

Oracle® Fusion Middleware
Integrating Enterprise Data Quality with External Systems

12c (12.1.3)

E51302-01

May 2014

Describes how to integrate Enterprise Data Quality with
external applications and functionality.

Oracle Fusion Middleware Integrating Enterprise Data Quality with External Systems, 12c (12.1.3)

E51302-01

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... v
Conventions ... vi

1 Integrating with Subversion

1.1 Software Requirements .. 1-1
1.2 Understanding the Integration Architecture .. 1-2
1.3 Setting Up a Repository .. 1-3
1.4 Configuring EDQ with Subversion .. 1-4
1.4.1 Configuring a New EDQ Installation ... 1-4
1.4.2 Retaining Existing Configuration Information .. 1-5
1.5 Understanding the Integration Elements ... 1-5
1.6 Reviewing a Deployment Example .. 1-6
1.7 Troubleshooting Errors .. 1-8

2 Integrating with IBM Global Name Recognition

2.1 System Requirements ... 2-1
2.2 Configuring the EDQ Server .. 2-1
2.3 Building the Search Library .. 2-2
2.4 Configuring the GNR Connector .. 2-3
2.4.1 Creating the EDQ GNR Properties File .. 2-3
2.5 Creating the Search Configuration Files ... 2-4
2.5.1 Support for GNR 3.2 and GNR 4.2 in Search Configuration Files 2-4

3 Integrating with Experian QAS

3.1 Software Requirements .. 3-1
3.2 Integrating EDQ with Experian QAS ... 3-1
3.3 Migrating QAS integrations ... 3-2

4 Integrating with Capscan Matchcode

4.1 Software Requirements .. 4-1
4.2 Integrating the Capscan Matchcode Libraries into EDQ .. 4-1

iv

4.3 Customizing the Matchcode API ... 4-2

5 Using the EDQ Command Line Interface

5.1 Running the Command Line Interface ... 5-1
5.2 Understanding the Commands and Arguments .. 5-1
5.2.1 runjob .. 5-1
5.2.2 runopsjob .. 5-2
5.2.3 droporphans ... 5-3
5.2.4 listorphans ... 5-3
5.2.5 scriptorphans ... 5-3
5.2.6 list .. 5-3
5.2.7 showlogs .. 5-3
5.2.8 shutdown .. 5-3
5.2.9 version .. 5-4
5.3 Reviewing Examples .. 5-4
5.3.1 Listing All the Available Commands ... 5-4
5.3.2 Listing the Available Parameters for a Command ... 5-4
5.3.3 Running a Named Job .. 5-5
5.3.4 Running a Named Job in Operations Mode ... 5-5

6 Configuring Additional Database Connections

6.1 Using JNDI to Connect to Data Stores .. 6-1
6.2 Using TNS to Connect to Data Stores ... 6-1
6.3 Using LDAP to Connect to Data Stores .. 6-2

7 Configuring EDQ to Process XML Data Files

7.1 Using Simple XML Data Stores .. 7-1
7.1.1 Reading Simple XML Files ... 7-1
7.1.2 Writing Simple XML Files ... 7-2
7.2 Using XML and Stylesheet Data Stores .. 7-2
7.2.1 Using DN-XML .. 7-2
7.2.2 Reading Custom XML Files ... 7-4
7.2.3 Writing Custom XML Files .. 7-6

v

Preface

Describes how to integrate Enterprise Data Quality with external systems and
applications.

Audience
This document is intended for advanced users of EDQ and administrators responsible
for integrating EDQ with third-party applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Enterprise Data
Quality documentation set.

EDQ Documentation Library
The following publications are provided to help you install and use EDQ:

■ Oracle Fusion Middleware Release Notes for Enterprise Data Quality

■ Oracle Fusion Middleware Installing and Configuring Enterprise Data Quality

■ Oracle Fusion Middleware Administering Enterprise Data Quality

■ Oracle Fusion Middleware Understanding Enterprise Data Quality

■ Oracle Fusion Middleware Integrating Enterprise Data Quality With External Systems

■ Oracle Fusion Middleware Securing Oracle Enterprise Data Quality

■ Oracle Enterprise Data Quality Address Verification Server Installation and Upgrade
Guide

vi

■ Oracle Enterprise Data Quality Address Verification Server Release Notes

Find the latest version of these guides and all of the Oracle product documentation at

http://http://docs.oracle.com

Online Help
Online help is provided for all Oracle Enterprise Data Quality user applications. It is
accessed in each application by pressing the F1 key or by clicking the Help icons. The
main nodes in the Director project browser have integrated links to help pages. To
access them, either select a node and then press F1, or right-click on an object in the
Project Browser and then select Help. The EDQ processors in the Director Tool Palette
have integrated help topics, as well. To access them, right-click on a processor on the
canvas and then select Processor Help, or left-click on a processor on the canvas or
tool palette and then press F1.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Integrating with Subversion 1-1

1Integrating with Subversion

This chapter describes how to integrate and use EDQ with the Subversion version
control system.

The following sections are included:

■ Section 1.1, "Software Requirements"

■ Section 1.2, "Understanding the Integration Architecture"

■ Section 1.3, "Setting Up a Repository"

■ Section 1.4, "Configuring EDQ with Subversion"

■ Section 1.5, "Understanding the Integration Elements"

■ Section 1.6, "Reviewing a Deployment Example"

■ Section 1.7, "Troubleshooting Errors"

1.1 Software Requirements
EDQ supports integration with Subversion 1.6 and 1.7. For more information about
Subversion, see the Apache Subversion website found at
http://subversion.apache.org/.

The Subversion server with which EDQ is being integrated must meet these
prerequisites:

■ Support Hypertext Transfer Protocol (HTTP) and Distributed Authoring and
Versioning (DAV) access.

■ Require authentication on commit.

■ Not require authentication on checkout or update.

When Subversion is integrated with EDQ as a store of configuration information, the
following restrictions and limitations apply. Consider the following points before
deciding to configure integrated version control using Subversion.

■ You cannot update or revert an item that is open in the Director interface or the
Subversion server.

Note: EDQ currently only supports integration with Subversion 1.6
and 1.7. Attempting to integrate with any other versions will cause an
error.

Understanding the Integration Architecture

1-2 Integrating Enterprise Data Quality with External Systems

■ You cannot rename a project once the project is under version control. This is
critical in avoiding duplication of reference processor names in a project.

■ Deleting a project does not remove it from the Subversion repository.

■ Case insensitive name matching is used.

1.2 Understanding the Integration Architecture
The EDQ server can be configured to be aware of a Subversion server as a store of
configuration information.

