
Oracle® Fusion Middleware
Developing Applications for Oracle Enterprise Scheduler

12c (12.1.3)

E28544-03

July 2015

Documentation for developers that describes how to use Oracle
Enterprise Scheduler to develop jobs that execute Java, PL/
SQL, EJB, web services and binary process code to schedule
and off-load enterprise application work.

Oracle Fusion Middleware Developing Applications for Oracle Enterprise Scheduler , 12c (12.1.3)

E28544-03

Copyright © 2015, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributors: Kirk Bittler, Weifeng BaoOracle Fusion Middleware Developing Applications for Oracle
Enterprise Scheduler, Shelly Butcher, David Craft, Diane Davison, Carlos Fuentes, Charles Hall, Vaibhav
Lole, Solomon Nelson, Shengsong Ni, Rachna Shukla, Steve Traut, Venkat Vengala, Aaron Weisberg, Larry
Hoffman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xiii

Audience ... xiii

Documentation Accessibility ... xiii

Related Documents.. xiii

Conventions.. xiv

What's New in This Guide... xv

1 Introduction to Oracle Enterprise Scheduler

About Oracle Enterprise Scheduler.. 1-1

Oracle Enterprise Scheduler Overview for Application Developers .. 1-2

Introduction to Working with Oracle Enterprise Scheduler at Design-Time 1-2

Introduction to Working with Oracle Enterprise Scheduler at Runtime 1-3

Oracle Enterprise Scheduler Job Requests.. 1-4

Overview of Integration Steps.. 1-6

Fixed-Rate Scheduling with Oracle Enterprise Scheduler.. 1-6

2 Planning Job Development

Job Development Flow... 2-1

The Hosting Application ... 2-3

The Client Application... 2-3

Create the Job Implementation ... 2-4

Create Job Metadata ... 2-4

Automatic Metadata Refresh Post-Submission.. 2-4

3 Installing and Verifying the Oracle Enterprise Scheduler Installation

Installing Oracle Enterprise Scheduler .. 3-1

Targeting Oracle Enterprise Scheduler During Domain Creation .. 3-1

OWSM-PM Targeting With Oracle Enterprise Scheduler .. 3-2

Introduction to Verifying the Oracle Enterprise Scheduler Installation ... 3-2

How to Verify the Oracle Enterprise Scheduler Installation Using a Browser 3-3

iii

How to Programmatically Verify the Oracle Enterprise Scheduler Installation 3-3

What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified 3-4

4 Using the Pre-Deployed Native Hosting Application

Introduction ... 4-1

Properties ... 4-2

Metadata... 4-2

Security Permissions .. 4-2

Configuring the Policy Stripe ... 4-2

Support for Multiple Application Stripes ... 4-3

5 Using Ant to Generate a Hosting Application

Introduction to Generating a Hosting Application with Ant .. 5-1

Prerequisites for Using the Ant Build Files .. 5-2

Ant Targets for Creating and Deploying a Hosting Application... 5-2

Creating a Hosting Application and Project Workspace with Ant.. 5-3

Creating a Java Job as a Shared Library with Ant.. 5-7

Packaging a Java Job as a Shared Library with Ant... 5-9

Deploying a Shared Library with Ant ... 5-10

Packaging a Hosting Application with Ant.. 5-10

Deploying a Hosting Application with Ant ... 5-10

Configuring the Generated Ant Targets .. 5-11

6 Creating a Thin Client Application

Introduction ... 6-1

Implementation... 6-2

Secured Invocation... 6-3

RemoteConnector API and the Server Affinity Property ... 6-4

Examples.. 6-4

Using JDeveloper to Build a Thin Client Application for MAR Deployment 6-6

Create and Deploy a Thin Client Application for the Standalone Environment 6-6

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata 6-16

7 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application

How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications 7-1

Understanding Oracle Enterprise Scheduler Application Support Created by Oracle

JDeveloper .. 7-2

Building a Combined Oracle Enterprise Scheduler Application... 7-3

Creating the Application and Projects for EssDemoApp Application 7-4

Creating Metadata and an Implementation Class for the EssDemoApp Application........... 7-7

Adding Application Code to Submit Job Requests ... 7-10

Setting Oracle Enterprise Scheduler Properties ... 7-11

Assembling the EssDemoApp Application.. 7-12

iv

Deploying and Running the EssDemoApp Application.. 7-21

Building Split Submitting and Hosting Applications ... 7-24

How to Create the Back-End Hosting Application for EssDemoApp.................................... 7-25

How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler 7-35

8 Using the Metadata Service

Introduction to Using the Metadata Service ... 8-1

Introduction to Metadata Service Name Spaces .. 8-2

Introduction to Metadata Service Operations .. 8-2

Introduction to Metadata Service Transactions.. 8-3

Accessing the Metadata Service.. 8-3

How to Access the Metadata Service with a Stateless Session EJB ... 8-3

Accessing the Metadata Service with Oracle JDeveloper ... 8-4

Querying Metadata Using the Metadata Service ... 8-4

How to Create a Filter.. 8-4

How to Query Metadata Objects.. 8-5

9 Using Parameters and System Properties

Introduction to Using Parameters and System Properties ... 9-1

What You Need to Know About Application Defined Property and System Property

Naming... 9-1

What You Need to Know About Parameter Conflict Resolution and Parameter

Materialization .. 9-2

Using Parameters with the Metadata Service... 9-4

How to Use Parameters and System Properties in Metadata Objects 9-5

Using Parameters with the Runtime Service .. 9-6

How to Use Parameters with the Runtime Service ... 9-6

How to Use Parameters with a Step ID for Job Set Steps ... 9-7

Using System Properties .. 9-8

10 Using Tokens and Logical Clusters

Using Token Substitution .. 10-1

Nested Substitutions .. 10-2

Automatic Substitution.. 10-2

Using Logical Clusters ... 10-3

11 Creating and Using PL/SQL Jobs

Introduction to Using PL/SQL Stored Procedure Job Definitions .. 11-1

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler... 11-2

How to Define a PL/SQL Stored Procedure with the Correct Signature............................... 11-2

Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored

Procedure ... 11-3

How to Access Job Request Information In PL/SQL Stored Procedures............................... 11-4

v

What You Need to Know When You Define a PL/SQL Stored Procedure............................ 11-4

Performing Oracle Database Tasks for PL/SQL Stored Procedures ... 11-4

How to Grant PL/SQL Stored Procedure Permissions .. 11-4

What You Need to Know About Granting PL/SQL Stored Procedure Permissions 11-5

Creating and Storing Job Definitions for PL/SQL Job Types... 11-6

How to Create a PL/SQL Job Type.. 11-6

How to Create and Store a Job Definition for PL/SQL Job Type .. 11-7

Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application....... 11-8

12 Creating and Using EJB Jobs

Introduction to Creating EJB Jobs... 12-1

Planning Job Development.. 12-2

Creating and Storing Job Definitions for EJB Job Types.. 12-2

Secured Invocation ... 12-4

Forward Invocation.. 12-4

Callback Invocation.. 12-5

RemoteConnector API and the Server Affinity Property ... 12-5

CSF Lookup From a Remote Server... 12-6

Synchronous Bean... 12-6

Metadata .. 12-6

EJB Job Sample Code ... 12-7

Asynchronous Bean.. 12-8

Metadata .. 12-9

EJB Job Sample Code ... 12-10

13 Creating and Using Web Service Jobs

Introduction ... 13-1

Predefined Web Service Job Types ... 13-2

Cancel and Fault Support .. 13-3

Configuration Properties for Web Service Jobs .. 13-4

Oracle Web Services Manager Policy Configuration... 13-5

Creating a Web Service Job Definition... 13-6

Using Oracle JDeveloper to Create a Job Definition ... 13-6

Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition 13-10

14 Creating and Using Process Jobs

Introduction to Creating Process Job Definitions... 14-1

Creating and Storing Job Definitions for Process Job Types... 14-1

How to Create and Store a Process Job Type.. 14-2

How to Create and Store a Process Type Job Definition... 14-4

Using an Agent Handler for Process Jobs ... 14-5

Choosing an Agent Handler ... 14-5

Process Job Locale... 14-6

vi

15 Defining and Using Schedules

Introduction to Schedules.. 15-1

Defining a Recurrence .. 15-1

How to Define a Recurrence with a Recurrence Fields Helper ... 15-2

How to Define a Recurrence with an iCalendar RFC 2445 Specification............................... 15-4

What You Need to Know When You Use a Recurrence Fields Helper................................... 15-5

What You Need to Know When You Use an iCalendar Expression 15-6

Defining an Explicit Date... 15-6

How to Define an Explicit Date.. 15-6

What You Need to Know About Explicit Dates... 15-7

Defining and Storing Exclusions .. 15-7

How to Define an Exclusion ... 15-7

How to Create an Exclusions Definition... 15-7

Defining and Storing Schedules ... 15-8

How to Define and Store a Schedule ... 15-8

What Happens When You Define and Store a Schedule .. 15-8

What You Need to Know About Handling Time Zones with Schedules............................... 15-9

Identifying Job Requests That Use a Particular Schedule... 15-9

Updating and Deleting Schedules.. 15-10

16 Using the Oracle Enterprise Scheduler Web Service

Introduction to the Oracle Enterprise Scheduler Web Service ... 16-1

Developing and Using ESSWebservice Applications .. 16-3

How to Develop and Use an ESSWebservice Java EE Application... 16-3

How to Develop and Use an ESSWebservice SOA Application with BPEL.......................... 16-4

Setting Web Service Addressing Headers for getCompletionStatus() Operation................. 16-4

Restrictions When Using ESSWebservice ... 16-4

ESSWebservice Implementation... 16-5

ESSWebservice WSDL File .. 16-5

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process................... 16-5

17 Defining and Using Job Sets

Introduction to Defining and Using Job Sets .. 17-1

Defining Job Sets ... 17-2

How to Define a Job Set... 17-2

How to Define Serial Job Set Steps .. 17-4

How to Define Parallel Job Set Steps ... 17-6

What Happens When You Define a Job Set .. 17-7

What You Need to Know About Serial Job Sets... 17-7

What You Need to Know About Job Set Application Defined Properties and System

Properties ... 17-8

What Happens at Runtime for Job Set State Priorities and State Transitions........................ 17-8

vii

Cross Application Job Sets... 17-10

Overview of Cross Application Job Sets ... 17-11

Requirements for Cross Application Job Sets... 17-11

Supporting Input and Output Forwarding in Job Sets ... 17-12

18 Defining and Using a Job Incompatibility

Introduction to Using a Job Incompatibility ... 18-1

Job Self Incompatibility ... 18-2

Defining Incompatibility with Oracle JDeveloper ... 18-2

How to Define a Global Incompatibility... 18-3

How to Define a Domain Incompatibility .. 18-4

What Happens at Runtime to Handle Job Incompatibility .. 18-6

What Happens to Subrequests with an Incompatible Parent Request................................... 18-6

19 Using the Runtime Service

Introduction to the Runtime Service .. 19-1

Accessing the Runtime Service ... 19-1

How to Access the Runtime Service and Obtain a Runtime Service Handle........................ 19-2

Submitting Job Requests .. 19-3

How to Submit a Request to the Runtime Service... 19-3

What You Should Know About Default System Properties When You Submit a Request . 19-3

What You Should Know About Metadata When You Submit a Request............................... 19-4

DMS ECID and FlowId Support .. 19-4

Managing Job Requests.. 19-5

How to Get Job Request Information with getRequestDetail.. 19-6

How to Change Job Request State ... 19-6

How to Update Job Request Priority and Job Request Parameters .. 19-8

Querying Job Requests... 19-8

Submitting Ad Hoc Job Requests ... 19-11

How to Create an Ad Hoc Request.. 19-11

What Happens When You Create an Ad Hoc Request ... 19-13

What You Need to Know About Ad Hoc Requests... 19-13

Implementing Pre-Process and Post-Process Handlers .. 19-13

Implementing a Pre-Process Handler.. 19-13

Implementing a Post-Process Handler.. 19-14

20 Using Subrequests

Introduction to Using Subrequests... 20-1

Creating and Managing Subrequests... 20-2

How to Submit Subrequests ... 20-2

How to Cancel Subrequests .. 20-2

How to Hold Subrequests ... 20-3

How to Submit Multiple Subrequests ... 20-3

viii

How to Manage Paused Subrequests .. 20-3

How Subrequests Are Processed.. 20-4

How to Identify Subrequests .. 20-5

How to Manage Subrequests and Incompatibility.. 20-5

Creating a Java Procedure that Submits a Subrequest .. 20-5

Creating a PL/SQL Procedure that Submits a Subrequest ... 20-8

21 Working with Asynchronous Java Jobs

Introduction to Working with Asynchronous Java Jobs ... 21-1

Creating an Asynchronous Java Job... 21-1

Implementing the Asynchronous Java Job Asynchronous Interface...................................... 21-2

Asynchronous Java Job execute() Method.. 21-2

Invoking a Remote Job from an Asynchronous Java Job.. 21-2

Calling Back to Oracle Enterprise Scheduler with Status Updates... 21-3

Updating the Asynchronous Java Job ... 21-3

Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes................. 21-3

Asynchronous Java Job AsyncCancellable Interface... 21-5

Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery

Network ... 21-5

A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job 21-10

Introduction to the Recommended Design Pattern... 21-11

Potential Approaches... 21-11

Use Case Summary .. 21-11

How to Implement BPEL with an Asynchronous Job... 21-12

Use Case: Add Oracle JDeveloper Libraries... 21-12

Use Case: Create the Asynchronous Job Definition .. 21-13

Use Case: Design the Event Payload Schema and Event Definition Files 21-14

Programmatically Raise a Business Event from the Asynchronous Job Methods.............. 21-15

Design the SOA Composite with Meditator and BPEL .. 21-17

Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job 21-18

Validating the Deployment ... 21-23

Troubleshooting the Use Case .. 21-25

Handling Time Outs and Recovery for Asynchronous Jobs .. 21-25

Asynchronous Request Time Outs... 21-25

Handling Asynchronous Jobs Marked for Manual Recovery ... 21-26

Using RecoverRequest to Manually Recover a Job Request .. 21-27

Oracle Enterprise Scheduler Interfaces and Classes.. 21-28

22 Job Request Logs and Output

Request Logs.. 22-1

System Properties ... 22-1

Log Header.. 22-1

Request Logging from a Java Job ... 22-2

ix

Request Logging from a PL/SQL Job.. 22-4

Request Logging from a Process Job ... 22-5

Request Logging and Output From an EJB Job ... 22-5

Request Logging from a Web Service Job ... 22-10

APIs for Handling Request Logs.. 22-11

Request Output ... 22-11

Using the Request File Directory ... 22-12

System Properties ... 22-14

Creating Request Output from a Java Job... 22-14

Creating Request Output from a PL/SQL Job ... 22-20

Creating Request Output from a Process Job ... 22-24

Creating Request Output from an EJB Job.. 22-25

Creating Request Output from a Web Service Job... 22-25

APIs for Handling Request Output ... 22-25

23 Oracle Enterprise Scheduler Security

Introduction to Oracle Enterprise Scheduler Security... 23-1

Oracle Enterprise Scheduler Metadata Access Control .. 23-1

Oracle Enterprise Scheduler Job Execution Security... 23-2

Configuring Metadata Security for Oracle Enterprise Scheduler.. 23-2

How to Enable Application Security with Oracle ADF Security Wizard............................... 23-3

Including Security Files in EAR File.. 23-3

How to Define Principals for Security... 23-4

Creating Enterprise Role ... 23-4

How to Create Grants with Oracle Enterprise Scheduler Metadata Pages 23-5

About MetadataPermission APIs... 23-6

What Happens When You Configure Metadata Security... 23-7

Configuring Data Security for Oracle Enterprise Scheduler .. 23-7

How to Change Data Security Permissions.. 23-7

Examples.. 23-10

Configuring Web Service Security for Oracle Enterprise Scheduler ... 23-13

Configuring PL/SQL Job Security for Oracle Enterprise Scheduler... 23-13

Elevating Privileges for Oracle Enterprise Scheduler Jobs ... 23-13

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler .. 23-13

How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler 23-14

What Happens When You Configure a Single Policy Stripe.. 23-15

What Happens at Runtime.. 23-15

x

List of Tables

3-1 HTTP Response Codes.. 3-4
4-1 Pre-Deployed Native Hosting Application Properties.. 4-2
5-1 Ant Targets in the Included Build File.. 5-3
5-2 Ant Targets in the Generated Build File... 5-3
5-3 Information Needed by the Ant Target.. 5-4
5-4 Information Needed by the Ant Target.. 5-7
5-5 Build Properties for Customizing Ant Builds... 5-11
7-1 EJB Resources for the Front-End Submitter Application... 7-52
8-1 Filter Comparison Operators... 8-4
8-2 MetadataService Query Fields... 8-5
9-1 Parameter Precedence Levels... 9-2
9-2 ParameterInfo Parameter Properties.. 9-4
9-3 System Properties.. 9-8
10-1 EJB Job Type Automatically Substituted Properties... 10-3
10-2 Web Services Job Type: Automatically Substituted Properties... 10-3
10-3 Process Job Type: Automatically Substituted Properties... 10-3
10-4 Properties Associated With a Job Location.. 10-4
11-1 Terminal States for PL/SQL Stored Procedure Results .. 11-3
11-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job

Type.. 11-7
12-1 EJB Job Type Properties.. 12-3
12-2 Additional Properties.. 12-4
13-1 The Predefined Web Service Job Types.. 13-3
13-2 SOAP Web Service Operation Statuses.. 13-3
13-3 Oracle SOA Suite Status Operations... 13-3
13-4 Web Service Job Configuration Properties... 13-4
14-1 System Properties for Process Type Jobs.. 14-2
15-1 Recurrence Field Helper Patterns... 15-2
16-1 Summary of Operations Available with ESSWebservice... 16-2
17-1 Job Set Step Property... 17-2
17-2 Job Set Serial Execution Step Terminal States.. 17-4
17-3 Job Set Terminal State Transitions... 17-9
17-4 Possible Job Set Runtime States... 17-9
19-1 Runtime Service Default Value Fields and Corresponding System Properties................ 19-4
19-2 Runtime Service Get Request Methods.. 19-6
19-3 Runtime Service Job Request State Methods... 19-7
19-4 Runtime Service Update Methods.. 19-8
19-5 Query Filter Fields For Querying the Runtime (Defined in Enum

RuntimeService.QueryField).. 19-9
19-6 Runtime Service Query Methods.. 19-11
19-7 Ad Hoc Request Job Definition System Properties for Job Types.................................... 19-11
22-1 ContentFactory Methods for Creating Request Logs... 22-2
22-2 RequestLogger Methods for Creating Request Logs... 22-3
22-3 ESS_JOB Functions and Procedures for Request Logging.. 22-4
22-4 RuntimeService Methods for Handling Request Logs.. 22-11
22-5 System Properties for Creating Request Output.. 22-14
22-6 ContentFactory Methods for Java Request Output.. 22-15
22-7 RequestOutput Methods for Java Request Output.. 22-15
22-8 OutputContentHelper Methods for Java Request Output.. 22-16
22-9 CommitSemantics Enum Members to Express Commit Semantics................................ 22-18
22-10 ESS_JOB Procedures and Functions for Request Output.. 22-20

xi

22-11 RuntimeService Methods for Handling Request Output.. 22-25
23-1 Grant Actions for Metadata Security.. 23-6
23-2 Condition Query Fields and Their Corresponding Request History View Column

Entries.. 23-9

xii

Preface

This document describes how to develop jobs and other extensions of Oracle
Enterprise Scheduler.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic
Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high
availability and scalability, with load balancing and provides monitoring and
management through Oracle Enterprise Manager Fusion Middleware Control.

Audience
This document is intended for Oracle applications developers and assumes familiarity
with Java and SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle 12c Fusion
Middleware documentation set:

• WLST Command Reference for SOA Suite

• Installing and Configuring Oracle SOA Suite and Business Process Management

• Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

• Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

• Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Fusion Middleware Application Security Guide

• Oracle Fusion Middleware Administering Oracle Enterprise Scheduler

The following chapters in this guide describe Oracle Enterprise Scheduler
administrative functions:

– "Managing Oracle Enterprise Scheduler Service and Jobs"

– "Troubleshooting Oracle Enterprise Scheduler"

– "High Availability for Oracle Enterprise Scheduler"

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiv

What's New in This Guide

This guide has been updated in several ways. The following table lists the sections that
have been added or changed.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA
Products and Oracle AIA Foundation Pack" at http://www.oracle.com/
technetwork/middleware/docs/soa-aiafp-
knownissuesindex-364630.html.

Sections Changes Made May 2014

Chapter 2: Planning Job Development New chapter X

Chapter 3: Installing and Verifying the
Oracle Enterprise Scheduler Installation

Added section 3.1 X

Chapter 4: Using the Pre-Deployed Native
Hosting Application

New chapter X

Chapter 5: Using Ant to Generate a
Hosting Application

Updated examples 5-1 and 5-2 X

Chapter 6: Creating a Thin Client
Application

New chapter X

Chapter 10: Customizing Metadata New chapter X

Chapter 11: Using Tokens and Logical
Clusters

New chapter X

Chapter 13: Creating and Using EJB Jobs New chapter X

Chapter 14: Creating and Using Web
Service Jobs

New chapter X

Chapter 15: Creating and Using Process
Jobs

Updated section 15.3 X

Chapter 24: Oracle Enterprise Scheduler
Security

Updated section 24.3 X

xv

http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html

1
Introduction to Oracle Enterprise Scheduler

This chapter introduces Oracle Enterprise Scheduler as a service for developing jobs
that off-load work such as executing Java, PL/SQL, and binary process code.

This chapter includes the following sections:

• About Oracle Enterprise Scheduler

• Oracle Enterprise Scheduler Overview for Application Developers

• Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Note:

For Oracle Enterprise Scheduler sample code, be sure to see the Oracle SOA
Suite sample.

About Oracle Enterprise Scheduler
Enterprise applications require the ability to respond to many real-time transactions
requested by online users or web services. However, they also require the ability to off
load larger transactions to run at a future time or automate the running of application
maintenance work based on a defined schedule.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, binary scripts, web services and EJBs distributed across the nodes in an
Oracle WebLogic Server cluster. Oracle Enterprise Scheduler runs these jobs securely,
with high availability and scalability, with load balancing and provides monitoring
and management through Fusion Middleware Control.

Fusion Middleware Control provides accessibility options for the pages on which you
monitor and manage Oracle Enterprise Scheduler applications. Fusion Middleware
Control supports screen readers and provides standard shortcut keys to support
keyboard navigation. You can also view the console pages in high contrast or with
large fonts for better readability. For information and instructions on configuring
accessibility in Fusion Middleware Control, see "Using Oracle Fusion Middleware
Accessibility Options" in Oracle Fusion Middleware Administrator's Guide.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:

• To distribute job request processing across a grid of application servers

• To run Java, PL/SQL, binary process jobs, web services and EJBs

• To group job requests into job sets

• To schedule job requests based on recurrence expressions

Introduction to Oracle Enterprise Scheduler 1-1

• To administer job requests with Fusion Middleware Control

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

• Support sophisticated scheduling and workload management,

• Automate the running of administrative jobs,

• Schedule the creation and distribution of reports,

• Schedule a future time for a step in a business flow for business process
management.

Oracle Enterprise Scheduler provides features to manage the complete life cycle of a
job definition: development, distribution, scheduling, and monitoring. Using Oracle
JDeveloper, application developers can easily create job requests in their development
environment. Application administrators and other users can specify when and where
they want their job requests to run. Users and administrators can monitor how the job
ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of
diverse machines to handle the workload of their users. Oracle Enterprise Scheduler
provides the ability to control how work is distributed to individual machines or
groups of machines.

Oracle Enterprise Scheduler Overview for Application Developers
Oracle Enterprise Scheduler is primarily a Java EE application that provides time- and
schedule-based callbacks to other applications to run their jobs. Oracle Enterprise
Scheduler compares with the Calendar application you might use in your phone or the
Oracle Calendar, where you create events and meetings with details about time and
recurrence; the application sends an alarm or notification at the right time for the
particular event. Similarly, Oracle Enterprise Scheduler applications define jobs and
specify when those jobs need to be executed, and Oracle Enterprise Scheduler gives
these applications a callback when that time or when a particular event arrives. This is
a simplified model of how a particular application can interact with an instance of
Oracle Enterprise Scheduler. Oracle Enterprise Scheduler does not execute the jobs
itself, it gives a callback to the application and the application actually executes the job
request. This implies that Oracle Enterprise Scheduler is not aware of the details of the
job request, all the job request details are owned and consumed by the application. An
application that submits requests to run a job is called a client application.

For development purposes, both Oracle Enterprise Scheduler and the Oracle
Enterprise Scheduler client application are deployed on the same Oracle WebLogic
Server. The Fusion Middleware Control can provide an interface for interacting with
Oracle Enterprise Scheduler. Typically, however, you provide a client application with
which the end user can set up a job request and to specify when the job request is
scheduled to be executed, and eventually gets a callback from Oracle Enterprise
Scheduler when the time or event arrives.

Introduction to Working with Oracle Enterprise Scheduler at Design-Time
At design time an application developer uses Oracle JDeveloper to create a Java EE
application that contains the Oracle Enterprise Scheduler executable class and Oracle
Enterprise Scheduler specific metadata for this executable. The Oracle Enterprise
Scheduler metadata consists of job definitions, including the executable class and

Oracle Enterprise Scheduler Overview for Application Developers

1-2 Developing Applications for Oracle Enterprise Scheduler

parameters, and schedules. Schedules capture the times when a job request can be sent
for execution. Schedules are defined independent of job requests and get associated
with job requests at runtime when the job request is submitted for execution. Figure
1-1 shows the design time view of an Oracle Enterprise Scheduler application.

Figure 1-1 Oracle Enterprise Scheduler Design Time Integration

In Figure 1-1, although the metadata is written to the MDS store through Oracle
Enterprise Scheduler APIs, the client application owns the metadata and the metadata
does not belong to the Oracle Enterprise Scheduler application. This metadata together
with the job implementation is packaged in an OAR, including the EAR for the
application and the MAR containing the metadata; this is deployed in the runtime
environment.

You can create the following types of metadata at design time.

• Job type: This is a basic definition of what a job would be comprised of and defines
the following:

1. The type of job to be run, such as Java, PL/SQL, binary script, and so on.

2. The Java executable class if the job is of Java type, or the PL/SQL function if
the job is of PL/SQL type, or the script if the job is of Script type.

3. Parameters definitions for the job and their data type, and default values.

• Job definition: A job definition, or job, is the smallest unit of work which gets
performed in context of the client application. It is defined by an underlying job
type and any parameters additional to the ones defined in the job type.

• Job set: A job set is a sequential or parallel set of job steps, where a job step can be a
single job or another job set. A job set and each of its job set steps can have
additional parameters, the value for which is provided when the job or job set is
submitted as a job request.

• Schedule: A job schedule is a predefined time or a recurrence for a period of time
or indefinite. Schedules are defined independent of jobs but are associated with one
or more jobs at runtime when a job request is submitted.

• Incompatibility: An incompatibility lets you specify job definitions and job sets
that cannot run at the same time.

Introduction to Working with Oracle Enterprise Scheduler at Runtime
At runtime an application user associates a schedule with the job to be submitted and
provides values for the job parameters. This information is then submitted as a job

Oracle Enterprise Scheduler Overview for Application Developers

Introduction to Oracle Enterprise Scheduler 1-3

request. After Oracle Enterprise Scheduler receives a job request it determines the
right time to execute the job request, and at that time sends a message to the owning
client application. The client application then executes the job based on the job
metadata and runtime values for the parameters.

Figure 1-2 Oracle Enterprise Scheduler Runtime Integration

Figure 1-2 shows the sequence involved with running an application using Oracle
Enterprise Scheduler, and the following steps:

1. User submits a request using a client application.

2. Client application sends the request to Oracle Enterprise Scheduler.

3. Oracle Enterprise Scheduler reads the metadata for the request.

4. Oracle Enterprise Scheduler puts the request in a wait queue in Oracle Enterprise
Scheduler data store, along with the metadata.

5. At the appropriate time, according to the request specifics, Oracle Enterprise
Scheduler sends a message to the client application with all the request
parameters and metadata captured at the time of submission.

6. Client application performs the jobs and returns a status.

7. Oracle Enterprise Scheduler updates the history with the job request status.

Oracle Enterprise Scheduler Job Requests
Figure 1-3 shows the important Oracle Enterprise Scheduler components, including
the following:

• The scheduler component itself, including the runtime module, request dispatcher
and request processor.

• The client application, including the runtime EJB and end point Message-Driven-
Bean (MDB) which it calls and the job it requests to execute.

• Oracle Metadata Store and the client application metadata.

• Oracle Enterprise Scheduler schema, including the wait and ready queues and job
history.

Oracle Enterprise Scheduler Overview for Application Developers

1-4 Developing Applications for Oracle Enterprise Scheduler

Figure 1-3 Oracle Enterprise Scheduler Runtime Details

As shown in Figure 1-3, a client application is composed and runs as follows:

1. A user interacts with the client application, submitting a job request.

2. The client application specifies the two EJBs and the Endpoint MDB in its ejb-
jar.xml. These beans are then instantiated in the client application context.

3. The beans in the application context contact the underlying Oracle Enterprise
Scheduler modules. The runtime EJB sends the job request to the underlying
runtime module in Oracle Enterprise Scheduler.

4. The runtime module accesses the client application metadata from Oracle MDS.

5. The runtime module persists the request along with its metadata and schedule in
the wait queue in the Oracle Enterprise Scheduler schema.

6. The Oracle Enterprise Scheduler request dispatcher determines the correct time to
run the job request based on its corresponding schedule. At this time, the request
dispatcher moves the request to a ready queue in Oracle Enterprise Scheduler
schema.

7. The Oracle Enterprise Scheduler request processor continues picking up job
requests to be processed from the ready queue.

8. The request processor sends a message to the application using the endpoint
MDB.

Oracle Enterprise Scheduler Overview for Application Developers

Introduction to Oracle Enterprise Scheduler 1-5

9. Oracle Enterprise Scheduler executes the scheduled job.

In most cases or at least in the simplified case, this application is the same as the
application which submitted the request.

Overview of Integration Steps
After you have installed a basic Oracle WebLogic Server instance, take the following
steps to set up Oracle Enterprise Scheduler.

1. Configure Oracle Enterprise Scheduler.

2. Develop your client application which has your job definitions and other required
metadata.

3. Deploy your client application.

4. Invoke your client application to submit job request, which in turn calls Oracle
Enterprise Scheduler.

5. Invoke your client application to check the status of job request, or other history,
which in turn calls Oracle Enterprise Scheduler. Alternatively, use Fusion
Middleware Control to check the status of a given job request.

Fixed-Rate Scheduling with Oracle Enterprise Scheduler
Oracle Enterprise Scheduler supports fixed-rate scheduling where instances of a
repeating job requests are executed at a constant rate starting from the initial
scheduled execution time. Each job request runs as near to the absolute time of the
schedule as possible. Oracle Enterprise Scheduler ensures that only one job request in
a repeating request is running at any one time. If a job request runs beyond the
scheduled execution time of the next job request, the next job request becomes late and
is dispatched immediately upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The
execution time for the next job request is the next time in the schedule that is no earlier
than the current time. Oracle Enterprise Scheduler skips time slots that are in the past.

If the desired behavior is to run all instances of the repeating request regardless of
when they are run and regardless of the requested or recurrence end date, the request
must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduler does not support fixed-delay scheduling. Using fixed-delay
scheduling, each request is executed a fixed delay period after the previous request
completes. This means that when one request is late, all subsequent requests are late as
well. In contrast, fixed-rate scheduling tries to get things back on schedule after a late
request.

Fixed-Rate Scheduling with Oracle Enterprise Scheduler

1-6 Developing Applications for Oracle Enterprise Scheduler

2
Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Some options use out-of-the-box components that are simpler to
implement, while other options are more complex but allow for a great deal of
customization. This chapter describes the different options you should consider when
planning your Oracle Enterprise Scheduler deployment.

This chapter includes the following sections:

• Job Development Flow

• The Hosting Application

• The Client Application

• Create the Job Implementation

• Create Job Metadata

Job Development Flow
This section describes the steps in the job development process and describes the
options available for each step. Figure 2-1 contains a diagram that shows the Oracle
Enterprise Scheduler components.

1. Create and deploy the hosting application. You have the following options:

• Use the pre-deployed native hosting application instead of creating a hosting
application.

• Generate and deploy the hosting application from an Ant script.

• Use JDeveloper to create the hosting application from scratch and then deploy
it.

2. Create and deploy the UI or client application. You have the following options:

• The client application uses the thin client shared library.

• The client application uses the client library.

• Use Oracle Enterprise Manager Fusion Middleware Control as the client
application instead of creating a UI or client application.

3. Create and deploy the job implementation. You have the following options:

• For non-Java-based jobs, you can implement and deploy the job independent
of Oracle Enterprise Scheduler.

Planning Job Development 2-1

• For Java-based jobs, the Java class must be part of a custom hosting
application.

4. Create job metadata. You have the following options:

• Define the metadata in Oracle Enterprise Manager Fusion Middleware
Control.

• Use Oracle JDeveloper to create predefined/seeded job metadata for
deployment as part of the hosting application.

• Programmatically create the job metadata using the metadata service API.

5. Provide submission and metadata permissions to the deployed job. You have the
following options:

• Use Oracle Enterprise Manager Fusion Middleware Control to specify
permissions.

• Provision permissions as part of your hosting or client application EAR
deployment.

See chapter Oracle Enterprise Scheduler Security for more information.

Figure 2-1 Oracle Enterprise Scheduler Components

Java Jobs

Server

MDS

Hosting Application

(Pre-Deployed or Custom)

ESS

Job 1 Job 2 Job 3
Client Application

(EM or Custom UI)

Non-Java Jobs

Server

MDS

Hosting Application

(Pre-Deployed or

Custom)

ESS

Job 1

Job 2

Job 3

Client Application

(EM or Custom UI)

Job Development Flow

2-2 Developing Applications for Oracle Enterprise Scheduler

The Hosting Application
Jobs execute in the context of a hosting application. If the job is remote (for example,
an EJB), the job is invoked in the hosting application. The pre-deployed native hosting
application is convenient to use, but cannot execute custom Java jobs. The pre
deployed native hosting application is well suited for custom remote jobs like EJB and
web service jobs. See Using the Pre-Deployed Native Hosting Application for details
about the pre-deployed native hosting application. See chapter Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduler Application for more
information about developing a custom hosting application using JDeveloper. See
Using Ant to Generate a Hosting Application for more information about developing a
custom hosting application using the Oracle Enterprise Scheduler Ant script.

The Client Application
Client applications are J2EE applications that are typically used to:

• Submit jobs

• Request status

• Read job output and logs

• Possibly, host EJB job implementations that Oracle Enterprise Scheduler can invoke
remotely

Client applications can be combined with a hosting application, but this is not a best
practice.

Deploying a client application to a server other than the Oracle Enterprise Scheduler
server is an advanced use case and requires use of Oracle Enterprise Scheduler
internal templates that are only available to other Oracle embedding products.

Client applications use the thin client shared library or the client shared library. The
main differences between the two libraries are:

• The thin client shared library does not depend on the Oracle Enterprise Scheduler
server or any of the Oracle Enterprise Scheduler data sources being deployed and
is ideal if Oracle Enterprise Scheduler deployment is optional. The thin client
shared library contacts a hosting application to access the Oracle Enterprise
Scheduler metadata and runtime store to do its work.

• The client shared library has an advantage. The Oracle Enterprise Scheduler server
need not be running to submit the job and query status because the library allows
direct access to the Oracle Enterprise Scheduler metadata and runtime store. It is
recommended for use when the client application is co-located on the same
WebLogic server as the Oracle Enterprise Scheduler

• Developing client applications using the thin client shared library is easier because
the client application is not required to have an adf-config.xml file to talk to
MDS or have Oracle Enterprise Scheduler EJB deployment descriptors that the
client shared library requires.

If the metadata is not automatically provisioned by the client application at
deployment time, then the thin client application does not depend on the Oracle
Enterprise Scheduler MDS data source.

The Hosting Application

Planning Job Development 2-3

Refer to Creating a Thin Client Application for more information about creating a
client application.

Create the Job Implementation
For non-Java-based jobs (PL/SQL and binary process jobs), you can implement, setup
and deploy the process binaries or PL/SQL procedures independent of Oracle
Enterprise Scheduler.

For Java-based jobs, the Java implementation must conform to the Oracle Enterprise
Scheduler defined interface and must be included as part of a custom hosting
application.

For EJB jobs, the EJB interface must conform to an Oracle Enterprise Scheduler defined
interface. The interface is in the Oracle Enterprise Scheduler shared library. See
Creating and Using EJB Jobs for information about how to create an EJB job
implementation.

See chapter Creating and Using Web Service Jobs for information about how to use a
SOA composite as a web service job implementation.

Create Job Metadata
The simplest way to create job metadata is to define it through the Oracle Enterprise
Manager Fusion Middleware Control. You can also use JDeveloper to create metadata
and place it in a MAR archive that is part of a client or hosting application and then
deploy the metadata to MDS when the application is deployed. SOA Suite creates the
metadata programmatically on first use using the metadata APIs.

See Using the Metadata Service for a description of the metadata API.

Automatic Metadata Refresh Post-Submission
Oracle Enterprise Scheduler ensures that a job request and all of its children use a
consistent snapshot of metadata from submission until the request reaches a terminal
state. This is accomplished by caching, at job request submission, all metadata known
to be used by the request. However, this caching prevents long-running recurring
requests from using important metadata changes. In order for incompatibilities to
function as expected, new and updated incompatibilities must apply to all relevant
requests, whether previously or newly submitted. For job metadata, customizable
parameters might have changed and should apply to previously submitted requests.
For example, the request category on a job definition might have changed and this
must be applied to pre-existing requests so that work allocation functions as expected.

To address these issues, Oracle Enterprise Scheduler automatically refreshes metadata
for previously submitted requests that are:

• Singleton requests that have not yet run

• Recurring requests that have more recurrences to run

Cached metadata remains consistent during execution of an instance request tree that
consists of the instance parent and all child requests of that instance parent, including
jobset steps and sub-requests. For a singleton request, the instance request tree
includes the submitted request and any child requests. For a recurring request, each
recurrence is an instance request tree that includes the instance parent and any child
requests of that instance parent.

Create the Job Implementation

2-4 Developing Applications for Oracle Enterprise Scheduler

3
Installing and Verifying the Oracle
Enterprise Scheduler Installation

This chapter describes how to ensure that Oracle Enterprise Scheduler has been
correctly installed.

This chapter includes the following sections:

• Installing Oracle Enterprise Scheduler

• Introduction to Verifying the Oracle Enterprise Scheduler Installation

• How to Verify the Oracle Enterprise Scheduler Installation Using a Browser

• How to Programmatically Verify the Oracle Enterprise Scheduler Installation

• What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is
Verified

Installing Oracle Enterprise Scheduler
Oracle Enterprise Scheduler does not have its own installer, but is installed by the
installer of the embedding product such as Oracle SOA Suite. Refer to the embedding
product's installation documentation for details.

The IDE is installed by the Oracle SOA Quick Start for Developers which is described
in Installing Oracle SOA Suite and Business Process Management for Developers. The
installer installs the IDE and automatically configures it to Oracle JDeveloper. Before
you run JDeveloper, make sure to set the variable MW_HOME to the middleware home
location as required by the IDE.

The Oracle Enterprise Scheduler runtime component is installed by the design time or
production installer of the embedding product (for example, Oracle SOA suite whose
installation is described in Installing and Configuring Oracle SOA Suite and Business
Process Management). The embedding product may automatically deploy Oracle
Enterprise Scheduler, but if it does not, then it can be deployed using the “Oracle
Enterprise Scheduler Service Basic" template to a server or cluster. The “Oracle
Enterprise Manager Plugin for ESS" template can then be deployed for Oracle
Enterprise Manager Fusion Middleware Control functionality.

Targeting Oracle Enterprise Scheduler During Domain Creation
When you extend SOA with Oracle Enterprise Scheduler, ess-server1 is created
and by default the ESS-MGD-SVRS server group is targeted to ess_server1. You can
use the following steps in the FMW Configuration Wizard to re-target Oracle
Enterprise Scheduler to soa_server1:

1. Check ESS-MGD-SVRS for soa_server1

Installing and Verifying the Oracle Enterprise Scheduler Installation 3-1

2. Uncheck ESS-MGD-SVRS for ess_server1

3. Delete ess_server1

See Creating WebLogic Domains Using the Configuration Wizard for more information
about the wizard.

OWSM-PM Targeting With Oracle Enterprise Scheduler
OWSM-PM is intended to be targeted to just one server in a domain. To facilitate this
requirement, Oracle Enterprise Scheduler templates no longer target OWSM-PM. If
another product in the domain automatically targets OWSM-PM, then there is nothing
to do. However, if there are no managed servers in the domain except for Oracle
Enterprise Scheduler, or none of these servers has OWSM-PM, then OWSM-PM must
be targeted manually.

Targeting OWSM-PM Manually

In the Fusion Middleware Configuration Wizard, select the Managed Servers,
Clusters and Coherence check box as shown in Figure 3-1.

Figure 3-1 Fusion Middleware Configuration Wizard

On the Managed Server screen, for ess_server1, select the WSMPM-MAN-SVR
server group. ESS-MGD-SVRS should already be selected.

Introduction to Verifying the Oracle Enterprise Scheduler Installation
The Oracle Enterprise Scheduler health check enables verifying the Oracle Enterprise
Scheduler installation using a web browser. The health check web page submits a
simple scheduled job so as to verify that Oracle Enterprise Scheduler works as it
should.

Introduction to Verifying the Oracle Enterprise Scheduler Installation

3-2 Developing Applications for Oracle Enterprise Scheduler

How to Verify the Oracle Enterprise Scheduler Installation Using a
Browser

Access the Java health check servlet in a web browser. Access to the health check page
is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduler installation:

1. In a web browser, enter the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth.jsp

where hostName is the server to which Oracle Enterprise Scheduler is installed
and port is the port number.

To verify an Oracle Enterprise Scheduler cluster, use the following URL:

http://<hostName>:<port>/EssHealthCheck/diagnoseHealth.jsp

The Oracle Enterprise Scheduler Diagnostic Health Check page displays, as shown
in Figure 3-2.

Figure 3-2 Diagnostic Health Check Page

2. Log in to the diagnostic servlet using an Oracle WebLogic Server administrator
user name and password.

3. Click the Check Health button to verify the installation.

How to Programmatically Verify the Oracle Enterprise Scheduler
Installation

Programmatically access the health check servlet from your application. Access to the
health check page is available only to users with administrator privileges.

To programmatically verify the Oracle Enterprise Scheduler installation:

1. Access the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth

How to Verify the Oracle Enterprise Scheduler Installation Using a Browser

Installing and Verifying the Oracle Enterprise Scheduler Installation 3-3

where hostName is the server to which Oracle Enterprise Scheduler is installed
and port is the port number.

2. Use the HTTP response codes to gauge the health of the Oracle Enterprise
Scheduler installation, as shown in Table 3-1.

Table 3-1 HTTP Response Codes

Response Code Oracle Enterprise Scheduler
Status Code

Comments

200(OK) Oracle Enterprise Scheduler is
up and running.

The test job has been submitted and has
succeeded within the default duration.

202(ACCEPTED) Oracle Enterprise Scheduler is
up and running but a delay in
processing has occurred.

A value of 202
(SC_ACCEPTED) indicates to
the client that the request is
being acted upon but
processing is not yet complete.

The test job has been submitted but has failed to
complete within the default duration.

500
(INTERNAL_SERVER_ERRO
R)

The Oracle Enterprise
Scheduler installation has
errors.

An error has occurred during the submission or
execution of the job.

What Happens at Runtime: How the Oracle Enterprise Scheduler
Installation is Verified

The health check servlet schedules a trivial job with Oracle Enterprise Scheduler as
part of an HTTP request. After a few seconds, the servlet calls
RuntimeServiceBean.getRequestState() to check the status of the job and
constructs a response message within the servlet code. The servlet then returns a
response indicating the success or failure of the job.

The servlet waits for the job to either reach a terminal state, or run for 10 seconds,
whichever occurs first.

• If the job reaches a terminal state in less than 10 seconds, the job results in a state of
success.

• If the job's terminal state does not change within 10 seconds, the job results in a
state of success. However, the job is listed as not having been executed. This is
because the system may be overloaded such that executing the job may take some
time.

• If any problems occur when submitting or executing the job, the job results in a
state of failure.

What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

3-4 Developing Applications for Oracle Enterprise Scheduler

4
Using the Pre-Deployed Native Hosting

Application

The pre-deployed native hosting application is included as part of Oracle Enterprise
Scheduler. It greatly simplifies the process of getting Oracle Enterprise Scheduler up
and running because you do not have to create your own custom hosting application.

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Planning Job Development is a high-level discussion about how
to plan your job development and deployment process

This chapter includes the following sections:

• Introduction

• Properties

• Metadata

• Security Permissions

Introduction
The pre-deployed native hosting application provides a convenient alternative to
developing your own custom hosting application. The pre-deployed native hosting
application can be used to run any job except a Java-based job.

The pre-deployed native hosting application is collocated with the Oracle Enterprise
Scheduler core on the Oracle Enterprise Scheduler server. The pre-deployed native
hosting application can be deployed to only one cluster in the domain. The "Enterprise
Scheduler Basic" template deploys the pre-deployed native hosting application along
with scheduler server components and therefore can be targeted to only one cluster in
the domain.

The pre-deployed native hosting application exposes the remote interfaces of Oracle
Enterprise Scheduler beans mapped to the following JNDI Names:

• Runtime service bean: java:comp/env/essnative/runtimeservice

• Metadata service bean: java:comp/env/essnative/metadataservice

• Async request bean: java:comp/env/essnative/asyncrequest

If the user uses some other hosting apps, the beans are to be exposed in the above
fashion by declaring in weblogic's ejb-jar.xml.

Using the Pre-Deployed Native Hosting Application 4-1

Properties
Table 4-1 shows the pre-deployed native hosting application properties and their
default settings.

Table 4-1 Pre-Deployed Native Hosting Application Properties

Property Name Value

PolicyStripe EssNativeHostingApp

LogicalAppName EssNativeHostingApp

J2ee App Name EssNativeHostingApp

RuntimeService EJB JNDI name essnative/runtimeservice

MetadataService EJB JNDI name essnative/metadataservice

AsyncRequestBean JNDI name essnative/asyncrequest

MDS Partition essUserMetadata

MDS namespace /oracle/apps/ess

Metadata
Normally, a hosting application contains the MAR metadata to be loaded into MDS,
however, you cannot add a MAR archive directly into the pre-deployed native hosting
application. If you have a MAR archive that you want to deploy to the pre-deployed
native hosting application, you have to deploy it through a client application or using
the metadata API (see Using the Metadata Service).

Oracle Enterprise Scheduler promotes the native hosting application's stripe by
registering it with OPSS. This in turn exposes the stripe as viewable from Oracle
Enterprise Manager Fusion Middleware Control and other MBeans. Application roles
and policies can then be configured at runtime for the metadata available in the native
hosting application.

Security Permissions
Permission must be granted for all jobs run by the pre-deployed native hosting
application. By default, EssNativeHostingApp extends support for permissions
defined in SOA and Service Bus. This is configured in ess-config.xml using the
property HostingAppPolicyStripe specified with the value
"EssNativeHostingApp,soa-infra,Service_Bus_Console".

If you install Oracle Enterprise Scheduler with another product (other than SOA or
Service Bus) then you must use Oracle Enterprise Scheduler or WLST scripts to extend
this property list of stripes.

Configuring the Policy Stripe
The EssNativeHostingApp security policy stripe is configured by customizing the
ess-config.xml file. The Oracle Enterprise Scheduler property name is
HostingAppPolicyStripe. The following examples show how to use WLST
commands to check the policy stripe value and change it.

Properties

4-2 Developing Applications for Oracle Enterprise Scheduler

Check the value of the current policy stripe:

oracle_common/bin/essManageRuntimeConfig.sh \
 -u weblogic -p welcome1 -P 7001 -H localhost -s ess_server1 \
 -A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS

Change the value of the policy stripe:

 oracle_common/bin/essManageRuntimeConfig.sh \
 -u weblogic -p welcome1 -P 7001 -H localhost -s ess_server1 \
 -m -A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS
 -v MyPolicyStripe

See Oracle Fusion Middleware WLST Command Reference for SOA Suite for more
information about WLST commands.

Support for Multiple Application Stripes
The pre-deployed native hosting application supports multistripes. The pre-deployed
native hosting application policy stripes are pre-configured for SOA and Service Bus
applications.

<EssProperty key="HostingAppPolicyStripe"
 value="EssNativeHostingApp,soa-infra,Services_Bus_Console"/>

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST to
extend this list of stripes by appending the policy stripes to the value of the
HostingAppPolicyStripe property. You can also use the Oracle Enterprise
Manager Fusion Middleware Control Application Properties page to change the
HostingAppPolicyStripe property for the pre-deployed native hosting
application.

This property is applicable only for the configuration file of the pre-deployed native
hosting application. Note that there is no static definition of policy stripes in the pre-
deployed native hosting application's ejb-jar.xml file, therefore, you must preserve
the existing policy stripes specified in the HostingAppPolicyStripe property.

Security Permissions

Using the Pre-Deployed Native Hosting Application 4-3

Security Permissions

4-4 Developing Applications for Oracle Enterprise Scheduler

5
Using Ant to Generate a Hosting

Application

This chapter describes how you can use Ant targets from a build.xml file included
with Oracle Enterprise Scheduler to create a hosting application for use with Java jobs.

Using these targets, you can create the application artifacts in an Oracle JDeveloper
workspace, create a template for a Java job implementation, and package and deploy
both the application and the Java job (as a shared library).

Note that the Ant targets described here do not create a client user interface with
which users can interact with the job. To perform client tasks, you can use Fusion
Middleware Control or develop a client user interface with Oracle JDeveloper. Also,
custom hosting applications are generally seeded with metadata that is packaged and
deployed to the metadata repository when the application is deployed. Ant-based
scripts that generate custom hosting applications do not provide a way to create
metadata artifacts. For that reason, after you generate a hosting application, you must
open the workspace (.jws) in Oracle JDeveloper, and add the necessary metadata
before you deploy the application into the server.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

This chapter includes the following sections:

• Introduction to Generating a Hosting Application with Ant

• Ant Targets for Creating and Deploying a Hosting Application

• Creating a Hosting Application and Project Workspace with Ant

• Creating a Java Job as a Shared Library with Ant

• Packaging a Java Job as a Shared Library with Ant

• Deploying a Shared Library with Ant

• Packaging a Hosting Application with Ant

• Deploying a Hosting Application with Ant

• Configuring the Generated Ant Targets

Introduction to Generating a Hosting Application with Ant
Oracle Enterprise Scheduler includes an Ant build file through which you can
generate the basic artifacts you'll need to get a hosting application running, along with
a Java job you can deploy to be executed by the application.

Using Ant to Generate a Hosting Application 5-1

You use the included Ant build file to generate a hosting application. When you do,
you also generate another Ant build file that contains targets you can use to generate
artifacts for a Java job, as well as to build and deploy the generated components.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

You can also use a generated build.properties file to customize the work Ant does by
setting values for variables a target uses when it runs.

The steps described in this chapter include the following you can do with Ant.

1. Create a hosting application that can execute jobs. Use the create-user-home in the
included build.xml file.

2. Create a JDeveloper project workspace through which you can edit application
artifacts with the IDE. This is done when you create the hosting application.

3. Create an Ant build file with targets for building and deploying parts of the
application.

4. Create a Java job template to which you can add business logic. Use the create-
new-job-def target in the generated build.xml file.

5. Package the implemented Java job as a shared library. Use the
package_essjob_library target in the generated build.xml file.

6. Deploy the shared library to the hosting application. Use the
deploy_essjob_library target in the generated build.xml file.

7. Package the hosting application. Use the package_hosting_app target in the
generated build.xml file.

8. Deploy the hosting application. Use the deploy_hosting_app target in the
generated build.xml file.

Prerequisites for Using the Ant Build Files
Before you get started with the provided and generated build files, make sure you're
set up with the following prerequisites:

• You must have Ant installed and set up, with the ANT_HOME variable set properly
and the PATH pointing to ant's bin directory.

• You must install and set up Oracle JDeveloper. Your PATH variable must contain
the Oracle JDeveloper bin directory so that the jdev command can be executed
from the command prompt.

Ant Targets for Creating and Deploying a Hosting Application
Oracle Enterprise Scheduler includes an Ant build file to get you started toward
deploying a hosting application that can execute jobs. However, you're actually using
two build files to finish the job: one that is included with Oracle Enterprise Scheduler
and another that is generated by a target in the included build file. The following
tables list and describe the targets that are included by default in the two files.

By default, the included build.xml file is located in the Oracle Enterprise Scheduler
extensibility_scripts directory. For example, in an Oracle JDeveloper

Ant Targets for Creating and Deploying a Hosting Application

5-2 Developing Applications for Oracle Enterprise Scheduler

installation, you'll find them in MW_HOME/oracle_common/ess/
extensibility_scripts/build.xml; with installations of products that include
Oracle Enterprise Scheduler, you'll probably find them in an ORACLE_HOME/
extensibility_scripts directory.

Table 5-1 Ant Targets in the Included Build File

Ant Target Description

create-user-home Default target to create a user home.

help-create-user-home Help on creating a user home.

When you run the create-user-home target from the included build.xml file, one
of the target's actions is to create another build.xml file. That file contains the
following targets that you can use to create, build and deploy artifacts for your
application.

Table 5-2 Ant Targets in the Generated Build File

Ant Target Description

build_ears Package the job shared library and the hosting application.

create-new-job-def Create Java job as a shared library.

deploy Package and deploy the job library and hosting application.

deploy_essjob_library Deploy the Java job shared library.

deploy_hosting_app Deploy the hosting application.

deploy_job_logic Package and deploy the job shared library.

package_essjob_library Package the Java job as a shared library.

package_hosting_app Package the hosting application.

Creating a Hosting Application and Project Workspace with Ant
You can create a hosting application by running the create-user-home Ant target
in the build.xml file included with Oracle Enterprise Scheduler.

After the script completes successfully, you'll have the artifacts for a hosting
application that you can package and deploy. The artifacts are generated within a
JDeveloper-compatible workspace in the target directory you specified. The created
workspace has a build.xml that you can use to build, package and deploy the
hosting application and the generated Java job as a shared library.

As the target runs, you'll be prompted to enter details that guide the target's work.
These details include the environment for which the target's work is intended (such as
to run with a particular application), the new application's name and target directory,
and so on.

Before you get started, you should have in hand the following information for which
you'll be prompted by the Ant target:

Creating a Hosting Application and Project Workspace with Ant

Using Ant to Generate a Hosting Application 5-3

Table 5-3 Information Needed by the Ant Target

Input Prompt Description

Which template should be used Possible values are "Fusion" and "Standalone". If you're
developing for use with Oracle Fusion Applications, enter
Fusion here.

If you're not developing for use with Oracle Fusion
Applications, enter "Standalone."

