpa/extensions/p_ddl_
generation.htm.

3.2.10 How to Automatically Update a Session Facade
If you change an entity bean, you can use JDeveloper to quickly update the session
bean and, if applicable, its remote and local interfaces. The Edit Session Facade wizard
enables you to generate code in the session bean to expose named queries and
methods that have been added to your entity classes. If you have a data control based
on that session bean, any newly added methods become available to you in the Data
Controls panel immediately after you refresh the panel.

To update a session facade based on updated entity beans:
1. In the Applications window, right-click the session bean and choose Edit Session

Facade.

2. In the Specify Session Facade Options dialog, select any methods that you would
like generated in the session bean.

3.2.11 What You May Need to Know About Refreshing JPA Queries
By default, when a JPA query is run, the results of the query are cached and that cache
is used if the query is re-issued from the same session. Therefore, if a change occurs to
the database from a second user’s session after the first user’s initial query, the first
user might not see the changes made by the second user when re-running the query
(e.g. when refreshing a page).

To make sure that a fresh JPA query is always run, you can use a hint on the query to
refresh the cache.

In JPA 2.0, you can apply the following hint to the query:

setHint("javax.persistence.cache.storeMode", "REFRESH")

For the getCustomerFindAll() method, this would look like the following:

public List<Customer> getCustomerFindAll() {

WARNING: Before deploying your finished application to a
production environment, the database schema should be finalized,
and you should change the eclipselink-ddl-generation property
back to none.

Exposing Session Bean Services with ADF Data Controls

Creating and Configuring EJB Data Controls 3-11

 return em.createNamedQuery("Customer.findAll").
 setHint("javax.persistence.cache.storeMode", "REFRESH").
 getResultList();
}

In JPA 1.0, you can apply the following hint (assuming TopLink is your persistence
provider):

setHint("eclipselink.refresh", "true")

3.3 Exposing Session Bean Services with ADF Data Controls
Once you have your application’s services in place, you can use JDeveloper to create
data controls that provide the information needed to declaratively bind UI
components to those services.

In a standard Java EE application, you normally create entity beans that represent
tables in a database and then create a session facade over all the EJBs. This facade
provides a unified interface to the underlying entities. You then would typically use
other classes to coordinate the interaction between the user interface and the services
exposed by the session facade.

In an Oracle ADF application, you can eliminate the need to programmatically
coordinate the model and view layers by creating a data control to encapsulate the
services represented by the service facade and enable declarative data binding
between the layers. You then create UI components that are declaratively bound to the
services through the data control. The bindings take the form of EL expressions that
reference the data control. Figure 3–1 illustrates the coordination between UI
components and data control objects that is possible with declarative bindings.

Exposing Session Bean Services with ADF Data Controls

3-12 Developing Applications with Oracle ADF Data Controls

Figure 3–1 Binding Between View and Service

Data controls consist of one or more XML metadata files that define the capabilities of
the services that the bindings can work with at runtime. The data controls work in
conjunction with the underlying beans without changing the implementation of the
beans.

For example, Figure 3–2 shows an EJB data model project in the Applications window.
The project has a number of entity beans that represent database tables, such as the
Customer bean, the Product bean, the Order bean, and so on. The project also contains
a session bean, OrdersSessionEJBBean, which is used to access the beans created from
tables. This session bean also contains service methods for persisting, merging, and
removing records. There is a data control for the session bean, which allows
developers to declaratively create UI pages based on the methods of the session bean
and the entity beans that the session bean encapsulates. In addition, there are XML
files in the persdef.model package that correspond with the Customer, Product, and
Order beans that contain additional metadata such as UI hints and validation rules.
These additional XML files are only needed if you are adding metadata for a given
data collection.

Exposing Session Bean Services with ADF Data Controls

Creating and Configuring EJB Data Controls 3-13

Figure 3–2 EJB Model Project

3.3.1 How to Create EJB Data Controls
You create data controls from within the New Gallery or the Applications window.

Before you begin:
It may be helpful to have a general understanding of using EJB data controls. For more
information, see Section 3.3, "Exposing Session Bean Services with ADF Data
Controls".

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 3.1.2, "Additional Functionality for EJB Data Controls."

In addition, you may find it helpful to understand the code patterns and constructs in
your session bean that the data control uses. For more information, see Section 3.2,
"Preparing a Session Bean to Use With a Data Control."

You need to complete this task:

Create an application workspace, JPA/EJB 3.0 entities, and one or more session beans
for the entities. For more information, see "How to Work with an EJB Business Services
Layer" in Developing Applications with Oracle JDeveloper.

To create an EJB data control:
1. In the Applications window, right-click the session bean for which you want to

create a data control and choose Create Data Control.

2. In the Choose Session EJB page of the Create EJB Data Control wizard, specify a
name for the data control instance.

Exposing Session Bean Services with ADF Data Controls

3-14 Developing Applications with Oracle ADF Data Controls

3. In the Choose Session EJB Business Interface page of the wizard, choose Local or
Remote. For web applications, typically you would choose Local.

4. In the Choose ADF Data Controls Features page, select any of the following
checkboxes for additional data control features that you would like to use in your
application. (This page of the wizard only appears when you are creating the data
control over a stateful session bean.)

Methods will be added to the session bean to implement the selected data control
features.

■ Transactions. Selecting this feature generates the commitTransaction(),
rollbackTransaction(), and isTransactionDirty() methods in your session
bean and maps them with the data control’s commit and rollback operations.
If you have used JDeveloper to create a stateful and container-managed
session bean, these methods should already be implemented, in which case
the Transactions checkbox would be selected by default.

■ Custom CRUD. This feature enables you to provide your own
implementation of persistence behavior. EJB data controls already have CRUD
functionality from JPA, so you would only select this feature if you want to
override JPA’s functionality. For more information, see Section 3.3.5, "What
You May Need to Know About CRUD Operations in an EJB Data Control."

■ Failover. For more information, see Section 3.6, "Enabling Failover in an EJB
Data Control."

5. In the EJB Data Control Options page, select any additional options.

■ Access Mode. Enables you to set how the data control fetches and stores data
in memory. For more information, see Section 3.4, "Paginated Fetching of Data
in EJB Data Controls."

■ Support Named Criteria. When selected, the data control includes built-in
support for declarative named criteria, which can be used to create quick
search forms. For more information, see Section 7.6, "Filtering Result Sets with
Named Criteria."

The Support Named Criteria option is only available for JPA-based beans that
also contain a queryByRange() method. The data control uses the bean’s
queryByRange() method to handle all queries that otherwise would be carried
out by individual getter methods on the bean. For more information, see
Section 3.2.6, "What You May Need to Know About How EJB and Bean Data
Controls Use Getter Methods."

■ Generate Metadata. You can select this option to automatically generate
metadata files for all of the beans represented by the data control upon the
creation of the data control. This option is not necessary, since metadata files
are created on demand when you edit a data control. However, this option
might be useful if you plan to make the application available for MDS
customization. For more information, see Section 7.2.4, "What You May Need
to Know About MDS Customization of Data Controls."

6. Click Finish.

Note: You can create multiple data control instances with different
behavior for the same bean. For more information, see Section 3.3.11,
"How to Create Different Data Controls for a Single Bean."

Exposing Session Bean Services with ADF Data Controls

Creating and Configuring EJB Data Controls 3-15

3.3.2 What Happens in Your Project When You Create an EJB Data Control
When you create a data control based on an EJB session bean, JDeveloper does the
following things:

■ Creates the data control definition file (DataControls.dcx) and opens the file in
the overview editor.

Depending on the configuration of the bean on which the data control is based and
the options that you have chosen in the wizard, various elements and properties
are configured in the DataControls.dcx file and can be seen in its source view.
These elements and properties include:

– <CreatableTypes>, which specifies the entities that are encompassed by the
facade class and for which declarative metadata can be created.

– DataControlHandler, which specifies a handler class that implements various
features for the data control, including support for paging and named criteria.

– AccessMode, which determines how the data control fetches data in the
running application. For more information, see Section 3.4, "Paginated
Fetching of Data in EJB Data Controls."

– EagerPersist, which determines whether new rows are added to the
persistence context when created. For more information, see Section 3.3.8,
"About Automatically Persisting New Rows."

■ Displays the hierarchy of the resulting data control objects in the Data Controls
panel.

■ If you have selected any features on the ADF Data Controls Features page, adds
methods to implement those features to the session bean.

■ If you have selected Generate Metadata, generates XML data control structure files
for the high-level data control objects. These files hold any declarative metadata,
such as UI hints and validation rules, that you define for given data control
objects. If you have not selected this option, the data control structure files are
created on demand when you use the DataControls.dcx overview editor to add
declarative metadata to data control objects. For more information, see Chapter 7,
"Adding Business Logic to Data Controls."

For general information on the overview editor and Data Controls panel, see
Section 2.2.2, "What Happens in Your Project When You Create a Data Control." For
information specific to EJB and bean data controls, see Section 3.3.3, "How EJB and
Bean Data Controls Appear in the IDE."

Note: If you later rename the bean on which a data control is based,
you must again use the Create Data Control command in order to
regenerate the data control’s metadata. When doing so, you can keep
the same data control instance name.

If you merely make changes to a bean after the data control is created,
you do not have to regenerate the data control. The data control
incorporates any changes made to the bean. However, you might need
to close and reopen the project in order for the data control to
incorporate the changes to the underlying beans.

Exposing Session Bean Services with ADF Data Controls

3-16 Developing Applications with Oracle ADF Data Controls

3.3.3 How EJB and Bean Data Controls Appear in the IDE
Once you have created an EJB or bean data control, you can use the overview editor
for the DataControls.dcx file to further configure the data control, and you can use
the Data Controls panel to create databound UI components.

3.3.3.1 DataControls.dcx Overview Editor for EJB and Bean Data Controls
The overview editor for the DataControls.dcx file provides a view of the
master-detail hierarchies of your data model as well as methods from the session
facade. When you select a node, you can view the fields that can be mapped to
database columns in the corresponding entity class in the Attributes tab. In the
Accessors tab, you can view fields for the corresponding entity class that have entity
relationships defined (such as OneToMany and ManyToOne). In the Operations tab for
collections, you can view entity methods that the data control uses for standard
operations, such as the add and remove methods of the collection accessors.

See Table 2–1 for a description of the icons that are used in the overview editor and
Data Controls panel.

You can change the settings for a data control by selecting an element and clicking the
Edit icon. For more information about editing a data control, see Chapter 7, "Adding
Business Logic to Data Controls."

3.3.3.2 Data Controls Panel for EJB and Bean Data Controls
The Data Controls panel serves as a palette, from which you can create databound UI
components by dragging nodes from the Data Controls panel to the design editor for a
web page. For information on the contents of the Data Controls panel, see
Section 2.2.3, "Display of Business Services in the Data Controls Panel."

In addition for EJB and JPA-based bean data controls, nodes for named criteria appear,
as shown in Table 2–1. Named criteria are used to create quick search forms. By
default, an implicit named criteria called All Queriable Attributes appears for each
queriable collection when you create the data control. You can create additional
declarative named criteria for each collection as described in Section 7.6, "Filtering
Result Sets with Named Criteria."

For information on creating databound UI components from a data control, see
Section 2.3, "Creating Databound UI Components from the Data Controls Panel."

3.3.3.3 EJB and Bean Data Control Built-in Operations
EJB data controls also provide standard built-in data control operations that you can
use to create command components in your user interface for page navigation and
data operations.

For information on all of the operations available to data controls, see Section 2.2.4,
"Data Control Built-in Operations."

3.3.4 What You May Need to Know About the Support Named Criteria Option and
Paging

The Support Named Criteria option that is offered when you create an EJB or
JPA-based bean data control affects the handler class that is used by the data control,
which also affects features such as access mode.

If you select the Scrollable or Range Paging access mode when creating your data
control, you should leave the Support Named Criteria option selected. Otherwise, the
data control is generated to use the DataFilterHandler handler, which means that you

Exposing Session Bean Services with ADF Data Controls

Creating and Configuring EJB Data Controls 3-17

would have to manually implement paging methods. (The JPQLDataFilterHandler,
which is used if you select the Scrollable or Range Paging access mode and keep the
Support Named Criteria option selected, implements the access mode for you without
requiring further coding.)

For more information on access modes in data controls, see Section 3.4, "Paginated
Fetching of Data in EJB Data Controls."

3.3.5 What You May Need to Know About CRUD Operations in an EJB Data Control
When you create an EJB data control, CRUD (Create/Read/Update/Delete) features
rely on the session bean’s service methods and the entity beans encompassed by the
session bean.

For example, a session bean’s persist and merge methods are represented in the Data
Controls panel and you can use them to create buttons that allow the user to persist
and merge the current instance of the object.

There are also built-in data control operations available that you can use to bind data
operations to the UI. These operations in turn call the appropriate methods in the
session facade and entity classes. In addition, they may update the state of the ADF
iterator. For example, when invoked, the Create operation for a data collection calls
the constructor of the entity class that represents that collection to create the instance
and then calls the appropriate persist method in the session bean to add the new
instance to the JPA persistence context. Then the newly created instance is added to the
ADF iterator.

You can also implement your own logic for CRUD (Create/Read/Update/Delete)
operations if you do not wish to rely on JPA for these features. For more information
on implementing custom CRUD operations, see Section 4.6, "Enabling Custom CRUD
Operations in a Bean Data Control."

3.3.6 What You May Need to Know About the Merge and Persist Methods
If, when you created your session bean, you chose to expose merge and persist
methods, then those methods appear in the Data Controls panel and you can use them
to create buttons that allow the user to merge and persist the current instance of the
object. Which you use depends on whether the page will need to interact with the
instance once updates are made. If you want to be able to continue to work with the
instance, then you need to use the persist method.

The merge methods are implementations of the JPA EntityManager.merge method.
This method takes the current instance, copies it, and passes the copy to the
PersistenceContext. It then returns a reference to that persisted entity and not to the
original object. This means that any subsequent changes made to that instance will not
be persisted unless the merge method is called again.

The persist methods are implementations of the JPA EntityManager.persist method.
Like the merge method, this method passes the current instance to the
PersistenceContext. However, the context continues to manage that instance so that
any subsequent updates will be made to the instance in the context.

Tip: Where applicable, it is generally best to use these built-in
operations, because they handle communication with both the JPA
entity manager and the ADF iterators, keeping the two in sync.

Exposing Session Bean Services with ADF Data Controls

3-18 Developing Applications with Oracle ADF Data Controls

3.3.7 What You May Need to Know About Remove Methods
When you have a data control that is based on a session bean or a Java service facade
that contains remove methods (to remove objects from the JPA persistence context),
those methods are exposed in the Data Controls panel along with other facade
methods. However, when deleting an entity from a form or table bound to an ADF
iterator, you should generally use the Delete operation instead of a remove method.
The Delete operation calls the remove method on the facade and also notifies the ADF
iterator of the changes, ensuring that the iterator and the persistence context stay in
sync. If you call the remove methods directly in order to take advantage of any custom
behavior that you have coded within them, you also need to provide the code to
refresh the ADF iterator.

3.3.8 About Automatically Persisting New Rows
For most variants of EJB (and JPA-based bean) data controls, the Create operation
creates a new row and inserts it into the row set. However, it does not add the newly
created object to the persistence context. That is generally the desired behavior for
stateless and implicit-commit data models, since attempting to persist the instance
immediately upon creating it may violate constraint violations due to mandatory
fields being empty.

However, some models support the option of calling the persist method during the
Create operation, because the underlying DML to persist the row is deferred until
commit time. When the Create Session Bean wizard in JDeveloper is used to generate a
stateful session bean using CMT and explicit commit behavior, it generates a model
that supports this eager persist behavior. The advantage this model has in a
conversational web application is that the application can combine these steps of
create and persist into a single gesture (typically a button). After creating multiple
instances, the user can click a commit button to apply all of the pending changes, at
which point a transaction is begun and the DML statements are executed in the
database to perform any pending INSERT, UPDATE or REMOVE operations.

When you create a data control for an EJB or a bean, the class is scanned to see if it is a
candidate for this "eager persist" behavior. If so, the data control’s EagerPersist
property is set to true. You can override the initial value to enable or disable this
option as you wish.

Calling an entity's persist method eagerly is generally desirable only when the
following conditions are met:

■ The session bean has explicit commit behavior (since implicit commit behavior
would mean that the object would be committed as soon as it was created).

■ The model does not attempt to execute SQL right away when the persist method is
called.

■ You have set up ID generation for the primary key column. For more information,
see Section 3.2.8, "About Generating IDs for Primary Keys with the
@GeneratedValue Annotation."

■ The EJB session been is stateful and uses the following:

– container-managed transactions

– the @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
annotation for the session bean class,

– the @TransactionAttribute(TransactionAttributeType.REQUIRED for the
commit method

Exposing Session Bean Services with ADF Data Controls

Creating and Configuring EJB Data Controls 3-19

If you use JDeveloper’s Create Session Bean wizard to create a stateful session bean
with container-managed transactions and an explicit commit model, any data control
that you create for this bean will be generated with the EagerPersist property set to
true. Otherwise, EagerPersist is set to false.

3.3.9 How to Change the EagerPersist Property
If your bean meets the conditions to work with eager persist behavior (as described in
Section 3.3.8, "About Automatically Persisting New Rows") but it is not turned on
(which might be the case if you did not use the Create Entities from Tables wizard to
create the entity classes), you can manually set the EagerPersist property to true.
Likewise, if the property is set to true but you do not want eager persist behavior, you
can change it to false.

To change the value of the EagerPersist property for a data control:
1. In the Data Controls panel, right-click the data control’s root node and choose Edit

Definition.

2. In the ejb-definition Properties dialog, change the value of the EagerPersist
property.

3.3.10 What You May Need to Know About the Persistence Context and Resubmitting
Queries

When you have a data control based on a stateful container-managed session bean,
pre-commit changes made in a session are not reflected in any subsequent query that
is made to the data source. So, if a user is in the middle of a transaction and performs
an operation that requeries the data source, the subsequent refresh of the data on the
page will not include changes made in the session.

3.3.11 How to Create Different Data Controls for a Single Bean
You can create multiple instances of a data control for a single bean, which can be
useful if you need to make contrasting data control features available to the UI
developer. For example, you may want to make it possible for a UI developer to create
some UI components with scrollable paging and others with range paging.

Before you begin:
It may be helpful to have a general understanding of using EJB data controls. For more
information, see Section 3.3, "Exposing Session Bean Services with ADF Data
Controls".

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 3.1.2, "Additional Functionality for EJB Data Controls."

In addition, you may find it helpful to understand the code patterns and constructs in
your session bean that the data control uses. For more information, see Section 3.2,
"Preparing a Session Bean to Use With a Data Control."

You need to complete this task:

Create a data control as shown in Section 3.3.1, "How to Create EJB Data Controls."

To create an additional data control instance for a bean:
1. Right-click the bean for which you want to create the additional data control

instance and choose Create Data Control.

Paginated Fetching of Data in EJB Data Controls

3-20 Developing Applications with Oracle ADF Data Controls

2. In the Choose Session EJB page (or Choose Bean Class) page of the wizard, specify
a unique name for the data control instance (different from any previous data
control instances that you have created).

3. Complete the wizard with the options that you want for that instance of the data
control.

3.3.12 What Happens When You Create an Additional Data Control Instance
When you create an additional data control instance for a bean, an additional
high-level node appears in the overview editor for the DataControls.dcx file, as
shown in Figure 3–3 and in the Data Controls panel.

Figure 3–3 Data Control Overview Editor with Two Data Control Instances

3.4 Paginated Fetching of Data in EJB Data Controls
When you create an EJB or bean data control, you can use the wizard’s Access Mode
dropdown list to determine how records are accessed from the database and whether
to limit the number of records that are held in memory at a time.

In EJB and bean data controls, there are the following possibilities for fetching and
storing data in memory:

■ Scrollable access mode.

If you accept the defaults when creating the data control, the data access mode is
set to scrollable. This means that the data that your application needs to display
is retrieved from the database as needed (in increments equal to the range size
specified by the UI component’s iterator) and stored in memory. Then, when the
user scrolls forward through the application, additional rows are fetched as
needed and stored in memory. All rows that have been fetched remain in memory.

For example, if the running application contains a table that displays rows 1
through 20 on a web page and the table’s iterator has a range size of 25 (the
default), the data control will fetch the first 25 rows. If the user scrolls down to
display rows 477 through 496 of the result set, the data will be fetched in sets of 25
as the user scrolls until rows 26 through 500 are fetched. At that point, a total of
500 rows will be stored in memory.

Note: When you add declarative metadata such as UI hints and
validators to a data control, the different data control instances for a
bean use that same metadata. For more information on adding
declarative metadata, see Chapter 7, "Adding Business Logic to Data
Controls."

Paginated Fetching of Data in EJB Data Controls

Creating and Configuring EJB Data Controls 3-21

This is the default mode for data controls using
oracle.adf.model.adapter.bean.DataFilterHandler and
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler. However, for
data controls using oracle.adf.model.adapter.bean.DataFilterHandler, you
still need to add paging methods to your data control to implement the access
mode. For more information, see Section 4.4.1, "How To Manually Implement
Pagination Support in a Data Control."

■ Range paging access mode

To limit the amount of records that are fetched and stored in memory at a time,
you can use the rangePaging access mode. As with scrollable mode, range paging
mode allows your applications to fetch data in increments. The main difference in
range paging mode is that only the most recently fetched increment is retained in
memory. So, for example, if the accessor iterator’s rangeSize attribute is set to 25,
no more than 25 records will be held in memory at any given time.

In a range paging version of the scrollable example above, the data control would
fetch rows 1 through 25 and hold them in memory in order to display rows 1
through 20. If the user scrolled down, the data control would fetch data in
increments of 25 as the user was scrolling but release the previous 25 records from
memory as it fetched a new range. By the time the user reached rows 477 through
496 as in the example above, only rows 476 through 500 would be in memory.

When scrolling to a position that displays data from multiple increments, only the
data from the increment last fetched is held in memory.

You can set page ranging when creating the data control by selecting Range
Paging in the Access Mode dropdown of the Create EJB Data Control wizard.

■ No pagination. When there is no pagination, all available data for a UI component
is fetched.

You can configure the data control to not use any paging by selecting No Paging in
the Access Mode dropdown of the Create EJB Data Control wizard.

You can also use annotations to turn off paging for specific collections. For more
information, see Section 3.4.4, "How to Specify Access Mode for Individual Objects
in the Data Control."

■ Custom pagination. If the built-in pagination options do not suit your needs, you
can implement your own pagination by implementing a custom handler class. For
more information, see Section 4.4.2, "How to Implement a Custom Handler for
Querying and Pagination."

For more information about access mode and data control handlers, see Section 3.4.3,
"What You May Need to Know About the Scrollable and Range Paging Modes."

3.4.1 How to Change Paging Mode for a Data Control
If you want to change the paging mode for a data control, you can do so in the Data
Controls panel.

Note: When you use range paging in a data control, the built-in
navigation operation Last does not work on databound UI
components created from that data control.

Paginated Fetching of Data in EJB Data Controls

3-22 Developing Applications with Oracle ADF Data Controls

Before you begin:
It may be helpful to have a general understanding of access modes for EJB and bean
data controls. For more information, see Section 3.4, "Paginated Fetching of Data in EJB
Data Controls."

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 3.1.2, "Additional Functionality for EJB Data Controls."

You need to complete this task:

Create an EJB or bean data control. For more information, see Section 3.3.1, "How to
Create EJB Data Controls."

To change paging mode for a data control:
1. In the Data Controls panel, right-click the data control’s node and choose Edit

Definition.

2. In the ejb-definition Properties or the bean-definition Properties dialog, select
rangePaging or scrollable from the AccessMode dropdown list.

3. If you are changing the data control to use range paging, make sure that the data
control’s FactoryClass property is specified as
oracle.adf.model.adapter.bean.BeanDCFactoryImpl.

You can access the FactoryClass property in the source editor for the
DataControls.dcx file or in the Properties window that appears when you open
DataControls.dcx in the source editor or overview editor.

3.4.2 How to Set Range Size for a Data Control that Uses Range Paging
When you set a data control’s access mode to rangePaging, the data control
determines the range size by reading the rangeSize property of the accessor iterator of
each component that is bound to a collection in the data control.

To set the range size for a component:
1. In the Applications window, select the page containing the component that is

bound to the data control.

2. In the Structure window, select the component that is bound to the data control
collection.

3. In the Properties window, expand the Behavior node, and set the rangeSize
property to the desired value.

For more information on iterator bindings, see "Iterator Bindings Created in the Page
Definition File" in Developing Fusion Web Applications with Oracle Application
Development Framework.

Note: For data controls using the
oracle.adf.model.adapter.bean.DataFilterHandler
ororacle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler
handler, the default access mode is scrollable.

Paginated Fetching of Data in EJB Data Controls

Creating and Configuring EJB Data Controls 3-23

3.4.3 What You May Need to Know About the Scrollable and Range Paging Modes
Data controls that support scrollable and range paging modes rely on methods in the
bean class to implement that functionality. The method that the data control uses
depends on the data control handler class that the data control uses.