In a standard EDQ instance, configuration information, including project information,
is stored in the Director database:

The following figure shows an EDQ instance integrated with Subversion:

Note: In this instance, configuration information means information
that is managed using the Director UI; for example, projects and
system-level data.

Setting Up a Repository

Integrating with Subversion 1-3

With EDQ configuration files mastered and stored in a Subversion repository, a
Subversion client can be used to commit or otherwise access them. Because EDQ
includes an embedded Subversion client, Subversion client operations to control
configuration changes can be performed directly in Director once the EDQ integration
with Subversion has been enabled.

1.3 Setting Up a Repository
The first stage of configuration is to create a workspace directory where the checked
out data will be stored:

1. Create a directory on the disk where desired (for example, C:\MyRepository) and
then add it and commit it to Subversion.

2. Inside the newly created directory, set the following Subversion property:

svn propset edq:systemversion 12.1.3:base .

3. Commit these changes into Subversion. Your workspace now displays these
properties:

svn proplist -v .
Properties on '.':
 edq:systemversion

Note: The Director database is still required because it contains data
derived from the file-mastered configuration that has been normalized
to allow querying by the applications.

Configuring EDQ with Subversion

1-4 Integrating Enterprise Data Quality with External Systems

 12.1.3:base

4. Create the following subdirectories in the newly created directory:

■ Data Stores

■ Hidden Reference Data

■ Images

■ Projects

■ Published Processors

■ Reference Data

5. Add and commit these directories. The repository is now set up correctly for EDQ.

The preceding steps only need to be performed once per repository. All remaining
changes can be made using EDQ.

1.4 Configuring EDQ with Subversion
Subversion must be integrated with a fresh installation of EDQ.

1.4.1 Configuring a New EDQ Installation
To configure a new EDQ installation:

1. Shut down the application server.

2. Check out the workspace from Subversion. It is not necessary to checkout the
whole tree; just the workspace directory itself is required.

3. Edit the director.properties file in the ORACLE_HOME/user_
projects\domains\domains\edq_domain\edq\oedq.local.home directory.

4. Add the following line replacing the directory path with that of the absolute path
to your root workspace directory. For example:

sccs.workspace = C\:\\MyRepository

5. Start your EDQ server, and then start Director.

Caution: When an EDQ instance is integrated with Subversion, all
pre-existing and other configuration information is lost. To retain this
information, you must package and export it first. For further details,
see Section 1.4.2, "Retaining Existing Configuration Information."

Note: Oracle recommends that a single workspace be assigned to
each instance of EDQ because it is difficult to move between
workspaces in a single EDQ instance.

Note: This example demonstrates the need to escape colon (:) and
backslash (\) characters in the path with a backslash. You must also
escape space characters in the path with a backslash.

Understanding the Integration Elements

Integrating with Subversion 1-5

6. Check the top of the Main0.log file for an INFO message listing the name of the
SCCS workspace you added. For example:

INFO: 02-Sep-2013 10:05:21: SCCS workspace is C:\MyRepository

7. If no errors follow this message, EDQ is configured to use Subversion. If there are
errors, see Section 1.7, "Troubleshooting Errors," for possible solutions.

1.4.2 Retaining Existing Configuration Information
As previously stated, Subversion must be integrated with a fresh installation of EDQ.
Therefore, any pre-existing projects and other configuration items in an EDQ
installation must be packaged before integration begins and then imported to the new
installation afterwards:

1. Package all configuration items in the current EDQ instance into DXI files.

2. Install a new instance of EDQ with the Subversion integration enabled.

3. Import the DXI files into the new instance, and commit the files to the Subversion
workspace.

4. Check that the configuration items are all valid and working correctly.

Note that all passwords for Data Stores must be re-entered after a configuration
import.

5. Decommission the previous instance.

1.5 Understanding the Integration Elements
Once EDQ is integrated with Subversion enabled, the following interface elements
become visible within the Director application:

■ Subversion status icon overlays in Project Browser - There are two icons used to
indicate the three possible Subversion statuses of nodes in the Project Browser:

■ No icon - The node (and its sub-nodes) are all up to date.

■ Green icon- This node (and its sub-nodes) have modifications.

■ Blue icon - This node (and its sub-nodes) is new/currently not under Version
Control.

For example, the following image shows both icons in use. The Reference Data
node is modified (green icon) as one of its sub-nodes has changed. A new piece of
Reference Data, Business Words, has been added, and is marked with the blue
icon:

■ Version Control tab - The Properties dialog (displayed by right-clicking on an item
in the Project Browser and selecting Properties) now contains a Version Control
tab that describes the state of the item, when it was last updated, its Subversion
revision, and whether it is current.

■ New context menu for Version Control - The Project Browser right-click menu now
contains a Version Control option. When selected, this displays a sub-menu with
Subversion options to update, commit, revert, compare or view the log for the
item. These options are recursive. For example, if you perform View Log on a

Reviewing a Deployment Example

1-6 Integrating Enterprise Data Quality with External Systems

single process then you will see the log for this process only, but if you perform
View Log on the Processes node you will see changes for all processes.

■ Comment and credentials dialogs on commit - When you commit changes to the
repository, Director displays the Commit log dialog:

In this dialog you can enter a comment describing the change in the Comment
field. Alternatively, you can automatically populate the field by choosing a
comment from the list of comments previously entered in the current session.

After you click OK in the Commit log dialog, Director displays the Version
Control Credentials dialog if you have not already provided your credentials in
the current session:

In this dialog you enter your user name and password for the Subversion
repository and then click OK.

1.6 Reviewing a Deployment Example
An example deployment is presented here. In this illustration, there is a single
Subversion server that holds three copies of the configuration for four EDQ
installations:

Reviewing a Deployment Example

Integrating with Subversion 1-7

The copies of the configuration are:

■ trunk - the traditional location that all development work is performed on. New
features of the configuration are developed and saved here.

■ branches and UAT - this branch represents the copy of the configuration under
UAT testing.

■ branches and production - this branch represents the production copy of the
configuration.

The four EDQ installations using the Subversion server for storing their configuration
are:

■ Two development laptops where design work and maintenance of existing
projects are carried out.

■ A UAT server for User Acceptance Testing changes.

■ A production server for production runs.

In this example deployment, the laptop users develop configuration for individual
projects on their own laptops and then commit changes back to the subversion
repository on "trunk". Where the developers are co-operating on developing a project
they will periodically update their local installation to pick up changes from the other
developer.

At some point development reaches a point where it needs to be released to UAT for
testing. A release manager then copies the necessary projects from "trunk" to "UAT" on
the subversion server.