There are significant differences between the Oracle
Fusion Applications and standalone contexts. For
example, in the Oracle Fusion Applications context, the
target generates a slightly different hosting application, as
well as a client application.

Middleware Home directory
path

The Middleware Home directory that was created when
Oracle Enterprise Scheduler was installed (probably with
another product that embeds it). The locations of
supporting libraries are found relative to this directory.

This feature relies on the ojdeploy utility to create,
package and deploy artifacts to the server. If the
middleware home path does not contain an Oracle
JDeveloper directory with ojdeploy in the bin directory,
specify the directory where Oracle JDeveloper is installed.

Hosting application name The name you want the new hosting application to have.

Hosting application JPS stripe ID A stripe is a security construct that defines the subset of
values in the policy store that the application intends to
use. At runtime, it determines which set of policies are
applicable for the application. The application name is
often used.

Shared library name for job
business logic

The name for the shared library into which the generated
Java job source code should be placed.

Empty directory where the
application will be created

The directory where you want the generated files to go.
This is the location of the JDeveloper workspace, where
artifacts such as the build.xml file you use later is
created.

To create a hosting application with Ant

1. To get started, open a console window and change directory to where the included
build.xml is located. By default, this is the Oracle Enterprise Scheduler
extensibility_scripts directory. For example, in MW_HOME/
oracle_common/ess/extensibility_scripts/build.xml.

Run the target with a command such as the following. You can omit the target
name because it is the default target in the build file.

ant

If you want to use the target name, you can do so with the following command.

ant create-user-home

Creating a Hosting Application and Project Workspace with Ant

5-4 Developing Applications for Oracle Enterprise Scheduler

In the following example of Ant console output, note that the prompts begin with
the word "[input]". For each prompt, type the value you want to use, then press
Enter.

After you've entered the information needed, the target creates the directories and
files you requested, copying needed files into your new workspace and setting up
some of the configuration for the new hosting application.

[extensibility_scripts]$ ant

Buildfile: build.xml

-init:

create-user-home:
[input] Enter which template should be used (source_template)
(default=Fusion)
 [input] ([Fusion], Standalone)
Standalone
 [input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
/scratch/fmwtools/mw_home
 [input] Enter hosting application name (hosting_application_name)
(default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Do you want to add shared library for the (java) job business
logic? (use_jobdef_library) (default=yes)
 [input] ([yes], no)
no
[input] Enter an empty directory where the applications will be created
(user_home)
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo]
 [echo]
 [mkdir] Created dir:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
[propertyfile] Creating new property file:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/template.properties
 [copy] Copying 9 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copied 15 empty directories to 4 empty directories under
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/config
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 15 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [move] Moving 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/Template_Hosting
 [echo]
 [echo] ==
 [echo]
 [echo] A new workspace has been created at:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo] This workspace can be opened and modified using JDeveloper
 [echo] To deploy the applications, run the following command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/build-ess.xml

Creating a Hosting Application and Project Workspace with Ant

Using Ant to Generate a Hosting Application 5-5

deploy
 [echo] To create new jobs from predefined templates, run the following
command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml
create-new-job-def

BUILD SUCCESSFUL
Total time: 49 seconds

[extensibility_scripts]$ ant

Buildfile: build.xml

-init:

create-user-home:
[input] Enter which template should be used (source_template)
(default=Fusion)
 [input] ([Fusion], Standalone)
Standalone
 [input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
/scratch/fmwtools/mw_home
 [input] Enter hosting application name (hosting_application_name)
(default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Do you want to add shared library for the (java) job business
logic? (use_jobdef_library) (default=yes)
 [input] ([yes], no)
yes
 [input] Enter the shared library name for the job business logic
(jobdef_library_name) (default=MyJobsLibrary) [MyJobsLibrary]
NewDemoAppJobsLib
[input] Enter an empty directory where the applications will be created
(user_home)
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo]
 [echo]
 [mkdir] Created dir:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
[propertyfile] Creating new property file:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/template.properties
 [copy] Copying 11 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copied 25 empty directories to 9 empty directories under
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/config
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 15 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [move] Moving 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/Template_Hosting
 [echo]
 [echo] ==
 [echo]
 [echo] A new workspace has been created at:

Creating a Hosting Application and Project Workspace with Ant

5-6 Developing Applications for Oracle Enterprise Scheduler

/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo] This workspace can be opened and modified using JDeveloper
 [echo] To deploy the applications, run the following command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/build-ess.xml
deploy
 [echo] To create new jobs from predefined templates, run the following
command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml
create-new-job-def

BUILD SUCCESSFUL
Total time: 1 minute 32 seconds

Creating a Java Job as a Shared Library with Ant
You can create a Java job class template by running the create-new-job-def Ant
target that is in the build file generated when you created a new hosting application.
(For more information, see Creating a Hosting Application and Project Workspace
with Ant for more information.)

The Java class you create here is a template to which you can add logic that
implements your Java job. A Java job executes Java code. With the Java job
implemented, you can add metadata that comprises some of the specifics for the job.

Note:

Currently, you can create only synchronous Java job templates with this Ant
target.

As the target runs, you'll be prompted to enter details that guide the target's work.
Before you get started, you should have in hand the following information for which
you'll be prompted by the Ant target:

Table 5-4 Information Needed by the Ant Target

Input Prompt Description

Number of job definition
template to create

A number corresponding to the type of Java job
implementation you're creating. Currently, only
synchronous Java jobs can be created this way, so the only
supported value is "1".

Java package name for job
definition

The package name for the Java job you're creating.

Java class name for job definition The class name for the Java job you're creating.

To create a Java job class template with Ant:

1. To get started, in a console window change directory to the directory you specified
as the location to create the application. The build.xml file should be there. Use
the following command to run the target:

ant create-new-job-def

Creating a Java Job as a Shared Library with Ant

Using Ant to Generate a Hosting Application 5-7

In the following example of Ant console output, you can see where the prompts
occur. After you've entered that information, the target creates the file you
requested, copying needed files into your new workspace and setting up some of
the configuration for the new hosting application.

[extensibility_scripts]$ ant -f /scratch/WLServers/MW_HOME/standalone_apps/
NewDemoApp/build.xml create-new-job-def

Buildfile: /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml

-init:

create-new-job-def:
 [echo] Available Job Definition Templates:
 [echo] 1) Simple Synchronous Java Job
 [input] Enter number of job definition template to create
(job_template_to_create)
1
 [echo] Calling default target on /scratch/miscFiles/ExtnDemo/
extensibility_scripts/Standalone/Template_JobLibrary/simple_synchronous_job/
build.xml

-init:

create-job-definition:
 [input] Enter Java package name for Job Definition (jobdef_package_name)
(default=oracle.apps.ess.custom) [oracle.apps.ess.custom]
oracle.apps.ess.custom
 [input] Enter Java class name for Job Definition (jobdef_class_name)
(default=MySynchronousJavaJob) [MySynchronousJavaJob]
NewDemoHelloWorld
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_apps/
NewDemoApp/NewDemoApp/EssSharedLibrary/src
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_apps/
NewDemoApp/NewDemoApp/EssSharedLibrary/src/oracle/apps/ess/custom

BUILD SUCCESSFUL
Total time: 34 seconds

2. Having created the class template for the Java job, you can add code that
implements the job's logic. The template is located in project in the JDeveloper
workspace you created when you created the hosting application in Creating a
Hosting Application and Project Workspace with Ant. The file's directory path is
shown in the Ant console output. You can use the editor you prefer for editing Java
code, such as JDeveloper or a simple text editor.

Open the Java file and add code to implement the execute() method. Example
5-1 shows what the generated code looks like. You would replace the simple
implementation of the oracle.as.scheduler.Executable interface's
execute() method with code that does your Java job's work.

Example 5-1 Oracle Enterprise Scheduler HelloWorld Java Class

package oracle.apps.ess.custom;

import java.io.StringWriter;
import java.security.AccessControlContext;
import java.security.AccessController;
import javax.security.auth.Subject;

Creating a Java Job as a Shared Library with Ant

5-8 Developing Applications for Oracle Enterprise Scheduler

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.job.BaseSynchronousJavaJob;
import oracle.as.scheduler.request.ContentType;
import oracle.security.jps.util.SubjectUtil;

public class NewDemoHelloWorld extends BaseSynchronousJavaJob {

 public NewDemoHelloWorld() {
 super();
 }

 protected void execute() throws Exception
 {
 long requestId = getRequestExecutionContext().getRequestId();
 RequestParameters params = getRequestParameters();
 AccessControlContext accContext = AccessController.getContext();
 Subject subject = Subject.getSubject(accContext);
 String username = SubjectUtil.getUserName(subject);
 /*
 * Write contents to request log
 */
 StringWriter strWriter = new StringWriter();
 strWriter.write("Simple ESS Java job execution LOG");
 strWriter.write("ESS Job requestID: " + requestId);
 strWriter.write("Username: " + username);
 writeToRequestLog(requestId, strWriter.toString());

 /*
 * Write Text contents to request output
 */
 strWriter = new StringWriter();
 strWriter.write("Simple ESS Java job execution Text Out");
 strWriter.write("ESS Job requestID: " + requestId);
 strWriter.write("Username: " + username);
 writeToRequestOutput(requestId, strWriter.toString(), ContentType.Text);
 }
}

Packaging a Java Job as a Shared Library with Ant
You can package a Java job implementation by running the
package_essjob_library Ant target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The package_essjob_library target compiles and JARs the job code. The target
simply runs to completion, requiring no user input.

To package a Java job class implementation with Ant:

• In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant package_essjob_library

Packaging a Java Job as a Shared Library with Ant

Using Ant to Generate a Hosting Application 5-9

Deploying a Shared Library with Ant
You can deploy a Java job shared library by running the deploy_essjob_library
Ant target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The deploy_essjob_library target deploys the job library. The target simply runs
to completion, requiring no user input.

To deploy a Java job shared library with Ant:

• In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant deploy_essjob_library

Packaging a Hosting Application with Ant
You can package a hosting application by running the package_hosting_app Ant
target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The package_hosting_app target packages the hosting app created with the
create-user-home target (for more information, see Creating a Hosting Application
and Project Workspace with Ant). The target simply runs to completion, requiring no
user input.

To package a hosting application with Ant:

• In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant package_hosting_app

Deploying a Hosting Application with Ant
You can deploy a hosting application by running the deploy_hosting_app Ant
target.

Deploying a Shared Library with Ant

5-10 Developing Applications for Oracle Enterprise Scheduler

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The deploy_hosting_app target deploys the hosting app created with the create-
user-home target (for more information, see Creating a Hosting Application and
Project Workspace with Ant). This target simply runs to completion, requiring no user
input.

To deploy a hosting application with Ant:

• In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant deploy_hosting_app

Configuring the Generated Ant Targets
The file user_home/ant/config/ess-build.properties contains various
parameters to specify information used by the Ant scripts during build, packaging and
deployment. The user_home is the directory specified to contain the application
workspace in step 1 above.

Before deployment of archives, the WebLogic server based details has to be changed
appropriate to the user's environment.

Use the build properties described in Table 5-5 to customize the Ant targets with
configuration values of your own.

Table 5-5 Build Properties for Customizing Ant Builds

Build Property Description

customEss.hostapp.earprofile -

customEss.hostapp.jarfile -

customEss.hostapp.jarprofile -

customEss.hostapp.jprproject -

customEss.hostapp.jwsfile -

customEss.hostapp.mds.jdbc -

customEss.hostapp.mds.partitio
n

-

customEss.hostapp.name The name to be used for the generated hosting application.

customEss.hostapp.workspace -

customEss.project.dir The directory location for the generated JDeveloper
project.

customEss.shared.library.name The name to be given to the generated shared library.

ess.script.base.dir -

Configuring the Generated Ant Targets

Using Ant to Generate a Hosting Application 5-11

Build Property Description

fmw.home -

jdev.home -

oracle.common -

ess.server.name Comma separated names of Oracle Enterprise Scheduler
admin/managed servers to which the Oracle Enterprise
Scheduler job library and hosting application is deployed.

weblogic.admin.user The WebLogic Server admin user name.

weblogic.server.host -

weblogic.server.port -

weblogic.server.ssl.port -

weblogic.t3.url -

ESS build properties
ess.script.base.dir=${user_home}

fmw.home=${fmw_home}
jdev.home=${fmw.home}/jdeveloper
oracle.common=${fmw.home}/oracle_common

========== ESS JDev project details ===============
customEss.project.dir=${ess.script.base.dir}

customEss.hostapp.workspace=${hosting_application_name}
customEss.hostapp.jwsfile=${hosting_application_name}
customEss.hostapp.earprofile=${hosting_application_name}
customEss.hostapp.jprproject=EssSharedLibrary
customEss.hostapp.jarprofile=EssSharedLibrary
customEss.hostapp.jarfile=${jobdef_library_name}

customEss.shared.library.name=${jobdef_library_name}

customEss.hostapp.mds.partition=${hosting_application_name}
customEss.hostapp.mds.jdbc=mds-ESS_MDS_DS
customEss.hostapp.name=${hosting_application_name}

========== Weblogic Server details ===============
MW_HOME=${fmw.home}
ORACLE_HOME=${jdev.home}
MW_ORA_HOME=${jdev.home}
COMMON_COMPONENTS_HOME=${oracle.common}
WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
weblogic.server.host=adc2170657.example.com
WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
weblogic.server.host=adc2170657.example.com
weblogic.server.port=7001
weblogic.server.ssl.port=7002
weblogic.admin.user=weblogic
weblogic.t3.url=t3://${weblogic.server.host}:${weblogic.server.port}
Comma separated names of ess admin/managed servers to which essjob library
and hosting app is deployed
ess.server.name=AdminServer

Configuring the Generated Ant Targets

5-12 Developing Applications for Oracle Enterprise Scheduler

6
Creating a Thin Client Application

The thin client application is typically used to submit jobs, query status and optionally
used to host EJB job implementations. A thin client application uses the Oracle
Enterprise Scheduler thin client library for Oracle Enterprise Scheduler APIs. This
chapter describes the thin client library and how to use Oracle JDeveloper to develop a
thin client application.

This chapter contains the following sections:

• Introduction

• Implementation

• Using JDeveloper to Build a Thin Client Application for MAR Deployment

• Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Introduction
Client applications are J2EE applications that execute in the same WebLogic domain as
Oracle Enterprise Scheduler. Client applications can use the Oracle Enterprise
Scheduler APIs to do the following:

• Submit jobs

• Query job status

• Look at job output and logs

• Optionally, perform updates to Oracle Enterprise Scheduler metadata

• Host an EJB job implementation that the Oracle Enterprise Scheduler invokes
remotely

The Oracle Enterprise Scheduler thin client library is used by client applications to
access Oracle Enterprise Scheduler APIs (for example, the metadata service API or the
runtime service API). The thin client library is a thin layer that remotely invokes an
Oracle Enterprise Scheduler hosting application to perform all operations. The thin
client application may optionally have an Oracle Enterprise Scheduler metadata MAR
archive with Oracle Enterprise Scheduler metadata developed using Oracle
JDeveloper. This metadata is automatically loaded into the Oracle Enterprise
Scheduler MDS when the application is deployed. Alternatively, the application can
use APIs to create the metadata dynamically.

The thin client shared library differs from the client shared library in the following
ways:

• The client shared library includes local EJBs that do all the Oracle Enterprise
Scheduler work by directly accessing the MDS and runtime databases. The thin

Creating a Thin Client Application 6-1

client library does not include the data sources or EJBs, but instead remotely
accesses a hosting application that hosts the EJB and accesses the databases.

• The thin client library more cleanly hides Oracle Enterprise Scheduler internal
functionality from the application.

• Because it accesses the databases directly, the client shared library works even if the
Oracle Enterprise Scheduler server or cluster is down.

• The thin client library is also useful when deployment of the Oracle Enterprise
Scheduler is optional in an embedding product.

• All of the documented APIs exposed by the client shared library are available in the
thin client library. Therefore, thin client applications can:

– Request submission using the runtime service APIs

– Operate on requests using the runtime service APIs

– Update metadata artifacts using the Metadata Service API

– Remotely complete asynchronous requests

• Because the thin client library remotely invokes an Oracle Enterprise Scheduler
hosting application to perform all operations, it has to look up remote Oracle
Enterprise Scheduler beans instead of local beans. There is some overhead in
obtaining the InitialContext of a remote Oracle Enterprise Scheduler server.
The RemoteConnector API provides the following assistance for the callback of
Oracle Enterprise Scheduler beans:

– Helper classes use RemoteConnectors to easily connect back to Oracle
Enterprise Scheduler beans (for example, RuntimeService and
MetadataService)

– Log and output can be handled from a remote implementation

– Asynchronous requests can be completed easily

– Invocations and callbacks can be secured

Implementation
Consider the following when you use the thin client library to implement a remote EJB
job:

• Make sure the bean implements the RemoteExecutable interface for execution
only, or the RemoteCancellableExecutable interface for both the execute and
cancel operations.

• Use predefined system properties such as EJB_OPERATION_NAME instead of
defining specific properties such as SOA_BEAN_NAME.

• The ejb-jar.xml file should define the
oracle.security.jps.ee.ejb.JpsInterceptor interceptor. Use the
interceptor to obtain the subject propagated from the Oracle Enterprise Scheduler
layer and use it in other operations.

• It's best to move the job implementation out of the ejb-jar.xml file to ensure
that the EJBs are not redeployed when the job logic changes.

Implementation

6-2 Developing Applications for Oracle Enterprise Scheduler

Tip:

The application throws a javax.naming.NamingException exception if
the JNDI context cannot be created with the passed in values. Alternatively,
the ScehdulerException exception can be thrown when there is a problem
with look-ups that involve the credential key store.

Secured Invocation
Secured invocation of the remote EJB is required when the JNDI tree of its server is
authenticated. This is also the case when a remote EJB uses secure lookup to call back
to Oracle Enterprise Scheduler EJBs. The following sections provides some guidance.

Forward Invocation

The following apply to forward invocation.

• When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the
executing job is always propagated.

• When Oracle Enterprise Scheduler executes a job, the JndiProviderUrl of the
current Oracle Enterprise Scheduler Server is always supplied to the remote EJB
through RequestParameters.

• If the JNDI tree of the remote server is authenticated, the JNDI_CSF_KEY property
must be specified in the request parameters or the EssConfiguration of the
hosting application.

• Oracle Enterprise Scheduler looks up the keystore for the CsfKey to retrieve the
PasswordCredential and connects to the remote server.

Callback Invocation

The following apply to callback invocation.

• If the remote EJB must call back to Oracle Enterprise Scheduler beans, the following
properties can be specified:

– The JNDI names of Oracle Enterprise Scheduler Runtime, Metadata and
AsyncRequest beans exposed in HostingApp must be specified in request
parameters or the EssConfiguration of the hosting application. If
EssNativeHostingApp is used, these entries are not required.

– If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated, the
ESS_JNDI_CSF_KEY_NAME property must be specified in the request
parameters or EssConfiguration of the hosting application. Oracle
Enterprise Scheduler ensures that this property is available to the remote EJB
through RequestParameters.

• A remote EJB can make use of the RemoteConnector API to get the remote
instances of Oracle Enterprise Scheduler beans. This can be done by passing the
following:

– RequestParameters

– RequestParameters and JndiMappedName of the bean (for hosting
applications other than the native hosting application)

Implementation

Creating a Thin Client Application 6-3

– RequestParameters, user name and password (if the Oracle Enterprise
Scheduler server is authenticated)

– InitialContext (primarily for Java SE clients with
EssNativeHostingApp)

– InitialContext and jndiMappedName (primarily for Java SE clients with
other hosting applications)

RemoteConnector API and the Server Affinity Property
If your code implementation relies on accessing Oracle Enterprise Scheduler EJBs, use
the methods exposed in the RemoteConnector API class. The Oracle Enterprise
Scheduler requires the server affinity property to be set in the InitialContext
environment before doing a JNDI lookup and the RemoteConnector API class sets
this property for you. Note that this is especially important in multi-node cluster
scenarios. The RemoteConnector class is packaged in the Oracle Enterprise
Scheduler client libraries.

If for some reason the RemoteConector class cannot be used, you can set the
environment map property to the InitialContext before doing the look-up for the
Oracle Enterprise Scheduler EJBs as shown in the following example.

if(PlatformUtils.isWebLogic())
 envProps.put("weblogic.jndi.enableServerAffinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-
robin-affinity".

Examples
This section contains examples that illustrate how to use the thin client library.

Java EE Application That Uses RemoteConnector

The following code example shows a snippet from a Java EE application that uses
RemoteConnector through the pre-deployed native hosting application.

RemoteConnector essConnector = newRemoteConnector();
//RequestParameters contains the JndiProviderURL of Oracle Enterprise Scheduler
//Server which is auto-populated from the Oracle Enterprise Scheduler end while
//invoking an EJB. The CSF key is auto-populated in RequestParameters from the
//Oracle Enterprise Scheduler end if configured for the
//Oracle Enterprise Scheduler Server and specified in the EssConfig of
HostingApp.
//If CSF key is present, the CSF lookup is done from RemoteConnector to resolve
//authentication.

RuntimeService rts = essConnector.getRuntimeServiceEJB(requestParameters);

//Sample invocation using RuntimeServiceBean.
RuntimeServiceHandle handle = rts.open();
RequestDetail reqDetail = rts.getRequestDetail(handle,
requestExecutionContext.getRequestId());

Implementation

The following example shows a skeletal implementation of an EJB job that uses the
thin client library. See Creating and Using EJB Jobs for more information about
implementing EJB jobs.

Implementation

6-4 Developing Applications for Oracle Enterprise Scheduler

@Stateless(name = "JMXAdapter")
public class JMXAdapterBean implements RemoteCancellableExecutable
{
@Resource
private SessionContext sctx;
public JMXAdapterBean() {
}

public void execute(RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters) throws
ExecutionErrorException,
ExecutionWarningException,
ExecutionPausedException,
ExecutionCancelledException
{
//"ESS RequestId:" + requestExecutionContext.getRequestId();
//"EJB Operation:" +
requestParameters.getValue(SystemProperty.EJB_OPERATION_NAME);
//"Invoke Message:" + requestParameters.getValue(SystemProperty.INVOKE_MESSAGE);
}
public void cancel(RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters)
{
//"ESS RequestId:" + requestExecutionContext.getRequestId();
//"EJB Operation:" +
requestParameters.getValue(SystemProperty.EJB_OPERATION_NAME);
//"Invoke Message:" + requestParameters.getValue(SystemProperty.INVOKE_MESSAGE);
}
}

Subject Propagation

When the Oracle Enterprise Scheduler invokes an EJB job, the subject associated with
the hosting application is always propagated to the job. This ensures that the subject
that executes the job is available in the business operation of the bean. Add the
following code to the ejb-jar.xml file to retrieve the subject from within the bean.

<interceptors>
<interceptor>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>NAME_OF_ENTERPRISE_APPLICATION</env-entry-value>
<injection-target>
<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-
target-class>
<injection-target-name>application_name</injection-target-name>
</injection-target>
</env-entry>
</interceptor>
</interceptors>
<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

You can use the following code to invoke an MBean from an EJB operation in the
privileged context of the current subject:

Implementation

Creating a Thin Client Application 6-5

AccessControlContext accContext = AccessController.getContext();
Subject currentSubject = Subject.getSubject(accContext);
String currentUsername = SubjectUtil.getUserName(currentSubject);
Subject.doAs(currentSubject, new PrivilegedExceptionAction() {
public Object run() {
//logic to invoke MBean
}
});

Using JDeveloper to Build a Thin Client Application for MAR Deployment
If your job uses the Oracle Enterprise Scheduler pre-deployed native hosting
application, you can simplify the creation of custom job metadata by building a client
application that assists in the creation of the metadata and deploys it to the pre-
deployed native hosting application MDS partition (essUserMetadata).

The following instructions show how to use Oracle JDeveloper to create a thin client
application that:

• Adds job metadata

• Creates an enterprise archive (EAR)

• Packages the metadata archive (MAR) in the EAR

• Deploys the metadata to the pre-deployed native hosting application

The instructions in Using JDeveloper to Create and Configure an EJB and its Job
Definition Metadata describe how to create an EJB that can be invoked by the EJB job
definition added to the pre-deployed native hosting application.

The ADF infrastructure is used to deploy the metadata to a specific partition when an
application gets deployed. The MDS partition for the pre-deployed native hosting
application is essUserMetadata.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle JDeveloper.

Note:

Be sure to set the MW_HOME environment variable before you start JDeveloper.
For example: export MW_HOME=/scratch/prh/12c/jdev If this variable
is not set, the Job Type dropdown menu is not populated.

Create and Deploy a Thin Client Application for the Standalone Environment
The following steps describe how to use JDeveloper to create and deploy a thin client
application.

1. In the New Gallery dialog, create a custom application and project as shown in
Figure 6-1.

Using JDeveloper to Build a Thin Client Application for MAR Deployment

6-6 Developing Applications for Oracle Enterprise Scheduler

Figure 6-1 New Gallery Dialog

2. In the Create Custom Application dialog, enter the application name and
application package prefix as shown in Figure 6-2.

Figure 6-2 Create Custom Application Dialog - Step 1 of 3

3. Enter the project name, then add ESS Job Support and EJB into the project
features as shown in Figure 6-3.

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Creating a Thin Client Application 6-7

Figure 6-3 Create Custom Application Dialog - Step 2 of 5

4. Configure the EJB settings as shown in Figure 6-4.

Figure 6-4 Create Custom Application Dialog - Step 4 of 5

5. Configure the application ID value as shown in Figure 6-5

Using JDeveloper to Build a Thin Client Application for MAR Deployment

6-8 Developing Applications for Oracle Enterprise Scheduler

Figure 6-5 Configure ESS Job Support Settings

6. Click Next.

7. Click Finish to complete the steps to create a new application.

8. Edit the MANIFEST.MF file generated in the previous step and remove the
following lines:

essclientapi-Specification-Version: 12
Extension-List: essruntime, essclientapi
Weblogic-Application-Version: 3.0
essclientapi-Extension-Name: oracle.ess.client.api
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

9. Right click the project node in the left tree panel, then select project properties and
click “Libraries and Classpath" as shown in Figure 6-6. Make sure to only select
“Java EE" and “Enterprise Scheduler" in the Classpath Entries pane.

Figure 6-6 Project Properties Dialog

10. In the New Gallery dialog, select “Enterprise Scheduler Metadata" and “Job
Definition" as shown in Figure 6-7.

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Creating a Thin Client Application 6-9

Figure 6-7 New Gallery Dialog

11. In the Create Job Definition dialog, select /oracle/as/ess/core/
ProcessJobType from the Job Type dropdown to add simple spawned job
definition metadata as shown in Figure 6-8.

Figure 6-8 Create Job Definition Dialog

12. To complete the addition of spawned job definition metadata, select the Override
check box and enter a value for the Command Line entry. Add a system property
named SYS_effectiveApplication with a value of EssNativeHostingApp.

Using JDeveloper to Build a Thin Client Application for MAR Deployment

6-10 Developing Applications for Oracle Enterprise Scheduler

Figure 6-9 SimpleSpawnedJobDefn.xml Tab

13. Add EJB job definition Metadata. Follow the steps in Using JDeveloper to Create
and Configure an EJB and its Job Definition Metadata.

14. Configure the MAR profile.

a. Select “Application Properties" and click “Deployment Node".

b. Select “MAR Module" in the right side panel and click Edit.

c. Select “User Metadata" in the Edit MAR Deployment Properties dialog as
shown in Figure 6-10.

d. Make sure that the essmeta directory (under the path of the project created
above) is available. If it is not available, add the directory by manually
navigating to the essmeta directory.

Figure 6-10 Edit MAR Deployment Profile Properties Dialog

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Creating a Thin Client Application 6-11

15. Select the appropriate metadata to package in the MAR. click the “Directories"
node under “User Metadata" and make sure that the newly added job definitions
are selected as shown in Figure 6-11.

Figure 6-11 Edit MAR Deployment Profile Properties Dialog

16. Create a deployment profile for an enterprise archive (EAR).

a. Select “Application Properties" and click the deployment node.

b. Click New in the right panel to invoke the Create Deployment Profile dialog.
Choose “EAR File" from the Profile Type dropdown as shown in Figure 6-12.

Figure 6-12 Create Deployment Profile Dialog

17. Configure the application assembly for the EAR. In the dialog, make sure the
following two profiles are selected:

• The MAR profile you previously created

• The EJB profile. This profile is automatically created. If it is not automatically
created, create a new “EJB JAR" deployment profile for the project as
previously described beginning in step 2.

To create the EJB-JAR deployment profile:

Using JDeveloper to Build a Thin Client Application for MAR Deployment

6-12 Developing Applications for Oracle Enterprise Scheduler

a. In the Application Navigator, in the Projects panel, right-click the EssHost
project, then click Project Properties.

b. In the Project Properties window navigator, click Deployment.

c. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

d. In the Create Deployment Profile dialog, from the Profile Type dropdown
list, select EJB JAR file.

e. In the Name field, enter a name for the EJB. For this example, enter
MySampleThinClientEjb.

f. Click OK.

Figure 6-13 Create the EJB-JAR Deployment Profile

g. In the Edit EJB JAR Deployment Profile Properties dialog navigator on the
left, click General.

h. In the General window, in the Enterprise Application Name field, enter
MySampleThinClientApp.

i. In the navigator, expand to File Groups > Project Output > Contributors.

j. In the Contributors window, select the following check boxes:

• Project Output Directory

• Project Source Path

• Project Dependencies

k. In the navigator, expand to File Groups > Project Output > Filters.

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Creating a Thin Client Application 6-13

Figure 6-14 Edit EAR Deployment Profile Properties Dialog

l. In the Filters window, in the Files tab, ensure that the following folders are
selected:

• META-INF (and its contents)

• oracle (and its contents)

m. In the JAR Option window, deselect the Include Manifest File item.

n. Click OK.

o. In the Project Properties dialog, click OK.

18. Configure the library dependencies for the EAR. Be sure that none of the items are
selected in the Libraries Selected for Deployment pane.

Figure 6-15 Edit EAR Deployment Profile Properties Dialog

Using JDeveloper to Build a Thin Client Application for MAR Deployment

6-14 Developing Applications for Oracle Enterprise Scheduler

19. Configure the adf-config.xml file. When you deploy an ADF-based
application from JDeveloper, there is a dialog that asks you to select the MDS
partition into which the metadata is to be deployed. If the EAR file generated from
this application is to be deployed from the WLS console, certain MDS partition
entries must be specified in the adf-config.xml file. If this is the case, ensure
that the adf-config.xml file contains the entries shown in Example 6-1. You
can find the adf-config.xml file in the Application Resources > Descriptors >
ADF META-INF section in bottom of the left panel.

20. Configure the weblogic-application.xml file. Make sure the contents of the
weblogic-application.xml file are as shown in Example 6-2.

21. Deploy the application. To complete the deployment of the EAR, select
essUserMetadata in the Partition Name dropdown in the Deployment
Configuration dialog and click Deploy.

Figure 6-16 Oracle Deployment Configuration Dialog

Example 6-1 Contents of the adf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config"
version="11.1.1.000">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/apps/ess/
custom" metadata-store-usage="ess_custom_metadata"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage
id="ess_custom_metadata" deploy-target="true" default-cust-
store="true">
 <ns3:metadata-store class-
name="oracle.mds.persistence.stores.db.DBMetadataStore"
xmlns:ns3="http://xmlns.oracle.com/mds/config">
 <ns3:property name="repository-

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Creating a Thin Client Application 6-15

name" value="mds-ESS_MDS_DS" />
 <ns3:property name="partition-
name" value="essUserMetadata" />
 <ns3:property name="jndi-
datasource" value="jdbc/mds-ESS_MDS_DS" />
 </ns3:metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Example 6-2 Contents of the weblogic-application.xml File

<?xml version = '1.0' encoding = 'UTF-8' ?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-
application http://
xmlns.oracle.com" xmlns="http://xmlns.oracle.com/
weblogic/weblogic-application">
<listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>
<library-ref>
 <library-name>oracle.ess.thin.client</library-name>
</library-ref>
</weblogic-application>

Using JDeveloper to Create and Configure an EJB and its Job Definition
Metadata

The following steps describe how to:

• Create a simple synchronous EJB that conforms to Oracle Enterprise Scheduler's job
implementation requirements.

• Create EJB job definition metadata and deploy it as a part of the enterprise
application.

1. Create a session bean. In the New Gallery dialog, select “Session Bean" to create a
new EJB as shown in Figure 6-17.

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6-16 Developing Applications for Oracle Enterprise Scheduler

Figure 6-17 New Gallery Dialog

2. Configure the session bean. Enter the EJB name in the EJB Name field and enter the
mapped name in the Mapped Name field as shown in Figure 6-18. Click Next to
continue.

Figure 6-18 Create Session Bean Dialog - Step 2 of 5

3. Configure the session bean business interface. Make sure that the Implement a
Remote Interface check box is checked and that
oracle.as.scheduler.RemoteExecutable is set as the class for the Remote
Interface field as shown in Figure 6-19. Click Next and proceed to the Finish step.

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Creating a Thin Client Application 6-17

Figure 6-19 Create Session Bean Dialog - Step 4 of 5

4. Configure the generated session bean. Make sure the generated session bean
implements the execute method defined in the RemoteExecutable interface

Figure 6-20 Configure the Generated Session Bean

5. Complete the implementation of the session bean. Make sure the bean is complete
by implementing the execute method.

Figure 6-21 Complete the Implementation of the Session Bean

6. Make sure the ejb-jar.xml file contains the declaration shown in Example 6-3.

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6-18 Developing Applications for Oracle Enterprise Scheduler

7. Make sure the weblogic-ejb-jar.xml file contains the declaration shown in
Example 6-4.

This completes the steps used to create an EJB that can be invoked by Oracle
Enterprise Scheduler using the EJB job type.

The following two steps describe how to use JDeveloper to create an EJB Job
definition.

8. Create EJB job definition metadata. In the New Gallery dialog, select “Job
Definition" under “Enterprise Scheduler Metadata" and fill it in as shown in Figure
6-22.

Figure 6-22 Create Job Definition Dialog

9. Configure system properties in the job definition. In the Add System Property
dialog, specify EssNativeHostingApp in the Initial Value field, and select the
system property SYS_effectiveApplication from the Name dropdown as
shown in Figure 6-23.

Figure 6-23 Add System Property Dialog

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Creating a Thin Client Application 6-19

Repeat the process, making sure that the SYS_EXT_jndiMappedName property is
configured with an initial value of jndiName. Also add properties like
SYS_EXT_jndiProviderUrl if the application is deployed to a server other than
ESSAPP.

Figure 6-24 Job Definition Tab

Example 6-3 Contents of the weblogic-application.xml File

<?xml version = '1.0' encoding = 'UTF-8' ?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/ejb-jar_3_0."
 version="3.0" xmlns="http://java.sun.com/xml/ns/javaee">
 <enterprise-beans>
 <session>
 <description>Simple Session Bean</description>
 <ejb-name>SimpleSession</ejb-name> <ejb-
class>oracle.com.samples.ess.thinclient.SimpleSessionBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>

Example 6-4 Contents of the weblogic-ejb-jar.xml File

<?xml version = "1.0" encoding = 'UTF-8' ?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://
xmlns.oracle.com/weblogic/weblogic-ejb-jar http://xmlns.oracle.com"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar">
 <weblogic-enterprise-bean>
 <ejb-name>SimpleSession</ejb-name>
 <stateless-session-descriptor>
 <business-interface-jndi-name-map>
 <business-remote>oracle.as.scheduler.RemoteExecutable</business-
remote>
 <jndi-name>ejb/simpleSessionBean</jndi-name>
 </business-interface-jndi-name-map>

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6-20 Developing Applications for Oracle Enterprise Scheduler

 </stateless-session-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Creating a Thin Client Application 6-21

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6-22 Developing Applications for Oracle Enterprise Scheduler

7
Using Oracle JDeveloper to Generate an
Oracle Enterprise Scheduler Application

This chapter is a tutorial that describes how to create and run an application that uses
Oracle Enterprise Scheduler to run job requests and demonstrates how to work with
Oracle JDeveloper to create an application using Oracle Enterprise Scheduler.

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

Note:

For Oracle Enterprise Scheduler sample code, be sure to see the sample site at
https://java.net/projects/oraclesoasuite12c.

This chapter includes the following sections:

• How to Start JDeveloper to Support Building Oracle Enterprise Scheduler
Applications

• Understanding Oracle Enterprise Scheduler Application Support Created by Oracle
JDeveloper

• Building a Combined Oracle Enterprise Scheduler Application

• Building Split Submitting and Hosting Applications

How to Start JDeveloper to Support Building Oracle Enterprise Scheduler
Applications

Some aspects of developing Oracle Enterprise Scheduler applications with Oracle
JDeveloper require that you set the Middleware Home environment variable to the
installation location of Oracle JDeveloper itself. Before you begin using Oracle
JDeveloper to develop Oracle Enterprise Scheduler applications, be sure to set this
variable.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle JDeveloper.

To set an environment for building Oracle Enterprise Scheduler applications:

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-1

https://java.net/projects/oraclesoasuite12c

1. Open a command prompt.

2. Change directory to the installed location of Oracle JDeveloper. For example, on
Windows you might do the following:

>cd c:\Oracle\Middleware\jdeveloper

3. Set MW_HOME to the location of Oracle JDeveloper. For example:

>set MW_HOME=c:\Oracle\Middleware

4. Start Oracle JDeveloper.

>jdeveloper

Understanding Oracle Enterprise Scheduler Application Support Created
by Oracle JDeveloper

As you create projects in Oracle JDeveloper for developing Oracle Enterprise
Scheduler applications, you add underlying support for application functionality by
specifying support for particular project technologies.

For more on creating Oracle Enterprise Scheduler applications, see Building a
Combined Oracle Enterprise Scheduler Application and Building Split Submitting and
Hosting Applications.

When you create an application using Oracle JDeveloper, you select from the
following technologies, depending on your application requirements:

• ESS Host Support for developing a hosting application, including:

– Updating weblogic-application.xml for application support.

– Updating EJB deployment profile for project support.

– Updating EAR deployment profile for application support.

– Adding the Oracle Enterprise Scheduler library.

– Adding context menu to project (accessed by right-clicking and selecting
Enterprise Scheduler Properties), which allows the following ejb-jar.xml
properties to be modified: Logical Application Name, Application Policy Stripe,
JPS Interceptor Application Name.

• ESS Client Support for developing a client application, including:

– Updating weblogic-application.xml for application support.

– Updating EJB deployment profile for project support.

– Adding the Oracle Enterprise Scheduler library.

– Adds context menu to project (accessed by right-clicking and selecting
Enterprise Scheduler Properties), which allows the following ejb-jar.xml
properties to be modified: JPS Interceptor Application Name.

• ESS Job Support for developing scheduler applications, including:

– Creating or updating a MAR profile.

Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper

7-2 Developing Applications for Oracle Enterprise Scheduler

– Creating a JAR deployment profile for project support.

– Adding the Oracle Enterprise Scheduler library.

Building a Combined Oracle Enterprise Scheduler Application
The EssDemoApp sample application you build in this tutorial includes a complete
application that you build with Oracle JDeveloper using Oracle Enterprise Scheduler
APIs.

In this example, you'll create a hosting application and a simple Java job
implementation. Though the example here is simple, its job class implements the
Executable interface from which a more complex Java job might call out to other
code as part of its work.

To create an application that schedules job requests you do the following:

• Create the Java class that specifies the logic you want to schedule and run with
Oracle Enterprise Scheduler.

• Specify Oracle Enterprise Scheduler metadata and the characteristics for job
requests.

• Define the Java application that uses Oracle Enterprise Scheduler APIs to specify
and submit job requests. The application consists of two projects: one for hosting
jobs and another for submitting them.

• Assemble and deploy the Java application that uses Oracle Enterprise Scheduler
APIs.

• Run the Java application that uses Oracle Enterprise Scheduler APIs.

Note:

The instructions in this chapter assume that you are using a new Oracle
JDeveloper that you installed without previously saved projects or other saved
Oracle JDeveloper state. If you have previously used Oracle JDeveloper, some
of the instructions may not match the exact steps shown in this chapter, or you
may be able to shorten procedures or perform the same action in fewer steps.
In some cases Oracle JDeveloper does not show certain dialogs based on your
past use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application metadata is stored with
MDS. To use MDS you need to have access to a database with MDS user and schema
configured.

You also need a WebLogic Server instance to which Oracle Enterprise Scheduler is
deployed in standalone mode. You should have access to a database with the Oracle
Enterprise Scheduler schema installed.

This section includes the following subsections:

• Creating the Application and Projects for EssDemoApp Application

• Creating Metadata and an Implementation Class for the EssDemoApp Application

• Adding Application Code to Submit Job Requests

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-3

• Setting Oracle Enterprise Scheduler Properties

• Assembling the EssDemoApp Application

• Deploying and Running the EssDemoApp Application

Creating the Application and Projects for EssDemoApp Application
Using Oracle JDeveloper you create an application and projects within the application
that contains the code and supporting files for the application. To create the sample
application you need to do the following:

• Create an application in Oracle JDeveloper.

• Create projects in Oracle JDeveloper. You create two projects -- one in which to
develop "Hello World"-style Java job and another in which to develop a client that
submits requests with the job.

How to Create the EssDemoApp Application and Host Project

To work with Oracle Enterprise Scheduler, you first create an application in Oracle
JDeveloper. You'll also create a hosting application to support job execution.

To create the EssDemoApp application and hosting project:

1. Start Oracle JDeveloper as described in How to Start JDeveloper to Support
Building Oracle Enterprise Scheduler Applications.

2. In the Select Role dialog, select the Default Role, then click OK.

3. Click the Application menu, then click New and select the From Gallery option.

4. In the Name your application window enter the name and location for the new
application.

a. In the New Gallery window, select Custom Application listed under the
General Categories Applications item, then click OK.

b. In the Application Name field, enter an application name. For this sample
application, enter EssDemoApp.

c. In the Directory field, accept the default.

d. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial
project of an application.

e. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. See Figure 7-1.

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter EssHost.

b. On the Project Features tab, under Available, double-click ESS Host Support
and ESS Job Support so that they are both listed under Selected on the right
side of the dialog box.

Building a Combined Oracle Enterprise Scheduler Application

7-4 Developing Applications for Oracle Enterprise Scheduler

For more on these, see Understanding Oracle Enterprise Scheduler
Application Support Created by Oracle JDeveloper.

c. Click Next.

Figure 7-1 Create the Custom Application

6. In the Configure Java settings window, in the Default Package field, enter
oracle.esshost.

Click Next.

7. In the Configure EJB settings window, select the following:

• Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

• Under EJB Version 3.x, select the Generate ejb-jar.xml in this project check
box.

Click Next.

8. In the Configure ESS Host Support settings window, in the Application Id field,
enter EssDemoApp.

Click Finish.

This displays the EssDemoApp Overview page. You can use sections of this page
to get information about aspects of the application you're creating, as well as to
manage its development progress. For now, though, you'll move on to creating
project artifacts to support creating jobs.

How to Create the Client Project

In the preceding step, you created a project in which to develop the application to host
your jobs. In this section, you'll use Oracle JDeveloper to create another project in the
EssDemoApp application. This second project provides support for client interaction
with the hosting application.

To create the client project:

1. Click the File menu, then click New > Project.

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-5

2. In the New Gallery, under Categories, expand General, then click Projects.

3. Under Items, click Custom Project, then click OK.

4. In the Name your project window, enter the name for the client project you're
creating and select supporting technologies. See Figure 7-2.

a. In the Project Name field, enter a name for your client project. For this sample
application, enter EssClient.

b. On the Project Features tab, under Available, double-click the following
items so that they are listed under Selected on the right side of the dialog box:

ESS Client Support

HTML & CSS

JSF

SP and Servlets

XML

For more on this, see Understanding Oracle Enterprise Scheduler Application
Support Created by Oracle JDeveloper.

c. Click Next.

Figure 7-2 Create a Custom Project

5. In the Configure Java settings window, in the Default Package field, enter
oracle.essclient.

Click Next.

6. In the Configure EJB settings window, select the following:

• Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

Click Next.

7. In the Configure ESS Client Support settings window, in the Application Id field,
ensure the EssDemoApp is displayed there.

Building a Combined Oracle Enterprise Scheduler Application

7-6 Developing Applications for Oracle Enterprise Scheduler

Click Finish.

Creating Metadata and an Implementation Class for the EssDemoApp Application
For a Java job, which is what you'll be adding here, an implementation class
implements the logic of your job -- the code that does job's actual work. The class
implements the oracle.as.scheduler.Executable interface. The interface's
execute method provides a place where you can add the job's logic. Though the code
in this example is very simple, the execute method can also serve as a starting place for
processing that continues into code to which the Java job has access.

As with other job types, including PL/SQL and process jobs, a Java job's work is
guided by metadata. This metadata forms a job-specific context that can include Oracle
Enterprise Scheduler-defined system properties, properties you create, and control of
who has access to the metadata. For example, metadata might be a way for you to
collect and pass instance data to downstream code.

To use the EssDemoApp sample application to submit a job request, you need to
create:

• Metadata in the form of a job definition that is the basic unit of work that defines a
job request in Oracle Enterprise Scheduler.

• A Java job implementation class.

How to Create Metadata for the EssDemoApp Application

In this section, you use Oracle JDeveloper to create job definition metadata and a
simple implementation class for a Java job.

To create metadata for the application:

1. In the Application Navigator, select the EssHost project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

4. In the Items area, select Job Definition as shown in Figure 7-3.

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-7

Figure 7-3 Adding Job Type Metadata to the Sample Application

5. Click OK. This displays the Create Job Definition dialog.

6. In the Create Job Definition dialog, specify the following:

a. In the Name field, enter a name for the job definition. For this example, enter
the name: HelloWorldJobDefinition.

b. In the Package field, enter a package name. For this example, enter /
oracle/esshost/metadata.

Note that you should use slashes, rather than dots, to delimit names in
metadata package names. A metadata package ending in ".metadata" is not
visible in Oracle JDeveloper.

c. In the Job Type field, from the dropdown list select /oracle/as/ess/core/
JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in How to Start JDeveloper to Support Building
Oracle Enterprise Scheduler Applications.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class
for your Java job be created, saving you the trouble of creating one later.
Selecting the Synchronous option specifies that this is a synchronous Java job.

e. Under Java Class, specify details for the Java class you're creating. In the Java
Package field, enter its package name -- here, enter oracle.esshost.impl.
In the Class Name field, enter a name for the class -- here, enter
HelloWorldImpl as shown in Figure 7-4

Building a Combined Oracle Enterprise Scheduler Application

7-8 Developing Applications for Oracle Enterprise Scheduler

Figure 7-4 Creating a Job Definition with the Job Definition Creation
Wizard

f. Click OK.

This creates the Java class you requested, along with the
HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML
file's contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

7. In the Job Definition page, in the Description field enter a description for the job
type. For this example enter: Sample Java Job Definition.

Leave the rest of the metadata unchanged.

8. In the Application Navigator, locate the class you created by expanding the items
in the projects panel to EssHost > Application Sources > oracle.esshost.impl >
HelloWorldImpl.java.

9. Open HelloWorldImpl.java in the source editor.

10. In the source editor, add simple code to implement the execute method. The
execute method is where execution for a Java job begins. Your HelloWorldImpl
class should look something like Example 7-1.

11. Save and close HelloWorldImpl.java.

Example 7-1 HelloWorldImpl with Execute Method Implemented

public class HelloWorldImpl implements Executable, Cancellable
{
 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionCancelledException, ExecutionPausedException
 {
 System.out.println("**** Sample Job Running, Request ID: " +
 ctx.getRequestId());
 }

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-9

 public void cancel()
 {
 }
}

Adding Application Code to Submit Job Requests
In an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler
APIs to submit job requests from any component in the application. The EssDemoApp
sample application provides a Java servlet for a servlet-based user interface for
submitting job requests (using Oracle Enterprise Scheduler).

How to Add Application Code to Submit Job Requests

In this section, you'll create a servlet for receiving job submission requests.

To add a servlet to support job request submissions:

1. In the Application Navigator, select the EssClient project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the New Gallery, in the Categories area, expand Web Tier and select Servlets.

4. In the Items area, select HTTP Servlet as shown in Figure 7-5.

Figure 7-5 Adding Job Type Metadata to the Sample Application

5. Click OK. This displays the Create HTTP Servlet wizard.

6. In the Welcome page, click Next.

7. In the Create HTTP Servlet - Step 2 of 4: Servlet Information page, specify the
following:

a. In the Class field, enter a name for the servlet class. For this example, enter
the name: EssDemo.

b. In the Package field, enter a package name. For this example, enter
oracle.essclient.servlet.

Building a Combined Oracle Enterprise Scheduler Application

7-10 Developing Applications for Oracle Enterprise Scheduler

c. In the Generate Content Type field, from the dropdown list ensure the
HTML is selected.

d. In the Implement Methods area, select the doGet() and doPost() check boxes,
as shown in Figure 7-6.

Figure 7-6 Creating a Servlet -- Step 2 of 4

e. In the Registration area, select the Configuration file (web.xml) radio button.

f. Click Next.

8. In the Create HTTP Servlet - Step 3 of 4: Mapping Information page, specify the
following:

a. In the Name field, enter a name for the servlet. For this example, enter the
name: EssDemo.

b. In the URL Pattern field, enter a URL for servlet mapping. For this example,
enter /essdemo/*.

c. Click Finish.

The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace the
contents of the servlet with the contents of the file EssDemo.java supplied with
the sample application.

Setting Oracle Enterprise Scheduler Properties
With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following:

• Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

• Application Policy Stripe

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-11

Specifies which JPS security stripe (or "security context") should be used to perform
security checks.

• JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of
security policies are applicable.

How to Set Oracle Enterprise Scheduler Properties for the Application

In this section, you'll set default values for Oracle Enterprise Scheduler properties.

To set values for Oracle Enterprise Scheduler properties:

1. In the Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoApp for all three of
the fields provided: Logical Application Name, Application Policy Stripe, and
JPS Interceptor Application Name.

3. Click OK.

Figure 7-7 Set Values for Oracle Enterprise Scheduler Properties

Assembling the EssDemoApp Application
After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following:

• Create the EJB JAR files.

• Create the application MAR file.

• Create the application EAR file.

• Update WAR file options.

Building a Combined Oracle Enterprise Scheduler Application

7-12 Developing Applications for Oracle Enterprise Scheduler

How to Create the EJB-JAR Deployment Profile for the EssDemoApp

The sample application must contain the required EJB descriptors. You need to create
the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any Java
implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This EJB jar should have its
required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java class
implementations that are going to be submitted to Oracle Enterprise Scheduler. The
descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the
Oracle Enterprise Scheduler EJBs and should not be modified.

To create the EJB-JAR deployment profile:

1. In the Application Navigator, in the Projects panel, right-click the EssHost project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter ess-ejb.

6. Click OK.

Figure 7-8 Create the EJB-JAR Deployment Profile

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator on the
left, click General.

8. In the General window, in the Enterprise Application Name field, enter
EssDemoApp.

9. In the navigator, expand to File Groups > Project Output > Contributors.

10. In the Contributors window, select the following check boxes:

• Project Output Directory

• Project Source Path

• Project Dependencies

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-13

11. In the navigator, expand to File Groups > Project Output > Filters.

12. In the Filters window, on the Files tab, ensure that the following folders are
selected:

• META-INF (and its contents)

• oracle (and its contents)

13. In the JAR Option window, deselect the Include Manifest File item.

14. Click OK.

15. In the Project Properties dialog, click OK.

How To Update the WAR Archive Options

In this section, you specify information that Oracle JDeveloper can use to generate a
WAR file.

To update the WAR archive options:

1. In the Application Navigator, in the Projects panel, right-click the EssClient project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Delete all profiles listed in the Under Deployment Profiles window, then click New.

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
WAR file.

5. In the Name field enter WAR_EssDemoApp.

6. Click OK.

7. In the Edit WAR Deployment Profile Properties dialog, in the navigator on the left,
click General.

8. In the WAR Options window deselect Include Manifest File(META-INF/
MANIFEST.MF).

9. In the General window, select the Specify Java EE Web Context Root option. In the
field beneath the option, enter EssDemoApp.

10. In the navigator, expand to File Groups > Web Files > Contributors.

11. In the Contributors window, select the following check boxes as shown in Figure
7-9:

• Project Output Directory

• Project HTML Root Directory

• Project Source Path

Building a Combined Oracle Enterprise Scheduler Application

7-14 Developing Applications for Oracle Enterprise Scheduler

Figure 7-9 Update the WAR Archive Options

12. In the navigator, expand to File Groups > Web Files > Filters.

13. In the Filters window, on the Files tab, ensure that the following folders are
selected:

• oracle (and its contents)

• WEB-INF (and its contents)

Click OK.

14. Navigate to the Project Properties > Libraries and Classpath window. Use the
Add Library button to add the following libraries:

• ADF Common Runtime

• ADF Faces Runtime11

• ADF Common Web Runtime

• ADF Page FlowRuntime

• ADF Controller Schema

• ADF Controller Runtime

Create the Application MAR File

To create the MAR options:

1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. In the Deployment window, click New.

4. Select MAR File Option from dropdown menu and enter MAR_EssDemoApp as the
deployment profile's name.

5. Click OK.

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-15

6. In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
navigate to Metadata File Groups > User Metadata.

7. Add the EssDemoApp/EssHost/essmeta directory.

This selects the appropriate Oracle Enterprise Scheduler user metadata for the
application.

8. Navigate to Metadata File Groups > User Metadata > Directories and select
Directories. Select the bottom most directory in the tree.

This is the directory from which the name space is created. For example, when you
select oracle, the name space is oracle. When you select the product directory, the
names pace is oracle/apps/product. To create the name space /oracle/
esshost/metadata, click the metadata directory. The folder you select in this
dialog determines the top-level name space in the adf-config.xml file.

9. Click OK.

How to Update the EAR Options

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

• EJB JAR including the Oracle Enterprise Scheduler Java job implementation.

• WAR archive with the EssDemo servlet.

To update the EAR options:

1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, in the Name field, enter
EAR_EssDemoApp as the deployment profile's name.

Click OK.

5. In the Edit EAR Deployment Profile Properties dialog, in the navigation pane on
the left, click Application Assembly.

6. In the Application Assembly window, under Java EE Modules, ensure that all item
check boxes are selected.

7. In the EAR Options window, select Include Manifest File and add EssHost/src/
META-INF/MANIFEST.MF.

8. Click OK.

9. In the Application Properties dialog, click OK.

Building a Combined Oracle Enterprise Scheduler Application

7-16 Developing Applications for Oracle Enterprise Scheduler

Figure 7-10 Update the EAR Archive Options

Configure Security for the Application

You must create a user that is assigned to the EssApplicationRole role. The
following steps describe how to configure security for the back-end hosting
application:

1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

3. In the Authentication Type page, choose EssClient.jpr in the WebProject
dropdown.

4. Select HTTP Basic Authentication.

5. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors and META-INF. This file
contains a security context or security stripe named after the application.

6. Select Application > Secure > Test Users & Roles from the main menu.

A file named jazn-data.xml is generated.