For JPA-based data controls, typically the JPQLDataFilterHandler handler is
specified. JPQLDataFilterHandler relies on the presence of JPA queries and a
queryByRange() method in the bean. For more information, see Section 3.2.4, "EJB
Data Control Prerequisites and Considerations."

For non-JPA bean data controls (and for EJB and JPA-based bean data controls that do
not have a queryByRange() method), DataFilterHandler is specified. To implement
range paging in data controls that use this handler, you need to add code to your bean
class as shown in Section 4.4.1, "How To Manually Implement Pagination Support in a
Data Control."

For data controls that do not have either of these handler classes (such as EJB data
controls where you have explicitly turned off named criteria support), there is no
built-in support for scrollable or range paging. However, you can write your own
handler class to implement paging support. For more information, see Section 4.4.2,
"How to Implement a Custom Handler for Querying and Pagination."

3.4.4 How to Specify Access Mode for Individual Objects in the Data Control
If your data control encompasses multiple collections of different sizes, you may wish
to set different access modes for some of the collections. You can do so by placing
annotations on the accessor methods in the bean that the data control represents.

For the methods on which the annotations are used, the annotations override the
access mode set for the data control. If an accessor method does not have such an
annotation, it inherits its access mode from the one that is defined for the data control.

To specify access mode for individual objects in a bean or EJB data control:
1. Open the class on which the data control is based.

2. Add annotations for the methods for which you want a different access mode than
that generally specified for the data control.

Example 3–3 shows the necessary import statements and the available annotations
and how they can be used on a collection.

Example 3–3 Access Mode Annotations

import oracle.adf.model.adapter.bean.annotation.AccessMode;
import oracle.adf.model.adapter.bean.annotation.AccessModeType;

...
 * List with scrollable access
 */
 @AccessMode(type=AccessModeType.SCROLLABLE)
 public List<Employees> getEmployeesScrollable() {
 ...
 * List with range paging.
 */
 @AccessMode(type=AccessModeType.RANGE_PAGING)

Note: These annotations only work on getter methods.

Providing UI Hints for Attributes Using Annotations

3-24 Developing Applications with Oracle ADF Data Controls

 public List<Employees> getEmployeesRangePaging() {
 ...
 * List with no paging.
 */
 @AccessMode(type=AccessModeType.NO_PAGING)
 public List<Employees> getEmployeesNoPaging() {
...

3.4.5 What You May Need to Know About Sorting Tables Based on Range Paginated
Collections

By default, if a user sorts a table that is bound to a JPA-based data control, the ADF
Model runtime forces the iterator to return all rows into memory for sorting, even if
the back-end JPQL queries have already done the sort at the database level, which can
cause memory problems if collection is too large. If you are using range paging for a
collection, you can disable the ADF Model runtime full in-memory sort and have the
data control handle it instead, based on just the currently selected range.

To use the data control to handle the sort for range paginated collections:
1. In the Applications window, double-click the DataControls.dcx file to open it in

the overview editor.

2. In the overview editor, select the node for the data control that you want to edit.

3. In the Properties window, set the ImplementsSort property to true.

3.5 Providing UI Hints for Attributes Using Annotations
After you create a data control for an EJB session bean or a JavaBeans component, you
can use Java annotations to create declarative metadata for data object attributes to
provide defaults for how the attributes are displayed in UI components. These UI hints
can then be used by UI components to automatically display the queried information
to the user in a consistent, locale-sensitive way. For example, you can use UI hints to
provide defaults for label and tooltip text when a UI component is created from the
data control attribute corresponding to the field returned by that getter.

In web pages, a UI developer may access UI hint values by entering EL expressions
utility methods defined on the bindings name space and specified for ADF binding
instance names. When you use the Data Controls panel to create UI components based
on attributes that are annotated with these UI hints, the EL expressions for accessing
the hints are generated in the UI component code. For more information on the syntax
for these EL expressions, see "How to Access UI Hints Using EL Expressions" in
Developing Fusion Web Applications with Oracle Application Development Framework.

Using annotations, you can set the following UI hints:

Note: You must place the annotation on the class that is specified by
the Definition attribute of the AdapterDataControl element in the
DataControls.dcx file. By default, this is the bean implementation
class.

In the 12.1.2 release of Oracle ADF, the Definition attribute was set to
a session bean’s business interface (remote or local) by default,
meaning that the annotations needed to be placed on the business
interface instead of the bean implementation class. If you would like
to retain that behavior in this release, you can change the value of the
Definition attribute so that it points to the business interface.

Providing UI Hints for Attributes Using Annotations

Creating and Configuring EJB Data Controls 3-25

■ label - the component’s label.

■ tooltip - the component’s tooltip.

■ display - whether or not to display the attribute in forms and tables for the
collection the UI. If the attribute is set to false, the attribute does not appear
among the collection’s attributes in the Data Controls panel.

■ width - component width, in pixels.

■ height - component height, in pixels.

■ autoSubmit - whether or not the component will automatically submit when an
appropriate action takes place (a click, text change, etc.).

■ controlType - the control type the client UI will use to display the attribute. The
default value for this hint is ControlHintType.DEFAULT, which is interpreted by
the client to select the most appropriate component depending on the Java type of
the attribute. You can keep this default value for Java-typed attributes. (Other
possible values for this hint are only relevant if the attribute is based on a non-Java
type.)

■ formatType - a class that defines the kind of formatting that will be applied to the
attribute (such as date, currency, or percentage).

■ format - a format mask to determine specifically how a numeric or date value is
displayed. For example, for a date, it could specify dd/MM/YYYY to indicate that the
date is shown with day of the month first, month second, and year last and that
each part is delimited by a slash (/).

■ timezoneId - for attributes of type Date, can be used to specify a fixed time zone
to be used. If this UI hint is not set, the time zone is determined by the user’s
browser (or other client that displays the UI).

The UI hints that you can set through annotations comprise a subset of the metadata
that you can set on data controls declaratively using XML data control structure files.
Using data control structure files, you can also set declarative validation rules, the
default value for the attribute, and other metadata that for the object as a whole. For
more information on all of the ways you can configure a data control through data
control structure files, see Chapter 7, "Adding Business Logic to Data Controls."

There are three high-level annotations for providing UI hints for bean classes:

■ oracle.adf.model.adapter.bean.annotation.AttributeHint - enables you to
specify default label, tooltip, height, and width for the field. In addition, you can
specify whether the attribute is displayed or hidden, whether the field is
submitted automatically when a user completes entry, and what type of
component should be generated for the field.

■ oracle.adf.model.adapter.bean.annotation.DateFormatter - enables you to
specify a format mask and a time zone for a Date attribute. You can use the format
element to set a format mask, such as MM/dd/YYYY See the API documentation for
the java.text.SimpleDateFormat at
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDate
Format.html for information on the syntax for the date and time pattern strings
that you can use for the format mask.

Note: If you set UI hints for an attribute both using annotations and
in an XML data control structure file, the settings in the data control
structure file take precedence.

Providing UI Hints for Attributes Using Annotations

3-26 Developing Applications with Oracle ADF Data Controls

■ oracle.adf.model.adapter.bean.annotation.Formatter - enables you to specify
the formatting for other numeric types such as
oracle.jbo.format.DefaultCurrencyFormatter and
oracle.jbo.format.PercentageFormatter.

In addition, there are the following support classes that enumerate possible values for
the above annotations and which might need to be imported into your class when
using the above annotations.

■ oracle.adf.model.adapter.bean.annotation.ControlHintType - provides a list
of component types that you can reference from the AttributeHint annotation’s
controlType element.

■ oracle.adf.model.adapter.bean.annotation.FormatterType - provides a list of
formatter types that are referenced by the DateFormatter and Formatter
annotations.

■ oracle.adf.model.adapter.bean.annotation.TimeZoneID - provides a list of
time zones that you can reference from the DateFormatter annotation.

See Example 3–4 for an example of how you might use UI hint annotations on a getter
method in an entity bean class. Note that the annotations become available only after
you generate the data control or after you add the ADF Model Generic Runtime library
to the EJB project.

Example 3–4 Use of AttributeHint and DateFormatter Annotations on a Method

import oracle.adf.model.adapter.bean.annotation.AttributeHint;
import oracle.adf.model.adapter.bean.annotation.ControlHintType;
import oracle.adf.model.adapter.bean.annotation.DateFormatter;
import oracle.adf.model.adapter.bean.annotation.FormatterType;
import oracle.adf.model.adapter.bean.annotation.TimeZoneID
...
 @AttributeHint (
 label = "Hire Date",
 tooltip = "Type date in the form MM/dd/YYYY",
 display = true,
 controlType = ControlHintType.DEFAULT,
 width = 40,
 height = 20,
 autoSubmit = true)
 @DateFormatter (
 type = FormatterType.SIMPLE_DATE,
 format = "MM/dd/YYYY",
 formatter = "",
 timezoneId = TimeZoneID.DEFAULT)
 public Date getHireDate() {
 return hireDate;
 }

Note: When adding annotations for attribute hints to a method, you
can press use JDeveloper’s completion insight feature to help fill in
the values. If the completion insight popup does not open
automatically as you are typing, press Ctrl-Space.

Enabling Failover in an EJB Data Control

Creating and Configuring EJB Data Controls 3-27

Example 3–5 shows how you might use the @Formatter annotation to specify that an
attribute be displayed with currency formatting.

Example 3–5 Use of Formatter Annotation

import oracle.model.adapter.bean.annotation.Formatter;
import oracle.model.adapter.bean.annotation.FormatterType;
...
 @Formatter (type = FormatterType.CURRENCY)
 public Integer getMinSalary() {
 return minSalary;
 }

The following formatters can be assigned through the @Formatter type element.

■ BIGDECIMAL - type defined by oracle.jbo.format.DefaultBigDecimalFormatter

CURRENCY type defined by oracle.jbo.format.DefaultCurrencyFormatter

DATE - oracle.jbo.format.DefaultDateFormatter

PERCENTAGE - type defined by oracle.jbo.format.PercentageFormatter

NUMBER - type defined by oracle.jbo.format.DefaultNumberFormatter

3.6 Enabling Failover in an EJB Data Control
You can configure EJB data controls that are based on stateful session beans to have
their state managed by the ADF Model runtime and enable failover of the objects
encapsulated by the data control. Failover support for EJB data controls works in the
same way as it does for bean data controls.

For information on generating method stubs in the session bean for this failover
support, see Section 3.3.1, "How to Create EJB Data Controls." For more information on
implementing those methods, see Section 4.5, "Enabling Failover in a Bean Data
Control."

Note: The formatter element of the @Formatter and
@DateFormatter annotations is an advanced option that enables you
to specify a separate handler class for providing the date or number
format. For example, you could use this element to provide a handler
that extends oracle.jbo.format.DefaultDateFormatter.

Note: When you apply annotations for UI hints, you can not see the
affect of the hints in the design-time view of pages that you create
based on the data controls. However, you can test and verify the hints
using the ADF Model Tester. For more information on using the tester,
see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

Enabling Failover in an EJB Data Control

3-28 Developing Applications with Oracle ADF Data Controls

4

Creating and Configuring Bean Data Controls 4-1

4Creating and Configuring Bean Data
Controls

This chapter describes how to create data controls for JavaBeans components that are
based on the Java Persistence API (JPA) and plain Java objects (also known as
"POJOs").

This chapter includes the following sections:

■ Section 4.1, "About Bean Data Controls"

■ Section 4.2, "Preparing a Bean to Expose with a Data Control"

■ Section 4.3, "Exposing Java Collections and Methods With Bean Data Controls"

■ Section 4.4, "Paginated Fetching of Data in Bean Data Controls"

■ Section 4.5, "Enabling Failover in a Bean Data Control"

■ Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control"

■ Section 4.7, "Adding Transactional Behavior to a non-JPA Bean Data Control"

■ Section 4.8, "Using Annotations to Declare Metadata for Bean Data Controls"

■ Section 4.9, "Creating Custom Bean Data Controls"

4.1 About Bean Data Controls
Data controls are an abstraction provided by ADF Model than enable you to work
with data and business services in a declarative manner and easily create UI
components. For more general information on data controls, see Section 1.1, "About
ADF Model."

You use the bean data control type to create data controls for plain Java objects
(POJOs) and JPA-based Java service facade classes.

4.1.1 About JPA-Based Bean Data Controls
Similar to EJB data controls, JPA-based bean data controls enable you to work with
persistent data. Such data controls are based on POJO service facade classes that
provide accessor methods to JPA entity classes. The main difference in JPA-based bean
data controls is that you must provide the code to manage the persistence instead of
being able to rely on an EJB container. For more information on EJB data controls, see
Section 3.1, "About EJB Data Controls."

Preparing a Bean to Expose with a Data Control

4-2 Developing Applications with Oracle ADF Data Controls

4.1.2 About non-JPA Bean Data Controls
You can also create bean data controls for Java classes that do not work with JPA
functions. Such data controls do not provide persistence functionality or named
criteria support, but they do include other features of adapter data controls such as the
ability to add declarative validation rules on attributes and support for UI hints.

Unlike JPA-based bean data controls, non-JPA data controls do not have built-in
implementations for handling transactions or updating of data sources. However, you
can code your own implementation for that functionality in your bean class within
specific methods whose signatures the data control recognizes. For more information,
see Section 4.7, "Adding Transactional Behavior to a non-JPA Bean Data Control" and
Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control."

Non-JPA data controls have support for scrollable paging and range paging, but
require some manual coding. For more information, see Section 4.4.1, "How To
Manually Implement Pagination Support in a Data Control."

You can also create a custom data control type that extends bean data controls. For
more information, see Section 4.9, "Creating Custom Bean Data Controls."

4.1.3 Additional Functionality for Bean Data Controls
You may find it helpful to understand other ADF and JDeveloper features before you
implement your data controls. Following are links to other sections that may be useful.

General data control features: Before beginning work with EJB data controls, it is
important to understand the broader data control concepts. For more information, see
Chapter 2, "Using ADF Data Controls."

ADF Model and data binding: When you create forms in an ADF web application, you
use ADF Model and data binding. For more information, see "Using ADF Model in a
Fusion Web Application" in Developing Fusion Web Applications with Oracle Application
Development Framework and Java API Reference for Oracle ADF Model.

ADF Faces: When you create databound UI components, they are likely to be from the
ADF Faces component set. For more information, see "Creating a Databound Web User
Interface" in Developing Fusion Web Applications with Oracle Application Development
Framework.

ADF task flows: Task flows extend JSF page flows to provide a modular and
transaction-aware approach to navigation and application control. For more
information, see "Creating ADF Task Flows" in Developing Fusion Web Applications with
Oracle Application Development Framework.

4.2 Preparing a Bean to Expose with a Data Control
A bean data control serves as a metadata wrapper for a bean class and exposes the
bean’s code elements as data control objects, which can then be used to bind those
code elements to UI components.

4.2.1 Supported Types and Constructs in Bean Data Controls
Bean data controls support the same Java types and constructs as EJB data controls.
For more information, see Section 3.2.1, "Supported Types and Constructs in EJB Data
Controls."

Preparing a Bean to Expose with a Data Control

Creating and Configuring Bean Data Controls 4-3

4.2.2 Bean Data Control Objects
When you create a data control based on a bean, the data control exposes several
different types of objects, each of which you can bind to a variety of UI components.
Bean data controls exposes the same types of objects as EJB data controls. For more
information, see Section 3.2.2, "EJB Data Control Objects.".

4.2.3 Bean Data Control Prerequisites and Considerations
Bean data controls are based on classes that meet the JavaBeans specification. For
example, for a class to be a valid data control source, it needs to have a public default
constructor.

In order to take advantage of the full functionality of JPA-based data controls, you
need to include some elements in your classes that the data controls can use to present
the structure of the services. These elements are largely the same as for EJB data
controls. The main difference is that you use a Java service facade class for bean data
controls instead of an EJB session bean. For more information, see Section 3.2.4, "EJB
Data Control Prerequisites and Considerations."

4.2.4 How to Create a Service Facade for a JPA-Based Bean Data Control
You can create a bean data control based on a POJO class that contains service methods
to access Java entity classes. JDeveloper has a wizard that helps you create this facade
class that contains all of the necessary methods to work with the data control.

Before you begin:
It may be helpful to have a general understanding of the code conventions that the
service facade and the data control will rely on. For more information, see Section 4.2,
"Preparing a Bean to Expose with a Data Control."

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 4.1.3, "Additional Functionality for Bean Data Controls."

You need to complete this task:

■ Create an application workspace that contains a project with JPA entities as
described in "How to Create JPA Entities" in Developing Applications with Oracle
JDeveloper.

To create a service facade for a JPA-based Bean Data Control:
1. Right-click the package that contains the JPA entity classes and choose Java Service

Facade.

2. In the Java Service Class page of the Create Java Service Facade wizard, do the
following:

■ Specify a name for the service class.

■ Specify the persistence unit on which to base the service facade.

■ Select the Implicit or Explicit radio button to determine commit behavior.

If you select Explicit, transactional methods are generated into the class,
which are in turn exposed as Commit and Rollback operations if you later
create a data control based on the class.

Exposing Java Collections and Methods With Bean Data Controls

4-4 Developing Applications with Oracle ADF Data Controls

If you select Implicit, you can use the persistEntity(), mergeEntity(), and
removeEntity() methods that are generated by the wizard to act as the
methods for adding and removing rows from the data source.

3. In the Java Service Facade Methods page, select the methods which you want to
generate.

4. Click Finish to exit the wizard.

4.3 Exposing Java Collections and Methods With Bean Data Controls
Once you have your bean in place, you can use JDeveloper to create data controls that
provide the objects needed to declaratively bind UI components to the bean’s services
as well as any built-in operations provided by the data control.

4.3.1 How to Create a JPA-Based Bean Data Control
You create JPA-based bean data controls from within the New Gallery or the
Applications window.

Before you begin:
It may be helpful to have a general understanding of bean data controls. For more
information, see Section 4.3, "Exposing Java Collections and Methods With Bean Data
Controls."

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 4.1.3, "Additional Functionality for Bean Data Controls."

In addition, you may find it helpful to understand the code patterns and constructs in
your bean that the data control uses. For more information, see Section 4.2, "Preparing
a Bean to Expose with a Data Control."

You need to complete this task:

Create a Java service facade class, as described in Section 4.2.4, "How to Create a
Service Facade for a JPA-Based Bean Data Control."

To create a bean data control:
1. In the Applications window, right-click the bean for which you want to create a

data control and choose Create Data Control.

For a JPA-based data control, use the Java service facade class as the base for the
data control.

2. In the Choose Bean Class page of the Create Bean Data Control wizard, specify a
name for the data control instance.

Note: If you subsequently plan to create a data control and you want
to use the built-in pagination and JPA querying support, be sure to
select the queryByRange() method.

Note: You can create multiple data control instances with different
behavior for the same bean. For more information, see Section 3.3.11,
"How to Create Different Data Controls for a Single Bean."

Exposing Java Collections and Methods With Bean Data Controls

Creating and Configuring Bean Data Controls 4-5

3. In the Choose ADF Data Controls Features page, select any of the following
checkboxes for additional data control features that you would like to use in your
application. Methods will be added to the bean to implement the data control
features.

■ Transactions. Selecting this feature generates the commitTransaction(),
rollbackTransaction(), and isTransactionDirty() methods in your bean. If
you have used JDeveloper to create a Java Service Facade with explicit commit
behavior, these methods should already be implemented. For more
information, see Section 4.7, "Adding Transactional Behavior to a non-JPA
Bean Data Control."

■ Custom CRUD. This feature enables you to provide your own
implementation of persistence behavior. JPA-based bean data controls already
have CRUD functionality from JPA, so you would only select this feature if
you want to override JPA’s functionality. For more information, see Section 4.6,
"Enabling Custom CRUD Operations in a Bean Data Control."

■ Failover. For more information, see Section 4.5, "Enabling Failover in a Bean
Data Control."

4. Optionally, click the New Wrapper Class icon (to the right of the Implementation
Class field) to generate a separate class that extends the bean class and holds the
custom methods created on this page of the wizard.

5. In the Bean Data Control Options page, select any additional options.

■ Access Mode. Enables you to set how the data control fetches and stores data
in memory. For more information, see Section 3.4, "Paginated Fetching of Data
in EJB Data Controls."

■ Support Named Criteria. When selected, the data control includes built-in
support for declarative named criteria, which can be used to create quick
search forms. For more information, see Section 7.6, "Filtering Result Sets with
Named Criteria." This option is only available for JPA-based data controls, on
which it is selected by default.

The Support Named Criteria option is only available for JPA-based beans that
also contain a queryByRange() method. The data control uses the bean’s
queryByRange() method to handle all queries that otherwise would be carried
out by individual getter methods on the bean. For more information, see
Section 3.2.6, "What You May Need to Know About How EJB and Bean Data
Controls Use Getter Methods."

■ Generate Metadata. You can select this option to immediately generate
metadata files for any beans represented by the data control that are in the
current project. This option is typically not necessary, since such metadata files
are created on demand when you edit a data control. However, this option
might be useful if you plan to make the application available for MDS
customization. For more information, see Section 7.2.4, "What You May Need
to Know About MDS Customization of Data Controls."

4.3.2 How to Create a non-JPA-Based Bean Data Control
You create bean data controls from within the New Gallery or the Applications
window.

Exposing Java Collections and Methods With Bean Data Controls

4-6 Developing Applications with Oracle ADF Data Controls

Before you begin:
It may be helpful to have a general understanding of bean data controls. For more
information, see Section 4.3, "Exposing Java Collections and Methods With Bean Data
Controls."

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 4.1.3, "Additional Functionality for Bean Data Controls."

In addition, you may find it helpful to understand the code patterns and constructs in
your bean that the data control uses. For more information, see Section 4.2, "Preparing
a Bean to Expose with a Data Control."

You need to complete these tasks:

1. Create an application workspace and a project. For more information, see
"Creating Applications and Projects" in Developing Applications with Oracle
JDeveloper.

2. Create a bean class in the project. For more information, see "How to Create a New
Java Class or Interface" in Developing Applications with Oracle JDeveloper.

To create a non-JPA bean data control:
1. In the Applications window, right-click the bean for which you want to create a

data control and choose Create Data Control.

2. In the Choose Bean Class page of the Create Bean Data Control wizard, specify a
name for the data control instance.

3. In the Choose ADF Data Controls Features page, select any of the following
checkboxes for additional data control features that you would like to use in your
application. For each feature that you select, methods with signatures that are
recognized by the data control will be added to the bean. Within those methods,
you can write your implementation for the respective data control features.

■ Transactions. Selecting this feature generates the commitTransaction(),
rollbackTransaction(), and isTransactionDirty() methods in your bean.
For more information, see Section 4.7, "Adding Transactional Behavior to a
non-JPA Bean Data Control."

■ Custom CRUD. This feature enables you to provide your own
implementation of persistence behavior. For more information, see Section 4.6,
"Enabling Custom CRUD Operations in a Bean Data Control."

■ Failover. For more information, see Section 4.5, "Enabling Failover in a Bean
Data Control."

4. Optionally, click the New Wrapper Class icon (to the right of the Implementation
Class field) to generate a separate class that extends the bean class and holds the
methods created on this page of the wizard.

5. In the Bean Data Control Options page, select any additional options.

■ Access Mode. Enables you to set how the data control fetches and stores data
in memory. For more information, see Section 4.4, "Paginated Fetching of Data

Note: You can create multiple data control instances with different
behavior for the same bean. For more information, see Section 3.3.11,
"How to Create Different Data Controls for a Single Bean."

Exposing Java Collections and Methods With Bean Data Controls

Creating and Configuring Bean Data Controls 4-7

in Bean Data Controls." The Support Named Criteria option must be selected
for you to be able to select an access mode.

■ Generate Metadata. You can select this option to automatically generate
metadata files for all of the beans represented by the data control upon the
creation of the data control. This option is not necessary, since metadata files
are created on demand when you edit a data control. However, this option
might be useful if you plan to make the application available for MDS
customization. For more information, see Section 7.2.4, "What You May Need
to Know About MDS Customization of Data Controls."

4.3.3 What Happens in Your Project When You Create a Bean Data Control
When you create a data control based on a JavaBeans component, JDeveloper does the
following:

■ Creates the data control definition file (DataControls.dcx) and opens the file in
the overview editor.

■ Displays the hierarchy of the resulting data control objects in the Data Controls
panel.

■ If you have selected any features on the ADF Data Controls Features page, adds
methods to implement those features to the session bean.

For general information on the overview editor and Data Controls panel, see
Section 2.2.2, "What Happens in Your Project When You Create a Data Control." For
information specific to JPA-based data controls, see Section 3.3.3, "How EJB and Bean
Data Controls Appear in the IDE."

If you have selected any features on the ADF Data Controls Features page, methods to
implement those features are added to the bean (or to the wrapper class if you have
chosen to generate one).

