ORACLE"

Oracle® Fusion Middleware

Rules Language Reference for Oracle Business Process
Management

12¢(12.1.3)

E40589-04

November 2016

The Oracle Rules Language Reference Guide contains a
detailed and complete reference to the Oracle Business Rules
RL Language syntax, semantics, and built-in functions. You can
create and edit the Oracle Rules language directly but the
language is normally generated by high-level tools.

Oracle Fusion Middleware Rules Language Reference for Oracle Business Process Management, 12¢ (12.1.3)
E40589-04

Copyright © 2005, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ..ottt iX
BN o < T <IN iX
ReElated DOCUITIEIUESvviieviieie ettt ettt ettt et e et e e eaeeeaeeeaaseteesssesaseesaseessessssessesnssesseesnseenseesns iX
(@16) 4N 1< a1 T} o =TRSO iX

CONVENTIONS TN TOXL coiiinieieiieieeieiee ettt e e e ettt e e e e seaaaereeeseaaseeeesesastseeesssnaseeessesnanseeeeas X
RL Language Backus-Naur Form Grammar Rulesccccooiiiii, X

What's NEW IN THIS GUITE. ...t Xi

New and Changed Features for 12¢ (12.1.3) ..c.ccccouiiiiiiiiiiiiiciceeeecicieeeeeeeee e Xi

1 Rules Programming Concepts

1.1 Starting the Oracle Business Rules RL Language Command-Linecccccccevvvvnnnnnennne. 11
1.2 Introducing Rules and RuUlesets...........c.cccoviiiniiiiiiiiniiiiniiiiinns 1-2
1.2.1 Rule CONdItIONScooviviiiiiiiiiiiiiiiiiiiii s 1-2
1.2.2 RUle ACHONS ..ovviiiiiicictctt et 1-2
1.3 Introducing Facts and RL Language Classes.........c.c.cocuvrrerernninerirrnenrinrseeeeeseeeeeeeeeeeens 1-3
1.3.1 WHhat Are FACES? ..ottt 1-3
1.3.2 Adding Facts to Working Memory with Assert ... 1-3
1.3.3 Using RL Language Classes as Factscocoooeeiiiriiiiiiice 1-4
1.3.4 Using Java Classes as FaCtS........cccccuviiiiiiiiiiiiicc s 1-5
14 Understanding and Controlling Rule Firing ..o 1-5
141 Rule Activation and the Agenda............ccccoeiiiiiiiiiiis 1-6
1.4.2 Watching Facts, Rules, and Rule Activations............ccccccceiiiiiiiiiiniiiiiiiins 1-7
1.4.3 Ordering Rule Firing........ccoooiiiiiriiiiici e 1-8
1.5 Using EffectiVe DAates ...t nenes 1-11
1.6 Integrating RL Language Programs with Java Programs............cccccccoeeiiiiiiiciiccncccnas 1-11
1.6.1 Using Java Beans Asserted as Facts..........cccoooiiiiiiiiiiii e 1-12
1.6.2 Using RuleSession Objects in Java Applicationsccccoeueveiieiieiiiiicieiccee 1-14
1.7 Building a Coin Counter Rules Programi..........c.cccooiiiioiiiiicioiincicecciee i 1-15

Rules Engine Algorithms

2.1 OVEIVIEW oot 2-1
2.1.1 Differences between Rete and NRE Algorithmcccoooiiiiiiie 2-1
2.2 Configuring the Non-Rete AIOTIthmccocooiiiiiiiiiiiiiecree s 2-2

Rule Language Reference

BT RUIESEL .ttt sttt b e st st s ettt sttt b et b b ene 3-2
BL2 TYPES ittt 3-3
313 TA@NEEIETS ..ttt ettt et ettt b e s bt st et et et et et et entente st eneeseeseenessessesbessens 3-6
B4 LHEETALS -ttt a et b bbbt et ettt et a e et ae bt e be bt sbeebenbenaen 3-7
315 DEfINIEIONS ... trveuieieieieieietetertete ettt ettt sttt ettt st se st b st s et ese st ese st e st st et et et be st eseneebenene 3-7
3.1.5.1 Variable DEefiNitioNnsc.cccveririeririenieienieieniettrieiesie sttt tebe st besaeseseeseseeseseenens 3-8
3.1.5.2 RUIE DEfINIIONS . .eovievieiieiiiieiieieieiesee ettt ettt sttt ettt seeseeseeseesessessenes 3-9
3.1.5.3 Class DefiNitionNsSccceieueruiriiriinieieseietete ettt ettt sttt sttt ettt ese e sae e nes 3-12
3.1.5.4 Function DefiNitioNS.......cccecieueirierieieieieieeieeeietestee sttt sttt te e se e se e esesaesesaesenaene 3-16
3.1.6 Fact Class DEClarationscoceceeueieuerieuinieiiieiiieteie ettt sttt ettt be e se e seseeseseene 3-17
3.1.7 Import Statementccociiiiiiiiiii s 3-20
3.1.8 INCIUAE StAtEIMIENTeviviiiiiiesteee ettt ettt ettt te st e et et et e st e e eneeseeseesessessees 3-21
3.1.9 USING EXPIOSSIONS......coiviiiiitiieiitiieteietetete ittt 3-21
3.1.9.1 Boolean EXPressions........cococciiiucieiniiiiicieiisicie et 3-22
3.1.9.2 Numeric EXPIessions ... 3-23
3.1.9.3 String EXPressions.........ciiiiiiiiiicccc s 3-24
3.1.9.4 Array EXPIeSSIONSccceiiiiiiiiiiiiiciciectc s 3-25
3.1.9.5 Fact Set EXPIeSSIONScocurveiiiiiiieiieicecice i 3-25
3.1.9.6 Comparable EXPIression.........cccocoiiiiiiiiiiiiiiccc s 3-30
3.1.9.7 Object EXPIESSIONScccucuiuiuimimiiiiiiiiiiiciiiiccc et 3-31
3.1.9.8 Primary EXPIeSSions ...t 3-31
3.1.10 Actions and Action BlOCKS........couirieriirieieieeieeeet ettt 3-34
3.1.10.1 If Else ACHON BLOCK ...oviiiiiiiiieieeee ettt 3-35
3.1.10.2 While ActON BlOCK......c.coiiiriiiiieieieteetete ettt s 3-35
3.1.10.3 FOr AcCHON BIOCK ...coutieiiieirieirieeeieeee ettt 3-36
3.1.10.4 Try Catch Finally Action BIOCK ... 3-36
3.1.10.5 Synchronized Action BIOCK.........cooiiiiiiiiiiic 3-37
3.1.10.6 MOAify ACHON ..o 3-38
3.1.10.7 RetUIN ACHON c.cuiiiiiiiiietesteteee ettt ettt sttt ettt ettt et see s 3-39
3.1.10.8 TRIOW ACHON wuvviieiiieiirietrietetetetet ettt ettt ettt sttt sttt be e bt ebe st e b e ebeneene 3-40
3.1.10.9 ASSIGN ACHON.....cviiiiiiiiiictcc s 3-40
3.1.10.10 Increment or Decrement EXPressions..........cooeoviiiiiiiiiiniiiic, 3-40
3.1.10.11 Primary ACHONS .c.civiviiiiiiiiiiiiiiitittt s 3-41
3111 RUIEZIOUP .ottt 3-41
3.1.12 BUilt-in FUNCHONS. c.c.coviieiiieiiieitceteeee ettt ettt sttt 3-42

T B A - 1T 1< o RPN 3-42

3.112.2 @SSEITTTEO cecueieeiieiieeie ettt ettt et ettt ettt s be e ba e st e e aa e s st e e baenaaeennes 3-44
3.1.12.3 @SSEIEXPAt c.cvcvieiieiieiieiiciietecteete ettt ettt ettt rb et seeraetaeseereerans 3-44
3.1.12.4 CLEATRULE ...eveveeieiieieeteeteete ettt ettt ettt e st b e b e b et e sessessesseneesseseesessessensan 3-45
3.1.12.5 clearRuleSetStaCKccuvcviiuieiiiieiicteee ettt ettt re et et e aeeneas 3-45
3.1.12.6 clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAllccccooiiiiiiiicrcceeees 3-45
3.1.12.7 CONEAINS cuvvieiieeiieeieeete et e eteeteesteete e teeebeessaeesseessseasseesssessseeseeassaaseesssaessessseeseenssennses 3-45
3.1.12.8 getCurrentDatec.oooivoiiiii 3-46
3.1.12.9 getDeciSIONTIACE ...ceviviviviiiiiiiiiiiii s 3-46
3.1.12.10 getDecisionTraceLevel.........cccoooiiiiniiiiiniiiiiiiic s 3-46
3.1.12.11 getDecisionTraceLimit........ccccoooiiiiiiiiiiii e 3-47
3.1.12.12 getEffectiveDate.........ccviiiiiiiiii s 3-47
3.1.12.13 getFactBYTYPe oo 3-48
3.1.12.14 getFactsByTYPe. . 3-48
3.1.12.15 getRULESELSTACKc.ouimiuiiiiiieicciccc e 3-48
3.1.12.16 GetRUIESESSION ... 3-48
3.1.12.17 GetStrate@y ...cvovevieiiiciceic s 3-49
BL12.18 NAIE ittt ettt et ettt et b b et easerserserseteereereeretas 3-49
BLLI2.19 A ottt ettt et e b b e b et et s b e st e st esberaereetaereereeranrs 3-49
3.1.12.20 isErrorInRuleConditionSuppressed ... 3-50
3.1.12.21 isRulesetSONSACKONCEccveveieieieieieieeeeeetete ettt se e enessenas 3-50
3.1.12.22 ODJECE. e 3-50
311223 PIANEIN .o 3-51
3.1.12.24 POPRUIESEL.......oviiiiiiii s 3-51
3.1.12.25 PUSHRUIESEL ... 3-51
TN N 00 T < s = L] AU 3-52
B.LL12.27 TESEL ottt ettt ettt ettt et ettt ete et et et et et et ettt et ensereeteeteersereetas 3-52
BLL12.28 TUD ittt ettt ettt et et esteseetseasesseteeteebeebeebebesbe b enbessessessessersereeteereereerets 3-53
3.1.12.29 ruUnUNGIHALL......coiiiieiieiiciii ettt st s e s sb s saebaeseeaeerenas 3-53
3.1.12.30 SEtCUITENEDALE.....c.eevieiieieeieeeeeeee ettt e re et e e sae s seenees 3-54
3.1.12.31 setDeciSioNTTaceleVelcccoiiiiciieiiciiecieceeeceteee ettt e 3-54
3.1.12.32 setDeciSioNTTacelimitccccecuieriieriiiiiecieecitete ettt et e e e ae e 3-55
3.1.12.33 SEtEfECtiVEDIATEecviviiiiitiieieteet ettt ettt ettt ettt re et et reereaas 3-55
3.1.12.34 setErrorInRuleConditionSuppressed ... 3-56
3.1.12.35 SEtRUIESEESTACK. .. .cteuieeietiriietiieieieiet ettt ete et eteeteste st b b e s e b e ssessesaessesseseeseesessessenss 3-56
3.1.12.36 SEtRULESEISONSLACKceveveeeiiticiecieeie ettt ettt re et era et eaeereennas 3-57
311237 StSEIAteZY «ovvveeeeeceeieiicecie s 3-57
3.1.12.38 ShOWACHVALIONSvevieeveiieieeieie ettt ete et ste et te et e e s ssesse e s e sseessesseessessaessesseessesseas 3-57
3.1.12.39 SHOWFEACES cevevieiieiieiieiieetectest ettt ettt ettt st et sbesbesae st esbeseesaeseesaesessansas 3-58
311240 SEEP . s 3-58
3.1.12.41 watchRules, watchActivations, watchFacts, watchFocus, watchCompilations. 3-59

Vi

Using the Command-line Interface

41

4.2
43

Starting and Using the Command-Line Interface..........ccoooooooiie 4-1
411 Using Command-Line Input Processing............cccocoeuevvieirieiiiiinieiciccccce 4-2
RL Command-Line OPtions........ccccucucuiuririiiiiiiiieeieieieieieieieeeete e nenenes 4-3
RL Command-Line Built-in Commandsc.cccocoeeueriiienniiiiiiccece s 4-3
4.3.1 Clear COMMANG......cccoimimimiiiiiiiiiii e 4-4
4.3.2 Exit Command ..o 4-4

Using a RuleSession

5.1 RuleSession Constructor Properties.............oocueioiiiiioiiicicec e 5-1
5.2 RuleSession Methods ... s 5-2
5.3 RL to Java Type CONVEISION.......cccceviviiiiiimiiiiiiiiiiinicicccscs e 5-2
5.4 Error Handling ... 5-3
5.5 RL Class RefleCtioncccccviviviiiiiiiiiiiiiiiiiiiiii s 5-3
5.6 Obtaining Results from a Rule Enabled Program...........cccccccooviiirniiiniiniiinccccce 5-4
5.6.1 Overview of Results EXamples.........cccoccoiiiiiiiiiiiiiiiiicccccrccccree s 5-4
5.6.2 Using External Resources to Obtain ReSults ..., 5-5
5.7 Debugging an RL Stacktracecccccovuviiiiiiiiiiiiiniiiiiiiiiiiciccsessees 5-6
5.8 Using RuleSession POOLNG ..ottt 5-7
5.8.1 How to Create a RuleSession POOl...........ccccooiiiiiiii 5-7
5.8.2 How to Use a RuleSession Pool...........ccccoiiiiiiiiiiiic s 5-8
5.9 Using RuleSession OPtionsccccccvriiiiiiiiiririiiiiiiiiriicieeesieeeeeeeeee e 5-8
59.1 Using the CFG_LOGGING System Property ..o, 5-9
5.9.2 Using the CFG_DECISION_TRACE_LEVEL Optionccccoecevininiiniiniiciiiniicnenn. 5-9
5.9.3 Using the CFG_DECISION_TRACE_LIMIT Option........cccccoouvviviniininiiiiiniininn. 5-9
5.10 Using DeciSion TTaCINGccecevviuiiiiriiiiiiiiiiecicecee s 5-9
5.10.1 Introduction to Rule Engine Level Decision Tracing...........cccccoevuveerereiniccnnrnicnnennnn. 5-9
5.10.2 Using Rule Engine Level Decision Tracing ..o, 5-9
5.10.3 Decision Trace Samples for Production and Development Level Tracing.............. 5-13
5.10.4 Sample Development Level DecisonTraceccccooviiiviiiiininiine, 5-13

Summary of Java and RL Differences
A.1 RL Differences from JAVAccoeeirieirieirieirieirieteie sttt ettt sttt sttt e se e beneens A-1

List of Tables

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
5-1
5-2
5-3

Implicit Type CONVEISIONS........ccocueiiiieiirieiiiicie ettt 3-3
Explicit Type CONVEISIONS.ccrueiiiiiirie ittt 3-4
RL Language Literals.........c.cccooiiiiiiiiniiniiiiiiiiii e 3-7
Xpath SElection SHANGS. ..o 3-14
Expression Operator Precedence..............oooiiieiiiiiiiiiiccc 3-23
Aggregate FUNCHONS.c.coiiiii e 3-28
Strategy Values for setStrategy and getStrategy Functions............ccccccceeiiiiiiiiienne. 3-57
Watch Functions Event Descriptions...........ccviiiiiiiiiiiiicccccccncccsnnnes 3-59
RL Command-Line Options..........cocrrieiiiiiieieiccie et 4-3
Configuration Parameters for a RuleSession Constructor............ccoevvvvvirneriiiicnniinicnnnn, 5-1
RL to Java Object CONVETSION........ccciviiiiiiiiiiiiiiiic s 5-3
RL Decision Trace FUNCHONS..........ccccoviviiiiiiiniiiiictccc e 5-10

Vii

viii

Preface

This guide describes the Oracle Business Rules RL Language.

Audience

Rules Language Reference for Oracle Business Process Management is intended for
application developers and Oracle Application Server administrators who perform the
following tasks:

* Develop rule enabled applications
* Debug rule enabled applications
* Deploy and Administer rule enabled applications.

* Develop rulesets for those who prefer a technical language environment instead of
the Oracle Business Rules graphical environment for rule authoring.

* Need to use Oracle Business Rules RL Language advanced features that are not
available in the Oracle Business Rules environment.

To use this document, you need to be familiar with the Java programming language.

Related Documents
For more information, see the following Oracle resources:
® Designing Business Rules with Oracle Business Process Management
* Managing and Monitoring Processes with Oracle Business Process Management

* Developing SOA Applications with Oracle SOA Suite

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

e (Conventions in Text

¢ RL Language Backus-Naur Form Grammar Rules

Conventions in Text

Convention

Meaning

boldface

italic

nonospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

RL Language Backus-Naur Form Grammar Rules

Each RL Language command in the guide is shown in a format description that
consists of a variant of Backus-Naur Form (BNF) that includes the symbols and
conventions in the following table.

Symbol or
Convention

Meaning

[]
{
|

*

delimiters

boldface

underline

underline

italic text

Brackets enclose optional items.

Braces enclose items only one of which is required.

A vertical bar separates alternatives within brackets or braces.
A star indicates that an element can be repeated.

Delimiters other than brackets, braces, vertical bars, stars, and ellipses
must be entered as shown.

Words appearing in boldface are keywords. They must be typed as
shown.

(Keywords are case-sensitive in some, but not all, operating systems.)

Words that are not in boldface are placeholders for which you must
substitute a name or value

When on the left side of a production (: : =) indicates a definition for
a non-terminal symbol.

When found on the right side of a production, : : = , alink, which is a
non-terminal symbol, links to the definition for the non-terminal
symbol.

Semantic information about non-terminals, such as the required data
type for an expression or a descriptive tag used in following
discussion, is in italics.

What's New Iin This Guide

This section summarizes the new features and significant product changes for the
Oracle Rules Language in the Oracle Fusion Middleware Release 12¢ (12.1.3) release.

Screens shown in this guide may differ from your implementation, depending on the
skin used. Any differences are cosmetic.

Follow the pointers into this guide to get more information about the features and
how to use them. This document is the new edition of the formerly titled Oracle
Fusion Middleware Language Reference Guide for Oracle Business Rules.

For a list of known issues (release notes), see ht t p: / / www. or acl e. coml
t echnet wor k/ m ddl ewar e/ soasui t e/ docunent at i on/
rel easenot es121300-2124738. ht ni

New and Changed Features for 12¢ (12.1.3)

Oracle Rules Language Release 12c (12.1.3) includes the following new and changed
features:

* Support for a new non-Rete Business Rules algorithm. See Rules Engine
Algorithms.

* Support for new built-in functions. See Built-in Functions.

isErrorInRuleConditionSuppressed

- setErrorInRuleConditionSuppressed

getFactByType

isRulesetsOnStackOnce

setRulesetsOnStackOnce

® Support for two new signatures for the Step function. See Built-in Functions.

* Support for configuration parameters that can be set in a map passed to the
RuleSession constructor. See Using a RuleSession.

Xi

http://www.oracle.com/technetwork/middleware/soasuite/documentation/releasenotes121300-2124738.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/releasenotes121300-2124738.html
http://www.oracle.com/technetwork/middleware/soasuite/documentation/releasenotes121300-2124738.html

1

Rules Programming Concepts

This chapter introduces Oracle Business Rules RL Language (RL Language) concepts.

This chapter includes the following sections:

e Starting the Oracle Business Rules RL Language Command-Line
¢ Introducing Rules and Rulesets

¢ Introducing Facts and RL Language Classes

¢ Understanding and Controlling Rule Firing

¢ Using Effective Dates

* Integrating RL Language Programs with Java Programs

¢ Building a Coin Counter Rules Program

1.1 Starting the Oracle Business Rules RL Language Command-Line

The Oracle Business Rules environment is implemented in a JVM or in a J2EE
container by the classes supplied withrl . j ar.

Start the RL Language using command-line interface using the following command:

java -jar $SOA ORACLE_HOWE soa/ nodul es/oracle.rules_11.1.1/rl.jar -p "RL> "

Where ORACLE_HOME is where SOA modules are installed (for example, c:/Oracle/
Middleware). The —p option specifies the prompt.

The RL Language command-line interface provides access to an Oracle Business Rules
RuleSession. The RuleSession is the API that allows Java programmers to access the RL
Language in a Java application (the command-line interface uses a RuleSession
internally).

For more information on command-line options, see Using the Command-line
Interface and Using a RuleSession for details on Oracle Business Rules RuleSession
APL

You can run the program in Example 1-1 using the command-line interface by
entering the text shown at the RL> prompt.

Example 1-1 Using the Command-Line Interface

RL> printin(l + 2);

3

RL> final int |ow = -10;

RL> final int high = 10;

RL> println(low + high * high);
90

RL> exit;

Rules Programming Concepts 1-1

Introducing Rules and Rulesets

1.2 Introducing Rules and Rulesets

An RL Language ruleset provides a namespace, similar to a Java package, for RL
classes, functions, and rules. In addition, you can use rulesets to partially order rule
firing. A ruleset may contain executable actions, may include or contain other rulesets,
and may import Java classes and packages.

An RL Language rule consists of rule conditions, also called fact-set-conditions, and an
action-block or list of actions. Rules follow an if-then structure with rule conditions
followed by rule actions.

Example 1-2 shows a program that prints, "Hello World." This example demonstrates
a program that contains a single top-level action in the default ruleset (named mai n).

Example 1-2 contains only an action, and does not define a rule, so the action executes
immediately at the command-line.

Example 1-2 Hello World Programming Example

RL> printIn("Hello Wrld");Hello Wrld
RL>

1.2.1 Rule Conditions

A rule condition is a component of a rule that is composed of conditional expressions
that refer to facts.

In the following example the conditional expression refers to a fact (Dr i ver instance
d1), followed by a test that the fact's data member, age, is less than 16.

if (fact Driver dl && dl1.age < 16)

Example 1-3 shows the complete rule, written in RL Language (the rule includes a rule
condition and a rule action).

The Oracle Rules Engine activates a rule whenever there is a combination of facts that
makes the rule's conditional expression true. In some respects, a rule condition is like a
query over the available facts in the Oracle Rules Engine, and for every row that
returns from the query, the rule activates.

Note:

Rule activation is different from rule firing. For more information, see
Understanding and Controlling Rule Firing.

Example 1-3 Defining a Driver Age Rule

RL> rul e driverAge{
if (fact Driver dl && dl1.age < 16)

{
printin("Invalid Driver");

}
}

1.2.2 Rule Actions

A rule action is activated if all of the rule conditions are satisfied. There are several
kinds of actions that a rule's action-block might perform. For example, an action in the
rule's action-block can add new facts by calling the assert function or remove facts by

1-2 Rules Language Reference for Oracle Business Process Management

Introducing Facts and RL Language Classes

calling the retract function. An action can also execute a Java method or perform an RL
Language function (Example 1-3 uses the pri nt | n function). Using actions, you can
call functions that perform a desired task associated with a pattern match.

1.3 Introducing Facts and RL Language Classes

This section describes Oracle Business Rules facts.

It includes the following sections:

¢ What Are Facts?

* Adding Facts to Working Memory with Assert
¢ Using RL Language Classes as Facts

* Using Java Classes as Facts

1.3.1 What Are Facts?

Oracle Business Rules facts are asserted objects. For Java objects, a fact is a shallow
copy of the object, meaning that each property is cloned, if possible, and if not, then
the fact is a copy of the Java object reference.

In RL Language, a Java object is an instance of a Java class and an RL Object is an
instance of an RL Language class. You can use Java classes in the classpath or you can
define and use RL Language classes in a ruleset. You can also declare additional
properties that are associated with the existing properties or methods of a Java class
using a fact class declaration. You can hide properties of a Java class that are not
needed in facts using a fact class declaration.

An RL Language class is similar to a Java Bean without methods. An RL class contains
set of named properties. Each property has a type that is either an RL class, a Java
object, or a primitive type.

Using Oracle Business Rules, you typically use Java classes, including JAXB generated
classes that support the use of XML, to create rules that examine the business objects
in a rule enabled application, or to return results to the application. You typically use
RL classes to create intermediate facts that can trigger other rules in the Oracle Rules
Engine.

1.3.2 Adding Facts to Working Memory with Assert

Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the working memory.

A fact in RL Language is an asserted instance of a class. Example 1-4 shows the assert
function that adds an instance of the RL class ent er Roomas a fact to working
memory. A class that is the basis for asserted facts may be defined in Java or in RL
Language.