For example, the following Subversion command may be used:

svn cp -m"Release Project X to UAT" http://svn/repos/config/trunk/ProjectX
http://svn/repos/config/branches/UAT

The test manager then updates the UAT server's projects to load the new configuration
into the EDQ server. Over a period of time testing continues. As issues are found they
are fixed in the UAT environment and committed back to the subversion repository.

Once UAT environment has achieved an acceptable test level it is promoted to release.
This achieved in much the same way as the release from development to UAT. The

Troubleshooting Errors

1-8 Integrating Enterprise Data Quality with External Systems

necessary projects are copied across in the version control repository and then the
production server is updated to use this configuration.

1.7 Troubleshooting Errors
You may encounter the following errors for which the cause and solution is provided.

Error Cause and Solution

Configuration database is not
compatible with workspace

The database has been used with a different workspace.
This error usually arises occurs when operations have
been performed in EDQ before Subversion version control
is enabled.There are two solutions: drop and recreate the
Director database or reinstall EDQ.

Unable to open an ra_local
session to URL

This may occur when trying to commit files to an invalid
repository. The EDQ integration is not compatible with
file-based repositories (those repositories beginning with
file:/// or C:\example). A fully declared http:// path to
the repository must be made.

2

Integrating with IBM Global Name Recognition 2-1

2Integrating with IBM Global Name
Recognition

This chapter describes how to integrate EDQ with IBM Global Name Recognition
(GNR).

You can configure EDQ to connect to IBM GNR to facilitate linguistic analysis of
names, and linguistically sensitive name searching.

This chapter includes the following sections:

■ Section 2.1, "System Requirements"

■ Section 2.2, "Configuring the EDQ Server"

■ Section 2.3, "Building the Search Library"

■ Section 2.4, "Configuring the GNR Connector"

■ Section 2.5, "Creating the Search Configuration Files"

2.1 System Requirements
To enable EDQ connectivity with IBM GNR, you must have the following:

■ EDQ 12c (12.1.3) installed on 64-bit AIX operating system or Linux operating
system running 64-bit Java.

■ IBM GNR 4.2.1 (4.2 + 4.2.1 fixpack) or later, including the hotfix based on GNR
4.2.2 (4.2 +4.2.2 fixpack). For more information, see the IBM website at
http://www.ibm.com.

EDQ does not make use of any of the web services provided by GNR, so you do
not need to configure these during GNR installation.

2.2 Configuring the EDQ Server
The LD_LIBRARY_PATH must be set as required for the installation environment.

The EDQ GNR analytic processors use a shared library (.so) in the lib64 directory of
the GNR installation. This directory must be specified in an environment variable
passed to the EDQ server.

Note: GNR can only be installed on an EDQ instance if you have the
required license agreements with both Oracle and IBM.

Building the Search Library

2-2 Integrating Enterprise Data Quality with External Systems

In a Linux 64-bit environment, the environment variable is LD_LIBRARY_PATH; for
example:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:gnr-installation-dir/lib64

gnr-installation-dir is the GNR installation path; for example, /opt/GNR/GNM.

In an AIX environment, the environment variable name is LIBPATH instead of LD_
LIBRARY_PATH.

2.3 Building the Search Library
The GNR Search Processor uses a native library that must be linked with the GNR
libraries.

Oracle supplies these files to create the library:

■ Two Makefile templates, one for each platform, that script the building of the
search library

■ The namehunter.o object module file

When building the library on an AIX system, IBM C++ must be available. When
building the library on Linux systems, the GCC C++ compiler must be available and it
must be of the same version used to create the GNR libraries, as specified in the IBM
GNR documentation.

The Makefile template for a 64-bit AIX operating system is as follows:

Build library from object file

GNR=/opt/GNR/GNM
CFLAGS=-qmkshrobj
LIBS=-lNameHunter -lNameTransliterator -lsicui18n -lsicuuc -lsicudata
SDK=aix61_64-xlc9-release
LIBDIRS=-L$(GNR)/sdk/$(SDK)/lib -L$(GNR)/sdk/icu4c/$(SDK)/lib

all: libnimrod.so

libnimrod.so: namehunter.o
 xlc++_r -q64 $(CFLAGS) -o $@ $? $(LIBDIRS) -lNameHunter -lNameTransliterator
-lsicui18n -lsicuuc -lsicudata

The Makefile template for 64-bit Linux operating system is as follows:

Build 64-bit library from object file

GNR=/opt/GNR/GNM
CFLAGS=-shared -fPIC

all: libnimrod.so

libnimrod.so: namehunter.o
 g++ -m64 $(CFLAGS) -o $@ $? -L$(GNR)/sdk/rhel4_64-gcc34-release/lib
-L$(GNR)/sdk/icu4c/rhel4_64-gcc34-release/lib -lNameHunter -lNameTransliterator
-lsicui18n -lsicuuc -lsicudata

Note: The environment variable must be available to the application
server process.

Configuring the GNR Connector

Integrating with IBM Global Name Recognition 2-3

Before running the Makefile script for your platform, ensure that the value of GNR in
the Makefile template is set correctly, according to the GNR installation directory
location. On the AIX operating system, also ensure that the value of SDK is set correctly,
according to the system architecture.

After running the edited Makefile, the newly created libnimrod.so shared library file
can be installed anywhere and can be copied to other systems with GNR installs.

2.4 Configuring the GNR Connector
The EDQ GNR connector requires three types of configuration files to integrate it with
GNR:

■ The gnr.properties properties file in the EDQ installation

■ The nameworks.config configuration file in the GNR installation

■ Search configuration files in the EDQ installation

2.4.1 Creating the EDQ GNR Properties File
The gnr.properties file and the gnr subdirectory that contains it must be manually
created and placed in the gnr subdirectory of the EDQ configuration directory. It must
contain the following properties:

gnr.install
The GNR installation path. This is the path to the directory containing the following
GNR subdirectories:

■ bin

■ bin64

■ data (which contains the GNR data files)

■ lib

■ lib64

analytics.config
The absolute location of the nameworks.config configuration file in the GNR
installation.

search.jnilib
The absolute location of the libnimrod.so shared library, which was built using the
Makefile template.

nameworks.config

During GNR installation, a nameworks.config file is created and stored in the GNR
data directory.

The critical part of the nameworks.config file is the reference files section:

[Reference Files]
NameSifter=/opt/GNR/GNM/data/SifterRules.ibm

The NameSifter value must refer to the SifterRules.ibm file in the GNR installation.

Creating the Search Configuration Files

2-4 Integrating Enterprise Data Quality with External Systems

2.5 Creating the Search Configuration Files
Search configuration files are located in the gnr/search subdirectory of the EDQ
configuration directory. They are read by the connector and used to set parameters for
the Search function.