If the bean has accessor methods that query collections and you have selected Support
Named Criteria in the wizard, the data control will be generated to use
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler, which provides
support in the data control for declarative named criteria and paginated queries.

If the bean doesn’t have accessor methods that query collections, the data control will
be generated to use oracle.adf.model.adapter.bean.DataFilterHandler. Besides
not supporting named criteria, oracle.adf.model.adapter.bean.DataFilterHandler
also does not have paging functionality fully implemented. However, you can add a
method to your bean to implement paging. For more information, see Section 4.4.1,
"How To Manually Implement Pagination Support in a Data Control."

4.3.4 What You May Need to Know About Primary Keys for Non-JPA Bean Data
Controls

Even when you are creating non-JPA beans, you can use the @Id annotation to mark a
field as a primary key column.

However, for performance reasons, you might find it preferable to designate the
primary key at the data control level so that you do not introduce a dependency on the
JPA runtime library. For more information, see Section 7.3.1, "How to Designate an
Attribute as Primary Key."

Paginated Fetching of Data in Bean Data Controls

4-8 Developing Applications with Oracle ADF Data Controls

4.4 Paginated Fetching of Data in Bean Data Controls
When you create a bean data control, you can use the wizard’s Access Mode
dropdown list to determine how records are accessed from the database and whether
to limit the number of records that are held in memory at a time.

Paging support for bean data controls generally follows the same principals as paging
for EJB data controls. For more information, see Section 3.4, "Paginated Fetching of
Data in EJB Data Controls." However, especially for non-JPA-based data controls, you
might want or need to fill in part of the implementation yourself.

4.4.1 How To Manually Implement Pagination Support in a Data Control
With non-JPA data controls (or any EJB or bean data control that uses the
oracle.adf.model.adapter.bean.jpa.DataFilterHandler handler), you need to add
three methods for each collection in the session or service facade in order for the ADF
Model runtime to implement scrollable paging and range paging. The method
signatures should take the following form:

List<EntityBeanName> getEntityBeanNameList()
List<EntityBeanName> getEntityBeanNameList(int firstResult, int maxResults)
long getEntityBeanNameListSize()

4.4.2 How to Implement a Custom Handler for Querying and Pagination
If the built-in querying and paging options are not sufficient for your application, you
can implement your own custom paging and querying behavior by providing your
own data handler class for your data control.

Before you begin:
It may be helpful to have a general understanding of bean data controls. For more
information, see Section 4.3, "Exposing Java Collections and Methods With Bean Data
Controls."

You may also find it helpful to understand general data control features and
functionality that you may need to use in the application with the data controls. For
more information, see Section 4.1.3, "Additional Functionality for Bean Data Controls."

In addition, you may find it helpful to understand the code patterns and constructs in
your bean that the data control uses. For more information, see Section 4.2, "Preparing
a Bean to Expose with a Data Control."

You need to complete this task:

Create a bean data control or an EJB data control. For more information, see
Section 4.3.1, "How to Create a JPA-Based Bean Data Control," Section 4.3.2, "How to
Create a non-JPA-Based Bean Data Control," and Section 3.3.1, "How to Create EJB
Data Controls."

Note: JPA-based data controls typically use the
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler
handler and thus do not require manual implementation of these
methods. However, a data control can get assigned the
oracle.adf.model.adapter.bean.jpa.DataFilterHandler handler if
the bean it is based on does not contain the queryByRange(String
jpqlStmt, int firstResult, int maxResults) method. For more
information, see Section 3.2.4.2, "Recommended Session Facade
Elements."

Enabling Failover in a Bean Data Control

Creating and Configuring Bean Data Controls 4-9

To implement a custom handler for querying and pagination:
1. Write a custom data control handler class and add it to the data control’s project.

You can sub-classes an existing handler, such as
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler or
oracle.adf.model.adapter.bean.DataFilterHandler. See Example 4–1 for an
outline of a custom handler class.

2. In the Source view of the DataControls.dcx file, type the fully-qualified class
name of the handler as the value for the DataControlHandler attribute of each
data control.

DataControlHandler is an attribute of the ejb-definition element of EJB data
controls and an attribute of the bean-definition element for bean data controls.

Example 4–1 Custom Data Control Handler

public class MyJPQLDataFilterHandler extends JPQLDataFilterHandler
{
 public boolean invoke(Map bindingContext,
 OperationBinding action,
 DataFilter filter)
 {
 /** TODO: Users provide custom criteria. */
 }

 public Object invoke(RowContext rowCtx, String name,
 DataFilter filter)
 {
 /** TODO: Users provide custom criteria. */
 }

}

4.5 Enabling Failover in a Bean Data Control
You can configure bean data controls to have their state managed by the ADF runtime.
This can be particularly useful if your application will run in a high availability or
cluster environment. If the application is running on a server node that fails, the most
recent snapshot of the data control’s session state can be restored to another node in
the cluster. Likewise, if a user’s session is interrupted, the failover support can be used
to restore the data control’s state when the session is resumed.

You enable failover by implementing methods for saving and restoring the state of the
data control. The ADF Model runtime manages the calling of these methods and
handles the details of distributing the states of the data control. EJB and bean data
control support for failover requires the following three methods, which you can add
to your bean class through the data control wizard or manually:

■ public Serializable createSnapshot(). Saves the state of the data control and
underlying bean as a serialized object and returns a handle for that object. The
ADF runtime calls this method whenever the user submits any changes to a

Note: When you create the data control, it is not important which
access mode you select. In the following procedure, you will manually
override that access mode.

Enabling Custom CRUD Operations in a Bean Data Control

4-10 Developing Applications with Oracle ADF Data Controls

component bound via the data control (or when the user merely refreshes the
page).

In this method you need to add the logic that determines what gets saved and
return the corresponding Serializable handle.

■ public void restoreSnapshot(Serializable handle). Restores the session state
based on the most recently created snapshot. This method is called whenever the
ADF Model runtime needs to restore a session that has been interrupted for
whatever reason, such as a broken connection, a server failure, etc.

In this method you need to fill in the implementation for restoring the data control
from the handle returned by createSnapshot().

■ public void removeSnapshot(Serializable handle). Removes the snapshot
that is associated with the handle returned by the createSnapshot() method.

4.5.1 What You May Need to Know About Calling PageFlowScope from the Constructor
In bean data controls that implement failover, you should not call PageFlowScope from
the bean’s constructor. During application failover, the data control objects are
re-instantiated with a call to the constructor. Because that call happens outside of the
ADF lifecycle, FacesContext is not available, nor is anything that depends upon it for
its implementation.

4.6 Enabling Custom CRUD Operations in a Bean Data Control
JPA-based data controls are tightly integrated with the CRUD
(create/read/update/delete) support in JPA. For example, built-in data control
operations such as Create and Delete use the corresponding JPA persistence methods
to carry out those operations when invoked at runtime.

However, if your data control is not JPA-based, you can provide your own
implementation to integrate your bean’s CRUD model with the data control.

The following are the method stubs that are added to your bean data control class
when you use the Create Bean Data Control wizard to create a bean data control and
enable custom CRUD support:

■ public Object createRowData(RowContext p0). Used to create a new row of
data. At runtime, this method is called when the Create operation is invoked. You
can provide your own implementation of this method to customize how a new
row is persisted.

■ public boolean removeRowData(RowContext p0). Used to remove a row of data.
At runtime, this method is called when the Delete operation is invoked.

■ public boolean setAttributeValue(oracle.binding.AttributeContext p0,
Object p1). This method is called by the ADF Model runtime when a new value
is to be set on an attribute in a bean.

■ public Object registerDataProvider(oracle.binding.RowContext p0). This
method is called by the data binding facility before the object is modified or
marked as removed, so the row can be marked dirty by the data control.

This method needs to be present if you are implementing custom CRUD
functionality, though typically you do not need to provide your own
implementation.

■ public void validate(). Validates a transaction if it is dirty.

Using Annotations to Declare Metadata for Bean Data Controls

Creating and Configuring Bean Data Controls 4-11

This method needs to be present if you are implementing custom CRUD
functionality, though typically you do not need to provide your own
implementation of this method.

For information on creating a non-JPA data control, see Section 4.3.2, "How to Create a
non-JPA-Based Bean Data Control."

4.7 Adding Transactional Behavior to a non-JPA Bean Data Control
When you create a JPA-based bean with the Create Java Service Facade wizard, you
can generate code to support an explicit commit model. When a data control is based
on such a class, the bean’s transactional methods are exposed as Commit and Rollback
operations in the data control.

For non-JPA bean data controls, you can generate stub methods when you create the
data control to support the Commit and Rollback operations. Within those stub
methods, you can write your own implementation of transactional behavior. At
runtime, when the Commit and Rollback operations are invoked those methods are
called.

The following are the method stubs that are added to your bean data control class
when you use the Create Bean Data Control wizard to create a bean data control and
enable transactional support:

■ public boolean isTransactionDirty(). Used to mark whether there are any
pending changes to be committed (or rolled back).

■ public void commitTransaction(). Commits all pending changes to the data
source.

■ public void rollbackTransaction(). Rolls back pending changes.

For information on creating a non-JPA data control, see Section 4.3.2, "How to Create a
non-JPA-Based Bean Data Control."

4.8 Using Annotations to Declare Metadata for Bean Data Controls
The Adapter Data Control Framework provides several Java annotations that you can
use to specify metadata for bean and EJB data controls.

■ oracle.adf.model.adapter.bean.annotation.AttributeHint,
oracle.adf.model.adapter.bean.annotation.DateFormatter, and
oracle.adf.model.adapter.bean.annotation.Formatter. Use to provide UI
hints for a data control without having to create XML data control structure files.
For more information, see Section 3.5, "Providing UI Hints for Attributes Using
Annotations."

■ oracle.adf.model.adapter.bean.annotation.AccessMode. Use to override the
AccessMode flag in the DataControls.dcx file. You can use this annotation to
control the paging feature in a JPA-based data control at the level of the accessor
method, thus making it possible to use different access modes in a single data
control.

Note: In order to implement transaction support in a non-JPA data
control, you must also implement custom CRUD methods. For more
information, see Section 4.6, "Enabling Custom CRUD Operations in a
Bean Data Control"

Creating Custom Bean Data Controls

4-12 Developing Applications with Oracle ADF Data Controls

// AccessModeType can be either NO_PAGING, RANGE_PAGING or
SCROLLABLE)@AccessMode(type = AcessModeType.RANGE_PAGING)
public Collection<EmpBean> getListEmpBean() {}
public Collection<EmpBean> getListEmpBean(int firstResult, int maxResults) {}
public int getListEmpBeanSize() {}
}
For more information, see Section 3.4.4, "How to Specify Access Mode for
Individual Objects in the Data Control."

■ oracle.adf.model.adapter.bean.annotation.AccessModeType. Must also be
imported when using the
oracle.adf.model.adapter.bean.annotation.AccessMode annotations in a class.

■ oracle.adf.model.adapter.bean.annotation.Property. Use to define a custom
property for an attribute. For example:

@Property(name = "myProp1", value = "myProp1Value")
public Long getEmpno() {}

■ oracle.adf.model.adapter.bean.annotation.Properties. Use to specify
multiple properties for an attribute. For example:

@Properties({
 @Property(name = "myProp1", value = "myProp1Value"),
 @Property(name = "myProp2", value = "myProp2Value"),
 })
public Long getEmpno() {}

■ oracle.adf.model.adapter.bean.annotation.ElementType. Use to define the
type for the collection. For example, an element type of EmpBean can be defined
with @ElementType(name = "model.EmpBean". This is a substitute for using a
generic collection (for example, Collection<EmpBean>) and is recommended only
if you are using JDK 1.4 or before or if you need to override the element type of the
collection.

@ElementType(name = "model.EmpBean")
public Collection getListEmpBean() {}

■ oracle.adf.model.adapter.bean.annotation.Id. Use to define the primary key
for the attribute. For example:

@Id
public int getPrimaryKey() {}

This annotation should not be used for JPA-based data controls that encompass
entity classes that use the javax.persistence.Id annotation.

4.9 Creating Custom Bean Data Controls
You can modify or enhance the functionality on the bean data control type by
extending the definition and implementation classes for the bean data control type to
create a custom data control.

Creating a custom bean-based data control consists of a combination of the following
main steps:

■ (Optionally) extending oracle.adf.model.adapter.bean.BeanDataControl in
order to customize the way the data control handles filtering, failover, updating
data sources, and other data control features.

■ (Optionally) extending oracle.adf.model.adapter.bean.BeanDCDefinition to
create a new implementation class.

Creating Custom Bean Data Controls

Creating and Configuring Bean Data Controls 4-13

If you create a new implementation class, you need to register that implementation
class in the DataControls.dcx file. In the source view of the file, replace the value
of the data control’s ImplDef property
(oracle.adf.model.adapter.bean.BeanDataControl) with the fully-qualified
name of the new implementation class.

■ (Optionally) creating new structure definition types for the types of data structures
that will be represented by your data control.

■ (Optionally) defining a configuration class to hold the metadata that is provided in
the data control’s DataControls.dcx file. For example, you can extend
oracle.adf.model.adapter.bean.BeanDCConfiguration, which is the
configuration class for standard bean data controls.

Then, in the data control implementation class, you need to override the
getConfiguration() method that is inherited from
oracle.adf.model.adapter.AbstractDefinition and cast its return to the new
configuration class.

■ (Optionally), in the data control class, implementing some of the existing
supported features (such as failover or custom CRUD support).

For API documentation of the classes used by the bean data control and other data
control types, see theJava API Reference for Oracle ADF Model.

Creating Custom Bean Data Controls

4-14 Developing Applications with Oracle ADF Data Controls

5

Exposing Web Services Using the ADF Model Layer 5-1

5Exposing Web Services Using the
ADF Model Layer

This chapter describes how to create ADF data controls for SOAP and REST web
services so that you can better use those services in the user interface.

This chapter includes the following sections:

■ Section 5.1, "About Web Service Data Controls in ADF Applications"

■ Section 5.2, "Creating Web Service Data Controls"

■ Section 5.3, "Securing Web Service Data Controls"

5.1 About Web Service Data Controls in ADF Applications
Web services allow enterprises to expose business functionality irrespective of the
platform or language of the originating application because the business functionality
is exposed in such a way that it is abstracted to a message composed of standard XML
constructs that can be recognized and used by other applications.

Web services are modular business services that can be easily integrated and reused,
and it is this that makes them ideally suited as components within SOA. JDeveloper
helps you to create top-down web services (services created starting from a WSDL),
bottom-up web services (created from the underlying implementation such as a Java
class or a PL/SQL stored procedure in a database), and services created from existing
functionality, such as exposing an application module as a service.

5.1.1 Web Service Data Control Use Cases and Examples
You can consume web services in web applications, and common reasons for wanting
to do so are:

■ To add functionality which would be time-consuming to develop with the
application, but which is readily available as a web service

■ To access an application that runs on different architecture

■ To access an application that is owned by another team when their application
must be independently installed, upgraded, and maintained, especially when its
data is not replicated locally (for example, when other methods of accessing their
application cannot be used)

5.1.2 Additional Functionality for Web Service Data Controls in ADF Applications
You may find it helpful to understand other Oracle ADF features before you start
working with web service data controls. In addition, it may be helpful to understand

Creating Web Service Data Controls

5-2 Developing Applications with Oracle ADF Data Controls

support for developing web services in JDeveloper. Following are links to other
functionality that may be of interest.

■ You can design a databound user interface by dragging an item from the Data
Controls panel and dropping it on a page as a specific UI component. For more
general information on using data controls, see Chapter 2, "Using ADF Data
Controls."

■ If you are working behind a firewall and you want to use a web service that is
outside the firewall, you must configure the web browser and proxy settings in
JDeveloper, as described in "Setting Browser Proxy Information" in Developing
Fusion Web Applications with Oracle Application Development Framework.

■ If you are developing the web services that you will later expose through data
controls, you can use JDeveloper features to simplify the process. For more
information, see "Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

The following chapters provide information about specific objects you can use in data
controls:

■ For information about using collections on a data control to create forms, see
"Creating a Basic Databound Page" in Developing Fusion Web Applications with
Oracle Application Development Framework.

■ For information about using collections to create tables, see "Creating ADF
Databound Tables" in Developing Fusion Web Applications with Oracle Application
Development Framework.

■ For information about using master-detail relationships to create UI components,
see "Displaying Master-Detail Data" in Developing Fusion Web Applications with
Oracle Application Development Framework.

■ For information about creating lists, see "Creating Databound Selection Lists and
Shuttles" in Developing Fusion Web Applications with Oracle Application Development
Framework.

■ For information about creating graphs, charts, and other visualization UI
components, see "Creating Databound Chart and Gauge Components" in
Developing Fusion Web Applications with Oracle Application Development Framework.

5.2 Creating Web Service Data Controls
The most common way of using web services in an application developed using
Oracle ADF is to create a data control for an external web service. A typical reason for
doing this is to add functionality that is readily available as a web service, but which
would be time consuming to develop with the application, or to access an application
that runs on a different architecture.

Additionally, you can reuse components created by Oracle ADF to make them
available as web services for other applications to access.

5.2.1 How to Create a Data Control for a SOAP-based Web Service
JDeveloper allows you to create a data control for an existing web service using just
the WSDL for the service. You can browse to a WSDL on the local file system, locate
one in a UDDI registry, or enter the WSDL URL directly.

Creating Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-3

Before you begin:
It may be helpful to have an understanding of how web service data controls are used
in ADF applications. For more information, see Section 5.2, "Creating Web Service Data
Controls."

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Section 5.1.2, "Additional
Functionality for Web Service Data Controls in ADF Applications."

You will need to complete this task:

Create an application workspace and a project in that workspace. Depending on how
you are organizing your projects, you can use an existing application workspace and
project or create new ones. For information on creating an application workspace, see
"Creating Applications and Projects" in Developing Applications with Oracle JDeveloper.

To create a data control for a SOAP-based web service:
1. In the Applications window, right-click the project in which you want to create a

web service data control and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select Web Services and then Web
Service Data Control (SOAP/REST), and click OK.

3. In the Create Web Service Data Control wizard, on the Data Source page, type a
name for the data control, select the SOAP radio button, enter a WSDL URL, and
the specify the specific web service to be accessed by the data control.

4. On the Data Control Operations page, shuttle the operations that you want the
data control to support to the Selected panel.

Optionally, select the Include HTTP Header Parameter checkbox. For more
information, see Section 5.2.3, "How to Include a Header Parameter for a Web
Service Data Control."

5. On the Response Format page, specify the format of the SOAP response.

6. On the Endpoint Authentication page, specify the authentication details for the
endpoint URL, and click Finish.

5.2.2 How to Create a Data Control for a RESTful Web Service
JDeveloper allows you to create a data control for a REST web service using a
connection to the web service and schema for the methods that you want to invoke.

Before you begin:
It may be helpful to have an understanding of how web service data controls are used
in ADF applications. For more information, see Section 5.1, "About Web Service Data
Controls in ADF Applications."

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Section 5.1.2, "Additional
Functionality for Web Service Data Controls in ADF Applications."

Note: If you are working behind a firewall and you want to use a
web service that is outside the firewall, you must configure the web
browser and proxy settings in JDeveloper. For more information, see
"Setting Browser Proxy Information" in Developing Fusion Web
Applications with Oracle Application Development Framework.

Creating Web Service Data Controls

5-4 Developing Applications with Oracle ADF Data Controls

You will need to complete these tasks:

■ Create an application workspace and a project in that workspace. Depending on
how you are organizing your projects, you can use an existing application
workspace and project or create new ones. For information on creating an
application workspace, see "Creating Applications and Projects" in Developing
Applications with Oracle JDeveloper.

■ If you have any local XSD files that you need to include to describe response or
payload formats, copy those to the project’s resource path as described in
Section 5.2.9, "What You May Need to Know About Making an XML Schema
Available to a REST Data Control."

To create a data control for a RESTful web service:
1. In the Applications window, right-click the project in which you want to create a

web service data control and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select Web Services and then Web
Service Data Control (SOAP/REST), and click OK.

3. In the Create Web Service Data Control wizard, on the Data Source page, specify a
name for the data control and select the REST radio button.

4. In the Connection field, select the URL connection to use.

If you have not established a URL connection, click the Create a new URL
connection icon to open the Create URL Connection dialog. In that dialog, enter a
name for the connection and a base URL. Do not include any resources or
parameters in the URL.

5. On the Resources page, specify a resource for the connection by completing the
following sub-steps for each resource:

a. Click the Add button to add a resource path.

b. Type the name of the resource path inline.

As part of the resource path you can also enter path parameters.

Enter any path parameters in the form ##paramName##. For example, if the web
service to be accessed supplies stock quotes, the full URL for the resource for
one of the stocks is http://www.example.com/quotes/ACOMPANY, and the path
parameter name is ticker, you would enter the following as the resource
path:/quotes/##ticker##.

Note: In the Create URL Connection dialog, you can click Test
Connection to verify that you can connect to the URL. However, the
URL’s server may be configured to not accept requests on the base
URL, meaning that the test will fail. Regardless of that fact, you can
click OK to create the connection.

If you have such a base URL and would like to make sure that you can
connect to the service, you can temporarily add a resource to the URL,
test the connection, and then remove the resource before clicking OK.

Creating Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-5

If you wish to create any resources with query parameters (i.e. parameters that
take the form ?ParamName=ParamValue), you can specify those parameters on
the next page of the wizard.

c. In the right side of the dialog, select one of the checkboxes to specify a REST
method for the resource path and then type a name that you can use to
identify that method in the Data Controls panel.

6. Repeat step 5 for each resource you would like to include in the data control.

Figure 5–1 shows the Resources page of the wizard with two resources entered,
the second of which includes a path parameter. As shown in the figure, the second
resource is selected and a GET method is specified for it.

Figure 5–1 Resources Page of Create Web Service Data Control Wizard

7. On the Method Details page, select a method and specify an XSD that provides the
response format for that method.

If the XSD files that you are providing are local, you first need to place them in the
project’s resource path as described in Section 5.2.9, "What You May Need to
Know About Making an XML Schema Available to a REST Data Control."

If you do not have a schema for the response format, you can create one yourself
by recreating the XML for the resource based on its documentation and then
creating an XSD from that XML file. In JDeveloper, you can generate an XSD file

Note: You can also use a parameter to provide dynamic input for the
source path (for example, /##servicename##/##ticker##) where the
user would be expected to also provide the service name (such as
quote).

Creating Web Service Data Controls

5-6 Developing Applications with Oracle ADF Data Controls

from an XML document by choosing File > New > From Gallery > XML > XML
Schema from XML Document.

8. If the method is a PUT or POST method, specify a schema for the request payload in
the Payload XSD field.

9. For the selected method, specify any URL parameters and default values.

For parameters that were included in the resource path, the parameter names are
included in the URL Parameters list. For these parameters, you need to fill in a
default value.

For example, from the sample parameter shown in step 5, ticker would be the
parameter name and ACOMPANY could be the default value.

For path parameters of GET methods, it is not necessary to provide a default value
if you have provided a response XSD for the method in step 7.

10. Optionally, select the Include HTTP Header Parameter checkbox. For more
information, see Section 5.2.3, "How to Include a Header Parameter for a Web
Service Data Control."

11. Repeat steps 7 through 10 for each method.

Figure 5–2 shows the Method Details page with the getDetails method selected, a
response XSD specified, and default value set for its deptId parameter.

Tip: You can also use an XSL style sheet to define custom elements
based on the response XML to include in the data control. When you
use this approach, the schema that you specify in the Response XSD
field must be based on the style sheet that you specify in the Response
XSL field. For more information, see Section 5.2.7, "How to Add
Custom Attributes to a REST Web Service Data Control."

Creating Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-7

Figure 5–2 Method Details Page of the Create Web Service Data Control Wizard

12. On the Finish page, review the details of the data control to be generated, and click
Finish.

5.2.3 How to Include a Header Parameter for a Web Service Data Control
When using a web service data control, you may want to add a custom parameter to
the HTTP header when invoking the HTTP request. Such a parameter can be useful for
a variety of purposes, including for security or for notifications. For example, you may
want to add an enterprise ID to the HTTP header when invoking the request. This
enterprise ID in the request allows the web service data control to specify which cloud
service the request will be directed to.

To configure the web service data control to use a header parameter, you select
Include Http Header Parameter in the Create Web Service Data Control wizard. For
SOAP-based web service data controls, this is on the Data Control Operations page.
For REST-based web service data controls, it is on the Method Details page.

After creating the data control, you will be able to see the HttpHeader parameter in
the Data Controls panel under the Parameters node of the web service data control's
methods. In addition, the AdapterDataControl element for the web service data
control (in the .dcx file) contains an <httpHeaders paramName="HttpHeader"/>
element.

To use the HttpHeader parameter, you will need to create a backing bean in the user
interface project for the web service data control. The value for the HttpHeader
parameter is provided through the backing bean. The backing bean must have a
property of the type Map and the name/value pairs for the HTTP headers should be
added to that property. Additionally, the Map must be of type <String, List<String>>
or <String,String>, and you should expose the property with getter and setter
methods, as shown Example 5–1.