In Example 1-4 the sayHel | o rule matches facts of type ent er Room and for each
such fact, prints a message. The action new, shown in the assert function, creates an
instance of the ent er Roomclass.

In Example 1-4 the r un function fires the sayHel | o rule.

Rules Programming Concepts 1-3

Introducing Facts and RL Language Classes

Note:

The RL Language newkeyword extends the Java new functionality with the
capability to specify initial values for properties.

Example 1-4 Matching a Fact Defined by an RL Language Class

RL> class enterRoom{ String who; }
RL> assert (new enter Roonm(who: "Bob"));
RL> rul e sayHello {
if (fact enterRoom) {
printin("Hello " + enterRoom who);

1
}
RL> run();
Hel | o Bob
RL>

1.3.3 Using RL Language Classes as Facts

You can use RL Language classes in a rules program to supplement a Java
application's object model, without having to change the application code for the Java
application that supplies Java Objects.

See Adding Facts to Working Memory with Assert for more details.

Example 1-5 shows the gol dCust rule uses a Java class containing customer data,
cust ; the rule's action asserts an instance of the Gol dCust oner RL class,
representing a customer that spends more than 500 dollars in a three month period.
The Java Cust oner class includes a method Spent | nLast Mont hs that is supplied
an integer representing a number of months of customer data to add.

Example 1-5 goldCust Rule

rul e gol dCust {
if (fact Customer cust && cust. SpentlnLastMnths(3) > 500){
assert (new Gol dCust omer(cust: cust));

}
}

Example 1-6 shows the gol dDi scount rule uses the RL fact Gol dCust oner to infer
that if a customer spent $500 within the past 3 months, then the customer is eligible for
a 10% discount.

Example 1-6 goldDiscount Rule

rul e gol dbi scount {
if (fact Order ord & fact Col dCustoner(cust: ord.customner))

{

ord. discount = 0.1;
assert(ord);

}

Example 1-7 shows the declaration for the Gol dCust onmer RL class (this assumes that
you also have the Cust onmer class available in the classpath).

1-4 Rules Language Reference for Oracle Business Process Management

Understanding and Controlling Rule Firing

Example 1-7 Declaring an RL Language Class

class Gol dCust oner {
Cust omer cust;

}

1.3.4 Using Java Classes as Facts

You can use asserted Java objects as facts in an RL Language program. You are not
required to explicitly define or declare the Java classes. However, you must include
the Java classes in the classpath when you run the program. This lets you use the Java
classes in rules, and allows a rules program to access and use the public attributes,
public methods, and bean properties defined in the Java class (bean properties are
preferable for some applications because the Oracle Rules Engine can detect that a
Java object supports Pr oper t yChangeli st ener ; in this case it uses that mechanism
to be notified when the object changes).

In addition, Fact class declarations can fine tune the properties available to use in an
RL program, and may be required for certain multiple inheritance situations.

Java fact types allow methods with and without side effects to be imported. Side
effects refer to expensive operations such as I/O, Database Query or web service and
so on. When using Java classes as facts, remember the following about side effects.

e Rule and Decision Table conditions do not use methods with side effects.

¢ Actions can use all methods. Though side effects are not recommended, are
permissible.

When you work with Java classes, using the i mpor t statement lets you omit the
package name (see Example 1-8).

Example 1-8 Sample Java Fact with Import

rul eset main

{
i mport exanpl e. Person;
import java.util.*;
rul e hasN ckNames

{
if (fact Person p & ! p.nicknanmes.isEnpty())
{
/'l accessing properties as fields:
printin(p.firstName + " " + p.lastNane + " has nicknanes:");
Iterator i = p.nicknanmes.iterator();
while (i.hasNext())
{
printIn(i.next());
}
}

}

1.4 Understanding and Controlling Rule Firing

This section covers the following topics:
* Rule Activation and the Agenda
* Watching Facts, Rules, and Rule Activations

® Ordering Rule Firing

Rules Programming Concepts 1-5

Understanding and Controlling Rule Firing

1.4.1 Rule Activation and the Agenda

The Oracle Rules Engine matches facts against the rule conditions (fact-set-conditions)
of all rules as the state of working memory changes. The Oracle Rules Engine only
checks for matches when the state of working memory changes, typically when a fact
is asserted or retracted. A group of facts that makes a given rule condition true is
called a fact set row. A fact set is a collection of all the fact set rows for a given rule.
Thus a fact set consists of the facts that match the rule conditions for a rule. For each
fact set row in a fact set, an activation, consisting of a fact set row and a reference to the
rule is added to the agenda (the agenda contains the complete list of activations).

Figure 1-1 shows a RuleSession with an agenda containing activations in working
memory.

Figure 1-1 RuleSession with Working Memory and the Agenda Containing

Activations
JVM
RuleSession
Java Working Memory
Objects
(Agenda
(J) J ‘ Activation
D= Facts Activation
= J) ('F) F Activation
‘ F - Activation
- F) Activation
1 Activation
| Assert

The run, runUntilHalt, and step functions execute the activations on the agenda, that
is, these commands fire the rules (use the step command to fire a specified number of
activations).

Rules fire when the Oracle Rules Engine removes activations, by popping the
activations off the agenda and performing the rule's actions.

The Oracle Rules Engine may remove activations without firing a rule if the rule
conditions are no longer satisfied. For example, if the facts change or the rule is cleared
then activations may be removed without firing. Further, the Oracle Rules Engine
removes activations from the agenda when the facts referenced in a fact set row are
modified or the facts are retracted, such that they no longer match a rule condition
(and this can also happen in cases where new facts are asserted, when the ! operator

applies).

Note the following concerning rule activations:

1. Activations are created, and thus rules fire only when facts are asserted, modified,
or retracted (otherwise, the rules would fire continuously).

2. If arule asserts a fact that is mentioned in the rule condition, and the rule
condition is still true, then a new activation is added back to the agenda and the
rule fires again (in this case the rule would fire continuously). This behavior is
often a bug.

1-6 Rules Language Reference for Oracle Business Process Management

Understanding and Controlling Rule Firing

3. The actions associated with a rule firing can change the set of activations on the
agenda, by modifying facts, asserting facts, or retracting facts, and this can change
the next rule to fire.

4. Rules fire sequentially, not in parallel.

See Also:

Ordering Rule Firing

1.4.2 Watching Facts, Rules, and Rule Activations

You can use the functions wat chAct i vat i ons, wat chFact s, wat chRul es, and
showFact s to help write and debug RL Language programs.

This section covers the following topics:
* Watching and Showing Facts in Working Memory

¢ Watching Activations and Rule Firing

1.4.2.1 Watching and Showing Facts in Working Memory

The following code example shows the wat chFact s function that prints information
about facts entering and leaving working memory.

As shown in the following example, the wat chFact s function prints ==> when a fact
is asserted. Each fact is assigned a short identifier, beginning with f -, so that the fact
may be referenced. For example, activations include a reference to the facts that are
passed to the rule actions.

Note that the program uses the default ruleset mai n. This ruleset contains the
ent er Roomclass.

RL> wat chFact s();

RL> class enterRoom {String who;}

RL> assert (new enter Room(who: "Rahul "));
==> f-1 main.enterRoon(who : "Rahul")
RL> assert (new enter Room(who: "Kathy"));
==> f-2 main.enterRoon(who : "Kathy")
RL> assert(new enterRoom(who: "Tont));
==> f-3 main. enterRoom who : "Ton)
RL>

You can use showFact s to show the current facts in working memory. The following
sample code example shows the Oracle Rules Engine asserts the initial-fact, f - O (the
Oracle Rules Engine uses this fact internally).

RL> showFacts();

f-0 initial-fact()

f-1 main.enterRoon(who : "Rahul")
f-2 main.enterRoon(who : "Kathy")
f-3 main.enterRoon(who : "Ton')
For a total of 4 facts.

Use retract to remove facts from working memory, as shown in the following example.
When wat chFact s is enabled, the Oracle Rules Engine prints <== when a fact is
retracted.

Rules Programming Concepts 1-7

Understanding and Controlling Rule Firing

RL> wat chFact s();

RL> retract (object(2));

<== f-2 main.enterRoon(who : "Kathy")
RL> showFacts();

f-0 initial-fact()

f-1 main.enterRoon(who : "Rahul")
f-3 main.enterRoon(who : "Ton')

For a total of 3 facts.

1.4.2.2 Watching Activations and Rule Firing

The wat chAct i vat i ons function monitors the Oracle Rules Engine and prints
information about rule activations entering and leaving the agenda. The wat chRul es
function prints information about rules firing.

Example 1-9 shows how r un causes the activations to fire. Notice that Rahul is greeted
last even though he entered the room first (this is due to the firing order).

Note:

Activations may be removed from the agenda before they are fired if their
associated facts no longer make the condition true.

Example 1-9 Using WatchActivations and WatchRules

RL> cl ear;
RL> class enterRoom {String who;}
RL> assert (new enterRoom(who: "Rahul "));
RL> assert (new enter Room(who: "Kathy"));
RL> assert(new enterRoom(who: "Tont));
RL> wat chActivations();
RL> rul e sayHello {
if (fact enterRoon) {

printin("Hello " + enterRoom who);

}

}

==> Activation: main.sayHello :
==> Activation: main.sayHello :
==> Activation: main.sayHello :
RL> wat chRul es();

RL> run();

Fire 1 main.sayHello f-3

Hel lo Tom

Fire 2 main.sayHello f-2

Hel I o Kat hy

Fire 3 main.sayHello f-1

Hel I o Rahul

RL>

—h —h —h
'
W N -

1.4.3 Ordering Rule Firing

To understand the ordering algorithm for firing rule activations on the agenda, we
introduce the ruleset stack. Each Rul eSessi on includes one ruleset stack. The

Rul eSessi on's ruleset stack contains the top of the stack, called the focus ruleset, and
any non focus rulesets that are also on the ruleset stack. You place additional rulesets
on the ruleset stack using either the pushRuleset or setRulesetStack built-in functions.
You can manage the rulesets on the ruleset stack with the clearRulesetStack,

1-8 Rules Language Reference for Oracle Business Process Management

Understanding and Controlling Rule Firing

popRuleset, and setRulesetStack functions. In this case, the focus of the ruleset stack is
the current top ruleset in the ruleset stack.

Rul eSet Stack

Focus Rul eset --> Top_Rul eset
Next _down_Rul eset
Lover _Rul eset
Bot t om Rul eset

When activations are on the agenda, the Oracle Rules Engine fires rules when run,
runUntilHalt, or step executes. The Oracle Rules Engine sequentially selects a rule
activation from all of the activations on the agenda, using the following ordering
algorithm:

1. The Oracle Rules Engine selects all the rule activations for the focus ruleset, that is
the ruleset at the top of the ruleset stack (see the pushRuleset and setRulesetStack
built-in functions).

2. Within the set of activations associated with the focus ruleset, rule priority
specifies the firing order, with the higher priority rule activations selected to be
fired ahead of lower priority rule activations (the default priority level is 0).

3. Within the set of rule activations of the same priority, within the focus ruleset, the
most recently added rule activation is the next rule to fire. However, note that in
some cases multiple activations may be added to the agenda at the same time, the
ordering for such activations is not defined.

4. When all of the rule activations in the current focus fire, the Oracle Rules Engine
pops the ruleset stack, and the process returns to Step 1, with the current focus.

If a set of rules named R1 must all fire before any rule in a second set of rules named
R2, then you have two choices:

¢ Use a single ruleset and set the priority of the rules in R1 higher than the priority of
rules in R2.

e Use two rulesets R1 and R2, and push R2 and then R1 on the ruleset stack.

Generally, using two rulesets with the ruleset stack is more flexible than using a single
ruleset and setting the priority to control when rules fire. For example if some rule R in
R1 must trigger a rule in R2 before all rules in R1 fire, a return in R pops the ruleset
stack and allows rules in R2 to fire.

If execution must alternate between two sets of rules, for example, rules to produce
facts and rules to consume facts, it is easier to alternate flow with different rulesets
than by using different priorities.

The following code example shows that the priority of the keepGar yCQut rule is set to
high, this is higher than the priority of the sayHel | o rule (the default priority is 0). If
the activations of both rules are on the agenda, the higher priority rule fires first.
Notice that just before calling r un, sayHel | 0 has two activations on the agenda.
Because keepGar yQut fires first, it retracts the ent er Room(who: "Gary") fact,
which removes the corresponding sayHel | 0 activation, resulting in only one

sayHel | o firing.

The rule shown in the following code example illustrates two additional RL Language
features.

Rules Programming Concepts 1-9

Understanding and Controlling Rule Firing

1. Thef act operator, also known as a fact set pattern, uses the optional var
keyword to define a variable, in this case the variable g, that is bound to the
matching facts.

2. You can remove facts in working memory using the r et r act function.

RL> final int |ow = -10;
RL> final int high = 10;
RL> rul e keepGaryQut {
priority = high;
if (fact enterRoom(who: "Gary") var g) {
retract(g);

RL> assert (new enterRoom(who: "Gary"));
==> f-4 main. enter Roomwho: "Gary")
==> Activation: main.sayHello : f-4
==> Activation: main.keepGaryQut : f-
RL> assert (new ent er Room(who: "Mary")
==> f-5 main. ent er Room(who: "Mary")
==> Activation: main.sayHello : f-5
RL> run();

Fire 1 main. keepGaryQut f-4

<== f-4 main. enterRoom who: "Gary"
<== Activation: main.sayHello : f-
Fire 2 main.sayHello f-5

Hello Mary

RL>

4
)

)
4

Example 1-10 shows the sayHel | o rule that includes a condition that matches the
asserted ent er Roomfact; this match adds an activation to the agenda. Example 1-10
demonstrates the following RL Language programming features.

1. The Oracle Rules Engine matches facts against the rule conditions (fact-set-
conditions) of all rules as the state of working memory changes. Thus, it does not
matter whether facts are asserted before the rule is defined, or after.

2. The run function processes any activations on the agenda. No activations on the
agenda are processed before calling run.

Example 1-10 enterRoom Class with sayHello Rule

RL> class enterRoom{ String who; }
RL> rul e sayHello {
if (fact enterRoom) {
printin("Hello " + enterRoom who);

}

}
RL> assert(new enter Roonm(who: "Bob"));

RL> run();
Hel 1 o Bob
RL>

1.4.3.1 Ordering Rule Firing
Note the important details when ordering rule firing:

* When you use the r et ur n action, this changes the behavior for firing rules. A
r et ur n action in a rule pops the ruleset stack, so that execution continues with the
activations on the agenda that are from the ruleset that is currently at the top of the
ruleset stack.

1-10 Rules Language Reference for Oracle Business Process Management

Using Effective Dates

If rule execution was initiated with either the run or step functions, and a return
action pops the last ruleset from the ruleset stack, then control returns to the caller
of the run or step function.

If rule execution was initiated with the runUntilHalt function, then a return action

does not pop the last ruleset from the ruleset stack. The last ruleset is popped with

runUntilHalt when there are not any activations left. The Oracle Rules Engine then
waits for more activations to appear. When they do, it places the last ruleset on the
ruleset stack before resuming ruleset firing.

* Rule priority is only applicable within rules in a given ruleset. Thus, the priority of
rules in different rulesets are not comparable.

1.5 Using Effective Dates

By default, the value of the effective date is managed implicitly by the rules engine. In
this case, when a run family of built-in functions is invoked, the effective date is
updated to the current system date. This is done before any rules fire so that the new
effective date is applied before rules begin to fire. In the case of r unUnt i | Hal t, this
update occurs each time there is a transition from 0 rules on the agenda to > 0 rules on
the agenda.

In Oracle Business Rules RL Language, the effective start and end dates and the active
property are only applied to rules (and do not apply for rulesets). The effective start
and end date properties of a rule can be specified in the rule.

For example,

rule myrul e2 {
active = true;
effectiveDat eForm = Rul e. EDFORM DATETI ME:
effectiveStartDate = JavaDate. fronDateTi neString("2008-11-01");
ef fectiveEndDate = JavabDate. fronDat eTi meString("2008-11-16");

if (fact Foo)
{

}
If you use the Rul eSession Java APl, you can access the effective start and end date.
Setting a property from RL Language requires a long expression or several statements.

For example, given a ruleset:

rul eset MRules {
rule myRule { if fact foo { }}
}

To set the active property, use the following:

Rul e r = getRul eSession().getRul eset ("M/Rul es"). getRul e("nmyRul e");

r.setActive(false);

1.6 Integrating RL Language Programs with Java Programs

This section describes integrating RL Language programs with Java programs.

Rules Programming Concepts 1-11

Integrating RL Language Programs with Java Programs

This section covers the following topics:
* Using Java Beans Asserted as Facts

¢ Using RuleSession Objects in Java Applications

See Also:

For more information, see Working with Rules in Standalone (Non SOA /
BPM) Scenarios in the Designing Business Rules with Oracle Business Process
Management

1.6.1 Using Java Beans Asserted as Facts

Example 1-11 shows the Java source for a simple bean. Use the j avac command to
compile the bean, exanpl e. Per son shown in Example 1-11 into a directory tree.

The following shows how an RL Language command-line can be started that can
access this Java bean:

java -classpath $ORACLE_HOME/ soa/ nodul es/oracle.rules_11.1.1/rl.jar; BeanPath
oracle.rules.rl.session. ConmandLine -p "RL> "

Where BeanPath is the classpath component to any supplied Java Bean classes.
Example 1-11 Java Source for Person Bean Class

package exanpl e;
inport java.util.*;
public class Person

{
private String firstName;

private String |astNane;
private Set nicknames = new HashSet();

public Person(String first, String last, String[] nick) {
firstName = first; lastNane = |ast;
for (int i =0; i <nick.length; ++)
ni cknanes. add(ni ck[i]);
1

public Person() {}

public String getFirstNane() {return firstName;}

public void setFirstName(String first) {firstName = first;}
public String getLastName() {return |astNang;}

public void setLastName(String last) {lastName = last;}
public Set getN cknanes() {return nicknames;}

}
1.6.1.1 Sample RL Language Program

Example 1-12 shows how the RL Language command-line can execute an RL
Language program that uses exanpl e. Per son. The i nport statement, as in Java,
allows a reference to the Per son class using "Per son" instead of

"exanpl e. Per son". Rules reference the Per son bean class and its properties and
methods. In order to create a Per son fact you must assert a Java Per son bean.

Example 1-12 uses the new operator to create an array of Per son objects, named
peopl e. The peopl e array is declared final so that r eset does not create more
peopl e. The nunPeopl e variable is not declared f i nal so thatr eset re-invokes the

1-12 Rules Language Reference for Oracle Business Process Management

Integrating RL Language Programs with Java Programs

asser t Peopl e function and re-asserts the Per son facts using the existing Per son
objects.

Example 1-12 Ruleset Using Person Bean Class

rul eset main

{
i mport exanpl e. Person;
import java.util.*;
rul e hasN ckNames

{
if (fact Person(nicknames: var nns) p & !nns.isEnpty())
{

/1 accessing properties as fields:
printIn(p.firstName + " " + p.lastName + " has nicknames:");
Iterator i = nns.iterator();
while (i.hasNext())

{
printIn(i.next());
}
}
}
rul e noNi ckNanes
{
if fact Person(nicknames: var nns) p &% nns.isEmty()
{
/|l accessing properties with getters:
printin(p.getFirstName() + " " + p.getLastName() + " does not have nicknanes");
}

}

final Person[] people = new Person[] {
new Person("Robert", "Snmith", new String[] { "Bob", "Rob" }), // using constructor
new Person(firstName: "Joe", |astNane: "Schrmoe") // using attribute value pairs

b

function assertPeopl e(Person[] people) returns int

{
for (int i =0; i < people.length;, ++i) {
assert (people[i]);
}
return people.|ength;
1
int nunPeopl e = assert Peopl e(peopl e);
run();
}

1.6.1.2 Working with Java Beans as Facts

Note the following points when working with Java beans as facts:

e Thef act operator can include a pattern that matches or retrieves the bean
properties. The properties are defined by getter and setter methods in the bean
class.

¢ The newoperator can include a pattern that sets property values after invoking the
default no-argument constructor, or can pass arguments to a user-defined
constructor.

® Qutside of the f act and newoperators, the bean properties may be referenced or

updated using getter and setter methods, or using the property name as if it were a
field.

Rules Programming Concepts 1-13

Integrating RL Language Programs with Java Programs

¢ If a bean has both a property and a field with the same name, then the field cannot
be referenced in RL Language.

If Example 1-13 executes using the same Rul eSessi on following the execution of
Example 1-12, the output is identical to the Example 1-12 results (both per son facts
are reasserted).

Note:

The RL Language command-line interpreter internally creates a
Rul eSessi on when it starts (and when you use the cl ear command).

Example 1-13 Using Reset with a RuleSession

reset();
run();

1.6.2 Using RuleSession Objects in Java Applications

Java programs can use the Rul eSessi on interface to execute rulesets, invoke RL
Language functions passing Java objects as arguments, and redirect RL Language

wat ch and pri nt | n output. Example 1-14 and Example 1-15 each contain a Java
program fragment that uses a Rul eSessi on that prints "hello world". Like many Java
program fragments, these examples are also legal RL Language programs.

The RL Language environment provides multiple rule sessions. Each rule session can
be used by multiple threads, but rules are fired by a single thread at a time.

Each rule RuleSession has its own copy of facts and rules. To create a fact from a Java
Object, use a call such as:

rs.call Functi onWthArgunent ("assert", Qbject;);

To create a rule, a function, or an RL Language class, define a string containing a
ruleset, and use the execut eRul eset method.

Example 1-14 Using a RuleSession Object with callFunctionWithArgument

inport oracle.rules.rl.*;

try {
Rul eSession rs = new Rul eSession();

rs.call Functi onWthArgument ("println", "hello world");
} catch (RLException rle) {
Systemout. printin(rle);

}

Example 1-15 Using a RuleSession with ExecuteRuleset

inport oracle.rules.rl.*;

try {
Rul eSession rs = new Rul eSession();
String rset =

"ruleset main {" +
" function nyPrintIn(String s) {" +
" printin(s);" +
T
"
rs.execut eRul eset (rset);
rs.call Functi onWthArgunent ("nyPrintln", "hello world");
} catch (RLException rle) {

1-14 Rules Language Reference for Oracle Business Process Management

Building a Coin Counter Rules Program

Systemout.printin(rlie);

}

1.7 Building a Coin Counter Rules Program

This section shows a sample that uses RL Language to solve a puzzle.
How many ways can 50 coins add up to $1.50?

The rules program that solves this puzzle illustrates an important point for rule-based
programming; knowledge representation, that is, the fact classes that you select, can be
the key design issue. It is often worthwhile to write procedural code to shape your
data into a convenient format for the rules to match and process.

To use this example, first copy the RL Language program shown in Example 1-16 to a
file named coi ns. r | . You can include this from the RL Language command-line
using the i ncl ude command. Before you include the coins program, use the cl ear ;
command to erase everything in the current rule session, as follows:

RL> clear;
RL> include file:coins.rl;
RL>

The following code example shows the debugging functions that show the count coins
sample facts, activations, and rules for the coin counter. All facts are asserted, and
activations for all solutions are placed on the agenda. Notice that the facts are matched
to the rule condition as they are generated by popul at e_f act s, and that

find_sol uti on prints the matches.

RL> wat chFact s();

RL> wat chActivations();

RL> wat chRul es();

RL> reset();

RL> showActivations();

RL> run();

The rule is fired for each activation, printing out the solutions
RL>

In Example 1-16, the keyword f i nal in front of a global variable definition such as
coi nCount andt ot al Amount marks that variable as a constant, as in Java. You can
reference constants in rule conditions, but you cannot reference variables in rule
conditions.

In RL Language, you must initialize all variables. The initialization expression for a
final variable is evaluated once when the variable is defined. The initialization
expression for a non-final variable is evaluated when the variable is defined, and again
each time the r eset function is called. Because the r eset function retracts all facts
from working memory;, it is good practice to assert initial facts in a global variable
initialization expression, so that the facts are re-asserted when r eset is called.