A sample search configuration file named search.config is available in the
support/data/search subdirectory of the EDQ installation. To create a search
configuration file, copy this sample file to the gnr/search subdirectory of the EDQ
configuration directory and edit the copy to suit your needs.

2.5.1 Support for GNR 3.2 and GNR 4.2 in Search Configuration Files
The search configuration format changed slightly from GNR 3.2 to GNR 4.2, and the
EDQ GNR connector supports both versions as far as possible. It also processes data
for Organization searches.

The basic differences between the search configuration files in GNR 3.2 and GNR 4.2
are:

■ GNR 4.2 specifies the parameter files (for example, tags and variants) in the
[hunter] section. GNR 3.2 uses the [search] section. The EDQ GNR connector
looks in the [hunter] section first then the [search] section.

■ The tag and variant files in GNR 4.2 are specified by keys such as ibmTaqFile and
custTaqFile. In GNR 3.2, just taqFile is used. The EDQEDQ GNR connector
looks for taqFile, ibmTaqFile and custTaqFile and loads each if found. The same
rules are used for variant and terms files.

■ The generic reg file is set by a specific genericRegFile setting; in GNR 3.2 this
always defaults to the anglo reg file.

■ Some settings have been added to the [parms] sections, and others have been
removed.

3

Integrating with Experian QAS 3-1

3Integrating with Experian QAS

This chapter describes how to integrate EDQ with Experian QAS API and migrate
earlier versions of the QAS integration to EDQ versions 8.1.3 or later.

This chapter includes the following sections:

■ Section 3.2, "Integrating EDQ with Experian QAS"

■ Section 3.3, "Migrating QAS integrations"

3.1 Software Requirements
EDQ includes a connector to the Experian QAS Batch API. You must have an installed
version of the Experian QAS Batch API software appropriate for your platform. For
more information, see the Experian Data Quality website found at
http://www.qas.com/.

3.2 Integrating EDQ with Experian QAS
Integration of EDQ with Experian QAS Batch is carried out by editing the
qas.properties file distributed with EDQ. The qas.properties file is located in the
ORACLE_HOME/user_projects\domains\domains\edq_domain\edq\oedq.home\qas
directory.

Once both EDQ and the QAS Batch software have been installed, edit the properties in
the qas.properties as required for your integration. The properties specified in the
file are as follows:

Property name Description Default Value

qas.install.path The location of the Experian QAS
Batch installation.

 C:\\Program Files
(x86)\\QAS\\QuickAddress
Batch API

qas.qaworld.ini The path to the QAWorld.ini file to
use. This allows you to create and
edit copies of the original
QAWorld.ini file distributed with
Experian QAS Batch API. If no
value is specified for this property,
it uses the QAWorld.ini file within
the Experian QAS Batch API
installation.

None

Migrating QAS integrations

3-2 Integrating Enterprise Data Quality with External Systems

3.3 Migrating QAS integrations
Some earlier versions of EDQ (versions prior to 8.1.3) were shipped with a customized
version of QAWorld.ini that was used instead of the version contained within
Experian QAS. It is not possible to migrate automatically from these versions of the
Experian QAS integration to the later versions. To migrate an earlier Experian QAS
integration, you must:

■ Locate the local copy of QAWorld.ini and copy any custom layouts specified in
this file into the version of QAWorld.ini contained within Experian QAS.

■ Update the settings in qas.properties See Section 3.2, "Integrating EDQ with
Experian QAS."

In addition, any existing processes and results books that make use of QAS processors
must be updated as follows:

■ Open each configured QAS processor and rename the output attributes to match
those in the new QAWorld.ini file.

■ Open any results books built on results grids from QAS processors and re-map the
fields to the new output attribute names.

Refer to the following table for the affected releases for each version of EDQ. All
versions of EDQ (previously known as dn:Director) prior to 7.2 are affected:

max.number.connections The maximum number of
connections that EDQ will create to
the API. This should not be set to a
value greater than 32.

Note: There is a known threading
and memory issue with Experian
QAS Batch API versions 6.85, 6.89
and 6.95, where if maximum usage
of 32 instances and 8 threads is
reached, the Batch API may crash.
This can be avoided by setting this
property to a value between 18 and
22 inclusive.

32

connection.pool.timeout This property specifies the number
of milliseconds that a connection
can be idle for before it will be
closed by the pool management
functionality. If this is set to -1, idle
connections will not be closed.

60,000

connection.pool.
timer.interval

This property specifies how often,
in milliseconds, the connection
pool will be scanned for idle
connections.

60,000

default.layout The default layout to use. If no
layout with the specified name is
available in the specified
QAWorld.ini file, this property will
be ignored.

GBR

Version Releases affected

EDQ (dn:Director) 7.2 Release 7.2.9 and all earlier 7.2 releases

Property name Description Default Value

Migrating QAS integrations

Integrating with Experian QAS 3-3

EDQ (dn:Director) 8.0 Release 8.0.21 and all earlier 8.0 releases

EDQ (dn:Director) 8.1 Release 8.1.2 and all earlier 8.1 releases

Version Releases affected

Migrating QAS integrations

3-4 Integrating Enterprise Data Quality with External Systems

4

Integrating with Capscan Matchcode 4-1

4Integrating with Capscan Matchcode

This document describes how to integrate address verification and cleansing features
from GBGroup Capscan Matchcode with EDQ. This documentation is intended for
system administrators responsible for installing and maintaining EDQ applications.

This chapter includes the following sections:

■ Section 4.1, "Software Requirements"

■ Section 4.2, "Integrating the Capscan Matchcode Libraries into EDQ"

■ Section 4.3, "Customizing the Matchcode API"

4.1 Software Requirements
You must have the Capscan Matchcode software installed on a system that is
accessible to the EDQ Server. For more information, see the GBGroup Matchcode
website found at http://www.gbgplc.com/products/matchcode/.

4.2 Integrating the Capscan Matchcode Libraries into EDQ
EDQ includes a connector to the Capscan Matchcode API. EDQ includes a connector
to the Capscan Matchcode API from GBGroup. This API provides address verification
and cleansing features. This API provides address verification and cleansing features.
Integrate the Capscan Matchcode Libraries into EDQ as follows:

1. Copy the capscan.jar client API file from the Capscan Matchcode installation to
the ORACLE_HOME/user_projects\domains\edq_domain\servers\edq_
server1\tmp_WL_user\edq\iz3lfy\war\WEB-INF\widgetjars directory.