Creating Web Service Data Controls

5-8 Developing Applications with Oracle ADF Data Controls

Example 5–1 Backing Bean to Support Http Header Parameters in a Web Service Data
Control

public class BackingBean {
 private Map<String,Object> httpHeadersMap = new HashMap<String,Object>();
 public BackingBean() {
 List<String> headersList = new ArrayList<String>();
 headersList.add("Oracle");
 httpHeadersMap.put("enterpriseID",headersList);
 }
 public void setHttpHeadersMap(Map<String,Object> httpHeadersMap) {
 this.httpHeadersMap = httpHeadersMap;
 }
 public Map<String,Object> getHttpHeadersMap() {
 return httpHeadersMap;
 }
}

When you drag and drop the operation from the Data Controls panel onto a page as an
ADF Parameter Form, remove the HttpHeader from the list of fields. Then, in the Edit
Action Binding dialog, under the Parameters section specify the value for HttpHeader
parameter by providing an expression that points to the backing bean Map property.

5.2.4 How to Adjust the Endpoint for a SOAP Web Service Data Control
After developing a web service data control, you can modify the endpoint. This is
useful, for example, when you migrate the application from a test environment to
production.

Before you begin:
It may be helpful to have an understanding of how web service data controls are used
in ADF applications. For more information, see Section 5.2, "Creating Web Service Data
Controls."

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Section 5.1.2, "Additional
Functionality for Web Service Data Controls in ADF Applications."

To change the endpoint for a web service data control:
1. In the Applications window, select the DataControls.dcx file for the web service

data control.

2. In the Structure window, right-click the web service data control and choose Edit
Web Service Connection.

3. In the Edit Web Service Connection dialog, make the necessary changes to the
endpoint URL and port name.

4. Click OK.

5.2.5 How to Refresh a SOAP Web Service Data Control
After updating a SOAP-based web service data control, you might find that a web
service operation has changed in its method signature, return type, or structure. When
this happens, you can update the data control without having to re-create it.

Creating Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-9

Before you begin:
It may be helpful to have an understanding of how web service data controls are used
in ADF applications. For more information, see Section 5.2, "Creating Web Service Data
Controls."

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Section 5.1.2, "Additional
Functionality for Web Service Data Controls in ADF Applications."

To refresh an operation in a SOAP-based web service data control:
1. In the Applications window, select the DataControls.dcx file for the web service

data control.

2. In the Structure window, right-click the desired web service operation and choose
Update.

JDeveloper queries the web service and updates the web service data control to reflect
the current state of the selected operation.

5.2.6 What You May Need to Know About Primary Keys in SOAP Web Service Data
Controls

When you create a data control on a SOAP-based web service, the data control
supports primary key operations on any exposed collection.

If the web service definition references a schema that defines an element or attribute as
type xsd:ID, the data control will expose the attribute as a key attribute and make the
setCurrentRowWithKey and setCurrentRowWithKeyValue data control operations
available for the collection.

For example, your schema could set the deptno attribute as the primary key using the
<xsd:attribute> element as shown below:

<xsd:attribute name="deptno" type="xsd:ID" use="required"/>

Or the schema could set the deptno attribute as the primary key using the
<xsd:element> element as shown below:

xsd:element name="deptno" type="xsd:ID"/>

If no ID is defined for a collection in one of the above ways, the data control creates a
hidden attribute for the collection that serves as an index-based primary key. You can
then use the setCurrentRowWithKey or setCurrentRowWithKeyValue data control
operation to pass the index of the row.

Note: The XSD entries shown above are generated at runtime if you
have created the web service from a Java class and added the JAXB
@XmlID annotation and either @XmlAttribute(required=true) or
@XmlElement(required=true) to the field or the getter method
representing the key.

Creating Web Service Data Controls

5-10 Developing Applications with Oracle ADF Data Controls

5.2.7 How to Add Custom Attributes to a REST Web Service Data Control
Before you create a data control based on a RESTful web service, you can create an
XSL style sheet to transform the content of the REST service into a custom XML format
to incorporate into the data control. For example, you can create elements that are
calculated from other elements returned by the service and have those elements
exposed in the data control as attributes on which you can base UI components.

Example 5–2 shows a style sheet that defines NAME and DEPTID elements to be derived
directly from the response XML. In addition, the style sheet defines the CUSTOMNAME
and UNIQUEID elements, the values of which are calculated from the NAME and DEPTID
elements. A data control created on the basis of this style sheet would expose all four
of these elements as attributes.

Example 5–2 XSL Style Sheet for Customizing Format of a REST Response

<?xml version="1.0" encoding="windows-1252" ?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="DEPARTMENTS">
 <DEPARTMENTS>
 <xsl:for-each select="DEPT">
 <DEPT>
 <NAME><xsl:value-of select="NAME"/></NAME>
 <DEPTID><xsl:value-of select="DEPTID"/></DEPTID>
 <CUSTOMNAME><xsl:value-of select="concat('CUST_',NAME)"/></CUSTOMNAME>
 <UNIQUEID><xsl:value-of select="DEPTID * 2"/></UNIQUEID>
 </DEPT>
 </xsl:for-each>
 </DEPARTMENTS>
 </xsl:template>
</xsl:stylesheet>

After you create the style sheet, you need to create an XML schema that incorporates
the custom elements. One way to simplify this process is to create an XML file based
on the response format that includes the custom elements and then use JDeveloper’s
XML tools to generate a schema based on that XML file.

 Example 5–3 shows an XML file that contains both the base and custom elements that
are defined in the style sheet shown in Example 5–2.

Example 5–3 XML Response That Is Modified with Custom Elements

<?xml version="1.0" encoding="UTF-8"?>
 <DEPARTMENTS>
 <DEPT>
 <NAME>Marketing</NAME>
 <DEPTID>20</DEPTID>
 <CUSTOMNAME>CUST_Marketing</CUSTOMNAME>
 <UNIQUEID>40</UNIQUEID>

Note: If you do not see the setCurrentRowWithKey or
setCurrentRowWithKeyValue operations for a collection in the Data
Controls panel, you may need to manually update the
DataControls.dcx file to have those operations exposed. To do so,
open the Source view of the DataControls.dcx and change the value
of the service’s ensureKeyAttribute property to true. Then, in the
Data Controls panel, click the Refresh icon to refresh the list of
operations.

Creating Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-11

 </DEPT>
 <DEPT>
 <NAME>Marketing</NAME>
 <DEPTID>20</DEPTID>
 <CUSTOMNAME>CUST_Marketing</CUSTOMNAME>
 <UNIQUEID>40</UNIQUEID>
 </DEPT>
 </DEPARTMENTS>

Example 5–4 shows the schema based on the modified XML response.

Example 5–4 XML Schema File Containing Custom Elements

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
elementFormDefault="qualified">
 <xsd:element name="DEPARTMENTS">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="DEPT" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="NAME" type="xsd:string"/>
 <xsd:element name="DEPTID" type="xsd:integer"/>
 <xsd:element name="CUSTOMNAME" type="xsd:string"/>
 <xsd:element name="UNIQUEID" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Before you begin:
It may be helpful to have an understanding of how web service data controls are used
in ADF applications. For more information, see Section 5.2, "Creating Web Service Data
Controls."

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Section 5.1.2, "Additional
Functionality for Web Service Data Controls in ADF Applications."

To add custom attributes to a REST data control:
1. Create an XSL style sheet based on the structure of the data returned by the web

service and including any custom elements that you want to incorporate.

2. Based on the format for the method’s response XML, create an XML document
that also includes the custom elements.

Note: If a resource can nest multiple resources of a given type, make
sure that the XML file includes two or more of those nested resources
so that the schema generated in the next step reflects the one-to-many
cardinality.

Creating Web Service Data Controls

5-12 Developing Applications with Oracle ADF Data Controls

3. Create an XML schema based on the XML document created in the previous step.

You can do this in JDeveloper by opening the New Gallery, and selecting General
> XML > XML Schema from XML Document.

4. Create a data control as described in Section 5.2.2, "How to Create a Data Control
for a RESTful Web Service."

In step 7 of the procedure, specify both the Response XSL (the XSL style sheet you
have created) and the Response XSD (the XML schema you have created).

5.2.8 What You May Need to Know About Web Service Data Controls
As with other kinds of data controls, you can design a databound user interface by
dragging an item from the Data Controls panel and dropping it on a page as a specific
UI component. For more information, see Section 2.3.1, "How to Use the Data Controls
Panel."

In the Data Controls panel, each data control object is represented by an icon. Table 5–1
describes what each icon represents, where it appears in the Data Controls panel
hierarchy, and what components it can be used to create.

Table 5–1 Data Controls Panel Icons and Object Hierarchy for Web Services

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control
itself to create UI components, but you can use any of the
child objects listed under it. Typically, there is one data
control for each web service.

Serves as a container for other
objects and is not used to
create anything.

Collection Represents a data collection returned by an operation on the
service. Collections also appear as children under method
returns, other collections, or structured attributes. The
children under a collection may be attributes, other
collections, custom methods, and built-in operations that can
be performed on the collection.

Forms, tables, graphs, trees,
range navigation
components, and
master-detail components.

For more information, see
"Creating a Basic Databound
Page," "Creating ADF
Databound Tables,"
"Displaying Master-Detail
Data," and "Creating
Databound Chart and Gauge
Components" in Developing
Fusion Web Applications with
Oracle Application Development
Framework.

Attribute Represents a discrete data element in an object (for example,
an attribute in a row). Attributes appear as children under
the collections or method returns to which they belong.

Label, text field, date, list of
values, and selection list
components.

For more information, see
"Creating Text Fields Using
Data Control Attributes" in
Developing Fusion Web
Applications with Oracle
Application Development
Framework.

Creating Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-13

Structured
Attribute

Represents a returned object that is a complex type but not a
collection. For example, a structured attribute might
represent a single user assigned to the current service
request.

Label, text field, date, list of
values, and selection list
components.

For more information, see
"Creating Text Fields Using
Data Control Attributes" and
"Creating Databound
Selection Lists and Shuttles"
in Developing Fusion Web
Applications with Oracle
Application Development
Framework.

Method Represents an operation in the data control or one of its
exposed structures that may accept parameters, perform
some business logic and optionally return single value, a
structure or a collection of those.

Command components.

For methods that accept
parameters: command
components and
parameterized forms.

For more information, see
"Using Command
Components to Invoke
Functionality in the View
Layer"

Table 5–1 (Cont.) Data Controls Panel Icons and Object Hierarchy for Web Services

Icon Name Description Used to Create...

Creating Web Service Data Controls

5-14 Developing Applications with Oracle ADF Data Controls

5.2.9 What You May Need to Know About Making an XML Schema Available to a REST
Data Control

Typically, when you include an XML schema as part of a REST data control, the data
control definition stores the reference as an absolute path, which works well if the XSD
that you specify is a network resource. If the XSD that you specify is a local resource,
you can place the XSD in your project’s resource path so that the XSD is packaged with
your application and the reference to it is stored as a relative path.

If you provide a reference to a local copy of an XSD file that is not in the project’s
resource path, the reference to the resource will be stored as an absolute path. If you
then run the application on a local instance of the application server, the XSD will be
available to your application. However, if you deploy the application to a remote
server, the application will not be able to access the XSD.

In order to make sure a local copy of an XSD is available to your application when
deployed to a remote server instance, you need to manually copy the XSD to the
project’s resource path before creating the data control.

Method
Return

Represents an object that is returned by a web service
method. The returned object can be a single value or a
collection.

A method return appears as a child under the method that
returns it. The objects that appear as children under a
method return can be attributes of the collection, other
methods that perform actions related to the parent
collection, and operations that can be performed on the
parent collection.

When a single-value method return is dropped, the method
is not invoked automatically by the framework. You should
either drop the corresponding method as a button to invoke
the method, or if working with task flows you can create a
method activity for it. For more information about
executables, see "Executable Binding Objects Defined in the
Page Definition File" in Developing Fusion Web Applications
with Oracle Application Development Framework

The same components as for
collections and attributes and
for query forms.

For more information on
query forms, see "Creating
ADF Databound Search
Forms" in Developing Fusion
Web Applications with Oracle
Application Development
Framework.

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are
located in an Operations node under collections. If an
operation requires one or more parameters, they are listed in
a Parameters node under the operation.

The following operations for navigation and setting the
current row are supported: First, Last, Next, Previous,
setCurrentRowWithKey, and SetCurrentRowWithKeyValue.
Execute is supported for refreshing queries. Create and
Delete are available as applicable, depending on the web
service operation. Because the web service data controls are
not transactional, Commit and Rollback are not supported.

UI command components,
such as buttons, links, and
menus.

For more information, see
"Creating Command
Components Using Data
Control Operations" and
"Creating an Input Form" in
Developing Fusion Web
Applications with Oracle
Application Development
Framework.

Parameter Represents a parameter value that is declared by the method
or operation under which it appears. Parameters appear in
the Parameters node under a method or operation.

Array and structured parameters are exposed as updatable
structured attributes and collections under the data control,
which can be dropped as an ADF form or an updatable table
on the UI. You can use the UI to build a parameter that is an
array or a complex object (not a standard Java type).

Label, text, and selection list
components.

Table 5–1 (Cont.) Data Controls Panel Icons and Object Hierarchy for Web Services

Icon Name Description Used to Create...

Securing Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-15

You can identify the project’s resource path in the Project Properties dialog.

To identify the resource path for a project:
1. Right-click the project’s node and choose Project Properties.

2. In the Project Properties dialog, expand the Project Source Paths node and select
the Resources node, as shown in Figure 5–3.

The folders listed in the Resources field are the project’s resource path.

Figure 5–3 Project Resource Path

5.3 Securing Web Service Data Controls
Web services allow applications to exchange data and information through defined
application programming interfaces. SSL (Secure Sockets Layer) provides secure data
transfer over unreliable networks, but SSL only works point to point. Once the data
reaches the other end, the SSL security is removed and the data becomes accessible in
its raw format. A complex web service transaction can have data in multiple messages
being sent to different systems, and SSL cannot provide the end-to-end security that
would keep the data invulnerable to eavesdropping.

Any form of security for web services has to address the following issues:

■ The authenticity and integrity of data

■ Data privacy and confidentiality

■ Authentication and authorization

■ Non-repudiation

■ Denial of service attacks

Throughout this section the "client" is the web service data control, which sends SOAP
or REST messages to a deployed web service. The deployed web service may be:

Securing Web Service Data Controls

5-16 Developing Applications with Oracle ADF Data Controls

■ A web service running on Oracle WebLogic Server

■ A web service running anywhere in the world that is accessible through the
Internet

5.3.1 Oracle WSM Policy Framework
You can use Oracle Web Services Manager (WSM) policy framework to manage and
secure web services consistently across your organization. The policy framework is
built using the WS-Policy standard, which unifies multiple technologies to make
secure web services interoperable between systems and platforms.

Among others, the Oracle WSM Policy Framework addresses the following aspects of
web services security issues:

■ Authentication and authorization

The identity of the sender of the data is verified, and the security system ensures
that the sender has privileges to perform the data transaction.

The type of authentication can be a basic username/password pair transmitted in
plain text, or trusted X509 certificate chains. SAML assertion tokens can also be
used to allow the client to authenticate against the service, or allow it to participate
in a federated SSO environment, where authenticated details are shared between
domains in a vendor-independent manner.

■ Data authenticity, integrity, and non-repudiation

XML digital signatures, which use industry-standard messages, digest algorithms
to digitally sign the SOAP message.

■ Data privacy

XML encryption that uses industry-standard encryption algorithms to encrypt the
message.

■ Denial of service attacks

Defines XML structures to time-stamp the SOAP message. The server uses the
time stamp to invalidate the SOAP message after a defined interval.

For more information on web service security, see Securing Web Services and Managing
Policies with Oracle Web Services Manager

5.3.2 Using Key Stores
A web service can be configured for message-level security using key stores. For more
information about creating and using key stores for message protection, see
"Configuring Message Protection" in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

5.3.3 How to Define SOAP Web Service Data Control Security
After you create a SOAP-based web service data control in a JDeveloper project, you
can define security for the data control using the Edit Data Control Policies dialog.

Before you begin:
It may be helpful to have an understanding of how security is used in web service data
controls. For more information, see Section 5.3, "Securing Web Service Data Controls."

Securing Web Service Data Controls

Exposing Web Services Using the ADF Model Layer 5-17

You may also find it helpful to understand additional functionality that can be added
using other web services features. For more information, see Section 5.1.2, "Additional
Functionality for Web Service Data Controls in ADF Applications."

To define security for a SOAP web service data control:
1. In the Applications window, select the web service data control DataControls.dcx

file.

2. In the Structure window, right-click the web service data control and choose
Define Web Service Security.

JDeveloper displays the Edit Data Control Policies dialog, which shows the Policy
Store location.

3. From the Ports dropdown list, select the port to which you want then specified
policies applied.

4. From the MTOM dropdown list, select the MTOM (message transmission
optimization mechanism) policy you want to use. If you leave this field blank, no
MTOM policy is used.

5. From the Reliability dropdown list, select the reliability policy you want to use. If
you leave this field blank, no reliability policy is used.

6. From the Addressing dropdown list, select the addressing policy you want to use.
If you leave this field blank, no addressing policy is used.

7. In the Security list, you can optionally specify additional security policies to apply.
To add a policy, select its checkbox.

8. In the WS Config list, you can optionally specify additional web service
configuration policies to apply. To add a policy, select its checkbox.

For more information on the configuration policies, see "Configuration Policies" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

9. In the Management list, you can optionally specify additional management
policies to apply. To add a policy, select its checkbox.

10. If necessary, you can also remove policies from the Security list and the
Management lists by deselecting their corresponding checkboxes.

11. You can optionally override properties for the policies in the Security list and the
Management list by clicking Override Properties.

12. Click OK.

For more information about predefined policies and configuring policies and their
properties, see "Configuration Policies" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

Note: If you want to use an alternative policy store, you must first
specify it in the WS Policy Store page of the Preferences dialog. To do
so, from the main menu, choose Tools > Preferences and select the
WS Policy Store page.

Securing Web Service Data Controls

5-18 Developing Applications with Oracle ADF Data Controls

6

Exposing URL Services Using the ADF Model Layer 6-1

6Exposing URL Services Using the ADF
Model Layer

This chapter describes how to create data controls for URL services.

This chapter includes the following sections:

■ Section 6.1, "About Using ADF Model with URL Services"

■ Section 6.2, "Exposing URL Services with ADF Data Controls"

■ Section 6.3, "Using URL Service Data Controls"

6.1 About Using ADF Model with URL Services
A URL service can be simply a URL against which a query is posted, so that the URL
can be exposed as an ADF form. For example, say you have a URL service that allows
you to access employee data for your company. This data can be retrieved using a URL
as shown in Example 6–1.

Example 6–1 Sample URL that Accesses a URL Service

http://example.com/getEmployee?empId=20+deptId=10

This simple URL that accesses employee data can become an ADF data control with a
method (getEmployee) and two parameters (empId and deptId), that can then be
dropped on a page as a form.

URL services can also utilize representational state transfer (REST) actions. REST
services are web services that can be accessed using a simple HTTP URL, rather than a
more complex SOAP protocol. The HTTP actions (GET, PUT, POST, DELETE) are mapped
to service operations that access and manipulate data at the service implementation.
The response data can be returned in delimiter separated value and XML formats, and
you can specify an XSD to define the input format for the PUT and POST actions.

Note: This chapter focuses on using the URL Service data control
type to create a data control based on a single URL service. To create a
data control based on REST web services, you might be better served
by using the REST Web Services data control type, which enables you
to incorporate multiple REST methods in one data control with a
single pass through the wizard. For more information, see
Section 5.2.2, "How to Create a Data Control for a RESTful Web
Service."

Exposing URL Services with ADF Data Controls

6-2 Developing Applications with Oracle ADF Data Controls

6.1.1 URL Services Use Cases and Examples
The REST architecture simplifies web service invocation by representing a web service
as an HTTP resource, so that web service methods and operations look like a resources
on the server that can be accessed through an HTTP URL.

For example, say a web service has a method called getEmployee(int EmpID). Using
the REST architecture, this can become
http://mywebservice.com/myService/getEmployee?EmpID=20. When represented as a
plain HTTP URL, it is easy to use the URL service data control to quickly create a
databound page that accesses this service.

6.1.2 Additional Functionality for URL Services
You may find it helpful to understand other data access features before you start
working with URL services. Following are links to other functionality that may be of
interest.

■ You can design a databound user interface by dragging an item from the Data
Controls panel and dropping it on a page as a specific UI component. For more
information, see Section 2.3.1, "How to Use the Data Controls Panel."

■ For more general information about creating data controls, see Chapter 2, "Using
ADF Data Controls."

■ For information about creating web service data controls, see Chapter 5, "Exposing
Web Services Using the ADF Model Layer."

6.2 Exposing URL Services with ADF Data Controls
The URL service data control enables you to access and consume data streams from
specified URLs. A URL service data control can represent multiple operations. For
example, the GET operation and the PUT operation for a given URL service can be
represented by the same data control.

6.2.1 How to Create a URL Connection
You use the Create URL Connection dialog to create a URL connection by supplying a
name and the connection details required to access a URL endpoint. You can access
this dialog from the Create URL Service Data Control wizard or separately. If you
access the dialog from the Create URL Service Data Control wizard, the connection
only applies to the data control’s application. If you access the dialog separately, you
can create a single IDE-level connection that can be copied by multiple data controls.

Before you begin:
It may be helpful to have a general understanding of URL service data controls. For
more information, see Section 6.2, "Exposing URL Services with ADF Data Controls."

You may also find it helpful to understand additional functionality that can be added
using other URL services features. For more information, see Section 6.1.2, "Additional
Functionality for URL Services."

You need to complete this task:

Make sure you have access to the URL service that the data control will access.

To create an IDE-level URL connection:
1. From the main menu, choose File > New > From Gallery.

Exposing URL Services with ADF Data Controls

Exposing URL Services Using the ADF Model Layer 6-3

2. In the New Gallery, expand General, select Connections and then URL
Connection, and click OK.

3. In the Create URL Connection dialog, select where to create the connection.

Select Application Resources if you want the URL connection to be available only
within the application. Select IDE Connections if you want the URL connection to
be available from the Resources window for use in other applications.

4. Enter a name for the connection.

5. In the URL Endpoint field, enter the URL of the desired data stream.

Typically, this includes just the host and port. Do not include any URL parameters.
For example, you can enter something like http://service.example.com:7101/.

6. Select the level of authentication from the Authentication Type dropdown.

None is the default authentication type and disables authentication. Use Digest
when security is desired. In this way, the password will be transmitted across the
network as an MD5 digest of the user's password and cannot be determined by
sniffing network traffic. Basic authentication is primarily only useful when service
access over the network does not require high security.

7. If digest or basic authentication is selected, specify the user name and password
required to access the web site.

8. If the URL is associated with a protected area of the overall web site, enter the
authentication realm.

9. After you have entered the name and endpoint, you can click Test Connection to
verify URL connection is valid.

10. Click OK.

6.2.2 How to Create a URL Service Data Control
You can create a URL Service data control using the Create URL Service Data Control
wizard, which is available from the New Gallery. When you create URL service data
controls, you use the wizard to create each operation, one at a time.

Before you begin:
It may be helpful to have a general understanding of URL service data controls. For
more information, see Section 6.2, "Exposing URL Services with ADF Data Controls."

You may also find it helpful to understand additional functionality that can be added
using other URL services features. For more information, see Section 6.1.2, "Additional
Functionality for URL Services."

You need to complete these tasks:

■ Create an application workspace and a project in that workspace. Depending on
how you decide to organize your projects, you can use an existing application
workspace and project or create new ones. For information on creating an
application workspace, see "Creating Applications and Projects" in Developing
Applications with Oracle JDeveloper.

■ Make sure you have access to the URL service that the data control will access.

■ Optionally, create the URL connection you will use, as described in Section 6.2.1,
"How to Create a URL Connection."

Exposing URL Services with ADF Data Controls

6-4 Developing Applications with Oracle ADF Data Controls

To create a URL service data control:
1. In the Applications window, right-click the project where you want to place the

data control and choose New > From Gallery.

2. In the New Gallery, expand Business Tier, select Data Controls and then URL
Service Data Control, and click OK.

3. In the Create URL Service Data Control wizard, on the Data Source page, provide
a name for the data control.

4. Select the URL connection for the data control to use.

■ If you have not yet created a URL connection, click the Create New
Connection icon and specify a URL and a name for the connection.

■ If you have already created a URL connection, select the connection you want
to use from the Connection dropdown.

5. From the HTTP Method dropdown list, select the action for this data control.

6. Optionally, select the Include HTTP Header Parameter checkbox. For more
information, see Section 6.2.5, "How to Include a Custom Header Parameter for a
URL Service Data Control."