7. In the overview editor for the jazn-data.xml file, click the Add button in the
Users list.

Set the name to EssUser and set the password to welcome1.

8. Click the Application Roles navigation tab to open the Application Roles window
as shown in Figure 7-11.

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-17

Figure 7-11 Application Roles Window

9. Click the Add button in the Roles list and choose Add New Role.

10. Set the name to EssApplicationRole.

11. Click the Add button in the Mappings tab and choose Add User.

12. Select EssUser and click OK.

Add Resource Grants for ESS Application Role in the Job Definition

The following steps describe how to update the job definition by adding resource
grants for the ESS application role.

1. In the HelloWorldJobDefinition.xml Job Definition page, in the Description field,
enter HelloWorld Example.

2. In the System Properties section, click the Add button.

3. In the Add System Property dialog, from the Name dropdown menu, select
SYS_effectiveApplication.

4. In the Initial Value field, enter EssDemoApp.

5. Click OK.

6. In the Access Control section, click the Add button.

7. In the Add Access Control dialog, from the Role dropdown menu, select
EssApplicationRole. This is the role that you created Configure Security for the
Application.

8. Select the Read and Execute actions.

9. Click OK.

10. Verify that the contents of the generated file are identical to Example 7-2.

Building a Combined Oracle Enterprise Scheduler Application

7-18 Developing Applications for Oracle Enterprise Scheduler

Example 7-2 jazn-data.xml

<?xml version = '1.0' encoding = 'UTF-8' standalone = 'yes'?>
<jazn-data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/jazn-
data.xsd">
 <jazn-realm default="jazn.com">
 <realm>
 <name>>Username / password is: EssUser / welcome1</name>
 <users>
 <user>
 <name>EssUser</name>
 <credentials>{903}LmqEdVs3zO0/QmP90tihXv4nRq5YqYSL</credentials>
 </user>
 </users>
 </realm>
 </jazn-realm>
 <policy-store>
 <applications>
 <application>
 <name>EssDemoApp</name>
 <app-roles>
 <app-role>
 <name>EssApplicationRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>
 <name>EssUser</name>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>EssApplicationRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.as.scheduler.security.MetadataPermission</
class>
 <name>oracle.esshost.metadata.JobDefinition.HelloWorldJobDefinition</
name>
 <actions>Read,Update,Delete,Execute</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
 <system-policy/>
</jazn-data>

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-19

Configure the weblogic-application.xml File

Use the source editor to remove the following lines from weblogic-
application.xml:

<library-ref>
 <library-name>oracle.applcp.runtime</library-name>
</library-ref>
<library-ref>
 <library-name>oracle.xdo.runtime</library-name>
</library-ref>

Update the EssHost MANIFEST File

Replace the content of the EssHost META-INF/MANIFEST.INF file with the following
lines:

Manifest-Version: 1.0
Weblogic-Application-Version: 3.0
Extension-List: essruntime
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

Change the Realm Field

Navigate to EssClient > Web Content > WEB-INF > web.xml as shown in Figure 7-12.
Change the value in the Security window Realm field from:

• jazn.com

to:

• Username / password is: EssUser / welcome1

Figure 7-12 Change the Realm Field

Edit the adf-config.xml File for the EssDemoApp Application

1. In the Application Resources panel, expand Descriptors, expand ADF META-INF,
and double-click adf-config.xml.

Building a Combined Oracle Enterprise Scheduler Application

7-20 Developing Applications for Oracle Enterprise Scheduler

2. In the source editor, replace the contents of the adf-config.xml file with the
XML code shown in Example 7-3.

Example 7-3 adf-config.xml File for a EssDemoApp Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:sec="http://
xmlns.oracle.com/adf/security/config">
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <CredentialStoreContext
credentialStoreClass="oracle.adf.share.security.providers.jps.CSFCredentialStore"
 credentialStoreLocation="../../src/META-INF/jps-
config.xml"/>
 <sec:JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false" authenticationRequire="true"/>
 </sec:adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/as/ess/core" metadata-store-usage="ess-core"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="ess-core" deploy-
target="false" default-cust-store="false">
 <metadata-store class-
name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS"/>
 <property name="repository-name" value="mds-ESS_MDS_DS"/>
 <property name="partition-name" value="essapp-internal-partition"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Deploying and Running the EssDemoApp Application
After you complete the steps to build and assemble the EssDemoApp application you
need to deploy the application to Oracle WebLogic Server. After you successfully
deploy an application you can run the application. For the EssDemoApp sample
application you use a browser to run the EssDemo servlet to submit job requests to
Oracle Enterprise Scheduler running on Oracle WebLogic Server.

How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-21

1. Check to make sure the Oracle WebLogic Server is up and running. If the Oracle
WebLogic Server is not running, start the server. Make sure Oracle JDeveloper has
a connection to the server (for this example, "MyConnection").

2. In the Application Navigator, select the EssDemoApp application.

3. In the Application Navigator from the Application Menu select Deploy >
EAR_EssDemoApp > to > MyConnection.

4. Oracle JDeveloper shows the Deployment Configuration page. Select the
appropriate options for your Metadata Repository.

5. Make the following choices when prompted during deployment. In the Metadata
Repository section choose the repository and partition names as follows and
shown in Figure 7-13:

a. Repository Name: mds-ESS_MDS_DS

b. Partition Name: essUserMetadata

Figure 7-13 Oracle Deployment Configuration Window

6. Click Deploy.

7. Verify the deployment using the Deployment Log.

How to Run the EssDemoApp Sample Application

To run the EssDemoApp sample application you access the EssDemo servlet in a
browser.

To access the EssDemo servlet:

1. Enter the following URL in a browser:

Building a Combined Oracle Enterprise Scheduler Application

7-22 Developing Applications for Oracle Enterprise Scheduler

http://host:http-port/context-root/essdemo

For example,

http://myserver.example.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 7-14.

Figure 7-14 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample
Application

2. Select a job definition from the Job drop-down menu.

3. Select a value from the Schedule drop-down menu.

4. Click Submit.

5. Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 7-15.

Building a Combined Oracle Enterprise Scheduler Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-23

Figure 7-15 Running EssDemo Servlet with Request Status for Submitted
Requests

How to Purge Jobs in the EssDemoApp Sample Application

Using the EssDemoApp sample application and the EssDemo servlet you can remove
completed jobs from the Request Status list.

To remove completed jobs:

1. Click Purge to purge a request.

2. Click Cancel to cancel a request that is either RUNNING or WAITING.

Building Split Submitting and Hosting Applications
When you build and deploy Oracle Enterprise Scheduler applications, you can use
two split applications -- a job submission application, a submitter, and a job execution
application, a hosting application. Using this design, you need to configure and
deploy each application with options that support such a split configuration. In
addition, some Oracle Enterprise Scheduler deployments use a separate Oracle
WebLogic Server for the hosting and the submitting applications; for this deployment
option the submitting application and the hosting application are deployed to separate
Oracle WebLogic Servers. When the submitter application and the hosting application
for Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to
configure the Oracle WebLogic Server for the hosting application so that the
submitting application can find the hosting application.

Note:

This section creates a new application. If you have created EssDemoApp with
the sections beginning with Creating the Application and Projects for
EssDemoApp Application, note that this section creates a project of the same
name. You'll need to choose a different location for the application or delete
the previous application in order to use the EssDemoApp application name in
this section.

To build the sample split applications, you do the following:

Building Split Submitting and Hosting Applications

7-24 Developing Applications for Oracle Enterprise Scheduler

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.

This section includes the following subsections:

• How to Create the Back-End Hosting Application for EssDemoApp

• How to Create the Front-End Submitter Application for Oracle Enterprise
Scheduler

How to Create the Back-End Hosting Application for EssDemoApp
Using Oracle JDeveloper you create the back-end application. To create the
EssDemoApp back-end sample application you do the following:

• Create a back-end application and project.

• Configure security.

• Define the deployment descriptors.

• Create the Java class that implements the Oracle Enterprise Scheduler executable
interface.

• Create the Oracle Enterprise Scheduler metadata to describe the job

• Assemble the application.

• Deploy the application.

Creating the Back-End Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle
JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduler extensions to the project.

To create the back-end hosting application:

1. From JDeveloper choose File > New from the main menu.

2. In the New Gallery, expand General, select Applications and then Custom
Application, and click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDemoApp.

4. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you create and
save the Oracle Enterprise Scheduler metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter SuperEss.

b. On the Project Features tab, under Available, double-click ESS Host Support
and ESS Job Support so that both are listed under Selected on the right side
of the dialog box.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-25

For more on these, see Understanding Oracle Enterprise Scheduler
Application Support Created by Oracle JDeveloper.

c. Click Next.

Figure 7-16 Create the Back-End Hosting Application

6. In the Configure Java Settings page, change the default package to
oracle.apps.ess.howto, then click Next.

7. In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and
click Next.

8. In the Configure ESS Host Support settings page, in the Application Id field, enter
EssDemoApp.

9. Click Finish.

Configuring Security for the Back-End Hosting Application

You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:

1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

3. In the Authentication Type page, accept the default values as this application does
not have a web module to secure.

4. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding META-
INF. This file contains a security context or security stripe named after the
application.

5. Select Application > Secure > Test Users & Roles from the main menu.

A file named jazn-data.xml is generated.

Building Split Submitting and Hosting Applications

7-26 Developing Applications for Oracle Enterprise Scheduler

6. In the overview editor for the jazn-data.xml file, click the Add button in the
Users list.

7. Set the name to EssDemoAppUser and set the password to welcome1.

8. Click the Application Roles navigation tab.

9. Click the Add button in the Roles list and choose Add New Role.

10. Set the name to EssDemoAppRole.

11. Click the Add button in the Mappings tab and choose Add User.

12. Select EssDemoAppUser and click OK.

Figure 7-17 Configuring Security

Defining Metadata for the Back-End Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you
need to create metadata that defines a job request, including the following:

• A job type: this specifies an execution type and defines a common set of parameters
for a job request.

• A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

To create metadata for the back-end hosting application:

1. In the Application Navigator, select the SuperEss project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

4. In the Items area, select Job Definition as shown in Figure 7-18.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-27

Figure 7-18 Adding Job Definition to the Sample Application

5. Click OK. This displays the Create Job Definition dialog.

6. In the Create Job Definition dialog, specify the following as shown in Figure 7-19:

a. In the Name field, enter a name for the job definition. For this example, enter
the name: HelloWorldJobDef.

b. In the Package field, enter a package name. For this example, enter oracle/
apps/ess/howto/metadata.

c. In the Job Type field, from the dropdown list select /oracle/as/ess/core/
JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in How to Start JDeveloper to Support Building
Oracle Enterprise Scheduler Applications.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class
for your Java job be created, saving you the trouble of creating one later.
Selecting the Synchronous option specifies that this is a synchronous Java job.

e. Under Java Class, specify details for the Java class you're creating. In the Java
Package field, enter its package name -- here, enter
oracle.apps.ess.howto. In the Class Name field, enter a name for the
class -- here, enter HelloWorldJob.

f. Click OK.

This creates the Java class you requested, along with the
HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML
file's contents in the Job Definition page.

Building Split Submitting and Hosting Applications

7-28 Developing Applications for Oracle Enterprise Scheduler

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

Figure 7-19 Create a Job Definition

7. In the HelloWorldJobDef.xml Job Definition page, in the Description field, enter
HelloWorld Example.

8. In the System Properties section, click the Add button.

9. In the Add System Property dialog, from the Name dropdown, select
SYS_effectiveApplication.

10. In the Initial Value field, enter EssDemoApp.

11. Click OK.

12. In the Access Control section, click the Add button.

13. In the Add Access Control dialog, from the Role dropdown, ensure that
EssDemoAppRole is selected. This is the role that you created during
Configuring Security for the Back-End Hosting Application.

14. Select the Read and Execute actions as shown in Figure 7-20.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-29

Figure 7-20 Add Access Control Dialog

15. Click OK.

Creating a Java Implementation Class in the Back-End Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Executable interface. The Executable interface specifies the contract
that allows you to use Oracle Enterprise Scheduler to invoke a Java class.

To implement the execute method:

1. In the Application Navigator, locate the class you created by expanding the items in
the projects panel to SuperEss > Application Sources > oracle.apps.ess > howto >
HelloWorldJob.java.

2. Open HelloWorldJob.java in the source editor.

3. In the source editor, add the following code to implement the execute method.
The execute method is where execution for a Java job begins. The code inside
your method should look something like Example 7-4.

Example 7-4 HelloWorldJob Execute Method Code

StringBuilder sb = new StringBuilder(1000);
sb.append("\n==================================");
sb.append("\n= EssDemoApp request is now running");
long myRequestId = ctx.getRequestId();
sb.append("\n= Request Id = " + myRequestId);
sb.append("\n= Request Properties:");
for (String paramKey : params.getNames()) {
 Object paramValue = params.getValue(paramKey);
 sb.append("\n=\t(" + paramKey + ", " + paramValue + ")");
}
sb.append("\n=");
sb.append("\n==================================");
Logger logger = Logger.getLogger("oracle.apps.ess.howto");
logger.info(sb.toString());

Building Split Submitting and Hosting Applications

7-30 Developing Applications for Oracle Enterprise Scheduler

Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following:

• Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

• Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to perform
security checks.

• JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of
security policies are applicable.

To set values for Oracle Enterprise Scheduler properties:

1. In the Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoApp for all three of
the fields provided: Logical Application Name, Application Policy Stripe, and
JPS Interceptor Application Name.

3. Click OK.

Assembling the Back-End Hosting Application for Oracle Enterprise Scheduler

After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

• Create the EJB Java Archive

• Create the application MAR and EAR files

How to Assemble the EJB JAR File for the Back-End Hosting Application

The EJB Java archive file includes descriptors for the Java job implementations.

To create the EJB-JAR deployment profile:

1. In the Application Navigator, in the Projects panel, right-click the SuperEss project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter
JAR_SuperEssEjbJar.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-31

6. Click OK.

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator, expand
to File Groups > Project Output > Contributors.

8. In the Contributors window, select the following check boxes:

• Project Output Directory

• Project Source Path

• Project Dependencies

9. In the navigator, expand to File Groups > Project Output > Filters.

10. In the Filters window, on the Files tab, ensure that the following folders are
selected:

• META-INF (and its contents)

• oracle (and its contents)

11. In the JAR Option window, deselect the Include Manifest File item.

12. Click OK.

13. In the Project Properties dialog, click OK.

How to Assemble the MAR and EAR Files for the Back-End Hosting Application

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the EJB JAR including the Oracle Enterprise
Scheduler Java job implementation.

To update the EAR options:

1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. Select the default MAR file profile, then click Edit.

4. In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
expand to Metadata File Groups > User Metadata then click the Add button to
add a contributor and add this directory: EssDemoApp/SuperEss/essmeta

5. In the Directories window, select the oracle.apps.ess.howto check box, then click
OK.

6. In the Application Properties dialog, on the Deployment window, click New.

7. In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EAR File.

8. In the Name field, enter EAR_EssDemoAppEar.

Click OK.

9. In the Edit EAR Deployment Profile Properties dialog, in the navigation pane,
select General.

Building Split Submitting and Hosting Applications

7-32 Developing Applications for Oracle Enterprise Scheduler

10. In the General window, in the Application Name field, enter EssDemoApp.

11. In the navigation pane, select Application Assembly.

12. In the Application Assembly window, ensure that all check boxes are selected as
shown in Figure 7-21.

Figure 7-21 Edit EAR Deployment Profile Properties

13. In the EAR Options window, select Include Manifest File and add EssDemoApp/
SuperEss/src/META-INF/MANIFEST.MF.

14. Click OK.

15. In the Application Properties dialog, click OK.

Update the SuperEss MANIFEST File

Replace the content of the SuperEss META-INF/MANIFEST.INF file with the
following lines:

Manifest-Version:
1.0

Weblogic-Application-Version: 3.0
Extension-List: essruntime
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

Configure the weblogic-application.xml File

Use the source editor to remove the following lines from weblogic-
application.xml:

<library-ref>
 <library-name>oracle.applcp.runtime</library-name>
</library-ref>

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-33

<library-ref>
 <library-name>oracle.xdo.runtime</library-name>
</library-ref>

Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:

1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

Edit the adf-config.xml File for the EssDemoApp Application

In the Application Resources panel:

1. Expand Descriptors.

2. Expand ADF META-INF.

3. Double-click adf-config.xml.

4. In the source editor, replace the contents of the adf-config.xml file with the
XML shown in Example 7-5.

Example 7-5 adf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:config="http://
xmlns.oracle.com/bc4j/configuration">
 <adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false" authenticationRequire="true"/>
 </adf-security-child>
 <adf-adfm-config xmlns="http://xmlns.oracle.com/adfm/config">
 <defaults changeEventPolicy="ppr"
useBindVarsForViewCriteriaLiterals="true"
useBindValuesInFindByKey="true"/>
 <startup>
 <amconfig-overrides>
 <config:Database jbo.locking.mode="optimistic"/>
 </amconfig-overrides>
 </startup>
 </adf-adfm-config>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/as/ess/core" metadata-store-usage="ess-core"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="ess-core" deploy-target="false"
default-cust-store="false">
 <metadata-store class-

Building Split Submitting and Hosting Applications

7-34 Developing Applications for Oracle Enterprise Scheduler

name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS"/>
 <property name="repository-name" value="mds-ESS_MDS_DS"/>
 <property name="partition-name" value="essapp-internal-partition"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler
In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise
Scheduler APIs to submit job requests from a front-end application. The
EssDemoAppUI application provides a Java servlet for a servlet based user interface
for submitting job requests (using Oracle Enterprise Scheduler).

To create the front-end submitter sample application you do the following:

• Create a front-end application and project.

• Configure the ejb-jar.xml file.

• Create the web project

• Configure security.

• Create the HTTP servlet.

• Edit the web.xml file.

• Edit the weblogic-application.xml file.

• Edit the adf-config file.

• Assemble the application.

• Deploy the application.

Creating the Front-End Submitter Application

You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

To create the front-end submitter application:

1. Complete the steps in Creating the Back-End Hosting Application but this time use
ESSDemoAppUI as the name of the application. When you configure ESS host
support settings, in the Application Id field, be sure to enter EssDemoApp.

Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:

1. Right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Projects and then Custom Project, and
click OK.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-35

3. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you create and
save the Oracle Enterprise Scheduler metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter SuperWeb.

b. On the Project Features tab, under Available, double-click ESS Client
Support, JSP and Servlets, so that both are listed under Selected on the right
side of the dialog box.

For more on ESS Client Support, see Understanding Oracle Enterprise
Scheduler Application Support Created by Oracle JDeveloper.

Click Next.

4. In the Default Package field of the Configure Java settings window, enter
oracle.apps.ess.howto. Click Finish.

5. In the Configure EJB Settings window, under EJB Version, select the Enterprise
JavaBeans 3.0 option button.

6. In the Configure EJB Settings window, under EJB Version 3.x, select the Generate
ejb-jar.xml in this project check box.

Configuring Security for the Front-End Submitter Application

You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application simply shares the users and roles created
by the EssDemoApp application.

To configure security for the front-end submitter application:

1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

3. In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

4. Select HTTP Basic Authentication.

Building Split Submitting and Hosting Applications

7-36 Developing Applications for Oracle Enterprise Scheduler

Figure 7-22 Configure ADF Security

5. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding META-
INF.

Creating the HTTP Servlet for the Front-End Submitter Application

Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:

1. Right-click the SuperEss project and choose New.

2. In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

3. In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDemoAppServlet in the Class field.

4. Change the selection from Annotation to Configuration File(web.xml).

5. Enter oracle.apps.ess.howto in the Package field and click Next.

6. Click Finish.

7. In the source editor, replace the contents of ESSDemoAppServlet.java with the
code in Example 7-6.

Example 7-6 HTTP Servlet Code for the Front-End Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-37

import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;
import oracle.as.scheduler.core.JndiUtil;

public class EssDemoAppServlet extends HttpServlet {
 @SuppressWarnings("compatibility:4685800289380934682")
 private static final long serialVersionUID = 1L;

 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
 private static final String MESSAGE_KEY = "Message";
 private static final String PATH_SUBMIT = "/submitRequest";
 private static final String PATH_ALTER = "/alterRequest";
 private static final String MDO_SEP = ";";
 private static final String ACTION_CANCEL = "Cancel";
 private static final String ESS_UNAVAIL_MSG =
 "<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</
p>";

 private enum PseudoScheduleChoices {
 Immediately(0),
 InTenSeconds(10),
 InTenMinutes(10 * 60);

 @SuppressWarnings("compatibility:-5637079380819677366")
 private static final long serialVersionUID = 1L;

 private int m_seconds;

Building Split Submitting and Hosting Applications

7-38 Developing Applications for Oracle Enterprise Scheduler

 private PseudoScheduleChoices(int seconds) {
 m_seconds = seconds;
 }

 public int getSeconds() {
 return m_seconds;
 }
 }

 public EssDemoAppServlet() throws ServletException {
 super();
 }

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);

 HttpSession session = request.getSession(true);
 String lastMessage = String.valueOf(session.getAttribute(MESSAGE_KEY));

 if ("null".equals(lastMessage)) {
 lastMessage = "";
 }

 try {
 RuntimeLists runtimeLists = getRuntimeLists();
 MetadataLists metadataLists = getMetadataLists();
 renderResponse(metadataLists, runtimeLists,
 request, response, lastMessage);
 } catch (ServletException se) {
 throw se;
 } catch (Exception e) {
 throw new ServletException(e);
 }
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);
 request.setCharacterEncoding("UTF-8");

 HttpSession session = request.getSession(true);
 String pathInfo = request.getPathInfo();

 // Clear the message on every post request
 StringBuilder message = new StringBuilder("");

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-39

 try {
 // Select each handler based on the form action
 if ("".equals(pathInfo)) {
 // No processing
 } else if (PATH_SUBMIT.equals(pathInfo)) {
 postSubmitRequest(request, message);
 } else if (PATH_ALTER.equals(pathInfo)) {
 postAlterRequest(request, message);
 } else {
 message.append(String.format("<p>No handler for pathInfo=%s</p>",
 pathInfo));
 }
 }
 catch (ServletException se) {
 Throwable t = se.getCause();
 String cause = (t == null) ? se.toString() : t.toString();
 message.append (String.format(ESS_UNAVAIL_MSG, cause));
 }

 // Storing the messages in the session allows them to persist
 // through the redirect and across refreshes.
 session.setAttribute(MESSAGE_KEY, message.toString());

 // render the page by redirecting to doGet(); this intentionally
 // strips the actions and post data from the request.
 response.sendRedirect(request.getContextPath() +
 request.getServletPath());
 }

 /**
 * Handle the job submission form.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postSubmitRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String jobDefName = request.getParameter("job");
 String scheduleDefName = request.getParameter("schedule");

 // Various required args for submission
 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 2);

 // Launch the job based on form contents
 if (jobDefName == null || scheduleDefName == null) {
 message.append("Both a job name and a schedule name must be specified
\n");
 } else {
 PseudoScheduleChoices pseudoSchedule = null;

 // See if schedule given is actually a pseudo schedule
 try {
 pseudoSchedule = PseudoScheduleChoices.valueOf(scheduleDefName);
 } catch (IllegalArgumentException e) {
 // The string is not a valid member of the enum
 pseudoSchedule = null;

Building Split Submitting and Hosting Applications

7-40 Developing Applications for Oracle Enterprise Scheduler

 }

 MetadataObjectId scheduleDefId = null;
 String scheduleDefNamePart = null;
 MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName);

 // Don't look up schedules that aren't real
 if (pseudoSchedule != null) {
 scheduleDefNamePart = scheduleDefName;
 start.add(Calendar.SECOND, pseudoSchedule.getSeconds());
 } else {
 scheduleDefId = stringToMetadataObjectId(scheduleDefName);
 scheduleDefNamePart = scheduleDefId.getNamePart();
 }

 String jobDefNamePart = jobDefId.getNamePart();
 String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

 Logger logger = getLogger();
 long requestId = submitRequest(pseudoSchedule, requestDesc,
 jobDefId, scheduleDefId, start,
logger);

 // Populate the message block based on results
 message.append(String.format("<p>New request %d launched using %s</
p>",
 requestId, requestDesc));
 }
 }

 private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
 final String requestDesc,
 final MetadataObjectId jobDefId,
 final MetadataObjectId scheduleDefId,
 final Calendar start,
 final Logger logger)
 throws ServletException
 {
 RuntimeServicePayload<Long> myPayload = new
RuntimeServicePayload<Long>() {
 @Override
 Long execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 RequestParameters params = new RequestParameters();
 return (null != pseudoSchedule)
 ? service.submitRequest(handle, requestDesc, jobDefId,
 start, params)
 : service.submitRequest(handle, requestDesc, jobDefId,
 scheduleDefId, null,
 start, null, params);
 }
 };
 try {
 return performOperation(myPayload, logger);
 } catch (Exception e) {
 throw new ServletException("Error submitting request using job: " +

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-41

 jobDefId + " and schedule: " +
 scheduleDefId, e);
 }
 }

 /**
 * Handle the "Cancel" and "Purge" actions from the form enclosing
 * the Request Status table.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postAlterRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String cancelID = null;

 /*
 * there are a few assumptions going on here...
 * the HTTP button being used to transmit the action and
 * request is backwards from its normal usage (eg. the name
 * should be invariable, and the value variable). Because we
 * want to display either "Purge" or "Cancel" on the button, and
 * transmit the reqId with it, we are reversing the map entry
 * to get the key (which in this case is the reqID), and
 * match it to the value (Purge or Cancel).
 * Assumptions are that there is only one entry in the map
 * per request (one purge or cancel). Also, that the datatypes
 * for the key and value are those documented for
 * ServletRequest (<K,V> = <String, String[]>).
 */
 Map requestMap = request.getParameterMap();
 Iterator mapIter = requestMap.entrySet().iterator();
 while (mapIter.hasNext()) {
 Map.Entry entry = (Map.Entry)mapIter.next();
 String key = (String)entry.getKey();
 String[] values = (String[])entry.getValue();
 if (ACTION_CANCEL.equals(values[0])) {
 cancelID = key;
 }
 }

 if (cancelID != null) {
 try {
 final String cancelId2 = cancelID;
 RuntimeServicePayload<Void> myPayload = new
RuntimeServicePayload<Void>() {
 @Override
 Void execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 service.cancelRequest(handle, Long.valueOf(cancelId2));
 return null;
 }
 };

 Logger logger = getLogger();
 performOperation(myPayload, logger);

Building Split Submitting and Hosting Applications

7-42 Developing Applications for Oracle Enterprise Scheduler

 message.append
 (String.format("<p>Cancelled request %s</p>", cancelID));
 } catch (Exception e) {
 throw new ServletException
 ("Error canceling or purging request", e);
 }
 } else {
 message.append("<p>No purge or cancel action specified</p>");
 }
 }

 private String metadataObjectIdToString(MetadataObjectId mdoID)
 throws ServletException {

 String mdoString =
 mdoID.getType().value() + MDO_SEP + mdoID.getPackagePart() +
 MDO_SEP + mdoID.getNamePart();

 return mdoString;
 }

 private MetadataObjectId stringToMetadataObjectId(String mdoString)
 throws ServletException {
 String[] mdoStringParts = mdoString.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of
components %d found " +
 "when converting %s to
MetadataObjectID",
 mdoStringParts.length,
 mdoString));
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(mdoStringParts[0]);
 String mdPackage = mdoStringParts[1];
 String mdName = mdoStringParts[2];

 MetadataObjectId mdoID =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return mdoID;
 }

 /**
 * this changes the format used in this class for job definitions to the one
 * which is used in the runtime query.
 * @param strMetadataObject
 * @return string representing object in runtime store
 * @throws ServletException
 */
 private String fixMetadataString(String strMetadataObject)
 throws ServletException {
 String fslash = "/";
 String[] mdoStringParts =
 strMetadataObject.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of
components %d found " +
 "when converting %s to
MetadataObjectID",
 mdoStringParts.length,

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-43

 strMetadataObject));
 }
 String[] trimStringParts = new String[mdoStringParts.length];
 for (int i = 0; i < mdoStringParts.length; i++) {
 String mdoStringPart = mdoStringParts[i];
 trimStringParts[i] = mdoStringPart.replaceAll(fslash, " ").trim();
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(trimStringParts[0]);
 String mdPackage = fslash + trimStringParts[1];
 String mdName = trimStringParts[2];
 MetadataObjectId metadataObjId =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return metadataObjId.toString();
 }

 private Set<String> getSetFromMetadataEnum(Enumeration<MetadataObjectId>
enumMetadata)
 throws ServletException {
 Set<String> stringSet = new HashSet<String>();

 while (enumMetadata.hasMoreElements()) {
 MetadataObjectId objId = enumMetadata.nextElement();
 String strNamePart = objId.getNamePart();
 stringSet.add(strNamePart);
 }
 return stringSet;
 }

 //
**
 //
 // HTML Rendering Methods
 //
 //
**

 /**
 * Rendering code for the page displayed.
 * In a real application this would be done using JSP, but this approach
 * keeps everything in one file to make the example easier to follow.
 * @param response The response object from the main request.
 * @param message Text that appears in the message panel, may contain HTML
 * @throws IOException
 */
 private void renderResponse(MetadataLists ml,
 RuntimeLists rl,
 HttpServletRequest request,
 HttpServletResponse response,
 String message)
 throws IOException, ServletException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 String urlBase = request.getContextPath() + request.getServletPath();

 // Indents maintained for clarity
 out.println("<html>");
 out.println("<head><title>EssDemo</title></head>");

Building Split Submitting and Hosting Applications

7-44 Developing Applications for Oracle Enterprise Scheduler

 out.println("<body>");
 out.println("<table align=\"center\"><tbody>");
 out.println(" <tr><td align=\"center\"><h1>Oracle Enterprise Scheduler
Tutorial</h1></td></tr>");
 out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

 // Job launch form
 out.println(" <td align=\"center\">");
 out.println(" <h2>Launch Job</h2>");
 renderLaunchJobForm(ml, out, urlBase);
 out.println(" </td>");

 out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

 out.println(" </tr></table></td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Message panel
 out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></
tr>");
 out.println(" <tr><td>");
 out.println(message);
 out.println(" </td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Request status
 out.println(" <tr><td align=\"center\">");
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_ALTER + "\" method=\"post\">");
 out.println(" <h2>Request Status</h2>");
 out.println(" <table border=2><tbody>");
 out.println(" <th>reqID</th>");
 out.println(" <th>Description</th>");
 out.println(" <th>Scheduled time</th>");
 out.println(" <th>State</th>");
 out.println(" <th>Action</th>");

 renderStatusTable(out, rl.requestDetails);

 out.println(" </tbody></table>");
 out.println(" </form>");
 out.println(" </td></tr>");
 out.println("</tbody></table>");
 out.println("</body></html>");
 out.close();
 }

 private void renderLaunchJobForm(MetadataLists ml, PrintWriter out, String
urlBase)
 throws ServletException {
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_SUBMIT + "\" method=\"post\">");
 out.println(" <table><tbody>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Job:");
 out.println(" <select name=\"job\">");

 renderMetadataChoices(out, ml.jobDefList, false);
 renderMetadataChoices(out, ml.jobSetList, false);

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-45

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Schedule:");
 out.println(" <select name=\"schedule\">");

 renderPseudoScheduleChoices(out);
 renderMetadataChoices(out, ml.scheduleList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"center\">");
 out.println(" <input name=\"submit\" value=\"Submit\" type=
\"submit\">");
 out.println(" </td></tr>");
 out.println(" </tbody></table>");
 out.println(" </form>");
 }

 /**
 *
 * @param out - printwriter
 * @param jobChoices -- metadata to be displayed
 * @param bBlankFirst -- blank first (so that this param is not required)
 * @throws ServletException
 */
 private void renderMetadataChoices(PrintWriter out,
 Enumeration<MetadataObjectId> jobChoices,
 boolean bBlankFirst)
 throws ServletException
 {
 if (jobChoices == null)
 return;

 boolean bFirst = true;
 while (jobChoices.hasMoreElements()) {
 MetadataObjectId job = jobChoices.nextElement();
 String strJob = metadataObjectIdToString(job);
 String strNamePart = job.getNamePart();
 if (strNamePart.compareTo("BatchPurgeJob") == 0) {
 continue;
 } else {
 if (bFirst && bBlankFirst) {
 out.printf("<option value=\"%s\">%s</option>", "", "");
 bFirst = false;
 }
 out.printf("<option value=\"%s\">%s</option>", strJob,
 strNamePart);
 }
 }
 }

 /**
 * helper method for rendering choices based on strings, adding an empty
 * string to the beginning of the list
 * @param out
 * @param choices
 */
 private void renderStringChoices(PrintWriter out, Set<String> choices) {
 if (choices == null)

Building Split Submitting and Hosting Applications

7-46 Developing Applications for Oracle Enterprise Scheduler

 return;

 choices.add("");
 SortedSet<String> sorted = new TreeSet<String>(choices);
 Iterator choiceIter = sorted.iterator();
 while (choiceIter.hasNext()) {
 String choice = (String)choiceIter.next();

 out.printf("<option value=\"%s\">%s</option>", choice, choice);
 }
 }

 private void renderPseudoScheduleChoices(PrintWriter out) {
 for (PseudoScheduleChoices c : PseudoScheduleChoices.values()) {
 out.printf("<option value=\"%s\">%s</option>", c, c);
 }
 }

 private void renderStatusTable
 (PrintWriter out, List<RequestDetail> reqDetails)
 {
 if (reqDetails == null) {
 return;
 }

 for (RequestDetail reqDetail : reqDetails) {
 State state = reqDetail.getState();

 Calendar scheduledTime = reqDetail.getScheduledTime();
 String scheduledTimeString = null;

 if (scheduledTime == null) {
 scheduledTimeString = "null scheduled time";
 } else {
 scheduledTimeString = String.valueOf(scheduledTime.getTime());
 }

 final String actionButton;
 if (!state.isTerminal()) {
 String action = ACTION_CANCEL;
 String reqId = String.valueOf(reqDetail.getRequestId());
 actionButton = String.format
 ("<button type=submit value=%s name=\"%s\">%s</button>",
 action, reqId, action);
 } else {
 actionButton = " ";
 }

 out.printf("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</
td></tr>\n",
 reqDetail.getRequestId(), reqDetail.getDescription(),
 scheduledTimeString, state, actionButton);
 }
 }

 private MetadataService getMetadataService() throws Exception {
 return JndiUtil.getMetadataServiceEJB();
 }

 private RuntimeService getRuntimeService() throws Exception {

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-47

 return JndiUtil.getRuntimeServiceEJB();
 }

 private abstract class Payload<SERVICE, HANDLE, RETURN> {
 abstract SERVICE getService() throws Exception;
 abstract HANDLE getHandle(SERVICE service) throws Exception;
 abstract void closeHandle(SERVICE service,
 HANDLE handle,
 boolean abort)
 throws Exception;
 abstract RETURN execute(SERVICE service, HANDLE handle, Logger logger)
 throws Exception;
 }

 private abstract class MetadataServicePayload<T>
 extends Payload<MetadataService, MetadataServiceHandle, T>
 {
 @Override
 MetadataService getService() throws Exception {
 return getMetadataService();
 }

 @Override
 MetadataServiceHandle getHandle(MetadataService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(MetadataService service,
 MetadataServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private abstract class RuntimeServicePayload<T>
 extends Payload<RuntimeService, RuntimeServiceHandle, T>
 {
 @Override
 RuntimeService getService() throws Exception {
 return getRuntimeService();
 }

 @Override
 RuntimeServiceHandle getHandle(RuntimeService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(RuntimeService service,
 RuntimeServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);

Building Split Submitting and Hosting Applications

7-48 Developing Applications for Oracle Enterprise Scheduler

 }
 }

 private <S, H, R> R performOperation
 (Payload<S, H, R> payload, Logger logger)
 throws Exception
 {
 S service = payload.getService();
 H handle = payload.getHandle(service);

 Exception origException = null;
 try {
 return payload.execute(service, handle, logger);
 } catch (Exception e2) {
 origException = e2;
 throw e2;
 } finally {
 if (null != handle) {
 try {
 boolean abort = (null != origException);
 payload.closeHandle(service, handle, abort);
 } catch (Exception e2) {
 if (null != origException) {
 logger.log(Level.WARNING, "An error occurred while " +
 "closing handle, however, a previous failure was " +
 "detected. The following error will be logged " +
 "but not reported: " + stackTraceToString(e2));
 }
 }
 }
 }
 }

 private final String stackTraceToString(Exception e) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 e.printStackTrace(pw);
 pw.flush();
 pw.close();
 return sw.toString();
 }

 private Logger getLogger() {
 return Logger.getLogger(this.getClass().getName());
 }

 private class MetadataLists {
 private final Enumeration<MetadataObjectId> jobDefList;
 private final Enumeration<MetadataObjectId> jobSetList;
 private final Enumeration<MetadataObjectId> scheduleList;
 private final Enumeration<MetadataObjectId> jobTypeList;

 private MetadataLists(Enumeration<MetadataObjectId> jobDefList,
 Enumeration<MetadataObjectId> jobSetList,
 Enumeration<MetadataObjectId> scheduleList,
 Enumeration<MetadataObjectId> jobTypeList)
 {
 this.jobDefList = jobDefList;
 this.jobSetList = jobSetList;
 this.scheduleList = scheduleList;
 this.jobTypeList = jobTypeList;

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-49

 }
 }

 private class RuntimeLists {
 private final List<RequestDetail> requestDetails;
 private final Set<String> applicationChoices;
 private final Set<String> stateChoices;
 private final Set<MetadataObjectId> jobDefMDOChoices;

 private RuntimeLists(List<RequestDetail> requestDetails,
 Set<String> applicationChoices,
 Set<String> stateChoices,
 Set<MetadataObjectId> jobDefMDOChoices)
 {
 super();
 this.requestDetails = requestDetails;
 this.applicationChoices = applicationChoices;
 this.stateChoices = stateChoices;
 this.jobDefMDOChoices = jobDefMDOChoices;
 }
 }

 /**
 * Retrieve lists of jobs, schedules, and status for use by the renderer
 * @throws ServletException
 */
 private MetadataLists getMetadataLists() throws Exception {
 Logger logger = getLogger();

 MetadataServicePayload<MetadataLists> myPayload =
 new MetadataServicePayload<MetadataLists>()
 {
 @Override
 MetadataLists execute(MetadataService service,
 MetadataServiceHandle handle,
 Logger logger)
 throws Exception
 {
 Enumeration<MetadataObjectId> jobDefs =
 service.queryJobDefinitions(handle, null, QueryField.NAME,
true);
 Enumeration<MetadataObjectId> jobSets =
 service.queryJobSets(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> schedules =
 service.querySchedules(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobTypes =
 service.queryJobTypes(handle, null, QueryField.NAME, true);

 return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
 }
 };
 MetadataLists ml = performOperation(myPayload, logger);
 return ml;
 }

 private RuntimeLists getRuntimeLists() throws Exception {
 Logger logger = getLogger();

 RuntimeServicePayload<List<RequestDetail>> myPayload2 =
 new RuntimeServicePayload<List<RequestDetail>>()
 {

Building Split Submitting and Hosting Applications

7-50 Developing Applications for Oracle Enterprise Scheduler

 @Override
 List<RequestDetail> execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 List<RequestDetail> reqDetails =
 new ArrayList<RequestDetail>(10);
 Enumeration requestIds = service.queryRequests
 (handle, null, RuntimeService.QueryField.REQUESTID, true);

 while (requestIds.hasMoreElements()) {
 Long reqId = (Long)requestIds.nextElement();
 RequestDetail detail = service.getRequestDetail(handle,
reqId);
 reqDetails.add(detail);
 }

 return reqDetails;
 }
 };
 List<RequestDetail> reqDetails = performOperation(myPayload2, logger);
 RuntimeLists rl = getRuntimeLists(reqDetails);
 return rl;
 }

 private RuntimeLists getRuntimeLists(List<RequestDetail> reqDetails) {
 Set<String> applicationSet = new HashSet<String>(10);
 Set<String> stateSet = new HashSet<String>(10);
 Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

 if (reqDetails != null) {
 ListIterator detailIter = reqDetails.listIterator();
 while (detailIter.hasNext()) {
 RequestDetail detail = (RequestDetail)detailIter.next();
 applicationSet.add(detail.getDeployedApplication());
 State state = detail.getState();
 if (state.isTerminal())
 stateSet.add(state.name());
 jobDefMOSet.add(detail.getJobDefn());
 }
 }

 RuntimeLists rl = new RuntimeLists
 (reqDetails, applicationSet, stateSet, jobDefMOSet);
 return rl;
 }

}

Editing the web.xml File for the Front-End Submitter Application

You need to edit the web.xml file to and Oracle Enterprise Scheduler metadata and
runtime EJB references.

To edit the web.xml file for the front-end submitter application:

1. In the Application Navigator, expand SuperWeb, expand Web Content, expand
WEB-INF and double-click web.xml.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-51

2. In the overview editor, click the References navigation tab and expand the EJB
References section.

3. Add two EJB resources with the information shown in Table 7-1.

Table 7-1 EJB Resources for the Front-End Submitter Application

EJB Name Interface
Type

EJB
Type

Local/Remote Interface

ess/
metadata

Local Session oracle.as.scheduler.MetadataServiceL
ocal

ess/runtime Local Session oracle.as.scheduler.RuntimeServiceLo
cal

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

Editing the weblogic-application.xml file for the Front-End Submitter Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:

1. In Application Navigator, right-click the SuperEss project and select New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.

4. Click Next, click Next again, and click Finish.

5. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 7-7.

Example 7-7 Contents to Copy to weblogic-application.xml for a Front-End
Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/
weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-
application">

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it uses the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoAppUI</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe

Building Split Submitting and Hosting Applications

7-52 Developing Applications for Oracle Enterprise Scheduler

 -->
 <listener>
 <listener-
class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener</
listener-class>
 </listener>

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-
class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduler to configure itself
 -->
 <listener>
 <listener-
class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleListener</
listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduler classes
 -->
 <library-ref>
 <library-name>oracle.ess.client</library-name>
 </library-ref>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

Editing the adf-config file for the Front-End Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:

1. From the Application Resources panel, expand Descriptors, expand ADF META-
INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf-config.xml file with the
XML shown in Example 7-8.

Example 7-8 Contents to Copy to adf-config.xml for a Front-End Submitter
Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false"
 authenticationRequire="true"/>
 </adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-53

 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="ess_shared_metadata"
path="/oracle/apps/ess/howto"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage default-cust-store="false" deploy-target="false"
id="ess_shared_metadata"/>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Assembling the Front-End Submitter Application for Oracle Enterprise Scheduler

After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

• Create the EJB Java Archive

• Create the WAR file

• Create the application MAR and EAR files

How to Assemble the EJB JAR File for the Front-End Submitter Application

The EJB Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:

1. In Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

4. On the Edit EJB JAR Deployment Profile Properties dialog, click OK.

5. Delete the other JAR profiles created by default. Only include EJB and WAR.

6. On the Project Properties dialog, click OK.

How to Assemble the WAR File for the Front-End Submitter Application

You need to create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application

1. In Application Navigator, right-click the SuperWeb project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_SuperWebWar.

4. On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

Building Split Submitting and Hosting Applications

7-54 Developing Applications for Oracle Enterprise Scheduler

5. Click OK.

6. On the Project Properties dialog, click OK.

How to Assemble the MAR and EAR Files for the Front-End Hosting Application

The sample application must contain the MAR profile and the EAR file that assembles
the EssDemoApp back-end application.

To create the MAR and EAR files for the front-end submitter application:

1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and click
New.

3. In the Create Deployment Profile dialog, select MAR File from the Profile Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppUIMar and click OK.

5. Click OK.

6. In the Deployment page of the Application Properties dialog, click New.

7. In the Create Deployment Profile dialog, select EAR File from the Profile Type
dropdown list.

8. In the Name field, enter EAR_EssDemoAppUIEar and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUI in the Application Name field.

10. Click the Application Assembly navigation tab, then select
MAR_ESSDemoAppUIMar and select JAR_SuperEssEjbJar.

11. Click OK.

12. In the Application Properties dialog, click OK.

Add ADF Libraries

Navigate to the Project Properties > Libraries and Classpath window. Use the Add
Library button to add the following libraries:

• ADF Common Runtime

• ADF Faces Runtime11

• ADF Common Web Runtime

• ADF Page FlowRuntime

• ADF Controller Schema

• ADF Controller Runtime

Set Oracle Enterprise Scheduler Properties for the Application

The following steps describe how to set values for Oracle Enterprise Scheduler
properties:

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-55

1. In the Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoAppUI as the value
for all three of the following fields:

• Logical Application Name

• Application Policy Stripe

• JPS Interceptor Application Name

3. Click OK.

Configure the weblogic-application.xml File

Use the source editor to remove the following lines from weblogic-
application.xml:

<library-ref
 <library-name>oracle.xdo.runtime</library-name>
</library-ref>
<library-ref>
 <library-name>oracle.applcp.runtime</library-name>
</library-ref>

Deploying the Front-End Submitter Application

After assembling the application, you can deploy it to the server.

To deploy the front-end submitter application:

1. From the main menu, choose Application > Deploy > EAR_EssDemoUIEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the /
oracle/apps/ess/howto name space. Change its partition to the partition used
when deploying EssDemoApp. If you used the default value, this should be
EssDemoApp_V2.0.

Building Split Submitting and Hosting Applications

7-56 Developing Applications for Oracle Enterprise Scheduler

Figure 7-23 Oracle Deployment Configuration Window

4. Click OK.

Update the EssHost MANIFEST File

Replace the contents of the EssHost META-INF/MANIFEST.INF file with the
following lines:

Manifest-Version:1.0 Weblogic-Application-Version: 3.0
Extension-List: essruntime
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

Running the Split Application

To run the split application:

1. Enter the following URL in a browser:

http://host:http-port:/ESSDemoAppUI/essdemoappservlet

For example,

http://myserver.example.com:7101/EssDemoAppUI/essdemoappservlet

2. Log in as EssDemoAppUser with the password welcome1.

3. Follow the same steps as in the combined application.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-57

Building Split Submitting and Hosting Applications

7-58 Developing Applications for Oracle Enterprise Scheduler

8
Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service to
create, update and manage schedules, job definitions, and other Oracle Enterprise
Scheduler metadata to a metadata store. You can also use the Metadata Service query
methods to list objects stored in the metadata repository.

This chapter includes the following sections:

• Introduction to Using the Metadata Service

• Accessing the Metadata Service

• Accessing the Metadata Service with Oracle JDeveloper

• Querying Metadata Using the Metadata Service

For information about how to create job definitions, see the following chapter:
Creating and Using PL/SQL Jobs , and Creating and Using Process Jobs .

Introduction to Using the Metadata Service
Oracle Enterprise Scheduler provides the Metadata Service and exposes it to your
application program as a Stateless Session Enterprise Java Bean (EJB). The Metadata
Service allows you to create, update and manage application-level metadata objects.
The Metadata Service uses Oracle Metadata Services (MDS) to save metadata objects
to a repository (the repository can be either database based or file based). The
Metadata Service allows you to reuse application-level metadata across multiple job
request submissions.

Oracle Enterprise Scheduler metadata objects include the following:

• Application Level Metadata: You use the Metadata Service to store job type, job
definition, job set, and other application-level metadata object definitions for job
requests.

• Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle
Enterprise Scheduler metadata includes administrative objects such as schedules,
workshifts and work assignments. Oracle Enterprise Scheduler provides
MetadataServiceMXBean and the MetadataServiceMXBeanProxy to access
and store default administrative objects

Note:

Oracle Enterprise Scheduler metadata objects are used both in application-
level metadata and in global metadata

Using the Metadata Service 8-1

Access to application level-metadata objects is exposed only with the
MetadataService interface. The MetadataService is exposed as a stateless
session EJB. External clients must access the service only through the corresponding
EJB. Clients should not interact with the internal API layer directly. When an
application client uses the metadata service through the stateless session EJB, all the
methods in this interface accept a reference to a MetadataServiceHandle argument,
which stores state across multiple calls, for example when multiple methods are to be
called within a user transaction. The MBeanProxy interface does not require a handle.

In an Oracle Enterprise Scheduler application you do not need to access or manipulate
the MetadataServiceHandle. The application must hold on to the reference created by
the open method and pass it in methods being called. Finally the handle must
explicitly be closed by calling the close method. Only upon calling the close method
are any changes made using a given handle be committed (or aborted).

Metadata object names must be unique within the scope of a given package or name
space. Within a given package, two metadata objects with the same name and of the
same type cannot be created.

Introduction to Metadata Service Name Spaces
Each Oracle WebLogic Server domain generally includes one metadata repository. A
metadata repository is divided into a number of partitions, where each partition is
independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose
to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is organized
hierarchically like the file system of an operating system. Where a file system uses
folders or directories, the Metadata Service uses name spaces or package names which
form a unique name used to locate a file.

For all other Oracle Enterprise Scheduler applications, the application name and an
optional package name containing the application-level metadata displays under the
name space /oracle/apps/ess. For example, the metadata repository for an
application named application1 can be divided into packages with the names dev,
test, and production.

The metadata repository for this application has the following structure:

/oracle/apps/ess/application1/dev/metadata
/oracle/apps/ess/application1/test/metadata
/oracle/apps/ess/application1/production/metadata

Each Metadata Service method that creates a metadata object takes a required
packageName argument that specifies the package part of the directory structure.

Introduction to Metadata Service Operations
After you access an Oracle Enterprise Scheduler metadata repository you can perform
different types of Metadata Service operations, including:

• Add, Update, Delete: These operations have transactional characteristics.

• Copy: These operations have transactional characteristics.

• Query: These operations have read-only characteristics and let you list metadata
objects in the metadata repository.

Introduction to Using the Metadata Service

8-2 Developing Applications for Oracle Enterprise Scheduler

• Get: These operations have either read-only or transactional characteristics,
depending on the value of the forUpdate flag.

Introduction to Metadata Service Transactions
Because clients access the Metadata Service through a Stateless Session EJB, each
method uses a reference to a MetadataServiceHandle argument; this argument
stores state for Metadata Service operations. The Metadata Service open() method
begins each metadata repository user transaction. In an Oracle Enterprise Scheduler
application client you obtain a MetadataServiceHandle reference with the open()
method and you pass the reference to subsequent Metadata Service methods. The
MetadataServiceHandle reference provides a connection to the metadata
repository for the calling application.

In a client application that uses the Metadata Service you must explicitly close a
Metadata Service transaction by calling close(). This ends the transaction and
causes the transaction to be committed or rolled back (undone). The close() not only
controls the transactional behavior within the Metadata Service, but it also allows
Oracle Enterprise Scheduler to release certain resources. Thus, the close() is also
required for Metadata Service read-only query() and get() operations.

Note:

The Metadata Service does not support JTA global transactions, but you can
still make Metadata Service calls in the boundary of your transactions. While
you can make Metadata Service calls in bean/container managed transactions,
the calls are not part of your transaction.

Accessing the Metadata Service
There are several ways to access the Metadata Service, including:

• Stateless Session EJB access: Use this type of access with Oracle Enterprise
Scheduler user applications.

• MBean access: This access is intended for use by applications that perform
administrative functions using the oracle.as.scheduler.management APIs.

• MBean proxy access: This access is intended for use by applications that perform
administrative functions using the oracle.as.scheduler.management APIs.
Use the MBean proxy if the administrative client is remote to the Oracle Enterprise
Scheduler.

How to Access the Metadata Service with a Stateless Session EJB
User applications use a Stateless Session EJB to access the Metadata Service for
application level metadata operations. Using JNDI you can lookup the Metadata
Service associated with an Oracle Enterprise Scheduler application.

Example 8-1 shows the JNDI lookup for the Oracle Enterprise Scheduler Metadata
Service that allows you to use application level metadata. Note that the
getMetadataServiceEJB() method looks up the metadata service using the name
"ess/metadata". By convention, Oracle Enterprise Scheduler applications use "ess/
metadata" for the EJB reference to the MetadataServiceBean.

Accessing the Metadata Service

Using the Metadata Service 8-3

Example 8-1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

// Demonstration on how to lookup metadata service from a Java EE application
// JNDI lookup on the metadata service EJB

import oracle.as.scheduler.core.JndiUtil;

MetadataService ms = JndiUtil.getMetadataServiceEJB();

Accessing the Metadata Service with Oracle JDeveloper
Using Oracle JDeveloper at design time you can create, view, and update application
level metadata objects.

Querying Metadata Using the Metadata Service
The Metadata Service query methods let you view objects in the metadata repository.
You can query job types with the queryJobTypes() method, query job definitions
with queryJobDefinitions() method, and likewise you can query other metadata
objects using the corresponding MetadataService query method.

Associated with a query you can use a filter to restrict the output to obtain only items
of interest (in a manner similar to using a SQL WHERE clause).

How to Create a Filter
A filter specifies a comparison or a criteria for a query. You create a filter by creating a
comparison that includes a field argument (String), a comparator, and an
associated value (Object). In a filter, you can use the filter methods to combine
comparisons to form filter expressions.

Table 8-1 lists the comparison operators (comparator argument).

Table 8-1 Filter Comparison Operators

Comparison Operator Description

CONTAINS Field contains the specified value

ENDS_WITH Field ends with the specified value

EQUALS Field equals the specified value

GREATER_THAN Field is greater than the specified value

GREATER_THAN_EQUALS Field is greater than or equal to the specified value

LESS_THAN Field is less than the specified value

LESS_THAN_EQUALS Field is less than or equal to the specified value

NOT_CONTAINS Field does not contain the specified value

NOT_EQUALS Field does not equal the specified value

STARTS_WITH Field starts with the specified value

Example 8-2 shows code that creates a new filter.

Accessing the Metadata Service with Oracle JDeveloper

8-4 Developing Applications for Oracle Enterprise Scheduler

Table 8-2 MetadataService Query Fields

Query Field Description

MetadataService.QueryField.PACKAGE The name of the package.

MetadataService.QueryField.NAME The job definition name.

MetadataService.QueryField.JOBTYPE The job type associated with the job definition.

MetadataService.QueryField.EXECUTIONTYPE The type of job execution, synchronous or
asynchronous.

MetadataService.QueryField.REQUEST_CATEGORY The name of the request category.

MetadataService.QueryField.EXECUTIONMODE The mode of job set execution, parallel or
serial.

MetadataService.QueryField.FIRSTSTEP The first step in a job set.

MetadataService.QueryField.ACTIVE Indicates whether a work assignment is active.

MetadataService.QueryField.PRODUCT Indicates the name of the product with which
the job is associated.

MetadataService.QueryField.EFFECTIVEAPPLICATION The name of the hosting application wherein
this job should run.

MetadataService.QueryField.LOGICAL_CLUSTER_NAME The logical cluster associated with the job.

Example 8-2 Creating a Filter with a Filter Comparator for a Query

Filter filter =
 new Filter(MetadataService.QueryField.PACKAGE.fieldName(),
 Filter.Comparator.NOT_EQUALS, null);

How to Query Metadata Objects
A MetadataService query returns an enumeration list of MetadataObjectIDs of
the form:

java.util.Enumeration<MetadataObjectId>

Example 8-3 shows a sample routine that queries for a list of job types in the metadata.