Example 1-16 illustrates how to use global variable initialization expressions. The

i nitialized global variable is initialized with the popul at e_f act s function. This
function is re-executed whenever r eset is called. The popul at e_f act s function has
awhi | e loop nested within a f or loop. The f or loop iterates over an array of coin
denomination Strings. For each denomination, the whi | e loop asserts a fact that
expresses a count and a total that does not exceed the total amount of $1.50. For
example, for half dollars:

coi n(denoni nation "hal f-dollar", count:0, anount:0)
coi n(denoni nation "hal f-dollar", count:1, anount:50)

Rules Programming Concepts 1-15

Building a Coin Counter Rules Program

coi n(denom nation "hal f-dollar", count:2, amount:100)
coi n(denom nation "hal f-dollar", count:3, amount:150)

With such facts in working memory, the rule f i nd_sol ut i on matches against each
denomination with a condition that requires that the counts sum to coi nCount and
the amounts sum to t ot al Ant . The r un function fires the f i nd_sol uti ons
activations.

Example 1-16 Count Coins Program Source

final int coinCount = 50;
final int total Amt = 150;
final String[] denominations = new String|]

{"hal f-dollar" , "quarter", "dime", "nickel", "penny" };
class coin {
String denomination;
int count;
int amount;
}
function popul ate_facts() returns bool ean
{
for (int i =0; i < denom nations.length; ++i) {

String denom = denoninations[i];
int count = 0;

int total = 0;

int amount = 0;

if (denom== "half-dollar") { anount = 50; }
else if (denom== "quarter") { amount = 25; }
else if (denom== "dime") { amount = 10; }
else if (denom== "nickel") { amount = 5; }

else { amount = 1; }

while (total <= total Amt && count <= coi nCount)
{
assert (new coi n(denomni nation: denom
count : count,
amount : total));
total += anount;
count ++;
}
1
return true;
}
bool ean initialized = popul ate_facts();
rule find_solution
{
i f(fact coin(denom nation: "penny") p
&& fact coin(denom nation: "nickel") n
&& fact coin(denonination: "dinme") d
&& fact coin(denonm nation: "quarter") q
&& fact coin(denom nation: "half-dollar") h
&& p.count + n.count + d.count + g.count + h.count == coi nCount
&& p.anmount + n.anpunt + d.anmount + ¢.anount + h.amount == total Ant)

{
println("Solution:"
+ " pennies=" + p.count
+ " nickel s=" + n.count
+ " dines=" + d.count
+ " quarters=" + @.count
+ " hal f-dollars=" + h.count
)

1-16 Rules Language Reference for Oracle Business Process Management

Building a Coin Counter Rules Program

run();

Rules Programming Concepts 1-17

Building a Coin Counter Rules Program

1-18 Rules Language Reference for Oracle Business Process Management

2

Rules Engine Algorithms

This chapter describes the existing Rete algorithm used by the Rules Engine and
introduces a Non-Rete algorithm.

This chapter includes the following sections:
* Overview

* Configuring the Non-Rete Algorithm

2.1 Overview

The Rete algorithm was invented by Charles Forgy and was the subject of his 1979
PhD thesis. It was conceived for use with the expert systems of the time and was based
on the observation that the facts in the rule engine's working memory change slowly
over time through a series of inference cycles. Much of its power is derived from a
trade off of increased memory use for improved performance.

Caching previous rule condition evaluation results avoids the re-evaluation of all rule
conditions when a small change is made to working memory. Many business rules use
cases do not fit this usage profile and thus do not benefit from the use of a Rete
algorithm while incurring the overhead of the algorithm's memory consumption
characteristics.

The Non-Rete algorithm (NRE) is an alternative to the Rete algorithm that consumes
less memory than the Rete algorithm. For many business rules use cases it will also
result in improved performance. The core of NRE algorithm is a new rule condition
evaluation approach. The majority of the rules engine is unmodified and shared across
the Rete and NRE algorithms. The externally defined semantics of the existing Rete
algorithm are preserved by the NRE algorithm. Here are some key points about the
new algorithm:

¢ Simpler internal rule representation.
¢ Byte code generated for rule tests, rule actions, and user defined functions.
* More efficient modify operation.

* Rule conditions not evaluated until the containing ruleset is on the top of the stack.
After initial evaluation, re-evaluation occurs on fact operations as needed.

* Ability to avoid unnecessary re-evaluation when rulesets are only present on the
ruleset stack once during rule execution.

2.1.1 Differences between Rete and NRE Algorithm

The two main differences between the two algorithms are:

e Rule condition evaluation:

Rules Engine Algorithms 2-1

Configuring the Non-Rete Algorithm

— In the Rete algorithm, rule conditions are evaluated when fact operations occur
(assert, modify, retract).

— In the Non-Rete algorithm, rule conditions are evaluated for the first time when
the ruleset is on the top of the stack, then on fact operations after that.

¢ Rule firing order. There are cases where the rule firing order is not defined, for
example when a single fact activates multiple rules at the same time and the
priorities are identical. In these cases, the order in which the rule activations fire
may be different.

Note:

It is possible that an existing set of rules has an implicit dependency on the
order in which the rules fire with the Rete algorithm even though that order
may not be defined. The order may be different with the Non-Rete algorithm,
which may expose a latent bug in the rules as authored.

2.2 Configuring the Non-Rete Algorithm

The selection of the algorithm to be used must be done when a RuleSession or
RuleSessionPool is created.

For backwards compatibility, the default is the Rete algorithm. The key for the
algorithm configuration parameter is Rul eSessi on. CFG_ALGORI THMand the two
values are:

e Rul eSessi on. ALGORI THM RETE

¢ Rul eSessi on. ALGORI THM NRE

Also, there is a configuration parameter:

Rul eSessi on. CFG_ALLOW ERROR_SUPPRESSI ON. It is a boolean. The default is
true. Setting it to false informs the rule engine that error suppression will not be
enabled. In this case, an attempt to enable error suppression will throw an exception.
This setting allows the Non-Rete algorithm to realize additional heap savings.

It is common that multiple rulesets are executed during a rule execution. It is also
common that each ruleset is pushed onto the ruleset stack once and after rules in that
ruleset have completed firing, it is not pushed onto the stack again during that rule
execution. With the Non-Rete algorithm, additional performance gain can be realized
for these cases by specifying that the rulesets will only appear on the stack once. This
setting can be set and queried with the RL built in functions:

e function set Rul eset sOnSt ackOnce(bool ean bv) returns boolean

e function i sRul eset sOnSt ackOnce() returns boolean

2-2 Rules Language Reference for Oracle Business Process Management

3

Rule Language Reference

This chapter contains a detailed and complete reference to the Oracle Business Rules
RL Language (RL Language) syntax, semantics, and built-in functions.

Grammar rules define the RL Language. Each grammar rule defines a non-terminal
symbol on the left of the : : = symbol in terms of one or more non-terminal and
terminal symbols on the right of the : : = symbol.

Reserved Words

aggregate, boolean, break, byte, catch, char, class, constant, continue, double, else,
exists, extends, fact, factpath, false, final, finally, float, for, function, hide, if, import,
include, instanceof, int, long, modify, new, null, property, public, query, return,
returns, rule, rulegroup, ruleset, short, supports, synchronized, throw, true, try,
while, var

Note:

Reserved words in bold apply to the current release. Reserved words that are
not shown in bold typeface are planned for a future RL Language release, and
include the words: break, continue, and query.

This chapter includes the following sections:
* Ruleset

* Types

e Identifiers

e Literals

¢ Definitions

¢ Fact Class Declarations

¢ Import Statement

¢ Using Expressions

® Actions and Action Blocks
¢ Rulegroup

e Built-in Functions

Rule Language Reference 3-1

Ruleset

3.1.1 Ruleset

A ruleset groups a set of definitions. A ruleset is a collection of rules and other
definitions that are all intended to be evaluated at the same time. A ruleset may also
contain executable actions, may include or contain other rulesets, and may import Java
classes and packages.

Format

ruleset ::= named-ruleset | unnamed-ruleset named-ruleset ::= ruleset ruleset-name
{ unnamed-ruleset } unnamed-ruleset ::= (import | include | named-ruleset |
definition | action | fact-class | rulegroup)* ruleset-name ::= identifier

Usage Notes

A named-ruleset creates or adds definitions to the specified ruleset named ruleset-
name.

An unnamed-ruleset adds definitions to the default ruleset named mai n.

Rulesets may be nested, that is they may contain or include other rulesets. Nesting
does not affect ruleset naming, but it does affect ruleset visibility in a way similar to
Java import's affect on package visibility.

You can execute a ruleset using the RL Language command-line, or using the Java
RuleSession APIL

A named-ruleset ruleset-name must be unique within a Rul eSessi on.

Examples

The following code example contains two definitions, ent er Roomand sayHel | o,
and two actions (assert and run).

The rule shown in the following code example will not fire until:
1. Anenter Roomfact is asserted.

2. The run function executes, which pushes the rule's containing ruleset, hel | o onto
the ruleset stack.

rul eset hello {
class enterRoom { String who; }
rule sayHello {
if (fact enterRoon {
printIn("Hello " + enterRoom who);
}

}
assert (new enter Room(who: "Bob"));

run("hello");

}

In Example 3-1, if ruleset R2 is nested in ruleset R1, the name R2 must be unique
within the rule session. R2 is not named relative to R1. For example, the class C2
defined in R2 is globally named R2.C2, not R1.R2.C2. If R2 is nested in R1, a public
class C1 defined in R1 may be referenced in R2 using either the full name R1.C1 or the
short name C1 (assuming R2 does not also define C1).

3-2 Rules Language Reference for Oracle Business Process Management

Types

3.1.2 Types

Example 3-1 Using a Nested Ruleset

ruleset RL {
public class Cl {
public String s;

1
Cl apple = new Cl(s: "apple");
rul eset R2 {

public class C2 {
public String s;
}
Cl cl = apple; // finds Cl and apple in containing ruleset Rl
cl.s = "delicious";
C2 ¢2 = new C2(s: "pear");

1
R2.C2 pear = R2.¢c2; // finds R2.C2 and R2.c2 because they are fully qualified
println(apple.s +" " + pear.s); // prints "delicious pear"

pear = ¢2; // UndefinedException: c2 not in RL or a containing rul eset

RL Language is a strongly typed language. Each variable and value has a specified
type.

Format

type ::= simple-type [[1] simple-type ::= primitive | object-type primitive ::= boolean
| numeric numeric ::= int | double | float | long | short | byte | char object-type ::=
class-definition-name | Java-class-name class-definition-name ::= qname Java-class-
name ::= qname

Type Conversion

There are several ways that a value can be converted from one type to another:

1. Conversion from any type to St ri ng using the St ri ng concatenation operator
+.

2. Implicitly from context. For example, by adding an i nt to a doubl e first converts
thei nt to adoubl e and then adds the 2 doubl es.

3. Casting between 2 numeric types.
4. Casting between 2 classes related by inheritance.

5. Invoking a function or method that performs the conversion. For example,
toString.

Table 3-1 summarizes the implicit conversions for various types. Rows indicate how
the type in the From column may be implicitly converted, as shown in the list of types
shown in the To column.

Table 3-1 Implicit Type Conversions
|

From To

int doubl e, fl oat, | ong

Rule Language Reference 3-3

Types

Table 3-1 (Cont.) Implicit Type Conversions
]

From To
f | oat doubl e
| ong doubl e, f | oat
short i nt,doubl e, fl oat, | ong
byt e i nt,doubl e, fl oat, | ong,short
char i nt,doubl e, fl oat,| ong
String hj ect
oj ect Obj ect (if the From Object is a subclass of the To Object)
fact set bool ean
array hj ect
Note:

An Object is an instance of a Java or RL Language class or array. Type
conversion is possible only if the classes are related by inheritance
(implements or extends).

Table 3-2 summarizes the allowed cast conversions for various types where a cast can
be used to convert a primitive with more bits to a primitive with fewer bits, without
throwing an exception.

The type conversions shown in Table 3-2 require an explicit cast operator. For
example,

int i =1

short s = (short)i;

Note:

Type conversions such as those shown in Table 3-2 that involve numeric types
may lose high order bits, and such conversions involving Objects may throw a
RLCl assCast Exepti on.

Table 3-2 Explicit Type Conversions
|

From To

doubl e float,long,int,short,byte,char
fl oat | ong,int,short,byte,char

|l ong i nt,short,byte,char

3-4 Rules Language Reference for Oracle Business Process Management

Types

Table 3-2 (Cont.) Explicit Type Conversions
|

From To

short byt e, char
byt e char

char byte

When you use a cast to convert a primitive with more bits, to a primitive with fewer
bits, the RL Language discards extra, high order, bits without throwing an exception.

For example,

short s = -134;

byte b = (byte)s;

printin("s =" +s+", b="+h);
prints: s =-134, b = 122

Primitive Types
A primitive type may be any of the following

* Ani nt,whichis a 32 bit integer. Literal values are scanned by
java.l ang. | nt eger. parsel nt

* Al ong. Literal values are scanned by j ava. | ang. Long. par seLong

* Ashort. Literal values are scanned by j ava. | ang. Short . par seShort

e A byt e. Literal values are scanned by j ava. | ang. Byt e. par seByt e

e Achar.

e A doubl e. Literal values are scanned by j ava. | ang. Doubl e. par seDoubl e
e Afl oat.Literal values are scanned by j ava. | ang. Fl oat . par seFl oat

e Abooleantrueorfal se
Object Types
An object type may be:

¢ Ajava Qbj ect, identified by the qualified name, qname, of its class. For example,
java.lang. String.

e An RL Language Obj ect, identified by the qualified name, qname of its class. For
example, rul eset 1. Cl ass1.

String Types
RL Language uses Java strings, where:
e Strings are instances of the class j ava. | ang. Stri ng.

¢ A string literal is delimited by double quotes ("string").

Rule Language Reference 3-5

Identifiers

Use \" to include the double quote character in a string.
¢ Strings may be concatenated using the + operator as follows:

- If any operand of a + operator is a String then the remaining operands are
converted to String and the operands are concatenated.

— An Object is converted to a String using itst 0St r i ng method.

— Aninstance of an RL Language class is converted to a String using a built-in
conversion.

Array Types

Square brackets [] denote arrays. An array in RL Language has the same syntax and
semantics as a Java 1-dimensional array.

Note:

RL Language does not support multi-dimensional arrays.

3.1.3 Identifiers

RL Language supports both the Java and the XML variant of identifiers and
namespace packages. To use the XML variant, the identifier must be enclosed in back
quotes.

Format
identifier ::= java-identifier | xml-identifier
java-identifier ::= valid-Java-identifier

xml-identifier ::= “valid-xml-identifier or URI * Where: valid-Java-identifier is: a legal Java
identifier, for example, JLd_0. valid-xml-identifier is: a legal XML identifier, for example
x-1. URI is: a legal Uniform Resource Identifier, for example, http:/ /www.oracle.com/
rules

Usage Notes

An xml-identifier can contain characters that are illegal Java identifier characters, for
example, ' and '-'. The JAXB specification defines a standard mapping of XML
identifiers to Java identifiers, and includes preserving the Java conventions of
capitalization. The JAXB specification also defines a standard mapping from the
schema target namespace URI to a Java package name, and a mapping from
anonymous types to Java static nested classes.

Examples

RL Language supports both the Java and the XML variant of identifiers and
namespaces or packages. Enclose an identifier in back quotes to use the XML variant,
as shown in Example 3-2.

You can use the back quote notation anywhere an identifier or package name is legal
in RL Language. To use the XML variant of identifiers in St r i ng arguments to
assertXPath, back quotes are not needed.

3-6 Rules Language Reference for Oracle Business Process Management

Literals

Example 3-2 Sample Mapping for XML Identifiers Using Back Quotes

“http:// ww. exanpl e. coml po. xsd™ -> com nyconpany. po
‘ny-attribute’ -> nyAttribute
“lItems/item -> Itens$lteniType

3.1.4 Literals

Table 3-3 summarizes the RL Language literals. The literals are the same as Java
literals.

Table 3-3 RL Language Literals
- __|

A literal such as Can be assigned to variables of these types

An integer in range 0..127 or achar with ~ byte,char,short,int,| ong, fl oat, doubl e
UCS2 encoding in range 0...127

An integer in range 0..65535 or a char char,int,long,fl oat,doubl e

An integer in range -128..127 byte,short,int,l ong,fl oat,doubl e
An integer in range -32768..32767 short,int,long,fl oat,doubl e

An integer int,long,float,double

An integer with L suffix | ong, fl oat,doubl e

A floating point constant doubl e

A floating point constant with F suffix float,doubl e

A String enclosed in " String, Ooj ect

3.1.5 Definitions

When a definition within a ruleset is executed, it is checked for correctness and then
saved for use later in the rule session.
Format

definition ::= variable | rule | rl-class-definition | function name ::= identifier
gname ::= [ruleset-or-packagename. Jname ruleset-or-packagename ::= qname

Usage Notes

Every definition has a unique name within its containing ruleset, and thus a unique
qualified name, gname, within the rule session.

Variables defined at the ruleset level are global. Global variables are visible to all
expressions contained in the ruleset using the name of the variable and visible to
expressions in other rulesets using the variable gname. Functions and public classes
may also be referenced from other rulesets using the respective gname.

Java classes and their methods and properties also have gnames.

Rule Language Reference 3-7

Definitions

Example

The qname of the class definition in Example 3-3 is hel | 0. ent er Room

Example 3-3 Class Definition Within a Named Ruleset

rul eset hello {
class enterRoom { String who; }
rule sayHello {
if (fact enterRoon) {
printin("Hello " + enterRoom who);

}
1
assert (new enter Room{who: "Bob"));
run("hell0");

}
3.1.5.1 Variable Definitions

Variables are declared as in Java, but initialization is always required.

Format
variable ::= [final] (numeric name = numeric-expression

| boolean name = boolean-expression | type [] name = array-expression | null |
object-type name = object-expression | null)) ;

Usage Notes

The type of the array initialized with the array-expression must be the same as the
type specified for the array elements.

A variable can have a primitive type, a Java class name, or an RL Language class
name, and may be an array of elements of the same type.

The type of the object-expression must be the same as the object-type of the variable
being declared. A class instance or array may be initialized to null.

Variables may be local or global in scope. The initialization expression is required.
Local variables may not be final.

3.1.5.1.1 Global Variables

Variables immediately enclosed in a ruleset, that is, in a definition, are global to a rule
session in scope. The initialization expression for a final global variable is executed
when the global variable is defined.

The initialization expression for a non-final global variable is executed both:
* When the global variable is defined.

e Each time the r eset function is called.
Global variables declared as final may not be modified after they are initialized.

Global variables referenced in a rule condition (fact-set-condition) must be final.

Examples

The following code example shows that the reset function performs initialization for
the non-final global variable i . Thus, this example prints 0, not 1.

3-8 Rules Language Reference for Oracle Business Process Management

Definitions

RL>int i =0;
RL> i ++;

RL> reset();
RL> printin(i);

Be careful when initializing global variables with functions that have side effects. If
you do not want the side effects repeated when calling reset, you should declare the
variable f i nal . For example, Example 3-4 prints "once" twice and Example 3-5 prints
"once" once.

Example 3-4 Initializing a Global Variable with Side Effects with Reset

RL> clear;
RL> function once() returns int

{
println("once");
return 1;

}

RL> int i = once()
once

RL> reset()

once

RL>

Sample Final Global Variable
Example 3-5 Initializing a Final Global Variable to Avoid Side Effects with Reset

RL> clear;
RL> function once() returns int

{
println("once");
return 1;

}

RL> final int i = once();
once

RL> reset();

RL>

3.1.5.2 Rule Definitions

The Oracle Rules Engine matches facts against the fact-set-conditions of all rules in the
rule session to build the agenda of rules to execute. A fact set row is a combination of
facts that makes the conditions of a rule true. An activation is a fact set row paired
with a reference to the action-block of the rule. The agenda is the list of all activations
in the rules session. The Oracle Rules Engine matches facts and rules when the state of
working memory changes, typically when a fact is asserted or retracted.

The run, runUntilHalt, and step functions execute activations. Activations are
removed from the agenda after they are executed, or if the facts referenced in their fact
set row are modified or retracted such that they no longer match the rule's condition.

Activations are executed in order of the ruleset stack. You can manage the ruleset
stack with the getRulesetStack, clearRulesetStack, pushRuleset, and popRuleset
functions.

In order for a rule to fire, three things must occur:
1. An activation of that rule must be on the agenda.

2. The containing ruleset must be at the top of the ruleset stack.

Rule Language Reference 3-9

Definitions

3. You must invoke run, runUntilHalt, or step.

The fact set produced in a fact-set-condition is available to the rule actions. For each
row in the fact set, the action-block is activated as follows:

¢ The rule's action-block is scheduled for execution at the specified rule priority.
* References from the action-block to the matched facts are bound to the current row.

¢ If a matched fact is retracted before the action-block is executed, the dependent
activations are destroyed (removed from the agenda).

Format
rule ::= rule rule-name { property* fact-set-condition action-block }

rule-name ::= name property ::= priority | autofocus | logical | active priority ::=
priority = numeric-expression autofocus ::= autofocus = boolean-literal logical ::=
logical = (boolean-literal | positive-integer-literal) active ::= active = boolean-literal
effectiveDateForm ::= effectiveDateForm = an int restricted to one of values defined in
oracle.rules.rl.Rule: EDFORM_DATE, EDFORM_DATETIME, or EDFORM_TIME
effectiveStartDate ::= effectiveStartDate = expression of type j ava. uti | . Cal endar
effectiveEndDate ::= effectiveEndDate = expression of type j ava. util . Cal endar
Where: positive-integer-literal is: an integer literal that is > 0

Usage Notes

The priority property specifies the priority for a rule. Within a set of activations of
rules from the same ruleset, activations are executed in priority order (see “Ordering
Rule Firing”). When rules have different priorities, the rules with a higher priority are
activated before those with a lower priority. The default priority is 0. Within a set of
activations of rules of the same priority, the most recently added activations are
executed first, but this behavior can be changed (see the getStrategy and setStrategy
functions).

A rule with the autofocus property equal to t r ue automatically pushes its containing
ruleset onto the ruleset stack whenever it is activated.

A rule with the logical property makes all facts asserted by the rule's action block
dependent on some or all facts matched by the rule's condition. An integer value of n
for the logical property makes the dependency on the first n top-level &&ed fact set
expressions in the rule's condition. A boolean value of t r ue for the logical property
makes the dependency on the fact set expression of the condition. Anytime a fact
referenced in a row of the fact set changes such that the rule's logical conditions no
longer apply, the facts asserted by the activation associated with that fact set row are
automatically retracted. A rule with the logical property enabled makes all facts that
are asserted by an action block in the rule dependent on facts matched in the rule
condition. Anytime a fact referenced in the rule condition changes, such that the rule's
conditions no longer apply, the facts asserted by the rule condition are automatically
retracted.

The active property defaults to t r ue.

effectiveStartDate date defaults to null.

effectiveEndDate date default to null.

effectiveDateForm defaults to Rul e. EDFORM _DATETI ME

3-10 Rules Language Reference for Oracle Business Process Management

Definitions

Examples

Example 3-6 shows a rule with the inference, Socrates is mortal, which depends on the
fact, Socrates is a man.

Example 3-6 Defining and Using Rule allMenAreMortal

RL> clear;
RL> class Man {String name;}
RL> class Mrtal {String name;}
RL> Mortal lastMrtal = null;
RL> rule al | MenAreMortal {
| ogical = true;
if (fact Man)
{
assert(lastMrtal = new Mrtal (name: Mn. nane));
1

}
RL> wat chAl | ();

RL> Man socrates = new Man(nane: "Socrates");
RL> assert(socrates);

==> f-1 main.Man (nane : "Socrates")

==> Activation: main.allMnAreMrtal : f-1
RL> run();

Fire 1 main.allMenAreMortal f-1

==> f-2 main. Mrtal (nane : "Socrates")
<== Focus main, Ruleset stack: {}

RL> retract(socrates);

<== f-1 main.Man (nane : "Socrates")

<== f-2 main. Mrtal (nane : "Socrates")
RL> showFacts();

f-0 initial-fact()

Example of Same Fact Asserted by Multiple Rules

Example 3-7 shows that it is possible for the same fact to be asserted by multiple rules,
or to be asserted by a top-level ruleset action or function. Such a fact will not be
automatically retracted unless all asserters have logical clauses that call for automatic
retraction. A fact that is asserted by a top level action or function will never be
automatically retracted.

Note that the fact that Socrates is mortal is not retracted, because it was asserted by a
top level action that is not dependent on the fact that Socrates is a man.