The location of the capscan.jar file in a Capscan Matchcode installation depends
on the installation platform; for example, it is located in the
Capscan\SDK\Matchcode client API\Java directory on Windows.

2. Edit capscan.properties file in the ORACLE_HOME/user_
projects\domains\domains\edq_domain\edq\oedq.home\capscan directory.

Note: You can copy the capscan.jar file to a directory other than the
default directory given in this step. If you do so, you must edit the
capscan.jar property of the capscan.properties file to specify the
location of the file. If you specify a relative path, the path must be
relative to one of the directories in the EDQ configuration path.

Customizing the Matchcode API

4-2 Integrating Enterprise Data Quality with External Systems

3. Edit the server.host property to refer to the system where Capscan Matchcode is
running.

4. Restart your EDQ Server.

4.3 Customizing the Matchcode API
Various aspects of the Capscan Matchcode API behavior can be controlled using the
capscan.properties file. It allows you to set the following properties:

capscan.jar
The location of the capscan.jar client API file in the EDQ installation. If you specify a
relative path, the path must be relative to one of the directories in the EDQ
configuration path. The default value is the relative path capscan/capscan.jar.

server.host
The IP address of the machine where Capscan Matchcode is running.

connection.timeout
A timeout period, in seconds, after which the Capscan Matchcode API will abort the
search and return (a timeout period of zero indicates that there is no time limit on
searches).

connection.type
The connection mode to use when communicating with the Capscan Matchcode API.
The default connection mode is CONNECTIONLESS. The remaining options are:

■ CONNORIENTED

■ STATELESS

■ WEBCONNECTION

■ ONDEMAND

For information about these connection modes, refer to the Capscan Matchcode API
documentation.

number.capscan.connections
The number of connections that EDQ should make to the Capscan Matchcode API.

number.threads
The number of threads that should be used when communicating with the Capscan
Matchcode API.

The default contents of the capscan.properties file are as follows:

This configuration file is configuring the CapScan processor
to be able to communicate with the CapScan server
#
Capscan server name
server.host = 127.0.0.1
#
Connection timeout in seconds (0 means no time out)
connection.timeout = 30
#
The connection type to make to the CapScan server.
Possible values are:
#
CONNORIENTED
CONNECTIONLESS

Customizing the Matchcode API

Integrating with Capscan Matchcode 4-3

STATELESS
WEBCONNECTION
ONDEMAND
connection.type = CONNECTIONLESS
#
The number of connections the director server should
make to the CapScan server
number.capscan.connections = 1
#
The number of threads that should be used to
communicate with the CapScan server
number.threads = 1

Customizing the Matchcode API

4-4 Integrating Enterprise Data Quality with External Systems

5

Using the EDQ Command Line Interface 5-1

5Using the EDQ Command Line Interface

This chapter describes how to use the EDQ command line interface.

This chapter includes the following sections:

■ Section 5.1, "Running the Command Line Interface"

■ Section 5.2, "Understanding the Commands and Arguments"

■ Section 5.3, "Reviewing Examples"

The EDQ command line interface, jmxtools.jar, provides access to a number of EDQ
facilities.

5.1 Running the Command Line Interface
The EDQ command line interface is distributed as a self contained .jar file in the tools
directory, and is executed by the following command line invocation:

java -jar jmxtools.jar commandname arguments

The commands and arguments are described in the following section.

5.2 Understanding the Commands and Arguments
The command line interface can run a number of commands and provides
functionality including:

■ Running jobs

■ Listing and dropping orphaned results tables

■ Showing user session logs

■ Shutting down real-time jobs

■ Checking the EDQ version number

The following sections provide a full guide to the commands, arguments and options
available.

5.2.1 runjob
The runjob command runs a named job in the same way as if running the job using
the Director UI. The runjob command takes the following arguments:

Understanding the Commands and Arguments

5-2 Integrating Enterprise Data Quality with External Systems

5.2.2 runopsjob
The runopsjob command runs a named job in the same way as if running the job using
the Server Console user interface. This provides additional functionality to the runjob
command, specifically the use of Run Labels and Run Profiles. Run Labels may be
used to store results separately from other runs of the same job. Run Profiles may be
used to override externalized configuration settings at runtime.

The runopsjob command takes the following arguments:

Argument Use

-job job_name Specifies the name of the job to run.

-project project_name Specifies the name of the project that contains the job.

-u user_name Specifies the user name to use to connect to the EDQ server. The
user must have permission to run jobs and must have permission
to the project containing the job.

-p password Specifies the connecting user's password. If the -p option is not
set, EDQ will prompt the user for the password.

-nolockwait Indicates that if any of the resources used by the job are locked,
the job should not wait for them to become available. Instead, it
should terminate with a failure code and return control to the
command line. The -nolockwait argument takes no extra values.

-nowait Indicates that the command line should not wait for the job to
complete. The -nowait argument takes no extra values.

server:port Specifies the server and port of the JMX (management) interface.

Argument Use

-job job_name Specifies the name of the job to run.

-project project_name Specifies the name of the project that contains the job

-u user_name Specifies the user name to use to connect to the EDQ server. The user
must have permission to run jobs and must have permission to the
project containing the job.

-p password Specifies the connecting user's password. If the -p option is not set,
EDQ will prompt the user for the password.

-nolockwait Indicates that if any of the resources used by the job are locked, the
job should not wait for them to become available. Instead, it should
terminate with a failure code and return control to the command
line. The -nolockwait argument takes no extra values.

-nowait Indicates that the command line should not wait for the job to
complete. The -nowait argument takes no extra values.

-runlabel run_label_
name

Specifies the name of the run label under which you wish to store
staged output results. Note that this will override any run label that
is specified in a run profile or by -D runlabel = run_label_name.

-props run_profile_
name

Specifies the full path to a run profile properties file containing
override settings for externalized configuration options in the job.

Understanding the Commands and Arguments

Using the EDQ Command Line Interface 5-3

5.2.3 droporphans
The droporphans command is used to remove any orphaned results tables that may be
created when processes are terminated unexpectedly. It should not be run when any
jobs or processes are running on the EDQ server.

The droporphans command takes the following arguments:

5.2.4 listorphans
The listorphans command is used to identify any orphaned results tables. The
listorphans command takes the same arguments as the droporphans command.

5.2.5 scriptorphans
The scriptorphans command creates a list of SQL commands for dropping orphaned
results tables. This is useful if you want to review exactly which commands will run
on the Results database when you drop tables, or if you want to drop the tables
yourself manually.

5.2.6 list
The list command lists all the available commands.

5.2.7 showlogs
The showlogs command starts a small graphical user interface application that allows
user session logs to be retrieved.