Example 8-3, shows the following important steps for using the queryJobTypes()
method:

• You need to supply a reference to a metadata repository by obtaining an instance of
MetadataServiceHandle.

• You need to create a filter for the query. The filter contains the fields, comparators,
and values to search for.

• You determine the field to sort by in the query using the orderBy argument, or
you set the orderBy argument to null to indicate that no specific ordering is
applied.

• You set the ascending argument for the query. When ordering is applied setting
the ascending argument to true indicates ascending order or false indicates
descending order for the result list.

Querying Metadata Using the Metadata Service

Using the Metadata Service 8-5

Example 8-3 Using Metadata Service Query Methods

Enumeration<MetadataObjectId> qryResults
 = m_service.queryJobTypes(handle, filter, null, false);

Querying Metadata Using the Metadata Service

8-6 Developing Applications for Oracle Enterprise Scheduler

9
Using Parameters and System Properties

This chapter describes how you can define parameters and values in the Oracle
Enterprise Scheduler metadata and runtime services you submit with a job request. A
given parameter may represent a value for an Oracle Enterprise Scheduler system
property or a value for an application defined property.

This chapter includes the following sections:

• Introduction to Using Parameters and System Properties

• Using Parameters with the Metadata Service

• Using Parameters with the Runtime Service

• Using System Properties

Introduction to Using Parameters and System Properties
You can define Oracle Enterprise Scheduler parameters as follows:

• In metadata associated with a job definition, a job type, or a job set.

• In the request parameters when a job request is submitted. A request parameter can
override a parameter specified in metadata or can specify a value for a parameter
not previously defined in the metadata associated with a job request (subject to
certain constraints). You can also add new parameters or update parameter values
(subject to certain constraints) after a job request has been submitted.

Oracle Enterprise Scheduler system properties are parameters with names that Oracle
Enterprise Scheduler reserves. For some system properties Oracle Enterprise
Scheduler also defines the values or provides a default value if you do not specify a
value. For more information on the Oracle Enterprise Scheduler system properties, see
Using System Properties.

What You Need to Know About Application Defined Property and System Property
Naming

Oracle Enterprise Scheduler application defined and system properties are case
sensitive. For example the application defined property name USER_PARA and
user_para represent different parameters in Oracle Enterprise Scheduler.

When you use application defined properties, note that Oracle Enterprise Scheduler
reserves the names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler-defined system properties. Thus, you should not use application defined
properties with names that start with "SYS_" (case-insensitive).

Using Parameters and System Properties 9-1

What You Need to Know About Parameter Conflict Resolution and Parameter
Materialization

When submitting a job request, Oracle Enterprise Scheduler combines parameters
specified in the job metadata with any submission parameters to form the runtime
request parameters. The runtime parameters are saved to the database runtime store
and used for subsequent processing of the request. The metadata parameters are
obtained from the job definition, job type, and if applicable, the job set as they are
defined in the metadata repository at the time of submission. Any subsequent changes
to the metadata is normally not seen or used as the request is processed. Oracle
Enterprise Scheduler resolves parameter conflicts for parameters with the same name
associated with the job metadata or the submit parameters.

A parameter conflict can occur in the following cases:

• A parameter is defined repeatedly with different values. For example if the
SystemProperty.PRIORITY property is set with different values in the job type
and in the job definition associated with a request.

• A parameter is defined repeatedly and at least one definition is specified as read-
only with the ParameterInfo readonly flag set to true.

To resolve conflicts with parameters, Oracle Enterprise Scheduler uses one of the
following conflict resolution models and the parameter value inheritance hierarchy
shown in Table 9-1:

• Last definition wins: used when the same parameter is defined repeatedly with the
readonly flag set to false in all cases. In the last definition wins model, conflicts
are resolved according to the precedence rules where the highest level wins (last
definition). For example a property specified at the job request level wins over the
same property specified at the job definition level.

• First read-only definition wins: used when the same parameter is defined repeatedly
and at least one definition is read-only (the ParameterInfo readonly flag is set
to true.) In the first read-only definition wins model, parameter conflicts are resolved
according to the precedence rules shown in Table 9-1, lowest level wins. For
example a readonly parameter specified at the job type definition level wins over
the same property specified at the job definition level, read-only or not.

Table 9-1 Parameter Precedence Levels

Object Level

JobType 1 - Lowest Level

JobDefinition 2

Job set step 3

job set 4

Job request (using
RequestParameters passed to
submitRequest())

5 - Highest Level

Introduction to Using Parameters and System Properties

9-2 Developing Applications for Oracle Enterprise Scheduler

What You Need to Know About Job Definition Parameter Materialization

Figure 9-1 illustrates the order of precedence taken by parameters defined in various
components.

Figure 9-1 Parameter Precedence

Job definition request

Job Type

Request Parameters

Job set request

Job Set Step

Job Set (top-level)Job Definition

In the case of a job request, the parameters defined by the job type take first
precedence, followed by the parameters defined in the job definition. The parameters
submitted with the job request take final precedence. In the case of a job set request,
the parameters defined in the job set take first precedence, followed by the parameters
defined by the job request run as a child of the job set.

What You Need to Know About Job Set Level Parameter Materialization

When the job set step parameters are materialized, if the job set defines any of the
following system properties as read-only, and those properties are defined in the
definition of the topmost job set, that is the job set of the absolute parent, the job set
values override the values set at the job set step level. This causes every definition, job
definition, or job set definition that runs in the context of a specific job set to run with
the same values.

PRIORITY

REQUEST_EXPIRATION

RETRIES, only if the step definition value is > 0

There is an exception for RETRIES because a value of 0 may mean that the job is not
capable of being restarted. So if a step is defined with RETRIES = 0, it is not
overridden, but if the step has RETRIES > 0, it is overridden with the job set value.

Properties for a job set step request are materialized during the processing of a job set
when the step is reached. Properties for a job step request are materialized in the
following order.

1. Job type and job definition (if the step is a job definition) or job set (if the step is a
job set).

2. Job set step.

3. Parent request properties and system properties (parent is step's parent job set).

4. Scoped request properties.

Example 9-2 illustrates the parameter precedence for job set steps.

Introduction to Using Parameters and System Properties

Using Parameters and System Properties 9-3

Figure 9-2 Parameter Precedence for Job Set Steps

When job sets include steps that are job sets, this is a nested job set. For a nested job
set, the precedence shown in Table 9-1 applies. When a nested job set is reached,
Oracle Enterprise Scheduler applies the parameters of the parent request and the
parameters of the parent request follow the same precedence. The effect is that
parameters of the parent request, job set and job set step are inherited by nested job
sets.

Using Parameters with the Metadata Service
Oracle Enterprise Scheduler metadata includes parameters that you can associate with
a metadata object. The parameters can include both application defined properties and
system properties for a given definition (metadata object). An instance of the
ParameterList class declares the parameters for a given job definition, job type or
job set. To set parameters for a given job definition, job type, or job set definition, you
can use a ParameterList object with the setParameters() method for the
metadata object or you can use the constructor and supply a ParameterList. To
supply parameter information in a parameter list, each ParameterList object
includes ParameterInfo objects that represent parameters, such that each parameter
is defined with properties as shown in Table 9-2.

Table 9-2 ParameterInfo Parameter Properties

Parameter Property Description

Name Specifies the parameter name.

Value Specifies the parameter value.

Using Parameters with the Metadata Service

9-4 Developing Applications for Oracle Enterprise Scheduler

Parameter Property Description

Readonly This boolean flag can be set for each parameter. This flag indicates
whether the parameter is read-only.

When true, subsequent objects in the parameter precedence hierarchy,
such as request submission parameter, cannot change the parameter
value. Typically a read-only parameter has a default value that cannot
be changed by subsequent objects.

Note that the value of a read-only parameter can be changed in the
object itself where this parameter is defined. For example if this
parameter is defined in a job type as a read-only parameter, its value
can be changed in the job type definition itself, but a job definition that
uses the job type or a request submission parameter cannot override
the value, subject to the conflict resolution rules specified for parameter
values. For more information, see What You Need to Know About
Parameter Conflict Resolution and Parameter Materialization.

Legacy A boolean that specifies that a parameter should be visible when used
in a GUI.

DataType Values can only be one of the supported types, including: Boolean,
Integer, Long, String, and DATETIME that represents a date as a
java.util.Calendar object.

You can set parameters at different levels appropriate to parameter precedence rules
for a job request. For example, you can set parameters that apply for a job type, a job
definition, a job set, a job set step, or a request submission parameter. For information
about the precedence rules, see What You Need to Know About Parameter Conflict
Resolution and Parameter Materialization.

How to Use Parameters and System Properties in Metadata Objects
Example 9-1 shows code that uses a ParameterList to set parameter and system
property values in a metadata object.

Example 9-1, shows the following important steps for using parameters with a
metadata object:

• You need a reference to a metadata service handle to create the metadata object
where you want to add parameters.

• You need to use the ParameterList add() method to add parameter
information.

• You can use a SystemProperty as the name for a parameter to specify a value for
a system property.

• You can specify an application defined property by using a name that you define
with the parameter information in a ParameterList.

• You need to use a metadata object setParameters() method to apply the
parameters specified in the ParameterList to the metadata object. In this case,
use the job definition setParameters() method.

Example 9-1 Adding Parameters and System Properties in a Metadata Object

String name = "JobDescription_name";
MetadataObjectId jobtype;
.

Using Parameters with the Metadata Service

Using Parameters and System Properties 9-5

.

.
JobDefinition jd = new JobDefinition(name, jobtype);
ParameterList parlist = new ParameterList();
parlist.add(SystemProperty.APPLICATION, "METADATA_UNITTEST_APP", false);
parlist.add(SystemProperty.PRODUCT, "METADATA_UNITTEST_PROD", false);
parlist.add(SystemProperty.CLASS_NAME, "oracle.as.scheduler.myself", false);
parlist.add(SystemProperty.RETRIES, "2", false);
parlist.add(SystemProperty.REQUEST_EXPIRATION, "60", false);
parlist.add("MyProp", "Value", false);
parlist.add("MyReadOnlyProp", "readyOnlyValue", true);
jd.setParameters(parlist);

Using Parameters with the Runtime Service
You can specify parameters when a job request is submitted by supplying a
RequestParameters object with submitRequest(). A request parameter can
override a parameter specified in metadata or can specify a value for a parameter not
previously defined in the metadata associated with a job request (subject to certain
constraints). You can also use the runtime service setRequestParameter() method
to set or modify request parameters (subject to certain constraints) after the request has
been submitted.

The submitRequest() method validates each request parameter against its
definition in the metadata, if one exists. Such validations include checking the data
type of the parameter against the data type specified in the metadata, checking the
read-only constraint for the parameter, and so on. If a given request parameter does
not exist in the corresponding metadata, the data type for the parameter is determined
by doing an instanceof on the parameter value. The data type of a request parameter
value must be one of the supported types specified by ParameterInfo.DataType.

If the value of a request parameter is null and the property has not been assigned in
the metadata, it defaults to the STRING data type when calling submitRequest().
Oracle Enterprise Scheduler assigns a null value to the parameter. As such, a
parameter need not be assigned in the metadata.

The RuntimeService setRequestParameter() method allows a previously
undefined request parameter to be set by a job during execution.

How to Use Parameters with the Runtime Service
When you submit a job request you set a parameter in a RequestParameters object.
This parameter may represent an Oracle Enterprise Scheduler system property or an
application defined property. The RequestParameters parameter value may be
used to override a parameter specified in metadata, or to specify the value for a
parameter not previously defined in metadata associated with the job request.

Example 9-2 shows code using a RequestParameters object with the add()
method to set a system property value.

The example assumes that there is a user-created runtimeServiceHandle named
rs_handle.

Example 9-2 Using the PRIORITY System Property with Request Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

Using Parameters with the Runtime Service

9-6 Developing Applications for Oracle Enterprise Scheduler

RuntimeService runtime;
RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req_par = new RequestParameters();

req_par.add(SystemProperty.PRIORITY, new Integer(7));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(rs_handle,"My job set", jobSetId, start, req_par);
.
.
.

How to Use Parameters with a Step ID for Job Set Steps
The RequestParameters object is a container for all the parameters for a request.
Some of the RequestParameters methods take a step ID as an argument. Such
methods allow you to specify parameters for a job set at request submission, where
parameters can be specified for, or scoped to, individual steps associated with a job set
request. For such methods, the step ID argument identifies the step within the job set
to which the given parameter applies. For non-job set requests, the step ID does not
apply, but you can use the parameter as required by your application requirements.

When a step ID is specified in a RequestParameters method such as add(), you
need to specify the step ID using the following format:

id1.id2.id3...

where the fully qualified step ID identifies the unique step, node, in the job set
hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters and
they apply to each step of the job set request. The step ID argument for
RequestParameters provides the capability to support shared parameters, where
the parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduler prepends the step ID to the name in the form of
stepId:name to generate the unique identifier, with a colon as a separator.

Example 9-3 shows code using a RequestParameters object with a step ID specified
with the add() method to set a system property value for a step in a job set.

The example assumes that there is a user-created runtimeServiceHandle named
rs_handle.

Example 9-3 Using the CLASS_NAME System Property with Job Set Request
Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

Using Parameters with the Runtime Service

Using Parameters and System Properties 9-7

RuntimeService runtime;
RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req_par = new RequestParameters();

req_par.add(SystemProperty.PRIORITY, "stepId-1", new Integer(8));
req_par.add(SystemProperty.PRIORITY, "stepId-2.stepId-1", new Integer(6));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(rs_handle,"My job set", jobSetId, start, req_par);
.
.
.

Using System Properties
Oracle Enterprise Scheduler represents parameter names that are known to and used
by the system in the SystemProperty class. You can specify system properties as
parameter names in the application metadata and using request parameters when a
request is submitted. Oracle Enterprise Scheduler sets certain system properties when
a request is submitted or at some point in the life cycle of a request.

Table 9-3 lists the available system properties, as defined in
oracle.as.scheduler.SystemProperty. Most system properties are common to
all job types while some system properties are specific to a particular job type, as
indicated in the descriptions in Table 9-3.

When you use parameters, note that Oracle Enterprise Scheduler reserves the
parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler defined properties.

Table 9-3 System Properties

Name Description

ALLOW_MULT_PENDING Specifies whether multiple pending requests for the same job definition is allowed.
This property has no meaning for a job set step.

Type: BOOLEAN

APPLICATION Specifies the logical name of the Java EE application used for request processing. This
property is automatically set by Oracle Enterprise Scheduler during request
submission.

Type: STRING

ASYNC_REQUEST_TIME
OUT

Specifies the time, in minutes, that the processor waits for an asynchronous request
after it has begun execution. Following this period, the request is considered to have
timed out.

Type: LONG

Using System Properties

9-8 Developing Applications for Oracle Enterprise Scheduler

Name Description

BIZ_ERROR_EXIT_COD
E

Specifies the process exit code for a Process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit code of
4 as an execution business error.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

CLASS_NAME Specifies the Java executable for a Java job request. This should be the name of a Java
class that implements the oracle.as.scheduler.Executable interface. This
property is required for a Java job type. It is not used for other job types.

Type: STRING

CMDLINE Specifies the command line used to invoke an external program for a Process job
request.

This property is required for a Process job type. It is not used for other job types.

Type: STRING

CMDLINE_UNIX Specifies the full command line for executing a Process type request executable on a
Unix or Unix-like operating system. Typically, this property is specified in the job type
and the executable name, path, and arguments are used to indicate values to be
substituted at runtime.

See the following properties: EXECUTABLE_NAME, EXECUTABLE_DIR_UNIX,
EXECUTABLE_SUFFIX_UNIX, PROCESS_ARGUMENTS

Type: STRING

CMDLINE_WINDOWS Specifies the full command line for executing a Process type request executable on a
Windows operating system. Typically, this property is specified in the job type and the
executable name, path, and arguments are used to indicate values to be substituted at
runtime.

See properties: EXECUTABLE_NAME, EXECUTABLE_DIR_WINDOWS,
EXECUTABLE_SUFFIX_WINDOWS, PROCESS_ARGUMENTS

Type: STRING

EFFECTIVE_APPLICAT
ION

Specifies the logical name of the Java EE application that is the effective application
used to process the request. A job definition, job type, or a job set step can be
associated with a different application by defining the EFFECTIVE_APPLICATION
system property. This property can only be specified using metadata and cannot be
specified as a submission parameter.

Type: STRING

EJB_OPERATION_NAME Specifies the operation name of the EJB. This can be used by the Bean implementation
to branch to appropriate business methods. This property is used for the EJB job type.

Type: STRING

ENVIRONMENT_VARIAB
LES

Specifies the environment variables to be set for the spawned process of a Process job
request.The property value should be a comma separated list of name value pairs
(name=value) representing the environment variables to be set.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

ESS_ASYNC_REQUEST_
JNDI_MAPPED_NAME

Specifies the mapped name of the AsyncRequest EJB of Oracle Enterprise Scheduler
bound to the JNDI of an Oracle Enterprise Scheduler server.

Type: STRING

Using System Properties

Using Parameters and System Properties 9-9

Name Description

ESS_JNDI_CSF_KEY_N
AME

Specifies the name that denotes the CSF KEY name of a JNDI provider of the
underlying Oracle Enterprise Scheduler server. This property can be set in EssConfig
of a hosting application.

Type: STRING

ESS_RUNTIME_JNDI_M
APPED_NAME

Specifies the mapped name of the RuntimeService EJB of the Oracle Enterprise
Scheduler bound to the JNDI of an Oracle Enterprise Scheduler server. This property
is used for the EJB job type.

Type: STRING

ESS_METADATA_JNDI_
MAPPED_NAME

Specifies the mapped name of the MetadataService EJB of the Oracle Enterprise
Scheduler bound to a JNDI of Oracle Enterprise Scheduler server.

Type: STRING

EXECUTABLE_NAME Specifies the name of the executable for a Process type request. The value should not
include the path to the executable.

See properties: EXECUTABLE_DIR_UNIX, EXECUTABLE_DIR_WINDOWS

Type: STRING

EXECUTABLE_DIR_UNI
X

Specifies the directory where the executable resides for a Process type request on a
Unix or Unix-like operating system.

Type: STRING

EXECUTABLE_DIR_WIN
DOWS

Specifies the directory where the executable resides for a Process type request on a
Windows operating system.

Type: STRING

EXECUTABLE_SUFFIX_
UNIX

Specifies the file extension of the executable for a Process type request if executed on a
generic Unix or Unix-like operating system. The default is no extension.

Type: STRING

EXECUTABLE_SUFFIX_
WINDOWS

Specifies the file extension of the executable for a Process type request if executed on a
Windows operating system. The default is no extension.

Type: STRING

EXECUTE_AUTO_EXPOR
T

Specifies whether the request's previously imported output content is automatically
exported to the request's output directory before the job's execute stage runs. This
property is applicable to the execute stage for Process, synchronous Java, and
asynchronous Java job types. It does not apply to the update stage of asynchronous
Java job types or PL/SQL job types.

Valid values are:

• true: All previously imported output content are exported to files in the request's
output directory before the job's execute stage.

• false: No output content is automatically exported. The job may choose to
manually export output content.

If this property is not specified, the system default false is used.

Type: BOOLEAN

Using System Properties

9-10 Developing Applications for Oracle Enterprise Scheduler

Name Description

EXECUTE_PAST Specifies whether instances of a repeating request with an execution time in the past
should be generated. Instances are never generated before the requested start time nor
after the requested end time. To cause past instances to be generated, you must set this
property to TRUE and specify the requested start time as the initial time from which
instances should be generated. Note that a null requested start time defaults to the
current time.

Valid values for this property are:

• TRUE: All instances specified by a schedule are generated regardless of the time of
generation.

• FALSE: Instances with a scheduled execution time in the past (that is, before the
time of generation) are not generated.

If this property is not specified, the system defaults to TRUE.

Type: BOOLEAN

EXTERNAL_ID Specifies an identifier for an external portion of an asynchronous Java job. For
example, an asynchronous Java job usually invokes some remote process and then
returns control to Oracle Enterprise Scheduler. This property can be used to identify
the remote process. This property should be set by the job implementation of
asynchronous Java jobs when the identifier is known. It is never set by Oracle
Enterprise Scheduler.

Type: STRING

EXTERNAL_JOB_TYPE Specifies an indicator of the type of the remote component of the job. For requests that
have a remote component such as asynchronous Java jobs, WebService jobs, or EJB
jobs this property specifies the nature of the remote job. Currently supported external
job types are the names of the elements in the SystemProperty.ExternalJobType
property.

The supported values are SOA, OSB, ADFBC

This property is optional. If it is not specified, Oracle Enterprise Scheduler does not
associate the request with an external job type, regardless of how the job is
implemented.

Type: STRING

GROUP_NAME Specifies the name of the Oracle Enterprise Scheduler isolation group to which this
request is bound. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRING

INPUT_LIST Specifies input to a request. The input to a serial job set is forwarded as input to the
first step only. The input to a parallel job set is forwarded as input to all the parallel
steps.

Oracle Enterprise Scheduler imposes no format on the value of this property.

Type: STRING

INVOKE_MESSAGE Specifies the XML message payload used as the input for invoking the remote web
service. This property is used for the EJB job type and WebService job type. This
property is a pass-through parameter for the EJB job type.

Type: STRING

JNDI_CSF_KEY Specifies the CSF alias that is mapped to the user name and password in keystore. This
specific user name/password is the credential needed to access the secured JNDI for
JndiMappedName lookup. This property is needed only if the JNDI tree is secured.
This property is used for the EJB job type.

Type: STRING

Using System Properties

Using Parameters and System Properties 9-11

Name Description

JNDI_MAPPED_NAME Specifies the mapped name of an EJB that is bound to the JNDI of a local/remote
server. This property is used for the EJB job type.

Type: STRING

JNDI_PROVIDER_URL Specifies the URL of the JNDI provider pertaining to a remote server. This property is
optional, needed only if the EJB and Oracle Enterprise Scheduler are remotely located.
If this property is not specified, the job is executed in a local server. This property is
used for the EJB job type.

Type: STRING

LISTENER Specifies the event listener class associated with the request. This should be the name
of a Java class that implements the oracle.as.scheduler.EventListener
interface.

Type: STRING

LOCALE Specifies the locale associated with the request.

Type: STRING

LOGICAL_CLUSTER_NA
ME

Specifies the name of a logical cluster. A logical cluster consists of information related
to a physical cluster and is usually stored in the hosting application's configuration.
The logical cluster name is a reference to a set of physical cluster information in the
application's configuration. If the property is not specified, no logical cluster is
associated with the request.

Type: STRING

OUTPUT_LIST Specifies output from a request.

The output of a serial job set is the OUTPUT_LIST of the last step. The output of a
parallel job set is the concatenation of the OUTPUT_LIST of all the steps, in no
guaranteed order, with
oracle.as.scheduler.SystemProperty.OUTPUT_LIST_DELIMITER as a
separator.

Type: STRING

POST_PROCESS Specifies the post-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler.PostProcessHandler interface.

Type: STRING

PRE_PROCESS Specifies the pre-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler.PreProcessHandler interface.

Type: STRING

PRIORITY Specifies the request processing priority. The priority interval is [0..9] with 0 as the
lowest priority and 9 as the highest.

Default: If this property is not specified, the system default value used is 4.

Type: INTEGER

PROCEDURE_NAME Specifies the name of the PL/SQL stored procedure to be called for a SQL job request.
The stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.

Type: STRING

PRODUCT Specifies the product within the application that submitted the request.

Type: STRING

Using System Properties

9-12 Developing Applications for Oracle Enterprise Scheduler

Name Description

PROCESS_ARGUMENTS Specifies the arguments passed to the executable of a Process type spawned process.

Type: STRING

REDIRECTED_OUTPUT_
FILE

Specifies the file where standard output and error streams are redirected for a Process
job request. This represents the full path of the log file where the standard output and
error streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

REPROCESS_DELAY Specifies the callout handler processing delay time. This represents the time, in
minutes, to delay request processing when a delay is requested by a callback handler.

Default: If this property is not specified, the system default used is 5.

Type: INTEGER

REQUEST_CATEGORY Specifies an application-specific label for a request. The label, defined by an
application or system administrator, allows administrators to group job requests
according to their own specific requirements.

Type: STRING

REQUEST_EFFECTIVE_
ENCODING

Specifies the effective encoding associated with a Process job request.

SpawnLauncher determines the Locale setting for a spawned job request in the
following precedence order:

1. LC_ALL/LANG specified in environment properties
(SystemProperty.ENVIRONMENT_VARIABLES) for the request

2. LC_ALL/LANG specified in the hosting application ess-config.xml file

3. Weblogic server LC_ALL/LANG

The effective encoding is computed before the process is spawned and is stored in this
property. This is later used to determine the encoding to use for the request log and
output.

Type: STRING

REQUEST_EXPIRATION Specifies the expiration time for a request. This represents the time, in minutes, that a
request expires after its scheduled execution time. A expiration value of zero (0) means
that the request never expires. If this property is not specified, the system default
value used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits
longer than the specified expiration period, it does not run. After a request starts
running the request expiration no longer applies.

Type: INTEGER

REQUEST_LOG_LEVEL Specifies the log level for request logging. Valid values for log level are the String
representations of levels defined in java.util.logging. The level is obtained using
Level.getName(). The default log level is "INFO".

Type: STRING

Using System Properties

Using Parameters and System Properties 9-13

Name Description

REQUESTED_PROCESSO
R

Specifies the request processor node on which the request should be processed. This
allows processor affinity to be specified for a request. If this property is not specified,
the request can run on any available request processor node. In general, this property
should not be specified.

If this property is specified for a request, the request processor's work assignments
oracle.as.scheduler.WorkAssignment (specialization) must allow the
execution of such requests, otherwise the request is never executed. If the specified
node is not running, the request remains in the READY state and is not executed until
the node is restarted.

Type: STRING

RESOLVED_CMDLINE Specifies the command line used for a Process type job request. This property is only
set by Oracle Enterprise Scheduler. It is meant for diagnostic purposes only.

Type: STRING

RETRIES Specifies the retry limit for a failed request. If request execution fails, the request
retries up to the number of times specified by this property until the request succeeds.
If retry limit is zero (0), a failed request is not retried.

Default: If this property is not specified, the system default used is 0.

Type: INTEGER

RUNAS_APPLICATIONI
D

Specifies the runAs identifier that should be used to execute the request. Normally, a
request runs as the submitting user. However, if this property is set in the metadata of
the job associated with the request, then the request executes under the user identified
by this property. This property can only be specified using metadata and cannot be
specified as a submission parameter.

Type: STRING

SELECT_STATE Specifies whether the result state of a job set step affects the eventual state of its parent
job set. In order for the state of a job set step to be considered when determining the
state of the job set, the SELECT_STATE must be set to true. If SELECT_STATE is not
specified on a job set step, the state of the step is included in the determination of the
state of the job set.

Type: BOOLEAN

SQL_JOB_CLASS Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle
Enterprise Scheduler job used to execute a SQL job request. This property need not be
specified unless the job used for a job request is associated with a particular Oracle
Database resource consumer group or has affinity to a database service.

If this property is not specified, a default Oracle Enterprise Scheduler job class is used
for the job that executes the SQL request. That job class is associated with the default
resource consumer group. It belongs to the default service, such that it has no service
affinity and, in an Oracle RAC environment, any one of the database instances within
the cluster might run the job. No additional privilege or grant is required for an Oracle
Enterprise Scheduler SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.

Type: STRING

SUBMITTING_APPLICA
TION

Specifies the logical name of the Java EE application for the submitted (absolute
parent) request. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRING

Using System Properties

9-14 Developing Applications for Oracle Enterprise Scheduler

Name Description

SUCCESS_EXIT_CODE Specifies the process exit code for a Process job request that denotes an execution
success. If this property is not specified the system treats a process exit code of 0 as
execution success.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

SUPPORT_OUTPUT_FIL
ES

Specifies whether the request creates temporary or output files. The property applies
during these stages: pre-processing, execution, async update, and post-processing. The
request can always use the API to create output content directly in the content store.

The property value specifies the action to take. If this property is not specified, no
directories are created. Non-valid values are treated as though the property is not
specified.

Valid values are:

• SystemProperty.SUPPORT_OUTPUT_FILES_NONE

• SystemProperty.SUPPORT_OUTPUT_FILES_WORK

• SystemProperty.SUPPORT_OUTPUT_FILES_OUTPUT

Type: STRING

UPLOAD_CONTENT_TO_
REPOSITORY

Specifies whether to upload request log and output files to a separate repository, such
as Universal Content Management (UCM), from the internal repository when the
request execution completes.

Property value specifies the action to take. If this property is not specified, content is
not uploaded. Non-valid values are treated as though the property were not specified.

Valid value is:

SystemProperty.UPLOAD_CONTENT_TO_REPOSITORY_COPY

Type: STRING

USE_ALTERNATE_ENV Specifies whether to use an alternative environment from a callout rather than the
normal application environment. If this property is not specified, the normal
application environment is used.

Type: BOOLEAN

USE_EXTENDED_SETUP Specifies whether to initiate capabilities like ApplSessions prior to invoking job-
related code such as the job executable or pre-process handler, post-process handler.
Extended functionality is invoked only in an environments where it is available. If this
property is not specified, no extended functionality is set up prior to job execution.

Type: BOOLEAN

USER_FILE_DIR Specifies a base directory in the file system where files, such as input and output files,
may be stored for use by the request executable.

Oracle Enterprise Scheduler supports a configuration parameter that specifies a file
directory where requests may store files. At request submission, a USER_FILE_DIR
property is automatically added for the request if the configuration parameter is
currently set and USER_FILE_DIR property was not specified for the request. If the
property is added, it is initialized to the value of the configuration parameter. The
property is not added if the configuration parameter is not set at the time of request
submission.

Type: STRING

Using System Properties

Using Parameters and System Properties 9-15

Name Description

USER_FILE_DIR_SHAR
ED

Specifies whether the request's USER_FILE_DIR (configured RequestFileDir)
directory is shared. This property represents the value of RequestFileDirShared.
This property is valid for a request in standard or extended request mode.

Valid values are:

• true: USER_FILE_DIR is a shared directory.
• false: USER_FILE_DIR is a local directory.
If this property is not specified, system default false is used.

Type: BOOLEAN

USER_NAME Specifies the name of the user used to execute the request. Normally this is the
submitting user unless the RUNAS_APPLICATIONID property was set in the job
metadata. This property is automatically set by Oracle Enterprise Scheduler during
request submission.

Type: STRING

WARNING_EXIT_CODE Specifies the process exit code for a Process job request that denotes an execution
warning. If this property is not specified, the system treats a process exit code of 3 as
execution warning.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

WORK_DIR_ROOT Specifies the working directory for the spawned process of a Process job request.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

WS_WSDL_URL Specifies the relative URL for web service WSDL. The base URL is given by the
WS_WSDL_BASE_URL system property. This property is used for a WebService job
type.

Type: STRING

WS_WSDL_BASE_URL Specifies a base URL that can be used in conjunction with the WS_WSDL_URL system
property to provide a full URL for the web service WSDL. The property is usually
used in conjunction with the LOGICAL_CLUSTER_NAME system property. It is meant
to be a generic base URL that is common for all web service WSDLs in the cluster. This
property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved
from the information associated with the LOGICAL_CLUSTER_NAME system property
of the request if it is configured in the hosting application's configuration.

Type: STRING

WS_TARGET_NS Specifies the target name space for the web service. This property is used for a
WebService job type.

Type: STRING

WS_ENDPOINT_URL Specifies the relative URL for a web service endpoint. The base URL is given by the
WS_ENDPOINT_BASE_URL system property. This property is used for a WebService
job type.

Type: STRING

Using System Properties

9-16 Developing Applications for Oracle Enterprise Scheduler

Name Description

WS_ENDPOINT_BASE_U
RL

Specifies a base URL that can be used in conjunction with the WS_ENDPOINT_URL
system property to provide a full URL for the web service endpoint. This property is
usually used in conjunction with the LOGICAL_CLUSTER_NAME system property. It is
meant to be a generic base URL that is common for all web service endpoints in the
cluster. This property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved
from the information associated with the LOGICAL_CLUSTER_NAME system property
of the request if it is configured in the hosting application's configuration.

Type: STRING

WS_SERVICE_NAME Specifies the WSDL service name for a web service operation. This property is used for
a WebService job type.

Type: STRING

WS_PORT_NAME Specifies the WSDL port name for a web service operation. This property is used for a
WebService job type.

Type: STRING

WS_OPERATION_NAME Specifies the WSDL operation name for a web service operation. This property is used
for a WebService job type.

Type: STRING

WS_CANCEL_OPERATIO
N_NAME

Specifies the WSDL operation name for a web service cancel operation. This property
is used for a WebService job type.

Type: STRING

WS_CANCEL_MESSAGE Specifies the XML message payload used as the input for invoking cancel on remote
web service. This property is used for a WebService job type.

Type: STRING

Using System Properties

Using Parameters and System Properties 9-17

Using System Properties

9-18 Developing Applications for Oracle Enterprise Scheduler

10
Using Tokens and Logical Clusters

In order to make job definitions easily portable from test environments to production
environments, it is best for job definitions not to contain environment-specific
information such as host names and port numbers. The Oracle Enterprise Scheduler
token substitution and logical cluster features allow you to abstract metadata so that it
can be easily changed to correctly fit the target deployment during the T2P process.

This chapter contains the following sections:

• Using Token Substitution

• Using Logical Clusters

Using Token Substitution
To improve the flexibility of configuration and reduce the need for provisioning,
Oracle Enterprise Scheduler allows you to include substitutable tokens in request
parameters and environment properties.

Tokens take the following form: ${TokenPrefix:token}

Where token is the name of the token and TokenPrefix is where the substitution value is
specified. Supported token prefixes are: APP_ENV, ESS_ENV, and ESS_REQ. The
examples given below are simple, but illustrate the capabilities of Oracle Enterprise
Scheduler substitution.

• APP_ENV

The substitution value comes from the application environment properties.

For example, the following environment variable is specified in the hosting
application configuration properties using Oracle Enterprise Manager Fusion
Middleware Control or WLST:

AppEnvVar1=foo

A request parameter is specified in a job definition:

MyParam=${APP_ENV:appEnvVar1}

After the substitution, the value of MyParam is foo.

• ESS_ENV

Substitution values come from the Oracle Enterprise Scheduler server environment.
This includes the following three possible sources:

– JVM system properties: The token value is the name of the system property.

– JVM environment variables: The token value is the name of the environment
variable.

Using Tokens and Logical Clusters 10-1

– JRF: Token values are jrfServerLogPath, jrfServerConfigDirectory,
and jrfDomainConfigDirectory.

The following example shows the use of the ESS_ENV token prefix in the
specification of an environment variable in the hosting application configuration
properties.

wlstLocation = ${ESS_ENV:common.components.home}/common/bin/
wlst.sh.

When the substitution is performed, the Oracle Enterprise Scheduler process job
environment includes an environment variable named wlstLocation whose
value is a complete path. For example:

/myInstallHome/mw_home/oracle_common/common/bin/wlst.sh.

• ESS_REQ

ESS_REQ substitutions come from information specific to the Oracle Enterprise
Scheduler request in question. The following are the supported tokens:

– REQUEST_ID

– REQUEST_HANDLE

– IS_RESUMED

– PAUSED_STATE

– Request parameter names for those requests

Nested Substitutions
Nested substitutions are automatically resolved when the top-level substitution is
done. For example, the following request parameters are specified in a job definition
for a process job:

MyParam1=${ESS_REQ:MyParam2}
MyParam2=${APP_ENV:MyEnvProp1}

An application's environment properties includes the following:

MyEnvProp1=${ESS_ENV:weblogic.Name}

The value of the JVM system property weblogic.Name might be something like
ess_server1. When substitution is performed on MyParam1, it resolves to the value
of MyParam2, which in turn resolves to the value of MyEnvProp1. The the result of
the nested substitution is that the value of MyParam1 is ess_server1.

Automatic Substitution
Automatic Oracle Enterprise Scheduler substitution is available for process job
command lines and environment properties, as well as for some request properties
used by EJB and web service jobs.

Table 10-1, Table 10-2, and Table 10-3 list the automatically substituted request
parameters for EJB jobs, web service jobs, and process jobs.

Using Token Substitution

10-2 Developing Applications for Oracle Enterprise Scheduler

Table 10-1 EJB Job Type Automatically Substituted Properties

Property Name

SYS_EXT_jndiProviderUrl

SYS_EXT_essRuntimeJndiMappedName

SYS_EXT_essMetadataJndiMappedName

SYS_EXT_essAsyncRequestJndiMappedName

SYS_EXT_essJndiCsfKey

SYS_EXT_invokeMessage

Table 10-2 Web Services Job Type: Automatically Substituted Properties

Property Name

SYS_EXT_wsEndpointBaseUrl

SYS_EXT_wsEndpointUrl

SYS_EXT_wsWsdlBaseUrl

SYS_EXT_wsWsdlUrl

SYS_EXT_invokeMessage

SYS_EXT_wsCancelMessage

Table 10-3 Process Job Type: Automatically Substituted Properties

Property Name

SYS_cmdLine

SYS_EXT_cmdLine.Unix

SYS_EXT_cmdLine.Windows

SYS_environmentVariables

For more information about these properties refer to the following chapters:

• Creating and Using EJB Jobs

• Creating and Using Web Service Jobs

• Creating and Using Process Jobs .

Using Logical Clusters
Oracle Enterprise Scheduler provides the means by which EJB and web service jobs
can define an abstract job location. The job location is specified by the Oracle
Enterprise Scheduler SYS_logicalClusterName system property and specifies a
logical cluster name (LCN). If the job definition for an EJB or web service job specifies
a value for an LCN, certain environment-specific properties are specified using Oracle
Enterprise Manager Fusion Middleware Control or WLST commands at the hosting
application level rather than in the job definition. All job definitions with the same

Using Logical Clusters

Using Tokens and Logical Clusters 10-3

LCN share the value of the properties entered in the hosting application configuration
properties using Oracle Enterprise Manager Fusion Middleware Control or WLST
commands.

Note:

Oracle Enterprise Manager Fusion Middleware Control refers to logical cluster
functionality as "job location." The terms "logical clusters" and "job location"
can be used interchangeably.

If a job definition specifies a value for the SYS_logicalClusterName property, then
the value is used as a prefix for a set of application configuration properties that define
attributes of the logical cluster. Table 10-4 lists the properties associated with job
location, where prefix represents the logical cluster name. Note that these properties
need not be specified if they are configured in the hosting application.

Table 10-4 Properties Associated With a Job Location

Property Name Corresponding System
Property

Description

LCN.prefix.JndiProviderUr
l

SYS_EXT_jndiProvid
erUrl

The JNDI provider for the cluster.
Used with the EJB job type. The
corresponding system property,
SYS_EXT_jndiProviderUrl,
need not be specified in the job.

LCN.prefix.WsEndpointBas
eUrl

SYS_EXT_wsEndpoint
BaseUrl

The host and port. For example,
http://host:port/. Used with
the EJB job type. The
corresponding system property,
SYS_EXT_wsEndpointBaseUr
l, need not be specified in the
job.

LCN.prefix.WsWsdlBaseUrl SYS_EXT_wsWsdlBase
Url

The host and port of the WSDL.
For example, http://
host:port/. Used with the EJB job
type. The Corresponding system
property,
SYS_EXT_wsWsdlBaseUrl,
need not be specified in the job.

For example, if a job defines the SYS_logicalClusterName property as
SOA_Cluster1, then the application configuration might contain the following
properties:

LCN.SOA_Cluster1.WsEndpointBaseURL=http://host:port/
LCN.SOA_Cluster1.WsWsdlBaseURL=http://host:port/
LCN.SOA_Cluster1.JndiProviderURL=t3://host1;port1;host2:port2/

Note:

The value of the SYS_logicalClusterName property cannot contain the “."
character.

Using Logical Clusters

10-4 Developing Applications for Oracle Enterprise Scheduler

11
Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle
Enterprise Scheduler, and describes Oracle Database tasks that you need to perform to
use PL/SQL stored procedures with Oracle Enterprise Scheduler.

After you create a PL/SQL procedure and define a job definition, you can use the
Oracle Enterprise Scheduler runtime service to submit a job request for a PL/SQL
procedure.

This chapter includes the following sections:

• Introduction to Using PL/SQL Stored Procedure Job Definitions

• Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

• Performing Oracle Database Tasks for PL/SQL Stored Procedures

• Creating and Storing Job Definitions for PL/SQL Job Types

For information about how to use the Runtime Service, see Using the Runtime Service.

Introduction to Using PL/SQL Stored Procedure Job Definitions
Oracle Enterprise Scheduler lets you run job requests of different types, including: Java
classes, PL/SQL stored procedures, and process requests that run as a forked process.
To use Oracle Enterprise Scheduler with PL/SQL stored procedures you need to do
the following:

• Create or obtain the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler.

• Load the PL/SQL stored procedure in the Oracle Database and grant the required
permissions and perform other required DBA tasks.

• Use Oracle JDeveloper to create job type and job definition objects and store these
objects with the Oracle Enterprise Scheduler application metadata.

• Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduler
APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduler APIs
you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information, see Using the Runtime Service.

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL
stored procedure job requests. This means that Oracle Enterprise Scheduler does not
directly call the PL/SQL stored procedure, but instead uses Oracle Database Scheduler
(an Oracle Database feature). When a PL/SQL stored procedure job request is ready to

Creating and Using PL/SQL Jobs 11-1

execute, Oracle Enterprise Scheduler creates an immediate, run-once Oracle Database
Scheduler job. This Oracle Database Scheduler job is created by the Oracle Enterprise
Scheduler runtime schema user associated with the container instance that executes
the PL/SQL request, and is owned by the application procedure owner. The Oracle
Database Scheduler job procedure is a PL/SQL wrapper procedure owned by the
Oracle Enterprise Scheduler runtime schema user. Finally, when the Oracle Database
Scheduler job runs, the wrapper procedure calls the application stored procedure
using dynamic SQL. After the PL/SQL stored procedure completes, either by a
successful return or by raising an exception, the Oracle Database Scheduler job
finishes and creates an event that informs Oracle Enterprise Scheduler that the remote
executable finished.

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduler,
the PL/SQL procedure must have certain characteristics to work with an Oracle
Enterprise Scheduler application and a DBA must assure that certain Oracle Database
permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

• Define the PL/SQL stored procedure that has the correct signature for use with
Oracle Enterprise Scheduler

• Perform the required DBA tasks to make the PL/SQL stored procedure available to
Oracle Enterprise Scheduler

How to Define a PL/SQL Stored Procedure with the Correct Signature
The PL/SQL stored procedure that you call from Oracle Enterprise Scheduler must
have a specific signature and include specific procedure parameters, as follows:

PROCEDURE my_proc(request_handle IN VARCHAR2);

The request_handle parameter is an opaque value representing an execution
context for the Oracle Enterprise Scheduler request being executed.

Example 11-1 shows a sample HELLO_WORLD stored procedure for use with Oracle
Enterprise Scheduler.

Example 11-1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO_WORLD(request_handle in varchar2)
as
 v_request_id number := null;
 v_prop_name varchar2(500) := null;
 v_prop_int integer := null;
begin
 -- Get the Oracle Enterprise Scheduler request ID being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 raise_application_error(-20000,
 'Failed to get request id for request handle ' ||
 request_handle || '. [' || SQLERRM || ']');
 end;

 -- Retrieve value of an existing request property.

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

11-2 Developing Applications for Oracle Enterprise Scheduler

 begin
 v_prop_name := 'mytestIntProp';
 v_prop_int := ess_runtime.get_reqprop_int(v_request_id, v_prop_name);
 exception
 when others then
 rollback;
 raise_application_error(-20001,
 'Failed to get request property ' || v_prop_name ||
 ' for Oracle Enterprise Scheduler request ID ' || v_request_id ||
 '. [' || SQLERRM || ']');
 end;

 -- Update an existing request property with a new value.
 -- This procedure is responsible for commit/rollback of the update operation.
 begin
 v_prop_name := 'myJobdefProp';
 ess_runtime.update_reqprop_varchar2(v_request_id, v_prop_name,
 'myUpdateValue');
 commit;
 exception
 when others then
 rollback;
 raise_application_error(-20002,
 'Failed to update request property ' || v_prop_name ||
 ' for Oracle Enterprise Scheduler request ID ' || v_request_id ||
 '. [' || SQLERRM || ']');
 end;
end helloworld;
/

Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored
Procedure

In the PL/SQL stored procedure, you can handle exceptions and other issues by
raising a RAISE_APPLICATION_ERROR exception. The
RAISE_APPLICATION_ERROR requires that the error code from the PL/SQL stored
procedure range from -20000 to -20999. The PL/SQL stored procedure can use
RAISE_APPLICATION_ERROR if it must raise an exception.
RAISE_APPLICATION_ERROR requires that the error code range from -20000 to
-20999.

Table 11-1 indicates the Oracle Enterprise Scheduler state based on the result of the
PL/SQL stored procedure.

Table 11-1 Terminal States for PL/SQL Stored Procedure Results

Final State Description

SUCCEEDED If the PL/SQL stored procedure returns normally, without raising an
exception, the request state transitions to the SUCCEEDED state, bearing any
subsequent errors completing the request.

WARNING If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the WARNING terminal state if the SQL error code
ranges from -20900 to -20919.

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

Creating and Using PL/SQL Jobs 11-3

Final State Description

ERROR If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside
the range of -20900 to -20919 (error codes within this range indicate a
WARNING).

Return codes in the range -20920 to -20929 result in an ERROR state with a
BUSINESS error type, where the request is not subject to automatic retries.

How to Access Job Request Information In PL/SQL Stored Procedures
Oracle Enterprise Scheduler provides a PL/SQL package, ESS_RUNTIME to perform
certain operations that you may need when you are working in a PL/SQL stored
procedure. You can use these procedures perform job request operations and to obtain
job request information for an Oracle Enterprise Scheduler runtime schema. For
example, you can use these runtime procedure to submit requests and retrieve and
update request information associated with an Oracle Enterprise Scheduler job
request.

The following sample code shows use of an ESS_RUNTIME procedure:

v_request_id := ess_runtime.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTIME package require a request handle parameter
and provide information on an executing request (these should only be called from the
PL/SQL stored procedure that is executing the PL/SQL stored procedure request).
You can call some procedures in the ESS_RUNTIME package from outside of the
context of an executing request; these procedures may include a request ID parameter.

What You Need to Know When You Define a PL/SQL Stored Procedure
You need to know the following when you create an use a PL/SQL stored procedure
with Oracle Enterprise Scheduler:

• It is not required that the PL/SQL stored procedure exist when the Oracle
Enterprise Scheduler request is submitted, but the PL/SQL stored procedure must
exist and be callable when the request is ready to run.

• The PL/SQL stored procedure must exist on the same database as the Oracle
Enterprise Scheduler Runtime schema.

Performing Oracle Database Tasks for PL/SQL Stored Procedures
After you create the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler a DBA must load the PL/SQL stored procedure in the Oracle
Database and grant the required permissions.

How to Grant PL/SQL Stored Procedure Permissions
Before the DBA grants permissions, the DBA must determine the Oracle Database and
the Oracle Enterprise Scheduler runtime schema that is associated with the deployed
Java EE application that is going to submit the Oracle Enterprise Scheduler PL/SQL
stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

Performing Oracle Database Tasks for PL/SQL Stored Procedures

11-4 Developing Applications for Oracle Enterprise Scheduler

ess_schema: specifies the Oracle Enterprise Scheduler runtime schema associated
with the Java EE application.

user_schema: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the
Oracle Enterprise Scheduler job request.

To grant Oracle Database permissions:

1. In the Oracle Database grant execute on the ESS_RUNTIME package to the
application user schema. For example:

GRANT EXECUTE ON ess_schema.ESS_RUNTIME to user_schema;

2. In the Oracle Database, create a private synonym for the ESS_RUNTIME package.
This is a convenience step that allows the PL/SQL stored procedure to reference
the ESS_RUNTIME as simply ESS_RUNTIME rather than using the full
schema_name.ESS_RUNIME. For example:

CREATE OR REPLACE SYNOMYM user_schema.ESS_RUNTIME for ess_schema.ESS_RUNTIME;

3. In the Oracle Database, grant execute on the ESS_JOB package to the application
user schema. This step can be skipped if ESS_JOB is not used. For example:

GRANT EXECUTE ON ess_schema.ESS_JOB to user_schema;

4. In the Oracle Database, create a private synonym for the ESS_JOB package. This is
a convenience step that allows the PL/SQL stored procedure to reference the
ESS_JOB as simply ESS_JOB rather than using the full schema_name.ESS_JOB.
This step can be skipped if ESS_JOB is not used. For example:

CREATE OR REPLACE SYNONYM user_schema.ESS_JOB for ess_schema.ESS_JOB;

5. In the Oracle Database, grant execute on a PL/SQL stored procedure owned by the
Oracle Enterprise Scheduler runtime schema user that serves as the Oracle
Enterprise Scheduler job procedure. For example:

GRANT EXECUTE ON ess_schema.ESS_SCHJOB_PROC to user_schema;

As an example, if the Oracle Enterprise Scheduler runtime schema is TEST_ESS, the
application user schema is HOWTO, and the PL/SQL procedure is named
HELLO_WORLD, the DBA operations are:

GRANT EXECUTE ON test_ess.ess_runtime to howto;
CREATE OR REPLACE SYNONYM howto.ess_runtime for test_ess.ess_runtime;
GRANT EXECUTE ON test_ess.ess_job to howto;
CREATE OR REPLACE SYNONYM howto.ess_job for test_ess.ess_job;
GRANT EXECUTE ON test_ess.ESS_SCHJOB_PROC to howto;

What You Need to Know About Granting PL/SQL Stored Procedure Permissions
The two steps shown for DBA tasks for granting permissions on the ESS_RUNTIME
package are only required if the ESS_RUNTIME package is referenced by a PL/SQL
procedure. The two steps shown for DBA tasks use to grant permissions on the
ESS_JOB package are only required if the ESS_JOB package is referenced by a
PL/SQL procedure. The step shown for the ESS_SCHJOB_PROC procedure is always
required since it allows the Oracle Enterprise Scheduler wrapper procedure to be
called.

Performing Oracle Database Tasks for PL/SQL Stored Procedures

Creating and Using PL/SQL Jobs 11-5

All PL/SQL stored procedures in a given application user schema that are used for
Oracle Enterprise Scheduler PL/SQL stored procedure jobs should always be
associated with the same (single) Oracle Enterprise Scheduler Runtime schema. While
this is not technically required, it greatly simplifies the DBA setup and does not
require the PL/SQL stored procedure to explicitly specify the Oracle Enterprise
Scheduler runtime schema if the procedure references the ESS_RUNTIME.

Creating and Storing Job Definitions for PL/SQL Job Types
To use PL/SQL stored procedures with Oracle Enterprise Scheduler you need to locate
the Metadata Service and create a job definition. You create a job definition by
specifying a name and a job type. When you create a job definition you also need to set
certain system properties. You can then store the job definition and other associated
objects using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata
Service .

Oracle Enterprise Scheduler uses an Oracle Database Scheduler job to execute the
PL/SQL stored procedure for a SQL job request. An Oracle Database Scheduler job
class can be associated with the job when that job must have affinity to a database
service or is to be associated with an Oracle Database resource consumer group. The
Oracle Database Scheduler job owner must have EXECUTE privilege on the Oracle
Database Scheduler job class in order to successfully create a job using that job class.

You can use Oracle Enterprise Scheduler system properties to specify certain attributes
for the Oracle Enterprise Scheduler job that calls the PL/SQL stored procedure.

These SystemProperty properties apply specifically to SQL job types;
PROCEDURE_NAME, SQL_JOB_CLASS.

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored
procedure to be executed. The stored procedure name should have a owner.name
format, where owner is the schema owner of the job procedure and name is the
procedure name. This property must be specified for either the job type or job
definition.

The SQL_JOB_CLASS system property specifies an Oracle Database Scheduler job
class to be assigned to the Oracle Database Scheduler job used to execute an SQL job
request. This property does not need to be specified unless the Oracle Database
Scheduler job used for a request should be associated with a particular Oracle
Database resource consumer group or have affinity to a database service.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Database
Scheduler job class created by Oracle Enterprise Scheduler is used for the Oracle
Database Scheduler job. The default job class is associated with the default resource
consumer group. It belongs to the default service, which means it has no service
affinity and in an Oracle RAC environment any one of the database instances within
the cluster might run the job. No additional privilege grant is needed for an Oracle
Enterprise Scheduler SQL request to use that default job class.

How to Create a PL/SQL Job Type
An Oracle Enterprise Scheduler JobType object specifies an execution type and
defines a common set of properties for a job request. A job type can be defined and
then shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

Creating and Storing Job Definitions for PL/SQL Job Types

11-6 Developing Applications for Oracle Enterprise Scheduler

• JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

• SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

• PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes.

When you specify the JobType you can also specify properties that define the
characteristics associated with the JobType. Table 11-2 describes the
SystemProperties that are appropriate for a PL/SQL stored procedure job type.

Table 11-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job Type

System Property Description

PROCEDURE_NAME Specifies the name of the stored procedure to run as part of PL/SQL job execution.

For a SQL_TYPE application, this is a required property.

SQL_JOB_CLASS Specifies an Oracle Database Scheduler job class to be assigned to the Oracle Database
Scheduler job used to execute an SQL job request.

This is an optional property for a SQL_TYPE job type.

When you create and store a PL/SQL job type, you do the following:

• Use the JobType constructor and supply a String name and a
JobType.ExecutionType.SQL_TYPE argument.

• Set the appropriate properties for the new JobType.

• Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use the
Metadata Service addJobType() method to store the JobType in metadata.

• Use a MetadataObjectId that uniquely identifies metadata objects in the
metadata repository, and, using a unique identifier the MetadataObjectID
contains the fully qualified name for a metadata object.

See Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler
Application for sample code.

How to Create and Store a Job Definition for PL/SQL Job Type
To use PL/SQL with Oracle Enterprise Scheduler, you need to create and store a job
definition. A job definition is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler. Each job definition belongs to one and only one job type.

Note:

After you create a job definition with a job type, you cannot change the type or
the job definition name. To change the type or the job definition name, you
need to create a new job definition.

Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application
shows how to create a job definition using the job definition constructor and the job
type.