Example 3-7 Asserting Facts Unconditionally

RL> assert (socrates);

==> f-3 main. Man(nanme : "Socrates")
==> Activation: main.allMnAreMrtal : f-3
RL> run();

Fire 1 main.all MenAreMortal f-3

==> f-4 main. Mrtal (nane : "Socrates")
<== Focus main, Ruleset stack: {}

RL> assert(lasthMrtal);

<=> f-4 main. Mrtal (nane : "Socrates")
RL> retract(socrates);

<== f-3 main. Man(nanme: "Socrates")

RL> showFacts();

f-0 initial-fact()

f-2 main. Mrtal (name: "Socrates")

Rule Language Reference 3-11

Definitions

3.1.5.3 Class Definitions

All referenced classes must be defined with an RL Language class definition or must
be on the Java classpath (Java classes must be imported).

Both RL Language classes and Java classes can support xpath using the supports
keyword, with a supplied xpath.
Format

rl-class-definition ::= [public] [final] class name [extends] [supports] { type-
property* }

type-property ::= [public] type name [= expression] ;
extends ::= extends qname extended-class-name

extended-class-name ::= gname

Usage Notes

The type of the optional initialization expression must be the same as the type of the
property or implicitly convertible to that type.

A public class is visible from all rulesets. A non-public class is visible only in the
containing ruleset.

A final class cannot be extended.
The extended class must be a defined RL Language class not an imported Java class.

Each property may have an optional initializer. The initializer is evaluated when the
class is instantiated by new. If an initial value is also passed to new, the value passed
to new overwrites the value computed by the initializer in the class definition.

A public property is visible from all rulesets. A non-public property is visible only
within its containing ruleset.

Examples

In RL Language, the type of an property may be the name of the containing class
definition as in the example below showing class definition with type of property:

class Q0 {
C0 next;

}

RL Language, unlike Java, does not support forward references to class definitions
(see Example 3-8).

Example 3-8 Class Definitions with Forward References are Not Allowed

class Cl {
C2 ¢2; Il causes an UndefinedException

}
class C {

Cl ci;
}

3-12 Rules Language Reference for Oracle Business Process Management

Definitions

3.1.5.3.1 xpath Support

Note:

xpath support has been deprecated. For more information, see assertTree.

Both RL Language classes and Java classes support xpath.
An XML identifier does not need to be surrounded by back quotes within an xpath.

The built-in assertXPath function supports a simple xpath-like syntax to assert a tree of
objects as facts. The nodes in the tree are objects from classes in the same package or
ruleset that support xpath. The links between parent and child nodes are instances of
the XLi nk class. All of the properties in a class that supports xpath may be used in the
xpath expression.

Format

supports ::= supports xpath

xpath ::= first-step next-step* first-step =:= (. | /* | [//] (identifier | *)) predicate*
predicate ::= [identifier xrelop literal] next-step ::= (/ | //') (identifier | *) predicate*
xrelop:=eq |1t I gtllel gelnel==1<1>1<=1[>=]!=literal ::= integer-
literal | decimal-literal | double-literal | string-literal | true | false | dateTime-literal
| date-literal | time-literal integer-literal =:=[-]d+dx=01112131415161718
| 9 decimal-literal ::= [-] (. d+ | d+.d*) double-literal ::=[-] (.d+ | d+[.d*]) (e |
E) [+ | -] d+ string-literal ::= " char*" | ' char* ' dateTime-literal ::= local-date T time-
literal date-literal ::= local-date [time-zone | time-zone :=Z | (+ | -)d d:d d local-
date::=dddd-dd-ddtime-literal :=dd:d d:dd[.d+][time-zone]

Usage Notes

RL Language xpath support was designed to work with classes that conform to the
Java XML Binding (JAXB) 1.0 standard. All JAXB elements from the given root to the
elements selected by the xpath, inclusive, are asserted. Additional XLink facts are
asserted to aid in writing rules about the parent-child relationships among the
asserted elements.

If a JAXB element is retracted or re-asserted, using assert, then all of its children, and
XLinks, are retracted. Instead of re-asserting, use assertXPath again.

Note that RL Language Xpath is not a proper subset of W3C Xpath 2.0. Note the
following differences:

¢ Thelt and <, gt and >, are synonymous in RL Language but different in W3C.
e Date literals must use xs: dat e() and other constructors in W3C.

* Constructors are not supported in RL Language, and literals, other than string
literals, must not be quoted in RL Language.

Examples

Table 3-4 shows the xpath selection options for use with the built-in assertXPath
function. In the descriptions, select means that the element is asserted as a fact, and the
selected property of the XLink whose element property refers to the asserted element

Rule Language Reference 3-13

Definitions

ist r ue. The ancestors of a selected element, up to and including the root element, are
always asserted, but not necessarily selected.

Table 3-4 xpath Selection Strings
|

xpath Select String Description of Selection
/7% Select all elements including the root
¥ Select all but the root
Select only the root
/ /foo Select all objects that are the value of a property named foo.
Ix==1]/y Select children or attributes of root named y only if the root has

a child element or attribute named x and equal to 1

The following example instantiates an RL Language class called Person to build a
family tree, as follows:

First CGeneration Second CGeneration Third Generation
| da
Mary
Fred
John
Rachel
Sally
Evan

The above example uses the assertXPath function twice, with two xpaths:

[1ki ds[mal e==tr ue]
[1ki ds[mal e==f al se]

Example 3-9 defines two rules:
¢ si bl i ng: prints all pairs of siblings.
e Dbrother Si st er: prints all pairs of brothers and all pairs of sisters.

The result is:

f-0 initial-fact()

For a total of 1 fact.
Example 3-9 Sample Family Tree Rule Using supports xpath

inport java.util.*;
ruleset xp {
public class Person supports xpath {
public String nane;
public bool ean nal e;
public List kids;
}
/1 Build the Fanily Tree
Person p = new Person(nane: "Fred", male: true);
List k = new ArrayList();

3-14 Rules Language Reference for Oracle Business Process Management

Definitions

k. add(p);
p = new Person(nane: "John", male: true);
k. add(p);
p = new Person(nane: "Mary", male: false, kids: k);
Person gramma = new Person(nane: "lda", male: false, kids: new ArrayList());
gramra. ki ds. add(p) ;
p = new Person(nane: "Sally", male: false);
k = new ArraylList();
k. add(p);
p = new Person(nane: "Evan", male: true);
k. add(p);
p = new Person(nanme: "Rachel", male: false, kids: k);
gramra. ki ds. add(p) ;
Il test for siblings.
I/ Note the test id(pl) < id(p2) halves the Cartesian product pl X p2.
rule sibling {
if (fact Person pl && fact Person p2 & id(pl) < id(p2) &&
exi sts(fact XLink(elenent: pl) x &&
fact XLink(element: p2, parent: x.parent))) {
println(pl.name + " is sibling of " + p2.nane);
}
1
Il test for brothers and sisters, given the follow ng 2 assertXPath() calls
rule brotherSister {
if (fact Person pl && fact Person p2 && id(pl) < id(p2) &&
exi sts(fact XLink(elenment: pl, selected: true) x &&
fact XLink(element: p2, selected: true,
parent: x.parent) y &&
x.samePath(y))) {
println(pl.name + " and " + p2.nane + " are " +
(pl.male ? "brothers" : "sisters"));
}
1

assert XPath("xp", gramma, "//kids[male==true]");
assert XPath("xp", gramma, "//kids[male==fal se]");
run("xp");

Sample Output from Run of Family Tree
Example 3-10 shows the output from running Example 3-9.
Example 3-10 Output from Run of Family Tree Example

Mary and Rachel are sisters
Evan is sibling of Sally

Fred and John are brothers

Fred is sibling of John
Mary is sibling of Rachel

Sample Output from Retract Element

Example 3-11 shows that when you retract an element that was asserted with
assert XPat h, all its descendents are retracted as well.

Example 3-11 Retract the Family Tree

retract (xp. gramm);

showFact s();

Rule Language Reference 3-15

Definitions

Sample Output from Print Ancestor Pairs

Example 3-12 prints all pairs of ancestors. First, the family tree is asserted. Example
3-13 shows the output of a run of the code from Example 3-12.

Example 3-12 Print Ancestor Pairs with Class Ancestor

assert XPath("xp", xp.gramma, "//*");
class Ancestor { nject elenent; Chbject ancestor; }
rule parents {
if (fact XLink x) {
assert(new Ancestor (el ement: x.element, ancestor: x.parent));
1
}

rule ancestors {
if (fact XLink x & fact Ancestor(ancestor: x.element) a) {
assert(new Ancestor (el ement: a.element, ancestor: x.parent));
1
}

rul e printAncestor {
if (fact xp.Person p & fact xp.Person a &&
fact Ancestor(elenent: p, ancestor: a) {
println(a.name + " is an ancestor of " p.nane);

}
}

run();

Sample Output from Run of Ancestor Example
Example 3-13 Output from Run of Ancestor Example

Mary is an ancestor of John
Ida is an ancestor of John
Mary is an ancestor of Fred
Ida is an ancestor of Fred
Ida is an ancestor of Mary
Rachel is an ancestor of Evan
Ida is an ancestor of Evan
Rachel is an ancestor of Sally
Ida is an ancestor of Sally
Ida is an ancestor of Rachel

3.1.5.4 Function Definitions

A function is similar to a Java static method.

Format
function ::= function name parameters [returns type] action-block

parameters ::= ([type identifier (, type identifier)*])

Usage Notes

The action-block may invoke the function being defined. However, the action-block
may not contain a forward reference to a function that has not already been defined
(see Example 3-14 and Example 3-15).

Functions may be overloaded. For example, the built-in println function is overloaded.

3-16 Rules Language Reference for Oracle Business Process Management

Fact Class Declarations

Examples
Example 3-14 Valid Function Definition Containing Recursive Reference

function factorial (long x) returns long {
if (x <=1) { return 1; }
else { return x * factorial (x - 1); }

}

Example 3-15 Invalid Function Definition Containing Reference to Undefined
Function

function f1() {
f2(); // causes an UndefinedException

}
function f2() {

}

3.1.6 Fact Class Declarations

Any Java class can be used as an RL Language fact in a fact context.

A fact context is one of:

The class of a fact-class declaration.

* The class of a fact-set-pattern.

¢ The declared class of an argument to the assert function.
* The declared class of an argument to the retract function.

* The declared class of an element argument to the assertXPath function.

If a class or interface B implements or extends class or interface A, and both Aand B
appear in fact contexts, then Amust appear before B. Failure to follow this rule will
result in a Fact C assExcepti on.

Fact class definitions are not required when using RL Language classes.

For xpath support, use the supports xpath clause of the RL Language class definition.

Format

fact-class ::= fact class class-name [supports] (fact-class-body | ;)
class-name ::= qname

fact-class-body ::={ [hidden-properties | properties |}

hidden-properties ::= hide property *; | (hide property ((name,)* name | *);)+
properties ::= property * ; | (property ((name,)* name | *);)+

Usage Notes

The fact-class-body is optional in a fact-class declaration. The default fact-class-body
is:

{ property *; }

Either the proper ty or hi de property keywords can be used in a body, but not
both.

Rule Language Reference 3-17

Fact Class Declarations

If hi de property is used with a list of property names, then those property names
are hidden and not available for use in RL Language.

If hi de property is used with the wildcard "*", then no properties other than those
exposed by a superclass or superinterface are available for use in RL Language.

If pr oper ty is used with a list of property names, then those properties are exposed
and available for use in RL Language. If property is used with the wildcard *, then all
properties other than those hidden by a superclass or superinterface are available for
use in RL Language.

A Hi ddenPr opert yExcept i on will be thrown if a superclass exposes a property
that its subclass hides or if a subclass exposes a property that its superclass hides.

Examples

Suppose a Java class Vehi cl e has subclasses Car and Tr uck. The rule shown in
Example 3-16, mat chVehi cl e, generates a TypeCheckExcept i on wrapping a
Fact Cl assExcept i on because the subclasses are referenced before the superclass.
Wrapping is used instead of subclassing for both Fact Cl assExcept i on and

Mul ti pl el nheritanceExcepti on because in some fact contexts, these exceptions
are not thrown until runtime and then are wrapped by a RLRunt i neExcepti on.

Example 3-16 matchVehicle Rule with Subclasses Referenced Before the
Superclass

assert(new Car()); // fact context for Car
assert(new Truck()); // fact context for Truck
rule matchVehicle {
if (fact Vehicle v) { // fact context for Vehicle - too late!
if (v instanceof Car) {
println("car");
} else {
printIn("truck");
}

}
} /1 generates a TypeCheckException wapping a Fact O assException

Sample MatchVehicle Rule with References to Superclass First

In Example 3-17, the mat chVehi cl e rule is the first reference to the superclass, so no
exception is thrown.

Example 3-17 matchVehicle Rule with References to Superclass First

clear;
rule matchVehicle {
if (fact Vehicle v) {
if (v instanceof Car) {
println("car");
} else {
println("truck");
}
}
}
assert(new Car());
assert(new Truck());
run(); // prints "truck" then "car"

3-18 Rules Language Reference for Oracle Business Process Management

Fact Class Declarations

Sample MatchVehicle Rule with First Class Declaration

In Example 3-18, a fact class declaration is the first reference to the superclass, so no
exception is thrown.

Example 3-18 matchVehicle Rule with Fact Class Declaration with Reference to
Superclass First

clear;
fact class Vehicle;
assert(new Car());
assert(new Truck());
rule matchVehicle {
if (fact Vehicle v) {
if (v instanceof Car) {
println("car");
} else {
println("truck");

}
}
}

run(); /I prints "truck" then "car"

Sample Java Class

Facts do not support multiple inheritance. Consider the Java classes and interfaces
shown in Example 3-19.

Example 3-19 Java Classes and Sample Multiple Inheritance

package exanpl e;

public class Car {}

public interface Sporty {}

public class SportsCar extends Car inplenents Sporty {}

Sample Multiplelnheritance Exception for Facts

Example 3-20 entered at the command-line results in a TypeCheckExcept i on that
wraps a Mul ti pl el nherit anceExcept i on. Use the get Cause method on the
TypeCheckExcept i on to retrieve the wrapped

Mul ti pl el nheritanceExcepti on exception.

Example 3-20 Multiplelnheritance Exception for Facts

inport exanple.*;

fact class Sporty;

fact class Car;

fact class SportsCar; // throws TypeCheckException wapping a
Mul tipl el nheritanceException

Sample RL Runtime Exception

Example 3-21 illustrates an exception that occurs at runtime when the Oracle Rules
Engine attempts to assert the r X8 object and discovers its true type is Spor t sCar, not
Cbj ect . To avoid the Mul ti pl el nheri t anceExcept i on, you must choose
whether to use Sporty or Car in a fact class context. You cannot use both.

Example 3-21 RLRuntimeException wraps MultiplelnheritanceException

i mport exanple.*;
fact class Sporty;
fact class Car;

Rule Language Reference 3-19

Import Statement

vj ect rx8 = new SportsCar();
assert(rx8); [/ throws RLRuntinmeException wapping a MiltiplelnheritanceException

Sample FactClassException
Example 3-22 FactClassException Possible Cause

oracle.rules.rl.Fact O assException: fact class for "X should be declared earlier in
rul e session

Fact Context Rule

If X is a subclass or subinterface, of Y, then Y must appear in a fact context before X. A
fact context is a fact-class declaration, a rule fact pattern, or the argument of assert,
assertXPath, or retract.

In some cases you need to consider the fact context. For example, with an XML schema
such as the following:

<schema>
<el ement nanme=A type=T/>
<conpl exType nanme=T>
<sequence>
<el ement nanme=B type=T/>
</ sequence>
</ conpl exType>
</ schema>

JAXB generates:

interface T {
List getB(); // List has TInpl objects

}

interface A extends T,
class Alnpl inplenments A extends Tlnpl;
class Tinpl inplenents T,

In an example with the following order of appearance in fact contexts:
1. factclassT
2. assert XPat h Al npl

3. assert TInpl (performed internally by the assert XPat h implementation)

The, Al npl precedes Tl npl in the ordering, yet Al npl extends Tl npl , which would
give the exception. The fix for this fact context is to explicitly issue f act cl ass
Tl npl ; anywhere before Step 2.

3.1.7 Import Statement
An import statement makes it possible to omit the package name qualification when
referencing Java classes.
Format
import ::= import (Java-class-name | Java-package-name.*) ;

Java-package-name ::= gname

3-20 Rules Language Reference for Oracle Business Process Management

Include Statement

Usage Notes

Import commands can be placed inside a ruleset, implying that the scope of the import
is the ruleset where the import is located, but the import actually applies globally. For
example, in the following code if the imports were scoped to the rulesets, then the
Print Witer reference inr 2 would not compile.

class X { }

ruleset rl {
import java.io.*;
rule A{
if (fact X) {

@PrintWiter pw = null;
}
}
}

rul eset r2 {
rule B{
if (fact X) {
@PrintWiter pw = null;
}
}
}
3.1.8 Include Statement

Include the ruleset at the location specified by the URL.

Format
include ::= include URL ;

Where: URL is: A legal Uniform Resource Locator.

Usage Notes

Thefil e: and htt p: schemes are supported.

Example

include file:exanple.rl;

3.1.9 Using Expressions

Expressions in RL Language use familiar Java syntax (with minor variations as noted).
For example,

(a+1) *(b-2

Use expressions in a condition or in an action, with some restrictions. Expressions are
strongly typed.

Format

expression ::= boolean-expression

Rule Language Reference 3-21

Using Expressions

| numeric-expression

| string-expression

| array-expression

| fact-set-expression | object-expression

| comparable-expression

3.1.9.1 Boolean Expressions

Boolean expressions, as in Java, may be either t rue or f al se.

Format

boolean-expression ::= boolean-assignment

| boolean-expression ? boolean-expression : boolean-expression
| boolean-expression | | boolean-expression

| boolean-expression &é& boolean-expression

| numeric-expression equal-op numeric-expression

| object-expression equal-op object-expression

| boolean-expression equal-op boolean-expression

| object-expression instanceof type-name

| numeric-expression relop numeric-expression

| string-expression relop string-expression

| ! boolean-expression

| boolean-primary-expression

boolean-assignment ::= boolean-target-expression = boolean-expression

Usage Notes
For strings, < is Unicode UCS2 code point order.

For objects,! = does not test for inequality of object references, but rather is the
negation of the equals methods.

Thus, the statement:

if (objectl !'= object2){}

Is equivalent to the statement:

if (! (objectl. equal s(object2)){}

RL Language, unlike Java, does not support testing for equality of object references.

3-22 Rules Language Reference for Oracle Business Process Management

Using Expressions

Example
Example 3-23 shows use of a boolean expression in RL Language.
Example 3-23 RL Boolean Expression
if(
(true ? "a" < "b" : false)

& (1 ==01] 1.0 >0)
& "x" instanceof (bject)

{
printin("all true");
b

3.1.9.2 Numeric Expressions

Numeric expressions, as in Java, implicitly convert integer operands to floating point if
other operands are floating point. Table 3-1 shows other implicit conversions.

Format

numeric-expression ::= numeric-assignment

| boolean-expression ? numeric-expression : numeric-expression
| numeric-expression(+ | -) numeric-expression

| numeric-expression (* | / | %) numeric-expression

| numeric-expression ** numeric-expression

| (numeric-cast) numeric-expression

| (+ | -) numeric-expression

| (++ | --) numeric-primary-expression

| numeric-primary-expression [++ | --]

numeric-assignment ::= numeric-target-expression (= | += | -= | *= | /= | %=)
numeric-expression

numeric-cast ::= numeric

Usage Notes

Table 3-5 shows the precedence order, from highest to lowest, for a numeric-
expression.

Table 3-5 Expression Operator Precedence

Symbols Category Description

++ - - Post-increment numeric-primary-expression [++ | --]
or Post-
decrement

++ - - Pre-increment (++ | --) numeric-primary-expression
or Pre-
decrement

Rule Language Reference 3-23

Using Expressions

Table 3-5 (Cont.) Expression Operator Precedence
|

Symbols Category Description

-+ Unary minus (+ I =) numeric-expression
or Unary plus

(type) Type cast (numeric cast) numeric-expression

** Exponentiation numeric-expression ** numeric-expression

* 1, % Multiply or numeric-expression (* | / | %) numeric-
Divide or expression
Remainder

+,- Addition or numeric-expression(+ | -) numeric-expression
Subtraction

?,: Conditional boolean-expression ? numeric-expression :

numeric-expression

| -= 1] *= Assignment numeric-target-expression (= | += | -= | *= | /= |
erators o=) numeric-expression
% Operat % P

3.1.9.3 String Expressions

As in Java, any expression can be converted to a string using the concatenation +
operator. In RL Language, unlike Java, when an array is converted to a string, the
array contents are converted to a string, with array elements separated by commas
and surrounded with curly braces. When an instance of an RL Language class is
converted to a string, the class name appears followed by property value pairs
separated by commas and surrounded with parentheses. This RL Language feature is
useful for logging, tracing, and debugging.

When + operator is applied to an operand thatis a St r i ng, then all operands are
converted to St ri ngs and the operands are concatenated.

Format

string-expression ::= string-assignment

| boolean-expression ? string-expression : string-expression
| string-expression + expression

| expression + string-expression

| string-primary-expression

I

string-assignment ::= string-target-expression (= | +=) string-expression

Example

Example 3-24 shows use of a string expression in RL Language. The example prints "1
2.0 true {1,2}"

3-24 Rules Language Reference for Oracle Business Process Management

Using Expressions

Example 3-24 RL String Expression
int i =1,

double f = 2.0;

bool ean b = true;

int[] v =newint[]{i, 2};

printin(i +" " +f +" " +b+" " +v);

3.1.9.4 Array Expressions

RL Language arrays behave just like Java arrays, but are limited to one dimension. The
base type of an array is the type of the members of the array. All members must be of
the same type. An array element may contain an array but only if the containing array
is of type Qbj ect [] .

Note:

RL Language does not directly support multi-dimensional arrays.

Format

array-expression ::= array-assignment

| boolean-expression ? array-expression : array-expression
| (array-cast) (array-expression | object-expression)
| array-primary-expression

array-assignment ::= array-target-expression = array-expression

array-cast ::= type

Usage Notes

The type of an array-cast must be an array type.

3.1.9.5 Fact Set Expressions

A fact-set-expression matches, filters, and returns facts from working memory. A fact-
set-expression is legal only in a rule fact-set-condition. The i f keyword indicates a
fact-set-condition; however, a fact-set-condition is different from an if action. A rule's
fact-set-condition iterates through all the rows in a fact set that match the fact-set-
condition. The if action tests a boolean expression.

Format

fact-set-condition ::= if fact-set-expression

fact-set-expression ::= fact-set-expression | | fact-set-expression

| fact-set-expression && fact-set-expression
| fact-set-expression && boolean-expression
| ! fact-set-expression

| exists fact-set-expression

Rule Language Reference 3-25

Using Expressions

| fact-set-pattern
| (fact-set-expression)

| aggregate fact-set-pattern ::= fact [(property-pattern (, property-pattern)*)] [var]
local-object-variable local-object-variable ::= identifier property-pattern ::= property-

name : field-pattern field-pattern ::= var local-property-variable | constraint

local-property-variable ::= identifier

simple-expression ::= string literal | object-target-expression | numeric literal |
numeric-target-expression | boolean-literal | boolean-target-expression constraint ::=
simple-expression property-name ::= name aggregate ::= aggregate fact-set-
expression : aggregate-spec (, aggregate-spec)* aggregate-spec ::= aggregate-function
[var] identifier aggregate-function ::= average (numeric-expression) | sum
(numeric-expression) | minimum (comparable-expression) | maximum

(comparable-expression) | count () | collection (object-expression) | user-defined
(expression type Tin) user-defined ::= qname

Usage Notes

A fact-set-expression can limit the facts it returns using either a simple-expression as a
constraint in a fact-set-pattern or using a supported operator with the fact-set-
expression.

A fact-set-expression may not contain any of the following:
® assert

¢ modify

* new

* References to non-final global variables.

Operator precedence is as in Java. Use parentheses to force desired precedence. For
example,

fact person var p & (p.age < 21 || p.age > 65)

Without the parentheses, the p in p. age is undefined (see Table 3-5 for more details
on operator precedence).