7. In the Source field, enter the source for the URL service (for example,
servicepath/servicename), and click Next.

If this operation requires a parameter, you can use the format
?symbol=##ParamName## to specify it (for example,
servicepath/servicename?symbol=##id##). You can also use a parameter to
provide dynamic input for the source path (for example,
servicepath/##servicename##?symbol=##id##).

8. On the Parameters page, supply default values for any parameters you specified,
and click Next.

For the PUT and POST operations, you must also provide an XML schema definition
(XSD) that defines the format of the input.

9. On the Data Format page, select the data format of the data source and set the
associated properties, then click Next.

You can choose either XML format (for which you provide URLs for the XSD and
XSL files) or delimiter separated value (for which you specify the delimiter, text
qualifier, and encoding for the data).

10. On the Finish page, you can click Test URL Connection to verify that the URL
data connection is valid, and click Finish.

11. Repeat the above steps for any other operation you would like to include in the
data control. In order to include the additional operations in the same data control,
fill in the Name field of the Data Source page of the wizard with the same name
for the data control that you used when you ran the wizard for the first operation.

Note: The XSL URL field is optional. You can use this field to specify
an XSL style sheet to define custom elements, such as fields calculated
on the basis of the values of other fields. These elements will then be
revealed as attributes in the data control. For more information on
preparing the XSL style sheet, see Section 5.2.7, "How to Add Custom
Attributes to a REST Web Service Data Control."

Exposing URL Services with ADF Data Controls

Exposing URL Services Using the ADF Model Layer 6-5

6.2.3 What Happens When You Create a URL Service Data Control
When you create a data control, JDeveloper creates the data control definition file
(DataControls.dcx), opens the file in the overview editor, and displays the file’s
hierarchy in the Data Controls panel. For more information, see Section 2.2.2, "What
Happens in Your Project When You Create a Data Control"

When you create a URL Service data control, the DataControls.dcx overview editor is
populated with method nodes for each of your operations. Those method nodes may
have Return subnodes, which in turn can contain subnodes for collections, scalar
values, and attributes.

For operations on which you have selected the Include HTTP Header Parameter
checkbox, an input parameter called HttpHeader and of type Map is specified for the
method node.

For example, Figure 6–1 shows a data control with three methods, including a method
with a custom header parameter (loadData(Map)).

Figure 6–1 URL Data Control in Data Controls Panel

For operations that take a parameter of a complex data type, a structured attribute
node also appears.

See Table 6–1 for the full list of the nodes that appear for URL service data controls and
information on how you can use them.

6.2.4 What You May Need to Know About Generating URL Data Controls without
Schema

When you create a URL data control based on an HTTP GET method, a schema will be
generated automatically if you do not specify one in the wizard. However, this
auto-generated schema might not contain the information needed for the data control
to work as you might expect. For example, the auto-generated schema has the
following limitations:

■ If there is no data returned from an element, the generated schema does not reflect
the detail of the element’s structure, and thus there are no corresponding data
control objects shown in the Data Controls panel.

■ If the returned data from a given element only contains one row, the element will
not be treated as a table in the resulting data control. (You can fix this by adding
the maxOccurs="unbounded" attribute to the given element in the schema.)

■ If you set an attribute as a primary key, the generated schema might not reflect the
correct data type. For more information, see Section 6.2.6, "What You May Need to

Exposing URL Services with ADF Data Controls

6-6 Developing Applications with Oracle ADF Data Controls

Know About Primary Keys in URL Service Data Controls."

The generated schema can be found under the project’s Resources node in the
Applications window, where you can inspect and edit it.

6.2.5 How to Include a Custom Header Parameter for a URL Service Data Control
When using a URL service data control, you may want to add a custom parameter to
the HTTP header when invoking the HTTP request. Such a parameter can be useful for
a variety of purposes, including for security or for notifications.

Before you begin:
It may be helpful to have a general understanding of URL service data controls. For
more information, see Section 6.2, "Exposing URL Services with ADF Data Controls."

You may also find it helpful to understand additional functionality that can be added
using other URL services features. For more information, see Section 6.1.2, "Additional
Functionality for URL Services."

You need to complete these tasks:

■ Create a URL Service data control and select the Include HTTP Header Parameter
checkbox in the wizard. For more information, see Section 6.2.2, "How to Create a
URL Service Data Control."

■ Create a JSF page as described in "Creating a Web Page" in Developing Web User
Interfaces with Oracle ADF Faces.

■ Create a managed bean and register it in the view project’s adfc-config.xml file.
For more information, see "How to Use a Managed Bean to Store Information" in
Developing Fusion Web Applications with Oracle Application Development Framework.

To pass a custom header to a URL service:
1. In the managed bean, create a bean property of type java.util.Map that provides

the header parameter names and values.

See Example 6–2 for an example of such a managed bean.

2. From the Data Controls panel, drag the method that includes the custom header
parameter to a web page and drop it as an ADF Button.

3. In the Edit Action Binding dialog, perform the following steps to create the
binding between the button and the managed bean:

a. In the Data Collection tree, select the method that includes the HTTP header
parameter.

b. In the Parameters table, click in the Value cell for the parameter, click the
drop-down button, and then choose Show EL Expression Builder.

c. In the Variables dialog, type the expression by hand or generate the expression
by navigating through the Variables tree and selecting the managed bean field
that represents the HTTP parameter to which you are binding.

For example, to bind to the httpHeadersMap property shown in Example 6–2,
you would expand the ADF Managed Beans node, expand the node for the
bean’s scope, expand the node for name of the bean specified in the
adfc-config.xml file (which is not necessarily the same as the class name),
and select httpHeadersMap.

At runtime, the data control will obtain the entries from the map (if it is present) and
add them as HTTP headers in the request.

Using URL Service Data Controls

Exposing URL Services Using the ADF Model Layer 6-7

Example 6–2 Managed Bean Containing Custom Parameters for URL Service Data
Control

package view;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class BackingBean {

 private Map<String,String> httpHeadersMap = new HashMap<String,String>();

 public BackingBean() {
 httpHeadersMap.put("TenantID","OurCompany");
 }

 public void setHttpHeadersMap(Map<String,String> httpHeadersMap) {
 this.httpHeadersMap = httpHeadersMap;
 }

 public Map<String,String> getHttpHeadersMap() {
 return httpHeadersMap;
 }
}

6.2.6 What You May Need to Know About Primary Keys in URL Service Data Controls
When you create a data control on a URL service, the data control supports primary
key operations on any exposed collection. However, to be sure the primary key
functionality works correctly, on the Data Format page of the URL Service Data
Control wizard, you must specify a schema that names the data type of the primary
key field. (For URL data controls based on HTTP GET methods, you are not
necessarily required to provide a schema.)

Otherwise, this feature is the same as the corresponding feature for web service data
controls. For more information, see Section 5.2.6, "What You May Need to Know
About Primary Keys in SOAP Web Service Data Controls."

6.2.7 What You May Need to Know About URL Service Data Controls
Because the URL Service data control is not updatable, there are limitations on some of
the objects in the Data Controls panel. For example, the only built-in operations
available under the Operations node are for retrieval and navigation. Also, in a URL
Service data control, the parameter object is the parameter that a user passes in the
URL For more information, see Table 6–1.

6.3 Using URL Service Data Controls
As with other kinds of data controls, you can design a databound user interface by
dragging an item from the Data Controls panel and dropping it on a page as a specific
UI component. For more information, see Section 2.3.1, "How to Use the Data Controls
Panel."

In the Data Controls panel, each data control object is represented by an icon. Table 6–1
describes what each icon represents, where it appears in the Data Controls panel
hierarchy, and what components it can be used to create.

Using URL Service Data Controls

6-8 Developing Applications with Oracle ADF Data Controls

Table 6–1 Data Controls Panel Icons and Object Hierarchy for the URL Service Data Control

Icon Name Description Used to Create...

Data Control Represents a data control. You cannot use the data
control itself to create UI components, but you can use
the child objects listed under the data control. There may
be more than one data control, each representing a
logical grouping of data functions.

Serves as a container for the
other objects. Not used to
create anything.

Method Represents the loadData() operation, which retrieves
the contents of the URL. This operation may accept
parameters, perform some action or business logic, and
return data or data collections. If the method is a get
method of a Map and returns a data collection, a method
return icon appears as a child under it. If a method
requires a parameter, a node appears under the method,
which lists the required parameters.

Command components.

For methods that accept
parameters: command
components and
parameterized forms.

For more information, see
"Using Command
Components to Invoke
Functionality in the View
Layer" in Developing Fusion
Web Applications with Oracle
Application Development
Framework.

Method
Return

Represents an object that is returned by a web service
method. The returned object can be a single value or a
collection.

A method return appears as a child under the method
that returns it. The objects that appear as children under
a method return can be attributes of the collection, other
methods that perform actions related to the parent
collection, and operations that can be performed on the
parent collection.

When a single-value method return is dropped, the
method is not invoked automatically by the framework.
You should either drop the corresponding method as a
button to invoke the method, or if working with task
flows you can create a method activity for it. For more
information about executables, see "Executable Binding
Objects Defined in the Page Definition File" in Developing
Fusion Web Applications with Oracle Application
Development Framework

The same components as for
collections and attributes and
for query forms.

For more information on
query forms, see "Creating
ADF Databound Search
Forms" in Developing Fusion
Web Applications with Oracle
Application Development
Framework.

Collection Represents a data collection returned by an operation on
the URL service. Collections appear as children under
method returns, other collections, or structured
attributes. The children under a collection may be
attributes, other collections, custom methods, and
built-in operations that can be performed on the
collection.

Forms, tables, graphs, trees,
range navigation components,
and master-detail components.

For more information, see
"Creating a Basic Databound
Page," "Creating ADF
Databound Tables,"
"Displaying Master-Detail
Data," and "Creating
Databound Chart and Gauge
Components" in Developing
Fusion Web Applications with
Oracle Application Development
Framework.

Using URL Service Data Controls

Exposing URL Services Using the ADF Model Layer 6-9

Structured
Attribute

Represents a returned object that is a complex type but
not a collection. For example, a structured attribute
might represent a single user assigned to the current
service request.

Label, text field, date, list of
values, and selection list
components

For more information, see
"Creating Text Fields Using
Data Control Attributes" and
"Creating Databound Selection
Lists and Shuttles" in
Developing Fusion Web
Applications with Oracle
Application Development
Framework.

Attribute Represents a discrete data element in an object (for
example, an attribute in a row). Attributes appear as
children under the collections or method returns to
which they belong.

Label, text field, and selection
list components.

For more information, see
"Creating Text Fields Using
Data Control Attributes" in
Developing Fusion Web
Applications with Oracle
Application Development
Framework.

Operation Represents a built-in data control operation that
performs actions on the parent object. Data control
operations are located in an Operations node under
collections. If an operation requires one or more
parameters, they are listed in a Parameters node under
the operation.

The following navigation operations are supported:
First, Last, Next, and Previous. Execute is supported
for refreshing queries. Create and Delete are available
as applicable, depending on the URL method. Because
the URL service data controls are not transactional,
Commit and Rollback are not supported.

UI command components,
such as buttons, links, and
menus.

For more information, see
"Creating Command
Components Using Data
Control Operations" and
"Creating an Input Form" in
Developing Fusion Web
Applications with Oracle
Application Development
Framework.

Parameter Represents a parameter value that is declared by the
method or operation under which it appears. Parameters
appear in a node under a method or operation.

The parameter for a URL Service data control is the
parameter that a user passes in the URL. These show up
as a parameters to the loadData() method when the
URL Service data control is created. For example, say
you create a data control to the URL
http://www.example.org?id=##param##. On the Data
Controls panel, you would see that the loadData()
method has one parameter with the name param. The
value supplied to this parameter is substituted in the
URL when the invocation occurs.

Label, text, and selection list
components.

Table 6–1 (Cont.) Data Controls Panel Icons and Object Hierarchy for the URL Service Data Control

Icon Name Description Used to Create...

Using URL Service Data Controls

6-10 Developing Applications with Oracle ADF Data Controls

7

Adding Business Logic to Data Controls 7-1

7 Adding Business Logic to Data Controls

This chapter describes how to configure your data controls with declarative metadata,
such as default labels for attributes, new transient attributes, validation rules, and
built-in search criteria. In addition, this chapter shows how you can test the data
controls that you have configured before you use them in an application and provides
a reference on using Groovy expressions in data controls.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Adding Business Logic to Data Controls"

■ Section 7.2, "Configuring Data Controls"

■ Section 7.3, "Working with Attributes"

■ Section 7.4, "Adding Transient Attributes to a Data Object"

■ Section 7.5, "Defining Validation Rules on Attributes Declaratively"

■ Section 7.6, "Filtering Result Sets with Named Criteria"

■ Section 7.7, "Creating List of Values Objects"

■ Section 7.8, "Testing Data Object Metadata Using the Oracle ADF Model Tester"

■ Section 7.9, "Groovy Language Support"

7.1 Introduction to Adding Business Logic to Data Controls
When you generate data controls, you can use them without further modification to
create bindings between your data model and the UI components in your application.
In addition, you can configure the data controls to add business logic and other
features to your data model so that those features are applied when you use the Data
Controls panel to create UI components. For example, depending on the type of data
control you are creating, you can do the following things:

■ Configure default values for attributes

■ Add labels and tooltips for attributes

■ Add custom metadata (typically name-value pairs) that can be referenced via
expression language (EL) from the ADF Faces UI

■ Add calculated attributes

■ Add attribute-level validation rules with custom error messages

■ Define declarative search forms

Configuring Data Controls

7-2 Developing Applications with Oracle ADF Data Controls

7.2 Configuring Data Controls
When you create a data control, a standard set of values and behaviors are assumed
for the data control. For example, the data control determines how the label for an
attribute will display in a client. You can configure these values and behaviors by
creating and modifying data control structure files that correspond to the elements of
the data control. You first generate a data control structure file using the overview
editor for the .dcx file.

7.2.1 How to Edit a Data Control
You can make a data control configurable by using the overview editor for the
DataControls.dcx file to create data control structure files that correspond to objects
encompassed by the data control. You can then edit the individual data control
structure files.

Before you begin:
It may be helpful to have a general understanding of data control configuration. For
more information, see Section 7.2, "Configuring Data Controls."

You will need to complete this task:

Create a data control, as described in Section 2.2.1, "How to Create ADF Data
Controls."

To edit a data control:
1. In the Applications window, double-click DataControls.dcx.

2. In the overview editor, select the object that you would like to configure and click
the Edit icon to generate a data control structure file, as shown in Figure 7–1.

Figure 7–1 Edit Button in Data Controls Registry

3. In the overview editor of the data control structure file, make the desired
modifications.

7.2.2 What Happens When You Edit a Data Control
When you edit a data control, JDeveloper creates a data control structure file that
contains metadata for the affected collection and opens that file in the overview editor.
This file stores configuration data for the data control that is specific to that collection,
such as any UI hints or validators that you have specified for the data object.

A data control structure file has the same base name as the data object with which it
corresponds. For example, if you click the Edit icon when you have a collection node
selected that corresponds with the Customer.java entity bean, the data control
structure file is named Customer.xml. The data control structure file is generated in a
package that corresponds to the package of the bean class, but with persdef
prepended to the package name. For example, if the Customer.java bean is in the

Configuring Data Controls

Adding Business Logic to Data Controls 7-3

model package, the Customer.xml data control definition file is generated in the
persdef.model package. Once a data control structure file has been generated, you can
use the overview editor for that file to make further configurations.

A data control structure file contains the following information:

■ Attributes: Describes all of the attributes on the service. For example, for entity
beans, there is an attribute for each bean property that is mapped to a database
column. You can also add transient attributes. You can set UI hints that define how
these attributes will display in the UI. You can also set other properties, such as
whether the attribute value is required, whether it must be unique, and whether it
is visible. For more information, see Section 7.3, "Working with Attributes."

You can also set validation for an attribute and create custom properties. For more
information on validation, see Section 7.5, "Defining Validation Rules on
Attributes Declaratively." For more information on custom properties, see the
"How to Implement Generic Functionality Driven by Custom Properties" section
of Developing Fusion Web Applications with Oracle Application Development
Framework.

■ Accessors: Describes data control elements that return result sets.

■ Named Criteria: Enables you to create rules to filter the rows that are presented.
Named criteria are available for JPA-based data controls.

For more information, see Section 7.6, "Filtering Result Sets with Named Criteria."

■ List of Values: Enables you to create declarative associations between an attribute
of the current data object and rows from another data object. You can then create
components from these associations such as dropdown lists.

■ Operations: Describes methods on the data object that are used by the data
control’s built-in operations, such as add and remove methods, which are used by
the Create and Delete built-in operations, respectively.

Figure 7–2 shows the data control structure file for the Item bean.

Figure 7–2 Data Control Structure File in the Overview Editor

Configuring Data Controls

7-4 Developing Applications with Oracle ADF Data Controls

7.2.3 How to Convert Data Controls from a Previous Release
The format of data control structure files changed in Release 11.1.2 to enable additional
features, such as named criteria and list of values. In addition, data control structure
files are now only generated on demand, such as when you need to add metadata to a
data control object or if you have them generated when creating the data control.
There is no longer metadata for data control objects that merely repeats information
that is already available in the object on which the data control is based. For JPA-based
data controls, UpdatableSingleValue.xml and UpdateableCollection.xml files are no
longer generated.

If you have a data control from a previous release, you can continue using that data
control in applications that you develop with later versions of JDeveloper. However, if
you plan to make changes to that data control, you should first convert the data
control to the new format. Modification of data controls in the old format is not
supported.

Converting an old data control to use the current structure definition format involves a
few changes to the DataControls.dcx file and generation of new data control structure
files. You do not need to rebind existing UI components to the updated data control.

To migrate a data control from a previous release:
1. In the current version of JDeveloper, open the application workspace that contains

the data control.

2. Open the DataControls.dcx file and make the following changes:

■ Change the value of the ImplDef attribute to the name of the appropriate data
control implementation class, as shown in Table 7–1.

■ Optionally, for bean and EJB data controls, add a DataControlHandler
attribute to the data control’s bean-definition or ejb-definition element to
enable full query and paging support. For JPA-based data controls, typically
you would typically use
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler. For non-JPA
data controls you typically use
oracle.adf.model.adapter.bean.DataFilterHandler.

■ Optionally, for JPA-based bean and EJB data controls, add an accessMode
attribute to the data control’s bean-definition or ejb-definition element to
specify the type of paging for the data control. The value of the accessMode
can be scrollable or rangePaging. For more information on access mode, see
Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

■ Optionally, for JPA-based bean and EJB data controls, add an eagerPersist
attribute to the data control’s bean-definition or ejb-definition element to
specify whether new records are persisted eagerly. The value of eagerPersist
can be false or true. For more information, see Section 3.3.8, "About
Automatically Persisting New Rows."

Note: The overview editor of a data control structure file shows all of
the attributes, accessors, and operations that are associated with the
data object. However, the data control structure file’s XML source only
contains definitions for elements that you have edited. The base
elements are introspected from the data object. Also, when you make
changes to the underlying data object, the data control inherits those
changes.

Configuring Data Controls

Adding Business Logic to Data Controls 7-5

3. For data controls to which you have added metadata (such as UI hints or
validators), create new data control structure files as shown in Section 7.2.1, "How
to Edit a Data Control."

4. Optionally, in the data control’s project, delete the old data control structure files.
These include:

■ UpdatableSingleValue.xml

■ UpdateableCollection.xml

■ Files ending in .xml that contain metadata for a data control object (not
including the new files that you generated in step 3.

For an example of a converted DataControls.dcx file, see Example 7–1.

Example 7–1 DataControls.dcx File Converted to Use Sparse Metadata

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="11.1.1.61.92" id="DataControls" Package="model1">
 <AdapterDataControl id="BeanPagingDC1"
 FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
 ImplDef="oracle.adf.model.adapter.bean.BeanDCDefinition"
 SupportsTransactions="false" SupportsSortCollection="true"
 SupportsResetState="false" SupportsRangesize="false"
 SupportsFindMode="false" SupportsUpdates="true"
 Definition="model1.BeanPagingDC1"
 BeanClass="model1.BeanPagingDC1"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol">
 <CreatableTypes>
 <TypeInfo FullName="model1.SampleData1"/>
 <TypeInfo FullName="model1.BeanPagingDC1"/>
 </CreatableTypes>
 <Source>
 <bean-definition BeanClass="model1.BeanPagingDC1"
 DataControlHandler="oracle.adf.model.adapter.bean.DataFilterHandler"
 AccessMode="scrollable"
 xmlns="http://xmlns.oracle.com/adfm/adapter/bean"/>
 </Source>
 </AdapterDataControl>
</DataControlConfigs>

7.2.4 What You May Need to Know About MDS Customization of Data Controls
If you wish for all of the objects that are encompassed by the data control to be
available for Oracle Metadata Services (MDS) customization, the packaged application
must contain data control structure files for those objects.

When you create a data control based on the adapter framework, data control
structure files are not generated by default, since they are not needed by the data
control if you do not add metadata to a given object. Typically, a data control structure

Table 7–1 Data Control Implementation Classes

Data Control Type Data Control Implementation Class

EJB oracle.adfinternal.model.adapter.ejb.EjbDCDefinition

Bean oracle.adf.model.adapter.bean.BeanDCDefinition

Web Service oracle.adfinternal.model.adapter.webservice.WSDefinition

URL Service oracle.adfinternal.model.adapter.url.URLDCDefinition

Working with Attributes

7-6 Developing Applications with Oracle ADF Data Controls

file is only generated for a data control object once you edit the data control to add
declarative metadata (such as UI hints or validators) to that object, as described in
Section 7.2.1, "How to Edit a Data Control." To create data control structure files for
each data control object, you need to repeat that procedure for each data control object.

For more information on MDS, see "Customizing Applications with MDS" in
Developing Fusion Web Applications with Oracle Application Development Framework.

7.3 Working with Attributes
When you create a data control for your business services, you can create a data
control structure file for an individual data object in which you can declaratively
augment the functionality of the data object’s persistent attributes. For example, you
can create validation rules and set UI hints to control the default presentation of
attributes in UI components. In addition, you can create transient attributes.

In all cases, you set these properties on the Attributes page of the overview editor of
the data control structure file. For information on creating a data control structure file,
see Section 7.2.1, "How to Edit a Data Control."

7.3.1 How to Designate an Attribute as Primary Key
In the overview editor for a data object’s data control structure file, you can designate
an attribute as a primary key for that data object if you have not already done so in the
data object’s underlying class.

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To set an attribute as a primary key:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to designate as the primary
key and then click the Details tab.

4. On the Details page, set the Key Attribute property.

Note: In the Create EJB Data Control and the Create Bean Data
Control wizards, there is a Generate Metadata checkbox that you can
select in order to have structure files for each data control object
generated upon creation of the data control.

Note: If the attribute has already been designated as the primary key
in the class (such as through the JPA @ID annotation), the data control
inherits that setting and the Key Attribute checkbox will be selected.
However, in this case, you can not deselect the Key Attribute option.

Working with Attributes

Adding Business Logic to Data Controls 7-7

7.3.2 How to Control the Updatability of an Attribute
The Updatable property controls whether the value of a given attribute can be
updated. You can select the following values for the Updatable property:

■ Always - the attribute is always updatable

■ Never- the attribute is read-only

■ While New- the attribute can be set during the transaction that creates the row for
the first time, but after being successfully committed to the database the attribute
is read-only

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To set the updatability of an attribute:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, select a value from the Updatable dropdown list.

7.3.3 How to Define a Static Default Value for an Attribute
The Value field in the Details section allows you to specify a static default value for
the attribute when the value type is set to Literal. For example, you might set the
default value of a ServiceRequest entity bean’s Status attribute to Open, or set the
default value of a User bean’s UserRole attribute to user.

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 7.3, "Working with Attributes."

To define a static default value for an attribute:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, select the Literal option.

5. In the text field below the Literal option, enter the default value for the attribute.

7.3.4 How to Define a Default Value Using a Groovy Expression
You can use a Groovy expression to define a default value for an attribute. This
approach is useful if you want to be able to change default values at runtime.
However, if the default value is always the same, the value is easier to see and

Working with Attributes

7-8 Developing Applications with Oracle ADF Data Controls

maintain using value field with the Literal type (on the Details tab). For general
information about using Groovy, see Section 7.9, "Groovy Language Support."

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To define a default value using a Groovy expression:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, select Expression for the default value type, and click the Edit
button next to the adjoining text field.

5. In the Edit Expression dialog, enter an expression in the field provided.

Attributes that you reference can include any attribute that is defined for the data
object.

6. If the attribute is transient, select the appropriate recalculate setting, as shown in
Figure 7–3.

Figure 7–3 Edit Expression Editor

Working with Attributes

Adding Business Logic to Data Controls 7-9

If you select Always (default), the expression is evaluated each time any attribute
in the row changes.

If you select Never, the expression is evaluated only when the row is created.

If you select Based on the following expression, you can provide an expression
that determines when to recalculate the attribute value.