Creating and Storing Job Definitions for PL/SQL Job Types

Creating and Using PL/SQL Jobs 11-7

Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application
This section shows sample code in which job type and job definition application
metadata are created for a SQL job type.

import oracle.as.scheduler.JobType;
import oracle.as.scheduler.JobDefinition;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.ParameterInfo;
import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;

void createDefinition()
{
 MetadataService metadata = ...
 MetadataServiceHandle mshandle = null;

 try
 {
 ParameterInfo pinfo;
 ParameterList plist;

 mshandle = metadata.open();

 // Define and add a PL/SQL job type for the application metadata.
 String jobTypeName = "PLSQLJobDefType";
 JobType jobType = null;
 MetadataObjectId jobTypeId = null;

 jobType = new JobType(jobTypeName, JobType.ExecutionType.SQL_TYPE);

 plist = new ParameterList();
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PROCEDURE_NAME);
 plist.add(info.getName(), pinfo.getDataType(), "HOWTO.HELLO_WORLD", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PRODUCT);
 plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);
 jobType.setParameters(plist);

 jobTypeId = metadata.addJobType(mshandle, jobType, "HOW_TO_PROD");

 // Define and add a job definition for the application metadata.
 String jobDefName = "PLSQLJobDef";
 JobDefinition jobDef = null;
 MetadataObjectId jobDefId = null;

 jobDef = new JobDefinition(jobDefName, jobTypeId);
 jobDef.setDescription("Demo PLSQL Job Definition " + jobDefName);

 plist = new ParameterList();
 plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);
 jobDef.setParameters(plist);

 jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
 }
 catch (Exception e)
 {
 [...]
 }

Creating and Storing Job Definitions for PL/SQL Job Types

11-8 Developing Applications for Oracle Enterprise Scheduler

 finally
 {
 // always close metadata service handle in finally block
 if (null != mshandle)
 {
 metadata.close(mshandle);
 mshandle = null;
 }
 }
}

Creating and Storing Job Definitions for PL/SQL Job Types

Creating and Using PL/SQL Jobs 11-9

Creating and Storing Job Definitions for PL/SQL Job Types

11-10 Developing Applications for Oracle Enterprise Scheduler

12
Creating and Using EJB Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Enterprise
Java Bean (EJB) jobs.

This chapter contains the following sections:

• Introduction to Creating EJB Jobs

• Planning Job Development

• Creating and Storing Job Definitions for EJB Job Types

• Secured Invocation

• Synchronous Bean

• Asynchronous Bean

Introduction to Creating EJB Jobs
The EJB job type allows you to create Java-based jobs and take advantage of the
convenience of the pre-deployed hosting application. In addition, the EJB can be
located remotely on a different server. Unlike Java SE-based jobs, EJB jobs are not
required to be embedded inside the hosting application. This allows them to be located
remotely and to be used with the pre-deployed hosting application. An EJB job can be
invoked from any hosting application, including the pre-deployed hosting application.
Note that the EJB implementation must be in the same WebLogic domain as the
scheduler server.

The EJB conforms to an interface defined by Oracle Enterprise Scheduler (defined in a
shared library). The EJB is non-transactional. Both synchronous and asynchronous EJB
jobs are supported. When running asynchronously, the EJB returns quickly and the
Oracle Enterprise Scheduler EJB is invoked later when the job completes. The EJB
implementation can work with any of the three shared libraries—server
(oracle.ess), client (oracle.ess.client), and thin client
(oracle.ess.thin.client). The thin client shared library does not depend on
Oracle Enterprise Scheduler data sources. See Creating a Thin Client Application for
more information about using the thin client library.

The EJB can submit sub-requests and it can write to output and a log. The EJB interface
is similar or the same as a Java job and can do similar things. To improve performance,
it is possible to consolidate multiple job implementations under a single shared EJB.

An EJB job is a Java job that is executed remotely using the EJB remote business
interface. The execution type is JAVA_TYPE. The remote job is an EJB deployed in a
remote server. The remote business interface of this bean extends the
oracle.as.scheduler.RemoteExecutable interface and defines the execute
method. The contract between Oracle Enterprise Scheduler and the servicing

Creating and Using EJB Jobs 12-1

component is defined with the execute method. Figure 12-1 shows the components
in a typical EJB job deployment.

The EJB must be located in the same domain as the hosting application and the
Subject object is propagated to the EJB. For JNDI lookup operations, you can supply
optional credentials. The default identity is "anonymous".

Figure 12-1 EJB Job Environment

ESS server/cluster/domain

ESSAPP

server/cluster/domain

oracle.ess.thin.client

shared library

<<interface>>

RemoteCancellableExecutable

execute()

cancel()

<business-remote>:

RemoteExecutable or

RemoteCancellableExecutable

execute

cancel

Hosting App

EM

Metadata &

Request

Submission

RemoteJobBean

@stateless

execute()

cancel()

operation1()

- Implement RemoteExecutable if execute functionality is sufficient.

- Implement RemoteCancellableExecutable if execute and cancel functionalities are required.

Planning Job Development
The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Planning Job Development is a high-level discussion about how
to plan your job development and deployment process.

Creating and Storing Job Definitions for EJB Job Types
To use EJB type jobs with Oracle Enterprise Scheduler, you must locate the Metadata
Service and create a job definition. You create a job definition by specifying a name
and a job type. When you create a job definition you must also set certain system
properties. You can store the job definition in the metadata repository using the
Metadata Service. Sample metadata files are provided later in this chapter.

For information about how to use the Metadata Service, see Using the Metadata
Service .

When you specify the JobType for the job definition, you can also specify
SystemProperties that define the characteristics associated with the JobType.
Table 12-1 and Table 12-2 describe the properties that specify how the request should
be processed.

Planning Job Development

12-2 Developing Applications for Oracle Enterprise Scheduler

Table 12-1 EJB Job Type Properties

Property Name [Field in
SystemProperty class]

Description

SYS_EXT_jndiProviderUrl
[JNDI_PROVIDER_URL]

Optional. Specifies the URL of the remote server. Required
only if the EJB is remotely located.

The JndiProviderUrl can be specified to contain tokens
that are resolved at runtime.

The following are two examples:

• ${WIRING:urn:oracle:fmw:soa:t3}

This URN is resolved at runtime and the actual URL
value is fetched.

• t3://localhost:19283

Where localhost is the host where EJB's are
deployed and 19283 is the server port number.

SYS_EXT_jndiMappedName
[JNDI_MAPPED_NAME]

Required. Specifies the JNDI lookup name of a remote EJB
implementation.

Example: ejb/fileAdapter

SYS_EXT_ejbOperationName
[EJB_OPERATION_NAME]

Optional. Specifies a pass-through parameter used by the
EJB implementation to branch to the appropriate business
methods.

Example: manageFileAdapter

SYS_EXT_jndiCSFKey
[JNDI_CSF_KEY]

Required only if the JNDI tree of the EJB server is secured.
Points to the CSF alias that is mapped to the user name
and password in the keystore. This specific user name/
password pair is the credential required to access the
secured JNDI for JndiMappedName lookup.

This property can be added to either the
RequestParameters object or to the Oracle Enterprise
Scheduler configuration of the hosting application.

Note:

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST
scripts to configure the CSF key aliases as a post installation step. Prior to the
post installation step, the Keystore's CSF map can be set to the default value of
oracle.ess.security.

Table 12-2 lists the properties that can be added either to the RequestParameters
object or to the Oracle Enterprise Scheduler configuration of the hosting application. In
a production environment, environment specific data should not be entered into the
job definition because the job definition is replicated when going from the test
environment to the production environment. Instead, this data should be entered
separately as configuration data with the hosting application. The Oracle Enterprise
Scheduler token substitution and logical cluster features allow you to abstract
metadata so that it can be easily changed to correctly fit the target deployment during
the T2P process. See Using Tokens and Logical Clusters for information about using
these features.

Creating and Storing Job Definitions for EJB Job Types

Creating and Using EJB Jobs 12-3

Table 12-2 Additional Properties

Property Name [Field in
SystemProperty class]

Description

SYS_EXT_essJndiCsfKey
[ESS_JNDI_CSF_KEY_NAME]

Optional. Specifies the CSF key alias of the
authenticated Oracle Enterprise Scheduler server.
This property is required only if the Oracle
Enterprise Scheduler JNDI tree is authenticated.

Example: ess-jndi-csf-key

SYS_EXT_essRuntimeJndiMappedNam
e{ESS_RUNTIME_JNDI_MAPPED_NAME]

Specifies the JNDI mapped name of Oracle
Enterprise Scheduler's RuntimeService bean
that is defined in the hosting application and
bound to the Oracle Enterprise Scheduler
server's JNDI tree.

This property is required only if you use a
hosting application other than
EssNativeHostingApp and the remote bean
has to call the Oracle Enterprise Scheduler
runtime bean (for example, to write output or log
information, submit requests or operate on
requests).

SYS_EXT_essMetadataJndiMappedNa
me[ESS_METADATA_JNDI_MAPPED_NAM
E]

Specifies the JNDI mapped name of Oracle
Enterprise Scheduler's MetadataService bean
defined in the hosting application and bound to
the Oracle Enterprise Scheduler server's JNDI
tree.

This property is required only if you use a
hosting application other than
EssNativeHostingApp and the remote bean
requires access to Oracle Enterprise Scheduler's
metadata bean.

SYS_EXT_essAsyncRequestJndiMapp
edName[ESS_ASYNC_REQUEST_JNDI_M
APPED_NAME]

Specifies the JNDI mapped name of Oracle
Enterprise Scheduler's AsyncRequest bean
defined in the hosting application and bound to
Oracle Enterprise Scheduler server's JNDI tree.

This property is required only if:

• The EJB invocation is asynchronous
• You use a hosting application other than

EssNativeHostingApp

• The remote bean has to call back to Oracle
Enterprise Scheduler beans (for example, an
asynchronous callback).

For more information about system properties, see Using Parameters and System
Properties .

Secured Invocation
Secured invocation of remote EJBs is required when the JNDI tree of its server is
authenticated. This is also true when a remote EJB calls back to Oracle Enterprise
Scheduler EJBs using secured lookup. The following sections provide some guidance.

Forward Invocation
The following apply to forward invocation.

Secured Invocation

12-4 Developing Applications for Oracle Enterprise Scheduler

• When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the
executing job is always propagated.

• When Oracle Enterprise Scheduler executes a job, the JndiProviderUrl of the
current Oracle Enterprise Scheduler Server is always supplied to the remote EJB
through RequestParameters.

• If the JNDI tree of the remote server is authenticated, the JNDI_CSF_KEY property
must be specified in the request parameters or the EssConfiguration of the
hosting application.

• Oracle Enterprise Scheduler looks up the keystore for the CsfKey to retrieve the
PasswordCredential and connects to the remote server.

Callback Invocation
The following apply to callback invocation.

• If the remote EJB must call back to Oracle Enterprise Scheduler beans, the following
properties can be specified:

– The JNDI names of Oracle Enterprise Scheduler Runtime, Metadata and
AsyncRequest beans exposed in HostingApp must be specified in request
parameters or the EssConfiguration of the hosting application. If
EssNativeHostingApp is used, these entries are not required.

– If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated, the
ESS_JNDI_CSF_KEY_NAME property must be specified in the request
parameters or EssConfiguration of the hosting application. Oracle
Enterprise Scheduler ensures that this property is available to the remote EJB
through RequestParameters.

• A remote EJB can make use of the RemoteConnector API to get the remote
instances of Oracle Enterprise Scheduler beans. This can be done by passing the
following:

– RequestParameters

– RequestParameters and JndiMappedName of the bean (for hosting
applications other than the native hosting application)

– RequestParameters, user name and password (if the Oracle Enterprise
Scheduler server is authenticated)

– InitialContext (primarily for Java SE clients with
EssNativeHostingApp)

– InitialContext and jndiMappedName (primarily for Java SE clients with
other hosting applications)

RemoteConnector API and the Server Affinity Property
If your code implementation relies on accessing Oracle Enterprise Scheduler EJBs, use
the methods exposed in the RemoteConnector API class. The Oracle Enterprise
Scheduler requires the server affinity property to be set in the InitialContext
environment before doing a JNDI lookup and the RemoteConnector API class sets
this property for you. Note that this is especially important in multi-node cluster

Secured Invocation

Creating and Using EJB Jobs 12-5

scenarios. The RemoteConnector class is packaged in the Oracle Enterprise
Scheduler client libraries.

If for some reason the RemoteConector class cannot be used, you can set the
environment map property to the InitialContext before doing the look-up for the
Oracle Enterprise Scheduler EJBs as shown in the following example.

if(PlatformUtils.isWebLogic())
 envProps.put("weblogic.jndi.enableServerAffinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-
robin-affinity".

CSF Lookup From a Remote Server
If the beans of Oracle Enterprise Scheduler Services are authenticated, remote
applications must use a secured lookup to make callbacks to Oracle Enterprise
Scheduler. You can use Oracle Enterprise Scheduler's RemoteConnector API which
uses the ESS_JNDI_CSF_KEY_NAME property available in the request parameters to
do the look-up. But to assist this CSF lookup, the code that invokes the
RemoteConnector must grant permission for credential store access. The following
XML fragment can be added to the jazn-data.xml file of the remote application.

 <jazn-policy>
 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/
tmp/ _WL_user/<AppName>/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
<class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=oracle.ess.security,keyName=*</name>
 <actions>READ</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>execute</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>AppSecurityContext.setApplicationID.*</name>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>

Synchronous Bean
This section contains examples that illustrate how to create a synchronous bean.

Metadata
This section shows metadata as it applies to synchronous beans.

Synchronous Bean

12-6 Developing Applications for Oracle Enterprise Scheduler

The following example shows a sample job definition for an EJB job located in the file
oracle/apps/ess/custom/Jobs/EssGatewayJobDefn.xml

<?xml version = '1.0'?>
<job-definition xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://xmlns.oracle.com/scheduler"
 name="SoaEjbJobDefn"
 job-type="/oracle/as/ess/core/JobType/SyncEjbJobType.xml">
<description/>
 <display-name>EssGatewayBean</display-name>
 <parameter-list>
 <parameter name="SYS_EXT_jndiKeyName" data-type="string" read-only="true">
 ejb/essGatewayBean</parameter>
 <parameter name="SYS_EXT_jndiProviderUrl" data-type="string" read-
only="true">URL</parameter>
 <parameter name="SYS_EXT_ejbOperationName" data-type="string"
 read-only="true">activateFileAdapter</parameter>
 <parameter name="SYS_effectiveApplication" data-type="string">
 ESS_NATIVE_HOSTING_APP_LOGICAL_NAME</parameter>
 </parameter-list>
</job-definition>

EJB Job Sample Code
This section shows a sample implementation of a synchronous EJB job expected by
Oracle Enterprise Scheduler.

The following code snippet shows a fragment of the ejb-jar.xml file that defines
this bean.

<session>

<description>ESS Gateway Bean</description>
 <ejb-name>EssGateway</ejb-name>
 <ejb-class>com.soa.beans.EssGatewayBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
</session>

The following code snippet shows a fragment of the weblogic-ejb-jar.xml file
that defines this bean.

<weblogic-enterprise-bean>
 <ejb-name>FileAdapterBean</ejb-name>
 <stateless-session-descriptor>
 <business-interface-jndi-name-map>
 <business-remote>oracle.as.scheduler.RemoteCancellableExecutable
 </business-remote>
 <jndi-name>ejb/essGatewayBean</jndi-name>
 </business-interface-jndi-name-map>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

import javax.ejb.Stateless;
import oracle.as.scheduler.SystemProperty;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;

Synchronous Bean

Creating and Using EJB Jobs 12-7

import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteCancellableExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;

@Stateless(name = "EssGateway", mappedName = "ejb/essGatewayBean")
public class EssGatewayBean implements RemoteCancellableExecutable
{
 public EssGatewayBean()
 {
 }

 public void execute(RequestExecutionContext context,
 RequestParameters parameters) throws ExecutionErrorException,
 ExecutionWarningException, ExecutionCancelledException,
 ExecutionPausedException
 {
 //Get the value of 'SYS_EXT_ejbOperationName' property
 String opName =
(String)parameters.getValue(SystemProperty.EJB_OPERATION_NAME);

 if("manageFileAdapter".equals(opName))
 {
 //
 //Call business method of this bean or some other bean
 //
 //Hint: User defined properties can be set in RequestParameters while
 //submitting the job and can be retrieved here for further
processing.
 }
 }

 public void cancel(RequestExecutionContext context,
 RequestParameters parameters)
 {
 //
 //Logic to cancel the execution of a business method.
 //
 // Execute the actual logic of cancellation, notifies back to ESS
 // by throwing ExecutionCancelledException through execute method.
 }
}

Asynchronous Bean
Asynchronous EJBs are typically used:

• For long-running operations

• For processor-intensive tasks

• For background tasks

• To increase application throughput

• To improve application response time if the method invocation result is not
required immediately

The synchronous EJB job is more appropriate for short-running user business
methods.

Asynchronous Bean

12-8 Developing Applications for Oracle Enterprise Scheduler

There are a couple of ways for Oracle Enterprise Scheduler to execute a bean
asynchronously:

• Explicit asynchrony: Use a synchronous stateless bean to invoke a message-driven
bean asynchronously. (Add a Java Message Service message to a topic/queue that
is listened to by a message-driven bean)

• Implicit asynchrony: Use the EJB Asynchronous annotation to declare a business
method (other than execute, cancel methods) to behave asynchronously.

When Oracle Enterprise Scheduler invokes a bean asynchronously, it does not wait for
the execute method to finish. For that reason, the bean implementation has to notify
the Oracle Enterprise Scheduler after processing finishes. The RemoteAsyncHelper
class can be used for this purpose. Alternatively, the AsyncRequestBean obtained
from RemoteConnector can be used to notify Oracle Enterprise Scheduler with a
status update.

Note:

Oracle Enterprise Scheduler can invoke a synchronous bean asynchronously.
However, if you use this method the bean must be modeled in a way that
long-running methods are marked for asynchrony.

Note:

As specified in the EJB standard, you cannot use the @Asynchronous
annotation in the execute method or the entire class because the execute
method throws custom exceptions which are not permitted. Oracle Enterprise
Scheduler requires the execute method to throw custom exceptions.

Metadata
This section shows metadata as it applies to asynchronous beans.

This example shows a sample job definition for an EJB job located in the file oracle/
apps/ess/custom/Jobs/AsyncJobDefn.xml

<?xml version = '1.0'?>
<job-definition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/scheduler" name="EssAsyncJobDefn"
 job-type="/oracle/as/ess/core/JobType/AsyncEjbJobType.xml">
 <display-name>EssGatewayBean</display-name>
 <parameter-list>
 <parameter name="SYS_EXT_jndiKeyName" data-type="string"
 read-only="true">ejb/essAsyncGatewayBean</parameter>
 <parameter name="SYS_EXT_jndiProviderUrl" data-type="string"
 read-only="true">t3://localhost:10801</parameter>
 <parameter name="SYS_EXT_ejbOperationName"
 data-type="string"read-only="true">activateFileAdapter</parameter>
 <parameter name="SYS_effectiveApplication" data-type="string">
 ESS_NATIVE_HOSTING_APP_LOGICAL_NAME</parameter>
 </parameter-list>
</job-definition>

Asynchronous Bean

Creating and Using EJB Jobs 12-9

EJB Job Sample Code
This section includes sample code that illustrates how to implement asynchrony using
both the explicit and implicit methods described in Asynchronous Bean.

Sample Implementation of Asynchrony Using a Message-Driven Bean

The following code sample shows a synchronous stateless bean that is used to invoke
a message driven bean asynchronously.

package com.soa.test;

import java.io.Serializable;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jms.ObjectMessage;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.Session;

import javax.naming.InitialContext;

import oracle.as.scheduler.AsyncRequestBeanRemote;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteCancellableExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.request.RemoteConnector;

@Stateless(name = "EssAsyncPilot")
public class EssAsyncPilotBean implements RemoteCancellableExecutable
{
 public EssAsyncPilotBean() {
 }

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionPausedException, ExecutionCancelledException {
 // Delegate the job request cancellation to message driven bean
 postToQueue("execute", requestExecutionContext, requestParameters);
 }

 public void cancel(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters) {
 RemoteConnector connector = new RemoteConnector();
 AsyncRequestBeanRemote asyncRequest;

 // Delegate the job request cancellation to message driven bean
 try {
 postToQueue("cancel", requestExecutionContext, requestParameters);
 } catch (Exception e) {
 //Mark this request as ERRORed
 }

Asynchronous Bean

12-10 Developing Applications for Oracle Enterprise Scheduler

 /*
 * Other ways to cancel the job request.
 * asyncRequest = connector.getAsyncRequestEJB(requestParameters);
 * asyncRequest.onCancel(requestExecutionContext);
 *
 * (or)
 *
 * asyncRequest = connector.getAsyncRequestEJB(requestParameters);
 * asyncRequest.setRequestStatus(
 * requestExecutionContext, AsyncStatus.CANCEL, "Cancelling the
job");
 *
 * (or simply)
 *
 * RemoteAsyncHelper asyncHelper = new RemoteAsyncHelper(
 * requestExecutionContext, requestParameters);
 * asyncHelper.onCancel();
 *
 */
 }

 private void postToQueue(String instruction,
 RequestExecutionContext context, RequestParameters params) {
 try {
 QueueConnectionFactory qconFactory;
 QueueConnection qcon;
 QueueSession qsession;
 QueueSender qsender;
 Queue queue;
 ObjectMessage msg;
 InitialContext ic = new InitialContext();

 qconFactory = (QueueConnectionFactory) ic
 .lookup("EssAsyncJmsConnFactory");
 qcon = qconFactory.createQueueConnection();
 qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 queue = (Queue) ic.lookup("EssAsyncJmsQueue");

 qsender = qsession.createSender(queue);
 msg = qsession.createObjectMessage();
 qcon.start();

 ArrayList<Serializable> objsList = new ArrayList<Serializable>(2);
 objsList.add(context);
 objsList.add(params);
 objsList.add(instruction);
 msg.setObject(objsList);
 qsender.send(msg);

 System.out.println("The message, " + instruction
 + ", has been sent to the EssAsyncJmsQueue.");
 qsender.close();
 qsession.close();
 qcon.close();
 } catch (Exception e) {
 System.out.print("error " + e);
 }
 }
}

Asynchronous Bean

Creating and Using EJB Jobs 12-11

import java.util.List;
import java.io.Serializable;
import javax.ejb.MessageDriven;

import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;

import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.async.RemoteAsyncHelper;

/**
 * This message driven bean sample relies on execute/cancel instructions.
 * Upon completion of execution or cancellation, this bean notifies
 * ESS about its status so that the job request is marked for completion.
 */
@MessageDriven(mappedName = "ejb/essAsyncJms")
public class EssAsyncJmsBean implements MessageListener {
 public void onMessage(Message message) {
 if (message instanceof ObjectMessage) {
 ObjectMessage objMessage = (ObjectMessage)message;
 try {
 List<Serializable> objsList =
(List<Serializable>)objMessage.getObject();
 RequestExecutionContext ctx =
(RequestExecutionContext)objsList.get(0);
 RequestParameters params = (RequestParameters)objsList.get(1);
 String instruction = (String)objsList.get(2);
 RemoteAsyncHelper asyncHelper = new RemoteAsyncHelper(ctx,
params);
 if ("cancel".equalsIgnoreCase(instruction)) {
 //EssAsyncJmsBean.cancel: Cancelling the Execution
 try {
 //Do the actual cancellation
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 }
 asyncHelper.onCancel();
 //EssAsyncJmsBean.cancel: Completed cancellation
 } else {
 //EssAsyncJmsBean.execute: Started the Execution ");
 try {
 //Do the actual execution
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 }
 asyncHelper.onSuccess();
 //EssAsyncJmsBean.execute: Completed the Execution ");
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Sample Implementation of Asynchrony Using Annotations

The following code snippet uses the EJB Asynchronousto declare a bean or its
methods to behave asynchronously.

Asynchronous Bean

12-12 Developing Applications for Oracle Enterprise Scheduler

package com.soa.test;

import java.util.concurrent.Future;

import javax.annotation.Resource;

import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import javax.xml.transform.Result;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestNotFoundException;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeServiceException;
import oracle.as.scheduler.SchedulerException;
import oracle.as.scheduler.async.RemoteAsyncHelper;

@Stateless(name = "EssAsyncAnnotatedBean", mappedName = "ejb/essAsyncAnnBean")
public class EssAsyncAnnotatedBean implements RemoteExecutable {
 @Resource
 SessionContext sessionContext;

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters) throws
 ExecutionErrorException, ExecutionWarningException,
 ExecutionPausedException,ExecutionCancelledException
 {
 RemoteAsyncHelper asyncHelper = null;

 try {
 asyncHelper = new RemoteAsyncHelper(requestExecutionContext,
requestParameters);

 //Initiate processing
 initiateProcessing(requestExecutionContext, requestParameters);

 //Get processed results
 Future<Result[]> results =
getProcessedResults(requestExecutionContext, requestParameters);

 //do further processing

 //Finally, complete the request
 asyncHelper.onSuccess();
 }
 catch (Exception e)
 {
 try
 {
 asyncHelper.onBizError(e.getMessage());
 }
 catch (Exception f)
 {

Asynchronous Bean

Creating and Using EJB Jobs 12-13

 }
 }
 }

 @Asynchronous
 public void initiateProcessing(RequestExecutionContext
requestExecutionContext,
 RequestParameters requestParameters)
 {
 //startProcessing
 }

 @Asynchronous
 public Future<Result[]> getProcessedResults(RequestExecutionContext
requestExecutionContext,
 RequestParameters
requestParameters)
 {
 Result[] resultsArr = null;
 //do processing
 return new AsyncResult<Result[]>(resultsArr);
 }

}

Asynchronous Bean

12-14 Developing Applications for Oracle Enterprise Scheduler

13
Creating and Using Web Service Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Web Service
jobs and contains the following sections:

• Introduction

• Predefined Web Service Job Types

• Cancel and Fault Support

• Configuration Properties for Web Service Jobs

• Oracle Web Services Manager Policy Configuration

• Creating a Web Service Job Definition

Introduction
Web services provide a standard means to expose services on the web. Web services
are accessible from a URL and use SOAP and XML as their payloads. Web services are
described by the WSDL standard that defines the interface and the URL of the web
service. The following are examples of web services

• SOA suite composites

• Oracle Service Bus proxy services

• ADF Business Component web services

Web services can expose one-way, synchronous, or asynchronous operations. A one-
way web service operation is a fire-and-forget operation where the web service does
not return a response. A synchronous web service operation returns a response as part
of the same web service invocation. Typically, a web service client blocks until the
synchronous operation response is received. An asynchronous web service operation
involves two one-way messages: one for the web service operation request and a
separate one for the response. Asynchronous web service operations typically
represent long running operations. A web service client invokes an asynchronous web
service operation, but does not wait for the response. Instead, the client specifies a
callback URL at which to receive the response from the web service. The web service
processes the request in the background and uses a callback operation to return the
response to the client-specified callback URL.

Oracle Enterprise Scheduler supports web service jobs that use synchronous, one-way
and asynchronous interfaces. The web service job definition can be defined using
JDeveloper (as part of a hosting application or client application) or using Oracle
Enterprise Manager Fusion Middleware Control. When the web service job type is
selected, a wizard leads the user through a simple set of steps to define the web service
job (see the example in Using Oracle Enterprise Manager Fusion Middleware Control

Creating and Using Web Service Jobs 13-1

to Create a Job Definition). This wizard obtains the WSDL URL and asks the user to
select the WSDL service, port type, and operation. It then creates sample XML for the
payload based on the WSDL, and allows the user to update it. Asynchronous and
synchronous web service may optionally have a designated operation for cancel. If
there is a cancel operation, the operation is selected and the sample XML code for the
cancel operation is modified. The wizard populates a set of predefined system
properties in the job definition with values entered or derived from what the user
enters in the wizard.

Note:

The WSDL URL in a web services job type must be a concrete WSDL URL. It
cannot be an abstract WSDL URL.

The job definition can have user defined parameters. Elements or attributes in the
invoke or cancel payload XML code can specify that one of these parameters be
plugged in as the element value by specifying a token substitution instruction. For
example, plug in the parameter customerID with the token substitution command $
{ESS_REQ:customerID}. This allows the job submitter to just enter parameter
values and have the XML payload constructed from them. Token substitutions can
also be specified for the WSDL base URL and WSDL relative URL system properties.
For more information about token substitution see Using Tokens and Logical Clusters .

Web service jobs are secured by Oracle Web Services Manager (OWSM) policies. In
Oracle Enterprise Manager Fusion Middleware Control or JDeveloper, you can attach
OWSM directly attached policies for the job definition for the invocation (client policy)
and the callback (service policy) actions. You can use globally attached policies to
define policies globally or you can secure individual job definitions with directly
attached policies.

Note:

See the following sections in Securing Web Services and Managing Policies with
Oracle Web Services Manager for more information about using Oracle Web
Services Manager (OWSM) policies:

• "Attaching Policies Globally Using Fusion Middleware Control"

• "Attaching Policies Globally Using WLST"

• "Attaching Policies Directly Using WLST"

Progress messages are supported for asynchronous web service jobs. These messages
are written to the job log. In the callback operation, the job can indicate if the job
succeeded or failed. The callback message comprises the job's output

Predefined Web Service Job Types
As described in Introduction, Oracle Enterprise Scheduler supports three predefined
web service job types. The web service predefined job types are shown in Table 13-1.

Predefined Web Service Job Types

13-2 Developing Applications for Oracle Enterprise Scheduler

Table 13-1 The Predefined Web Service Job Types

Predefined Job Type Description

/oracle/as/ess/core/JobType/
AsyncWebserviceJobType

(Asynchronous) The caller invokes the web service,
the web service runs asynchronously in the
background, and the web service calls back to the
caller at a callback URL

/oracle/as/ess/core/JobType/
SyncWebserviceJobType

(Synchronous) The caller blocks until the response
is returned (request/response)

/oracle/as/ess/core/JobType/
OnewayWebserviceJobType

(One-way) The caller does not expect a response.
The web service runs in the background (fire-and-
forget).

The job type you specify in the web service job definition implicitly determines
whether the configured web service operation is invoked using an asynchronous,
synchronous or one-way (fire-and-forget) operation.

Cancel and Fault Support
Supporting a cancel operation for web service jobs is optional. The web service may
support a cancel operation that allows a running web service invocation to be
canceled. The cancel operation must not be an abort operation (hammer-on-head
style), where the composite is terminated and never calls back to complete the original
operation. A well-behaved cancel implementation by a web service provider ensures
the original web service operation returns an "operation canceled response," with a
predefined wsa:Action code (see Table 13-2) in the SOAP response header. The
cancel web service operation must be a synchronous web service operation.

Both synchronous and asynchronous web service jobs can indicate whether the web
service operation was canceled or resulted in a fault (error) by specifying the
appropriate value in the wsa:Action SOAP response message header. If the callback
response SOAP message does not match the “Canceled" or “Fault" response (through
one of the mechanisms listed below), then the job state is “Succeeded".

The Table 13-2 shows the different web service operation statuses that can be specified
using the SOAP wsa:Action header.

Table 13-2 SOAP Web Service Operation Statuses

Action Code Name Action URI

Cancelled "http://xmlns.oracle.com/schedulercallback/wsOperationCancelled"

Fault • Standard web service addressing: "http://schemas.xmlsoap.org/ws/
2004/08/addressing/fault"

• Oracle application server: "http://xmlns.oracle.com/oracleas/schema/
oracle-fault-11_0/Fault"

The Oracle SOA Suite does not support setting wsa:Action message headers. As an
alternative you can add one of the strings listed in Table 13-3 to the SOAP body
element of a callback message.

Table 13-3 Oracle SOA Suite Status Operations

Operation String

Cancelled "wsOperationCancelled"

Cancel and Fault Support

Creating and Using Web Service Jobs 13-3

Operation String

Fault "wsOperationFault"

Configuration Properties for Web Service Jobs
Table 13-4 lists the properties associated with the web service job type.

Table 13-4 Web Service Job Configuration Properties

Property Name Description

SYS_EXT_wsWsdlBaseUrl1 The base URL part of WSDL URL.

SYS_EXT_wsWsdlUrl1 The relative part of the web service WSDL URL (must be a concrete WSDL
URL). Either the SYS_EXT_wsEndpointUrl property or the
SYS_EXT_wsWsdlUrl property must be completely specified. For example,
either SYS_EXT_wsWsdlBaseUrl and SYS_EXT_wsWsdlUrl are both
configured, or SYS_EXT_wsEndpointBaseUrl and
SYS_EXT_wsEndpointUrl are both configured.

SYS_EXT_wsEndpointBaseUrl
1

The base URL part of endpoint URL.

SYS_EXT_wsEndpointUrl1 The relative part of the web service endpoint URL (must be a concrete WSDL
URL). Either the SYS_EXT_wsEndpointUrl property or the
SYS_EXT_wsWsdlUrl property must be completely specified. For example,
either SYS_EXT_wsWsdlBaseUrl and SYS_EXT_wsWsdlUrl are both
configured, or SYS_EXT_wsEndpointBaseUrl and
SYS_EXT_wsEndpointUrl are both configured.

SYS_EXT_wsTargetNamespace The target name space.

SYS_EXT_wsServiceName The service name.

SYS_EXT_wsPortName The port name.

SYS_EXT_wsOperationName The operation name.

SYS_EXT_invokeMessage1 The XML submit message used to invoke the web service.

SYS_EXT_wsCancelOperation
Name

Optional. The cancel operation name.

SYS_EXT_wsCancelMessage1 Optional. The XML message for the web service cancel operation.

SYS_externalJobType Optional. The supported values are “ADFBC", “OSB" or “SOA". Any other
value is invalid.

1 This property can be specified using token substitution. Refer to Using Tokens and Logical Clusters for
more information.

If the SYS_EXT_wsEndpointBaseUrl property and the SYS_EXT_wsEndpointUrl
property are specified in the job definition, Oracle Enterprise Scheduler has enough
information to invoke the web service. If the SYS_EXT_wsEndpointBaseUrl and
SYS_EXT_wsEndpointUrl properties are not specified in the job definition and the
SYS_EXT_wsWsdlBaseUrl and the SYS_EXT_wsWsdlUrl properties are specified,
Oracle Enterprise Scheduler retrieves the WSDL at runtime (before invoking the job),
gets the EndpointUrl and TargetNamespace property values from the WSDL and
invokes the web service.

Configuration Properties for Web Service Jobs

13-4 Developing Applications for Oracle Enterprise Scheduler

The SYS_EXT_wsServiceName, SYS_EXT_wsPortName and
SYS_EXT_wsOperationName properties must be specified to identify the specific
web service operation to be invoked.

The SYS_EXT_invokeMessage property contains the XML message (SOAP body
payload) for invocation. This can either be an XML template or full XML.

An XML template contains tokens that are replaced at runtime. The job submitter
specifies the parameter values to substitute for the tokens in the template. If full XML
is used without tokens, no substitution is required and the specified XML in the job
definition is used “as is" for job invocation.

Note:

The angle brackets (“<“and “>") in XML statements must be escaped.

After it is invoked, the remote web service can log progress messages to update its
status. These messages are logged by the web service job and are available in the
request logs. The web service response XML is captured as job output.

If the SYS_EXT_wsCancelMessage and SYS_EXT_wsCancelOperationName
properties are configured with a cancel message, the message is invoked when a
cancel operation is initiated on a running web service job. The cancel operation is
always invoked as a synchronous web service operation.

The cancel message SOAP header is automatically populated with the WS-
Addressing relatesToId property set to the wsa:messageId associated with the
invoke web service operation. The cancel operation uses the same OWSM policy as the
invoke operation. If the SYS_EXT_wsCancelMessage property is not configured, it
indicates that the web service does not support cancellation and therefore cannot be
canceled.

The SYS_externalJobType property allows web service job definitions to specify a
web service type (ADFBC, Service Bus or SOA). Intended for future customized web
service job implementations.

Oracle Web Services Manager Policy Configuration
The web service job type uses decoupled Oracle Web Services Manager (OWSM)
policy subjects (Job-Invoke, Job-Callback) and associated globally attached policies
and directly attached policies for web service invocation and callback operations.

The Job-Invoke policy subject is associated with all web service job types (one-way,
synchronous and asynchronous), whereas the Job-Callback policy subject is available
only for the asynchronous web service job type. The Job-Invoke and Job-Callback
globally attached policies can be specified at the domain level and configured using
EM or WLST.

If a Job-Invoke globally attached policy or a directly attached policy is not specified for
a web service job definition, an attempt is made to invoke the web service
anonymously. This only works for the one-way and synchronous job type, because
anonymous callbacks are not supported for the asynchronous web service job type.

Job-Invoke and Job-Callback directly attached policies are specific to individual web
service job definitions and are captured in the policy assembly descriptor associated
with the web service job definition. These directly attached policies can be specified at
design time using JDeveloper or at runtime using Oracle Enterprise Manager Fusion
Middleware Control, or using WLST commands.

Oracle Web Services Manager Policy Configuration

Creating and Using Web Service Jobs 13-5

Globally attached policies for web service job policy subjects can be set up using
Oracle Enterprise Manager Fusion Middleware Control or using a WLST script to
configure domain-level globally attached policies for web service job policy subjects.
Example 13-1 shows how such a script might look.

Example 13-1 WLST Script to Configure Globally Attached Policies

connect(adminuser, adminpassword, adminurl)

beginRepositorySession()
deletePolicySet('domain-default-job-invoke-client-policies')
describeRepositorySession()
commitRepositorySession()

beginRepositorySession()
deletePolicySet('domain-default-job-callback-service-policies')
describeRepositorySession()
commitRepositorySession()

print "-- create domain-default-job-invoke-client-policies --"
beginRepositorySession()
describeRepositorySession()
createPolicySet('domain-default-job-invoke-client-policies', 'job-invoke',
'Domain("*")')
attachPolicySetPolicy("oracle/
wss11_saml_token_with_message_protection_client_policy")
describeRepositorySession()
commitRepositorySession()

print "-- create domain-default-job-callback-service-policies --"
beginRepositorySession()
describeRepositorySession()
createPolicySet('domain-default-job-callback-service-policies', 'job-callback',
'Domain("*")')
attachPolicySetPolicy("oracle/
wss11_saml_or_username_token_with_message_protection_service_policy")
describeRepositorySession()
commitRepositorySession()

Creating a Web Service Job Definition
Both Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control
offer convenient graphical user interfaces to help you create web service job
definitions. Using Oracle JDeveloper to Create a Job Definition describes how to use
Oracle JDeveloper to create a job definition and Using Oracle Enterprise Manager
Fusion Middleware Control to Create a Job Definition describes how to use Oracle
Enterprise Manager Fusion Middleware Control to do the same.

Using Oracle JDeveloper to Create a Job Definition
You can use Oracle JDeveloper to create a web service job definition while creating
your application. Refer to Using Oracle JDeveloper to Generate an Oracle Enterprise
Scheduler Application general information about how to use Oracle JDeveloper to
create applications that work with the Oracle Enterprise Scheduler.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring

Creating a Web Service Job Definition

13-6 Developing Applications for Oracle Enterprise Scheduler

accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle JDeveloper.

The following steps show you how to create a job definition for an asynchronous web
service job type.

1. Navigate to the Job Definition tab. Fill in the Name, Display Name, and
Description fields and choose an appropriate web service job type as shown in the
example in Figure 13-1. Have the WSDL URL for the target web service available.

Figure 13-1 Oracle JDeveloper: Job Definition Tab

2. Click the Web Service Explorer button to launch the Web Service configuration
wizard as shown in Figure 13-2. Enter the WSDL URL, the Service, Port, Operation
and configure the payload XML as shown in the example, then click OK.

Note:

The example shown in Figure 13-2 shows the invoke XML payload with the
substitutable token SubmitArgument1, whose value is provided at
submission request time. Token substitution is described in Using Tokens and
Logical Clusters .

Creating a Web Service Job Definition

Creating and Using Web Service Jobs 13-7

Figure 13-2 Oracle JDeveloper: Web Service Popup

3. Click the Specify Security Policies button as shown in Figure 13-3. Select For
Request to configure the directly attached policy for the Job-Invoke policy subject.

Figure 13-3 Oracle JDeveloper: Job Definition Tab

Creating a Web Service Job Definition

13-8 Developing Applications for Oracle Enterprise Scheduler

4. The Job-Invoke policy subject is available for all web service job definition types
(one-way, synchronous and asynchronous. Select and attach the required OWSM
client policy for the Job-Invoke directly attached policy. You should see a screen like
the one shown in Figure 13-4.

Figure 13-4 Oracle JDeveloper: ESS Web Service Policies Popup

5. This completes directly attached policy configuration for a synchronous or one-way
web service job definition. For asynchronous job definitions, you can also configure
the directly attached policy for the Job-Callback policy subject.

To configure a Job-Callback directly attached policy for an asynchronous job
definition, repeat step 3 of this procedure and instead of For request, select For
callback. Select and attach the required OWSM service policy for the Job-Callback
directly attached policy as shown in Figure 13-4.

Note:

Post deployment, you can use Oracle Enterprise Manager Fusion Middleware
Control to change job policies associated with web service job definitions.

Creating a Web Service Job Definition

Creating and Using Web Service Jobs 13-9

Figure 13-5 Oracle JDeveloper: ESS Web Service Policies Popup

Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition
This procedure shows how to use the Oracle Enterprise Manger to create and
configure a web service job definition.

1. Start and log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the navigation pane, expand the Scheduling Services folder and select the
Oracle Enterprise Scheduler application.

3. From the Scheduling Services menu, select Job Metadata > Job Definitions and
then click the Create button.

4. Fill in the Name, Display Name, and Description fields and choose the
appropriate web service job type from the Job Type dropdown as shown in the
example in Figure 13-6.

Creating a Web Service Job Definition

13-10 Developing Applications for Oracle Enterprise Scheduler

Figure 13-6 Fusion Middleware Control Console: Create Job Definition Page

5. Click the Select Web Service button and enter the WSDL URL in the Select Web
Service popup window. After you enter the URL, select the Service, Port Type,
Operation and configure the Invoke Operation XML payload.

The example shown in Figure 13-7 shows the invoke XML payload with the
substitutable token SubmitArgument1, whose value is provided at submission
request time.

Note:

Token substitution is described in Using Tokens and Logical Clusters .

Creating a Web Service Job Definition

Creating and Using Web Service Jobs 13-11

Figure 13-7 Fusion Middleware Control Console: Select Web Service Popup

6. After you create the job definition, return to the Job Definitions page and select the
job definition name (“AsyncWSJob1" in this example) in the Results table. Click the
Attach/Detach Policy button and select Invoke as shown in Figure 13-8 to
configure the directly attached policy for the Job-Invoke policy subject. The Job-
Invoke policy subject is available for all web service job type definitions.

Figure 13-8 Fusion Middleware Control Console: Job Definitions Page

Creating a Web Service Job Definition

13-12 Developing Applications for Oracle Enterprise Scheduler

7. In the Web Services Policy page, select the policy and click the Attach/Detach
button to attach the required OWSM client policy for the Job-Invoke directly
attached policy. This is shown in Figure 13-9. The Attach/Detach Policies popup is
displayed.

Figure 13-9 Fusion Middleware Control Console: Web Service Policies Page

8. Select the policy and click OK to complete the attachment.

Creating a Web Service Job Definition

Creating and Using Web Service Jobs 13-13

Figure 13-10 Fusion Middleware Control Console: Policy Attachment Popup

9. This completes directly attached policy configuration for a synchronous or one-way
web service job definition. For an asynchronous job definitions, you can also
configure the directly attached policy for the Job-Callback policy subject.

To configure Job-Callback directly attached policy for an asynchronous job
definition, repeat step 6 of this procedure and instead of Invoke, select Callback.
Select and attach the required OWSM service policy for the Job-Callback directly
attached policy.

Creating a Web Service Job Definition

13-14 Developing Applications for Oracle Enterprise Scheduler

14
Creating and Using Process Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create process jobs,
which run a script or binary command in a forked process.

This chapter includes the following sections:

• Introduction to Creating Process Job Definitions

• Creating and Storing Job Definitions for Process Job Types

• Using an Agent Handler for Process Jobs

• Process Job Locale

For information about how to use the Runtime Service, see Using the Runtime Service.

Introduction to Creating Process Job Definitions
Oracle Enterprise Scheduler lets you run job requests of different types, including: Java
classes, PL/SQL stored procedures, or process jobs that run as spawned jobs. To use
Oracle Enterprise Scheduler to run process type jobs you need to specify certain
metadata to define the characteristics of the process type job that you want to run. You
may also want to specify properties of the job request, such as the schedule for when it
runs.

Specifying a process type job request with Oracle Enterprise Scheduler is a three step
process:

1. You create or obtain the script or binary command that you want to run with
Oracle Enterprise Scheduler. We do not cover this step because we assume that
you have previously created the script or command for the spawned process.

2. Using the Oracle Enterprise Scheduler APIs in your application, you create job
type and job definition objects and store these objects to the metadata repository.

3. Using the Oracle Enterprise Scheduler APIs you submit a job request. For
information about how to submit a request, see Using the Runtime Service.

After you create an application that uses the Oracle Enterprise Scheduler APIs, you
need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information on monitoring and managing job requests, see Using
the Runtime Service.

Creating and Storing Job Definitions for Process Job Types
To use process type jobs with Oracle Enterprise Scheduler, you need to locate the
Metadata Service and create a job definition. You create a job definition by specifying a

Creating and Using Process Jobs 14-1

name and a job type. When you create a job definition you also need to set certain
system properties. You can store the job definition in the metadata repository using the
Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata
Service .

How to Create and Store a Process Job Type
An Oracle Enterprise Scheduler JobType object specifies an execution type and
defines a common set of properties for a job request. A job type can be defined and
then shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

• JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

• SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

• PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes under the control of the host operating system.

When you specify the JobType you can also specify SystemProperties that define
the characteristics associated with the JobType. Table 14-1 describes the properties
that specify how the request should be processed if the request results in spawning a
process for a process job type.

Table 14-1 System Properties for Process Type Jobs

System Property Description

BIZ_ERROR_EXIT_CODE Specifies the process exit code for a process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit
code of 4 as an execution business error.

CMDLINE Command line required for invoking an external program.

ENVIRONMENT_VARIABLES A comma-separated list of name/value pairs (name=value) representing the
environment variables to be set for spawned processes.

REDIRECTED_OUTPUT_FIL
E

Specifies the file where standard output and error streams are redirected for a
process job request.

REQUESTED_PROCESSOR The Oracle WebLogic Server node on which a spawned job is executed.

SUCCESS_EXIT_CODE The process exit code for a process job request that denotes a successful execution.
If this property is not specified, the system treats a process exit code of 0 as a
successful completion.

WARNING_EXIT_CODE The process exit code for a spawned job that denotes a successful execution. If this
property is not specified, the system treats a process exit code of 3 as a warning
exit.

WORK_DIR_ROOT The working directory for a spawned process.

For more information about system properties, see Using Parameters and System
Properties .

Example 14-1 shows a sample job definition with a PROCESS_TYPE.

Creating and Storing Job Definitions for Process Job Types

14-2 Developing Applications for Oracle Enterprise Scheduler

As shown in Example 14-1, when you create and store a process job type, you do the
following:

• Use the JobType constructor and supply a String name and a
JobType.ExecutionType.PROCESS_TYPE argument.

• Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use the
Metadata Service addJobType() method to store the JobType in metadata.

• The MedatdataObjectId, returned by addJobType(), uniquely identifies
metadata objects in the metadata repository using a unique identifier.

Example 14-1 Creating an Oracle Enterprise Scheduler Job Definition and Setting
Job Definition Properties

import oracle.as.scheduler.ConcurrentUpdateException;
import oracle.as.scheduler.JobType;
import oracle.as.scheduler.JobDefinition;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataServiceException;
import oracle.as.scheduler.ParameterInfo;
import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;
import oracle.as.scheduler.SystemProperty;
import oracle.as.scheduler.ValidationException;

 void createDefinition()
 throws MetadataServiceException,ConcurrentUpdateException,
 ValidationException
 {
 MetadataService metadata = ...
 MetadataServiceHandle mshandle = null;

 try
 {
 ParameterInfo pinfo;
 ParameterList plist;

 mshandle = metadata.open();

 // Define and add a PL/SQL job type for the application metadata.
 String jobTypeName = "ProcessJobDefType";
 JobType jobType = null;
 MetadataObjectId jobTypeId = null;

 jobType = new JobType(jobTypeName, JobType.ExecutionType.
 PROCESS_TYPE);

 plist = new ParameterList();
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.CMDLINE);
 plist.add(pinfo.getName(), pinfo.getDataType(), "/bin/myprogram
 arg1 arg2", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.
 ENVIRONMENT_VARIABLES);
 plist.add(pinfo.getName(), pinfo.getDataType(),
 "LD_LIBRARY_PATH=/usr/lib", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PRODUCT);
 plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD",
false);

Creating and Storing Job Definitions for Process Job Types

Creating and Using Process Jobs 14-3

 jobType.setParameters(plist);

 jobTypeId = metadata.addJobType(mshandle, jobType, "HOW_TO_PROD");

 // Define and add a job definition for the application metadata.
 String jobDefName = "ProcessJobDef";
 JobDefinition jobDef = null;
 MetadataObjectId jobDefId = null;

 jobDef = new JobDefinition(jobDefName, jobTypeId);
 jobDef.setDescription("Demo Process Type Job Definition " +
 jobDefName);

 plist = new ParameterList();
 plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);

 pinfo = SystemProperty.getSysPropInfo(SystemProperty.
 REDIRECTED_OUTPUT_FILE);
 plist.add(pinfo.getName(), pinfo.getDataType(), "/tmp/" + jobDefName
 + ".out", false);

 jobDef.setParameters(plist);

 jobDefId = metadata.addJobDefinition(mshandle, jobDef,
"HOW_TO_PROD");
 }
 catch (Exception e)
 {
 [...]
 }
 finally
 {
 // Close metadata service handle in finally block.
 if (null != mshandle)
 {
 metadata.close(mshandle);
 mshandle = null;
 }
 }
 }

How to Create and Store a Process Type Job Definition
To use process type jobs, you need to create and store a job definition.

Note:

After you create a job definition with a job type, you cannot change the type or
the job definition name. To change the job type or the job definition name, you
need to create a new job definition.

Example 14-1 shows how to create a job definition using the job definition constructor
and the job type. Table 14-1 describes some of the system properties that are associated
with the job definition.

As shown in Example 14-1, when you create and store a job definition you do the
following:

Creating and Storing Job Definitions for Process Job Types

14-4 Developing Applications for Oracle Enterprise Scheduler

• Use the JobDefinition constructor and supply a String name and a
MetadataObjectID that points to a job type stored in the metadata.

• Set the appropriate properties for the new job definition.

• Obtain the metadata pointer, as shown in Accessing the Metadata Service. Then,
use the Metadata Service addJobDefinition() method to store the job
definition in the metadata repository and to return a MetadataObjectID.

Using an Agent Handler for Process Jobs
Oracle Enterprise Scheduler requires an agent handler to manage individual process
jobs. The agent handler validates, spawns, monitors and controls process job
execution, and also returns the exit status of process jobs to Oracle Enterprise
Scheduler. The agent handler also monitors Oracle Enterprise Scheduler availability
and handles job cancellation requests. In the event of abnormal job termination (or job
cancellation requests), the agent handler terminates the spawned process (along with
its children) and exits. It detects the operating system type and uses appropriate
system calls to invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduler agent handler can generate its log under the /tmp
folder. Log generation must be enabled by setting the Oracle Enterprise Scheduler log
level to FINE, FINER or FINEST and ensuring read and write access to the /tmp
folder. One log file is generated for each process job invocation. The log file lists the
process job invocation log, including a list of environment variables, the command line
and redirected output file specified for the process job, process ID and exit code for the
process job or errors detected while spawning the process.

Choosing an Agent Handler
Oracle Enterprise Scheduler provides two different agent handlers, the Java agent
handler and the Perl agent handler. Both agent handlers are functionally equivalent
with the exception that the Java agent handler does not support terminate-
spawned-process-on-restart behavior on Windows.

By default, Oracle Enterprise Scheduler uses the Java agent handler for requests in
standard and extended mode. It always uses the Perl agent handler for requests in
Fusion mode. To use the Perl agent handler in standard and extended request modes,
you must add the PerlCommand property to the ess-config.xml file associated
with the hosting application running the process job as shown in the following
example.

<EssProperties>
 <EssProperty key="RequestFileDirectory" value="/tmp/ess/
requestFileDirectory"/>
 <EssProperty key="RequestFileDirectoryShared" value="false"/>
 ...
 <EssProperty key="PerlCommand" value="/usr/bin/perl"/>
</EssProperties>

You can use token substitution to specify environment dependent values like directory
names. Refer to Using Tokens and Logical Clusters for more information.

The Oracle Enterprise Scheduler Perl agent handler requires Oracle Perl version 5.10
or later. Instructions for installing Perl to support process jobs can be found in the
chapter "Configuring Perl to Support Process Jobs" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

Using an Agent Handler for Process Jobs

Creating and Using Process Jobs 14-5

Note:

If you run Oracle Enterprise Scheduler in a Fusion Applications environment
you must use the Perl agent handler.

Process Job Locale
Individual process jobs can use different locales and encoding as determined by the
locale environment variable settings applicable to the process job at execution time.
For a process job, Oracle Enterprise Scheduler imports the request log and output file
into the content store after completing the request.

Locale environment variables for a process job can be specified at multiple places
including the process job definition and the hosting application's ess-config.xml
file. The locale resolution logic for a process job uses the following precedence order to
determine the effective LC_ALL and LANG environment variable values for the request:

1. SYS_environment variables associated with the request (highest precedence)

2. The hosting application's ess-config.xml file

3. The WebLogic server locale (lowest precedence)

For every process job, the effective locale and encoding is determined based on the
above precedence order (with the effective LC_ALL value overriding the effective
LANG value). This encoding applies to the log only, and not the output.

Process Job Locale

14-6 Developing Applications for Oracle Enterprise Scheduler

15
Defining and Using Schedules

This chapter describes how to define schedules that you can associate with a Oracle
Enterprise Scheduler job definition, specifying when a job request runs and including
administrative actions such as workshifts that specify time-based controls for
processing with Oracle Enterprise Scheduler.

This chapter includes the following sections:

• Introduction to Schedules

• Defining a Recurrence

• Defining an Explicit Date

• Defining and Storing Exclusions

• Defining and Storing Schedules

• Identifying Job Requests That Use a Particular Schedule

• Updating and Deleting Schedules

Introduction to Schedules
Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use a schedule for other purposes, such as determining when a work
assignment becomes active. A schedule can contain a list of explicit dates, such as July
14, 2012. A schedule can also include expressions that represent a set of recurring dates
(or times and dates).

Using Oracle Enterprise Scheduler you create a schedule with one or more of the
following:

• Explicit Date: Defines a date for use in a schedule or exclusion.

• Recurrence: Contains an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM.

• Exclusion: Contains a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule.

Defining a Recurrence
A recurrence is an expression that represents a recurring date and time. You specify a
recurrence using an Oracle Enterprise Scheduler Recurrence object. You use a
Recurrence object when you create a schedule or with an exclusion to specify a list
of dates.

Defining and Using Schedules 15-1

The Recurrence constructor allows you to create a recurrence as follows:

• Using the fields defined in the RecurrenceFields class, such as DAY_OF_MONTH.

• Using a recurrence expression compliant with the iCalendar (RFC 2445)
specification. For information about using iCalendar RFC 2245 expressions see,

http://www.ietf.org/rfc/rfc2445.txt

Note:

When you create a recurrence you can only use one of these two mechanisms
for each recurrence instance.

A recurrence can also include the following (these are not required):

• Start date: The starting time and date for the recurrence pattern.

• End date: The ending time and date for the recurrence pattern.

• Count: The count for the recurrence pattern. The count indicates the maximum
number of occurrences the object generates. For example, if you specify a
recurrence representing a regular period such as Mondays at 10:00AM, and a count
of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a
RecurrenceFields helper based instance or an iCalendar based instance of a
recurrence.