A local-object-variable or local-property-variable is in scope for all expressions
following the pattern that are following the pattern and connected with the &&
operator. If the pattern is not contained in an exi sts, | | , or ! expression, the variable
is also in scope in the rule's action-block. The &&'ed expressions may filter the returned
facts, so that only the facts surviving the filter are returned.

Fact Set Pattern - Fetch From Working Memory

The most primitive fact-set-expression is the fact-set-pattern that returns some or all
facts of the given class that have been asserted into working memory. A fact-set-
pattern searches working memory for facts of the given class and with the optional
constraint on the property values. The returned fact set contains a row for each
matching fact. A local row variable can be defined to refer to each row, or local field
variables can be defined to refer to fields within a row. If no local row variable is
supplied, the name part of the class qname can be used to refer to each row (see
Example 3-28).

3-26 Rules Language Reference for Oracle Business Process Management

Using Expressions

Join Operator

The && operator defines the cross product or join of two fact-set-expression operands.
The left-hand-side of a fact-set-expression && operator must be a fact set. The right-
hand-side of a join operator is another fact-set-expression. The result of applying the
&& operator to two fact sets is the joined fact set.

Filter Operator

The && operator defines a filter operator that rejects facts in its left-hand-side fact-set-
expression that do not match the right-hand-side boolean-expression. The left-hand-
side of filter must be a fact-set-expression. The right-hand-side of a filter is a boolean-
expression.

A filter right-hand-side may include references to variables defined, using the var
keyword, in the left-hand-side.

Union Operator

The | | operator defines the union of two fact-set-expression operands. When the] |
operator is applied to fact-set-expressions, the following is true:

* The expression's var s cannot be referenced outside the containing expression.

® The| | returns the concatenation of its input fact sets, but the contents of the
produced fact set are not accessible. Thus, | | is typically used ina! or exi st s
expression. Rather than a top-level | | in a condition, it is usually better to use two
or more rules with top-level && operators so that var s defined in the condition can
be referenced in the action-block.

Note:
In the following construction:

if (fact X || fact W {}

If both an X and a Ware asserted, this rule fires twice, one time for each fact.

Empty Operator

The ! operator tests if the fact-set-expression is empty. When the ! is applied to the
fact-set-expression, the following is true:

* The expression's var s cannot be referenced outside the containing ! expression.

* The! operator returns a single row if the fact-set-expression is empty, else the !
operator returns an empty fact set.

Exists (Not Empty) Operator
The exi st s operator tests if the fact-set-expression is not empty.

When the exi st s operator is applied to the fact-set-expression, the following is true:

* The expression's var s cannot be referenced outside the containing exi st s
expression.

Rule Language Reference 3-27

Using Expressions

* The exi st s returns a single row if the expression is not empty, else exi st s
returns an empty fact set.

Var Keyword

Note that when you use var, the fact is only visible using the var defined variable
(and not using the original name). Thus, the following example works, assuming
action. ki nd is defined:

if (fact action) {
println(action.kind);

}

However, for the following example, after var a is defined, the acti on. ki nd
reference produces a syntax error because you need to use a. ki nd after the var a
definition.

if (fact action var a) {
println(action.kind);

}

Aggregate
Aggregates support the following functions:

Table 3-6 Aggregate Functions

Function Description

aver age() Provides the average for matching facts. The result is doubl e.

sum() Provides the sum for the matching facts. The result is doubl e or | ong.
count () The result is | ong.

mi ni munt() Provides the minimum for the matching facts.

maxi munm() Provides the maximum for the matching facts.

col I ection() The resultisj ava. util . Li st of Facts.

user defined For a user-defined function the result is type Tout.

RL Language supports the aggregate pattern that applies one or more aggregate
functions to a f act RowCol | ect i on, and binds the aggregates to pattern variables.
The usual SQL set of built-in aggregates is supported, and user-defined aggregates are
supported when a user-supplied Java class is supplied.

If an aggregate function uses primitive wrapper types, for example Long, Double, then
these will be unboxed such that the bind variable for the result has the appropriate
raw primitive type.

If the fact expression in an aggregate is empty, then the rule will not fire. This ensures
that if there are no matching facts for the expression, the aggregate function does not
return a number that is meaningless in this context. For example, the "sum" of a
property of a zero-size set is not meaningful.

For example, print the names of employees who are paid better than average:

3-28 Rules Language Reference for Oracle Business Process Management

Using Expressions

if fact Emp emp && aggregate fact Enp(salary: var sal) : average(sal) var avgSal
&% enp.salary > avgSal {
println(enp.nane);

}

Print the names of employees, who are paid better than the average of employees who
make over $100,000:

if fact Emp enp && aggregate fact Enp(salary: var sal) && Enp.salary > 100000 :
average(sal) var avgSal
&% enp.salary > avgSal {

println(enp. nane);

}

User-defined aggregates are supported by providing a public class named user -
def i ned with a public 0-arg constructor that implements:

public interface Incremental Aggregate<Tin, Tout> extends Serializable

{
public void initialize();
public void add(Tin val ue);
public void remove(Tin val ue);
public Tout getResult();
public boolean isValid();

Implementations must support the following invocation sequence:
new (initialize (add|renove)+ isValid getResult)*

i sVal i d should return t r ue when the result of the user defined aggregate is valid
and f al se otherwise.

Examples

Example 3-25 shows the action is placed on the agenda for all Count er facts with a
value of 1.

Example 3-25 Fact Set Expression for Counter.value

class Counter { int id; int value; }
rule exla {
if (fact Counter c && c.value == 1)
{ printIn("counter id" +c.id +" is 1"); }

}

Sample of Fact Set Constraint

Example 3-26 shows an equivalent way to express the rule from Example 3-25, using a
constraint.

Example 3-26 Using a Fact Set Constraint

rule exlb {
if (fact Counter(value: 1) c)
{ printin("counter id" +c.id + " is 1"); }

assert(new Counter(id: 1, value: 99));
run(); [/ prints twice, once for each rule

Rule Language Reference 3-29

Using Expressions

Sample lllegal Use of Fact Set
Example 3-27 shows an illegal use of a fact set, because ¢ is used before it is defined.
Example 3-27 lllegal Use of Fact Set

rule ex2 {
if (c.value == 1 && fact Counter c)
{ printin("counter id" +c.id+ " is 1"); }

}

Sample Fact Set with && Operator for Counter Fact

Example 3-28 shows an action is placed on the agenda for all At t Fact s with the
property a2==0 and without a matching, equal first elements, Counter.

Example 3-28 Using a Fact Set with && Operator for Counter Fact

class AttFact {int al; int a2;}

rule ex3 {
if (fact AttFact(a2: 0) & ! fact Counter(id: AttFact.al))
{ printIn(AttFact.al); }

assert(new AttFact()); // will match because al=a2=0
assert(new AttFact(al: 1, a2: 0)); // will not match
run(); // rule fires once

Sample Fact Set with && Operator

Example 3-29 shows the condition,i f (fact Ca a && fact Ch(v: a.v) b)is
interpreted as follows:

e Thefact Ca areturnsa factsetcontaininga(v: 1), a(v: 2), a(v: 3)

* The && operator returns a fact set containing the two rows {a(v: 1), b(v: 1)},
{a(v: 2),b(v: 2)}

Example 3-29 Using a Fact Set with && Operator

class Ca {int v;}

assert(new Ca(v: 1));
assert(new Ca(v: 2));
assert(new Ca(v: 3));
class Cb {int v;}

assert(new Cb(v: 0));
assert(new Co(v: 1));
assert(new Co(v: 2));

ruler {
if (fact Ca a & fact Cb(v: a.v) b) {
println("row. " +a+" " +b);
}
}

run(); // prints 2 rows

3.1.9.6 Comparable Expression

Comparable expressions allow objects that implement java.lang.Comparable to be
compared using the ==, |=, <, <=, >, and >= operators. This allows dates to be easily

3-30 Rules Language Reference for Oracle Business Process Management

Using Expressions

compared. Also, Bi gDeci mal , often used to represent money, can be compared in
such expressions.

Format

comparable-expression ::=

gqname variable of type implementing java.lang.Comparable | member of type
implementing java.lang.Comparable

3.1.9.7 Object Expressions

The only expression operators for objects are assignment and cast.

Format

object-expression ::= object-assignment | (ob-cast) object-expression | boolean-
expression ? object-expression : object-expression

object-assignment ::= object-target-expression = object-primary-expression

ob-cast ::= object-type

3.1.9.8 Primary Expressions

Primary expressions include assignment targets such as variables, properties, array
elements, class members and other tightly binding expression syntax such as literals,
method and function calls, and object and fact construction. The syntax is very similar
to Java except where noted.

Format

primary-expression ::= array-primary-expression

| string-primary-expression
| numeric-primary-expression
| boolean-primary-expression

| object-primary-expression

array-primary-expression ::=

array-constructor

| function-call returning array

| method-call* returning 1-dim Java array
| (array-expression)

| array-target-expression

array-constructor ::= new (

simple-type [numeric-expression integer |

Rule Language Reference 3-31

Using Expressions

| numeric [] { numeric-expression (, numeric-expression)* } numeric expression must be
implicitly convertible to base

| boolean [] { boolean-expression (, boolean-expression)* }
| object-type [1{ object-expression (, object-expression)* }

)

array-target-expression ::=

qname variable of type array
| member of type array

| array-primary-expression base type is Object [numeric-expression int]

string-primary-expression ::=

string literal (see “Literals”)

| object-primary-expression object is java.lang.String

string-target-expression ::= object-target-expression object is java.lang.String

numeric-primary-expression ::=

numeric literal

| function-call returning numeric

| method-call returning numeric

| array-primary-expression . length
| (numeric-expression)

| numeric-target-expression

numeric-target-expression ::=

qname variable of type numeric
| member of type numeric

| array-primary-expression base type is numeric [numeric-expression]

boolean-primary-expression ::=

boolean-literal

| function-call returning boolean
| method-call returning boolean
| (boolean-expression)

| boolean-target-expression
boolean-literal ::= true | false

boolean-target-expression ::=

3-32 Rules Language Reference for Oracle Business Process Management

Using Expressions

qname variable of type boolean
| member of type boolean

| array-primary-expression base type is boolean [numeric-expression int]

object-primary-expression ::=

new class-definition-name ([expression (, expression)* | argument list)

| new class-definition-name ([property-pattern (, property-pattern)* | property-value
pairs)

| function-call returning Java object
| method-call returning Java object

| object-target-expression

object-target-expression ::=

qname variable of type object

| member of type Java object

| array-primary-expression base type is object [numeric-expression int |
function-call ::= qname function name ([expression (, expression)* | argument list)

method-call ::= object-primary-expression . identifier method name ([expression (,
expression)* | argument list)

member ::= object-primary-expression . identifier member name

Examples

Example 3-30 shows the RL Language literal syntax (which is the same as Java).
Methods and functions can be overloaded. However, unlike Java, RL Language uses a
first fit algorithm to match an actual argument list to the overloaded functions.
Example 3-30 Use of Literals

String s = "This is a string."

int i =23,

double f = 3.14;

bool ean b = fal se;

Sample Overloading
Example 3-31 shows an example of overloading
Example 3-31 Overloading

function f(int i);
function f(Qhject 0);
function f(String s); [/ can never be called

(1); /] calls first f

f(1)
f("a"); // calls second f, because "a" is an bject

Rule Language Reference 3-33

Actions and Action Blocks

3.1.9.8.1 new

RL Language classes do not have user-defined constructors. The default constructor
initializes properties to their default values. The RL Language new operator permits
specifying some property values (this works for Java bean properties, too).

A Java bean property may have a getter but no setter. Such a property may not be
modified.

Example

Example 3-32 Initialization Using the New Operator

class C{ int i =1; int j =2;}
Cc =new (();

printin(c); // c.i ==1and c.j == 2
c =newC(i: 3);

printin(c); // c.i == 3 and c.j == 2
c=newCi: 0, j: 0);

printin(c); // c.i ==c.j ==

3.1.10 Actions and Action Blocks

RL Language, unlike Java, requires action blocks and does not allow a single
semicolon terminated action.

Format
action ::= action-block | if | while | for | try | synchronized | return | throw
| assign | incr-decr-expression | primary-action

action-block ::={ (variable | action)* }

Usage Notes

An action block is any number of local variable declarations and actions. The variables
are visible to subsequent variable initialization expressions and actions within the
same action block.

In RL Language, unlike in Java, all local variables must be initialized when they are
declared. Local variables may not be final.

To exit, you can invoke the System.exit(int) method from within an action.

Example
Example 3-33 Action Block Sample

RL> {
int i =2
while (i-- >0) { println("bye"); }
}
bye
bye
RL>

3-34 Rules Language Reference for Oracle Business Process Management

Actions and Action Blocks

3.1.10.1 If Else Action Block

Using the if else action, if the fest is t r ue, execute the first action block, and if the test

is f al se, execute the optional else part, which may be another if action or an action
block.

RL Language, unlike Java, requires action blocks and does not allow a single
semicolon terminated action.

Format
if ::= if if-test action-block [else if | action-block]

if-test ::= boolean-expression

Examples

Example 3-34 shows an RL Language if else action block. Example 3-35 shows that an
action block is required.

Example 3-34 Sample If Else Action
String s = "b";

if (s=="a") { println("n) el se

’}
if (s=="b") { printIn("yes");}
el se { printIn("no"); }

Example 3-35 lllegal If Action Without an Action Block
if (s=="a") printIn("no");

3.1.10.2 While Action Block

While the test is t r ue, execute the action block. A return, throw, or halt may exit the
action block.

Format
while ::= while while-test action-block

while-test ::= boolean-expression

Usage Notes

RL Language, unlike Java, requires action blocks and does not allow single semicolon
terminated action.

Examples

Example 3-36 prints "bye" twice.
Example 3-36 Sample While Action
int i =2

while (i-- >0) {

println("bye");
}

Rule Language Reference 3-35

Actions and Action Blocks

Example 3-37 lllegal While Action Without an Action Block
while (i-- >0) printIn("no");

3.1.10.3 For Action Block

RL Language, like Java, has a for loop. Using the for action block, the for-init portion
executes, then while the boolean-expression is t r ue, first the specified action block is
executed then the for-update executes. A return, throw, or halt may exit the action
block.

Format

for ::= for (for-init ; boolean-expression ; for-update) action-block

for-init ::= variable | for-update for-update ::= incr-decr-expression | assign |
primary-expression

Usage Notes

RL Language does not allow a comma separated list of expressions in the f or i ni t
or for update clauses (Java does allow this).

Example
Example 3-38 shows RL Language code that convertsani nt[] toa doubl e[].
Example 3-38 For Action

int[] is=newint[]{1,2 3};

double[] fs =is; [/ error!

doubl e[] fs = new doubl e[3];

for (int i =0; i <is.length; ++) {
fs[i] =is[i];

println(fs);

3.1.10.4 Try Catch Finally Action Block

Execute the first action block. Catch exceptions thrown during executions that match
the Thr owabl e class in a catch clause. For the first match, execute the associated catch
action block. Bind the Thr owabl e class instance to the given identifier and make it
available to the catch action block. Whether an exception is thrown in the try action
block, execute the finally action block, if given.

Uncaught exceptions are printed as error messages when using the RL Language
command-line and are thrown as RLExcept i ons when using a RuleSession's

execut eRul eset orcal | Functi on methods. Thetry,catch,andfinally inRL
Language is like Java both in syntax and in semantics. There must be at least one
catchorfinal |l y clause.

Format
try ::= try action-block

(catch (class-implementing-throwable identifier) action-block)* [finally action-
block] class-implementing-throwable ::= qname

3-36 Rules Language Reference for Oracle Business Process Management

Actions and Action Blocks

Usage Notes

In order to fully understand how to catch exceptions in RL Language, one must
understand how the stack frames are nested during rule execution. Rules do not call
other rules the way that functions or methods may call functions or methods.
Therefore, you cannot use a catch block in one rule's action block to catch exceptions in
another rule's action block. Exceptions thrown during rule firing must either be
handled by the firing rule's action block, or must be handled by a caller to the run,
runUntilHalt, or step functions that caused the rule to fire.

Examples

Example 3-39 shows the try catch and finally actions. The output from running this
example is:

exception in invoked Java nethod
this is really bad!
but at least it's over!

Note that RL Language treats the explicitly thrown Exception ("this is really
bad! ") as an exception from an invoked Java method, and wraps the Except i on in
a JavaExcept i on. The explicitly thrown Except i on is available as the cause of the
JavaExcepti on.

Example 3-39 Try Catch and Finally Action Blocks

try {
t hrow new Exception("this is really bad!");

} catch (Exception e) {
println(e.get Message());
println(e.getCause().get Message());

} finally {
printIn("but at least it's over!");

}
3.1.10.5 Synchronized Action Block

As in Java, the synchronized action is useful for synchronizing the actions of multiple
threads. The synchronized action block lets you acquire the specified object's lock,
then execute the action-block, then release the lock.

Format

synchronized ::= synchronized object-primary-expression action-block

Example

Example 3-40 changes the name of a Per son object, adding old names to the
nicknames, and synchronizes so that a concurrent reader of the Java object who is also
synchronizing will see a consistent view of the Per son (See Example 3-9 details on the
Per son bean).

Example 3-40 Synchronized Action

i mport exanple.Person; // this Java bean is defined in exanple J1
function changeNane(Person p, String first, String last) {
synchroni zed(p) {
java.util.Set s = p.getN cknanes();
s.add(p. getFirstNane());

Rule Language Reference 3-37

Actions and Action Blocks

s. add(p. get Last Name());
p.set FirstName(first);
p. set Last Name(| ast);

}

assert(p);

}

Person person = new Person("El ner", "Fudd", new String[]{"Wabbit Wiver"});
println(person.nicknanes.toArray());
changeNanme(person, "Bugs", "Bunny");
println(person.ni cknanes. t oArray()

)i
).

3.1.10.6 Modify Action

Modify updates the named properties using the associated expressions. It also updates
the associated shadow fact, if any, and causes rules whose conditions reference the
updated properties and evaluate to t r ue to be activated. Rules whose conditions do
not reference the updated properties are not activated.

The object argument to modify must be an object that has already been asserted, then
the values of that object are updated and network is updated with the slot-specific
semantics. The result is the object and the network are consistent.

Format
modify ::= modify (object-expression , property-update (, property-update)*)

property-update ::= property-name : expression.

Usage Notes

It is common for a fact to have properties that are set or modified by rules. For
example, a customer in an application might have a status of ", "silver", or "gold". The
status may be set by rules that examine other properties of customer and related facts
(such as past orders). It is also common for these computed properties to be used in
further rule conditions. For example, give gold customers a 10% discount. A rule that
modifies a fact and reasserts it must be careful to add an extra condition so that it does
not reactive itself over and over. For example, if the following rule fires once, it will

fire over and over:

if fact Customer c && c. past Year Spend > 1000 {
c.status = "gold";
assert(c);

}

You can fix this looping using the following rule definition:

if fact Customer c && c. past Year Spend > 1000 && c.status != "gol d" {
c.status = "gold";
assert(c);

}

Example 3-41 prevents the loop but does not activate rules that are looking for gold
customers.

Example 3-41 demonstrates bad rules programming practice because it changes the
value of the customer object but not the value of the, shadow, customer fact. The
modify action lets you modify the object and fact together. Modify also activates rules
that test the modified properties but does not activate rules that test non-modified
properties.

3-38 Rules Language Reference for Oracle Business Process Management

Actions and Action Blocks

if fact Customer c && c. past Year Spend > 1000 {
modi fy(c, status: "gold");
}

This rule does not loop because the tested properties and modified properties are
disjoint. This rule can be used in an inference to fire subsequent rules that test for
status=="gold".

Example 3-41 Example Showing Bad Rules Programming Practice to be Avoided

if fact Customer c && c. past Year Spend > 1000 {
c.status = "gold";

}

Infinite Looping Rule
A second rule that illustrates infinite looping is the rule described as follows:
Give Employees earning at least $50,000 a 5% raise.

i f Enpl oyee emp && enp.sal > 50000 {
modi fy(enmp, sal: sal * 1.05);
}

Even using modify, this rule will self-trigger because it is testing the same property
(sal) that it is modifying, and the test is t r ue after modification. To avoid looping in
this case, you could also add a r ai se property test, as follows:

i f Enmpl oyee emp && enp.sal > 50000 && !enp.raise {
modi fy(enp, sal: enp.sal * 1.05, raise: true);
}

Alternatively, to avoid looping in this case you could also add a fact to handle the
raise. For example:

public class RaiseG ven

{

}

i f Enployee enp && enp.sal > 500000 && ! Rai seG ven(enmp: enmp) {
modi fy(enmp, sal: sal * 1.05);
assert (new Rai seG ven(enp: enp));

Enmpl oyee enmp; // or possibly just an enployee ID

}

3.1.10.7 Return Action

The return action returns from the action block of a function or a rule.

A return action in a rule pops the ruleset stack, so that execution continues with the
activations on the agenda that are from the ruleset that is currently at the top of the
ruleset stack.

If rule execution was initiated with either the run or step functions, and a return action
pops the last ruleset from the ruleset stack, then control returns to the caller of the r un
or step function.

If rule execution was initiated with the runUntilHalt function, then a return action will
not pop the last ruleset from the ruleset stack. The last ruleset is popped with
runUntilHalt when there are not any activations left. The Oracle Rules Engine then
waits for more activations to appear. When they do, it places the last ruleset on the
ruleset stack before resuming ruleset firing.

Rule Language Reference 3-39

Actions and Action Blocks

Format

return ::= return [return-value] ;

return-value ::= expression

If the function has a r et ur ns clause, then the return-value must be specified and it

must be of the type specified by the r et ur ns clause.

Usage Notes

A return action in a rule or a f unct i on without a r et ur ns clause must not specify a
return-value.

3.1.10.8 Throw Action

Throw an exception, which must be a Java object that implements

java.l ang. Thr owabl e. A thrown exception may be caught by a cat ch in a try
action block.

Format

throw ::= throw throwable ;

throwable ::= object-primary-expression

3.1.10.9 Assign Action
An assignment in RL Language, as in Java, is an expression that can appear as an
action.
Format
assign ::= assignment-expression ;

assignment-expression ::= boolean-assignment | numeric-assignment | string-
assignment | object-assignment | array-assignment

Example

Example 3-42 shows the use of the RL Language assignment expression. This prints "6
5"

Example 3-42 Assignment Expression

clear;

int i =1;

intj =2

i +=] +=3;
println(i +" " +j);

3.1.10.10 Increment or Decrement Expressions

Increment and decrement in RL Language, as in Java, are expressions that can appear
as actions.

Format

incr-decr ::= incr-decr-expression ;

3-40 Rules Language Reference for Oracle Business Process Management

Rulegroup

incr-decr-expression ::= (++ | --) numeric-target-expression | numeric-target-
expression (++ | --)

Examples

Example 3-43 shows the use of the RL Language decrement action. This example
prints "0".

Example 3-43 Decrement Action

clear;

int i =1

printin(i);

3.1.10.11 Primary Actions

A primary action is a primary expression such as a function call, assert, or Java
method call executed for its side-effects. For example, the pri nt | n function is often
used as a primary action.

Format

primary-action ::= primary-expression ;

3.1.11 Rulegroup

A rulegroup provides support for decision table overrides. This supports the
following decision table features: the ability for one rule to override one or more other
rules

Format

rulegroup ::= rulegroup rulegroup-name { rulegroup-property* (rule | rulegroup)* }
rulegroup-name ::= identifier rulegroup-property ::= mutex mutex ::= mutex =
boolean-literal ;

Usage Notes

A rulegroup construct is a top level construct in a ruleset. A rulegroup has an optional
boolean property:

¢ mutex: The mutex property enables mutual exclusion between rules. The common
case is that the rules reside in the same rulegroup that has set mutex to true. In
more complex rulegroup hierarchies, two rules mutually exclude each other if their
closest common ancestor rulegroup has mutex set to true. When a rules fires,
existing activations for rules which it mutually excludes are removed from the
agenda preventing them from firing. Theses activations must be directly related as
identified by the set of facts that resulted in the activations being placed on the
agenda. This leads to the requirement that the conditions of all rules that mutually
exclude each other have the same fact clauses specified in the same order. This
occurs naturally for decision tables.

Example

Example 3-44 demonstrates the use of rulegroups with the mutex property. Note that
r2 and r3 reference the same set of fact types in the same order in the rule condition.