For example, the following expression in the Based on the following expression
field causes the attribute to be recalculated when either the Quantity attribute or
the UnitPrice attribute are changed:

return (adf.object.dataProvider.isAttributeChanged("Quantity") ||
adf.object.dataProvider.isAttributeChanged("UnitPrice"));

7. In the Available list at the bottom of the dialog, select any attributes upon which
the value expression or the optional recalculate expression is based and shuttle
each to the Selected list.

8. Click OK to save the expression.

7.3.5 What Happens When You Create a Default Value Using a Groovy Expression
When you define a default value using a Groovy expression, <RecalcCondition> and
<TransientExpression> tags are added within the tag for the corresponding attribute
in the data control structure file. In addition, a <Dependencies> tag is added if you
have specified any dependencies for the expression. Example 7–2 shows the code that
is added to the LineItemTotal attribute when an expression is written to define the
default value as the product of the price and quantity attributes and the recalculate
condition is specified as Always.

Example 7–2 Default Value Expression

<RecalcCondition><![CDATA[true]]></RecalcCondition>
<TransientExpression><![CDATA[price * quantity]]></TransientExpression>
<Dependencies>
 <Item
 Value="price"/>
 <Item
 Value="quantity"/>
</Dependencies>

7.3.6 How to Set UI Hints on Attributes
You can set UI hints on attributes so that those attributes are displayed and labeled in
a consistent and localizable way by any UI components that use those attributes. To
create UI hints for attributes, use the overview editor for the data object’s data control
structure file, which is accessible from the Applications window.

Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For
more information, see Section 7.3, "Working with Attributes."

Note: As an alternative to using data control structure files to set UI
hints for EJB and bean data controls, you can add annotations directly
to the bean classes to create much of the same functionality. For more
information, see Section 3.5, "Providing UI Hints for Attributes Using
Annotations."

Working with Attributes

7-10 Developing Applications with Oracle ADF Data Controls

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To set a UI hint:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the UI
Hints tab.

4. In the UI Hints section, set the desired UI hints.

For information about the various UI hints, see the "Defining UI Hints for View
Objects" section of Developing Fusion Web Applications with Oracle Application
Development Framework.

7.3.7 What Happens When You Set UI Hints on Attributes
When you set UI hints on an attribute, those hints are stored as properties. Tags for the
properties are added to the data object’s data control structure file and the values for
the properties are stored in a resource bundle file. If the resource bundle file does not
already exist, it is generated in the data control’s package and named according to the
project name when you first set a UI hint.

Example 7–3 shows the code for the price attribute in the Item.xml data control
structure file, including tags for the Label and Format Type hints which have been set
for the attribute.

Example 7–3 XML Code for UI Hints

<PDefAttribute
 Name="price">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_LABEL']}"/>
 <FMT_FORMATTER
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_FMT_
 FORMATTER']}"/>
 </SchemaBasedProperties>
 </Properties>
</PDefAttribute>

Example 7–4 shows the corresponding entries for the Label and Format Type hints in
the ModelBundle.properties resource bundle file, which contains the values for all of
the project’s localizable properties.

Note: The view objects referenced in Developing Fusion Web
Applications with Oracle Application Development Framework are ADF
Business Components used to encapsulate SQL queries and to
simplify working with the results. Data control structure files function
much like view objects in adapter data controls and provide many of
the same configuration options. For more information on view objects,
see the "About View Objects" section of Developing Fusion Web
Applications with Oracle Application Development Framework.

Adding Transient Attributes to a Data Object

Adding Business Logic to Data Controls 7-11

Example 7–4 Resource Bundle Code for UI Hints

model.Item.price_LABEL=Price
. . .
model.Item.price_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter

7.4 Adding Transient Attributes to a Data Object
In addition to having attributes that map to columns in an underlying table, your data
control structure files can include transient attributes that display calculated values.

For example, a transient attribute you create, such as FullName, could be calculated
based on the concatenated values of FirstName and LastName attributes.

Once you create the transient attribute, you can use a Groovy expression in the
attribute definition to specify a default value.

7.4.1 How to Add a Transient Attribute
Use the Attributes page of the overview editor to create a transient attribute.

Before you begin:
It may be helpful to have an understanding of transient and calculated attributes. For
more information, see Section 7.4, "Adding Transient Attributes to a Data Object."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To add a transient attribute to a data object’s data control structure file:
1. In the Applications window, double-click the data object’s data control structure

file.

2. In the overview editor, click the Attributes navigation tab, and then click the
Create new attribute icon.

3. In the New View Attribute dialog, enter a name for the attribute and click OK.

4. On the Attributes page of the overview editor, click the Details tab and select an
object type from the Type dropdown list.

5. Optionally, in the Default Value section, set a default value or enter an expression
to calculate the default value.

For information on setting an expression to calculate the default value, see
Section 7.3.4, "How to Define a Default Value Using a Groovy Expression."

6. If the value will be calculated with an expression, set Updatable to Never.

7.4.2 What Happens When You Add a Transient Attribute
When you add a transient attribute, JDeveloper adds a <ViewAttribute> tag to the
data object’s data control structure file to reflect the new attribute. Example 7–5 shows
the XML code for a transient attribute named LineItemTotal that is based on an
expression that multiplies the values of the price and quantity attributes.

Example 7–5 XML Code for a Transient Attribute

<ViewAttribute

Defining Validation Rules on Attributes Declaratively

7-12 Developing Applications with Oracle ADF Data Controls

 Name="LineItemTotal"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="$none$">
 SQLType="VARCHAR">
 <RecalcCondition><![CDATA[true]]></RecalcCondition>
 <TransientExpression><![CDATA[price * quantity]]></TransientExpression>
 <Dependencies>
 <Item
 Value="price"/>
 <Item
 Value="quantity"/>
 </Dependencies>
 </ViewAttribute>

7.5 Defining Validation Rules on Attributes Declaratively
The easiest way to create and manage validation rules is through declarative validation
rules. Declarative validation rules are defined using the overview editor, and once
created, are stored in the data object’s data control structure file. Encapsulating the
business logic this way ensures that your business information is validated
consistently in every client that accesses it, and it simplifies maintenance by
centralizing where the validation is stored.

Oracle ADF provides built-in declarative validation rules for many common business
needs. You can also base validation on a Groovy expression, as described in
Section 7.5.4, "How to Use Groovy Expressions For Validation Rules."

When you add a validation rule, you supply an appropriate error message and can
later translate it easily into other languages if needed. You can also set the severity
level.

Many of the declarative validation features available for data objects are also available
at the page definition level, should your application warrant the use of page-level
validation in addition to business-layer validation. For more information, see the
"Using Validation in the ADF Model Layer" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

7.5.1 How to Add Validation Rules to Attributes
The process for adding a validation rule to a data object is similar for most of the
validation rules, and is done using the Add Validation Rule dialog. You can open this
dialog by opening the data object’s data control structure file, selecting an attribute on
Attributes page, clicking the Validation Rules tab, and then clicking the Add icon

Note: You can also add validation rules by implementing a custom
validation class. This approach is particularly useful if you need to
define complex parameterized validation rules (such as for checking
credit card numbers) that you will need to use multiple times in your
application. For more information, see the "Implementing Custom
Validation Rules" section of Developing Fusion Web Applications with
Oracle Application Development Framework.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 7-13

It is important to note that when you define a rule declaratively using the Add
Validation Rule dialog, the rule definition you provide specifies the valid condition for
the attribute. At runtime, the entry provided by the user is evaluated against the rule
definition, and an error or warning is raised if the entry fails to satisfy the specified
criteria. For example, if you specify a Length validator on an attribute that requires it
to be Less Than or Equal To 12, the validation fails if the entry is more than 12
characters, and the error or warning is raised.

To add a declarative validation rule to a data control structure file, use the Attributes
page of the data object’s overview editor.

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To add a validation rule:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, select the type of validation rule desired from
the Rule Type dropdown list.

Note that the subordinate fields change depending on your choices.

6. Use the dialog settings to configure the new rule.

For more information about the different validation rules, see Section 7.5.3, "How
to Use the Built-in Declarative Validation Rules."

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

8. Click OK.

7.5.2 What Happens When You Add a Validation Rule
When you add a validation rule to a data object, JDeveloper updates the data object’s
data control structure file to include an entry describing what rule you've used and
what rule properties you've entered.

For example, if you add a compare validation rule to the dateShipped attribute to
ensure that the shipping date does not precede the date in the dateOrdered attribute,
this results in a <validation:CompareValidationBean> entry in the XML file, as
shown in Example 7–6.

Example 7–6 Compare Validator

<validation:CompareValidationBean
 Name="dateShipped_Rule_0"

Defining Validation Rules on Attributes Declaratively

7-14 Developing Applications with Oracle ADF Data Controls

 ResId="${adfBundle['model.ModelBundle']['model.Ord.dateShipped_Rule_0']}"
 OnAttribute="dateShipped"
 OperandType="EXPR"
 Inverse="false"
 CompareType="GREATERTHANEQUALTO">
 <validation:TransientExpression><![CDATA[dateOrdered]]>
 </validation:TransientExpression>
</validation:CompareValidationBean>

7.5.3 How to Use the Built-in Declarative Validation Rules
The built-in declarative validation rules can satisfy many, if not all, of your business
needs. These rules are easy to implement because you don’t write any code. You use
the user-interface tools to choose the type of validation and how it is used.

Built-in declarative validation rules can be used to:

■ Make a comparison between an attribute and literal value or expression.

■ Validate against a list of values that you provide manually.

■ Make sure that a value falls within a certain range, or that it is limited by a certain
number of bytes or characters.

■ Validate using a regular expression or evaluate a Groovy expression.

7.5.3.1 Validating Based on a Comparison
The Compare validator performs a logical comparison between an attribute and a
value. When you add a Compare validator, you specify an operator and something to
compare with. You can compare the following:

■ Literal value

When you use a Compare validator with a literal value, the value in the attribute is
compared against the specified literal value. When using this kind of comparison,
it is important to consider data types and formats. The literal value must conform
to the format specified by the data type of the attribute to which you are applying
the rule. In all cases, the type corresponds to the type mapping for the attribute.

For example, an attribute of column type DATE maps to the
oracle.jbo.domain.Date class, which accepts dates and times in the same format
accepted by java.sql.TimeStamp and java.sql.Date. You can use format masks
to ensure that the format of the value in the attribute matches that of the specified
literal.

■ Expression

For information on the expression option, see Section 7.5.4, "How to Use Groovy
Expressions For Validation Rules."

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To validate based on a comparison:

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 7-15

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Compare.

6. Select the appropriate operator.

7. Select an item in the Compare With list, and based on your selection provide the
appropriate comparison value.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

9. Click OK.

7.5.3.2 What Happens When You Validate Based on a Comparison
When you create a Compare validator, a <validation:CompareValidationBean> tag is
added to the data object’s data control structure file.

Example 7–6 shows the XML code for the validator on the dateShipped attribute.

7.5.3.3 Validating Using a List of Values
The List validator compares an attribute against a list of values that you provide
manually. The validator ensures that the value of the data object attribute is in (or not
in, if specified) that list.

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To validate using a list of values:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select List.

6. In the Operator field, select In or NotIn, depending on whether you want an
inclusive list or an exclusive list.

7. In the Enter List of Values section, enter the values, one per line.

Defining Validation Rules on Attributes Declaratively

7-16 Developing Applications with Oracle ADF Data Controls

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

9. Click OK.

7.5.3.4 What Happens When You Validate Using a List of Values
When you validate using a list of values, a <validation:ListValidationBean> tag is
added to the data object’s data control structure file.

7.5.3.5 Ensuring That a Value Falls Within a Certain Range
The Range validator performs a logical comparison between an attribute and a range
of values. When you add a Range validator, you specify minimum and maximum
literal values. The Range validator verifies that the value of the attribute falls within
the range (or outside the range, if specified).

If you need to dynamically calculate the minimum and maximum values, or need to
reference other attributes, use the Script Expression validator and provide a Groovy
expression. For more information, see Section 7.9.1, "How to Reference ADF Objects in
Groovy Expressions."

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To validate within a certain range:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Range.

6. In the Operator field, select Between or NotBetween.

7. In the Minimum Value and Maximum Value fields, enter appropriate values.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

9. Click OK.

7.5.3.6 What Happens When You Use a Range Validator
When you validate against a range, a <validation:RangeValidationBean> tag is
added to the data control structure file.

Example 7–7 shows the quantity attribute with a minimum of zero and a maximum of
10.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 7-17

Example 7–7 Range Validator XML Code

<PDefAttribute
 Name="quantity">
 <validation:RangeValidationBean
 Name="quantity_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['QUANTITY_VALIDATOR']}"
 OnAttribute="quantity"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="0"
 MaxValue="10"/>
. . .
</PDefAttribute>

7.5.3.7 Validating Against a Number of Bytes or Characters
The Length validator validates whether the string length (in characters or bytes) of an
attribute's value is less than, equal to, or greater than a specified number, or whether it
lies between a pair of numbers. For example, you might have a field where the user
enters a password or PIN and you need to validate that it is at least 6 characters long,
but not longer than 10.

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To validate against a number of bytes or characters:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Length.

6. In the Operator field, select how to evaluate the value.

7. In the Comparison Type field, select Byte or Character and enter a length in the
Value field.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

9. Click OK.

7.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters
When you validate using length, a <validation:LengthValidationBean> tag is added
to the data control structure file. Example 7–8 shows the Between operator with a
minimum value of 6 and a maximum value of 10.

Defining Validation Rules on Attributes Declaratively

7-18 Developing Applications with Oracle ADF Data Controls

Example 7–8 Validating the Length Between Two Values

 <validation:LengthValidationBean
 OnAttribute="pin"
 CompareType="BETWEEN"
 DataType="CHARACTER"
 MinValue="6"
 MaxValue="10"
 Inverse="false"/>

7.5.3.9 Validating Using a Regular Expression
The Regular Expression validator compares attribute values against a mask specified
by a Java regular expression.

If you want to create expressions that can be personalized in metadata, you can use the
Script Expression validator. For more information, see Section 7.5.4, "How to Use
Groovy Expressions For Validation Rules."

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To validate using a regular expression:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Regular
Expression.

6. In the Operator field, you can select Matches or Not Matches.

7. To use a predefined expression (if available), you can select one from the
dropdown list and click Use Pattern. Otherwise, write your own regular
expression in the field provided.

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

9. Click OK.

Figure 7–4 shows what the dialog looks like when you select a Regular Expression
validator and validate that the Email attribute matches a predefined Email Address
expression.

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 7-19

Figure 7–4 Regular Expression Validator Matching Email Address

7.5.3.10 What Happens When You Validate Using a Regular Expression
When you validate using a regular expression, a <RegExpValidationBean> tag is
added to the data control structure file. Example 7–9 shows an Email attribute that
must match a regular expression.

Example 7–9 Regular Expression Validator XML Code

<validation:RegExpValidationBean
 Name="Email_Rule_0"
 OnAttribute="Email"
 Pattern="[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"
 Flags="CaseInsensitive"
 Inverse="false"/>

7.5.4 How to Use Groovy Expressions For Validation Rules
Groovy expressions are Java-like scripting code stored in the data control structure file.
You can even change or specify values at runtime.

For more information about creating validation rules, see Chapter 7.5, "Defining
Validation Rules on Attributes Declaratively."

Defining Validation Rules on Attributes Declaratively

7-20 Developing Applications with Oracle ADF Data Controls

For more information about using Groovy expressions in your business logic, see
Section 7.9, "Groovy Language Support."

7.5.4.1 Validating Using a Groovy Expression
You can use a Groovy expression to return a true/false statement. The Script
Expression validator requires that the expression either return true or false, or that it
calls the adf.error.raise/warn() method. A common use of this feature would be to
validate an attribute value, for example, to make sure that an account number is valid.

Before you begin:

It may be helpful to have an understanding of validation in data control structure files.
For more information, see Section 7.5, "Defining Validation Rules on Attributes
Declaratively."

You may also find it helpful to understand the use of Groovy in validation rules. For
more information, see Section 7.5.4, "How to Use Groovy Expressions For Validation
Rules."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To validate using a true/false expression:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to add the
validation rule, and then click the Validation Rules tab.

4. In the Validation Rules page, click the Add Validation Rule icon.

5. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Script
Expression.

6. Enter a validation expression in the field provided.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see
Section 7.5.5, "How to Create Validation Error Messages."

8. Click OK.

7.5.4.2 What Happens When You Validate Based on a Groovy Expression
When you create a Groovy expression, it is saved in the data object’s data control
structure file. The Groovy expression is wrapped by a <TransientExpression> tag. For
some Groovy expressions, the <TransientExpression> tag is wrapped by a
<validation:ExpressionValidationBean> tag as well.

Note: Using the adf.error.raise() and adf.error.warn() methods
(rather than simply returning true or false) allows you to define the
message text to show to the user, and to associate a validator with a
specific attribute. For more information, see Section 7.5.5.4, "Raising
Error Message Conditionally Using Groovy."

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 7-21

7.5.4.3 Referencing Data Object Methods in Groovy Validation Expressions
You can call methods on the data object using the adf.source.dataProvider property
of the current object. The adf.source.dataProvider property allows you to access the
data object that is being validated.

If the method is a non-boolean type and the method name is getXyzAbc() with no
arguments, then you access its value as if it were a property named XyzAbc. For
example, the Groovy expression in Example 7–10 would call the getXyzAbc() method.

Example 7–10 Groovy Expression Calling Sample Methods

adf.source.dataProvider.XyzAbc

For a Boolean property, the same holds true but the JavaBeans component naming
pattern for the getter method changes to recognize isXyzAbc() instead of
getXyzAbc(). If the method on your data object does not match the JavaBeans getter
method naming pattern, or if it takes one or more arguments, then you must call it like
a method using its complete name.

7.5.5 How to Create Validation Error Messages
Validation error messages provide important information for the user: the message
should convey what went wrong and how to fix it.

7.5.5.1 Creating Validation Error Messages

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To create validation error messages:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to create the
validation error message, and then click the Validation Rules tab.

4. In the Validation Rules page, select the validation rule that you want to edit and
click the Edit Validation Rule icon.

5. In the Edit Validation Rule dialog, click the Failure Handling tab.

6. In the Message Text field, enter your error message.

You can also define error messages in a message bundle file. To select a previously
defined error message or to define a new one in a message bundle file, click the
Select Message icon in the top right corner of the Message Text field to open the
Select Text Resource dialog.

Defining Validation Rules on Attributes Declaratively

7-22 Developing Applications with Oracle ADF Data Controls

7. Optionally, define a message token by entering the message token’s name in curly
braces ({}) within the text of the error message. An entry for the token will then
appear in the Token Message Expressions list where you can then define an
expression to determine the value of the message token.

Figure 7–5 shows a failure message that contains a message token for a validation
rule in the data control structure file. For more information on this feature, see
Section 7.5.5.5, "Embedding a Groovy Expression in an Error Message."

8. Click OK.

Figure 7–5 Failure Handling Message for a Validation Rule

7.5.5.2 What Happens When You Create a Validation Error Message
When you create an error message for a validation rule, it is saved in a .properties
file. The .properties file and the message string are referenced from the ResId tag
attribute of the validator’s tag in the data control structure file.

Note: The Script Expression validator allows you to enter more than
one error message. This is useful if the validation script conditionally
returns different error or warning messages. For more information, see
Section 7.5.5.4, "Raising Error Message Conditionally Using Groovy."

Defining Validation Rules on Attributes Declaratively

Adding Business Logic to Data Controls 7-23

Example 7–11 shows the validation rule tag’s ResId attribute that specifies the location
and key of the error message. Example 7–12 shows the corresponding entry in the
.properties file which contains the error message.

Example 7–11 Validation Error Message Reference

<validation:CompareValidationBean
 Name="dateShipped_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['model.Ord.dateShipped_Rule_0']}"

Example 7–12 Validation Error String

model.Ord.dateShipped_Rule_0=Date Shipped cannot be before Date Ordered

7.5.5.3 Localizing Validation Messages
The error message is a translatable string and is managed in the same way as
translatable UI hints in a message bundle file. To view the error message for the
defined rule in the message bundle class, locate the key in the message bundle that
corresponds to the ResId property in the data control structure file entry for the
validator.

7.5.5.4 Raising Error Message Conditionally Using Groovy
You can use the adf.error.raise() and adf.error.warn() methods to conditionally
raise one error message or another depending upon branching in the Groovy
expression.

If the expression returns false (versus raising a specific error message using the
raise() method), the validator calls the first error message associated with the
validator.

The syntax of the raise() method takes one required parameter (the msgId to use
from the message bundle), and optionally can take the attrName parameter.

You can use either of the adf.error.raise() and adf.error.warn() methods,
depending on whether you want to throw an exception, or whether you want
processing to continue, as described in Section 7.5.6, "How to Set the Severity Level for
Validation Exceptions."

Example 7–13 shows a rule that will allow the input of value 5000 or under. If the
value is above 5000, the error message tied to the SALARY_TOO_HIGH_ERROR resource
bundle property is shown and validation fails. If the entered value is between 1001
and 5000, validation passes, but a warning is displayed to the user.

Example 7–13 Using Groovy to Raise an Error Message

if (newValue > 1000)
{
if (newValue > 5000)
{adf.error.raise("SALARY_TOO_HIGH_ERROR")
return false}
adf.error.warn("SALARY_LIMIT_WARNING")
return true
}
else
{
return true
}

Defining Validation Rules on Attributes Declaratively

7-24 Developing Applications with Oracle ADF Data Controls

7.5.5.5 Embedding a Groovy Expression in an Error Message
A validator's error message can contain embedded expressions that are resolved by the
server at runtime. To access this feature, simply enter a named token delimited by
curly braces (for example, {2} or {errorParam}) in the error message text where you
want the result of the Groovy expression to appear.

After entering the token into the text of the error message (on the Failure Handling
tab of the Edit Validation Rule dialog), the Token Message Expressions table at the
bottom of the dialog displays a row that allows you to enter a Groovy expression for
the token. Figure 7–5 shows a failure message that contains a message token for a
validation rule.

The expression shown in Figure 7–5 is a Groovy expression that returns the value of
the quantity attribute. You can also use Groovy expressions to access attribute UI
hints and other objects that are defined in the data control structure file.

You can use the Groovy expression newValue to return the entered value.

For more information about accessing ADF objects using Groovy, see Section 7.9,
"Groovy Language Support."

7.5.6 How to Set the Severity Level for Validation Exceptions
You can set the severity level for validation exceptions to either Informational Warning
or Error. If you set the severity level to Informational Warning, an error message will
display, but processing will continue. If you set the validation level to Error, the user
will not be able to proceed until you have fixed the error.

Under most circumstances you will use the Error level for validation exceptions, so
this is the default setting. However, you might want to implement an Informational
Warning message if the user has a certain security clearance. For example, a store
manager may want to be able to make changes that would surface as an error if a clerk
tried to do the same thing.

To set the severity level for validation exceptions, use the Failure Handling tab of the
Add Validation Rule dialog.

Before you begin:
It may be helpful to have an understanding of the use of validation rules in data
control structure files. For more information, see Section 7.5, "Defining Validation
Rules on Attributes Declaratively."

You will need to complete this task:

Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To set the severity level of a validation exception:
1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute for which you want to create the
validation error message, and then click the Validation Rules tab.

4. In the Validation Rules page, select the validation rule that you want to edit and
click the Edit Validation Rule icon.

5. In the Edit Validation Rule dialog, click the Failure Handling tab and select the
option for either Error or Informational Warning.

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 7-25

6. Click OK.

7.6 Filtering Result Sets with Named Criteria
JDeveloper enables you to create named criteria for data control structure files for
JPA-based data controls. Named criteria can be used in the application’s data model
and can be exposed to users as seeded queries in search forms.

You can specify named criteria in order to filter results to display. The named criteria
object is a row set of one or more named criteria rows, whose attributes mirror those in
the corresponding data object. The named criteria definition comprises query
conditions that function like the WHERE clause of an SQL query.

In the result set of a named criteria, the data type of each attribute is String, which
enables the use of Query-by-Example operators. For example, this allows the user to
enter conditions such as "OrderId > 304".

You use the Named Criteria page of the overview editor to define named criteria for
specific data control structure files.

7.6.1 Use Case for Named Criteria
You create named criteria definitions when you need to filter individual accessor
results. Named criteria that you define at design time can be used for easy creation of
Query-by-Example search forms that allow the end user to supply values for attributes
of the target data control structure file.

For example, the end user might want to be able to input the value of a customer name
and the date to filter the results in a web page that displays the rows of a
CustomerOrders collection. To satisfy that case, the web page designer can easily create
a search form based on named criteria that have been created for this purpose and
made available in the Data Controls panel. For more information about the utilizing
the named criteria in the Data Controls panel, see "Creating ADF Databound Search
Forms" in Developing Fusion Web Applications with Oracle Application Development
Framework.

7.6.2 How to Create Named Criteria Declaratively
To define named criteria for a JPA-based data control structure file, you open the data
control structure file in the overview editor and use the Named Criteria page. A
dedicated editor that you open from the Named Criteria page helps you to build the
equivalent of a WHERE clause using attribute names (as opposed to SQL column names).
You may define multiple named criteria for each data object.