You can validate a recurrence using the recurrence validate() method that checks if
an instance of a Recurrence object represents a well defined and complete
recurrence pattern. A Recurrence instance is considered complete if it has the
minimum required fields that can generate occurrences of dates or dates and times.

How to Define a Recurrence with a Recurrence Fields Helper
You can create a recurrence using a recurrence fields helper. The RecurrenceFields
helper class provides a user-friendly way to specify a recurrence pattern. Table 15-1
shows the recurrence fields helper classes available to specify a recurrence pattern.

Table 15-1 Recurrence Field Helper Patterns

Recurrence Field Description

DAY_OF_MONTH Defines the day of a month

DAY_OF_WEEK Enumeration of the day of a week

FREQUENCY Defines the repeat frequency of a Recurrence. Choices are:

• DAILY: Indicates every day repetition
• HOURLY: Indicates every hour repetition
• MINUTELY: Indicates every minute repetition
• MONTHLY: Indicates every month repetition
• SECONDLY: Indicates every second repetition
• WEEKLY: Indicates every week repetition
• YEARLY: Indicates every year repetition

Defining a Recurrence

15-2 Developing Applications for Oracle Enterprise Scheduler

http://www.ietf.org/rfc/rfc2445.txt

Recurrence Field Description

MONTH_OF_YEAR Defines the months of the year

TIME_OF_DAY Defines the time of the day

WEEK_OF_MONTH Enumerations for the week of a month

YEAR Encapsulate the value of a year

Example 15-1 shows a sample recurrence created using the RecurrenceFields
helper class with a weekly frequency (every Monday at 10:00 a.m.) using no start or
end date.

In Example 15-1, note the following:

• The schedule becomes active as specified with the start time supplied at runtime by
Oracle Enterprise Scheduler when a job request that uses the schedule is submitted.

• The interval parameter 1 specifies that this recurrence generates occurrences every
week. You calculate this value by multiplying the frequency with the interval.

Example 15-2 shows a sample recurrence for every 4 hours with no start or end date.
The recurrence was created using the RecurrenceFields helper class with an
hourly frequency, an interval multiplier of 4, a null start date, and a null end date.

In Example 15-2, note the following:

• The schedule becomes active as specified with the start time supplied at runtime by
Oracle Enterprise Scheduler when a job request that uses the schedule is submitted.

• The interval parameter 4 specifies that this recurrence generates occurrences every
4 hours. You calculate this value by multiplying the frequency with the interval.

Example 15-3 shows a sample recurrence created using the RecurrenceFields
helper class and a monthly frequency.

Example 15-3 specifies a recurrence with the following characteristics:

• Includes an interval parameter with the value 1 specifies that this recurrence
generates occurrences every month.

• Includes a specification for the week of month, indicating the second week.

• Includes a specification for the day of week, Tuesday.

• Includes the specification for the time of day, with the value 11:00.

Example 15-4 shows a sample recurrence created using the RecurrenceFields
helper class and a monthly frequency specified with a start date and time.

Example 15-4 defines a recurrence with the following characteristics:

• The end date is specified as null meaning no end date.

• Using this recurrence, the start date is specified with the Calendar instance cal,
and its value is set with the set() method calls.

Defining a Recurrence

Defining and Using Schedules 15-3

Example 15-1 Defining a Recurrence with Weekly Frequency

Recurrence recur1 =
 new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY, 1, null, null);
recur1.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.MONDAY);
recur1.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(10, 0, 0));
recur1.validate();

Example 15-2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur2 =
 new Recurrence(RecurrenceFields.FREQUENCY.HOURLY, 4, null, null);
 recur2.validate();

Example 15-3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =
 new Recurrence(RecurrenceFields.FREQUENCY.MONTHLY, 1, null, null);
recur3.addWeekOfMonth(RecurrenceFields.WEEK_OF_MONTH.SECOND);
recur3.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.TUESDAY);
recur3.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(11, 00, 00));
recur3.validate();

Example 15-4 Defining a Recurrence with Start Date and Time Specified

 Calendar cal = Calendar.getInstance();
 cal.set(Calendar.YEAR, 2007);
 cal.set(Calendar.MONTH, Calendar.JULY);
 cal.set(Calendar.DAY_OF_MONTH, 1);
 cal.set(Calendar.HOUR, 9);
 cal.set(Calendar.MINUTE, 0);
 cal.set(Calendar.SECOND, 0);
 Recurrence recur4 = new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY,
 1,
 cal,
 null);
 recur4.validate();

How to Define a Recurrence with an iCalendar RFC 2445 Specification
You can specify a recurrence pattern using the Recurrence constructor with a
String containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:

http://www.ietf.org/rfc/rfc2445.txt

Example 15-5 shows a sample recurrence created using an iCalendar expression.

Note:

The following are not supported through iCalendar expressions:

COUNT, UNTIL, BYSETPOS, WKST

You can still directly specify a count on the Recurrence object using the
setCount method.

Defining a Recurrence

15-4 Developing Applications for Oracle Enterprise Scheduler

http://www.ietf.org/rfc/rfc2445.txt

Example 15-5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new
Recurrence("FREQ=YEARLY;INTERVAL=1;BYMONTH=5;BYDAY=2MO;");
recur5.validate();

What You Need to Know When You Use a Recurrence Fields Helper
When you define a recurrence with a RecurrenceFields helper, note the following:

• Providing a frequency with one of the RecurrenceFields.FREQUENCY
constants is always mandatory when you define a recurrence pattern using the
RecurrenceFields helper classes (for more information on frequency, see Table
15-1).

• The frequency interval supplied with the recurrence constructor is an integer that
acts as a multiplier for the supplied frequency. For example if the frequency is
RecurrenceFields.FREQUENCY.HOURLY and the interval is 8, then the
combination represents every 8 hours.

• Providing either a start or end date is optional. But if a start or end date is specified,
it is guaranteed that the object does not generate any occurrences before the start
date or after the end date (and if specified, any associated start time or end time).

• In general if both start date and recurrence fields are used, then the recurrence
fields always take precedence. This qualification means the following:

– If a start date is specified with just the frequency fields from the
RecurrenceFields then the start date defines the occurrences with the
frequency field, starting with the first occurrence on the start date itself. For
example if a start date is specified as 01-MAY-2007:09:00:00 with a
RecurrenceFields.FREQUENCY of WEEKLY without using other recurrence
fields, the occurrences happen once every week starting on 01-
MAY-2007:09:00:00 (and including 08-MAY-2007:09:00:00, 15-MAY-2007:09:00:00,
and so on).

Thus, providing a start date along with a specification of frequency fields
provides a quick way of defining a recurrence pattern.

– If the start date or end date is specified together with additional recurrence
fields, the recurrence fields take precedence, and the start date or end date only
act as absolute boundary points. For example, with a start date of 01-
MAY-2007:09:00:00 and a frequency of WEEKLY if the additional recurrence field
DAY_OF_WEEK is used with a value of WEDNESDAY the occurrence happens on
every Wednesday starting with the first Wednesday that comes after 01-
MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence happens on
02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TIME_OF_DAY is
also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding the
09:00:00 time from the starting date specification.

• When just a frequency is supplied and a recurrence does not include either a start
date, start time, or a TIME_OF_DAY field, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example, when a recurrence indicates a 2 hour recurrence then the time of the
job request submission determines the start time for the occurrences. Thus, in such

Defining a Recurrence

Defining and Using Schedules 15-5

cases the occurrences for a job request are each 2 hours apart, but when multiple
job requests are submitted, the start times are different and are set at the request
submission time for the job requests.

• When the start date is not used, recurrence fields can be included such that a
recurrence pattern is completely defined. For example, specifying a
MONTH_OF_YEAR alone does not define a recurrence pattern when a start date is
not also present. Without a start date the number of minimum recurrence fields
required to define a pattern depends upon the value of the frequency used. For
example with frequency of WEEKLY, only DAY_OF_WEEK and TIME_OF_DAY are
sufficient to define which day the weekly occurrences should happen. With a
frequency of YEARLY, MONTH_OF_YEAR, DAY_OF_MONTH (or the WEEK_OF_MONTH
and DAY_OF_WEEK) and the TIME_OF_DAY are sufficient to define the recurrence
pattern.

• You can supply multiple values for recurrence fields, except for the frequency field.
However, at runtime Oracle Enterprise Scheduler skips invalid combinations
silently. For example with MONTH_OF_YEAR specified as January and ending in
June, and with DAY_OF_MONTH as 30, the recurrence skips an invalid day, that is
day 30 for February.

What You Need to Know When You Use an iCalendar Expression
When you define a recurrence with an iCalendar expression, note the following:

• When the recurrence does not include either a start date or time and the iCalendar
expression does not specify a time of day, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date and
time of the job request submission determines the exact start time for the
occurrences. Note that in such cases, when the start time is not specified,
occurrences for different job requests can happen at different times, based on the
submission time, but the individual occurrences are 2 hours apart.

• Providing either a start date with setStartDate() or an end date with
setEndDate() is optional. But if a start or end date is specified, it is guaranteed
that the object does not generate any occurrences before the start date or after the
end date (and if specified, any associated start time or end time).

Defining an Explicit Date
An explicit date defines a date and time for use in a schedule or an exclusion. You
construct an ExplicitDate using appropriate fields from the RecurrenceFields
class.

How to Define an Explicit Date
Example 15-6 shows an explicit date definition.

Example 15-6 Defining an Explicit Date

ExplicitDate date = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2007),
RecurrenceFields.MONTH_OF_YEAR.AUGUST,RecurrenceFields.DAY_OF_MONTH.valueOf(17));

Defining an Explicit Date

15-6 Developing Applications for Oracle Enterprise Scheduler

In Example 15-6 a RecurrenceFields helper defines a date in the constructor and
the value does not include a time of day. You can optionally use setTime to set the
time associated with an explicit date.

What You Need to Know About Explicit Dates
The ExplicitDate class provides the ability to define a partial date, when compared
with java.util.Calendar where the time part is not specified. Also all other
java.util.Calendar fields such as TimeZone are not defined with an
ExplicitDate. When the time part is not specified in an ExplicitDate, Oracle
Enterprise Scheduler computes the time appropriately. For example, consider a
schedule that indicates every Monday after June 1, 2007, and adds an explicit date for
the 17th of August 2007 (a Friday). In this example, the 17th of August 2007 is a partial
date since it does not include a time.

Defining and Storing Exclusions
Using an Oracle Enterprise Scheduler exclusion you can represent dates that need to
be excluded from a schedule. For example, you can use an exclusion to create a list of
holidays to skip in a schedule.

How to Define an Exclusion
You represent an individual exclusion with an Exclusion object. You can define the
dates to exclude in an exclusion using either an ExplicitDate or with a
Recurrence object.

Example 15-7 shows how to create an Exclusion instance using a recurrence.

Example 15-7 defines an individual exclusion. For information about creating a list of
Exclusions, see How to Create an Exclusions Definition.

Example 15-7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.YEARLY, 1);
recur.addMonth(RecurrenceFields.MONTH_OF_YEAR.JULY);
recur.addDayOfMonth(RecurrenceFields.DAY_OF_MONTH.valueOf(4));
Exclusion e = new Exclusion("Independence Day", recur);

How to Create an Exclusions Definition
To create a list of exclusions and persist the exclusion dates you do the following:

1. Create a list of exclusions.

2. Define an ExclusionsDefinition object using the list of exclusions.

3. Use the Metadata Service addExclusionDefinition() method to persist the
ExclusionsDefinition.

Example 15-8 Creating and Storing a List of Exclusions in an ExlusionDefinition

Collection<Exclusion> exclusions = new ArrayList<Exclusion>();
Exclusion e = new Exclusion("Independence Day", recur);
exclusions.add(e);
ExclusionsDefinition exDef1 =
new ExclusionsDefinition("OrclHolidays1", "Annual Holidays", exclusions);
MetadataServiceHandle handle = m_service.open();

Defining and Storing Exclusions

Defining and Using Schedules 15-7

MetadataObjectId exId1 = m_service.addExclusionDefinition(handle,exDef1,
"METADATA_UNITTEST_PROD");

Finally, when you want to associate an ExclusionsDefinition with a schedule,
you use the schedule addExclusion() method.

Example 15-8 shows how to create an ExclusionDefinition and store the
definition to the metadata repository.

Note in Example 15-8 that the ExclusionsDefinition constructor requires three
arguments.

Defining and Storing Schedules
Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use the schedule for other purposes (such as determining when a work
assignment becomes active). A schedule contains a list of explicit dates, such as June
13, 2007 or a set of expressions that represent a recurring date or date and time. A
schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following:

• Explicit Dates: Define a date for use in a schedule or exclusion. For more
information, see Defining an Explicit Date

• Recurrences: Contain an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM. For more information, see Defining a Recurrence

• Exclusions: Contain a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule. For more information, see Defining and Storing
Exclusions

How to Define and Store a Schedule
To define a schedule:

1. Create a schedule by defining an Oracle Enterprise Scheduler Schedule object and
using the schedule constructor to create a new schedule.

2. Obtain a metadata service reference, m_metadataService, and open a metadata
session in a try block with MetadataServiceHandle.

MetadataObjectId scheduleId =
m_service.addScheduleDefinition(handle,schedule,"HOW_TO_PROD");

3. Define the date, recurrences and exclusions.

4. Store the schedule using addScheduleDefinition.

5. Close the session with a finally block.

What Happens When You Define and Store a Schedule
Example 15-9 shows a sample schedule definition using a recurrence with the
RecurrenceFields helper class for a weekly schedule, specified to run on Mondays
at 10:00AM.

Defining and Storing Schedules

15-8 Developing Applications for Oracle Enterprise Scheduler

The schedule uses the addInclusionDate() method to add an explicit date to the
occurrences in the schedule, and the addExclusionDate() method to explicitly
exclude the date of May 15 from schedule occurrences.

Example 15-10 shows sample code used to store a schedule. The method
addScheduleDefinition() is used to store the schedule within a try block,
followed by a finally block that includes error handling.

Example 15-9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY, 1);
 recur.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.MONDAY);
 recur.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(10, 0, 0));

 ExplicitDate july10 = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2008),
 RecurrenceFields.MONTH_OF_YEAR.JULY,
 RecurrenceFields.DAY_OF_MONTH.valueOf(10));

 ExplicitDate may15 = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2008),
 RecurrenceFields.MONTH_OF_YEAR.MAY,
 RecurrenceFields.DAY_OF_MONTH.valueOf(15));

 Schedule schedule = new Schedule("everyMonday", "Weekly Schedule", recur);
 schedule.addInclusionDate(july10);
 schedule.addExclusionDate(may15);

Example 15-10 Storing a Schedule

MetadataServiceHandle handle = null;
boolean abort = true;
try
 {
 handle = m_service.open();
 m_service.addScheduleDefinition(handle, schedule, "HOW_TO_PROD");
 abort = false;
 }
finally
 {
 if (handle != null)
 {
 m_service.close(handle, abort);
 }
 }

What You Need to Know About Handling Time Zones with Schedules
You can use a java.util.TimeZone object to set the time zone for a schedule. Use
the Schedule setTimeZone() method to set or clear the TimeZone for a Schedule.
The Schedule method getTimeZone()returns a java.util.TimeZone value if the
Schedule object has as TimeZone set.

Identifying Job Requests That Use a Particular Schedule
You can use Fusion Middleware Control to search for job requests that use a particular
schedule.

For more information about searching for job requests that use a certain schedule, see
the section "Searching for Oracle Enterprise Scheduler Job Requests" in the chapter
"Managing Oracle Enterprise Scheduler Requests" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

Identifying Job Requests That Use a Particular Schedule

Defining and Using Schedules 15-9

Updating and Deleting Schedules
You can use Fusion Middleware Control to edit and delete schedules.

For information about editing and deleting schedules, see the section "Managing
Schedules" in the chapter "Managing Oracle Enterprise Scheduler Requests" in Oracle
Fusion Middleware Administering Oracle Enterprise Scheduler.

Updating and Deleting Schedules

15-10 Developing Applications for Oracle Enterprise Scheduler

16
Using the Oracle Enterprise Scheduler Web

Service

This chapter describes how you can use the Oracle Enterprise Scheduler web service
for accessing a subset of the Oracle Enterprise Scheduler runtime functionality.

This chapter includes the following sections:

• Introduction to the Oracle Enterprise Scheduler Web Service

• Developing and Using ESSWebservice Applications

• ESSWebservice WSDL File

• Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Introduction to the Oracle Enterprise Scheduler Web Service
Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level
scheduling. This functionality includes support for the following operations:

• Creating and managing Oracle Enterprise Scheduler metadata

• Submitting and managing Oracle Enterprise Scheduler job requests

• Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service
(ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime
functionality. The ESSWebservice is provided primarily to support SOA integration,
for example invoking Oracle Enterprise Scheduler from a BPEL process. However, any
client that requires a web service to interact with Oracle Enterprise Scheduler can use
ESSWebservice. ESSWebservice exposes job scheduling and management functionality
for request submission and request management.

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where
the application is a Java EE application within the Oracle Enterprise Scheduler runtime
framework. Thus, the ESSWebservice is available on every node where Oracle
Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked
are synchronous operations. Although the Oracle Enterprise Scheduler internal job
execution model is asynchronous, the ESSWebservice APIs need not be asynchronous.
However, Oracle Enterprise Scheduler web service also provides the capability to
retrieve the job completion events asynchronously (in a manner similar to
implementing the Oracle Enterprise Scheduler EventListener contract in the core API
layer).

The ESSWebservice WSDL describes the complete functionality for the ESSWebservice.
Table 16-1 summarizes the operations available with ESSWebservice.

Using the Oracle Enterprise Scheduler Web Service 16-1

Table 16-1 Summary of Operations Available with ESSWebservice

Operation Communication
Type

Description

addPPAction Synchronous Adds a post-processing action to a step in a job set request.
This method is called prior to submitting the request. The
method provides support for action previously supported by
add_printer, add_notification, add_layout in concurrent
processing. The parameters to these legacy routines are passed
as arguments to addPPAction in the order in which they were
declared in the original routine.

addPPActions Synchronous Similar to addPPAction, except that you can package
multiple actions in your request.

cancelRequest Synchronous Cancels the processing of a request that is not in a terminal
state.

Oracle Enterprise
SchedulerOracle
Enterprise
SchedulerOracle
Enterprise Scheduler

Oracle Enterprise
SchedulerOracle
Enterprise Scheduler

Synchronous Marks a request in a terminal state for deletion. This does not
physically remove any data, although the request is no longer
be accessible by most methods.

For parent requests, this operation cascades to all children.

getCompletionStatus Asynchronous Registers for an asynchronous status update when the request
completes. A one-way operation with a separate asynchronous
response.

getRequestExecution
Context

Synchronous Gets an
oracle.as.scheduler.RequestExectionContext
object from a serialized request execution context string. This
operation should only be invoked from a remote running ESS
job.

getRequestDetail Synchronous Gets the runtime details of the specified request.

getRequestState Synchronous Retrieves the current state of the specified request.

holdRequest Synchronous Withholds further processing of a request that is in WAIT or
READY state. For parent requests, this operation cascades to all
eligible child requests.

releaseRequest Synchronous Releases a request from the HOLD state. For parent requests,
this operation cascades to all eligible child requests.

setAsyncRequestStat
us

Synchronous Sets the status of an asynchronous java job.

setNLSOptions Synchronous Sets NLS environment options for a request.

setStepsArgs Synchronous Marshals arguments in the previous concurrent processing
style into a Oracle Enterprise Scheduler properties for a step in
a job set request. This operation is invoked prior to submitting
a request.

Introduction to the Oracle Enterprise Scheduler Web Service

16-2 Developing Applications for Oracle Enterprise Scheduler

Operation Communication
Type

Description

setSubmitArgs Synchronous Marshals arguments in the previous concurrent processing
style into Oracle Enterprise Scheduler properties.This
operation is invoked prior to submitting the request. The key
of each argument is ARGUMENT_PREFIX#, where # is the
ordinal value of the argument. For example
ARGUMENT_PREFIX1="firstArg" and
ARGUMENT_PREFIX2="secondArg".

submitRecurringRequ
est

Synchronous Submits a new recurring job request (a request with a
schedule).

submitRequest Synchronous Submits a new job request. For more information, see Use
Case: Using Oracle Enterprise Scheduler ESSWebservice from
a BPEL Process

Developing and Using ESSWebservice Applications
Oracle Enterprise Scheduler executes a job request, for example a Java type job
request, in the context of the application that submitted the job. Typically, for
development purposes, Oracle Enterprise Scheduler and client applications co-exist
locally on any given node which allows Oracle Enterprise Scheduler to execute the job
in the context of the target application. For the purposes of production, the client
application and Oracle Enterprise Scheduler often reside on different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle
Enterprise Scheduler artifacts including the following:

• Metadata, including a job type, a job definition, a schedule, and any other required
metadata such as a job set.

• Job implementation classes (for Java jobs).

• A Required Oracle Enterprise Scheduler endpoint description (an MDB description
in ejb-jar.xml).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to
provide this type of Java EE application, so that Oracle Enterprise Scheduler can run
jobs in the context of the correct target application. All such web service clients must
know the name of the corresponding Java EE hosting application and should pass it to
Oracle Enterprise Scheduler and should pass it to the Oracle Enterprise Scheduler web
service call wherever required (as defined in the WSDL).

Such an application is a regular Oracle Enterprise Scheduler client application, where
the job request submission and management are done using ESSWebservice
operations.

How to Develop and Use an ESSWebservice Java EE Application
When the Oracle Enterprise Scheduler functionality is accessed using the
ESSWebservice web service, a corresponding hosting Java EE application must be
available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle
Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service, the
associated Java EE hosting application must still be co-located with Oracle Enterprise
Scheduler. This allows Oracle Enterprise Scheduler to execute job requests in the
correct application context. Therefore, ESSWebservice clients must still develop,

Developing and Using ESSWebservice Applications

Using the Oracle Enterprise Scheduler Web Service 16-3

package and deploy a corresponding Java EE hosting application that contains all the
required Oracle Enterprise Scheduler artifacts.

How to Develop and Use an ESSWebservice SOA Application with BPEL
For SOA clients all the SOA components such as a BPEL process are deployed as a
SOA composite. A SOA composite is not a Java EE application. The composite is
executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the
proxy between the composite and Oracle Enterprise Scheduler. This hosting
application can either be created in a one-to-one association with one Oracle
Enterprise Scheduler application for each composite deployed, or multiple composites
can share a single Java EE hosting application. The Java EE hosting application
contains all the desired Oracle Enterprise Scheduler artifacts.

Setting Web Service Addressing Headers for getCompletionStatus() Operation
As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously
on job completion they can invoke the getCompletionStatus() operation. Upon
job completion, Oracle Enterprise Scheduler invokes the callback operation
onJobCompletion() following ws-addressing where ESSWebservice captures the
caller's address in the incoming call. Clients should be capable of receiving the callback
at any arbitrary time in the future. Such a callback depends entirely upon the time
required to complete the job. This is similar to the Oracle Enterprise Scheduler
functionality for invoking a client's listener (that implements the Oracle Enterprise
Scheduler EventListener contract) upon job completion.

When you use getCompletionStatus() clients must include certain required web
service addressing headers (in particular the wsa:MessageID and wsa:ReplyTo
headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously
notify the job completion status be sent to the correct ReplyTo address. When you use
getCompletionStatus() from a BPEL process the SOA runtime automatically
adds the required headers. When using getCompletionStatus()
programmatically on the client side, using the web service proxies, the web service
client must set these addressing headers.

Restrictions When Using ESSWebservice
ESSWebservice does not support the following Oracle Enterprise Scheduler features:

• Ad hoc Request Submission: ESSWebservice does not support ad hoc job request
submission (ad hoc request submission is available using the EJB APIs). Therefore
any job that is submitted using the ESSWebservice must have its corresponding
definition, including a job type and job definition along with the schedule
definitions created as metadata objects in the associated proxy application. The web
service operation can then refer to such metadata objects using their identifier
arguments as specified in the WSDL.

• Query API: ESSWebservice does not expose the query APIs. Web service clients do
not need to obtain the query information for Oracle Enterprise Scheduler requests.
ESSWebservice web service clients do not provide generic monitoring and
managing functionality that would require the use of query APIs.

Developing and Using ESSWebservice Applications

16-4 Developing Applications for Oracle Enterprise Scheduler

ESSWebservice Implementation
The Oracle Enterprise Scheduler functionality is exposed as web a service using a
Service Endpoint Interface (SEI) annotated with the JAX-WS annotations. The web
service implementation of this SEI web service invokes the common Oracle Enterprise
Scheduler implementation layer. The ESSWebservice is exposed in Document/literal
wrapped mode for maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in a web
service directly. Such data types cannot be readily converted into corresponding XML
representation. Therefore, the Oracle Enterprise Scheduler web service layer defines
wrapper classes around these data types that are exposed in the ESSWebservice, and
visible in the WSDL. In general, the web service layer reuses the existing data types
where possible.

ESSWebservice WSDL File
When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL
definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservice?WSDL

For example,

http://system1:7001/ess/esswebservice?WSDL

Note that you cannot invoke web service operations by directly accessing the
ESSWebservice URL from a browser.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a
BPEL Process

The following example demonstrates how to use the ESSWebService from a BPEL
process; in the BPEL process you use ESSWebService to submit a job request. The use
case demonstrates one way of using Oracle Enterprise Scheduler for BPEL and SOA
users. Experienced SOA users and designers may have other ideas for how to work
with Oracle Enterprise Scheduler using the web service.

Oracle JDeveloper is used to create an application and the projects within the
application that contain the code and support files for the application.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle JDeveloper.

To create the ESSWebService sample application, follow these steps:

1. Start Oracle JDeveloper.

2. Click the New Application button.

3. In the New Gallery - Items area select SOA Application.

4. Click OK.

ESSWebservice WSDL File

Using the Oracle Enterprise Scheduler Web Service 16-5

5. Use the Name your application window to enter the name and location for the
new application and to specify the application template.

a. In the Application Name field, enter an application name. For this example,
enter EssWebApplication.

b. In the Directory field, accept the default or specify a location for the
application to be created.

c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial
project of an application.

d. Click Next.

6. In the Name Your Project dialog, select SOA project options.

a. In the Project Name field, enter a project name or accept the default,
Project1.

b. On the Project Features tab, select SOA Suite.

c. Click Next.

7. In the Configure SOA Settings dialog, select Composite with BPEL Process and
click Finish.

8. Choose one of the two BPEL specifications as shown in Figure 16-1.

Figure 16-1 Choose a BPEL Specification

9. Select the service type from the Template dropdown menu as shown in Figure
16-2 and click OK.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-6 Developing Applications for Oracle Enterprise Scheduler

Figure 16-2 Selecting the Service Type

10. In the Editor pane (BPELProcess1.bpel), drag the Schedule Job component
from the Oracle Extensions section of the Components palette to the position
between the receiveInput and callBackClient components as shown in Figure
16-3.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-7

Figure 16-3 Adding the Schedule Job Component

11. Create a connection to the metadata server as shown in Figure 16-4.

a. Click the New button in the resource window.

b. In the dropdown menu, select IDE Connecitons > SOA-MDS. In the Create
SOA-MDS Connection dialog, fill in the appropriate information about your
MDS server.

Note:

You can also create the connection by choosing File > New Gallery > General
> Connections > SOA-MDS Connections.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-8 Developing Applications for Oracle Enterprise Scheduler

Figure 16-4 Creating a Connection to the Metadata Server

12. Right-click the Schedulejob1 component and select the Edit item. This invokes
the Edit Schedule Job dialog shown in Figure 16-5.

Figure 16-5 Editing Schedule Job

13. Click the Job browse button to select the job definition through the MDS
connection. Figure 16-6 shows an example.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-9

Figure 16-6 Selecting the Job Definition Through the MDS Connection

14. If the Sys_effectiveApplication property is not defined in the job definition you
selected, you are prompted to provide it in Application field on the general tab. If
Sys_effectiveApplication property is defined in the selected job definition, it
appears in the Application field and cannot be edited. See Figure 16-7.

Figure 16-7 Defining the Sys_effectiveApplication Property (if not Already
Defined)

15. Add system properties:

a. Select the System Properties tab.

b. The Job Properties pane should be populated with system properties
obtained through the MDS connection from the job definition.

c. Use the Add button to add additional system properties in the User Defined
Properties pane.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-10 Developing Applications for Oracle Enterprise Scheduler

Figure 16-8 Adding User Defined Properties

16. Add application properties:

a. Select the Application Properties tab.

b. The Job Properties pane should be populated with properties obtained
through the MDS connection from the job definition.

c. Use the Add button to add additional properties in the User Defined
Properties pane.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-11

Figure 16-9 Adding Additional User Defined Properties

17. Attach the WSDL URL.

a. Click the Project Editor tab (Figure 16-10).

b. Edit the ESSService component. Provide the Name, WSDL URL, Port Type
and other information (Figure 16-11).

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-12 Developing Applications for Oracle Enterprise Scheduler

Figure 16-10 The Project Editor Tab

Figure 16-11 The Update Reference Dialog

18. Add a security policy to the service.

a. In the Project Editor tab, right-click the Oracle Enterprise Scheduler web
service and select Configure SOA WS Policies > For Request to open the
Configure SOA WS Policies dialog as shown in Figure 16-12.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-13

Figure 16-12 Opening the Configure SOA WS Policies

b. In the Security area of the Configure SOA WS Policies, click the Add button
to attach the desired security policies. For example, oracle/
wss_http_token_client_policy as shown in Figure 16-13 and Figure
16-14. If you are creating an asynchronous BPEL process you must also use
this process to attach a service policy to the callback.

Figure 16-13 The Configure SOA WS Policies Dialog

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-14 Developing Applications for Oracle Enterprise Scheduler

Figure 16-14 The Select Security Policies Dialog

19. Add the Invoke activity for the getCompletionStatus operation.

a. Click the Design tab to switch the display from the source view back to the
design view.

b. From the BPEL Constructs section of the Component Palette, drag and drop
an Invoke component between Schedulejob1 and callbackClient as shown
in Figure 16-15.

Figure 16-15 Drag and Drop an Invoke Component Between Schedulejob1
and callbackClient

c. Right-click the Invoke1 button to open the Edit Invoke dialog. Rename the
component getStatusAsync.

d. Drag the arrow from the getStatusAsync component to the EssService
component in the Partner Links area. The Edit Invoke dialog opens as shown
in Figure 16-16.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-15

e. From the Edit Invoke dialog Operation dropdown, select
getCompletionStatus as shown in Figure 16-16.

f. Create an input variable named x and click OK to close the Edit Invoke
dialog.

Figure 16-16 The Edit Invoke Dialog

g. Drag and drop an Assign component from the BPEL Construct area in the
Component Palette to between the ScheduleJob1 and the getStatusAsync
component.

h. Double-click the Assign component to open the Edit Assign dialog and map
the ScheduleJob1 output parameter requestID to the getStatusAsync input
parameter requestID as shown in Figure 16-17. Click OK.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-16 Developing Applications for Oracle Enterprise Scheduler

Figure 16-17 Use the Edit Assign Dialog to Map the ScheduleJob1 Output
parameter requestID to the getStatusAsync Input Parameter requestID

20. Receive job completion status.

a. From the BPEL Constructs section of the Component Palette, drag and drop
a Receive component between the getStatusAsync and the callbackClient
components as shown in Figure 16-18.

Figure 16-18 Drag and Drop a Receive Component Between the
getStatusAsync and the callbackClient Components

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-17

b. Attach the Receive1 component to ESSService in Partner Links area by
dragging the arrow from the Receive1 component to the ESSService
component. This action also opens the Edit Receive dialog. Rename the
Receive1 component to OnJobCompletion as shown in Figure 16-19.

Figure 16-19 Rename the Receive1 component to OnJobCompletion

c. Select the OnJobCompletion operation and add a variable named y as shown
in Figure 16-19. Click OK to close the Edit Receive dialog.

d. Drag and drop an Assign component from the BPEL Construct area in the
Component Palette to between the onJobCompletion component and the
callbackClient component.

e. Double-click the Assign component to open the Edit Assign dialog and map
the onJobCompletion component's output parameter resultMessage to
the callbackClient component's input parameter result variable as shown
in Figure 16-20. Click OK.

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-18 Developing Applications for Oracle Enterprise Scheduler

Figure 16-20 Map the onJobCompletion Component's Output Parameter
resultMessage to the callbackClient Component's input Parameter result
Variable

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Using the Oracle Enterprise Scheduler Web Service 16-19

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-20 Developing Applications for Oracle Enterprise Scheduler

17
Defining and Using Job Sets

This chapter describes how to define and submit an Oracle Enterprise Scheduler job
set, a collection of job definitions that can be grouped together to run as a single unit.

This chapter includes the following sections:

• Introduction to Defining and Using Job Sets

• Defining Job Sets

• Cross Application Job Sets

• Supporting Input and Output Forwarding in Job Sets

Introduction to Defining and Using Job Sets
Oracle Enterprise Scheduler provides for collections of job definitions that can be
grouped together to run as a single unit called a job set. A job set may be nested; thus a
job set may contain a collection of job definitions or one or more child job sets. Each
job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle
Enterprise Scheduler runs parallel job set steps together, in parallel. When a serial job
set runs, Oracle Enterprise Scheduler runs the steps one after another in a specific
sequence. Using a serial job set Oracle Enterprise Scheduler supports conditional
branching between steps based on the execution status of a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to
include a serial job set. Job sets that include a mix of parallel and serial job sets are
called complex job sets. For example, when a serial job set contains a child parallel job
set, the serial job set runs serially until it reaches the child parallel job set. Then, all the
job definitions or job set definitions in the child parallel job set run in parallel. Upon
completion of the child parallel job set the serial job set continues running its
remaining steps serially. Nested parallel job sets behave the same as non-nested
parallel job sets.

For every step in a job set Oracle Enterprise Scheduler supports a property
(SYS_selectState) that provides runtime flexibility for how a particular step affects
the entire job set. This property is defined on a per step basis. Table 17-1 describes
SYS_selectState.

Defining and Using Job Sets 17-1

Table 17-1 Job Set Step Property

Property Description

SYS_selectState Specifies whether the result state of a job set step should be included when
determining the state of the job set. Specifies whether the execution state of the step
affects the eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular
job set step from affecting the state of the job set, set SELECT_STATE to false for that
step. To allow the state of a job set step to affect the overall state of the job set, set
SELECT_STATE to true for that step.

Oracle Enterprise Scheduler provides the capability for a job set to execute across
multiple applications. A job set runs in its hosting application and by default all job set
steps also run in this application.

Defining Job Sets
You can define a job set in Oracle JDeveloper by specifying the following:

• The name, package, and description for the job set

• The application defined properties for the job set

• The system properties for the job set

• Specifying the job set steps

The contents of a job set are specified when you define the job set steps. For example,
for a serial job set you specify the name and the execution mode and then you add the
job set steps to define the sequence of job definitions or child job sets that run when
the job set runs.

How to Define a Job Set
An Oracle Enterprise Scheduler job set is defined by a name, a package, a job set
execution mode, step definitions, application defined properties, and system
properties.

To create a job set:

1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. In the All Technologies tab, under Categories, expand Business Tier and select
Enterprise Scheduler Metadata.

3. Under Items, select Job Set and click OK. This displays the Create Job Set
window.

4. In the Create Job Set window, specify the following:

a. In the Name field, enter a name for the job set or accept the default name.

b. In the Package field, enter a package name for the job set.

c. The Location field displays the full path of the directory where the job set file
is stored.

d. Click OK. This creates the job set and displays the Job Set Definition page, as
shown in Figure 17-1.

Defining Job Sets

17-2 Developing Applications for Oracle Enterprise Scheduler

Figure 17-1 Job Set Editor with Serial Job Set

5. In the Job Set Editor pane, in the Description field enter a description for the job
set.

6. In the Job Set Steps area, select the Parallel or Serial radio button to specify
parallel or serial execution mode for the job set.

7. In the Job Set Editor pane add the job set steps. For more information on adding
job set steps, see How to Define Serial Job Set Steps or How to Define Parallel Job
Set Steps.

8. In the Application Defined Properties area, click Add to add properties associated
with the job set. You use these to represent an application-specific or step-specific
application defined property for the job set. For more information on using
application defined properties, see Introduction to Using Parameters and System
Properties. For more information, see What You Need to Know About Job Set
Level Parameter Materialization.

Defining Job Sets

Defining and Using Job Sets 17-3

9. In the System Properties area, click Add to add system properties associated with
the job set. For more information on using system properties, see Using System
Properties.

10. In the Access Control area, click Add to modify the list of roles that have access to
this metadata, along with their access levels. For more information on defining
access, see Oracle Enterprise Scheduler Security .

11. In the Localization area, enter the following information for localizing this job set:

• Resource Bundle Base Name -- The base name for the resource bundle that
specifies internationalized values.

• Display Name Resource Key -- The resource key that specifies the display
name value in the resource bundle.

• Description Resource Key -- The resource key that specifies the description text
in the resource bundle.

12. Save the job set.

How to Define Serial Job Set Steps
To define serial job set steps you select the serial execution mode and then add job set
steps. Job set steps are created from the available job definitions and job sets defined in
the current project. You define serial job set steps when you specify a step ID and a job
definition child job set definition associated with the step. You also define links from a
job set step terminal states to specify the next step. Table 17-2 lists the possible
terminal states that you can specify using JDeveloper.

Table 17-2 Job Set Serial Execution Step Terminal States

Terminal State Description

SUCCEEDED Oracle JDeveloper indicates this state with a check mark button. This path represents a child
step or child job set was successfully processed by the system.

WARNING Oracle JDeveloper indicates this step with a warning button. A child step or child job set
resulted in a warning.

ERROR Oracle JDeveloper indicates this step with an error button. Some aspect of the request to run
the child step or child job set processing resulted in an error.

To add serial job set steps:

1. First, define the appropriate job definitions or job sets and define the parent job set
to contain the steps.

2. In the Job Set Editor pane, in the Job Set Steps area, select Serial execution mode.

3. Click the Add button to add a job set step. This displays the Add Step window.

4. In the Step ID field, enter the step ID. For example, enter step1.

5. In the Job field, from the dropdown list select a job definition or a job set to
associate with the step. For example, select Job1.

6. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

Defining Job Sets

17-4 Developing Applications for Oracle Enterprise Scheduler

7. If you need to define step level system properties, then select the System Properties
tab and add job set step system properties for the step.

8. Select a destination for the step. The step can be added as part of the job set by
selecting Insert into main diagram. To make the step available for use in another
step, for either error or warning states, select Add to list of available steps.

9. Click OK, this adds the job set step, as shown in Figure 17-2.

Figure 17-2 Job Set with a Step Added

10. From the dropdown list next to the error icon, select Stop or select the step for the
ERROR terminal state for the step. For example, from the dropdown list select
Step_error (Step_error must be defined).

11. From the dropdown list next to the warning icon, select Stop or select the step for
the WARNING terminal state for the step. For example, from the dropdown list select
Step_warning (Step_warning must be defined).

12. Click the Add button and add additional steps as needed.

13. Click OK, as shown in Figure 17-3.

Defining Job Sets

Defining and Using Job Sets 17-5

Figure 17-3 Job Set with Two Steps Added

How to Define Parallel Job Set Steps
You can add parallel job set steps to a job set.

To add parallel job set steps:

1. First, define the appropriate job definitions and job set definitions and the parent
job set.

2. In the Job Set Editor, select the Parallel execution mode.

3. Click the Add button to add a job set step to the job set.

The Add Step window displays.

4. In the Job field, select a job definition or a job set.

5. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

6. If you need to define step level system properties, then select the System Properties
tab and add job set step system properties for the step.

7. Click OK, this adds the job set step.

Defining Job Sets

17-6 Developing Applications for Oracle Enterprise Scheduler

8. Click the Add button.

9. In the Add Step dialog, select the job set or job definition to use for next job in the
parallel job set.

10. Click OK. The job set step displays in the job set, as shown in Figure 17-4.

Figure 17-4 Adding Job Set Steps to a Parallel Job Set

What Happens When You Define a Job Set
When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML
file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together. A
parallel job set only contains steps, and does not contain links between steps, as all the
steps execute together and do not depend on each other or upon the order in which
each step runs.

When you define a job set Oracle JDeveloper creates an XML document that conforms
to the Oracle Enterprise Scheduler job step schema.

What You Need to Know About Serial Job Sets
When you define a serial job set, the associated XML document includes job set steps
and links. Oracle Enterprise Scheduler enforces the following limitations for serial job
set definitions:

• To prevent looping within a job set, job set definitions should not contain circular
execution paths. A circular execution path, or a loop, is defined at the job set level
as follows: loop is a path from one job set step along the links of any number of

Defining Job Sets

Defining and Using Job Sets 17-7

other steps back to the same job set step. For example, in a job set with a flow from
Job_A, to Job_B, to Job_C defined, Oracle Enterprise Scheduler does not allow
you to define an execution path from Job_B or Job_C back to Job_A. For example
you could a create circular execution path, or a loop, if one of the links in a job set
step for success, error, or warning links back to the same job set step. Thus, each job
set step can link to any of the available job definitions or job sets, or they could all
use the same job definition or job set as a link for the success, error and warning
case. There is only a possible loop based on the path through the job set steps, as
identified by the job set step ID. Oracle Enterprise Scheduler validates job sets at
submission time to try to prevent job set step level looping. Also, Oracle JDeveloper
does not allow you to create a job set containing a job set step level loop.

• To prevent looping within a job set, job set definitions should not contain self-
referencing execution paths. For example, in a job set with Job_B defined, Oracle
Enterprise Scheduler does not allow you to define an execution path from Job_B to
Job_B itself if Job_B ends up with a terminal state of ERROR. However using the
RETRIES property available for a job definition or a job set, you can have multiple
executions up to the configured RETRIES number.

• When there is no job set link defined for a terminal state of a step, it implies that the
job set should stop if the step ends with the unspecified terminal state. For example
if there is no link defined for a step Job_D for the state WARNING, and if the step
Job_D ends up with the state of WARNING, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets,
and multiple steps may use the same job definition or job set.

What You Need to Know About Job Set Application Defined Properties and System
Properties

There are cases where job set application defined properties or system properties may
conflict with application defined properties or system properties set either in metadata
or when a job request is submitted. For more information on how job set application
defined properties and system properties are handled, see Using Parameters with the
Metadata Service and Using Parameters with the Runtime Service.

What Happens at Runtime for Job Set State Priorities and State Transitions
At runtime, the individual steps in a job set can end up with different terminal states,
as indicated in Table 17-2. When a job set step is a job set, the job set step also ends
with one of these terminal states. Oracle Enterprise Scheduler provides a priority
hierarchy for the terminal states of job set steps. This means that when there are
multiple steps in a job set, the job set terminal state is applied the terminal state of the
step with the highest priority terminal state. Thus, the highest priority terminal state of
the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing within
the system. A job set always follows the basic rule of transitioning to a terminal state
based on the terminal states of its child requests, only after the completion of all child
requests. As a rule, the job set transitions to one of the computed terminal states only
after all child requests have finished and transitioned to terminal states. For example,
if a given job set is actually a step within another job set, then the way in which the
state of the inner job set request is computed affects the conditional execution within
the outer job set.

Table 17-3 shows the possible job set terminal states with the level indicated in the
Priority column.

Defining Job Sets

17-8 Developing Applications for Oracle Enterprise Scheduler

Table 17-3 Job Set Terminal State Transitions

Terminal State Description Priority

ERROR If any step in a job set finishes with the terminal state of ERROR, the entire
job set is marked with the terminal state of ERROR no matter what the state
of the other steps.

For serial job sets, if one step goes to ERROR, subsequent steps do not
execute. For parallel job sets, all steps begin at the same time, and the job set
state is not determined until the job set steps reach a terminal state.

The ERROR state
has the highest
priority.

WARNING If any step in a job set ends up with the terminal state of WARNING, and
there is no step with the terminal state of ERROR then the job set is marked
with the terminal state WARNING. When the terminal state is WARNING, post
processing begins.

Lower than
ERROR

EXPIRED The job set transitions to EXPIRED state if at least one of the child requests
expires while there is no step that ends with the terminal state of ERROR or
WARNING.

Lower than
ERROR and
WARNING

CANCELLED Based on the actual outcome of a cancellation attempt, the job set can
transition to CANCELLED if at least one child request successfully processes
the cancellation attempt and transitions to CANCELLED state. The
cancellation might have been requested on the entire job set or just a
specific child request.

Further the transition to CANCELLED follows the priorities of terminal
states. Therefore the job set transitions to CANCELLED terminal state only if
there is no step that ends with the state of ERROR, WARNING, or EXPIRED
and there is at least one step with terminal state of CANCELLED.

When a job set is canceled, steps that have not been added or run are
considered to be CANCELLED for the purpose of final state.

Lower than
ERROR, WARNING,
and EXPIRED

SUCCEEDED The job set is considered as SUCCEEDED if and only if all child requests
completed with the terminal state of SUCCEEDED.

The SUCCEEDED
state has the
lowest priority
among all
terminal states

Table 17-4 lists additional possible states for a job set:

Table 17-4 Possible Job Set Runtime States

State Description

WAIT This is the initial state of the submitted job set request. After the job set request
transitions to RUNNING state, however, all generated child requests transition directly
to READY state rather than WAIT state.

READY Job sets go from WAIT to READY to RUNNING. This is true for all job set steps,
whether the step is a job definition or nested job set.

RUNNING The submitted job set transitions from WAIT to READY to RUNNING. Nested job sets
start in READY and transition to RUNNING.

Defining Job Sets

Defining and Using Job Sets 17-9

State Description

CANCELLING A job set transitions to CANCELLING when the user requests a cancellation for the
entire job set. This can be done by calling cancelRequest() with the request ID of
the parent request representing the job set. Passing the parent request ID indicates
that the user wants to cancel entire job set irrespective of its current, non-terminal,
state and the states of its child requests.

In such cases, a cancellation is attempted on all child requests that are still active and
have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the
job set, there won't be any state change for the parent request and only the particular
child request transitions to CANCELLING if possible.

If the cancel happens during post-processing, the state is set to WARNING rather than
CANCELLED. If the job set finishes before the cancel is issued, the job set can have
state SUCCEEDED.

COMPLETED This state indicates that the job set or job set step has finished executing and post-
processing begins.

BLOCKED The BLOCKED state is not a terminal state. However any request can remain in a
BLOCKED state for a long period until the blocking condition is eliminated (such as
incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps
either complete or may be running. The job set itself, however, remains in a RUNNING
state. Eventually if all steps in the job set complete except the ones that are in the
BLOCKED state, the job set cannot continue further until the blocking step is ready to
run. When the blocked step unblocks and completes, the job set can proceed. After
the steps complete, the job set eventually goes to the appropriate terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In such
cases, all previous steps are complete and the job set cannot continue until the
blocked step executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further,
while some steps are blocked, other steps can still continue to run.

HOLD The HOLD state is very similar to the BLOCKED state. Following the same rules for the
BLOCKED state, a job set cannot continue running while a step is in HOLD state. A
serial job set cannot continue if the current step in the execution flow is stuck at HOLD
state. In the case of a parallel job set, if at least one step is stuck in HOLD state while
all other steps have completed, the job set can complete when the step is no longer in
HOLD state.

Cross Application Job Sets
Oracle Enterprise Scheduler provides the capability for a job or a job set to execute
across multiple applications as shown in Figure 17-5:

• Job set FIN has three steps, two of which are defined to execute in different
applications.

• Job set FIN is submitted to the GL application.

• Step 1 has the EFFECTIVE_APPLICATION system property set to ODI, so Step 1
executes in the ODI application.

• Step 2 does not have an effective application set, so it executes in the GL
application.

Cross Application Job Sets

17-10 Developing Applications for Oracle Enterprise Scheduler

• Step 3 has the EFFECTIVE_APPLICATION system property set to INV, so Step 3
executes in the INV application.

Figure 17-5 Cross Application Job Set Steps

Overview of Cross Application Job Sets
A job set runs in its hosting application and by default, all job set steps also run in this
application. The system property SYS_effectiveApplication should be defined
on the job definition or job set (rather than the job set step). For a nested job set that
defines SYS_effectiveApplication, the application applies to any child requests
of that nested job set. If it is a nested job set, the jobs in the nested job set execute in the
effective application. When SYS_effectiveApplication is defined for a job, the
request for the job set and any child requests of the job set are associated with the
effective application, meaning the APPLICATION system property for those requests is
set to the effective application.

The SYS_effectiveApplication system property may only be defined in
metadata, specifically job set, job set step, job type, and job. The property
SYS_effectiveApplication is not supported in the request parameters. The
effective application must be in the same cluster as the hosting application, or an error
results. If a submitted job set defines the effective application, that value must be the
same as the hosting application, or the job set submission is rejected.

For a job set that executes across multiple applications, querying for requests by
application is not sufficient to retrieve all children. Oracle Enterprise Scheduler
supports absolute parent ID as a query field, making it possible to query for all
requests in a job set regardless of the application. The absolute parent ID is the request
ID of the job set that was submitted to the hosting application.

Requirements for Cross Application Job Sets
Oracle Enterprise Scheduler supports cross-application job set subject to the following
requirements:

1. All applications for a given job set must be deployed in the same cluster.

2. All applications in the job set must share the same enterprise security.

3. All request metadata must be accessible from the application the job set is
submitted to, referred to as the hosting application. All metadata for the request
are persisted to the runtime store for the hosting application. The persisted
metadata include all metadata used by the submitted job set and any nested job
set.

Cross Application Job Sets

Defining and Using Job Sets 17-11

4. Metadata for subrequests must be accessible from the application that submits the
subrequest, unless the metadata used by the subrequest were already persisted to
the runtime store at job set submission time.

Supporting Input and Output Forwarding in Job Sets
Sometimes a step in a job set requires input from the previous step in the job set.
Oracle Enterprise Scheduler uses two system properties SYS_inputList and
SYS_outputList to facilitate forwarding the output from one step to the input of the
next step.

When a job produces information, such as a list of output files, that must be passed on
to the next step in a job set, the job adds the information to the SYS_outputList
property. Upon completion of the job request execution, Oracle Enterprise Scheduler
forwards the SYS_outputList property of the request so that it becomes the
SYS_inputList property of the next step before it executes. The next step takes as its
input the output of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduler supports
forwarding with nested job sets as well. For a serial job set, Oracle Enterprise
Scheduler defines the output of the job set as the output of the last step of the job set,
meaning that only the SYS_outputList property of the last step is forwarded to the
next step. Similarly, the input to a serial job set is forwarded only to the first step of the
job set; that is, only the first step of a serial job set has the SYS_inputList property
set to the value of the SYS_outputList property of the previous step.

For a parallel job set, Oracle Enterprise Scheduler specifies that the output of the job
set is the concatenation of the SYS_outputList property of every job in the job set,
separated by a delimiter (with no order guaranteed). The input to a parallel job set is
forwarded to every job in the job set, meaning that every job in the parallel job set has
the same INPUT_LIST property. The system property OUTPUT_LIST_DELIMITER
specifies the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, file1.txt
and file2.txt. The system property SYS_outputList for that job set has the
values file1.txt;file2.txt, assuming the value of OUTPUT_LIST_DELIMITER
is a semi-colon. The concatenated list of output files enables the next job step in the job
set to access output files generated by previous steps within the job set.

The InputFile class provides access to files as input to a job definition. There is
currently no mechanism for accepting a file as an input to a job request.

Except for forwarding the value of the SYS_outputList property of a step to the
value of the SYS_inputList property of the next step, Oracle Enterprise Scheduler
treats the two properties like any other system properties. Oracle Enterprise Scheduler
does not define the format for the value of the properties (except for the semicolon
delimiter in case of parallel job set). It is the responsibility of the job to define the
syntax and semantics for the properties; for example using a fully qualified name or
relative path name and a comma or space as a delimiter.

Supporting Input and Output Forwarding in Job Sets

17-12 Developing Applications for Oracle Enterprise Scheduler

18
Defining and Using a Job Incompatibility

This chapter describes how to use an Oracle Enterprise Scheduler job incompatibility,
with which you can specify job requests that cannot run together.

This chapter includes the following sections:

• Introduction to Using a Job Incompatibility

• Defining Incompatibility with Oracle JDeveloper

• What Happens at Runtime to Handle Job Incompatibility

For information about how to create and submit job requests see t Creating and Using
PL/SQL Jobs , and Creating and Using Process Jobs . For more information on using
job sets, see Defining and Using Job Sets .

Note:

To simplify the discussion we refer only to job definitions in this
incompatibility chapter, but in all cases this discussion applies to both job
definitions and job sets.

Introduction to Using a Job Incompatibility
A given incompatibility specifies either a global incompatibility or a domain,
property-based, incompatibility. Oracle Enterprise Scheduler supports incompatibility
between job definitions or job sets based on an incompatibility definition as
represented by the oracle.as.scheduler.Incompatibility Java class. The
IncompatibilityType enum specifies the valid incompatibility types.

• Domain-Specific (DOMAIN): where one or more job definitions are marked as
incompatible within the scope of a resource, where the resource is identified by a
system property name or a user-defined parameter name. A property name must
be specified for each job definition used to define the incompatibility. Oracle
Enterprise Scheduler ensures that requests for the incompatible jobs do not run at
the same time if they have the same value for that resource. Parameters specified
through parameterVO are submitted as request properties having the property
name submit.argument1, ... submit.argument#. To use such a parameter as
the domain incompatibility property, specify submit.argument1, ...
submit.argument# for the incompatibility property name.

• Global (GLOBAL): where one or more job definitions are marked as incompatible,
regardless of any resource or property. Oracle Enterprise Scheduler ensures that
requests for the incompatible jobs do not run at the same time.

An Oracle Enterprise Scheduler incompatibility definition specifies either a global
incompatibility or a domain (property-based) incompatibility. An incompatibility

Defining and Using a Job Incompatibility 18-1

consists of one or more entities (job definition or job set) and the resource over which
they must be incompatible. A resource is not specified for a global incompatibility.
Each entity can be flagged as being self-incompatible. If an incompatibility is defined
for only one entity that entity must be flagged as self-incompatible. Oracle Enterprise
Scheduler does not support a mixed mode where one entity represents a domain
(property-based) entity and another entity represents a global (no property) entity.

For a domain incompatibility, the resource is represented by a property name that
might be different for each entity of the incompatibility. For example, if a domain
incompatibility is created for two job definitions, JobA and JobB, then the resource
(property) identified for each entity might have different property names in JobA and
JobB. It might be called foo in JobA while it might be called foo2 in JobB. Oracle
Enterprise Scheduler considers a request for JobA and a request for JobB to be
incompatible if they have the same value for their respective property, and those
requests would not run at the same time. If the requests have a different value for their
respective property, they are considered compatible and allowed to run concurrently.

An incompatibility definition specifies which job definition is incompatible with
another job definition. A given job definition does not directly point to or reference
any incompatibility definitions.