Rule Language Reference 3-41

Built-in Functions

This is required within a mutex group. The tests in the patterns can be different. The
restriction on the shape of the rule condition in a mutex group extends to its
descendent groups. Thus, rules r4 and r5 also must reference the same set of fact types
in the same order. Assume that one instance of A and one instance of B have been
asserted and that r1, r2, r3, r4 and r5 have activations on the agenda. r3 will fire since it
has a higher priority. The activation of r2 will be removed without firing since 12 is in
a group with mutex=true. Since group2 is a member of groupl, the activations of r4
and r5 will also be removed without firing. Rule r1 will fire. Now, assume that r2, r4,
and r5 have activations on the agenda and assume that r4 fires first. The activation for
r2 will be remove without firing since any rule in group? firing mutually excludes
both r2 and r3. r5 will fire. It is not mutually excluded since group2 does not have
mutex=true.

Example 3-44 Ruleset with Rulegroup with Specified Fact Order of Reference

rul eset setl

{
rulerl { ...}

rul egroup groupl

nmutex = true;

ruler2 { if fact A& fact B... { ... }}

rule r3 { priority =2; if fact A& fact B... { ... }}
rul egroup group2

rulerd { if fact A& fact B... { ... }}
ruler5 { if fact A& fact B... { ... }}

}
}
}

3.1.12 Built-in Functions

This section covers the following RL Language built-in functions:

assert, assertTree, assertXPath, clearRule, clearRulesetStack, clearWatchRules_
clearWatchActivations_ clearWatchFacts_ clearWatchFocus_
clearWatchCompilations_ clearWatchAll, contains, getCurrentDate, getDecisionTrace,
getDecisionTraceLevel, getDecisionTraceLimit, getEffectiveDate, getFactsByType,
getRulesetStack, getRuleSession, getStrategy, halt, id,
isErrorInRuleConditionSuppressedobject, println, popRuleset, pushRuleset, retract,
reset, run, runUntilHalt, setCurrentDate, setDecisionTraceLevel,
setDecisionTraceLimit, setEffectiveDate, setRulesetStack, setStrategy,
showActivations, showFacts, step, watchRules_ watchActivations_ watchFacts_
watchFocus_ watchCompilations

3.1.12.1 assert

Adds a fact to working memory or updates a fact already in working memory based
on the properties of the supplied object obj. If the supplied object obj is a Java instance,
then properties are Java bean properties defined by an associated Beanl nf o class or
by the existence of getter and setter methods. If obj is an RL Language class instance,
then the properties are the fields of the class.

Format

function assert(Object obj);

3-42 Rules Language Reference for Oracle Business Process Management

Built-in Functions

Usage Notes

The fact in working memory is a shadow of the supplied object 0bj, and this shadow
contains a copy, clone, or reference to each property prop. If prop is a primitive type,
then prop is copied to the shadow. If prop implements the Java Cl oneabl e interface,
then a clone, shallow copy, of prop is shadowed. Otherwise, only the reference to prop
is shadowed. The more a shadow can copy its object's properties, the better a rule with
references to several facts can be optimized.

Note that because == and ! = when applied to an Obj ect in RL Language always
invokes the Chj ect equals method, whether a shadow contains copies, clones, or
references is transparent to the RL Language program.

Assert may affect the agenda. Rules whose conditions now return a fact set because of
a new fact place activations on the agenda. Activations that test for non-existence of
facts, using ! , may be removed from the agenda. Updates to facts may affect the
agenda. Activations whose rule conditions no longer match the changed facts are
removed from the agenda. Rules whose conditions return a fact set because of the
changed facts have activations placed on the agenda.

Assert should be used to update the fact in working memory if any part of the obj's
state has been updated that could possibly have an effect on a rule condition, unless
the obj is a Java bean that supports registering property change listeners, and all that is
changed is the value of a bean property.

Examples

Example 3-45 prints, "Pavi has highest salary 65000.0" and Example 3-46 prints, "dept
10 has no employees!".

Example 3-45 Using Assert Function in the highestSalary Rule

class Enp { String enane; double salary; }
rule highestSalary {
if (fact Enp hi && !(fact Enp e && e.salary >
hi.salary)) {
printin(hi.ename + " has highest salary " + hi.salary);
}

}
Emp el = new Enp(enane: "Pavi", salary: 55000.00);

assert(el); // put in working menory
Emp e2 = new Enp(enane: "Fred", salary: 60000.00);

assert(e2); /1 put in working menory
el.salary += 10000. 00; /1 Pavi is now the highest paid
assert(el); Il MIST re-assert before allowing rules to fire

run();

Sample Assert Function
Example 3-46 Using Assert Function in the emptyDept Rule
inport java.util.*;
class Dept { int deptno; List enps = new ArrayList(); }
rul e enptyDept {
if (fact Dept d && d.enps.isEnmpty()) {
println("dept " + d.deptno + " has no enployees!");

}
}
Dept d = new Dept (deptno: 10);

d. enps. add(el);
assert(d); /] put in working menory with 1 enployee

Rule Language Reference 3-43

Built-in Functions

d. enps. renove(0);
assert(d); /] MJUST re-assert before allowing rules to fire
run();

See Also

assertTree, id, object, retract

3.1.12.2 assertTree

The assertTree built-in function asserts object in an object tree as facts.

The assertTree built-in function supports JAXB 2.0.

Format

assertTree(Object root) assertTree(String spec, Object root)

Usage Notes

There are two assertTree() signatures:

* assertTree(Object root) is necessary with SDK2. This format traverses the object
graph and asserts objects as directed by internal metadata generated by SDK2.

¢ assertTree(String spec, Object root) is necessary when SDK2 is not involved. Similar
to assertXPath, spec is a package specification enhanced to allow the specification
of multiple packages separated by a colon. This format asserts objects and traverses
the bean properties of an object if the object is in one of the specified packages.
Typically, the package specification will be the same one used in establishing the
JAXBContext.

The assertTree function does the following:

® asserts objects starting with the root and every fact (object with a visible declared
fact type) referenced from the root, recursively.

¢ assert JAXBElement instances it encounters, extract the value class object it contains
and continue.

See Also

assert

3.1.12.3 assertXPath

The assertXPath function is deprecated. Use assertTree instead.

Add a tree of facts to working memory using the specified element as the root and an
XML xpath-like expression to define the objects in the tree. The pkg is the Java package
or RL Language ruleset that contains the classes of objects in the tree. All objects in the
tree must be in the same package or ruleset.

In addition to asserting "element" and selected descendants, XLink facts are asserted
that link parent and child objects. The classes of all objects in the tree must use the
supports xpath (supports) clause of the RL class (rl-class-definition) or fact-class
declaration.

3-44 Rules Language Reference for Oracle Business Process Management

Built-in Functions

Format

function assertXPath(String pkg, Object element, String xpath);

See Also

assert, id, object, retract

3.1.12.4 clearRule

Clears the named rule from the rule session. Removes all of the rule's activations from
the agenda.
Format

function clearRule(String name);

See Also

getRuleSession

3.1.12.5 clearRulesetStack

Empties the ruleset stack.

Format

function clearRulesetStack();

See Also

getRulesetStack, getStrategy, popRuleset, pushRuleset, run, setStrategy

3.1.12.6 clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll

The clearWatch functions stop printing debug information.

Format

function clearWatchRules(); function clearWatchActivations(); function
clearWatchFacts(); function clearWatchFocus(); function clearWatchCompilations();
function clearWatchAll();

See Also

watchRules_ watchActivations_ watchFacts_ watchFocus_ watchCompilations

3.1.12.7 contains

The cont ai ns() function is similar to the cont ai ns() method on Java
Col | ect i on but with includes the ability to handle the presence of JAXBElement in
the collection.

Format

contains(Col I ection ¢, Chject o) returns bool ean

Rule Language Reference 3-45

Built-in Functions

Usage

When cont ai ns() encounters a JAXBElement in the collection ¢, it obtains the value
class from the JAXBElement and compares it to the Object 0.

See Also

assertTree

3.1.12.8 getCurrentDate

The getCurrentDate function returns the date associated with the CurrentDate fact.

Format

getCurrentDate() returns Calendar

Usage Notes

The effective date and the current date are two orthogonal items. The effective date is
used to determine which rules are in affect according to the start and end effective
date properties. The CurrentDate fact allows reasoning on a rules engine managed fact
representing the "current" date.

Setting the current date does not affect the effective date semantics.

If you want to create rules to reason on the date explicitly in the rules, then use the
CurrentDate fact. If you want to assign start and or end effective dates to rules and
have the rules in effect determined from a date in the data, then use
setEffectiveDate().

See Also

setCurrentDate, getEffectiveDate, setEffectiveDate

3.1.12.9 getDecisionTrace

Returns the current trace and starts a new trace.

Format

getDecisionTrace() returns DecisionTrace

Usage Notes

See Also

getDecisionTraceLevel, getDecisionTraceLevel, watchRules_ watchActivations_
watchFacts_ watchFocus_ watchCompilations

3.1.12.10 getDecisionTraceLevel

Gets the current decision trace level.

Format

getDecisionTraceLevel() returns int

3-46 Rules Language Reference for Oracle Business Process Management

Built-in Functions

Usage Notes

Supported decision trace levels include the following levels:

¢ Off: decision tracing is disabled. This is defined as
Rul eSessi on. DECI SI ON_TRACE_OFF.

e Production: rules fired are shown in trace. This is defined as
Rul eSessi on. DECI SI ON_TRACE_PRODUCTI ON.

* Development: full decision tracing similar in detail to wat chAl | () . This is defined
as Rul eSessi on. DECI SI ON_TRACE_DEVELOPMENT.

See Also

getDecisionTrace, getDecisionTraceLimit, watchRules_ watchActivations_
watchFacts_ watchFocus_ watchCompilations

3.1.12.11 getDecisionTraceLimit

Returns the current limit on the number of events in a trace.

Format

getDecisionTraceLimit() returns int

Usage Notes

See Also

getDecisionTrace, getDecisionTraceLevel

3.1.12.12 getEffectiveDate

The getEffectiveDate function returns the current value of the effective date.

Format

getEffectiveDate() returns Calendar

Usage Notes

The effective date and the current date are two orthogonal items. The effective date is
used to determine which rules are in affect according to the start and end effective
date properties. The CurrentDate fact allows reasoning on a engine managed fact
representing the "current" date. Both may be set explicitly.

Setting the current date does not affect the effective date semantics. Setting the
effective date does not affect the CurrentDate fact.

If you want to create rules to reason on the date explicitly in the rules, then use the
CurrentDate (set Cur r ent Dat e()). If you want to assign start and or end effective
dates to rules and have the rules in effect determined from a date in the data, then use
setEffectiveDate().

See Also

setEffectiveDate, getCurrentDate, setCurrentDate

Rule Language Reference 3-47

Built-in Functions

3.1.12.13 getFactByType

This function returns an instance of the fact type identified by className if exactly one
instance exists in working memory. If no existence exists, null is returned. If more than
one instance of the fact type exists in working memory an exception is thrown.

Format

function getFactByType(String className) returns Object

See Also

showFacts

3.1.12.14 getFactsByType

Returns a list of all facts in working memory that are instances of a specified class.

Format

function getFactsByType(String className) returns List

See Also

showFacts, watchRules_ watchActivations_ watchFacts_ watchFocus_
watchCompilations

3.1.12.15 getRulesetStack

Returns the ruleset stack as an array of ruleset names.

Format

function getRulesetStack() returns String|[];

Usage Notes

Returns: the ruleset stack as an array of ruleset names.

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

See Also

clearRulesetStack, getStrategy, popRuleset, pushRuleset, setRulesetStack, setStrategy

3.1.12.16 getRuleSession

Returns a Java Rul eSessi on object. An RL Language program could use this
Rul eSessi on to dynamically define new classes, rules, functions, or variables.

Format

function getRuleSession() returns RuleSession;

3-48 Rules Language Reference for Oracle Business Process Management

Built-in Functions

Example

rule learn {
if (fact f1 && .)

{

Rul eSession rs = get Rul eSessi on();
rs.executeRul eset("rule newRule { if fact f1 && fact f2 & ...{ ..} }");

}
}

See Also

clearRule

3.1.12.17 getStrategy

3.1.12.18 halt

3.1.1219id

Returns the current strategy. Table 3-7 shows the possible strategy values.

Format

function getStrategy() returns String;

See Also

clearRulesetStack, getRulesetStack, popRuleset, pushRuleset, setStrategy

The halt function halts execution of the currently firing rule, and returns control to the
run, runUntilHalt, or step function that caused the halted rule to run. The agenda is
left intact, so that a subsequent run, runUntilHalt, or step can be executed to resume
rule firings.

The halt function has no effect if it is invoked outside the context of a run,
runUntilHalt, or step function.

Format

function halt();

See Also

reset, run, runUntilHalt, step

Return the fact id associated with the object obj. If 0bj is not associated with a fact,
returns -1.

Format

function id(Object obj) returns int;

See Also

assert, object, retract

Rule Language Reference 3-49

Built-in Functions

3.1.12.20 isErrorinRuleConditionSuppressed

Error suppression happens at each test in the rule condition. Each test is evaluated
separately and if an error happens during the evaluation and error suppression is
enabled, the error is suppressed. When an error occurs during the evaluation of a test,
it means that the result of the test is unknown. Internally, the rule engine uses three-
valued logic to represent this state (true/false/unknown, see http://
en.wikipedia.org/wiki/Three-valued_logic). When a true/false value is required, a
value of unknown is mapped to false.

Errors in a test can either be in the RL domain (detected by the engine) or in the Java
domain (thrown by a Java method invoked in the test). In the RL domain,

RLNul | Poi nt er Excepti on, an attempt to de-reference a null object reference in an
RL expression, is the most common error. RLAr i t hnet i cExcept i on (integer divide
by 0) and RLIllegal ArgumentException are infrequent.

RLAr r ayl ndexQut Of BoundsExcepti on, RLC assCast Excepti on,and

RLCl oneNot Support edExcept i on are rare.

Java domain exceptions are those thrown by a Java method invoked from the rule
condition. Those exceptions are wrapped in an RL exception, JavaExcept i on with
the exception thrown by the method available via getCause(). When an exception is
thrown by a Java method the engine can not make any further distinction. For
example, it is possible that a null value passed to the method caused the method to
throw an exception but the rule engine has no way to know whether or not the null
was the cause.

Error suppression can be controlled by invoking a built-in function. A common place
to invoke it is in the initial actions of a decision function.

Format

isErrorInRuleConditionSuppressed() returns boolean

Usage Notes

The RL signature is: isErrorInRuleConditionSuppressed() returns boolean.

See Also

setErrorInRuleConditionSuppressed

3.1.12.21 isRulesetsOnStackOnce

Returns the current value of this rule execution setting.

Format

function isRulesetsOnStackOnce() returns boolean

See Also
setRulesetsOnStack

3.1.12.22 object

Return the object associated with the given fact id. If there is no such fact id, returns
null.

3-50 Rules Language Reference for Oracle Business Process Management

http://en.wikipedia.org/wiki/Three-valued_logic
http://en.wikipedia.org/wiki/Three-valued_logic

Built-in Functions

Format

function object(int factld) returns Object;

See Also

assert, id, retract

3.1.12.23 printin

Print the given value to the RuleSession output writer.

Format

function println(char c);
function println(char[] ca);
function println(int 7);
function printin(long [);
function println(float f);
function println(double d);
function println(boolean b);

function println(Object obj);

3.1.12.24 popRuleset

If the stack is empty, popRul eset throws RLRunt i meExcept i on. If the stack is not
empty, popRul eset pops the focus off the stack and returns it.

All entries are shifted down one position, and the new focus is the new top of stack,
entry 0.

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

Format

function popRuleset() returns String;

Example 3-47 Using popRuleset and Throwing RLRuntimeException

cl earRul eset Stack();
popRul eset (); /1 RLRunti meException

See Also

clearRulesetStack, getRulesetStack, getStrategy, pushRuleset, setStrategy

3.1.12.25 pushRuleset

Push the given ruleset onto the stack and make it the focus. It is an error to push a
ruleset that is already the focus (RLI | | egal Ar gunment Except i on is thrown for this
error).

Rule Language Reference 3-51

Built-in Functions

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

Format

function pushRuleset(String focus);

Examples

Example 3-48 shows the RL Language using the pushRul eset function. Example
3-49 shows the RL Language using the popRul eset function.

Example 3-48 Using pushRuleset - Throws RLIllegalArgumentException

cl ear Rul eset Stack();
pushRul eset ("mai n"); /1l focus is "main"
pushRul eset ("mai n"); /1 RLIIIegal Argunent Exception

Example 3-49 Using popRuleset - Throws RLRuntimeException

cl ear Rul eset Stack();
popRul eset () ; /1 RLRunti meException

See Also

clearRulesetStack, getRulesetStack, getStrategy, popRuleset, setStrategy

3.1.12.26 retract

Remove the fact associated with the object obj from working memory.

Format

function retract(Object oby);

Usage Notes

Retract may affect the agenda. Activations that depend on the retracted fact are
removed from the agenda.

Note, rules that have conditions that test for non-existence of facts (using !) may place
new activations on the agenda.

See Also

assert, id, object

3.1.12.27 reset

Clears all facts from working memory, clears all activations from the agenda, and
reevaluates non-final global variable initialization expressions.

Format

function reset();

3-52 Rules Language Reference for Oracle Business Process Management

Built-in Functions

3.1.12.28 run

See Also

halt, run, runUntilHalt, step

Fire rule activations on the agenda until:

* A rule action calls halt directly or indirectly. For example, when halt is called by a
function called by a rule action.

¢ The agenda is empty.

® The ruleset stack is empty.

Format
function run() returns int;

function run(String rulesetName) returns int;

Usage Notes

If the argument, rulesetName is supplied, the named ruleset is pushed on the top of the
ruleset stack before firing any rules.

If a null rulesetName is supplied, the ruleset stack is not modified before firing rules.

If no rulesetName is supplied and the default mai n ruleset is not on the ruleset stack,
then the mai n ruleset is placed at the bottom of the ruleset stack before firing any
rules.

Returns: i nt, the number of rules fired.

See Also

halt, reset, runUntilHalt, step

3.1.12.29 runUntilHalt

This function fires rule activations until halt is called. Unlike run and step,
runUntilHalt does not return when the agenda is empty. Also, runUntilHalt does not
pop the bottommost ruleset name from the ruleset stack. Instead, it waits for the
agenda to contain activations.

Format

function runUntilHalt() returns int;

Usage Notes

The only way for activations to be added to the agenda while the main RuleSession
thread is busy executing runUntilHalt is for a second thread to either:

1. Modify Java bean facts with Pr oper t yChangelLi st eners.

2. Execute assert or r et ract functions.

Rules must be designed carefully when using runUntilHalt. For example, a rule that
attempts to find a fact with the minimum value of a property will fire when the first

Rule Language Reference 3-53

Built-in Functions

instance of the fact is asserted, and then every time another instance is asserted with a
lower valued property.

See Also

halt, reset, run, step

3.1.12.30 setCurrentDate

The set Cur r ent Dat e function sets the date for reasoning on an engine managed fact
representing the "current” date (with the Cur r ent Dat e fact).

Format

setCurrentDate(Calendar newDate)

Usage Notes

The RLI | | egal Ar gurrent Except i on exception is thrown if the newDate argument
is null.

If you need to reason on the date explicitly in the rules, then use the Cur r ent Dat e
fact. If you want to assign start and end effective dates to rules and have the rules in
effect determined from a date in the data, then they should use setEffectiveDate. The
setEffectiveDate function does not affect the Cur r ent Dat e fact.

By default the value of the current date is managed implicitly by the rules engine. The
value of the Cur r ent Dat e fact is updated to the current system date and (re)asserted
internally when a run family of built-in functions is invoked. This is done before any
rules fire so that the new current date is evaluated in rule conditions. In the case of
runUntilHalt, this update occurs each time there is a transition from 0 rules on the
agenda to > 0 rules on the agenda.

After the user invokes the set Cur r ent Dat e function, it becomes the responsibility of
the user to update the current date as required. The rules engine no longer manages it
implicitly. This remains in effect until the reset function is invoked. After the current
date is set explicitly with set Cur r ent Dat e, any invocation of set Cur r ent Dat e
function that would result in time going backward, set to an earlier point in time, is an
error and an RLI | | egal Ar gunment Except i on is thrown. After the reset function is
invoked, the current date may be set to any value.

See Also

getCurrentDate, getEffectiveDate, setEffectiveDate

3.1.12.31 setDecisionTracelLevel

Sets the decision trace level to the specified level.

Format

setDecisionTraceLevel(int level)

Usage Notes

Supported decision trace levels include the following levels:

3-54 Rules Language Reference for Oracle Business Process Management

Built-in Functions

¢ Off: decision tracing is disabled. This is defined as
Rul eSessi on. DECI SI ON_TRACE_OFF.

e Production: rules fired are shown in trace. This is defined as
Rul eSessi on. DECI SI ON_TRACE_PRODUCTI ON.

* Development: full decision tracing similar in detail to wat chAl | () . This is defined
as Rul eSessi on. DECI S| ON_TRACE_DEVELOPMENT.

See Also

getDecisionTrace, getDecisionTraceLevel, getDecisionTraceLevel,
setDecisionTraceLimit, watchRules_ watchActivations_ watchFacts_ watchFocus_
watchCompilations

3.1.12.32 setDecisionTraceLimit

Sets the limit on the number of events in a trace.

Format

setDecisionTraceLimit(int count)

Usage Notes
The default value is 10000.

See Also

getDecisionTrace, getDecisionTraceLevel, getDecisionTraceLevel,
setDecisionTraceLevel

3.1.12.33 setEffectiveDate

The setEffectiveDate function updates the effective date in the rules engine.

By default, the value of the effective date is managed implicitly by the rules engine. In
this case, when a run family of built-in functions is invoked the effective date is
updated to the current system date. This is done before any rules fire so that the new
effective date is applied before rules begin to fire. In the case of runUnt i | Hal t, this
update occurs each time there is a transition from 0 rule activations on the agenda to >
0 rule activations on the agenda.

Format

setEffectiveDate(Calendar newDate)

Usage Notes

Invoking setEffectiveDate is the only way that you can alter the effective date. After
the reset function is invoked, the effective date may be set to any value.

The RLI'| | egal Ar gurrent Except i on exception is thrown if the newDate argument
is null.

After you invoke the setEffectiveDate function, it becomes the responsibility of the
application to update the effective date as required. The rules engine no longer
manages it implicitly.

Rule Language Reference 3-55

Built-in Functions

This remains in effect until the reset function is invoked.

This is useful for debugging, performing rule evaluation at a "point in time", or other
use cases that require application control of the effective date.

See Also

getEffectiveDate, getCurrentDate, setCurrentDate

3.1.12.34 setErrorinRuleConditionSuppressed

Error suppression happens at each test in the rule condition. Each test is evaluated
separately and if an error happens during the evaluation and error suppression is
enabled, the error is suppressed. When an error occurs during the evaluation of a test,
it means that the result of the test is unknown. Internally, the rule engine uses three-
valued logic to represent this state (true/false/unknown, see http://
en.wikipedia.org/wiki/Three-valued_logic). When a true/false value is required, a
value of unknown is mapped to false.

Errors in a test can either be in the RL domain (detected by the engine) or in the Java
domain (thrown by a Java method invoked in the test). In the RL domain,

RLNul I Poi nt er Except i on, an attempt to de-reference a null object reference in an
RL expression, is the most common error. RLAr i t hmet i cExcept i on (integer divide
by 0) and RLIllegal ArgumentException are infrequent.

RLAr rayl ndexQut Of BoundsExcepti on, RLC assCast Excepti on,and

RLC oneNot Support edExcepti on are rare.

Java domain exceptions are those thrown by a Java method invoked from the rule
condition. Those exceptions are wrapped in an RL exception, JavaExcept i on with
the exception thrown by the method available via getCause(). When an exception is
thrown by a Java method the engine can not make any further distinction. For
example, it is possible that a null value passed to the method caused the method to
throw an exception but the rule engine has no way to know whether or not the null
was the cause.

Error suppression can be controlled by invoking a built-in function. A common place
to invoke it is in the initial actions of a decision function.

Format

setErrorInRuleConditionSuppressed(boolean bv) returns boolean

Usage Notes
The RL signature is: setErrorInRuleConditionSuppressed(boolean bv) returns boolean.