Each named criteria definition consists of the following elements:

■ One or more named criteria rows consisting of an arbitrary number of named
criteria groups or an arbitrary number of references to another named criteria
already defined for the current data control structure file.

■ Optional named criteria groups consisting of an arbitrary number of named
criteria items.

■ Named criteria items consisting of an attribute name, an attribute-appropriate
operator, and an operand. Operands can be a literal value when the filter value is
defined or a bind variable that can optionally utilize a scripting expression that
includes dot notation access to attribute property values.

Filtering Result Sets with Named Criteria

7-26 Developing Applications with Oracle ADF Data Controls

Expressions are based on the Groovy scripting language, as described in
Section 7.9, "Groovy Language Support."

Named criteria expressions you construct in the Edit View Criteria dialog use logical
conjunctions to specify how to join the selected criteria item or criteria group with the
previous item or group in the expression:

■ AND conjunctions specify that the query results meet both joined conditions. This is
the default for each named criteria item you add.

■ OR conjunctions specify that the query results meet either or both joined
conditions. This is the default for named criteria groups.

Additionally, you may create nested named criteria to have more control over the
logical conjunctions among the various named criteria items. A nested named criteria
group consists of an arbitrary number of nested named criteria items. The nested
criteria place restrictions on the rows that satisfy the criteria under the nested criteria’s
parent named criteria group. For example, you might want to query both a list of
employees with Salary > 3000 and belonging to DeptNo = 10 or DeptNo = 20. You
can define a named criteria with the first group with one item (Salary > 3000) and a
nested named criteria with the second group with two items (DeptNo = 10 and DeptNo
=20).

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 7.6, "Filtering Result Sets with Named Criteria."

You will need to complete these tasks:

■ Create an EJB data control as described in Section 3.3.1, "How to Create EJB Data
Controls" or a JPA-based bean data control as described in Section 4.3.1, "How to
Create a JPA-Based Bean Data Control" and select the Support Named Criteria
checkbox in the wizard when creating the data control.

■ Create the desired data control structure files as described in Section 7.2.1, "How to
Edit a Data Control."

To define a named criteria:
1. In the Applications window, double-click the data control structure file for which

you want to create the named criteria.

2. In the overview editor, click the Named Criteria navigation tab.

3. In the Named Criteria page, expand the Named Criteria section and click the
Create new view criteria button.

4. In the Create Named Criteria dialog, enter the name of the named criteria to
identify its usage in your application.

5. Click one of these Add buttons to define the named criteria.

■ Add Item to add a single criteria item. The editor will add the item to the
hierarchy beneath the current group or named criteria selection. By default
each time you add an item, the editor will choose the next attribute to define
the criteria item. You can change the attribute to any attribute that the data
control structure file defines.

■ Add Group to add a new group that will compose criteria items that you
intend to add to it. When you add a new group, the editor inserts the OR
conjunction into the hierarchy. You can change the conjunction as desired.

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 7-27

■ Add Criteria to add a named criteria that you intend to define. This selection
is an alternative to adding a named criteria that already exists in the data
control structure file. When you add a new named criteria, the editor inserts
the AND conjunction into the hierarchy. You can change the conjunction as
desired. Each time you add another named criteria, the editor nests the new
named criteria beneath the current named criteria selection in the hierarchy.
The root node of the hierarchy defines the named criteria that you are
currently editing.

■ Add Named Criteria to add a named criteria that has already been defined in
the data control structure file.

6. Select a named criteria item node in the Named Criteria tree and define the added
node in the Criteria Item section.

7. Select the desired Attribute for the criteria item. By default the editor adds the first
one in the list.

8. Select the desired Operator.

The list displays only the operators that are appropriate for the selected attribute.
In the case of String and Date type attributes, the Between and Not between
operators require you to supply two operand values to define the range. In the
case of Date type attributes, you can select operators that test for a date or date
range (with date values entered in the format YYYY-MM-DD). For example, for
December 16th, 2010, enter 2010-12-16.

9. Select the desired Operand for the named criteria item selection.

■ Select Literal when you want to supply a value for the attribute or when you
want to define a default value for a user-specified search field for a
Query-by-Example search form. When the named criteria defines a query
search form for the user interface, you may leave the Value field empty. In this
case, the user will supply the value. You may also provide a value that will act
as a search field default value that the user will be able to override. The value
you supply in the Value field can include the wildcard characters * or %.

■ Select Bind Variable when you want the value to be determined at runtime
using a bind variable. Click New to display the Bind Variable dialog that lets
you create a new bind variable for the data control structure file. For more
information about creating bind variables, see Section 7.6.4, "How to Use Bind
Variables in Named Criteria."

10. For each item, group, or nested named criteria that you define, optionally change
the default conjunction to specify how the selection should be joined.

■ AND specifies that the query results meet both joined conditions. This is the
default for each named criteria item or view nested named criteria that you
add.

■ OR specifies that the query results meet either or both joined conditions. This
is the default for named criteria groups.

11. Optionally, to allow filtering based on the case of the runtime-supplied value,
deselect the Ignore Case option. It is selected by default, preventing such filtering.

Note: Search forms that the UI designer will create from named
criteria are not able to use named criteria that contain other named
criteria.

Filtering Result Sets with Named Criteria

7-28 Developing Applications with Oracle ADF Data Controls

The criteria item can be a literal value that you define or a runtime parameter that
the end user supplies. This option is supported for attributes of type String only.
The default disables case sensitive searches.

12. In the Validation dropdown list, decide whether the named criteria item is a
required or an optional part of the attribute value comparison in the generated
WHERE clause.

■ Selectively Required means that the generated WHERE clause will ignore the
named criteria item at runtime if no value is supplied and there exists at least
one criteria item at the same level that has a criteria value. Otherwise, an
exception is thrown.

■ Optional means the named criteria is added to the WHERE clause only if the
value is non-NULL. The default Optional for each new named criteria item
means no exception will be generated for null values.

■ Required means that the WHERE clause will fail to execute and an exception
will be thrown when no value is supplied for the criteria item.

13. If the named criteria uses a bind variable as the operand, decide whether the IS
NULL condition is generated in the WHERE clause. This field is enabled only if you
have selected Optional for the validation of the bind variable.

■ Leave Ignore Null Values selected (default) when you want to permit the
named criteria to return a result even when the bind variable value is not
supplied at runtime. When validation is set to Required or Optionally
Required, the named criteria expects to receive a value and thus this option to
ignore null values is disabled.

For example, leaving this option selected for a bind variable that is used in a
user search form would enable a user to see results from a search without
having to fill in a value for the field with that bind variable.

■ Deselect Ignore Null Values when you expect the named criteria to return a
null result when the bind variable value is not supplied at runtime.

Note that the validation settings Required or Optionally Required also
remove the null value condition but support a different use case. They should
be used in combination with Ignore Null Values feature to achieve the desired
runtime behavior.

14. Click OK create the named criteria and return to the overview editor.

7.6.3 What Happens When You Create a Named Criteria
When you create a named criteria, the named criteria definition is added to the data
control structure file and appears by name on the Named Criteria page of the
overview editor.

To view XML code for the named criteria, open the source editor for the data control
structure file. Each named criteria definition contains one or more <ViewCriteriaRow>
elements corresponding to the number of groups that you define in the Create Named
Criteria dialog.

7.6.4 How to Use Bind Variables in Named Criteria
Bind variables provide you with the means to supply attribute values that are
calculated at runtime to the named criteria.

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 7-29

If the named criteria is to be used in a seeded search, you have the option of making
the bind variable updatable by the end user. With this updatable option, end users will
be expected to enter the value in the search form.

Named criteria execution need not require the bind variable value if the named criteria
item for which the bind variable is assigned is not required. To enforce this desired
behavior, the Bind Variable dialog lets you specify whether a bind variable is required
or not.

You can define a default value for the bind variable or write scripting expressions for
the bind variable that include dot notation access to attribute property values.
Expressions are based on the Groovy scripting language, as described in Section 7.9,
"Groovy Language Support."

To add a named bind variable to a named criteria, use the Named Criteria page of the
overview editor for the data control structure file. You can define as many bind
variables as you need.

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 7.6, "Filtering Result Sets with Named Criteria."

You will need to complete this task:

Create a named criteria as described in Section 7.6.2, "How to Create Named
Criteria Declaratively."

To create a named bind variable
1. In the Applications window, double-click the data control structure file.

2. In the overview editor, click the Named Criteria navigation tab.

3. On the Named Criteria page, expand the Bind Variables section and click the
Create new bind variable button.

4. In the New Variable dialog, enter the name and data type for the new bind
variable.

Because the bind variables share the same namespace as data control structure file
attributes, specify names that don't conflict with existing attribute names.

5. Optionally, specify a default value for the bind variable:

■ When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value type
and enter the expression in the Default Value field.

■ When you want to define a default value, select the Literal value type and
enter the literal value in the Default Value field.

6. Optionally, click the UI Hints tab and specify hints like Label Text, Format Type,
Format mask, and others.

The view layer will use bind variable control hints when you build user interfaces
like search pages that allow the user to enter values for the named bind variables.
The Updatable option controls whether the end user will be allowed to change the
bind variable value through the user interface. If a bind variable is not updatable,
then its value can only be changed programmatically by the developer.

7. Click OK.

Filtering Result Sets with Named Criteria

7-30 Developing Applications with Oracle ADF Data Controls

7.6.5 What Happens When You Use Bind Variables in Named Criteria
Once you've added one or more named bind variables to a data control structure file,
you gain the ability to easily see and set the values of these variables at runtime.
Information about the name, type, and default value of each bind variable is saved in
the data object’s data control structure file. If you have defined UI hints for the bind
variables, this information is saved in the data model project’s message bundle file
along with other UI hints for the data control structure file.

7.6.6 What You May Need to Know About Nested Expressions
Search forms that the UI designer will create from named criteria are not able to work
with all types of nested expressions. Specifically, search forms do not support
expressions with directly nested named criteria. This type of nested expression defines
one named criteria as a direct child of another named criteria. Query search forms do
support nested expressions where you nest the named criteria as a child of a criteria
item which is itself a child of a named criteria. For more information about using
named criteria to create search forms, see "Creating ADF Databound Search Forms" in
Developing Fusion Web Applications with Oracle Application Development Framework.

7.6.7 How to Set User Interface Hints on Named Criteria
Named criteria that you create for data control structure file collections can be used by
the web page designer to create Query-by-Example search forms. Web page designers
select your named criteria from the Data Controls panel to create search forms for the
web application. In the web page, the search form utilizes an ADF Faces query search
component that will be bound initially to the named criteria selected in the Data
Controls panel. At runtime, the end user may select among all other named criteria
that appear in the Data Controls panel. Named criteria that the end user can select in a
search form are known as developer-seeded searches. The query component automatically
displays these seeded searches in its Saved Search dropdown list. For more
information about creating search forms and using the ADF query search component,
see "Creating ADF Databound Search Forms" in Developing Fusion Web Applications
with Oracle Application Development Framework.

Because developer-seeded searches are created in the data model project, the UI Hints
page of the Edit View Criteria dialog lets you specify the default properties for the
query component’s runtime usage of individual named criteria. At runtime, the query
component’s behavior will conform to the selections you make for the following
seeded search properties:

To create a seeded search for use by the ADF query search component, you select
Show In List on the UI Hints page of the Edit View Criteria dialog. You deselect Show
In List when you do not want the end user to see the named criteria in their search
form.

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 7.6, "Filtering Result Sets with Named Criteria."

You will need to complete this task:

Create the named criteria, as described in Section 7.6.2, "How to Create Named
Criteria Declaratively."

Filtering Result Sets with Named Criteria

Adding Business Logic to Data Controls 7-31

To configure a named criteria for the user interface:
1. In the Applications window, double-click the data control structure file that

defines the named criteria you want to use as a seeded search.

2. In the overview editor, click the Named Criteria navigation tab.

3. On the Named Criteria page, select the named criteria that you want to allow in
seeded searches and click the Edit icon.

4. In the Edit View Criteria dialog, click the UI Hints tab and ensure that Show In
List is selected.

This selection determines whether or not the query component will display the
seeded search in its Saved Search dropdown list.

5. Enter a user-friendly display name for the seeded search to be added to the query
component Saved Search dropdown list.

When left empty, the named criteria name displayed in the Edit View Criteria
dialog will be used by the query component.

6. Optionally, enable Query Automatically when you want the query component to
automatically display the search results whenever the end user selects the seeded
search from the Saved Search dropdown list.

By default, no search results will be displayed.

7. Optionally, set the Rendered Mode property for each named criteria item in order
to determine whether the item is displayed for the user in basic mode or advanced
mode.

8. Optionally, use the Show Operators dropdown list to configure whether the query
component renders individual criteria items when the end user toggles the search
from between basic and advanced mode.

By default, all named criteria items defined by the seeded search will be displayed
in either mode.

9. If a rendered criteria item is of type Date, you must also define UI hints for the
corresponding data object attribute. Set the data object attribute’s Format Type
hint to Simple Date and set the Format Mask to an appropriate value. This will
allow the search form to accept date values. For more information, see
Section 7.3.6, "How to Set UI Hints on Attributes."

10. Click OK.

Note: When your named criteria includes an item that should not be
exposed to the user, use the Rendered Mode setting Never to prevent
it from appearing in the search form. For example, a named criteria
may be created to search for products in the logged-in customer’s cart;
however, you may want to prevent the user from changing the
customer ID to display another customer’s cart contents. In this
scenario, the named criteria item corresponding to the customer ID
would be set to the current customer ID using a named bind variable.
Although the bind variable definition might specify the variable as not
required and not updatable, with the UI hint property Display set to
Hide, only the Rendered Mode setting determines whether or not the
search form displays the value.

Filtering Result Sets with Named Criteria

7-32 Developing Applications with Oracle ADF Data Controls

7.6.8 How to Create a Named Criteria Based on Multiple JPA Entities
When you create a named criteria for an entity class on a JPA-based data control, only
attributes related to that particular entity are available for filtering. However, it is also
possible to create a named criteria based on a custom bean and a JPA query that
aggregates data from multiple tables that are related by foreign keys.

Before you begin:
It may be helpful to have an understanding of named criteria. For more information,
see Section 7.6, "Filtering Result Sets with Named Criteria."

To create a named criteria based on multiple JPA entities:
1. Create JPA entity classes for the tables that you want to filter and create an EJB

session bean over those entities. For more information, see "How to Work with an
EJB Business Services Layer" in Developing Applications with Oracle JDeveloper.

2. Create a custom bean and populate it with simple getters and setters for the
various attributes (from multiple entities) that you want to filter. For example, the
getter and setter corresponding to the name attribute might look like the following:

public void setName(String name) {
 this.name = name;
}

public String getName() {
 return name;
}

3. Add an accessor method to the session facade that creates a list of the custom
beans based on a JPA query to the database.

Example 7–14 shows a such method that you might add to a session bean in order
to create a list where each object consists of the id and name columns from the
Customer entity and the dateOrdered and dateShipped columns from the Ord
entity.

Example 7–14 Custom JPA Query on Which to Base a Multi-Entity Named Criteria

public List<CustomBean> getCustomBeanFindAll() {
 String queryString =
 "select c.id, c.name, o.date_ordered, o.date_shipped \n" +
 "from s_customer c, s_ord o where o.customer_id = c.id";
 Query genericSearchQuery = em.createNativeQuery(queryString, "CustomQuery");
 List resultList = genericSearchQuery.getResultList();
 Iterator resultListIterator = resultList.iterator();
 List<CustomBean> customList = new ArrayList();
 while (resultListIterator.hasNext()) {
 Object col[] = (Object[])resultListIterator.next();
 CustomBean custom = new CustomBean();
 custom.setCustomerId((BigDecimal)col[0]);
 custom.setName((String)col[1]);
 custom.setDateOrdered((Date)col[2]);
 custom.setDateShipped((Date)col[3]);
 customList.add(custom);
 }
 return customList;
}

Creating List of Values Objects

Adding Business Logic to Data Controls 7-33

4. Create an EJB data control on the session bean as described in Section 3.3.1, "How
to Create EJB Data Controls" and be sure to select the Support Named Criteria
checkbox in the wizard when creating the data control.

5. Create a data control structure file for the custom bean as described in
Section 7.2.1, "How to Edit a Data Control."

6. Create the named criteria on the custom bean as described in Section 7.6.2, "How
to Create Named Criteria Declaratively."

7.7 Creating List of Values Objects
In database applications, some columns in a given database table might have a
restricted set of possible values that are defined in another database table. For
example, an Orders database table might contain a Country column that must be filled
in only with values derived from a Countries database table. To make it easier to work
with such data from other tables, JDeveloper enables you to create list of value objects
(LOVs) to reference data from one object in another object. By establishing these list of
values relationships in the data model, you can then easily create selection lists, combo
boxes, and other list of value UI components by dragging the LOV attribute from the
Data Controls panel on to a page.

For JPA-based data controls, you can also apply any named criteria that you have
defined on the object that is the list source in order to limit which objects appear in the
list at runtime. To create named criteria, see Section 7.6, "Filtering Result Sets with
Named Criteria".

7.7.1 How to an Create LOV for an Attribute
You define LOV objects in data control structure files.

Before you begin:
It may be helpful to have an understanding of list of value components. For more
information, see Section 7.7, "Creating List of Values Objects."

You will need to complete this task:

Create data control structure files for both the object that will contain the LOV
definition and the object which will be the data source for the LOV, as described in
Section 7.2.1, "How to Edit a Data Control."

To create an LOV for an attribute
1. In the overview editor for the data control structure file that will contain the LOV

definition, click the List of Values navigation tab and click the Add list of values
object.

2. In the Create List of Values dialog, perform the following steps to apply the named
criteria:

a. In the List of Values Name field, type a name for the LOV object.

b. In the Base Object Field tree, select the data control object that will be used to
access the list of values. For example, you might choose a structured attribute
node that has a OneToMany relationship with a collection.

c. In the List Data Source tree, select the data control object for the source of the
values.

Creating List of Values Objects

7-34 Developing Applications with Oracle ADF Data Controls

This accessor should not be otherwise used in the application. If this accessor
is used elsewhere, create a new accessor method on the data control delegate
that duplicates the functionality and use that as the list data source.

d. Click OK.

3. Optionally, for JPA-based data controls, click the Edit View Attributes icon and
apply any named criteria from the data source that you would like to use to limit
the displayed values. This icon is located on the right side of the page between the
List Data Source and List Return Values panels.

4. In the overview editor, click List UI Hints tab and perform the following steps:

a. In the Default List Type dropdown list, select the component to display the list
of values. See the "List Component Types for List Type UI Hint" table in
Developing Fusion Web Applications with Oracle Application Development
Framework for a description of the types of components available.

b. Optionally, in the Display Attributes section, change the attributes to be
displayed in the list.

c. Optionally, configure any of the other options that are available for the type of
list you are using.

5. Optionally, click the Accessor UI Hints tab to set UI hints for things such as the
attributes displayed in the list and whether a user’s selection is automatically
submitted.

Note: When using an LOV to select a JPA entity, the JPA entities
returned by the list data source accessor will be compared, using
equals(), to the property bound to the LOV. If the JPA entities in the
list data source are guaranteed to be in a managed, and not detached,
state by their EntityManager, the comparison will work correctly. If
they might be in a detached state, then the default equals() method
comparison may not work as expected and the entity class should
override the equals() and hashCode() methods to at least include the
entity’s ID field.

Similarly, you need to override the equals() method when the
underlying session bean is stateless. Each method call in a stateless
session bean employs its own persistence context, so the default
equals() implementation will return false when comparing
instances returned from separate method calls.

You can generate code to override these two methods by selecting the
entity class in the Applications window, right-clicking the entity's
node in the Structure window, and choosing Generate equals() and
hashCode(). However, this approach is not recommended because JPA
also has dependencies on these methods. If you do override these
methods, make sure that your implementation of equals() compares
all non-transient properties in the entities to minimize any unexpected
behavior. The recommended approach is to avoid the use of detached
entities in your ADF web application, by using a stateful session bean
with an extended persistence context. Using this model type, you can
avoid multiple instances of the same logical entity, and the equals()
method does not need to be overridden to compare entities based on
their immutable identity.

Testing Data Object Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 7-35

7.7.2 What Happens When You Create an LOV
When you create an LOV object, the following things happen:

■ If not already present, an attribute node for the LOV object appears as a subnode
of its base object in the Data Controls panel. You can use this node to create a
model-driven list UI component by dragging it to the page. You can also drag the
attribute’s parent collection to the page and create a form or table in which that
attribute is represented by a list component.

■ The following elements are added to the data control structure file for the
collection that contains the LOV attribute:

– A <PDefAttribute> element, which specifies the attribute, points to the list
binding element that defines the LOV behavior, and specifies the component
type to display in the web page.

– A <ViewAccessor> element, which is the mechanism that is used to obtain the
list of possible values from the row set of the data source.

– A <ListBinding> element which defines the behavior of the LOV, such as
query limit and whether to display the list will include a blank entry.

7.8 Testing Data Object Metadata Using the Oracle ADF Model Tester
Before you start designing the views for your application, you can use the Oracle ADF
Model Tester to test various aspects of your model for EJB and bean data controls. For
example, if you have added validation rules or UI hints to your model, you can test
them before binding those objects to a page. Even after you have your UI pages
constructed, the Oracle ADF Model Tester can assist you in diagnosing problems when
they arise. You can use the Oracle ADF Model Tester to narrow down whether a
problem lies in the business service layer or not.

7.8.1 How to Run the Oracle ADF Model Tester
To test the metadata that you have defined in your data control, use the Oracle ADF
Model Tester, which is accessible from the Applications window.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

Note: This attribute node might already appear in the Data Controls
panel before the creation of the LOV object if a mapping to the list
source is not already included for the attribute in the object definition.

If the object definition includes mapping to the list source (such as in
the form of a @JoinColumn annotation in a JPA entity class), by default
the Data Controls panel represents the attribute as a structured
attribute. However, by default, UI components for this structured
attribute are not generated when you drag the parent collection to a
page to create an ADF Form or an ADF Table. Therefore, creating the
LOV object for an attribute that is mapped to another table simplifies
the subsequent creation of forms and tables that you want to include
model-driven selection lists.

Testing Data Object Metadata Using the Oracle ADF Model Tester

7-36 Developing Applications with Oracle ADF Data Controls

You need to complete this task:

Create an EJB or bean data control, as described in Section 3.3.1, "How to Create EJB
Data Controls" or Section 4.3.1, "How to Create a JPA-Based Bean Data Control."

To test the bean metadata in your application:
1. In the Applications window, double-click the DataControls.dcx file.

2. In the overview editor, right-click the node for the data control that you want to
test and choose Run.

The Oracle ADF Model Tester opens, as shown in Figure 7–6

Figure 7–6 Oracle ADF Model Tester

3. Double-click a collection object to start testing the metadata for that object.

Note: For EJB data controls, the tester does not work for the local
session bean interface. However, you can work around that limitation
by creating a Java service facade class that is based on the same
persistence unit as the session bean, creating a data control for that
class, and using that data control in the tester. Since this Java service
facade will use the same persistence unit as the EJB session bean, the
two data controls will use the same data control structure files for the
entities.

For more information on creating a Java service facade class, see
Section 4.2.4, "How to Create a Service Facade for a JPA-Based Bean
Data Control."

Using this approach provides the additional benefit of reducing the
overhead of the integrated WebLogic Server instance. The instance has
to run a process for the tester, but it does not have to run the session
bean itself.

Testing Data Object Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 7-37

7.8.2 What Happens When You Use the Oracle ADF Model Tester
When you launch the Oracle ADF Model Tester, JDeveloper starts the tester in a
separate process and the Oracle ADF Model Tester window appears. The tree at the
left of the window displays all of the collections in your data model. If the data model
defines master-detail view instance relationships, the tree will display them as parent
and child nodes. After you double-click the desired collection, the Oracle ADF Model
Tester will display a data view page to inspect the query results. For example,
Figure 7–7 shows the customerFindAll collection that has been double-clicked to
display the first record for this collection in the data view page on the right.

Figure 7–7 Oracle ADF Model Tester with the customerFindAll Collection Detail

The following are some of the features of the Oracle ADF Model Tester:

■ You can validate that the UI hints based on the Label Text hint and format masks
are defined correctly. (For more information on setting UI hints, see Section 7.3.6,
"How to Set UI Hints on Attributes.")

■ You can also scroll through the data using the toolbar buttons.

■ You can enter Query-by-Example criteria to find a particular row whose data you
want to inspect. By clicking the Specify View Criteria button in the toolbar, the
View Criteria dialog displays the list of available Query-by-Example criteria.

For example, you can select a named criteria like CustomerInfoCriteria and enter
a query criteria like "H%" for a LastName attribute and click Find to narrow the
search to only those users with a last name that begins with the letter H.

Table 7–2 gives an overview of the operations that the Oracle ADF Model Tester
toolbar buttons perform.