Oracle Enterprise Scheduler determines which, if any, incompatibility definitions
reference the job definition of a request when it is about to executed for the first time.
It also determines the resource (property) value for any domain incompatibility at that
time. That information is used throughout the subsequent processing life cycle of the
request, including any retries of the request. For job set requests, Oracle Enterprise
Scheduler determines which, if any, incompatibility definitions reference the job
definition of any potential job set step when the top-most job set request is about to be
executed rather than when individual step requests are executed.

For a Schedule-based submission, Oracle Enterprise Scheduler creates new child
requests for instances of the Schedule. Only one instance request is executed at a given
time. Oracle Enterprise Scheduler tracks metadata changes made to incompatibility
definitions and may refresh the incompatibility definitions, if any, when an instance
request is about to be executed for the first time. This means the incompatibility
definitions used when the next instance request is executed may be different than the
incompatibility definitions used when a prior instance request was executed.

Job Self Incompatibility
A job definition or job set can be defined as self incompatible where the job definition
or job set is incompatible with itself. A self-incompatibility implies that multiple job
requests associated with a single job definition cannot run together. An incompatibility
definition can contain a single entity if it is marked as self-incompatible. For global
self-incompatibly, Oracle Enterprise Scheduler ensures that multiple requests for that
particular job or job set definition are not run simultaneously. For property-based self-
incompatibly, Oracle Enterprise Scheduler ensures that requests for that particular job
or job set definition, and having the same value for the property, are not run at the
same time.

Defining Incompatibility with Oracle JDeveloper
You can define an incompatibility in Oracle JDeveloper by specifying the following:

• The name and package for the incompatibility

• The incompatibility type

Defining Incompatibility with Oracle JDeveloper

18-2 Developing Applications for Oracle Enterprise Scheduler

• The entity for the incompatibility and whether there is a self incompatibility

• For a domain specific incompatibility, the property associated with the
incompatibility for each entity

How to Define a Global Incompatibility
An Oracle Enterprise Scheduler global incompatibility is defined by a name, a package
and entities.

To create a global incompatibility:

1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window, as shown in Figure 18-1.

Figure 18-1 Create Incompatibility Window

4. Use the Create Incompatibility dialog to specify the following:

a. In the Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Global. and click OK.

The incompatibility is created, and the Incompatibility Definition page
displays.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

Defining Incompatibility with Oracle JDeveloper

Defining and Using a Job Incompatibility 18-3

6. In the Entities area, click Add to add entities. This displays the Add Entity dialog,
as shown in Figure 18-2.

Figure 18-2 Incompatibility Add Entity Window

7. Select one or more entities for the incompatibility and click OK. The
Incompatibility Editor displays.

8. To specify a self incompatibility or to change the entity, double-click the entity in
the Entities area. This displays the Edit Entity dialog as shown in Figure 18-3.

Figure 18-3 Edit Entity Window for Global Incompatibility

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

How to Define a Domain Incompatibility
An Oracle Enterprise Scheduler domain incompatibility is defined by a name, a
package, entities, and properties for each entity.

To create an incompatibility:

1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

Defining Incompatibility with Oracle JDeveloper

18-4 Developing Applications for Oracle Enterprise Scheduler

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window.

4. Use the Create Incompatibility dialog to specify the following:

a. In the Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, optionally enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Domain, as shown in Figure 18-4.

Figure 18-4 Create Incompatibility Window

Click OK. This creates the incompatibility and displays the Incompatibility
Editor.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

6. In the Incompatibility Entities area, click Add.

The Add Entity window displays.

7. Select one or more jobs or job sets to add to the incompatibility and click OK.

The Incompatibility Editor displays.

8. To specify a self incompatibility or modify an entity or its properties, under the
Entities field, double-click an entity.

The Edit Entity window displays, as shown in Figure 18-5.

Defining Incompatibility with Oracle JDeveloper

Defining and Using a Job Incompatibility 18-5

Figure 18-5 Incompatibility Edit Entity Window

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

What Happens at Runtime to Handle Job Incompatibility
Oracle Enterprise Scheduler handles incompatibility definitions according to the
incompatibility type, global or domain (property-based), at runtime. When a job
request is about to be executed, Oracle Enterprise Scheduler determines which
incompatibility definitions reference the job or job set definition used for the request
submission. For each domain incompatibility it also determines the value of the
resource or property, to use for that incompatibility. Oracle Enterprise Scheduler
checks to determine if there are any incompatible requests already executing. If so, the
request is blocked until all requests with which it is incompatible have completed.

Note:

The value of the property for a domain incompatibility is obtained from the
request parameters at request execution. That value usually originates either
in the job definition or in a request parameter specified at request submission.
If no such parameter is found, that incompatibility is ignored during
subsequent request processing. The request is compatible with any other
request with regard to that incompatibility definition. This initial property
value is used as the incompatibility resource value even if the property is
subsequently altered.

What Happens to Subrequests with an Incompatible Parent Request
A request which is incompatible with another request is also incompatible with the
sub-requests of that request (the children). A request that has been blocked by a sub-
request parent remains blocked while any sub-requests execute and until the sub-
request parent request is resumed and completes.

What Happens at Runtime to Handle Job Incompatibility

18-6 Developing Applications for Oracle Enterprise Scheduler

19
Using the Runtime Service

This chapter describes how to use the Oracle Enterprise Scheduler runtime service
APIs for submitting and managing job requests and for querying job request
information from the job request history.

Note:

The runtime service also includes log and output APIs. These APIs are
document separately in Job Request Logs and Output .

This chapter includes the following sections:

• Introduction to the Runtime Service

• Accessing the Runtime Service

• Submitting Job Requests

• Managing Job Requests

• Querying Job Requests

• Submitting Ad Hoc Job Requests

• Implementing Pre-Process and Post-Process Handlers

Introduction to the Runtime Service
Oracle Enterprise Scheduler lets you define and run different job types including: Java
classes, PL/SQL procedures, and process job types (forked processes). To run these job
types you need to submit a job definition.

You can use the runtime service to perform different types of operations, including:

• Submit: These operations let you supply a job definition to Oracle Enterprise
Scheduler to create job requests.

• Manage: These operations allow you to change the state of job requests and to
update job requests.

• Query: These operations let you find the status of job requests and report job
request history.

Accessing the Runtime Service
Like the metadata service, Oracle Enterprise Scheduler provides a runtime MBean
proxy interface.

Using the Runtime Service 19-1

The runtime service open() method begins each Oracle Enterprise Scheduler runtime
service user transaction. In an Oracle Enterprise Scheduler application client you
obtain a RuntimeServiceHandle reference that is created by open() and you pass
the reference to runtime service methods. The RuntimeServiceHandle reference
provides a connection to the runtime service for the client application. In the client
application you must explicitly close the runtime service by calling close(). This
ends the transaction and causes the transaction to be committed or rolled back
(undone). The close() not only controls the transactional behavior within the
runtime service, but it also allows Oracle Enterprise Scheduler to release the resources
associated with the RuntimeServiceHandle.

How to Access the Runtime Service and Obtain a Runtime Service Handle
Oracle Enterprise Scheduler exposes the runtime service to your application program
as a Stateless Session Enterprise Java Bean (EJB). You can use JNDI to locate the Oracle
Enterprise Scheduler runtime service Stateless Session EJB.

Example 19-1 shows a lookup for the Oracle Enterprise Scheduler runtime service
using the RuntimeServiceLocalHome object.

Note:

When you access the runtime service:

• JndiUtil.getRuntimeServiceEJB() assumes that the
RuntimeService EJB has been mapped to the local JNDI location "ess/
runtime". This happens automatically in the hosted application's message-
driven bean (MDB).

• The open() call provides a RuntimeServiceHandle reference. You use
this reference with the methods that access the runtime service in your
application program.

• When you finish using the runtime service you must call close() to
release the resources associated with the RuntimeServiceHandle.

Example 19-1 JNDI Lookup to Access Oracle Enterprise Scheduler Runtime
Service

import oracle.as.scheduler.core.JndiUtil;
// Demonstration of how to lookup runtime service from a
// Java EE application component

 RuntimeService runtime = JndiUtil.getRuntimeServiceEJB();
 RuntimeServiceHandle rHandle = null;
 .
 .
 .
 try
 {
 ...
 rHandle = runtime.open();
 ...
 }
 finally
 {
 if (rHandle != null)

Accessing the Runtime Service

19-2 Developing Applications for Oracle Enterprise Scheduler

 {
 runtime.close(rHandle);
 }
 }

Submitting Job Requests
When you submit a job definition you create a new job request. You can submit a job
request using a job definition that is persisted to a metadata repository, or you can
create a job request in an ad hoc manner where the job definition or the schedule is not
stored in the metadata repository (for information about ad hoc requests, see
Submitting Ad Hoc Job Requests).

How to Submit a Request to the Runtime Service
You create a job request by calling submitRequest(). Depending on your
requirements, you can create a job request with one of the following formats:

• Create a new job request using a job definition stored in the metadata repository, to
run once at a specific time.

• Create a new job request using a job definition and a schedule, each stored in the
metadata repository.

Example 19-2 shows the submitRequest() method that creates a new job request
with a job definition that resides in the metadata repository. You can also submit an ad
hoc job request where the job definition and schedule are not stored in the metadata
repository. For more information, see Submitting Ad Hoc Job Requests. You can also
submit a sub-request. For more information, see Using Subrequests .

Note:

When you submit a job request using the runtime service:

• You obtain the runtime service handle as shown in Example 19-1.

• The runtime service internally uses the metadata service to obtain job
definition metadata with the supplied MetadataObjectId, jobDefnId.

Example 19-2 Creating a Job Request with submitRequest()

long requestID = 0L;
MetadataObjectId jobDefnId;

RequestParameters p = new RequestParameters();

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID = runtime.submitRequest(r, "My Java job", jobDefnId, start, p);

What You Should Know About Default System Properties When You Submit a Request
When you create a job request Oracle Enterprise Scheduler resolves and stores the
properties associated with the job request. Certain system properties can be associated
with a job request. If you do not set these properties anywhere in the properties

Submitting Job Requests

Using the Runtime Service 19-3

hierarchy when a job request is submitted, then Oracle Enterprise Scheduler provides
default values.

Table 19-1 shows the default runtime service field names and the corresponding
system properties.

Table 19-1 Runtime Service Default Value Fields and Corresponding System Properties

Value Runtime Service Default Value
Field

Corresponding System
Property

Description

0 DEFAULT_REQUEST_EXPIRATIO
N

SYS_requestExpira
tion

The default expiration time, in
minutes, for a request. The default
value is 0 which means the request
never expires.

4 DEFAULT_PRIORITY SYS_priority The default system priority associated
with a request.

5 DEFAULT_REPROCESS_DELAY SYS_reprocessDela
y

The default period, in minutes, in
which processing must be postponed
by a callout handler that returns
Action.DELAY.

0 DEFAULT_RETRIES SYS_retries The default number of times a failed
request is retried. The default value is
0 which means a failed request is not
retried.

0 DEFAULT_ASYNC_REQUEST_TIM
EOUT

SYS_request_timeo
ut

Specifies the time in minutes that the
processor waits for an asynchronous
response after the job execution has
begun. After the time elapses, the
request is timed out.

What You Should Know About Metadata When You Submit a Request
All Oracle Enterprise Scheduler Metadata associated with a job request is persisted in
the runtime store at the time of request submission. Persisted metadata objects include
job definition, job type, job set, schedule, incompatibility definitions, and exclusion
definition. Metadata is stored in the context of a top level request, and each metadata
object is uniquely identified by the absolute parent request ID and its metadata ID.
Each unique metadata object is stored only once for a top-level request, even if the
definition is used multiple times in the request. This ensures that every child request
uses the same definition.

When a request is submitted, all known metadata for the request is persisted. For
subrequests, the metadata is not know until the subrequest is submitted, so subrequest
metadata is persisted when the subrequest is submitted, after first checking that the
metadata object is not already persisted in the runtime store.

Metadata persisted in the runtime store is removed when the absolute parent request
is deleted.

DMS ECID and FlowId Support
Oracle Enterprise Scheduler associates a DMS ECID and FlowId value with every
request. Oracle Enterprise Scheduler usually obtains the ECID and FlowId from the
current DMS execution context, if present, at request submission and uses that ECID
and FlowId value during subsequent processing of the request. For example, Oracle

Submitting Job Requests

19-4 Developing Applications for Oracle Enterprise Scheduler

Enterprise Scheduler sets up a DMS execution context that associates the ECID and
FlowId with the request when it initiates the job executable.

If a DMS FlowId property is not present in the DMS execution context at request
submission, then a new FlowId is associated with the request. For example, if the
request is not submitted by SOA, there might not be a FlowId present on the DMS
execution context and Oracle Enterprise Scheduler associates a new FlowId with the
request.

If no DMS execution context is present at request submission, then a new ECID and
new FlowId are associated with the request. For example, if a request is submitted
using the Oracle Enterprise Scheduler PL/SQL interface, there might be no DMS
context information available from the database session when the PL/SQL submit
procedure is called. A new ECID and new FlowId are associated with the request
after it is successfully validated by the Oracle Enterprise Scheduler mid-tier.

ECID and FlowID for Child Requests

In general, child requests inherit the ECID and FlowId from their parent request. For
example, Oracle Enterprise Scheduler uses the ECID and FlowId of the parent request
when a job set step request is created.

A sub-request is a submitted request, therefore the ECID and FlowId of the current
DMS execution context of the sub-request submission is associated with the sub-
request. Usually the ECID and FlowId values are the same as those of the parent
request because Oracle Enterprise Scheduler sets up a DMS execution context that has
the ECID and FlowId of the parent request prior to initiating the parent job
executable. It is possible that the application or some component layer changed the
ECID or FlowId prior to Oracle Enterprise Scheduler receiving the sub-request
submission. If that is the case, the parent and sub-request might have a different ECID
or FlowId.

If a schedule is specified at request submission, the submitted request represents an
absolute parent that does not execute. Oracle Enterprise Scheduler automatically
creates child instance requests according to the specified schedule and a new ECID
and FlowId is used for each child instance. The child instance request represents an
instance parent request and may have children of its own; for example, a sub-request
or job set step request. Any such children typically have the same ECID and FlowId
as its instance parent request.

DMS FlowId and SOA CorrelationFlowId

Oracle Enterprise Scheduler uses the DMS FlowId property whose property name is
"FlowId". SOA has several properties that might be present on a DMS execution
context. Two such properties are the SOA CorrelationFlowId and SOA FlowId.
properties. The DMS FlowId property ("FlowId") is used to propagate the value for
the SOA CorrelationFlowId. The DMS property name "oracle.soa.tracking.FlowId"
is used to propagate the value for the SOA FlowId property. For that reason, the
FlowId property associated with an Oracle Enterprise Scheduler request submitted by
SOA might match the SOA CorrelationFlowId value.

Managing Job Requests
After you submit a job request, using the requestID you can do the following:

• Get request information

• Change the state of the request

Managing Job Requests

Using the Runtime Service 19-5

• Update request parameters

How to Get Job Request Information with getRequestDetail
Using the runtime service, with a requestID, you can obtain information about a job
request that is in the system. Table 19-2 shows the runtime service methods that allow
you to obtain job request information.

Table 19-2 Runtime Service Get Request Methods

Runtime Service Method Description

getRequestDetail() Retrieves complete runtime details for the specified request

getRequestDetailBasic() Retrieves basic runtime details of the specified request. The
RequestDetail returned by this method includes most of
the information as getRequestDetail(), but certain less
commonly used information is omitted to improve
performance.

getRequestParameter() Retrieves the value of a request parameter.

getRequests() Retrieves an enumeration of immediate child request
identifiers associated with the specified request. This
includes IDs for requests that did not complete, such as
when the request transaction is rolled back or an error
occurs.

getRequestState() Retrieves the current state of the specified request

Example 19-3shows code that determines if there is any immediate child request in the
HOLD state.

Example 19-3 Determining Whether Any Immediate Child Job Requests Are on
Hold

 h = s_runtime.open();
 try {

 s_runtime.holdRequest(h,reqid);

 Enumeration e = s_runtime.getRequests(h, reqid);

 boolean foundHold = false;
 while (e.hasMoreElements()) {

 long childid = ((Long)e.nextElement()).longValue();
 State state = s_runtime.getRequestState(h,childid);
 if (state == State.HOLD) {
 foundHold = true;
 break;
 }
 }

How to Change Job Request State
Using the runtime service, with a requestID, you can change the state of a job
request. Table 19-3 shows the runtime service job request state change methods. The
job request management methods allow you to change the state of a request,

Managing Job Requests

19-6 Developing Applications for Oracle Enterprise Scheduler

depending on the state of the job request. For example, you cannot cancel a request
with cancelRequest() if the request is in the COMPLETED state.

Table 19-3 Runtime Service Job Request State Methods

Runtime Service
Method

Description

cancelRequest() Cancels the processing of a request that is not in a terminal state.

deleteRequest() Marks a request in a terminal state for deletion.

holdRequest() Withholds further processing of a request that is in WAIT or READY
state.

releaseRequest() Releases a request from the HOLD state.

Example 19-4 shows a submitRequest() with methods that control the state of the
job request. The holdRequest() holds the processing of the job request. The
corresponding releaseRequest() releases the request. This example does not show
the conditions that require the hold for the request.

Note:

Note the following in Example 19-4:

• You obtain the runtime service handle, rHandle, as shown in Example
19-1.

• The holdRequest() places the request in the HOLD state.

• You may do some required processing while the request is in the HOLD
state.

• The releaseRequest() releases the request from the HOLD state.

Example 19-4 Runtime Service releaseRequest() Usage

rHandle = runtime.open();
try
{
 runtime.holdRequest(rHandle,reqid);
.
.
.
 runtime.releaseRequest(rHandle, reqid);
.
.
.
}
finally
{
 if (rHandle != null)
 {
 runtime.close(rHandle);
 }
 }

Managing Job Requests

Using the Runtime Service 19-7

How to Update Job Request Priority and Job Request Parameters
Using the runtime service you can update job request system properties or request
parameters. Table 19-4 shows the runtime service methods that allow you to lock and
update up a job request.

Table 19-4 Runtime Service Update Methods

Runtime Service Method Description

lockRequest() Acquires a lock for the given request. The lock is released
when close() operation is subsequently invoked or the
encompassing transaction is committed. If an application
tries to invoke this operation while the lock is being held by
another thread, this method blocks until the lock is released.
Use this method to ensure data consistency when updating
request parameters or system properties.

setRequestParameter() Updates the property value of the specified request subject
to the property read-only constraints.

Example 19-5 shows code that updates a job request parameter. This code would be
wrapped in a try/finally block as shown in Example 19-1.

Example 19-5 shows the following:

• Obtain the runtime service handle, rhandle, as shown in Example 19-1.

• Acquire a lock for either the request using lockRequest()

• Perform the update operation with setRequestParameter()

• Use close() to cause the transaction to be committed or rolled back (undone).
The close() not only controls the transactional behavior within the runtime
service, but it also allows Oracle Enterprise Scheduler to release the resources
associated with the RuntimeServiceHandle.

Example 19-5 Sample Runtime Service Parameter Update

...
 s_runtime.lockRequest(rhandle, reqid);
 s_runtime.setRequestParameter(rhandle, reqId, paramName, "yy");
...

Querying Job Requests
Using the runtime service you can query job request information. This involves the
following steps:

• Query for request identifiers and limit results with a filter.

• Get request details to provide additional information for each request ID that the
query returns.

There is only one query method; the runtime service queryRequests() method
returns an enumeration of request IDs that match the query. The queryRequests()
method includes a filter argument that contains field, comparator, and value
combinations that help select query results. Note that the return value includes IDs for

Querying Job Requests

19-8 Developing Applications for Oracle Enterprise Scheduler

requests that did not complete, such as when the request transaction is rolled back or
an error occurs. For more information on filters, see How to Create a Filter.

When you create a filter for a query, you can use any of the field names shown in Table
19-5 when querying the runtime store.

Table 19-5 Query Filter Fields For Querying the Runtime (Defined in Enum
RuntimeService.QueryField)

Name Description

ABSPARENTID The absolute parent request ID of a request.

APPLICATION The application name.

ASYNCHRONOUS Indicates if the job is asynchronous, synchronous or unknown. The value of the field
is not set until the request is processed. The field data type is java.lang.Boolean.
The value may be NULL if the nature of the job has not yet been determined.

CLASSNAME The name of the executable class that processed the request

COMPLETED_TIME The date and time that Oracle Enterprise Scheduler finished processing the request.
This field represents the time the process phase was set to COMPLETED.

DEFINITION The job definition ID (Metadata Object ID).

ELAPSEDTIME The amount of time, in milliseconds, that elapsed while the request was running.

ENTERPRISE_ID The enterprise ID.

ERROR_TYPE The request error type.

EXTERNAL_ID The identifier for an external portion of an Oracle Enterprise Scheduler
asynchronous Java job.

EXTERNAL_JOB_TYPE Indicates the type of the remote job

INSTANCEPARENTID The request ID of the instance parent request.

JOB_TYPE The job type ID (Metadata Object ID).

LOGICAL_CLUSTER_NAM

E

Indicates the logical cluster on which a remote job is executed.

NAME The request description.

PARENTREQUESTID The parent request ID.

PRIORITY The priority of the request.

PROCESS_PHASE The process phase of the request.

PROCESSEND The date and time that the process ended. The PROCESSSTART is set only when a
request transitions from READY to RUNNING. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNING to the time it transitions to a terminal state.

PROCESSOR The name of the instance that processed the request.

Querying Job Requests

Using the Runtime Service 19-9

Name Description

PROCESSSTART The date and time that the process started. The PROCESSSTART is set only when a
request transitions from READY to RUNNING. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNING to the time it transitions to a terminal state.

PRODUCT The product name.

READYWAIT_TIME The amount of time, in milliseconds, a request has been waiting to run since it
became READY.

REQUEST_CATEGORY The request category specified for the request.

REQUEST_DMS_ECID The DMS ECID used for processing of a request.

REQUESTEDEND The requested end time.

REQUESTEDSTART The requested start time.

REQUESTID The request ID of a submitted request.

REQUESTTYPE The type of request (that is, an element of RequestType)

RESULTINDEX Controls the starting and ending index of the returned results. This field allows users
to express result constraints such as "return only results 10 through 20".

RETRIED_COUNT The retried count associated with a job. This field represents the number of times the
job was retried.

REQUESTTRIGGER The Trigger ID (Metadata Object ID).

SCHEDULE The schedule ID (Metadata Object ID).

SCHEDULED The time when the request is scheduled to be executed.

STATE The job request state.

SUBMISSION The submission time of the request.

SUBMITTER The submitter of the request.

SUBMITTER_DMS_ECID The DMS ECID from the DMS context at request submission.

SUBMITTER_FLOWID The SOA/DMS FlowId from the DMS context at request submission.

SUBMITTERGUID The submitter GUID of the request.

TIMED_OUT Indicates whether the job has timed out.

TYPE The execution type of the request.

USERNAME The name of the user who submitted the request.

WAITTIME The amount of time, in milliseconds, a request has been waiting to run.

WORKASSIGNMENT The name of the work assignment that was active when the request was processed.

Querying Job Requests

19-10 Developing Applications for Oracle Enterprise Scheduler

Table 19-6 shows the runtime service method for querying job requests and Example
19-6 shows the use of this method.

Table 19-6 Runtime Service Query Methods

Runtime Query Method Description

queryRequests() Gets a summary of requests.

Example 19-6 Using queryRequest() Method

 Filter filter =
 new Filter(RuntimeService.QueryField.DEFINITION.fieldName(),
 Filter.Comparator.EQUALS,
 myJavaSucJobDef.toString())
 .and(RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 new Integer(12));

 //
 Enumeration requests =
 runtime.queryRequests(h, filter,
 RuntimeService.QueryField.REQUESTID, true);

Submitting Ad Hoc Job Requests
To use an ad hoc request you supply request parameters, a job definition, and
optionally a schedule that you create and define without saving it to a metadata
repository. An ad hoc request does not require you define the details of a job request in
a metadata repository. Thus, ad hoc requests support an abbreviated job request
submission process that can occur without using a connection to the metadata
repository.

Note:

Ad hoc requests have the following limitation: job sets are not supported with
ad hoc requests.

How to Create an Ad Hoc Request
To create an ad hoc request you use the ad hoc version of submitRequest(). For the
job definition, instead of supplying a job definition MetadataObjectId, you can
define the job definition object and use a system property that corresponds to the job
type, as shown in Table 19-7.

Table 19-7 Ad Hoc Request Job Definition System Properties for Job Types

System Property Description

CLASS_NAME Specifies the Java class to execute (for a Java job type).

PROCEDURE_NAME Specifies the PL/SQL stored procedure to execute (for an SQL job type).

CMDLINE Specifies the command line used to invoke an external program for a process job
request.

Submitting Ad Hoc Job Requests

Using the Runtime Service 19-11

With one signature of the ad hoc version of submitRequest() you do not need to
supply MetadataObjectIds, you can provide the Schedule object as an argument
as object instances directly to submitRequest(). Other ad hoc submitRequest()
signatures allow you to submit a job request using a job definition from metadata and
an instance for the Schedule object.

Example 19-7 shows sample code for an ad hoc request submission that uses a
schedule.

In this example, note the following ad hoc specific details for the request submission:

• The CLASS name is set to define the Java class that runs when Oracle Enterprise
Scheduler executes the job request: p.add(SystemProperty.CLASS_NAME,
"test.job.HelloWorld");

• The submitRequest() includes an argument that specifies the job type:
JobType.ExecutionType.JAVA_TYPE.

• Specify the Java class, the procedure name, or the command line program to
execute when the ad hoc Request is processed by setting one of the system
properties shown in Table 19-7.

• Call the ad hoc version of submitRequest() specifying the type argument to
correspond with the system property you set to define the request. The type you
supply must be one of JAVA_TYPE, SQL_TYPE, or PROCESS_TYPE.

• As with any job request, set the appropriate system properties to be associated with
the job request.

Example 19-7 Creating Request Parameters and a Schedule for an Ad Hoc Request

 RequestParameters p = new RequestParameters();
 String propName = "testProp";
 String propValue = "testValue";
 p.add(propName, propValue);
 p.add(SystemProperty.REQUEST_EXPIRATION, new Integer(10));
 p.add(SystemProperty.LISTENER, "test.listener.TestListener");
 p.add(SystemProperty.EXECUTE_PAST, "TRUE");
 p.add("application", getApplication());
 p.add(SystemProperty.CLASS_NAME, "test.job.HelloWorld");

 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 5);
 Calendar end = (Calendar) start.clone();
 end.add(Calendar.SECOND, 5);

 Recurrence recur = new
Recurrence(RecurrenceFields.FREQUENCY.SECONDLY,
 2, start, end);

 Schedule schedule = new Schedule("mySchedule",
 "Run every 2 sec for 5 seconds.", recur);

 // adhoc submission, no metadata definitions passed
 reqId = runtime.submitRequest(h,
 "testAdhocJavaWithSchedule",
 JobType.ExecutionType.JAVA_TYPE,
schedule, null, Calendar.getInstance(),
null, p);

Submitting Ad Hoc Job Requests

19-12 Developing Applications for Oracle Enterprise Scheduler

What Happens When You Create an Ad Hoc Request
The ad hoc submitRequest() returns the request identifier for the request. You can
use this request identifier with runtime calls such as setRequestParameter() or
getRequestDetail() as you would with any other job request.

There is only one submitRequest signature that creates a request with an ad hoc job
definition. The job definition ID, obtained from RequestDetail.getJobDefn(), is
null in this case. Without an ad hoc job definition, a request cannot be considered ad
hoc.

What You Need to Know About Ad Hoc Requests
If you want to define a schedule to use with an ad hoc request and you want to specify
exclusion dates, you need to exclude the dates using the addExclusionDate()
method for the schedule. For ad hoc requests, you cannot use a schedule that specifies
exclusion dates using addExclusion() method for the schedule.

Currently, if the schedule is ad hoc, a check of ExclusionDefinition is skipped.
Thus, if you use a schedule and use addExclusion() and submit an ad hoc job
request, then Oracle Enterprise Scheduler does not use the ExclusionsDefinition
IDs with the job request.

Implementing Pre-Process and Post-Process Handlers
Along with the core logic of your job, you can include code that executes before and
after the job's main execution code. With code that executes before, known as a pre-
process handler, you can do such things as set up certain conditions for the job
executable. With code that executes after, known as a post-process handler, you can do
such things as processing the results of the job executable, perhaps by printing reports
or sending notifications.

You provide pre- and post-process handlers by implementing specific interfaces, then
connecting your implementations to the service through a system property that
indicates which of your classes to use.

Implementing a Pre-Process Handler
With a pre-process handler, your code can do things to create an environment for your
job to execute. This could include creating connections to resources that your job
requires, for example.

The pre-processor is instantiated and invoked at the start of request execution when
the request transitions to RUNNING state. This is done each time the request is
executed, including when a failed request is retried or a paused request is resumed
after its sub-requests have completed.

You create a pre-process handler by implementing the
oracle.as.scheduler.PreProcessHandler interface. With your pre-process
handler class in hand, you specify that it should be used by setting the
SYS_preProcess system property to the fully-qualified name of your handler class.
You can define the property on job metadata or include it in the request submission
parameters.

Implementing Pre-Process and Post-Process Handlers

Using the Runtime Service 19-13

Implementing the PreProcessHandler Interface

Your PreProcessHandler implementation should do the pre-process actions your
job requires, then return an oracle.as.scheduler.HandlerAction instance from
the interface's one method, preProcess. (Your class may also implement the
Cancellable interface if you want the job to support cancellation. It must also
provide an empty constructor.)

The HandlerAction instance your preProcess implementation returns should give
status about whether, and under what conditions, the job should proceed. When
constructing the HandlerAction class, you pass it a HandlerStatus instance that
indicates the status of pre-processing for the request.

Supported HandlerStatus values and actions are listed below. An unsupported
status causes the request to transition to an error state and be subject to retries if
configured.

• PROCEED informs Oracle Enterprise Scheduler that request processing should
commence. The request remains in the RUNNING state.

• WARN informs Oracle Enterprise Scheduler that request processing should
commence but that a warning should be logged. The request remains in the
RUNNING state.

• CANCEL informs Oracle Enterprise Scheduler that request pre-processing has been
canceled. The request transitions to the CANCELLED state.

• DELAY informs Oracle Enterprise Scheduler to postpone request processing by the
quantum of time specified by the SYS_reprocessDelay system property. The
request remains in RUNNING state during the delay.

• SYSTEM_ERROR informs Oracle Enterprise Scheduler that the handler has
experienced an error. The request transitions to an error state and is subject to
retries if configured.

• BIZ_ERROR informs Oracle Enterprise Scheduler that the handler has experienced
a business error. The request transitions to an error state not subject to retries.

Implementing a Post-Process Handler
With a post-process handler, your code can do things that should take place after your
job has executed. This could include releasing connections to resources that your job
required, for example, or generating a report based on request-specific data or status.

The post-processor is instantiated and invoked after job execution, when the request
transitions to COMPLETED state. The post-processor is invoked only once for a
request, in contrast to the pre-processor.

You create a post-process handler by implementing the
oracle.as.scheduler.PostProcessHandler interface. With your post-process
handler class in hand, you specify that it should be used by setting the
SYS_postProcess system property to the fully-qualified name of your handler class.
You can define the property on job metadata or include it in the request submission
parameters.

Implementing the PostProcessHandler Interface

Your PostProcessHandler implementation should do the post-process actions your
job requires, then return an oracle.as.scheduler.HandlerAction instance from

Implementing Pre-Process and Post-Process Handlers

19-14 Developing Applications for Oracle Enterprise Scheduler

the interface's one method, postProcess. (Your class may also implement the
Cancellable interface if you want the job to support cancellation. It must also
provide an empty constructor.)

The HandlerAction instance your postProcess implementation returns should
give status about whether, and under what conditions, the job should conclude. When
constructing the HandlerAction class, you pass it a HandlerStatus instance that
indicates the status of post-processing for the request.

Supported HandlerStatus values and actions are listed below. An unsupported
status causes the request to transition to WARNING state.

• PROCEED to inform Oracle Enterprise Scheduler that request post-processing
completed successfully. The request transitions to the SUCCEEDED state or
WARNING state depending on the status of the request prior to invoking the post-
processor.

• WARN to inform Oracle Enterprise Scheduler that request post-processing resulted
in a warning. The request transitions to WARNING state.

• CANCEL informs Oracle Enterprise Scheduler that request post-processing has been
canceled. The request transitions to WARNING state.

• DELAY to inform Oracle Enterprise Scheduler to postpone request processing by
the quantum of time specified by the SYS_reprocessDelay system property. The
request remains in COMPLETED state during the delay.

• SYSTEM_ERROR to inform Oracle Enterprise Scheduler that the handler has
experienced an error. The request transitions to the WARNING state.

• BIZ_ERROR to inform Oracle Enterprise Scheduler that the handler has
experienced a business error. The request transitions to the WARNING state.

Implementing Pre-Process and Post-Process Handlers

Using the Runtime Service 19-15

Implementing Pre-Process and Post-Process Handlers

19-16 Developing Applications for Oracle Enterprise Scheduler

20
Using Subrequests

This chapter describes how to use Oracle Enterprise Scheduler subrequests to process
data in parallel, particularly in a dynamic context, where the number of parallel
requests can vary.

This chapter includes the following sections:

• Introduction to Using Subrequests

• Creating and Managing Subrequests

• Creating a Java Procedure that Submits a Subrequest

• Creating a PL/SQL Procedure that Submits a Subrequest

Introduction to Using Subrequests
Oracle Enterprise Scheduler subrequests are useful when you want to process data in
parallel. A request submitted from a running job is called a subrequest. You can submit
multiple subrequests from a single parent request. The customary method of parallel
execution in Oracle Enterprise Scheduler is the job set concept but there might be cases
where the number of parallel processes may not be fixed in number. For example,
when you want to allocate one request per million rows and in the last week 9.7
million rows have accumulated to process. In this case, you would allocate ten
requests as opposed to 5 for a week that accumulated 4.6 million rows.

Oracle Enterprise Scheduler supports subrequest functionality so that a given running
request (Job Request) can submit a subrequest and wait for the completion of such a
request before it continues.

Oracle Enterprise Scheduler supports subrequests by exposing an overloaded
subrequest method submitRequest(). An application that submits a job request can
invoke this API to submit a subrequest.

The following restrictions apply to subrequests:

• A subrequest can be submitted only for onetime execution. No schedule can be
specified. The subrequest is always treated as a "run now" request.

• Ad hoc subrequests are not supported. A subrequest must be submitted for an
existing JobDefinition object in the application.

• Job sets are not supported for subrequests. A subrequest can only be submitted to a
JobDefinition object. However, any running job (which may be part of a job set)
can submit a subrequest.

These restrictions simplify the execution of subrequests and avoid any complications
and delays in the execution of the submitting request itself.

Using Subrequests 20-1

There are different kinds of parent requests in Oracle Enterprise Scheduler, for the
description in this chapter, a parent request refers to the request that is submitting a
subrequest.

A subrequest follows the normal flow of a regular one-time request. However the
processing of a subrequest starts only when the parent request pauses its execution. To
indicate this, Oracle Enterprise Scheduler uses the PAUSED state. This state implies
that the parent request is paused and waiting for the subrequest to finish.

After a parent request submits a subrequest, that parent must return control back to
Oracle Enterprise Scheduler, in the manner appropriate for its job type, indicating that
it has paused execution. Oracle Enterprise Scheduler then sets the parent state to
PAUSED and starts processing the subrequest. After the subrequest finishes, Oracle
Enterprise Scheduler places the parent request on the ready queue, where it remains
PAUSED, until it is picked up by an appropriate request processor. The parent is then
set to RUNNING state and re-run as a resumed request.

Creating and Managing Subrequests
• How to Submit Subrequests

• How to Cancel Subrequests

• How to Hold Subrequests

• How to Submit Multiple Subrequests

• How to Manage Paused Subrequests

• How Subrequests Are Processed

• How to Identify Subrequests

• How to Manage Subrequests and Incompatibility

How to Submit Subrequests
A subrequest can be submitted by calling the submitRequest API. The subrequest is
set to WAIT state, but Oracle Enterprise Scheduler does not process the request while
the parent request is running. A subrequest can be processed only after the parent
request has paused.

How to Cancel Subrequests
There are two main ways a subrequest can be canceled, either by the user cancelling
the subrequest directly or as a result of the parent request being canceled. For either
method, the cancellation process of the subrequest is handled in the same manner as
any other executable request. The difference lies in how Oracle Enterprise Scheduler
treats the parent request after all pending subrequests have completed and reached a
terminal state.

Oracle Enterprise Scheduler sets a subrequest that is in WAIT or READY state directly to
CANCELLED. If a subrequest is currently running, then the subrequest is set to
CANCELLING and Oracle Enterprise Scheduler then attempts to cancel the running
executable in the manner appropriate for its job type. Usually, the subrequest ends up
in CANCELLED state, but it may end in some other terminal state depending on the life
cycle stage where the subrequest was at. The parent request remains in PAUSED or
CANCELLING state until all subrequests have reached a terminal state.

Creating and Managing Subrequests

20-2 Developing Applications for Oracle Enterprise Scheduler

If the user cancels a subrequest, then Oracle Enterprise Scheduler cancels that
subrequest, as described previously. The parent request remains in PAUSED state until
all subrequests are complete, at which point Oracle Enterprise Scheduler resumes or
restarts the parent request. This enables the parent request to handle the completion of
the subrequest, possibly as canceled, in an appropriate fashion. Cancellation of
subrequests is thus not propagated upwards.

If the user cancels the parent request, Oracle Enterprise Scheduler sets the parent
request to CANCELLING state, and then initiates a cancellation for all pending
subrequests in the manner described previously. After all subrequests have completed,
Oracle Enterprise Scheduler sets the parent request to CANCELLED, and the parent
request does not resume. Cancellation of a parent request is propagated down to its
subrequests.

How to Hold Subrequests
A subrequest has the same life cycle as an ordinary request, and can be held when it is
in WAIT or READY state. The parent request remains in PAUSED state while the
subrequest is on hold.

How to Submit Multiple Subrequests
Oracle Enterprise Scheduler allows requests to submit multiple subrequests. A
running request may submit more than one subrequest. All of these subrequests are
processed by Oracle Enterprise Scheduler when the parent request pauses and goes to
PAUSED state.

In case of multiple such subrequests, the parent request is resumed only when all the
subrequests finish.

Also it is possible to submit subrequests up to any depth. This creates nested
subrequests. As such there are no restrictions on the depth of such subrequest
submissions. This is kind of similar to stack push and pop operations.

How to Manage Paused Subrequests

• Indicating Paused Status

• Storing the Paused State for a Parent Request

Indicating Paused Status

A Java executable can submit subrequests using
RuntimeService.submitRequest. After the subrequest has been submitted, the
parent request must indicate to Oracle Enterprise Scheduler that it is pausing to allow
the subrequest to be processed. This is accomplished by the parent throwing an
ExecutionPausedExcpetion which causes the request to transition to PAUSED
state. After the subrequests have completed, the parent request is run again as a
resumed request. The RequestExecutionContext can be used to determine if the
executable is being run as a resumed request.

Storing the Paused State for a Parent Request

When a job execution pauses after submitting a subrequest, Oracle Enterprise
Scheduler regards its execution as complete, for all intents and purposes, as
implementation-wise there is no notion of pausing an execution thread. Therefore, to
resume such a paused job, Oracle Enterprise Scheduler must restart the job. In such
cases, the job execution restarts from the beginning, whereas the desired behavior is to

Creating and Managing Subrequests

Using Subrequests 20-3

continue from the point at which execution was paused. This requires the job
execution to store some kind of execution state that would represent the paused point.
On resuming, the job can retrieve such a state and jump to the paused point to
continue from there.

In general, it is incumbent on individual jobs to define an execution state that would
allow it to resume in a deterministic way from each pause point throughout the
business logic (jobs can have multiple pause points). In some cases, it can be as simple
as storing the step number and jumping to that particular step on resuming, while in
other cases it can be a huge data set that stores critical state for the business logic when
it pauses. Oracle Enterprise Scheduler cannot provide a complete solution or
framework to store the entire state.

Oracle Enterprise Scheduler provides a simplistic means for jobs to store their pause
point in the form of a string that can be specified when the parent job pauses its
execution. Upon resuming the parent job, the paused state value can be obtained by
the parent to use as required.

Java jobs can specify a paused state string using a special
ExecutionPausedException constructor. The state parameter represents the
paused state string saved by Oracle Enterprise Scheduler when it sets the parent
request to PAUSED state.

public ExecutionPausedException(String message, String state)

The resumed parent can retrieve the paused state value by calling
getPausedState() on the RequestExecutionContext passed to the parent
executable.

In case a single string value is not sufficient, the parent job can write any number of
properties back into Oracle Enterprise Scheduler using setRequestParameter(),
and retrieve those properties on resuming using getRequestParameter().

How Subrequests Are Processed
When a subrequest is submitted, Oracle Enterprise Scheduler sets the request state to
WAIT but in a deferred mode so it is not dispatched until the parent request pauses.

The parent request of a Java job indicates that it is ready for subrequests to be
processed by throwing ExecutionPausedException. When the Oracle Enterprise
Scheduler receives such an exception, it sets the parent request state to PAUSED,
publishes a system event message that the parent has paused, and then dispatches all
waiting subrequests for that parent to the ready queue.

Subrequest execution follows the normal life cycle within Oracle Enterprise Scheduler.
After all subrequests for a given parent request are finished, the parent request can be
resumed.

When a parent is ready to resume, Oracle Enterprise Scheduler places the parent
request in the ready queue. The parent state remains as PAUSED while it is waiting to
be picked up. After Oracle Enterprise Scheduler picks up the parent request from the
ready queue, the request state is set to RUNNING and the request executable called as a
resumed request.

If a request is paused without submitting any subrequests, it is treated as if all
subrequests had finished. That is, it is placed in the ready queue, at PAUSED state, to
be picked up for processing as a resumed request.

The final state of a subrequest does not influence how Oracle Enterprise Scheduler
handles the parent request or the final state of the parent request after that parent

Creating and Managing Subrequests

20-4 Developing Applications for Oracle Enterprise Scheduler

executable has completed. When the parent request resumes, the parent request job
logic can retrieve information about the subrequest, using this data as needed to
determine subsequent actions. The final state of the parent request is based entirely on
the state in which the parent request completed: succeeded, error, warning or
canceled.

How to Identify Subrequests
In Oracle Enterprise Scheduler, each request has a RequestType attribute. That
attribute indicates whether the request is a singleton, part of a job set, a recurring
request, a subrequest, and so on.

A subrequest has a RequestType of SUB_REQUEST or
UNVALIDATED_SUB_REQUEST. An UNVALIDATED_SUB_REQUEST represents a
subrequest that was submitted using the Oracle Enterprise Scheduler PL/SQL
interface but has not yet been validated. The RequestType of the parent request is
either SINGLETON, RECUR_CHILD, JOBSET_STEP, or SUBREQUEST. All other request
types represent requests that can never be the parent of a subrequest.

The parent request ID attribute for a subrequest is the request that submitted the
subrequest.

How to Manage Subrequests and Incompatibility
In general, a request acquires incompatibility locks when the request transition from
READY to RUNNING state. Those locks are not released until the request finishes and is
set to a terminal state; for example, SUCCEEDED, ERROR, WARNING, CANCELLED.

Incompatibility locks acquired by a subrequest parent remain in effect even while a
parent request is in a PAUSED state. Any requests that were blocked by a subrequest
parent remain blocked while the subrequests execute and until the parent request is
resumed and finishes.

Subrequests follow all the rules of incompatibility. A subrequest therefore may get
blocked if any incompatible requests are currently running when Oracle Enterprise
Scheduler is ready to execute the subrequest. During such time windows, the parent
request remains in PAUSED state while the subrequest transitions to BLOCKED state.

Creating a Java Procedure that Submits a Subrequest
This is an example of the Java class for a Java job type that submits subrequests. The
procedure submits two subrequests, pausing between each one. Each subrequest uses
the same JobDefinition but specifies a different value for the request parameter
named SubRequestData. The oracle.as.scheduler.Executable.execute
method of the parent request is called a total of three times for a given Oracle
Enterprise Scheduler request and the following summaries the expected conditions
and actions for each.

In the first call to execute method as a non-resumed request:

Entry condition:

• RequestExecutionContext.isResumed() is false

• RequestExecutionContext.getPausedState() is null

Method Action:

• Submit a subrequest with request parameter value of 'MyData1'

Creating a Java Procedure that Submits a Subrequest

Using Subrequests 20-5

• Throw ExecutionPausedException with pausedState of 'MyPausedState1"

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the
subrequest, and then resume the request after the subrequest has completed.

First call to execute method as resumed request:

Entry condition:

• RequestExecutionContext.isResumed() is true

• RequestExecutionContext.getPausedState() is 'MyPausedState1'

Method Action:

• Submit a subrequest with request parameter value of 'MyData2'

• Throw ExecutionPausedException with pausedState of 'MyPausedState2"

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the
subrequest, and then resume the request after the subrequest has completed.

Second call to execute method as resumed request:

Entry condition:

• RequestExecutionContext.isResumed() is true

• RequestExecutionContext.getPausedState() is 'MyPausedState2'

Method Action:

• Exit normally, no exception.

Oracle Enterprise Scheduler transitions the request to SUCCEEDED state.

Example 20-1 shows a Java procedure with a subrequest.

Example 20-1 Java Procedure with Subrequest

// constants for the pausedState values
private final static String PAUSED_STATE_1 = "MyPausedState1";
private final static String PAUSED_STATE_2 = "MyPausedState2";

public class SubRequestSubmittor implements Executable {

 // method called by Oracle Enterprise Scheduler when the request is executed
 public void execute(RequestExecutionContext execCtx,
 RequestParameters props)
 throws ExecutionWarningException,
 ExecutionErrorException,
 ExecutionPausedException,
 ExecutionCancelledException {

 long requestId = execCtx.getRequestId();
 boolean isResumed = execCtx.isResumed();
 String pausedState = execCtx.getPausedState();

 if (!isResumed) {

 // Method being called for first time, as non-resumed request.
 // Submit first subrequest.
 submitSubRequest(execCtx, "MyData1");
 throw new ExecutionPausedException("first subrequest", PAUSED_STATE_1);

Creating a Java Procedure that Submits a Subrequest

20-6 Developing Applications for Oracle Enterprise Scheduler

 } else if (PAUSED_STATE_1.equals(pausedState)) {

 // Method being called for a resumed request.
 // Submit next subrequest.
 submitSubRequest(execCtx, "MyData2");
 throw new
 ExecutionPausedException("second subrequest", PAUSED_STATE_2);

 } else if (PAUSED_STATE_2.equals(pausedState)) {

 // Method being called for a resumed request.
 // All done, just return.

 } else {

 // Method being called for a resumed request.
 // Unknown paused state (should never happen).
 String msg = "Request " + requestId +
 " was resumed with unexpected pause state " + pausedState;
 throw new ExecutionErrorException(msg);

 }
 }

 // Submit subrequest with request parameter having the given value.
 private void submitSubRequest(RequestExecutionContext execCtx,
 String paramValue)
 throws ExecutionErrorException{

 RuntimeService rs = null;
 RuntimeServiceHandle rh = null;

 try {
 rs = getRuntimeService();

 // Retrieve MetadataObjectId of the subrequest job definition
 String jobDef = "MySubRequestJobDef";
 MetadataObjectId jobDefId = getJobDefinition(jobDef);

 // Set value for the request parameter used by subrequest.
 RequestParameters rp = new RequestParameters();
 rp.add("SubRequestData", paramValue);

 // Submit the subrequest
 rh = rs.open();

 long subReqId = rs.submitRequest(rh, execCtx,
 "subrequest submitter",
 jobDefId, rp);

 } catch (Exception e) {

 String msg = "Error while submitting subrequest for request " +
 ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);

 } finally {

 if (null != rh) {
 try {

Creating a Java Procedure that Submits a Subrequest

Using Subrequests 20-7

 rs.close(rh);
 } catch (Exception e) {
 String msg = "Error while submitting subrequest for request "
 + ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);
 }
 }
 }
 }

 // Get RuntimeService.
 private RuntimeService getRuntime()
 throws ExecutionErrorException {
 // implementation not shown
 }

 // Retrieve MetadataObjectId for a given job definition name.
 private MetadataObjectId getJobDefinition(String jobDef)
 throws ExecutionErrorException {
 // implementation not shown
 }

}

Creating a PL/SQL Procedure that Submits a Subrequest
The ESS_RUNTIME PL/SQL package is used by an SQL job request to submit a
subrequest. It also contains support to determine if the request procedure is being
executed as a resumed request and retrieve the paused state string.

For a Java request, the parent request submits a subrequest using a
RuntimeService.submitRequest method and then throws
ExecutionPausedException when it is ready to be paused to allow the subrequest
to execute.

For a SQL request, ess_runtime.submit_subrequest is used to submit the
subrequest. The parent request must call ess_runtime.mark_paused when it is
ready for the subrequest to run, commit the transaction and return successfully,
without raising an exception. The mark_paused method informs Oracle Enterprise
Scheduler that, upon successful return from the parent request procedure, the parent
request should be set to PAUSED and the subrequest allowed to execute. The
mark_paused method supports an optional argument by which the paused state
string can be specified.

It is important to note that subrequest is executed until the parent request has called
mark_paused, commits, and returns normally, without raising an exception. If an
exception is raised, Oracle Enterprise Scheduler does not set parent request to PAUSED
state, but instead, it the parent state is set to ERROR or WARNING depending on the SQL
error code. Furthermore, the subrequests are automatically CANCELLED and are not
executed.

After the subrequest has finished, PL/SQL procedure for the parent request is re-
executed again as resumed request, similar to what occurs for a Java Executable.

For a Java executable, the RequestExecutionContext indicates if the request is
being resumed and has the paused state string specified using the
ExecutionPausedException thrown when the parent request paused.

For an SQL request, ess_runtime.is_resumed indicates whether the request
procedure is being executed for a resumed request. The method

Creating a PL/SQL Procedure that Submits a Subrequest

20-8 Developing Applications for Oracle Enterprise Scheduler

ess_runtime.get_paused_state returns the paused state string specified using
the ess_runtime.mark_paused procedure when the request was paused.

This is an example of the PL/SQL stored procedure for a SQL job type that submits
subrequests using the ESS_RUNTIME package. The procedure submits two
subrequests, pausing between each one. Each subrequest uses the same
JobDefinition but specifies a different value for the request parameter named
SubRequestData. The PL/SQL stored procedure would be called a total of three
times for a given Oracle Enterprise Scheduler request and the following summaries
the expected conditions and actions for each.

First call to procedure as non-resumed request:

Entry condition:

• ess_runtime.is_resumed is false

• ess_runtime.get_paused_state is null

Procedure Action:

• Submit a subrequest with request parameter value of 'MyData1'

• Mark request as paused using paused state of 'MyPausedState1'

• Exit normally, no exception

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the
subrequest, and then resume the request after the subrequest has completed.

First call to procedure as resumed request:

Entry condition:

• ess_runtime.is_resumed is true

• ess_runtime.get_paused_state is 'MyPausedState1'

Procedure Action:

• Submit a subrequest with request parameter value of 'MyData2'

• Mark request as paused using paused state of 'MyPausedState2'

• Exit normally, no exception

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the
subrequest, and then resume the request after the subrequest has completed.

Second call to procedure as resumed request:

Entry condition:

• ess_runtime.is_resumed is true

• ess_runtime.get_paused_state is 'MyPausedState2'

Procedure Action:

• Exit normally, no exception.

Oracle Enterprise Scheduler transitions the request to SUCCEEDED state.

Example 20-2 shows a PL/SQL procedure with a subrequest.

Creating a PL/SQL Procedure that Submits a Subrequest

Using Subrequests 20-9

Example 20-2 PL/SQL Procedure with Subrequest

-- Application stored procedure.
procedure plsql_subreq_sample
(request_handle in varchar2)
is
 v_reqid number;
 v_is_resumed boolean;
 v_paused_str varchar2(100);
 v_paused_state1 varchar2(100) := 'MyPausedState1';
 v_paused_state2 varchar2(100) := 'MyPausedState2';
begin
 -- Request id of this subrequest parent.
 v_reqid := ess_runtime.get_request_id(request_handle);

 -- Check is this is a resumed request
 v_is_resumed := ess_runtime.is_resumed(request_handle);

 if (v_is_resumed = false) then
 -- This parent request is being run for the first time.
 -- Submit a subrequest and exit as success to allow ESS to pause this
parent.
 submit_subrequest(request_handle, v_paused_state1, 'MyData1');
 else
 -- Parent is being run as resumed request.
 v_paused_str := ess_runtime.get_paused_state(v_reqid);
 if (v_paused_state1 = v_paused_str) then
 -- Request being resumed after first pause.
 -- Submit a subrequest and exit as success to allow ESS to pause this
parent.
 submit_subrequest(request_handle, v_paused_state2, 'MyData2');
 elsif (v_paused_state2 = v_paused_str) then
 -- Request being resumed after second pause.
 -- Parent is done. Just return as success.
 null;
 end if;
 end if;
end;

-- Helper procedure to submit subrequest and call mark_paused.
-- Caller should exit normally, without an error, to allow
-- ESS mid-tier to pause the parent and execute the sub-request.
procedure submit_subrequest
(request_handle in varchar2,
 paused_state_value in varchar2,
 reqprop_value in varchar2)
is
 v_sub_reqid number := null;
 v_req_props ess_runtime.request_prop_table_t := null;
 v_idx pls_integer := 0;
begin
 v_req_props := ess_runtime.request_prop_table_t();
 v_idx := 0;

 v_idx := v_idx + 1;
 v_req_props.extend;
 v_req_props(v_idx).prop_name := 'SubRequestData';
 v_req_props(v_idx).prop_datatype := ess_runtime.STRING_DATATYPE;
 v_req_props(v_idx).prop_value := reqprop_value;

 -- Must commit or rollback work done in this block.

Creating a PL/SQL Procedure that Submits a Subrequest

20-10 Developing Applications for Oracle Enterprise Scheduler

 begin
 -- Submit the subrequest.
 v_sub_reqid := ess_runtime.submit_subrequest(
 request_handle => request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => v_req_props);

 -- Indicate that the parent request should pause.
 -- The actual state change does not occur until ESS is notififed
 -- that this run of the parent executable finished.
 ess_runtime.mark_paused(request_handle, paused_state_value);

 -- This procedure is responsible for the txn commit.
 commit;
 exception
 -- Rollback txn on failure and raise an error.
 rollback;
 raise_application_error(-20000,
 'Error submitting sub-request. '||
 'SQLCODE='||SQLCODE || ', SQLERRM=['||SQLERRM||']',
 true);
 end;
 end;
end;

Creating a PL/SQL Procedure that Submits a Subrequest

Using Subrequests 20-11

Creating a PL/SQL Procedure that Submits a Subrequest

20-12 Developing Applications for Oracle Enterprise Scheduler

21
Working with Asynchronous Java Jobs

This chapter describes how to use Oracle Enterprise Scheduler to invoke asynchronous
Java jobs to support long-running or non-container-managed jobs that invoke Java
code.