Passing a value of true will enable error suppression. The return value is the previous
setting.

The current setting can be queried with the isErrorInRuleConditionSuppressed built-
in function.

See Also

isErrorInRuleConditionSuppressed

3.1.12.35 setRulesetStack

Sets the ruleset stack to the given array of ruleset names.

3-56 Rules Language Reference for Oracle Business Process Management

http://en.wikipedia.org/wiki/Three-valued_logic
http://en.wikipedia.org/wiki/Three-valued_logic

Built-in Functions

Entry 0, the top of the stack, is the focus ruleset, which is the ruleset whose activations
will be fired first by a subsequent run, runUntilHalt, or step function execution.

Format

function setRulesetStack(String[] rulesetStack

See Also

clearRulesetStack, getRulesetStack, getStrategy, popRuleset, pushRuleset, setStrategy

3.1.12.36 setRulesetsOnStack

Invoking this function with a value of true indicates that the rulesets pushed onto the
stack will only be pushed onto the stack once during a rule execution. The previous
value is returned. The default value is false.

Format

function setRulesetsOnStackOnce(boolean bv) returns boolean

See Also
isRulesetsOnStackOnce

3.1.12.37 setStrategy

Strategy specifies the order in which activations from the same ruleset and with the
same priority are executed. Table 3-7 shows the valid strategy values.

Table 3-7 Strategy Values for setStrategy and getStrategy Functions

Strategy Description
queue Activations are fired in order from oldest to newest.
stack Activations are fired in order from newest to oldest.
Format

function setStrategy(String strategy);

See Also

clearRulesetStack, getRulesetStack, getStrategy, popRuleset, pushRuleset

3.1.12.38 showActivations

The show functions print rule session state to the output Writer. State that can be
shown is: Activations all activations on the agenda

Format

function showActivations();

Rule Language Reference 3-57

Built-in Functions

See Also

clearWatchRules_ clearWatchActivations_ clearWatchFacts_ clearWatchFocus_
clearWatchCompilations_ clearWatchAll, showFacts, watchRules_ watchActivations_
watchFacts_ watchFocus_ watchCompilations

3.1.12.39 showFacts

3.1.12.40 step

The show functions print rule session state to the output Writer. State that can be
shown is: all facts in working memory.

Format

function showFacts();

See Also

clearWatchRules_ clearWatchActivations_ clearWatchFacts_ clearWatchFocus_
clearWatchCompilations_ clearWatchAll, showActivations, watchRules_
watchActivations_ watchFacts_ watchFocus_ watchCompilations

Fire rule activations on the agenda until:
¢ The specified number of rule activations, numRulesToFire have been fired.

¢ A rule action calls halt directly or indirectly. For example, by a function called by a
rule action.

* The agenda is empty.

¢ The ruleset stack is empty.

Format

function step(int numRulesToFire) returns int;

function step(int numRulesToFire, String rulesetName) returns int;
function step(int numRulesToFire, boolean errorIfLimitHit) returns int;

function step(int numRulesToFire, String rulesetName, boolean errorlfLimitHit)
returns int;

Usage Notes

If no ruleset name is supplied and the mai n ruleset is not on the ruleset stack, then the
mai n ruleset is placed at the bottom of the ruleset stack before firing any rules.

If a ruleset named, rulesetName, is supplied, the specified ruleset is pushed on the top
of the ruleset stack before firing any rules. If a null ruleset name is supplied, the
ruleset stack is not modified before firing rules.

Returns the integer number of rules fired.

The last two signatures allow the caller to specify whether hitting the firing limit
(numRulesToFire) should be treated as an error condition or not. The default is false, it
is not an error condition to hit the limit.

3-58 Rules Language Reference for Oracle Business Process Management

Built-in Functions

Invoking the step function with a value of true for the errorIfLimitHit argument can be
used to catch infinite rule firing loops that can occur due to a bug in the rules as
written.

See Also

halt, reset, run, runUntilHalt

3.1.12.41 watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

The watch functions turn on printing of information about important rule session
events. The information is printed to the output Writer whenever the events occur.
Use a clearWatch function to turn off printing.

Table 3-8 describes the available debugging information.

Table 3-8 Watch Functions Event Descriptions
- - -]

Debug Watch Rule Session Event Description

watch Rule session event description

Rules Information about rule firings (execution of activations)

Activations Addition or removal of activations from the agenda

Facts Assertion, retraction, or modification of facts in working memory
Focus Pushing or popping of the ruleset stack. The top of the ruleset stack is

called the focus ruleset, and all activations on the agenda from the focus
ruleset will be fired before the focus is popped and the next ruleset on
the stack becomes the focus.

Compilations When a rule's conditions are added to the rete network, information
about how the condition parts are shared with existing rules is printed.
"="indicates sharing. The order that rules are defined can affect sharing
and thus can affect performance.

All Includes information shown with watch Rules, watch Activations, watch
Facts, watch Compilations and watch Focus.

Format

function watchRules();
function watchActivations();
function watchFacts();
function watchFocus();
function watchCompilations();

function watchAll();

See Also

clearWatchRules_ clearWatchActivations_ clearWatchFacts_ clearWatchFocus_
clearWatchCompilations_ clearWatchAll, showActivations, showFacts

Rule Language Reference 3-59

Built-in Functions

3-60 Rules Language Reference for Oracle Business Process Management

A

Using the Command-line Interface

This chapter describes the RL command-line that reads rulesets from Syst em i n and
writes output from the functions pri nt | n, wat ch, and, showto Syst em out .

The chapter includes the following topics:
e Starting and Using the Command-Line Interface
¢ RL Command-Line Options

e RL Command-Line Built-in Commands

4.1 Starting and Using the Command-Line Interface

The following invocation provides a simple command-line interface, with the prompt,
RL>.

Example without Java Beans:

java -jar SOA ORACLE_HOMWVE soa/nodul es/oracle.rules_11.1.1/rl.jar -p "RL> "

Where SOA_ORACLE_HOME is where SOA modules are installed (for example, c: /
Oracl e/ M ddl ewar e). The —p option specifies the prompt.

The following shows how an RL Language command-line can be started that can
access this Java bean:

java -classpath SOA ORACLE_HOWE soa/ modul es/oracle.rules_11.1.1/rl.jar; BeanPath
oracle.rules.rl.session. ConmandLine -p "RL> "

Where BeanPath is the classpath component to any supplied Java Bean classes.

To exit the command-line interface, use the special action exi t ; at the command
prompt. The exi t ; action cannot be in an included ruleset. Alternatively, to exit you
can invoke the Syst em exi t (int) method in any action.

The RL command-line interface accumulates input line by line, and interprets the
input when the input stream includes either:

¢ A complete named ruleset

* One or more complete i nport,incl ude, rul eset,definition,action
commands within an unnamed ruleset.

Using the Command-line Interface 4-1

Starting and Using the Command-Line Interface

Note:

Theif el seandtry,catch,andfi nal | y actions require lookahead to
determine where they end. In order to execute an i f without an el se clause,
oratry withoutafinal | y clause at the RL command-line, you should add
a semicolon terminator.

This is not necessary if you execute RL using i ncl ude, or using the
RuleSession APL

The following code example shows a sample RL command-line input processing;:

RL>int i =1;

RL>if (i >0) {printIn("i positive");}

/1 nothing happens - waiting for possible "else"
i positive

RL>

Input must be complete at the end of a line. For example, if an action ends in the
middle of a line, then that action is not interpreted until some following action is
complete at the end of a line.

Example 4-1 Sample Command-Line Input Processing - Waiting for End of Line

RL> println("del ayed"
); printin("hello"

); printin("world")
del ayed

hel l o

wor | d

RL>

4.1.1 Using Command-Line Input Processing

Notes for using command-line input processing:

1. The command-line segments its input into blocks and then feeds each block to the
interpreter. If you never type a closing brace or semicolon, no error is raised
because the command line waits for input before it does a full parse of the block

2. The command-line interpreter, when used interactively or with the —i option,
collapses the input, for line numbering purposes, into "small" rulesets ending at a
newline. Errors are reported with numbers within the ruleset.

For example, if the input consists of the following:

int i =0, i =1; // thisis a ruleset

i ="i"; [/ this is another rul eset

For this example, command-line reports an error as follows:

Oracl e Business Rules RL: type check error
Conver si onException: cannot convert fromtype 'java.lang.String' to type 'int
at line 1 colum 5 in main

To avoid this behavior, you can explicitly enclose the input in a ruleset. For
example,

4-2 Rules Language Reference for Oracle Business Process Management

RL Command-Line Options

ruleset main {

}

inti =01 =1,

Now, the error is on line 3 or, you can include the input file using an include.

4.2 RL Command-Line Options

The following table provides a description of the RL command line options.

Table 4-1 RL Command-Line Options
- - - -~ -]

Flag

Description

-

Read rulesets from the file named by the next argument, instead of from the
default, System i n.

For example,
-i mylnput.rl

Note: the command-line segments its input into blocks and then feeds each
block to the interpreter. If the file nyl nput . r| does not include a closing
brace or semicolon at the end, then, no error is raised because the command
line waits for additional input before it does a full parse of the block. Thus,
there are cases where an incomplete input file supplied using the —i option
could run and execute the valid part of the code from the file myl nput . r 1,
and exit, while still waiting for command line input.

—C

Executes the next argument as the first RL command, then start reading
input. This option is useful to include a file of settings and functions for
debugging.

For example,

-¢ "include file:debugSettings.rl;"

If you do not want to read from the input after executing the command,
include "exit;" after the command.

For example,

-c "include file:script.rl; exit;"

P

Sets the next argument as the prompt string.

For example,

p R

Specifies where to write output from pri nt | n, wat ch, and showto the file
named by the next argument, instead of to Syst em out .

For example:

-0 debug. | og

'

Print version information.

4.3 RL Command-Line Built-in Commands

This section lists commands that are implemented by the RL command-line interface
(these commands are not part of RL).

Using the Command-line Interface 4-3

RL Command-Line Built-in Commands

Thus, these commands cannot appear in blocks or be included rulesets.

4.3.1 Clear Command

Discard the current RuleSession object and allocate a new one. The effect is that all
rules, variables, classes, and functions are discarded.

Instead of using cl ear ; to restart a command-line you can also type exi t ; and then
reissue the Java command to start another command-line.

4.3.2 Exit Command

Exit the command-line interface. The command-line interface also exits when end-of-
file is reached on its input.

4-4 Rules Language Reference for Oracle Business Process Management

5

Using a RuleSession

This chapter describes how to use a RulesSession object.

The chapter includes the following sections:
¢ RuleSession Constructor Properties

* RuleSession Methods

¢ RL to Java Type Conversion

e Error Handling

* RL Class Reflection

¢ Obtaining Results from a Rule Enabled Program
* Debugging an RL Stacktrace

* Using RuleSession Pooling

¢ Using RuleSession Options

* Using Decision Tracing

5.1 RuleSession Constructor Properties

This section shows you the steps for creating a rule enabled application and describes
using a Rul eSessi on object. The package oracle.rules.rl contains the Rul eSessi on
object.

The Rul eSessi on no argument constructor returns a Rul eSessi on with the default
locale and logging options set.

Table 5-1 describes the configuration parameters that can be set in a Map passed to the
RuleSession constructor.

Table 5-1 Configuration Parameters for a RuleSession Constructor
- -~ |

Parameter Key Value

CFG_LOGA NG Boolean. True enables logging. False disables logging. The
default is true.

CFG_LOCALE The Locale instance for the desired locale. The default is the
JVM default locale.

Using a RuleSession 5-1

RuleSession Methods

Table 5-1 (Cont.) Configuration Parameters for a RuleSession Constructor
__|

Parameter Key Value

CFG_WATCH The desired setting for the watch raw activity trace facility. The
setting is restored when the session is reset.

WATCH_RULES: watch rules that fire.

WATCH_ACTI VATI ONS: watch rule activations and
deactivations.

WATCH_FACTS: watch fact operations assert, modify, retract.
WATCH_FOCUS: watch ruleset stack changes.

WATCH_COWPI LATI ON: watch rule definintion.
WATCH_ALL: watch all of the above.

The default is that no trace settings are enabled.

CFG_DEC!I SI ON_TRACE_L Sets the decision trace level which controls the rule engine
EVEL activity traced. This level is restored when the session is reset.

DECI SI ON_TRACE_CFF: disables all decision tracing.
DEC!I SI ON_TRACE_PRODUCTI ON: traces rules that fire.

DECI SI ON_TRACE_DEVELOPMENT: detailed decision tracing.
Equivalent to WATCH_ALL plus tracing of reset.

The default is DECl SI ON_TRACE_OFF.

CFG DECI SION_TRACE_L An integer that sets the limit on the number of trace entries that
IMT will be kept internally until the trace is retrieved.

The default decision trace limit is 10000.

5.2 RuleSession Methods

The out put Wi t er property determines where pri nt | n, wat ch, and showoutput
goes.

The r ul eset Nane property sets the ruleset when RL statements are executed without
an explicit named ruleset. The default rulesetName is mai n.

The executeRuleset methods parse and execute the given ruleset text (given as a String
or a java.io.Reader).

The callFunction method invokes the named RL function (which must either be a
built-in RL function or must have been previously defined with no parameters using
one of the executeRuleset methods) and returns its result. Functions with a single
argument can be invoked with the callFunctionWithArgument method. Functions
taking any number of arguments can be called using the

cal I Functi onW t hAr gunent Li st or cal | Functi onW t hAr gunment Ar r ay
methods. The argument List or array must contain a Java Object for each RL function
parameter.

5.3 RL to Java Type Conversion

The following table describes how Java Object types are be converted to RL types for
passing arguments to RL functions.

Table Table 5-2 describes how Java Object types are be converted to RL types for
passing arguments to RL functions, and conversely how RL types are converted to
Java types for passing the RL function return value to Java.

5-2 Rules Language Reference for Oracle Business Process Management

Error Handling

Table 5-2 RL to Java Object Conversion
- - -]

Java Class RL Type

java. |l ang. I nt eger i nt

j ava. | ang. Char act er char

java.l ang. Byte byt e

j ava. |l ang. Short short

j ava. |l ang. Long | ong

j ava. | ang. Doubl e doubl e

j ava. | ang. Fl oat f | oat

j ava. | ang. Bool ean bool ean
oj ect oj ect
int[] int[]
char[] char[]
byte[] byte[]
short[] short[]
I'ong[] I'ong[]
doubl e[] doubl e[]
float[] float[]
bool ean[] bool ean[]
Obj ect[] Qbj ect []

5.4 Error Handling
RuleSession method invocations that throw a Par seExcepti on or
TypeCheckExcept i on do not affect the state of the RuleSession. A Java application,
for example, an interactive command-line, can catch these exceptions and continue
using the RuleSession.

RuleSession method invocations that throw a RLRunt i meExcept i on may have
affected the state of the RuleSession and the RuleSession may not be in a usable state
for the application to proceed. Robust applications should attempt to catch and
recover from RLRunt i meExcept i ons in RL at a point near where the exception is
thrown.

Other exceptions likely indicate a serious problem that the application cannot handle.

5.5 RL Class Reflection

You can use an RL class like a Java class in an RL program. The new, i nst anceof,
and cast operators work on both kinds of class.

Using a RuleSession 5-3

Obtaining Results from a Rule Enabled Program

However, when an instance of an RL class is passed to a Java program, it is actually an
instance of oracl e. rul es. rl . RLObj ect . A Java program can use the following
classes: RLCl ass, RLProperty, and RLAr r ay to examine the RLCbj ect in a manner
similar to using the j ava. | ang. Cl ass, j ava. | ang. refl ect. Fi el d, and

java. |l ang. Array classes to reflectaj ava. | ang. Qbj ect . The package

oracl e.rul es. rl contains RLCLass, RLProperty, and RLArr ay.

5.6 Obtaining Results from a Rule Enabled Program

When you create a a rule enabled program with Oracle Business Rules, a common
question is, "How do I get the results of the evaluation?"

This section one approaches to extracting or exposing results of rule evaluation from
the rule engine.

This section covers the following;:
* Overview of Results Examples

* Using External Resources to Obtain Results

See Also:

For more information, see Working with Rules in Standalone (Non SOA /
BPM) Scenarios in the Designing Business Rules with Oracle Business Process
Management

5.6.1 Overview of Results Examples

The examples in this section show a highway incident notification system. These
examples show the different approaches to access the results of rule engine evaluation.
The examples use two Java classes: t raf fi c. Traffi cl nci dent and
traffic.IncidentSubscription.

Note:

Thetraffic.* sample classes are not included in the Oracle Business Rules
distribution.

The Traf fi cl nci dent class represents information about an incident affecting
traffic and contains the following properties:

e Which highway

* Which direction

¢ Type of incident

* Time incident occurred

e Estimated delay in minutes

The | nci dent Subscri pti on class describes a subscription to notifications for
incidents on a particular highway and contains the following properties:

e Subscriber - the name of the subscriber

5-4 Rules Language Reference for Oracle Business Process Management

Obtaining Results from a Rule Enabled Program

¢ The highway

e The direction

In the example using these classes, when an incident occurs that affects traffic on a
highway, a Traf fi cl nci dent object is asserted and rule evaluation determines to
whom notifications are sent.

In the examples, the sess object is a Rul eSessi on and a number of incident
subscriptions are asserted. As a simplification, it is assumed that the
Trafficlnci dent objects are short lived. They are effectively an event that gets
asserted and only those subscribers registered at that time are notified.

The classes in these examples are all Java classes. However, it is possible to manipulate
instances of RL classes in Java using the RL class reflection.

See Also:

For documentation see the Javadoc for the RLClass, RLObject, RLProperty and
RLArray classes in the or acl e. rul es. r| package. Thus, RL objects, or
instances of RL classes, can be used to hold rule engine results as well as Java
objects.

5.6.2 Using External Resources to Obtain Results

This approach is similar to asserting a container for results, except that instead of a
container, the object is a means to affecting resources external to the rules engine. For
example, this could involve queuing up or scheduling work to be done, updating a
database, sending a message. Any Java method accessible in the action may be
invoked to effect the results. As with the container use case, the objects used in this
example to access the external resources are not re-asserted since their content is not
being reasoned on.

The following example shows the | nci dent Di spat cher object that is asserted and
then used to dispatch the notification.

rule incidentAlert

{
if (fact Trafficlncident ti &&
fact IncidentSubscription s &&
s. highway == ti.highway &&
s.direction == ti.direction &&
fact IncidentDispatcher dispatcher)
{
di spat cher. di spat ch(s. subscriber, ti);
}
}

Example 5-1 shows Java code that asserts an | nci dent Di spat cher and a
Trafficlnci dent, and then invokes the rule engine. This could also be
accomplished using an object that is being reasoned on, but this would require a test in
the rule condition to avoid an infinite loop of rule firing.

Example 5-1 Sample Showing Results with External Resources

sess. cal | FunctionW t hArgument ("assert”, new | nci dent Di spat cher());

/1 An accident has happened
Trafficlncident ti = new Trafficlncident();

Using a RuleSession 5-5

Debugging an RL Stacktrace

ti.setH ghway("15");

ti.setDirection("south");

ti.setlncident("accident");

ti.setWen(new GregorianCal endar (2005, 1, 25, 5, 4));
ti.setDel ay(45);

sess. cal | Functi onWt hArgument ("assert", ti);
sess. cal | Function("run");

5.7 Debugging an RL Stacktrace

The runtime provides detailed debugging information in an RL stacktrace. When
possible, if there is an error, the runtime provides extra context that helps identify the
location of a problem. This extra context is useful when working with Rules SDK and
Rules Designer.

The stacktrace includes the extra context showing the information for rule conditions,
rule actions, functions, variables, and RL class definitions. The XPath style format
consists of an RL construct and, if named, followed by the name enclosed in
parentheses. If a number, n, appears in brackets after a construct it indicates the nth
item following the previous construct. In combination with Rules SDK, RL generation
should significantly assist in identifying a location for an error in Rules Designer.

For example, consider the ruleset shown in Example 5-2. When this ruleset executes, it
gives the following report:

RLNul | Poi nt er Exception: object cannot be null
at line 12 colum 13 in stackTraceContext /Rul e(porsche)/Pattern(car)/Test[1]
at line 17 colum 5 in stackTraceCont ext

Example 5-2 Test Ruleset

rul eset stackTraceCont ext

{
class Car
{
String nake;
String nodel ;
}
rul e porsche
{
if (fact Car car &&
car. make. startsWth("Porsche"))
{
println(car.make + " " + car.nodel);
}
}
assert(new Car());
}
rul eset stackTraceCont ext
{
class Car
{
String nake;
String nodel ;
}
rul e porsche
{

5-6 Rules Language Reference for Oracle Business Process Management

Using RuleSession Pooling

if (fact Car car &&
car. make. startsWth("Porsche"))

{

println(car.make + " " + car.nodel);

}
}

assert(new Car());

5.8 Using RuleSession Pooling

A typical application that uses rules evaluates the same rules multiple times, with
different facts corresponding to separate requests. Initializing a RuleSession typically
takes a few seconds depending on the number of rules involved.

In contrast, the time to execute the rules is typically much less. Therefore, better
performance can be achieved by initializing a RuleSession one time and reusing it for
each new request. Using RuleSession pooling, you can create a pool of RuleSession
instances that supports improved performance and scalability of applications that use
rules.

A RuleSession pool shares common definitions for rules, types, and functions across
all the sessions in the pool which can significantly reduce memory consumption as
compared to the same number of independent sessions. This sharing also greatly
reduces the cost of creating a new session since it does not need to be created from the
original rule language text.

5.8.1 How to Create a RuleSession Pool

In order for performance to scale up with increasing load, more than one RuleSession
is required. A pool of RuleSession instances supports improved performance and
scalability of applications that use rules. A pool is instantiated with a list of the RL
code that is used to initialize each RuleSession created by the pool. The RL code is
executed in the order in which it appears in the list. The number of RuleSession
instances to create initially may be specified. In general, this should be a small value
and usually the default should be sufficient.

If the rules in use by an application are updated, the application may need to load the
new rules so that subsequent rule executions use the new rules. This is supported by
the pool by invoking the r ef r eshPool method passing it a list of the new RL. After
the pool has been refreshed, RuleSessions returned by get Pool abl eRul eSessi on
will have been initialized with the new RL code. When RuleSessions that were
obtained before the refresh are returned using r et ur nPool abl eRul eSessi on, they
are not placed back in the pool. The refreshed pool will only contain RuleSessions
initialized with the new RL code.

Typically, the RL code is generated from a RuleDictionary created with the Rules SDK.
Example 5-3 demonstrates creating and using a RuleSessionPool with RL code from a
RuleDictionary.

Example 5-3 Creating a RuleSession Pool

Rul eDi ctionary rd;

/1 Code to load rule dictionary not shown

List rlList = new ArrayList();
riList.add(rd.dataMdel RL());

List rulesetAliases = rd.getRul eSet Aliases(true);
for (String alias : rulesetAliases)

{
riList.add(rd.ruleSetRL(alias));

Using a RuleSession 5-7

Using RuleSession Options

}

Rul eSessi onPool pool = new Rul eSessi onPool (rlList);

5.8.2 How to Use a RuleSession Pool

To execute rules using a RuleSession, you obtain a RuleSession from the pool and then
return it after execution is complete. A poolable RuleSession is acquired by invoking
the get Pool abl eRul eSessi on method. The pool creates new RuleSessions as
required. An invocation of get Pool abl eRul eSessi on will not block waiting for a
free RuleSession.

A RuleSessionPool can be created with a Map of RuleSession configuration parameters
and all sessions in the pool will be configured as specified.

When rule execution has been completed, the poolable RuleSession is returned to the
pool by invoking the r et ur nPool abl eRul eSessi on method. When a RuleSession
is returned to the pool it is reset by the pool by invoking the built-in RL function,
reset(). This removes all facts from working memory to prepare the RuleSession for the
next execution. Every RuleSession that is retrieved from the pool should be returned
to the pool. If an error has occurred during rule execution that results in the
RuleSession being unfit for further use, the pool detects this and discards it.

Besides clearing working memory, the reset() function re-executes the initializers of all
non-final global variables. The initializer of a non-final global variable can be used to
perform other initialization at reset if this is required.