5.2.8 shutdown
The shutdown command shuts down all real-time jobs. These are jobs that are running
from real-time record providers (web services or Java Message Service).

The shutdown command takes the following arguments:

-D externalized_
option=value

Allows you to override specific externalized options for the job
individually. The syntax for the externalized options and values is
the same as used in run profile properties files. Note that characters
will be interpreted by the command line, so some characters will
need to be escaped according to the shell conventions of your
environment. Also note that any individually specified externalized
option settings will override any settings for the same option if these
are specified in a run profile used in the same run.

server:port Specifies the server and port of the JMX (management) interface.

Option Use

-u user name Specifies the user name to use to connect to the EDQ server. The user must
have permission to cancel jobs and must have permission to the project
containing the job.

-p password Specifies the connecting user's password. If the -p option is not set, EDQ
will prompt the user for the password.

server:port Specifies the server and port of the JMX (management) interface.

Argument Use

Reviewing Examples

5-4 Integrating Enterprise Data Quality with External Systems

5.2.9 version
The version command is used to identify the version of the currently installed
instance of EDQ.

Enter the following at the command line:

java -jar jmxtools.jar version

The version number is returned.

5.3 Reviewing Examples
This section lists several possible invocations of the command line interface:

5.3.1 Listing All the Available Commands
The following invocation of the command line interface lists all of the available
commands:

java -jar jmxtools.jar -list

The output is as follows:

Available launch names:
<Job tools>
runjob Run named job
shutdown Shutdown realtime jobs
runopsjob Run named job in operations mode

<Logging>
showlogs Show session logs

<Database Tools>
listorphans List orphaned results tables
droporphans Drop orphaned results tables
scriptorphans Create script for dropping orphaned results tables

<System Information>
version Display version number of tools

5.3.2 Listing the Available Parameters for a Command
If the command line interface is invoked by specifying a command without the
corresponding parameters, it outputs detailed help for the command. For example, to
get detailed help on the runjob command, invoke the command line interface as
follows:

Option Use

-u user name Specifies the user name to use to connect to the EDQ server. The user must
have permission to cancel jobs and must have permission to the project
containing the job.

-p password Specifies the connecting user's password. If the -p option is not set, EDQ
will prompt the user for the password.

-nowait Indicates that the command line should not wait for the job to complete. The
-nowait argument takes no extra values.

server:port Specifies the server and port of the JMX (management) interface.

Reviewing Examples

Using the EDQ Command Line Interface 5-5

java -jar jmxtools.jar runjob

The output is as follows:

Usage: runjob -job jobname -project project [-u user] [-p pw] [-nowait]
[-nolockwait] [-sslprops props | -ssltrust store] server:port

5.3.3 Running a Named Job
This example illustrates how to run a named job in a named project on a specific EDQ
instance (as specified by machine name and port).

To run a job called “rulecheck” in a project called “Audit” on the local machine with a
JMX server on port 8090 using a user named "dnadmin" , the command is as follows:

java -jar jmxtools.jar runjob -job rulecheck -project audit -u dnadmin
localhost:8090

The application prompts the user to enter the password for the dnadmin user.

5.3.4 Running a Named Job in Operations Mode
This example illustrates how to run a named job in 'operations mode' in a Windows
environment. In operations mode, there is access to the Run Label and Run Profile
capabilities so that the configuration of the job can be specified dynamically, and so
that the results of the job can be stored by Run Label.

To run a job called "profiling" in a project called "MDM" on a server called "prod01",
with a run label of "Nov2011" and a run profile file called File1.properties, with a
JMX server on port 8090, the command is as follows:

java -jar jmxtools.jar runopsjob -job profiling -project MDM -runlabel
Nov2011 -props c:\ProgramData\Oracle\"Enterprise Data Quality\oedq_local_
home\File1.properties" -u dnadmin prod01:8090

Reviewing Examples

5-6 Integrating Enterprise Data Quality with External Systems

6

Configuring Additional Database Connections 6-1

6Configuring Additional Database
Connections

This chapter describes how you can configure additional database connections for use
in EDQ Director.

■ Section 6.1, "Using JNDI to Connect to Data Stores"

■ Section 6.2, "Using TNS to Connect to Data Stores"

■ Section 6.3, "Using LDAP to Connect to Data Stores"

The standard options for Director to connect to data stores are described in the online
help. Once implemented, these options appear in the Data Store Configuration step of
the New Data Store wizard in Director. For help with using this wizard, see the
Director online help.

6.1 Using JNDI to Connect to Data Stores
You can configure EDQ to use a Java Naming and Directory Interface (JNDI) data store
connection.

1. Define the JNDI data store. JNDI is provided by the hosting application server. For
more information about defining JNDI data sources in Oracle WebLogic Server,
see "Using DataSource Resource Definitions" in Oracle Fusion Middleware
Developing JDBC Applications for Oracle WebLogic Server

2. In the EDQ data store wizard, specify JNDI as the type of data store, and then
specify the JNDI name.

6.2 Using TNS to Connect to Data Stores
You can configure EDQ to use an Oracle Transparent Network Substrate (TNS) data
store connection. To use this connection method, you specify a name from a
tnsnames.ora file as the data source when using the data sources wizard. Only the
tnsnames.ora file is needed. No other Oracle client software is needed.

To configure EDQ to connect through TNS
1. Set the oracle.net.tns_admin Java system property to a local directory that

contains the tnsnames.ora file.

2. Create a file named jvm.properties in your EDQ local configuration directory
(oedq_local_home by default) and add an entry similar to the following: -d
oracle.net.tns_admin = c:\temp). This property may have been set already in
the application server when EDQ was installed.

Using LDAP to Connect to Data Stores

6-2 Integrating Enterprise Data Quality with External Systems

For more information about the tnsnames.ora file, see "Configuring the Local Naming
Method" in Oracle Database Net Services Administrator's Guide.

6.3 Using LDAP to Connect to Data Stores
You can configure EDQ to use an Oracle Lightweight Direct Access Protocol (LDAP)
data store connection by setting the required Java system properties. These properties
are:

dn.oracle.directory.servers = ldap://servername:port

dn.oracle.default.admin.context = dc=domaincontext1,dc=domaincontext2

The first property gives the location of your LDAP servers. The second property sets
the context within the LDAP tree. Together, these properties enable EDQ to construct
an Oracle and LDAP JDBC connection string, which looks similar to:

jdbc:oracle:thin:@ldap://servername:port/unicode,cn=Oraclecontext,dc=domai
ncontext1,dc=domaincontext2

7

Configuring EDQ to Process XML Data Files 7-1

7Configuring EDQ to Process XML Data Files

This chapter describes how EDQ can be configured to read and write XML data files.