Testing Data Object Metadata Using the Oracle ADF Model Tester

7-38 Developing Applications with Oracle ADF Data Controls

7.8.3 How to Test Business Layer Validation
Depending on the validation rules you have defined, you can try entering invalid
values to trigger and verify validation exceptions.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

You will need to complete this task:

Start the tester as described in Section 7.8.1, "How to Run the Oracle ADF Model
Tester."

To test business layer validation:
■ In the tester, enter a value for an attribute and click the Validate Row icon.

For example, if you have defined a range validation rule for an attribute, enter a
value outside that range, and click the Validate Row icon. You should see an error
similar to following:

(oracle.jbo.AttrSetValException) Valid product codes are between 100 and 999

Table 7–2 Oracle ADF Model Tester Toolbar Buttons

Button Operation Usage

Move to ... row Changes the current row displayed by the
Oracle ADF Model Tester. Moves to the first,
previous, next, or last row.

Insert a new row Creates and inserts a new row.

Delete the current
row

Deletes the current row.

Save changes to
the database

Runs the commit operation on any pending
transactions. However, for JPA-based data
controls, the changes are not actually
committed to the database.

This button is only available when
transactional methods are implemented on the
service.

Discard all
changes since last
save

Discards any pending transactions and
restores the original values.

This button is only available when
transactional methods are implemented on the
service.

Specify view
criteria

Displays the View Criteria dialog that you can
use to create and apply named criteria to the
result set.

Validate row Validates the current row by applying
validation rules defined in the data control
structure file. Disabled unless at least one field
is editable.

Testing Data Object Metadata Using the Oracle ADF Model Tester

Adding Business Logic to Data Controls 7-39

7.8.4 How to Test Row Creation and Default Value Generation
You can use the Oracle ADF Model Tester to verify that any default values for
attributes are properly generated when you create a new row.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

You may also find it helpful to understand attributes in data control structure files. For
more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

Start the tester as described in Section 7.8.1, "How to Run the Oracle ADF Model
Tester."

To test row creation and default value generation:
1. In the Oracle ADF Model Tester toolbar, click the Insert a new row button to create

the blank row.

Any fields that have a declarative default value will appear with that value in the
blank row.

2. In the tester, enter all required fields and click the Commit button.

7.8.5 How to Test Named Criteria Using the Oracle ADF Model Tester
The Oracle ADF Model Tester enables you to test your data model using existing
named criteria and by querying with ad hoc criteria.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

You may also find it helpful to understand named criteria. For more information, see
Section 7.6, "Filtering Result Sets with Named Criteria."

You will need to complete this task:

Start the tester as described in Section 7.8.1, "How to Run the Oracle ADF Model
Tester."

To test named criteria and ad hoc query criteria using the Oracle ADF Model
Tester:
1. In the Oracle ADF Model Tester, double-click the collection that you want to filter.

2. Click the Specify View Criteria toolbar button to test the named criteria.

3. In the View Criteria dialog, perform one of the following tasks:

■ To test a named criteria that you added to a data control structure file in your
project, shuttle that criteria to the Selected list and click Find. Any additional
criteria that you enter in the Ad hoc criteria section will be added to the filter.

■ To test ad hoc criteria attributes from a single named criteria row, enter the
desired values for the named criteria and click Find.

Testing Data Object Metadata Using the Oracle ADF Model Tester

7-40 Developing Applications with Oracle ADF Data Controls

For example, Figure 7–8 shows the filter to return all customers who possess a
credit rating of POOR.

Figure 7–8 Oracle ADF Model Tester View Criteria Dialog

7.8.6 How to Update the Oracle ADF Model Tester to Display Project Changes
When you are testing your data control, you can iteratively modify the data control
and retest it without redeploying your whole data model project. You can merely close
and reopen the Oracle ADF Model Tester in order to reload changes that you have
made to the data control structure files.

If you change Java code or any other files that are packaged in the data model project
JAR file, you also need to rebuild and redeploy that JAR file to the internal application
server.

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

You will need to complete this task:

Start the tester as described in Section 7.8.1, "How to Run the Oracle ADF Model
Tester."

To reload the data model metadata in the running Oracle ADF Model Tester:
1. In the Oracle ADF Model Tester, test the data model and determine any changes

you want to make.

Groovy Language Support

Adding Business Logic to Data Controls 7-41

2. In JDeveloper, make the desired changes to your project.

3. If you have made any changes to Java classes or any other artifacts that are part of
the session bean’s JAR file, rebuild the project. (For example, you can right-click
the data model project in the Applications window and choose Rebuild
ProjectFileName The rebuilt JAR file is then deployed to the server.)

If you have only made changes to data control structure files, you do not need to
rebuild the project.

4. Close the Oracle ADF Model Tester.

5. Start the tester again.

7.8.7 How to Test Alternate Language Message Bundles and UI Hints
When your application defines alternative languages in your resource message
bundles, you can configure the Oracle ADF Model Tester to recognize these languages.
In the Oracle ADF Model Tester, you can then display the Locale menu and select
among the available language choices.

Testing the language message bundles in the Oracle ADF Model Tester lets you verify
that the translations of the data control UI hints are correctly located. Or, if the
message bundle defines date formats for specific attributes, the tool lets you verify that
date formats change (like 04/12/2007 to 12/04/2007).

Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more
information, see Section 7.8, "Testing Data Object Metadata Using the Oracle ADF
Model Tester."

To specify a default language for the Oracle ADF Model Tester:
1. From the Tools menu, choose Preferences.

2. Expand ADF Business Components in the selection panel, and select Tester.

3. In the Oracle ADF Model Tester page, add any locale for which you have created a
resource message bundle to the Selected list.

4. Start the tester as shown in Section 7.8.1, "How to Run the Oracle ADF Model
Tester."

5. In the tester’s Locale menu, select a locale.

7.9 Groovy Language Support
Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy
scripting language simplifies the authoring of code by employing dot-separated
notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans.
Groovy language expressions are dynamically compiled and are executed at runtime.
Any Groovy expressions that you create for an ADF application are stored in the data
control structure files of the data objects for which they are defined.

Oracle ADF supports the use of the Groovy scripting language in places where access
to data control objects is useful, including attribute validators, attribute default values,
transient attribute value calculations, bind variable default values (in named criteria
filters), and placeholders for error messages (in validation rules). Additionally, Oracle
ADF provides a limited set of built-in keywords that can be used in Groovy
expressions.

Groovy Language Support

7-42 Developing Applications with Oracle ADF Data Controls

Specifically, Oracle ADF provides support for the use of Groovy language expressions
to perform the following tasks:

■ Define a Script Expression validator (see Section 7.5.4.1, "Validating Using a
Groovy Expression") or a Compare validator (see Section 7.5.3.1, "Validating Based
on a Comparison").

■ Define error message tokens for handling validation failure (see Section 7.5.5.5,
"Embedding a Groovy Expression in an Error Message").

■ Handle conditional execution of validators (see Section 7.5.5.4, "Raising Error
Message Conditionally Using Groovy").

■ Define the default value and optional recalculate condition for a data object
attribute (see Section 7.3.4, "How to Define a Default Value Using a Groovy
Expression").

■ Determine the value of a transient attribute of a data object’s data control structure
file (see Section 7.4, "Adding Transient Attributes to a Data Object").

To perform these tasks in JDeveloper, you use expression editor dialogs that are
specific to the task. For example, when you want to create a default value for a
transient attribute, you use the attribute’s Edit Expression Editor dialog to enter an
expression that determines a runtime value for the attribute. The same dialog also lets
you specify when the value should be calculated (known as a recalculate condition).
Although expressions cannot be verified at design time, all expression editors let you
test the syntax of the expression before you save it.

For more information about the Groovy language, refer to the following website:

■ http://groovy.codehaus.org/

7.9.1 How to Reference ADF Objects in Groovy Expressions
There is one top-level object named adf that allows you access to objects that the
framework makes available to the Groovy script. The accessible Oracle ADF objects
consist of the following:

■ adf.context - to reference the ADFContext object.

■ adf.object.dataProvider - to reference the data object on which the expression is
being applied. Other accessible member names come from the context in which the
Groovy script is applied.

■ Data object attributes and methods: The context is the data object’s data
control structure file. Through this object you can reference any attributes
defined in the data control structure file as well as any attributes and methods
that are inherited from the data object.

■ Script validation rules: The context is the validator object
(JboValidatorContext) merged with the data object on which the validator is
applied. For details about keywords that you can use in this context, see
Section 7.9.2, "How to Reference ADF Methods and Attributes in Groovy
Expressions."

■ adf.error - in validation rules, to access the error handler that allows the
validation expression to generate exceptions or warnings

You can reference the current date (time truncated) or current date and time using the
following expressions:

■ adf.currentDate

Groovy Language Support

Adding Business Logic to Data Controls 7-43

■ adf.currentDateTime

You can use the following built-in aggregate functions on rows of data:

■ rowSetAttr.sum(GroovyExpr)

■ rowSetAttr.count(GroovyExpr)

■ rowSetAttr.avg(GroovyExpr)

■ rowSetAttr.min(GroovyExpr)

■ rowSetAttr.max(GroovyExpr)

These aggregate functions accept a string-value argument that is interpreted as a
Groovy expression that is evaluated in the context of each row in the row set as the
aggregate is being computed. The Groovy expression must return a numeric value (or
number domain).

7.9.2 How to Reference ADF Methods and Attributes in Groovy Expressions
The simplest example of referencing data control members, including methods and
attributes that the data object and the data object’s data control structure file define, is
to reference attributes that exist in the same data object as the attribute that you apply
the expression.

For example, you could define a Groovy expression to calculate the value of a transient
attribute AnnualSalary on a data object with an attribute Sal that specifies the
employee’s monthly salary:

Sal * 12

Or, with Groovy you can write a simple validation rule to compare the attributes of a
single data control structure file using syntax like:

PromotionDate > HireDate

Using Java, this same comparison would look like:

((Date)getAttribute("PromotionDate")).compareTo((Date)getAttribute("HireDate")) > 0

Note that the current object is passed in to the script as the this object, so you can
reference an attribute in the current object by simply using the attribute name. For
example, in an attribute-level or entity-level Script Expression validator, to refer to an
attribute named "HireDate", the script can simply reference HireDate.

Similar to referencing attributes, you can invoke methods as part of your expression.
For example, to define an attribute default value:

adf.object.dataProvider.getDefaultSalaryForGrade()

A method reference requires the prefix adf.object.dataProvider, which allows you
to reference the same object that defines the attribute on which the expression is
applied.

Note that when you want to reference the method of a data object in a validation rule,
you use source instead of object.

adf.source.dataProvider.getDefaultSalaryForGrade()

Use of the source prefix is necessary in validators because the object keyword implies
the validation rule object instead of the data object where the method is defined.

Groovy Language Support

7-44 Developing Applications with Oracle ADF Data Controls

To allow you to reference members of the validator object (JboValidatorContext), you
can use these keywords in your validation rule expression:

■ newValue: in an attribute-level validator, to access the attribute value being set

■ oldValue: in an attribute-level validator, to access the current value of the attribute
being set

For example, you might use the following expression to specify a dynamic validation
rule check of the salary for a salesman.

if (Job == "SALESMAN")
{
 return newValue < adf.source.dataProvider.getMaxSalaryForGrade(Job)
}
else
return true

A

Data Control Feature Comparison A-1

AData Control Feature Comparison

This appendix provides a brief comparison of how data access features are
implemented for each type of data control.

The type of data control that you choose to use will impact how you implement data
access features. Table A–1 provides a comparison of how you implement some
commonly used data access features for each type of data control.

Table A–1 Comparison of Feature Implementation in Data Controls

ADF Business
Components
Data Control

Bean Data
Control

EJB Data
Control

Web Service
Data Control

URL Service
Data Control

Placeholder
Data Control

af:Query Declarative Declarative Declarative Implemented
programmatica
lly

Not available Not available

af:quickQuery Declarative Declarative Declarative Implemented
programmatica
lly

Not available Not available

af:inputCombo
ListOfValues

Declarative Declarative Declarative Implemented
programmatica
lly

Not available Declarative

af:Calendar Declarative Implemented
programmatica
lly

Implemented
programmatica
lly

Implemented
programmatica
lly

Not available Not available

af:Media Declarative Implemented
programmatica
lly

Implemented
programmatica
lly

Implemented
programmatica
lly

Not available Not available

Table filtering Declarative Declarative Declarative Not available Not available Not available

Range and
scrollable
paging

Declarative Declarative Declarative Not available Not available Not available

UI Hints Declarative Declarative Declarative Declarative Declarative Declarative

Validation
Rules

Declarative Declarative Declarative Declarative Declarative Not available

Criteria-based
fetching

Declarative Declarative Not available Not available Not available Only implicit
criteria
available

A-2 Developing Applications with Oracle ADF Data Controls

Features that are listed as "declarative, depends on implementation" are available if the
underlying business service provides an appropriate code pattern. Components that
are listed as "implemented programmatically" in the table can be implemented using
the necessary Java classes required to implement a business model that can be used by
the specific data-entry component. For more information, refer to the Javadoc for the
appropriate classes.

List of Value
(LOV)
Components

Declarative Declarative Declarative Declarative Declarative Declarative

Commit and
Rollback
Support

Declarative Declarative,
depends on
implementatio
n

Declarative,
depends on
implementatio
n

Not available Not available Implemented
programmatica
lly

Failover
Support

Declarative Declarative,
depends on
implementatio
n

Declarative,
depends on
implementatio
n

Not available Not available Not available

Table A–1 (Cont.) Comparison of Feature Implementation in Data Controls

ADF Business
Components
Data Control

Bean Data
Control

EJB Data
Control

Web Service
Data Control

URL Service
Data Control

Placeholder
Data Control

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for Release 12c (12.1.3)
	Other Significant Changes in this Document for Release 12c (12.1.3)

	1 Introduction to ADF Model
	1.1 About ADF Model
	1.2 Data Control Types
	1.3 Data Controls Not Covered By This Guide
	1.4 What You May Need to Know About Non-Adapter Framework Data Controls

	2 Using ADF Data Controls
	2.1 Core Development Steps For Data Control Applications
	2.2 Exposing Business Services with Data Controls
	2.2.1 How to Create ADF Data Controls
	2.2.2 What Happens in Your Project When You Create a Data Control
	2.2.2.1 DataControls.dcx Overview Editor
	2.2.2.2 Data Controls Panel

	2.2.3 Display of Business Services in the Data Controls Panel
	2.2.4 Data Control Built-in Operations

	2.3 Creating Databound UI Components from the Data Controls Panel
	2.3.1 How to Use the Data Controls Panel
	2.3.2 What Happens When You Use the Data Controls Panel
	2.3.3 What You May Need to Know About Iterator Result Caching
	2.3.3.1 Setting an Iterator to Not Cache Its Result Set
	2.3.3.2 Using a Button to Reexecute the Iterator

	3 Creating and Configuring EJB Data Controls
	3.1 About EJB Data Controls
	3.1.1 EJB Data Control Use Cases and Examples
	3.1.2 Additional Functionality for EJB Data Controls

	3.2 Preparing a Session Bean to Use With a Data Control
	3.2.1 Supported Types and Constructs in EJB Data Controls
	3.2.2 EJB Data Control Objects
	3.2.3 About the Session Facade Pattern
	3.2.4 EJB Data Control Prerequisites and Considerations
	3.2.4.1 Recommended Entity Bean Elements
	3.2.4.2 Recommended Session Facade Elements
	3.2.4.3 What You May Need to Know About Overloaded Get Methods

	3.2.5 Creating EJBs for a Data Control in JDeveloper
	3.2.6 What You May Need to Know About How EJB and Bean Data Controls Use Getter Methods
	3.2.7 About Commit Models for EJB Session Beans
	3.2.7.1 Implicit Commit Models
	3.2.7.2 Explicit Commit Models

	3.2.8 About Generating IDs for Primary Keys with the @GeneratedValue Annotation
	3.2.9 How to Change a Persistence Unit’s Schema Generation Behavior
	3.2.10 How to Automatically Update a Session Facade
	3.2.11 What You May Need to Know About Refreshing JPA Queries

	3.3 Exposing Session Bean Services with ADF Data Controls
	3.3.1 How to Create EJB Data Controls
	3.3.2 What Happens in Your Project When You Create an EJB Data Control
	3.3.3 How EJB and Bean Data Controls Appear in the IDE
	3.3.3.1 DataControls.dcx Overview Editor for EJB and Bean Data Controls
	3.3.3.2 Data Controls Panel for EJB and Bean Data Controls
	3.3.3.3 EJB and Bean Data Control Built-in Operations

	3.3.4 What You May Need to Know About the Support Named Criteria Option and Paging
	3.3.5 What You May Need to Know About CRUD Operations in an EJB Data Control
	3.3.6 What You May Need to Know About the Merge and Persist Methods
	3.3.7 What You May Need to Know About Remove Methods
	3.3.8 About Automatically Persisting New Rows
	3.3.9 How to Change the EagerPersist Property
	3.3.10 What You May Need to Know About the Persistence Context and Resubmitting Queries
	3.3.11 How to Create Different Data Controls for a Single Bean
	3.3.12 What Happens When You Create an Additional Data Control Instance

	3.4 Paginated Fetching of Data in EJB Data Controls
	3.4.1 How to Change Paging Mode for a Data Control
	3.4.2 How to Set Range Size for a Data Control that Uses Range Paging
	3.4.3 What You May Need to Know About the Scrollable and Range Paging Modes
	3.4.4 How to Specify Access Mode for Individual Objects in the Data Control
	3.4.5 What You May Need to Know About Sorting Tables Based on Range Paginated Collections

	3.5 Providing UI Hints for Attributes Using Annotations
	3.6 Enabling Failover in an EJB Data Control

	4 Creating and Configuring Bean Data Controls
	4.1 About Bean Data Controls
	4.1.1 About JPA-Based Bean Data Controls
	4.1.2 About non-JPA Bean Data Controls
	4.1.3 Additional Functionality for Bean Data Controls

	4.2 Preparing a Bean to Expose with a Data Control
	4.2.1 Supported Types and Constructs in Bean Data Controls
	4.2.2 Bean Data Control Objects
	4.2.3 Bean Data Control Prerequisites and Considerations
	4.2.4 How to Create a Service Facade for a JPA-Based Bean Data Control

	4.3 Exposing Java Collections and Methods With Bean Data Controls
	4.3.1 How to Create a JPA-Based Bean Data Control
	4.3.2 How to Create a non-JPA-Based Bean Data Control
	4.3.3 What Happens in Your Project When You Create a Bean Data Control
	4.3.4 What You May Need to Know About Primary Keys for Non-JPA Bean Data Controls

	4.4 Paginated Fetching of Data in Bean Data Controls
	4.4.1 How To Manually Implement Pagination Support in a Data Control
	4.4.2 How to Implement a Custom Handler for Querying and Pagination

	4.5 Enabling Failover in a Bean Data Control
	4.5.1 What You May Need to Know About Calling PageFlowScope from the Constructor

	4.6 Enabling Custom CRUD Operations in a Bean Data Control
	4.7 Adding Transactional Behavior to a non-JPA Bean Data Control
	4.8 Using Annotations to Declare Metadata for Bean Data Controls
	4.9 Creating Custom Bean Data Controls

	5 Exposing Web Services Using the ADF Model Layer
	5.1 About Web Service Data Controls in ADF Applications
	5.1.1 Web Service Data Control Use Cases and Examples
	5.1.2 Additional Functionality for Web Service Data Controls in ADF Applications

	5.2 Creating Web Service Data Controls
	5.2.1 How to Create a Data Control for a SOAP-based Web Service
	5.2.2 How to Create a Data Control for a RESTful Web Service
	5.2.3 How to Include a Header Parameter for a Web Service Data Control
	5.2.4 How to Adjust the Endpoint for a SOAP Web Service Data Control
	5.2.5 How to Refresh a SOAP Web Service Data Control
	5.2.6 What You May Need to Know About Primary Keys in SOAP Web Service Data Controls
	5.2.7 How to Add Custom Attributes to a REST Web Service Data Control
	5.2.8 What You May Need to Know About Web Service Data Controls
	5.2.9 What You May Need to Know About Making an XML Schema Available to a REST Data Control

	5.3 Securing Web Service Data Controls
	5.3.1 Oracle WSM Policy Framework
	5.3.2 Using Key Stores
	5.3.3 How to Define SOAP Web Service Data Control Security

	6 Exposing URL Services Using the ADF Model Layer
	6.1 About Using ADF Model with URL Services
	6.1.1 URL Services Use Cases and Examples
	6.1.2 Additional Functionality for URL Services

	6.2 Exposing URL Services with ADF Data Controls
	6.2.1 How to Create a URL Connection
	6.2.2 How to Create a URL Service Data Control
	6.2.3 What Happens When You Create a URL Service Data Control
	6.2.4 What You May Need to Know About Generating URL Data Controls without Schema
	6.2.5 How to Include a Custom Header Parameter for a URL Service Data Control
	6.2.6 What You May Need to Know About Primary Keys in URL Service Data Controls
	6.2.7 What You May Need to Know About URL Service Data Controls

	6.3 Using URL Service Data Controls

	7 Adding Business Logic to Data Controls
	7.1 Introduction to Adding Business Logic to Data Controls
	7.2 Configuring Data Controls
	7.2.1 How to Edit a Data Control
	7.2.2 What Happens When You Edit a Data Control
	7.2.3 How to Convert Data Controls from a Previous Release
	7.2.4 What You May Need to Know About MDS Customization of Data Controls

	7.3 Working with Attributes
	7.3.1 How to Designate an Attribute as Primary Key
	7.3.2 How to Control the Updatability of an Attribute
	7.3.3 How to Define a Static Default Value for an Attribute
	7.3.4 How to Define a Default Value Using a Groovy Expression
	7.3.5 What Happens When You Create a Default Value Using a Groovy Expression
	7.3.6 How to Set UI Hints on Attributes
	7.3.7 What Happens When You Set UI Hints on Attributes

	7.4 Adding Transient Attributes to a Data Object
	7.4.1 How to Add a Transient Attribute
	7.4.2 What Happens When You Add a Transient Attribute

	7.5 Defining Validation Rules on Attributes Declaratively
	7.5.1 How to Add Validation Rules to Attributes
	7.5.2 What Happens When You Add a Validation Rule
	7.5.3 How to Use the Built-in Declarative Validation Rules
	7.5.3.1 Validating Based on a Comparison
	7.5.3.2 What Happens When You Validate Based on a Comparison
	7.5.3.3 Validating Using a List of Values
	7.5.3.4 What Happens When You Validate Using a List of Values
	7.5.3.5 Ensuring That a Value Falls Within a Certain Range
	7.5.3.6 What Happens When You Use a Range Validator
	7.5.3.7 Validating Against a Number of Bytes or Characters
	7.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters
	7.5.3.9 Validating Using a Regular Expression
	7.5.3.10 What Happens When You Validate Using a Regular Expression

	7.5.4 How to Use Groovy Expressions For Validation Rules
	7.5.4.1 Validating Using a Groovy Expression
	7.5.4.2 What Happens When You Validate Based on a Groovy Expression
	7.5.4.3 Referencing Data Object Methods in Groovy Validation Expressions

	7.5.5 How to Create Validation Error Messages
	7.5.5.1 Creating Validation Error Messages
	7.5.5.2 What Happens When You Create a Validation Error Message
	7.5.5.3 Localizing Validation Messages
	7.5.5.4 Raising Error Message Conditionally Using Groovy
	7.5.5.5 Embedding a Groovy Expression in an Error Message

	7.5.6 How to Set the Severity Level for Validation Exceptions

	7.6 Filtering Result Sets with Named Criteria
	7.6.1 Use Case for Named Criteria
	7.6.2 How to Create Named Criteria Declaratively
	7.6.3 What Happens When You Create a Named Criteria
	7.6.4 How to Use Bind Variables in Named Criteria
	7.6.5 What Happens When You Use Bind Variables in Named Criteria
	7.6.6 What You May Need to Know About Nested Expressions
	7.6.7 How to Set User Interface Hints on Named Criteria
	7.6.8 How to Create a Named Criteria Based on Multiple JPA Entities

	7.7 Creating List of Values Objects
	7.7.1 How to an Create LOV for an Attribute
	7.7.2 What Happens When You Create an LOV

	7.8 Testing Data Object Metadata Using the Oracle ADF Model Tester
	7.8.1 How to Run the Oracle ADF Model Tester
	7.8.2 What Happens When You Use the Oracle ADF Model Tester
	7.8.3 How to Test Business Layer Validation
	7.8.4 How to Test Row Creation and Default Value Generation
	7.8.5 How to Test Named Criteria Using the Oracle ADF Model Tester
	7.8.6 How to Update the Oracle ADF Model Tester to Display Project Changes
	7.8.7 How to Test Alternate Language Message Bundles and UI Hints

	7.9 Groovy Language Support
	7.9.1 How to Reference ADF Objects in Groovy Expressions
	7.9.2 How to Reference ADF Methods and Attributes in Groovy Expressions

	A Data Control Feature Comparison