The following code example demonstrates using a RuleSession from the pool:

Pool abl eCbj ect po = pool . get Pool abl eRul eSessi on();

Rul eSessi on engi ne = po. get Pool edObj ect () ;

/1 use the RuleSession to execute rules as required here
pool . r et ur nPool abl eRul eSessi on(po);

A soft upper bound on the size of the pool can be specified. This allows the pool to
respond to temporary increases in demand by growing the pool while allowing the
pool to shrink down to this soft upper bound when demand subsides.

Using the RuleSession pooling implementation, you create RuleSession instances
when the get Pool abl eRul eSessi on method is invoked and the pool is empty. If
the load is heavy enough, this will result in an instance count that is greater than the
soft limit.

As the load subsides, the number of RuleSession instances in the pool will
automatically be decreased to the soft limit.

5.9 Using RuleSession Options

The RL runtime with a RuleSession supports following mentioned options.

It supports the following options:
e Rul eSessi on. CFG LOGE NG
e Rul eSessi on. CFG_DECI SI ON_TRACE_LEVEL

e Rul eSessi on. CFG DECI SION TRACE LIMT

5-8 Rules Language Reference for Oracle Business Process Management

Using Decision Tracing

5.9.1 Using the CFG_LOGGING System Property

RL Language runtime looks for CFG_LOGG NGas a system property as well as a
Boolean in the config Map passed to the RuleSession constructor. A value in the Map
overrides the system property value.

5.9.2 Using the CFG_DECISION_TRACE_LEVEL Option

You can configure the trace level in a RuleSession or in a RuleSessionPool by including
the Rul eSessi on. CFG_DECI SI ON_TRACE_LEVEL initialization parameter and
specifying a level in the configuration Map passed to the RuleSession or
RuleSessionPool constructor. This sets the decision trace level at the time a
RuleSession is created; invoking r eset () guarantees that the level after the r eset ()
is returned to the configured value, in case it had been changed during rule execution.
For more information, see Using Rule Engine Level Decision Tracing.

5.9.3 Using the CFG_DECISION_TRACE_LIMIT Option

The size of a trace is limited by limiting the number of entries in a decision trace. This
necessary to avoid infinite rule fire loops, due to a possible bug in the rules, from
creating a trace that consumes all available heap in the JVM. Set the trace limit with
the setDecisionTraceLimit function. The limit may also be configured in a RuleSession
(or RuleSessionPool) by including the

Rul eSessi on. CFG_DECI SI ON_TRACE_LI M T initialization parameter with the
desired limit in the configuration Map passed to the RuleSession or RuleSessionPool
constructor. For more information, see Using Rule Engine Level Decision Tracing.

5.10 Using Decision Tracing

Using Oracle Business Rules, a decision trace is a trace of rule engine execution that
includes information on the state of the rule engine, including the state of facts when
rule fire.

The Oracle Business Rules rule engine constructs and returns a decision trace using
JAXB generated Java classes generated from the decision trace XML schema.

5.10.1 Introduction to Rule Engine Level Decision Tracing

To provide a business analyst friendly presentation of a decision trace requires that the
associated rule dictionary is available. Using the rule dictionary associated with a trace
allows for a more flexible and efficient approach, as the trace output does not need to
include all of the related dictionary content information in the trace.

The XML schema is in the file deci si ont r ace. xsd and it is part of the Jar file rljar
as:oracl e/rul es/rl/trace/ deci si ontrace. xsd. The packages of interest are
oracle.rules.rl.trace,oracle.rules.rl.extensions.trace,and

oracl e. rul es. sdk2. deci si ont r ace. The Java classes packages generated from
the decisiontrace XML schema are in the package oracl e.rul es. rl . trace and are
included in the Javadoc. For more information, see Oracle Business Rules Java API
Reference.

5.10.2 Using Rule Engine Level Decision Tracing

A decision trace is a set of XML elements showing rule engine events that occur
during rule evaluation. The types of events that are added to a decision trace depend
on the trace level selected, and can include:

Using a RuleSession 5-9

Using Decision Tracing

* Fact operations (assert, retract, modify)

* Rules fired

* Rule activations added or removed from the agenda
* Ruleset stack changes

¢ Rule compilation

* Reset (which is needed for maintaining state for decision trace analysis)

Each trace contains information about a particular event. For example, a fact operation
event entry consists of:

¢ The operation type (assert, modify, retract)

The ID of the fact in working memory
e Fact type name (fact classed in RL)
* Runtime object type name

¢ The fact object data, including the property name and value for zero or more fact
properties

¢ Name of rule, RL name, if the operation was the result of a rule action

e Millisecond timestamp

In a fact operation event trace, the fact object content reflects the structure of the object
as a Java Bean. If the bean properties are references to other beans the related bean
content is included in the trace. The value of a bean property can be one of the
following alternatives.

* A string representation of the property. This is the case for primitive types and
classes in the java.* and javax.* packages.

¢ A nested bean object with its property values.

e A fact ID. This occurs when the property value is an object which has itself been
asserted as a fact. The data for the fact at the time of the trace can be retrieved from
the RuleEngineState using the fact ID when analyzing the trace.

e A collection of values accessed as a Li st in the trace.

® An array of values accessed as a Li st in the trace.

At runtime, to determine which alternative is included in the trace you can test for
null; only the correct alternative has a non-null value.

Table 5-3 shows the RL functions that provide control over decision tracing in the rule
engine and provide access to a decision trace.

Table 5-3 RL Decision Trace Functions
- - - - - -]

Function Description

get Deci si onTr ace Returns the current trace and starts a new trace.

5-10 Rules Language Reference for Oracle Business Process Management

Using Decision Tracing

Table 5-3 (Cont.) RL Decision Trace Functions
___|

Function Description

get Deci si onTraceLeve Gets the current decision trace level.
|

get Deci si onTraceLi mi Returns the current limit on the number of events in a trace.
t

set Deci si onTracelLeve Sets the decision trace level to the specified level.
|

set Deci si onTraceLi m Sets the limit on the number of events in a trace.
t Default limit value is 10000.

5.10.2.1 Setting Decision Trace Level

The decision trace level may be set by invoking the setDecisionTraceLevel function.
You can also configure the initial trace level in a RuleSession or in a RuleSessionPool
by including the Rul eSessi on. CFG_DECI S| ON_TRACE_LEVEL initialization
parameter and specifying a level in the configuration Map passed to the RuleSession
or RuleSessionPool constructor. This sets the decision trace level at the time a
RuleSession is created.

You can invoke the setDecisionTraceLevel function on a RuleSession or a
RuleSessionPool object after initialization. When you invoke r eset (), this function
returns the decision trace level to the configured value (if the level was changed
during rule execution). Thus, the r eset () function resets the decision trace limit to
the value set during initialization of a RuleSession or a RuleSessionPool. In these cases,
reset() restores the values established using the initialization parameters.

Note:

These r eset () semantics for a RuleSession are only valid for a RuleSession
initialized with either or both of the CFG_DECI SI ON_TRACE_LI M T and the
CFG_DEC! SI ON_TRACE_LEVEL initialization parameters (or that is obtained
from a RuleSessionPool when the pool is created with either or both of the
CFG_DECI SI ON_TRACE_LI M T and the CFG_DECI SI ON_TRACE_LEVEL
initialization parameters.

The size of a trace is limited by limiting the number of entries in a decision trace. This
necessary to avoid infinite rule fire loops, due to a possible bug in the rules, from
creating a trace that consumes all available heap in the JVM. Set the trace limit with
the setDecisionTraceLimit function. The limit may also be configured in a RuleSession
(or RuleSessionPool) by including the

Rul eSessi on. CFG_DECI SI ON_TRACE_LI M T initialization parameter with the
desired limit in the configuration Map passed to the RuleSession or RuleSessionPool
constructor.

For rules applications that use runUntilHalt, it is the responsibility of the application
to invoke getDecisionTrace before the trace limit is hit.

The decision trace provides structure to the trace data so that it can be manipulated
programmatically. However, the trace by itself can be cumbersome to analyze. A trace
analysis class (oracl e. rul es. rl . extensions. trace. TraceAnal ysi s)

Using a RuleSession 5-11

Using Decision Tracing

analyzes a decision trace and facilitates exploration of the trace. Use this class to
construct the state of working memory, the agenda, and the ruleset stack from the
trace.

The Tr aceAnal ysi s API supports the following;:

¢ Obtain a list of fact types that appear in the trace.

® Obtain a list of names of the rules that fired in the trace.

* Obtain a list of the last fact traces for each instance of a specific fact type.
® Obtain the last fact trace for a specific fact identified by its fact ID.

* Obtain all of the fact traces for a fact identified by its fact ID.

e For a fact trace, if the fact trace was created by a rule action, get the rule trace that
rule firing in which the action executed.

¢ For a rule trace, get the list of fact traces for each fact that matched and resulted in
the rule firing.

® Get the next or previous trace. Exploration of the trace is typically not an iteration
over the trace. For example, obtaining a rule trace from a fact trace is essentially
jumping to that rule trace. The traces near the rule trace can be explored directly.

* Obtain a list of rule traces for a rule identified by its name.

® Obtain the rule engine state for a trace entry. The rule engine state reflects the state
of the rule engine after the activity that generated the trace. This API enables
inspecting the rule engine state at the time of each trace. This API is most useful
with development level tracing. With production level tracing, only the facts in
working memory can be tracked and they will not include any fact contents.

Example 5-4 shows a code sample that uses the decision trace analysis API.
Example 5-4 Decision Trace Analysis APl Usage

Deci si onTrace trace;

TraceAnal ysis ta = new TraceAnal ysis(trace);

/1 Get all of the last fact traces for a fact type.

Li st<Fact Trace> fact Traces = ta. get Last Fact Traces("com exanpl e. My/Fact Type");

[/ Froma particular fact trace, howit was arrived at may be explored, first by
/'l obtaining the rule that asserted or nodified the fact.

/!l Fromthe FactRecord, the rule that resulted in the record can be obtained.
Fact Trace factTrace = factTraces.get(0); // assumes there is one

Rul eTrace rul eTrace = ta.whichRul e(factTrace);

Il The ruleTrace will be null if the fact operation was not part of a rule action.
Systemout.print("Fact " + factTrace.getFactld() + ", a " + factTrace. get Fact Type()
+ " " + factRecord. get Fact Op());
if (ruleTrace !'= null)

Systemout.printIn(" by rule " + ruleTrace. get Rul eNane());
el se
Systemout. printIn("");
/1 The analysis can continue by obtaining the list of FactRecords that matched the
rule and
/'l proceeding to analyze the trace back in tine.
Li st <Fact Trace> mat chi ngFacts = ta. get Rul eMat chedFact s(rul eTrace);

5-12 Rules Language Reference for Oracle Business Process Management

Using Decision Tracing

5.10.3 Decision Trace Samples for Production and Development Level Tracing
Example 5-5 shows a sample production level trace document.

Example 5-5 Sample Production Level Decision Trace

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<deci sion-trace xm ns="http://xm ns. oracl e. con rul es/ deci si ontrace">
<trace-entries xsi:type="rule-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<timestanp>1248975549890</ti mest anp>
<rul e- name>0r der Di scount . gol dCust omer </ r ul e- nanme>
<t oken-ti ne>0</t oken-ti me>
<sequence- nunber >1</ sequence- nunber >
</trace-entries>
<trace-entries xsi:type="rule-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<timestanp>1248975549893</ti mest anp>
<rul e- name>0r der Di scount . gol dCust omer Di scount </ r ul e- nane>
<t oken-ti ne>0</t oken-ti me>
<sequence- nunber >2</ sequence- nunber >
</trace-entries>
<trace-entries xsi:type="rule-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance" >
<timestanp>1248975549894</ti mest anp>
<rul e- name>0r der Di scount . appl yDi scount </ rul e- nane>
<t oken-ti nme>0</t oken-ti me>
<sequence- nunber >3</ sequence- nunber >
</trace-entries>
</ deci si on-trace>

5.10.4 Sample Development Level DecisonTrace

Example 5-6 shows a sample development level decision trace document.
Example 5-6 Sample Development Level DecisionTrace

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<deci sion-trace xm ns="http://xn ns.oracl e. coni rul es/ deci si ontrace">
<trace-entries xsi:type="fact-trace" xmns:xsi="http://wwm.w3. org/ 2001/ XM_Schena- i nst ance" >
<timestanp>1248975491008</ti mest anp>
<fact-id>1</fact-id>
<oper ati on>assert </ operation>
<fact-type>com exanpl e. Cust oner </ f act -t ype>
<obj ect -t ype>com exanpl e. Cust oner </ obj ect -t ype>
<fact - obj ect>
<properties>
<nanme>YTDOr der Anount </ name>
<val ue>
<string>2000. 0</string>
</val ue>
</ properties>
<properties>
<nane>| evel </ name>
<val ue>
<string>nul | </string>
</val ue>
</ properties>
<properties>
<nane>nanme</ nane>
<val ue>
<string>OneLtd</string>
</val ue>

Using a RuleSession 5-13

Using Decision Tracing

</ properties>
<properties>
<name>past Due</ name>
<val ue>
<string>fal se</string>
</val ue>
</ properties>
</ fact-obj ect >
</trace-entries>
<trace-entries xsi:type="activation-trace" xm ns:xsi="http://ww.w3.org/ 2001/ XM.Schena- i nst ance" >
<timestanp>1248975491024</ti nest anp>
<rul e-name>0r der Di scount . gol dCust oner </ r ul e- name>
<t oken-ti me>2</token-tine>
<fact-ids>1</fact-ids>
<oper at i on>add</ oper at i on>
</trace-entries>
<trace-entries xsi:type="fact-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<timestanp>1248975491025</ti mest anp>
<fact-id>2</fact-id>
<oper ati on>assert </ operation>
<fact-type>com exanpl e. Order</fact-type>
<obj ect -t ype>com exanpl e. Or der </ obj ect -t ype>
<fact - obj ect>
<properties>
<nane>cust oner Name</ nane>
<val ue>
<string>OneLtd</string>
</val ue>
</ properties>
<properties>
<nane>di scount </ name>
<val ue>
<string>0.0</string>
</val ue>
</ properties>
<properties>
<name>gr ossAmount </ name>
<val ue>
<string>400. 0</string>
</val ue>
</ properties>
<properties>
<nane>net Anount </ nane>
<val ue>
<string>0.0</string>
</val ue>
</ properties>
<properties>
<nane>nunber </ name>
<val ue>
<string>1001</string>
</val ue>
</ properties>
</ fact-obj ect >
</trace-entries>
<trace-entries xsi:type="activation-trace" xm ns:xsi="http://ww.w3.org/ 2001/ XM.Schena- i nst ance" >
<timestanp>1248975491035</ti mest anp>
<rul e-name>0r der Di scount . gol dCust omer Di scount </ r ul e- nanme>
<t oken-ti me>5</token-tine>
<fact-ids>2</fact-ids>
<fact-ids>1</fact-ids>

5-14 Rules Language Reference for Oracle Business Process Management

Using Decision Tracing

<oper at i on>add</ oper at i on>
</trace-entries>
<trace-entries xsi:type="rule-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<timestanp>1248975491036</ti mest anp>
<rul e-name>0r der Di scount . gol dCust omer Di scount </ r ul e- nanme>
<t oken-ti me>5</token-tine>
<fact-ids>2</fact-ids>
<fact-ids>1</fact-ids>
<sequence- nunber >2</ sequence- nunber >
</trace-entries>

<trace-entries xsi:type="rule-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<timestanp>1248975491036</ti mest anp>
<rul e-name>0r der Di scount . appl yDi scount </ r ul e- name>
<t oken-ti me>7</token-tine>
<fact-ids>2</fact-ids>
<sequence- numher >3</ sequence- nunber >
</trace-entries>

<trace-entries xsi:type="rul eset-stack-trace" xmns:xsi="http://ww.w3. org/ 2001/ XM.Schena-
i nstance">
<timestanp>1248975491037</ti mest anp>
<oper at i on>pop</ oper at i on>
<rul eset - nane>0r der Di scount </ r ul eset - nane>
</trace-entries>
</ deci si on-trace>

Using a RuleSession 5-15

Using Decision Tracing

5-16 Rules Language Reference for Oracle Business Process Management

A

Summary of Java and RL Differences

This appendix includes descriptions of differences between the RL Language and Java
languages.

A.1 RL Differences from Java

This section lists the RL differences from Java.

RL does not include interfaces or methods.

RL global variables are similar to Java static class variables, but there is one
instance for each rule session.

RL does not have a st at i ¢ keyword.

RL has rulesets instead of packages. Rulesets group definitions and actions.
Instances of RL and Java classes can be asserted as facts in working memory.
RL facts are not garbage collected; they must be explicitly retracted.

RL is interpreted. There is no compilation or class loading. Classes and functions
must be defined before they are used.

RL classes may not contain constructors or methods, only data fields. The data
fields behave like Java bean properties.

Java bean properties can be accessed as fields in RL.

The newoperator can explicitly assign values to named properties, regardless of
whether a constructor is defined. The f act operator can match values to named
properties and retrieve, using the var keyword, values from named properties. A
property is either a Java bean property, for Java objects, or a field, for RL objects.

RL arrays are limited to one dimension.
Thei f and whi | e actions must be in a block, enclosed in curly braces ({ }).

RL does not include a swi t ch action, cont i nue statement, br eak statement, or
labeled statements for breaking out of nested loops.

An RL for loop cannot contain multiple comma separated initialization or update
expressions.

RL does not support bitwise & and | operators.
RL supports function overloading and Java method overloading using best fit.

RL variables must be initialized when they are defined.

Summary of Java and RL Differences A-1

RL Differences from Java

e For RL and Java objects, == always invokes the object equal s method. RL does not
allow testing for object reference equality. For objects,! = does not test for
inequality of object references, but rather is the negation of the equals methods.

Thus, the statement:

if (objectl !'= object2){}
Is equivalent to the statement:
if (! (objectl. equal s(object2)){}
¢ Forward references to classes or functions is not allowed.

® InJava the Java Bean introspector will include write only properties. RL does not
include such properties as Beans, since they cannot be reasoned on in a rule. Thus,
in order for Java fact type bean properties to be properly accessed in RL they must
have both a getter and setter. Properties which have a setter but not a getter, that is
write-only properties, are not allowed in the RL new syntax.

For example, if a bean Fo0 only has the method set Prop1(i nt i), then you
cannot use the following in RL, Foo f = new Foo(propl: 0)

A-2 Rules Language Reference for Oracle Business Process Management

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Conventions
	Conventions in Text
	RL Language Backus-Naur Form Grammar Rules

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)

	1 Rules Programming Concepts
	1.1 Starting the Oracle Business Rules RL Language Command-Line
	1.2 Introducing Rules and Rulesets
	1.2.1 Rule Conditions
	1.2.2 Rule Actions

	1.3 Introducing Facts and RL Language Classes
	1.3.1 What Are Facts?
	1.3.2 Adding Facts to Working Memory with Assert
	1.3.3 Using RL Language Classes as Facts
	1.3.4 Using Java Classes as Facts

	1.4 Understanding and Controlling Rule Firing
	1.4.1 Rule Activation and the Agenda
	1.4.2 Watching Facts, Rules, and Rule Activations
	1.4.2.1 Watching and Showing Facts in Working Memory
	1.4.2.2 Watching Activations and Rule Firing

	1.4.3 Ordering Rule Firing
	1.4.3.1 Ordering Rule Firing

	1.5 Using Effective Dates
	1.6 Integrating RL Language Programs with Java Programs
	1.6.1 Using Java Beans Asserted as Facts
	1.6.1.1 Sample RL Language Program
	1.6.1.2 Working with Java Beans as Facts

	1.6.2 Using RuleSession Objects in Java Applications

	1.7 Building a Coin Counter Rules Program

	2 Rules Engine Algorithms
	2.1 Overview
	2.1.1 Differences between Rete and NRE Algorithm

	2.2 Configuring the Non-Rete Algorithm

	3 Rule Language Reference
	3.1.1 Ruleset
	3.1.2 Types
	3.1.3 Identifiers
	3.1.4 Literals
	3.1.5 Definitions
	3.1.5.1 Variable Definitions
	3.1.5.1.1 Global Variables

	3.1.5.2 Rule Definitions
	3.1.5.3 Class Definitions
	3.1.5.3.1 xpath Support

	3.1.5.4 Function Definitions

	3.1.6 Fact Class Declarations
	3.1.7 Import Statement
	3.1.8 Include Statement
	3.1.9 Using Expressions
	3.1.9.1 Boolean Expressions
	3.1.9.2 Numeric Expressions
	3.1.9.3 String Expressions
	3.1.9.4 Array Expressions
	3.1.9.5 Fact Set Expressions
	3.1.9.6 Comparable Expression
	3.1.9.7 Object Expressions
	3.1.9.8 Primary Expressions
	3.1.9.8.1 new

	3.1.10 Actions and Action Blocks
	3.1.10.1 If Else Action Block
	3.1.10.2 While Action Block
	3.1.10.3 For Action Block
	3.1.10.4 Try Catch Finally Action Block
	3.1.10.5 Synchronized Action Block
	3.1.10.6 Modify Action
	3.1.10.7 Return Action
	3.1.10.8 Throw Action
	3.1.10.9 Assign Action
	3.1.10.10 Increment or Decrement Expressions
	3.1.10.11 Primary Actions

	3.1.11 Rulegroup
	3.1.12 Built-in Functions
	3.1.12.1 assert
	3.1.12.2 assertTree
	3.1.12.3 assertXPath
	3.1.12.4 clearRule
	3.1.12.5 clearRulesetStack
	3.1.12.6 clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus, clearWatchCompilations, clearWatchAll
	3.1.12.7 contains
	3.1.12.8 getCurrentDate
	3.1.12.9 getDecisionTrace
	3.1.12.10 getDecisionTraceLevel
	3.1.12.11 getDecisionTraceLimit
	3.1.12.12 getEffectiveDate
	3.1.12.13 getFactByType
	3.1.12.14 getFactsByType
	3.1.12.15 getRulesetStack
	3.1.12.16 getRuleSession
	3.1.12.17 getStrategy
	3.1.12.18 halt
	3.1.12.19 id
	3.1.12.20 isErrorInRuleConditionSuppressed
	3.1.12.21 isRulesetsOnStackOnce
	3.1.12.22 object
	3.1.12.23 println
	3.1.12.24 popRuleset
	3.1.12.25 pushRuleset
	3.1.12.26 retract
	3.1.12.27 reset
	3.1.12.28 run
	3.1.12.29 runUntilHalt
	3.1.12.30 setCurrentDate
	3.1.12.31 setDecisionTraceLevel
	3.1.12.32 setDecisionTraceLimit
	3.1.12.33 setEffectiveDate
	3.1.12.34 setErrorInRuleConditionSuppressed
	3.1.12.35 setRulesetStack
	3.1.12.36 setRulesetsOnStack
	3.1.12.37 setStrategy
	3.1.12.38 showActivations
	3.1.12.39 showFacts
	3.1.12.40 step
	3.1.12.41 watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

	4 Using the Command-line Interface
	4.1 Starting and Using the Command-Line Interface
	4.1.1 Using Command-Line Input Processing

	4.2 RL Command-Line Options
	4.3 RL Command-Line Built-in Commands
	4.3.1 Clear Command
	4.3.2 Exit Command

	5 Using a RuleSession
	5.1 RuleSession Constructor Properties
	5.2 RuleSession Methods
	5.3 RL to Java Type Conversion
	5.4 Error Handling
	5.5 RL Class Reflection
	5.6 Obtaining Results from a Rule Enabled Program
	5.6.1 Overview of Results Examples
	5.6.2 Using External Resources to Obtain Results

	5.7 Debugging an RL Stacktrace
	5.8 Using RuleSession Pooling
	5.8.1 How to Create a RuleSession Pool
	5.8.2 How to Use a RuleSession Pool

	5.9 Using RuleSession Options
	5.9.1 Using the CFG_LOGGING System Property
	5.9.2 Using the CFG_DECISION_TRACE_LEVEL Option
	5.9.3 Using the CFG_DECISION_TRACE_LIMIT Option

	5.10 Using Decision Tracing
	5.10.1 Introduction to Rule Engine Level Decision Tracing
	5.10.2 Using Rule Engine Level Decision Tracing
	5.10.2.1 Setting Decision Trace Level

	5.10.3 Decision Trace Samples for Production and Development Level Tracing
	5.10.4 Sample Development Level DecisonTrace

	A Summary of Java and RL Differences
	A.1 RL Differences from Java