This chapter includes the following sections:

■ Section 7.1, "Using Simple XML Data Stores"

■ Section 7.2, "Using XML and Stylesheet Data Stores"

You can use XML data files in snapshots to read and write the data contained in the
file. A snapshot is a staged copy of data in a data store that is used in one or more
processes. EDQ provides two types of data stores for working with XML data files:
Simple XML and XML and Stylesheet. Both are available for server-side and client-side
data stores.

7.1 Using Simple XML Data Stores
Simple XML data stores can read and write XML files that have a simple 2-level
structure in which the top level tag represents the entity and the lower level tags
represent the attributes of the entity. XML files exported from Microsoft Access are an
example.

Following is an example of a simple XML file format that could be used with EDQ:

<dataroot>
 <Person>
 <Id>1</Id>
 <FirstName>Fred</FirstName>
 <LastName>Bloggs</LastName>
 <DateOfBirth>1972-01-31T00:00:00.000+0000</DateOfBirth>
 <Weight>85</Weight>
 </Person>
 <Person>
 <Id>2</Id>
 <FirstName>Jane</FirstName>
 <LastName>Smith</LastName>
 <DateOfBirth>1985-07-16T00:00:00.000+0100</DateOfBirth>
 <Weight>63</Weight>
 </Person>
</dataroot>

7.1.1 Reading Simple XML Files
When EDQ reads Simple XML files the following occurs:

■ The root element name is not used, so it can be anything.

Using XML and Stylesheet Data Stores

7-2 Integrating Enterprise Data Quality with External Systems

■ The record element name appears as the table name in the Table Selection page of
the Snapshot Wizard dialog.

■ The lower level element names appear as the column names in the Column
Selection page of the Snapshot Wizard and therefore become EDQ attribute names.

7.1.2 Writing Simple XML Files
When generating Simple XML files using an EDQ export to the data store, the name of
the data store defines the record XML element name. The element Person in the
example in Section 7.1 shows how this appears in the XML.

The XML element names of the lower level tags are taken from the EDQ attribute
names. EDQ names are encoded to ensure that invalid XML is not generated. For
example, space characters in names are replaced by the character sequence _x0020_, so
an EDQ attribute named Date Of Birth would generate XML elements in the
following format:

<Date_x0020_Of_x0020_Birth>

7.2 Using XML and Stylesheet Data Stores
When there is a requirement to work with XML of a different structure than that of
Simple XML, then you use the XML and Stylesheet data stores.

These data stores read and write XML conforming to the DN-XML schema and
optionally allow the use of a custom stylesheet to:

■ Transform XML from a custom XML format to DN-XML during data snapshot

■ Transform XML from DN-XML to a custom XML format during data export

For more information about XML stylesheets, see the W3C website found at
http://www.w3.org/Style/XSL/ and http://www.w3.org/standards/xml.

7.2.1 Using DN-XML
DN-XML is the format by which custom XML can be processed by EDQ.

Using XML and Stylesheet Data Stores

Configuring EDQ to Process XML Data Files 7-3

An example of DN-XML is as follows:

<dn:data xmlns:dn="http://www.datanomic.com/2008/dnx">
 <dn:record>
 <dn:value name="Id" type="string"/>
 <dn:value name="FirstName" type="string"/>
 <dn:value name="LastName" type="string"/>
 <dn:value name="DateOfBirth" type="date"/>
 <dn:value name="Height" type="number"/>
 <dn:value name="Weight" type="number"/>
 </dn:record>
 <dn:record>
 <dn:value name="Id">1</dn:value>
 <dn:value name="FirstName">Fred</dn:value>
 <dn:value name="LastName">Bloggs</dn:value>
 <dn:value name="DateOfBirth">1972-01-31</dn:value>
 <dn:value name="Height">1.85</dn:value>
 <dn:value name="Weight">85</dn:value>
 </dn:record>
 <dn:record>
 <dn:value name="Id">2</dn:value>
 <dn:value name="FirstName">Jane</dn:value>
 <dn:value name="LastName">Smith</dn:value>
 <dn:value name="DateOfBirth">1985-07-16</dn:value>
 <dn:value name="Height">1.65</dn:value>
 <dn:value name="Weight">63</dn:value>
 </dn:record>
</dn:data>

This is the equivalent DN-XML for the example given in Section 7.1, "Using Simple
XML Data Stores."

Note that the EDQ attribute names are defined differently in DN-XML compared with
Simple XML. Because DN-XML uses attribute content to specify EDQ attribute names,
it is possible to create EDQ attributes with spaces and other special characters in their
names.

In the previous example, the <dn:record skip="true"> XML element and its contents
allows the definition of the structure of the source including the field names and their
data types. All other record elements define a row of data in EDQ. This is analogous to
the header row in a comma-separated values file. The following data types are
permitted:

■ string

■ date

■ number

Within a data record, value elements are used to specify EDQ attribute values for the
record. The name attribute is used to specify the EDQ attribute in question and the text
content of the attribute specifies the value for that EDQ attribute. For example, the
XML fragment, <dn:value name="FirstName">Fred</dn:value>, assigns the value
'Fred' to the EDQ attribute 'FirstName'.

Note: Date values in DN-XML files should be specified in the XSD
date format (ISO 8601). For example,
'2008-10-31T15:07:38.6875000-05:00' or without the time component
simply as '2008-10-31'.

Using XML and Stylesheet Data Stores

7-4 Integrating Enterprise Data Quality with External Systems

DN-XML files can be read in to EDQ by creating an XML and Stylesheet data store and
specifying the location of the XML source file; the XSLT file option should be left
blank:

Similarly, EDQ can write DN-XML files by exporting data to an XML and Stylesheet
data store with the XSLT option left blank.

7.2.2 Reading Custom XML Files
XML files in custom formats can be read by EDQ using the XML and Stylesheet data
store configured to use a custom XML stylesheet (XSLT) to transform from the custom
schema to the DN-XML schema during data snapshotting.

Following is an example custom XML file that could be read into EDQ:

<crmdata>
 <contacts>
 <contact id="1">
 <name>
 <firstname>Fred</firstname>
 <surname>Bloggs</surname>
 </name>
 <dob>1972-01-31</dob>
 <properties>
 <property name="height" value="1.85"/>
 <property name="weight" value="85"/>
 </properties>
 </contact>
 <contact id="2">
 <name>
 <firstname>Jane</firstname>
 <surname>Smith</surname>
 </name>
 <dob>1985-07-16</dob>
 <properties>
 <property name="height" value="1.68"/>
 <property name="weight" value="63"/>
 </properties>
 </contact>
 <contacts>
</crmdata>

Using XML and Stylesheet Data Stores

Configuring EDQ to Process XML Data Files 7-5

The following XML stylesheet demonstrates one way that the preceding example
custom XML can be transformed into a suitable DN-XML format:

<xsl:stylesheet version="1.0" xmlns:dn="http://www.datanomic.com/2008/dnx"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <dn:data>

 <!-- Write out the header record -->
 <dn:record skip="true">
 <dn:value name="Id" type="string"/>
 <dn:value name="FirstName" type="string"/>
 <dn:value name="LastName" type="string"/>
 <dn:value name="DateOfBirth" type="date"/>
 <dn:value name="Height" type="number"/>
 <dn:value name="Weight" type="number"/>
 </dn:record>

 <!-- Get each contact record -->
 <xsl:apply-templates select="/crmdata/contacts/contact"/>

 </dn:data>
 </xsl:template>

 <xsl:template match="contact">

 <!-- Write out a data record -->
 <dn:record>
 <dn:value name="Id"><xsl:value-of select="@id"/></dn:value>
 <dn:value name="FirstName"><xsl:value-of select="name/firstname"/></dn:value>
 <dn:value name="LastName"><xsl:value-of select="name/surname"/></dn:value>
 <dn:value name="DateOfBirth"><xsl:value-of select="dob"/></dn:value>
 <dn:value name="Height">
 <xsl:value-of select="properties/property[@name='height']/@value"/>
 </dn:value>
 <dn:value name="Weight">
 <xsl:value-of select="properties/property[@name='weight']/@value"/>
 </dn:value>
 </dn:record>

 </xsl:template>

 </xsl:stylesheet>

7.2.2.1 Configuring the Data Store
The data can be read in to EDQ by creating an XML and Stylesheet data store and
specifying the location of the XML source file and the XSLT file (stylesheet).

Using XML and Stylesheet Data Stores

7-6 Integrating Enterprise Data Quality with External Systems

EDQ reads the source XML file in chunks for efficiency breaking up the file on record
boundaries. By default EDQ uses the element immediately below the root as the record
element. If this is not the case in the source XML file then an XPath-style expression to
the record element from the root must be specified.

7.2.3 Writing Custom XML Files
XML files in custom formats can be written by EDQ using the XML and Stylesheet
data store configured to use a custom XSLT to transform from the DN-XML schema to
the custom target schema the during data export.

Following is an example target custom XML format that needs to be generated by
EDQ:

<Report>
 <Person Id="1" FullName="Fred Bloggs"/>
 <Person Id="2" FullName="Jane Smith"/>
</Report>

The following XML stylesheet demonstrates one way in which the DN-XML format
can be transformed into the target custom XML format:

<xsl:stylesheet version="1.0"
 xmlns:dn="http://www.datanomic.com/2008/dnx"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fn="http://www.w3.org/2005/02/xpath-functions">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <Report>
 <xsl:apply-templates select="/dn:data/dn:record"/>
 </Report>
 </xsl:template>

 <xsl:template match="dn:record">
 <Person>
 <xsl:attribute name="Id">
 <xsl:value-of select="dn:value[@name = 'Id']"/>
 </xsl:attribute>
 <xsl:attribute name="FullName">
 <xsl:value-of select="dn:value[@name = 'FirstName']"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="dn:value[@name = 'LastName']"/>

Using XML and Stylesheet Data Stores

Configuring EDQ to Process XML Data Files 7-7

 </xsl:attribute>
 </Person>
 </xsl:template>

</xsl:stylesheet>

7.2.3.1 Configuring the Data Store
The data can be written by EDQ by creating an XML and Stylesheet data store and
specifying the destination for the custom XML file and XSLT (stylesheet) file.

Using XML and Stylesheet Data Stores

7-8 Integrating Enterprise Data Quality with External Systems

	Contents
	1 Integrating with Subversion
	2 Integrating with IBM Global Name Recognition
	3 Integrating with Experian QAS
	4 Integrating with Capscan Matchcode
	5 Using the EDQ Command Line Interface
	6 Configuring Additional Database Connections
	7 Configuring EDQ to Process XML Data Files
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Integrating with Subversion
	1.1 Software Requirements
	1.2 Understanding the Integration Architecture
	1.3 Setting Up a Repository
	1.4 Configuring EDQ with Subversion
	1.4.1 Configuring a New EDQ Installation
	1.4.2 Retaining Existing Configuration Information

	1.5 Understanding the Integration Elements
	1.6 Reviewing a Deployment Example
	1.7 Troubleshooting Errors

	2 Integrating with IBM Global Name Recognition
	2.1 System Requirements
	2.2 Configuring the EDQ Server
	2.3 Building the Search Library
	2.4 Configuring the GNR Connector
	2.4.1 Creating the EDQ GNR Properties File

	2.5 Creating the Search Configuration Files
	2.5.1 Support for GNR 3.2 and GNR 4.2 in Search Configuration Files

	3 Integrating with Experian QAS
	3.1 Software Requirements
	3.2 Integrating EDQ with Experian QAS
	3.3 Migrating QAS integrations

	4 Integrating with Capscan Matchcode
	4.1 Software Requirements
	4.2 Integrating the Capscan Matchcode Libraries into EDQ
	4.3 Customizing the Matchcode API

	5 Using the EDQ Command Line Interface
	5.1 Running the Command Line Interface
	5.2 Understanding the Commands and Arguments
	5.2.1 runjob
	5.2.2 runopsjob
	5.2.3 droporphans
	5.2.4 listorphans
	5.2.5 scriptorphans
	5.2.6 list
	5.2.7 showlogs
	5.2.8 shutdown
	5.2.9 version

	5.3 Reviewing Examples
	5.3.1 Listing All the Available Commands
	5.3.2 Listing the Available Parameters for a Command
	5.3.3 Running a Named Job
	5.3.4 Running a Named Job in Operations Mode

	6 Configuring Additional Database Connections
	6.1 Using JNDI to Connect to Data Stores
	6.2 Using TNS to Connect to Data Stores
	6.3 Using LDAP to Connect to Data Stores

	7 Configuring EDQ to Process XML Data Files
	7.1 Using Simple XML Data Stores
	7.1.1 Reading Simple XML Files
	7.1.2 Writing Simple XML Files

	7.2 Using XML and Stylesheet Data Stores
	7.2.1 Using DN-XML
	7.2.2 Reading Custom XML Files
	7.2.2.1 Configuring the Data Store

	7.2.3 Writing Custom XML Files
	7.2.3.1 Configuring the Data Store