This chapter includes the following sections:

• Introduction to Working with Asynchronous Java Jobs

• Creating an Asynchronous Java Job

• A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous
Job

• How to Implement BPEL with an Asynchronous Job

• Handling Time Outs and Recovery for Asynchronous Jobs

• Oracle Enterprise Scheduler Interfaces and Classes

Introduction to Working with Asynchronous Java Jobs
Normally Oracle Enterprise Scheduler Java job requests run inside Oracle WebLogic
Server in a dedicated thread; however, there are cases that require the ability to submit
long running or non-container managed Java job requests.

Oracle Enterprise Scheduler supports asynchronous Java job invocation with the
following features:

• From the Oracle Enterprise Scheduler user point of view there is no difference in
scheduling asynchronous Java job invocation.

• From Oracle Enterprise Scheduler perspective, the asynchronous Java job
invocation job request is submitted and is added to the queue, and returns
immediately after running (and the job request enters the RUNNING state). Oracle
Enterprise Scheduler continues operating until it hears back from the job at which
point Oracle Enterprise Scheduler can apply post-processing or complete the job.

• Asynchronous Java jobs can be used to initiate a variety of external jobs outside of
Oracle Enterprise Scheduler. The external job, or the entity that manages it, must
communicate the status of the job to Oracle Enterprise Scheduler.

Creating an Asynchronous Java Job
An Oracle Enterprise Scheduler asynchronous Java job consists of an Oracle Enterprise
Scheduler job request and an external mechanism. The Oracle Enterprise Scheduler job
request is implemented similarly to a standard Oracle Enterprise Scheduler Java job
request; however, unlike a standard Oracle Enterprise Scheduler request, an

Working with Asynchronous Java Jobs 21-1

asynchronous Java job request might not do any work, depending on the scenario. The
only purpose of an asynchronous Java job request is to trigger the external mechanism.
The external mechanism executes the payload (monitoring a database, calculating pi,
or any other long lived process), and must be separable from the thread running the
Oracle Enterprise Scheduler Java job. The external mechanism can be a SOA composite
(BPEL) or asynchronous Oracle ADF Business Components web service, another
thread, JVM, machine, or some other mechanism. The means of communication
between the external mechanism and the client application is left to the job owner.
However, an important point for the asynchronous Java job is that the pointer to the
physical Java object representing the asynchronous job is not stored in Oracle
Enterprise Scheduler memory. This is because:

• The job can run for an indeterminate amount of time and caching this handle is a
waste of resources.

• Long lived jobs should be able to survive container restarts. Because this object is
not cached and most likely garbage collected, the job should be stateless and its
submitting application is responsible for maintaining the correlation between job
requests and the external mechanisms running them. Oracle Enterprise Scheduler
provides the job request ID and job request handle for this reason. This information
should be persisted in order to survive restarts.

Implementing the Asynchronous Java Job Asynchronous Interface
An asynchronous Java job invocation must implement the AsyncExecutable
interface.

Asynchronous Java Job execute() Method
The duty of an asynchronous Java jobs's execute() method is to set up the external
mechanism in which the real work runs; this should start the external mechanism and
then return. The asynchronous Java job invocation execute() method may not do
any actual work. An exception can be thrown during the execute method to tell Oracle
Enterprise Scheduler that this job had a problem during initialization and failed to run.
The exception during the execute method does not tell Oracle Enterprise Scheduler
that the actual work running on the external mechanism encountered a problem. It is
the responsibility of the job owner to make sure any resources that may have been
started or used are released, since Oracle Enterprise Scheduler does no further
processing if it catches an exception. Assuming no exception is thrown, Oracle
Enterprise Scheduler puts the job into the running state and then releases the handle
on the job's object so that it may be garbage collected.

Invoking a Remote Job from an Asynchronous Java Job
An asynchronous Java job that invokes an external web service can set web service
addressing headers to simplify the work of the remote job.

Correlation

The WSA messageID header is used to correlate the response message with the
request. Oracle Enterprise Scheduler provides the method
RequestExecutionContext.getIdString, which returns an ID to be used for the
value of the WSA messageID header.

Reply Addressing

The WSA ReplyTo and FaultTo headers can be used to direct replies to the Oracle
Enterprise Scheduler generic callback service. The Oracle Enterprise Scheduler generic

Creating an Asynchronous Java Job

21-2 Developing Applications for Oracle Enterprise Scheduler

callback service address can be obtained using the WebServices WSDL URLs link on
the Oracle Enterprise Scheduler instance home page at http://host:port/ess/.

Calling Back to Oracle Enterprise Scheduler with Status Updates
Oracle Enterprise Scheduler provides a web service operation for asynchronous
callbacks, setAsyncRequestStatus (see the interface in Example 21-15). It requires
typed information such as status and the status message, as well as the correlation
information to be explicitly given.

Oracle Enterprise Scheduler provides another mechanism: a generic Java Required
Files web service provider for asynchronous callbacks. The web service provider
accepts payloads of any type, and messages are delivered as SOAPMessage objects.
The WSA relatesTo header is extracted so as to correlate the message with the
request. This header is populated with the WSA messageID header of the original
request. The Action header is used to determine whether the response is due to the
completion of the asynchronous job or a fault.

If the response is due to a fault, the asynchronous job request status is provisionally set
to ERROR. If the response is due to the successful completion of the asynchronous job,
the asynchronous job request status is provisionally set to SUCCESS. The
SOAPMessage body is extracted and converted to a string which is passed to the
Updatable.onEvent method.

The web service provider address is http://host:port/ess-async/
essasynccallback.

Updating the Asynchronous Java Job
Oracle Enterprise Scheduler provides the interface
oracle.as.scheduler.Updatable, which allows the job request to receive update
events initiated by the application code. When a job request is updated, Oracle
Enterprise Scheduler determines whether the client class implements the Updatable
interface. If the client class does implement the Updatable interface, it instantiates a
new object of the job class and calls the onEvent method in the context of the MDB of
the hosting application. This method accepts the request status as determined by the
web service invocation and a string representing information in a format known to the
job, for example, the SOAPMessage body from the Oracle Enterprise Scheduler web
service. This method may log information or do some other processing. It then returns
an UpdateAction object including a status and a status message.

The call to onEvent occurs in the context of the user associated with the execution of
the request.

If the job does not implement the Updatable interface, the event is processed based
on the status determined from the asynchronous callback to Oracle Enterprise
Scheduler.

For more information about the Updatable interface, see Example 21-12.

Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes
When an asynchronous Java jobs's execute() method is successful and the job
request is running on the external mechanism, Oracle Enterprise Scheduler continues
processing other jobs. When the job request is complete or encounters an error, it must
communicate back to Oracle Enterprise Scheduler. This communication channel is the
responsibility of the external mechanism.

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 21-3

Using the Web Service to Notify When an Asynchronous Job Completes

When you invoke the Oracle Enterprise Scheduler web service operation,
setAsyncRequestStatus, this sets the asynchronous request's status and associated
information. Associated with this operation, the following pieces of information are
needed:

setAsyncRequestStatus(String requestExecutionContext, AsyncStatus status, String
statusMessage)

Where:

• requestExecutionContext is a string that should be passed in as part of the
initiating event. This parameter is derived from the Oracle Enterprise Scheduler
job's RequestExecutionContext object.

• status is one of the following: SUCCESS, ERROR, WARNING, PAUSE, CANCEL,
BIZ_ERROR or UPDATE.

• statusMessage is:

– An error message if the status is ERROR or BIZ_ERROR.

– A warning message if the status is WARNING.

– A paused state if the status is PAUSED.

– A customized string you define and have the job interpret accordingly if the
status is UPDATE.

– The value is ignored if the status is SUCCESS or CANCEL.

For more information about implementing a web service in a web application, see the
chapters "Integrating Web Services Into a Fusion Web Application" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework and
"Securing and Administering WebLogic Web Services" in Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

Using EJB to Notify When an Asynchronous Job Completes

The external mechanism can communicate status to Oracle Enterprise Scheduler using
the asynchronous request EJB, that provides local and remote EJB interfaces. A helper
class is provided that encapsulates all the EJB references. This helper only works when
it is used inside the container since the helper uses dependency injection. The helper
class contains methods for communicating success, errors, warnings, and
cancellations. The following is an example:

Async request bean: java:comp/env/essnative/asyncrequest

The method:

 /**
 * Set the status of an ESS asynchronous java job.
 *
 * @param context The <code>RequestExecutionContext</code> with which the
 * request was started.
 * @param status The status of the request.
 * @param statusMessage An error message if the status is ERROR,
 * a warning message if the status is WARNING,
 * the paused state if the status is PAUSED.

Creating an Asynchronous Java Job

21-4 Developing Applications for Oracle Enterprise Scheduler

 * The value is ignored if the status is SUCCESS or CANCEL.
 * @throws RequestNotFoundException If a request is not found for the
 * <code>context</code>.
 */
 public void setRequestStatus(String context,
 String status,
 String statusMessage)
 throws RuntimeServiceException, RequestNotFoundException

Asynchronous Java Job AsyncCancellable Interface
If you want the job to be cancellable, you must also implement the
AsyncCancellable interface. This interface differs from the normal cancellable
interface in that its cancel method also provides the RequestExecutionContext
and the RequestParameters for that job. The provided context and parameters
should be used to determine which external mechanism is running the payload and
then ask it to stop. The external mechanism (rather than the job's
AsyncCancellable.cancel() implementation) notifies Oracle Enterprise
Scheduler that the job has been canceled.

Note:

Currently, there is no way to terminate a running asynchronous Oracle ADF
Business Components web service process.

Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery
Network

Using an asynchronous request you can invoke a BPEL process from Oracle Enterprise
Scheduler. An asynchronous Oracle Enterprise Scheduler Java job is used to invoke the
BPEL process. When the BPEL process completes, whether successfully, with an error
or warning, or if it is canceled, the BPEL process notifies Oracle Enterprise Scheduler
using a Oracle Enterprise Scheduler web service operation.

This method for invoking a BPEL process involves the following steps:

1. Create an asynchronous Oracle Enterprise Scheduler Java job.

2. Invoke a BPEL process from the Oracle Enterprise Scheduler Java job.

3. When the BPEL process is done, call back to the Oracle Enterprise Scheduler web
service with the completion status. Use the web service operation method to
inform Oracle Enterprise Scheduler of the request completion. For more
information, see Using the Web Service to Notify When an Asynchronous Job
Completes.

4. After Oracle Enterprise Scheduler has the completion information, it completes
any required post-processing of the request (if required).

You can invoke the associated web service directly or you can publish an event telling
the event mediator to start the BPEL process, as shown in Example 21-1.

Example 21-1 Job that Initiates a BPEL Process Through an Event Mediator

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 21-5

import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

import javax.xml.namespace.QName;
import oracle.fabric.blocks.event.BusinessEventConnection;
import oracle.fabric.blocks.event.BusinessEventConnectionFactory;
import oracle.fabric.common.BusinessEvent;
import oracle.integration.platform.blocks.event.BusinessEventBuilder;
import
oracle.integration.platform.blocks.event.BusinessEventConnectionFactorySupport;
import oracle.xml.parser.v2.XMLDocument;
import org.w3c.dom.Element;

// Async imports
import oracle.as.scheduler.AsyncExecutable;
import oracle.as.scheduler.AsyncCancellable;

public class BPELJob implements AsyncExecutable, AsyncCancellable
{
 public BPELJob() {
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 // Publish an event to the Event Mediator
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
 }

 // Cancel

 public void cancel (RequestExecutionContext ctx,
 RequestParameters requestParams) {
 publishEvent(ctx.getRequestId() + "", ctx.toString(),
"CANCEL_ESS_EVENT");
 return;
 } // cancel

 // Event publishing

 private final String eventName = "ESSDemoEvent";
 private final String eventElement = "ESSDemoEventElement";
 private final String eventNamespace =
 "http://xmlns.oracle.com/apps/ta/essdemo/events/edl";
 private final String schemaNamespace =
 "http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

 private XMLDocument buildEventPayload(String correlationId, String key,
String
 eventType) {
 Element masterElem, childElem1, childElem2, childElem3;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, eventElement);
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "requestId");

Creating an Asynchronous Java Job

21-6 Developing Applications for Oracle Enterprise Scheduler

 childElem1.appendChild(document.createTextNode(correlationId));
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace,
 "executionContext");
 childElem2.appendChild(document.createTextNode(key));
 masterElem.appendChild(childElem2);
 childElem3 = document.createElementNS(schemaNamespace, "eventType");
 childElem3.appendChild(document.createTextNode(eventType));
 masterElem.appendChild(childElem3);
 return document;
 }

 private void publishEvent(String correlationId, String key, String eventType)
 throws ExecutionErrorException
 {

 try {
 // Get event connection
 BusinessEventConnectionFactory cf =
 BusinessEventConnectionFactorySupport.
 findRelevantBusinessEventConnectionFactory(true);

 if (cf != null) {
 BusinessEventConnection conn =
 cf.createBusinessEventConnection();

 // Build event
 BusinessEventBuilder builder =
 BusinessEventBuilder.newInstance();

 // Specify the event name and namespace. In this prototype,
 // they are constants, eventNamespace, eventName
 builder.setEventName(new QName(eventNamespace, eventName));

 // Specify the event payload. In this prototype, the
 // getXMLPayload custom method constructs the payload
 builder.setBody(buildEventPayload(correlationId, key,
 eventType).getDocumentElement());
 BusinessEvent event = builder.createEvent();

 // Publish event
 conn.publishEvent(event, 5);

 // For debug only
 System.out.println("Event was sent sucessfully");
 } else {
 // For debug only
 System.out.println("cf is null");
 }
 } catch (Exception exp) {
 String errorMsg = "Failed sending event for correlation ID "
+ correlationId);
 exp.printStackTrace();
 throw new ExecutionErrorException(errorMsg, exp);
 }
 } // publishEvent

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 21-7

Sample BPEL Process Design Time with Oracle Enterprise Scheduler

You can use an asynchronous Java job to run a BPEL process. The process initiated by
an event, handled by the Event Mediator which starts the process. For an example, see
Figure 21-1.

• The real work of the process is done in the DoMyWork module.

• If the work completes successfully, control flows to AssignAsyncSuccess/
AsyncCallbackSUCCESS, which invokes the Oracle Enterprise Scheduler web
service callback specifying SUCCESS for the status and no status message.

• If the Oracle Enterprise Scheduler request is canceled, the Oracle Enterprise
Scheduler job's cancel method is called. The job object would then notify the remote
job that it should be canceled. If the cancel succeeds, the remote job notifies Oracle
Enterprise Scheduler using the callback mechanism, setting the status to CANCEL.
In this case, control would jump to the branch on the far right.

• If a fault occurs, control jumps to the middle branch. AsyncCallbackERROR
invokes the Oracle Enterprise Scheduler web service callback specifying ERROR for
the status and an error message from the fault. AsyncCallbackCANCEL invokes
the Oracle Enterprise Scheduler web service callback specifying CANCEL for the
status and no status message.

Figure 21-1 Java Job to Call a BPEL Process and Return with Asynchronous Request

Creating an Asynchronous Java Job

21-8 Developing Applications for Oracle Enterprise Scheduler

In the BPEL process, you need the web service operation values to the Oracle
Enterprise Scheduler asynchronous callback, as shown in Figure 21-2, Figure 21-3, and
Figure 21-4 for the AssignAsyncError assignment activity.

Figure 21-2 AsyncCallBackError Argument Mapping for statusMessage Element

Figure 21-3 AsyncCallbackError Argument Mapping for requestExecutionContext

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 21-9

Figure 21-4 AsyncCallbackError Argument Mapping for status Element

A Use Case Illustrating the Implementation of a BPEL Process as an
Asynchronous Job

Use cases for implementing a BPEL process as an asynchronous job are as follows:

• Gaining approval for a task using human workflow notifications and other SOA-
specific activities.

• Notifying Oracle Enterprise Scheduler that a job has completed, while allowing
other jobs to run or proceed to the next job in a set.

Design Pattern Summary

Asynchronous Oracle Enterprise Scheduler jobs are Java jobs that implement the
AsyncExecutable interface, which is invoked by Oracle Enterprise Scheduler by
implementing the execute() method. This method enables initiating a long running
or remote task where the execute() method completes (such as raising a business
event), while Oracle Enterprise Scheduler keeps the job in RUNNING status. The remote
task completes and notifies Oracle Enterprise Scheduler of its completion using a
status message using one of the following implementations:

• The RuntimeService EJB

• The Oracle Enterprise Scheduler web service setAsyncRequestStatus
operation.

This pattern assumes the remote task to be invoked is a BPEL process which is
triggered by raising a business event in the execute() method of the asynchronous
job. Upon termination of the process through completion, error or cancellation, the
BPEL process invokes the Oracle Enterprise Scheduler web service and sets the status
accordingly.

Involved Components

A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

21-10 Developing Applications for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler, SOA Meditator and BPEL, as shown in Figure 21-5.

Figure 21-5 BPEL Call from Oracle Enterprise Scheduler Asynchronous Job

Introduction to the Recommended Design Pattern
There are use cases where Oracle Enterprise Scheduler jobs need to invoke BPEL
processes in a bi-directional fashion to track completion of that BPEL before moving
on to other jobs. As invoking asynchronous web services from Java code (Oracle
Enterprise Scheduler or Oracle ADF Business Components) in Oracle Fusion
Applications is prohibited, an Oracle Enterprise Scheduler job cannot invoke an
asynchronous BPEL process directly and must rely on the asynchronous job
implementation type.

This approach is recommended because it leverages existing functionality in Oracle
Fusion Middleware, such as events and BPEL.

Potential Approaches
Instead of the asynchronous Oracle Enterprise Scheduler job functionality, the
following approaches are possible but not allowed:

• Invoking asynchronous web services such as Oracle ADF Business Components or
BPEL using JAX-WS proxies - blocked threads and callback services are disallowed
in Oracle Enterprise Scheduler.

• Raising a business event to trigger BPEL, BPEL invokes an Oracle ADF Business
Components service which invokes the RuntimeService EJB to set the status, a
complex and error prone procedure.

Use Case Summary
An Expenses system has a periodic Oracle Enterprise Scheduler job which runs to
import and process expenses which requires submission of BPEL processes to leverage
Human Workflow for notification and approvals. In this use case, an Oracle Enterprise
Scheduler job would be responsible for importing the expenses and lines and
submitting sub-requests for each expense to trigger the asynchronous BPEL
functionality per expense. This sub-request is implemented as an asynchronous Oracle
Enterprise Scheduler job which raises a business event, completing it's Java execute()
method, and staying in a running state while BPEL is initiated, submits the Human
Task notification and awaits the outcome from user interaction. After this outcome is
obtained, BPEL invokes the Oracle Enterprise Scheduler web service signaling that
this particular sub-request is completed.

A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

Working with Asynchronous Java Jobs 21-11

How to Implement BPEL with an Asynchronous Job
Implementing an Oracle Enterprise Scheduler asynchronous job in BPEL requires
performing the following steps:

1. Author the Oracle Enterprise Scheduler Java job to implement the
AsyncExecutable and AsyncCancellable interfaces by writing execute()
and cancel() methods.

2. Create the asynchronous Oracle Enterprise Scheduler job definition.

3. Design the event payload schema (XSD) and event definition (EDL) files.

4. Programmatically raise a business event from the asynchronous Oracle Enterprise
Scheduler job execute() and (optionally) cancel methods.

5. Design the SOA Composite with Meditator and BPEL.

6. Add fault handling and correlated onMessage branch for error and cancel job
status updates.

Use Case: Add Oracle JDeveloper Libraries
In your Oracle Enterprise Scheduler Application, be sure to add the Applications Core,
and Enterprise Scheduler Service Oracle JDeveloper libraries and create a new Java
class with appropriate class naming and directory structure (per standards) which
implements both the Oracle Enterprise Scheduler AsyncExecutable and
AsyncCancellable interfaces. Importing both of these interfaces require you to
implement the execute() and cancel() methods which Oracle Enterprise
Scheduler RuntimeService bean invokes to initiate the desired behavior in your
Oracle Enterprise Scheduler job, as shown in Example 21-2.

Example 21-2 Adding Oracle JDeveloper Libraries

public class ASMEventAsyncJob implements AsyncExecutable, AsyncCancellable {
 public ASMEventAsyncJob() {
 super();
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
 return;

 }

 public void cancel (RequestExecutionContext ctx,
 RequestParameters requestParams) {
 publishEvent(ctx.getRequestId() + "", ctx.toString(),
"CANCEL_ESS_EVENT");
 return;
 } // cancel

How to Implement BPEL with an Asynchronous Job

21-12 Developing Applications for Oracle Enterprise Scheduler

Use Case: Create the Asynchronous Job Definition
In your Oracle Enterprise Scheduler JDeveloper workspace, click "New', choose the
Enterprise Scheduler Service technology group and select "Job Definition". Enter the
name off your Oracle Enterprise Scheduler job definition, choose the provided
"JavaJobType" and select the class build in step 1 as the overriding Java class for this
job definition, as shown in Figure 21-6.

Figure 21-6 Create Job Definition

Now choose the class developed in Step 1 as the overriding Java class for this job
definition, define parameters and access control as required by your use case, as
shown in Figure 21-7.

Figure 21-7 Create Job Definition with Job Type Defined

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 21-13

Use Case: Design the Event Payload Schema and Event Definition Files
The SOA composite designer has UI features to assist in designing business event
payload definitions (EDL); however your schema (.xsd) must be designed first.
Example 21-3 shows a sample XSD file.

With the payload element type completed, you can either create the EDL by hand or
use the event definition builder. To use the builder, open the SOA composite editor
and click the lightning bolt button at the top of the UI to open the Event Definition
Creation window, as shown in Figure 21-8

Figure 21-8 Event Definition Creation

Next, assign a name and name space and click Add to add a new event to this
definition, as shown in Figure 21-9.

Figure 21-9 Add an Event

Click OK. The event definition summary displays the completed event definition. Add
more events as needed for your requirements, as shown in Figure 21-10.

How to Implement BPEL with an Asynchronous Job

21-14 Developing Applications for Oracle Enterprise Scheduler

Figure 21-10 Events List

Example 21-4 shows a sample of the EDL file that is created.

Example 21-3 Sample XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
 targetNamespace="http://xmlns.oracle.com/apps/ta/essdemo/events/
schema"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:element name="ESSDemoEventElement" type="ESSDemoEventElementType"/>
 <xsd:complexType name="ESSDemoEventElementType">
 <xsd:sequence>
 <xsd:element name="requestId" type="xsd:string"/>
 <xsd:element name="executionContext" type="xsd:string"/>
 <xsd:element name="eventType" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 21-4 EDL File

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions xmlns="http://schemas.oracle.com/events/edl"
 targetNamespace="http://xmlns.oracle.com/
 AsyncEssDemoComposite/EventDefinition1">
 <schema-import namespace="http://xmlns.oracle.com/singleString"
 location="xsd/singleString.xsd"/>
 <schema-import namespace="http://xmlns.oracle.com/apps/ta
 /essdemo/events/schema"
 location="xsd/ESSDemoEventSchema.xsd"/>
 <event-definition name="ESSEvent">
 <content xmlns:ns1="http://xmlns.oracle.com/apps/ta/essdemo/events/
schema"
 element="ns1:ESSDemoEventElement"/>
 </event-definition>
</definitions>

Programmatically Raise a Business Event from the Asynchronous Job Methods
The business event raised from the asynchronous Oracle Enterprise Scheduler job
must contain the request execution context's toString() value in order for BPEL to
indicate which job is completed/canceled/errored. Programmatically Raising Business
Events from Java is covered in the "Initiating SOA from ADF" section which contains
the specifics on how to write Java code that raises business events. You must design an
event schema (.xsd) and definition (EDL) in order to declaratively build the SOA
composite which subscribes to this raised business event. Your Java code must create
this XML document from scratch and it must exactly match QName values such as
element and name space attributes in the payload structure.

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 21-15

Note that your execute() method is invoked when Oracle Enterprise Scheduler
starts to run your job, when an end user or external entity instructs Oracle Enterprise
Scheduler to cancel the running job, Oracle Enterprise Scheduler sets the job's status to
'CANCELLING" and then invokes the cancel() method. It's recommended that both
methods raise events that contain similar payload types/name spaces so correlation
sets can be used and the cancel event can be sent to the in-flight BPEL process in order
to have it perform alternative functionality and then invoke the Oracle Enterprise
Scheduler web service to set the job status to 'CANCELLED'.

This sample places the event raising code in the Oracle Enterprise Scheduler job's class
code, however, the best approach is to share the code as an Oracle ADF Library which
you can then import into this project to reduce duplication of publishing code.

Sample code calling the event raising code passing in requestID (for the BPEL
correlation set to allow in-flight cancel) and the execution context's toString()
value:

publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");

Sample event raising code is shown in Example 21-5.

Example 21-5 Event Raising Code

 private final String eventElement = "ESSDemoEventElement";
 private final String eventNamespace = "http://xmlns.oracle.com/apps/ta/
essdemo/events/edl";
 private final String schemaNamespace = "http://xmlns.oracle.com/apps/ta/
essdemo/events/schema";

 private XMLDocument buildEventPayload(String correlationId, String key,
String
 eventType) {
 Element masterElem, childElem1, childElem2, childElem3;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, eventElement);
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "requestId");
 childElem1.appendChild(document.createTextNode(correlationId));
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace,
 "executionContext");
 childElem2.appendChild(document.createTextNode(key));
 masterElem.appendChild(childElem2);
 childElem3 = document.createElementNS(schemaNamespace, "eventType");
 childElem3.appendChild(document.createTextNode(eventType));
 masterElem.appendChild(childElem3);
 return document;
 }

public void publishEvent(String correlationId, String key, String
eventType) throws ExecutionErrorException { // Determine
whether we are outside of a JTA transaction try { //
Get event connection BusinessEventConnectionFactory cf =
BusinessEventConnectionFactorySupport.findRelevantBusinessEventConnectionFactory
 (true); if (cf != null)
{ BusinessEventConnection conn =
cf.createBusinessEventConnection(); // Build
event BusinessEventBuilder builder
=

How to Implement BPEL with an Asynchronous Job

21-16 Developing Applications for Oracle Enterprise Scheduler

BusinessEventBuilder.newInstance(); // Specify the event
name and namespace. In this prototype, // they are
constants, eventNamespace, eventName
builder.setEventName(new QName(eventNamespace,
eventName)); // Specify the event payload. In this
prototype, the // getXMLPayload custom method constructs the
payload builder.setBody(buildEventPayload(correlationId,
key,
eventType).getDocumentElement()); BusinessEvent event =
builder.createEvent(); // Publish
event conn.publishEvent(event, 5); //
For debug only System.out.println("Event was sent
sucessfully"); conn.close(); } else
{ // For debug only
System.out.println("cf is null"); } } catch
(Exception exp) { String errorMsg = "Failed sending event for
correlation ID " + correlationId);
exp.printStackTrace(); throw new
ExecutionErrorException(errorMsg); } } // publishEvent

Design the SOA Composite with Meditator and BPEL
Since this use case depends on BPEL functionality it is necessary to build a SOA
composite which contains a Mediator for event subscription which can then transform
the payload and initiate the BPEL process.

In your SOA workspace, create a new SOA composite. To setup the composite for this
pattern, add a Mediator that subscribes to your Oracle Enterprise Scheduler raised
event and wire it to a BPEL process. Add a service reference to the Oracle Enterprise
Scheduler web service WSDL. For example,

http://myhost.com:7001/ess/esswebservice?WSDL

Continue to build the required functionality in the BPEL process using one or more
nested scopes. Bear in mind that your functionality should reside within at least one
primary scope on which you can add an onMessage event (for in-flight cancel
message receipt) and fault handler branches, as shown in Figure 21-11.

Figure 21-11 Composite with BPEL and ESSWebService

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 21-17

For more information about invoking the Oracle Enterprise Scheduler web service, see
Using the Oracle Enterprise Scheduler Web Service .

Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
Oracle Enterprise Scheduler does not perform any sort of heartbeat monitoring of
asynchronous Oracle Enterprise Scheduler jobs after the execute() method's Java
code has completed. After the job is submitted it exists in a RUNNING state within the
Oracle Enterprise Scheduler infrastructure until the remote job code, BPEL, or end user
interacts with Oracle Enterprise Scheduler directly to set the status of the job. Because
of this caveat, developers need to design their BPEL processes to handle, at a
minimum, two types of scenarios that most often occur in the life span of an Oracle
Enterprise Scheduler job and, whenever possible, push that state information back to
Oracle Enterprise Scheduler so monitoring UIs can reflect the correct state of the job to
end users.

BPEL Handling Cancellation

For example, if the end user interacts with the monitoring UI and requests that the job
be canceled, Oracle Enterprise Scheduler then updates the job's status to CANCELLING
and wait for the remote functionality to tidy up and confirm that it has canceled, as
shown in Figure 21-12.

Figure 21-12 BPEL Handling Cancellation

BPEL Handling Error

Additionally, when the remote functionality encounters a failure, the responsibility to
notify Oracle Enterprise Scheduler of this failure falls on the shoulders of the remote
functionality (in this case, BPEL) to notify Oracle Enterprise Scheduler that the job's
status is ERROR and provide a status message in addition to any logging that was
performed. This is illustrated in Figure 21-13.

How to Implement BPEL with an Asynchronous Job

21-18 Developing Applications for Oracle Enterprise Scheduler

Figure 21-13 BPEL Handling Error

In order to acknowledge cancellation and arbitrate proper status back to the Oracle
Enterprise Scheduler infrastructure, BPEL must be designed within a certain layout to
support receipt of the incoming cancellation message and trapping of any failures such
that, in either case, the Oracle Enterprise Scheduler subsystem can be updated. For this
purpose, in the BPEL Process, there should be at least one scope which contain the
functionality for this asynchronous job. This allows sufficient control for handling
cancel and error states which must then be sent to the Oracle Enterprise Scheduler web
service in order to update the job's status in the Oracle Enterprise Scheduler runtime.

To build the basic process flow to support these states, the following steps should be
completed in order:

1. Create the correlation set and flag it for imitate on the incoming Receive activity.

2. Create the onMessage branch with use of correlation set created in sub-step 1.

3. Create the fault handling branch.

4. Populate the onMessage and fault handling branches with cleanup activities as
needed and invoke the Oracle Enterprise Scheduler web service with appropriate
status.

Create Correlation Set and Define Initiate Activity

In order to support receiving the cancel event while the BPEL process is in the middle
of performing other activities or waiting for an asynchronous callback the process
must be configured with a correlation set. A correlation set is key value that is built
from one or more incoming payload attributes which are used to uniquely identify the
BPEL process to the BPEL engine whereby additional service requests that contain
matching sets of attributes can be routed to the process that is currently running
instead of initiating a new one. While correlation is standard functionality used for
asynchronous request responses, it can also be used to change the flow of execution in
a BPEL process through scope-level onMessage branches.

To setup the correlation set, open the BPEL process in the designer, double-click the
Receive activity and click the correlations tab.

Note that coarctation sets have an "initiate" property which indicates which activity is
the starting point for this correlation set's life cycle. In this case, the start of the BPEL
process is the point at which the correlation set's life cycle should begin allowing
correlated events to route to this process at any point during the process.

To create a correlation set:

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 21-19

• Click the "New" button in the Correlations tab of any Receive, Invoke or
onMessage activity and provide a name for the correlation set.

• Next, click "Add" to define one or more property attributes to use as the correlation
key.

• Choose a variable attribute as the set property and click "OK".

• Repeat steps 2 and 3 as necessary to build an attribute set that is always unique.

• Set the initiate flag on the correlation to "Yes" on the activity for which the
correlation set's life cycle should begin.

Primary (first) Receive Activity with Defined Correlation Set and "Initiate" flagged to
"Yes", as shown in Figure 21-14.

Figure 21-14 Correlations for Receive Activity

CorrelationSet_1 definition with a single property defined (define more as needed to
ensure unique keys are created), as shown in Figure 21-15.

Figure 21-15 Edit Correlation Set

How to Implement BPEL with an Asynchronous Job

21-20 Developing Applications for Oracle Enterprise Scheduler

Create the onMessage Branch with Use of Correlation Set

After the correlation set has been defined and set for initiate it's now possible to create
the onMessage branch on the scope that contains the activities necessary to accept the
incoming cancellation message, perform any compensation or cleanup and then assign
the job's completion status to CANCEL.

Note:

At this point, the onMessage branch could contain the invoke activity or
finish allowing a higher order scope to perform the invoke, reducing the
overall number of necessary invoke activities in the flow.

The following steps guide you through adding the previously created correlation set to
the onMessage branch activity, as shown in Figure 21-16.

• On the nested scope containing the process functionality, click the 'Add onMessage
branch' button which should create a new flow off to the side of the scope.

• Double-click the onMessage branch activity to open the activity editor.

• Choose the "Correlations" tab.

• Click the Add '+' button and select the previously created correlation set ensuring
that the initiate flag is set to 'No' and click "Ok".

Figure 21-16 BPEL OnMessage Branch

Create the Fault Branch

Through the course of performing the various activities in the nested work scope BPEL
may encounter faults from business services or system functionality. In most cases,
business services define one or more WSDL-defined faults that can be thrown back to
the calling process. Ordinarily, a BPEL CatchAll fault branch traps any and all faults
that are raised regardless of their type and origin but there may be cases where
product teams have requirements to perform different sets of behavior in response to
specific business faults. In cases where it's desirable to perform unique compensation

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 21-21

behavior for specific business faults, the developer should create a named fault
handling branch for each WSDL-defined fault. In addition to these named fault
handler branches, it is still necessary to add a CatchAll fault handling branch to trap
any system level or unmanaged faults that are raised from the scope.

Click the CatchFault and CatchAll scope buttons to create the desired fault handling
branches, then double-click the named fault handling branches and define the named
fault those branches catch.

Note the available status, as shown in Figure 21-17.

Figure 21-17 Catch Branch for BPEL Flow

Populate the onMessage and Fault Branch

You need to populate the onMessage and Fault branch with cleanup activities as
needed and invoke Oracle Enterprise Scheduler web service with appropriate status.

In the event of a fault or receipt of the cancellation message through the onMessage
branch the Oracle Enterprise Scheduler infrastructure must be updated directly using
the Oracle Enterprise Scheduler web service in order to reflect the job's status and
status message properly in the monitoring UIs. As a result, each fault handling or
onMessage branch should assign the correct status and status message value to the
Oracle Enterprise Scheduler web service invoke variable and optionally contain the
invoke activity or, by design, return to a higher order scope which is designed to be
agnostic to the outcome of the job status and perform the invoke activity on the Oracle
Enterprise Scheduler web service before completing.

Additionally, drag activities into the onMessage and fault branches as needed to
cleanup/log/compensate.

Example scope with onMessage and Fault handling branches is shown in Figure 21-18.

How to Implement BPEL with an Asynchronous Job

21-22 Developing Applications for Oracle Enterprise Scheduler

Figure 21-18 Entire BPEL Flow Sample

Validating the Deployment
To test that the functionality works you must perform the following sequence of steps:

1. Turn on the EDN-DB-LOG page by navigating to the following site to make sure it
reads "Log is Enabled". If not, click the link for "Enable",

http://host:port/soa-infra/events/edn-db-log

2. Submit your job through your own application, Fusion Middleware Control the
task flow user interface for submitting job requests and confirm that the status of
the job is RUNNING.

3. Your event should immediately show up in the EDN-DB-LOG page. Check for
this event payload, as shown in Example 21-6.

4. Your subscribing mediator has been triggered, you can check Fusion Middleware
Control ($DOMAIN_HOME/as.log) or soa-diagnostic logs ($DOMAIN_HOME/
servers/<serverName>logs/<serverName>.log) to see any mediator activity as a
result of your event, as shown in Example 21-7.

5. Check the Oracle Enterprise Manager Fusion Middleware Control Console for an
instance of your SOA composite and check for errors.

http://host:port/em

6. If your BPEL process has not errored and is expecting a response from the human
workflow notification, navigate to the worklist, login as the assigned approver
and approve or reject the notification per your design requirements.

7. From here, the BPEL process should complete and invoke the Oracle Enterprise
Scheduler web service to set the job's completion status and status message. Check
the monitoring UI diagnostic logs for stack traces and log messages.

8. Additionally, you can check the REQUEST_HISTORY table in the Oracle Enterprise
Scheduler schema for details on your job's state.

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 21-23

Example 21-6 Event Payload

Example:Enqueing event: http://xmlns.oracle.com/apps/ta/essdemo/events/
edl::ESSDemoEvent from J
Body: <business-event xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/
edl" xmlns="http://oracle.com/fabric/businessEvent">
<name>ns:ESSDemoEvent</name>
<id>df8e34c1-4c65-4379-b9be-2c692670ebbe</id>
<content>
<ESSDemoEventElement xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/
schema">
<requestId>3</requestId>
<executionContext>3, false, null, 6A4A16757764CD60E0402382B7703F44, 12</
executionContext>
<eventType>ESS_EVENT</eventType>
</ESSDemoEventElement>
</content>
</business-event>
Subject name:
Enqueing complete
Enqueing event: http://xmlns.oracle.com/apps/ta/essdemo/events/edl::ESSDemoEvent
from J
Body: <business-event xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/
edl" xmlns="http://oracle.com/fabric/businessEvent">
<name>ns:ESSDemoEvent</name>
<id>a4104da8-5579-4434-ab8b-d31a226e3b0f</id>
<content>
<ESSDemoEventElement xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/
schema">
<requestId>4</requestId>
<executionContext>4, false, null, 6A4A2BC7E5477C60E0402382B77041C9, 12</
executionContext>
<eventType>ESS_EVENT</eventType>
</ESSDemoEventElement>
</content>
</business-event>

Example 21-7 Mediator Activity

INFO: MediatorServiceEngine received an event =
{http://xmlns.oracle.com/apps/ta/ess/demo/events/edl}ESSDemoEvent
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor
persistCallback
INFO: No call back info set in incoming message
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor
persistCallback
INFO: Message properties :
{id=041ecfcf-8b73-4055-b5c0-0b89af04f425, tracking.compositeInstanceId=50003,
tracking.ecid=0000I2pqzVCBLA5xrOI7SY19uEYF00004g:47979}
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
dispatch
INFO: Executing Routing Service..
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCases
INFO: Unfiltered case list size :1
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.monitor.MediatorActivityMonitor
createMediatorCaseInstance
INFO: Creating case instance with
name :ESSDemoProcess.essdemoprocess_client.process
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCase
INFO: Immediate case

How to Implement BPEL with an Asynchronous Job

21-24 Developing Applications for Oracle Enterprise Scheduler

{ESSDemoProcess.adedemoprocess_client.process}with case id :
{5B52B4A02B9211DEAF64D3EF6E2FB21D}will be executed
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.service.filter.FilterFactory
createFilterHandler
INFO: No Condition defined

Troubleshooting the Use Case
To troubleshoot issues with the Oracle ADF UI functionality such as the monitoring
and submission task flows use the server's console log, applications log and server
diagnostic logs for information on what is failing and why.

To troubleshoot issues with the events functionality, such as the event not reaching the
BPEL process with request execution context intact, use the EDN database log page
(http://host:post/soa-infra/events/edn-db-log) to inspect the event
payload and carefully compare it to the schema definition, even slight mismatches can
cause the transformation to 'succeed' but produce an skeleton payload to BPEL which
is missing any request context values. Oracle JDeveloper and third-party tools can be
used to validate the schema of the event payload and debug the transformation
against that payload.

To troubleshoot the mediator, BPEL SOA functionality, use the Oracle Enterprise
Manager and server console or diagnostics log files for diagnostics and AppsLogger
Sensor variables for logging.

For more information about troubleshooting Oracle Enterprise Scheduler at runtime,
see the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion
Middleware Administering Oracle Enterprise Scheduler.

Handling Time Outs and Recovery for Asynchronous Jobs
Oracle Enterprise Scheduler asynchronous Java jobs depend on the remote job to
update Oracle Enterprise Scheduler with its completion status before it can finish
processing the request. Due to the nature of remote communication, there may be
cases where Oracle Enterprise Scheduler does not receive the remote request status
because of network failures, and so on. In these cases, the request may be stuck in a
non-terminal state.

Transitioning a timed out request to a terminal state is important as it:

• Frees any incompatibility locks held by that job request.

• If the job request is a job set step, allows the job set to continue.

• If the request is a subrequest, allows the parent request to resume.

• Allows the job request to be deleted or purged.

Asynchronous Request Time Outs
An Oracle Enterprise Scheduler system property,
SystemProperty.ASYNC_REQUEST_TIMEOUT, enables setting job request time out
values for asynchronous Java jobs. By default, the property is not enabled, such that its
value is less than or equal to zero.

The property may be set in the job definition metadata or when the job request is
submitted. The value represents the duration, in minutes, from the time the job request
begins local execution until a terminal asynchronous job status is received from the
remote job.

Handling Time Outs and Recovery for Asynchronous Jobs

Working with Asynchronous Java Jobs 21-25

Setting the Time Out Value

For a given asynchronous job request, set the system property
SystemProperty.ASYNC_REQUEST_TIMEOUT to a value greater than 0.

Discovering the Asynchronous Job Requests that Have Timed Out

For a given request, RequestDetail.isTimedOut indicates the status of the time
out. Requests that have timed out can be discovered using the query shown in
Example 21-8.

A similar query can be run using REQUEST_HISTORY_VIEW, as shown in Example
21-9.

Example 21-8 Indicating the Time Out status

Filter timedOutRunningFilter = new Filter(
 RuntimeService.QueryField.TIMED_OUT.fieldName(),
 Filter.Comparator.EQUALS,
 Boolean.TRUE)
.and(
 RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 State.RUNNING.value());
runtimeService.queryRequests(handle, timedOutRunningFilter, null, true);

Example 21-9 Using REQUEST_HISTORY_VIEW

SELECT requestId FROM request_history_view WHERE timedout='Y' AND state=3;

Completing Asynchronous Requests without a Time Out

In the absence of a time out value, asynchronous requests whose remote job has
completed without delivering the status to Oracle Enterprise Scheduler may be
completed directly using RuntimeMXBean.completeAsyncRequest. Because there
is no time out value to flag the request as needing attention, you must carefully track
requests without time outs.

For more information about managing job requests without time outs, see the chapter
"Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

What Happens When an Asynchronous Job Request Times Out

Oracle Enterprise Scheduler periodically checks for asynchronous job requests on
which the property SystemProperty.ASYNC_REQUEST_TIMEOUT has been set.
When the time has exceeded without a terminal status having been received, the job is
flagged as timed out. Otherwise, the job state is unaffected, and remains in a RUNNING
state. Meanwhile, Oracle Enterprise Scheduler continues to accept status updates from
the remote job. The flag indicates that the status of the remote job may need to be
investigated.

Handling Asynchronous Jobs Marked for Manual Recovery
If the remote job completed but its status was not delivered to Oracle Enterprise
Scheduler, you can complete the request manually.

In some cases, the status of a job status cannot be determined automatically, such that
it is unknown whether or not a job is executing. If the job is executing, the job request

Handling Time Outs and Recovery for Asynchronous Jobs

21-26 Developing Applications for Oracle Enterprise Scheduler

must not transition to a terminal state. If the job does transition to a terminal state,
incompatibility locks could be released, possibly causing incompatible job requests to
run simultaneously.

For example:

• An asynchronous Java job encounters an error when starting a remote service, such
that it is unclear that the remote service has actually been invoked. The job request
must not go to an error state until it is determined whether the remote job is
running. If the job might be running, the job should throw an
oracle.as.scheduler.ExecutionManualRecoveryException to indicate
to Oracle Enterprise Scheduler that the job request must transition to
ERROR_MANUAL_RECOVERY state.

• An Oracle Enterprise Scheduler asynchronous Java job throws a
java.lang.Error which does not indicate to Oracle Enterprise Scheduler
whether the remote service has been invoked.

• A spawned job is running in a clustered environment, with the job request running
on Oracle Enterprise Scheduler instance1. The Oracle Enterprise Scheduler
instance1 server goes down, along with the associated Perl agent. If instance1 is not
going to recover for a while, the job status is unknown. The property
State.ERROR_MANUAL_RECOVERY is used for this type of situation. This is a non-
terminal state that suspends processing on a job request until a recovery operation
is manually invoked. Any incompatibility locks acquired are retained until manual
recovery completes.

For more information about handling asynchronous jobs marked for manual recovery,
see the section "Handling Stuck Asynchronous Jobs Requiring Manual Recovery" in
the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

Using RecoverRequest to Manually Recover a Job Request
If some job requests are stuck in an incomplete state, it should first be determined
whether the job requests can complete by normal means. For instance, if a job request
is in RUNNING state, it may be for an asynchronous Java job running remotely. If the
remote job is unable to respond, then you must try to cancel the job request. This
transitions the job request to CANCELLING state. If the job request does not transition
to CANCELLED state, then it may be a candidate for recovery.

All child requests of the request to be recovered must have already completed,
meaning that its process phase is ProcessPhase.Complete. You can retrieve the
process phase by executing RequestDetail.getProcessPhase().

Using RuntimeService.queryRequests, you can run a query to determine
incomplete child requests using the filter shown in Example 21-10.

If it is determined that any child requests require manual recovery, then invoke
recoverRequest for those jobs first. If recoverRequest is invoked on a parent
request with incomplete child requests, an exception is thrown. The exception message
lists child requests that are incomplete. Example 21-11 shows the recoverRequest
syntax.

For more information about manually handling synchronous Java jobs, see the section
"Handling Synchronous Java Jobs Requiring Manual Recovery" in "Troubleshooting
Oracle Enterprise Scheduler" in Oracle Fusion Middleware Administering Oracle
Enterprise Scheduler.

Handling Time Outs and Recovery for Asynchronous Jobs

Working with Asynchronous Java Jobs 21-27

Example 21-10 Filtering for Incomplete Child Requests

Filter filter =
 new Filter(RuntimeService.QueryField.ABSPARENTID.fieldName(),
 Filter.Comparator.EQUALS, requestId)
 .and(RuntimeService.QueryField.REQUESTID.fieldName(),
 Filter.Comparator.NOT_EQUALS, requestId)
 .and(RuntimeService.QueryField.PROCESS_PHASE.fieldName(),
 Filter.Comparator.NOT_EQUALS,
 ProcessPhase.Complete.value());

Example 21-11 recoverRequest

 /**
 * Attempts to force a request to complete under certain conditions.
 * <p>
 * 1. The request must already by in a terminal state, {@code
 * State.CANCELLING}, or {@code State.ERROR_MANUAL_RECOVER}.
 * If a request is in another state,
 * {@code RuntimeService.cancel} must be called first. If the
 * request does not eventually transition to {@code State.CANCELLED},
 * then this operation may be invoked on the request.
 * 2. All child requests of the given request must already be complete.
 * <p>
 * A completed> request is a request in a terminal state with
 * a process phase of {@code ProcessPhase.Complete}.
 * <p>
 * Note that this operation locks the request.
 * <p>
 * @param requestId the request identifier of the request.
 * @throws IOException if a protocol error occurred.
 * @throws InstanceNotFoundException if the request is not found
 * @throws OperationException if the given request has child requests
 * that are not complete.
 * @throws RuntimeOperationsException if a RuntimeService subsystem failure
 * occurs.
 */
 public void recoverRequest(long requestId)
 throws IOException, InstanceNotFoundException, OperationsException,
 RuntimeOperationsException;

Oracle Enterprise Scheduler Interfaces and Classes
Sample code illustrating the Oracle Enterprise Scheduler asynchronous callback
interfaces and classes are shown in Example 21-12, Example 21-13, Example 21-14 and
Example 21-15.

The UpdateAction class is returned by Updatable.onEvent.

Example 21-12 Oracle Enterprise Scheduler Updatable Interface

public interface Updatable
{
 /**
 * Invoked by Enterprise Scheduler when a job request is updated.
 * This method must eventually return control to the caller.
 *
 * @param context An oracle.as.scheduler.RequestExecutionContext
 * object for this request.
 *
 * @param parameters the request parameters associated with this request

Oracle Enterprise Scheduler Interfaces and Classes

21-28 Developing Applications for Oracle Enterprise Scheduler

 *
 * @param resultCode the {@code
 * oracle.as.scheduler.async.UpdateAction.ActionCode} indicating the
 * action that generated this event.
 *
 * @param messagePayload a {@code String} representing the body of this
 * event. The content and format are not known by the Enterprise Scheduler.
 */
 public UpdateAction onEvent(RequestExecutionContext context,
RequestParameters parameters,
 oracle.as.scheduler.async.AsyncStatus resultCode,
 String messagePayload);
}

Example 21-13 Oracle Enterprise Scheduler UpdateAction Class

package oracle.as.scheduler.async;

/**
 * Enumeration of return values from application execution callout. The
 * action returned determines how the subsequent processing of the request
 * proceeds.
 */
public class UpdateAction
{
 /**
 * Constructor. Creates an UpdateAction object from the status
 * and message components.
 *
 * @param status Indicates the status of execution of this update event.
 * This status may result in a state transition for the request.
 *
 * @param message A message that, depending on the value of {@code status},
 * may be used for various purposes.
 */
 public UpdateAction(AsyncStatus status, String message);

 public AsyncStatus getAsyncStatus();

 public String getMessage();
}

Example 21-14 Oracle Enterprise Scheduler AsyncStatus Enum

Package oracle.as.scheduler.async;

/**
* Valid values for the callback status of an asynchronous java job.
 * Returning an {@code AsyncStatus} does not guarantee that the state of the
 * request changes to the corresponding value. The new state of the request
 * depends on the old state, the async status, the result of the
 * post-Process handler (if any), and any errors that may occur in
 * subsequent processing.
 */
public enum AsyncStatus
{
 /**
 * The asynchronous job ran successfully.
 */
 SUCCESS,

Oracle Enterprise Scheduler Interfaces and Classes

Working with Asynchronous Java Jobs 21-29

 /**
 * The asynchronous job has paused for the execution of sub-requests.
 */
 PAUSE,

 /**
 * The asynchronous job is issuing a WARNING.
 */
 WARNING,

 /**
 * The asynchronous job encountered an error.
 */
 ERROR,

 /**
 * The asynchronous job has canceled its execution. Usually this
 * originates from a {@code RuntimeService.cancel} call.
 */
 CANCEL,

 /**
 * The asynchronous job is updated. The request state is not changed
 * by this action.
 */
 UPDATE,
 /**
 * The asynchronous job encountered a business error.
 */
 BIZ_ERROR,

 /**
 * The asynchronous job requests manual recovery to complete the request.
 */
 ERROR_MANUAL_RECOVERY;
}

Example 21-15 Existing Asynchronous Callback Web Service Operation

 /**
 * Set the status of an Oracle Enterprise Scheduler asynchronous java job.
 *
 * @param requestExecutionContext A java.lang.String representing
 * an oracle.as.scheduler.RequestExecutionContext object.
 * @param status
 * @param statusMessage
 * An error message if the status is ERROR,
 * A business error message if the status is BIZ_ERROR,
 * A warning message if the status is WARNING,
 * A paused state if the status is PAUSED.
 * The value is ignored if the status is SUCCESS or CANCEL.
 *
 */
 public void setAsyncRequestStatus(String requestExecutionContext,
 AsyncStatus status,
 String statusMessage)
 throws RequestNotFoundException, RuntimeServiceException ;

Oracle Enterprise Scheduler Interfaces and Classes

21-30 Developing Applications for Oracle Enterprise Scheduler

22
Job Request Logs and Output

This chapter describes how to use Oracle Enterprise Scheduler to generate job request
logs and output that should be saved for later use by administrators and users.

Logs generated by job requests help administrators diagnose problems and see job-
specific status. Logs are accessible through the Fusion Middleware Control. In
addition, some jobs generate output as part of their work, such as a report about job-
specific data that a user can review after the job has completed. Your code can create
and store request log information as well as request output.

This chapter includes the following sections:

• Request Logs

• Request Output

Request Logs
Oracle Enterprise Scheduler provides APIs your job can use to request logging. All job
types, except for process jobs, use the logging APIs. Oracle Enterprise Scheduler also
provides APIs to handle request logs in the content store.

Oracle Enterprise Scheduler supports a single log per request. The log has a name of
the form REQUESTID.log. The logging APIs log directly to the content store, and log
content may not be rolled back.

For more about viewing job request logs with Fusion Middleware Control, see
Viewing Job Request Logs in Oracle Fusion Middleware Administering Oracle Enterprise
Scheduler.

System Properties
The system property SYS_EXT_requestLogLevel constrains which messages
logged using the API are stored in the request log.

The property's value defaults to INFO. The complete set of valid values are SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST. Use Java and PL/SQL APIs to
discover the request log level.

Note that SYS_EXT_requestLogLevel does not apply to process jobs because they
do not use the logging API.

Log Header
Your logging code writes entries to a log that begins with the following heading
information. This header is automatically prefixed to each record written to the log
using the logging APIs, therefore it does not apply to process jobs.

####[TIMESTAMP] [LOGLEVEL]

Job Request Logs and Output 22-1

Sample log lines:
####[2011-07-11T14:20:32.276-07:00] [INFO] This is a log record.
####[2011-07-11T14:20:32.282-07:00] [INFO] This is the first line of a multi-
line log record:
second line of multi-line log record.

Request Logging from a Java Job
You can use the Java request logger to log during the execute and update stages of a
Java or asynchronous Java job, as well as during pre-processing and post-processing
for all job execution types.

The job logic must use the ContentFactory API to get the RequestLogger that can
be used to log messages to the request log. Oracle Enterprise Scheduler uses the
current value of the SYS_EXT_requestLogLevel system property to constrain
logging level each time the logger is retrieved.

APIs for Java Job Logging

In your Java job's logic, you can use the
oracle.as.scheduler.request.ContentFactory class getRequestLogger
method (see Table 22-1) to get a RequestLogger instance for adding log entries. Note
that the request logger does not support a resource bundle.

The Java APIs available for handling logs include the following:

• Use the ContentFactory class to get instances of a RequestLogger you can use
to create the log and add entries. See Table 22-1.

• Use the RequestLogger class to write the log. See Table 22-2.

The oracle.as.scheduler.request.ContentFactory class provides methods to get your
code access to the output content framework, as well as to an instance you can use to
create the output itself.

Table 22-1 ContentFactory Methods for Creating Request Logs

Method Description

getRequestLogger(long
requestId)

Returns a RequestLogger instance for the specified
requestId and creates log content named
requestId.log in Oracle Enterprise Scheduler
content store.

After you have a logger instance, you can use the methods in Table 22-2 to add entries.

Request Logs

22-2 Developing Applications for Oracle Enterprise Scheduler

Table 22-2 RequestLogger Methods for Creating Request Logs

Method Description

log(Level level, String
msg)

fine(String msg)

finer(String msg)

finest(String msg)

These methods log messages at the specified levels.

The message is logged only if the specified logging
level is equal or greater than the log level specified by
the SYS_EXT_requestLogLevel system property. If
the property isn't set, the default log level is INFO.

When using the log method, the
java.util.logging.Level supports the
following values, in descending order.

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

Java Request Logging Example

Example 22-1 shows a very simple Java job example that does logging.

Example 22-1 Java Request Logging Example

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.RequestLogger;
import java.util.logging.Level;

class ExampleJavaLogger{

 private boolean m_loggingEnabled = false;
 private RequestLogger m_requestLogger = null;

 public void execute(RequestExecutionContext ctx,
 RequestParameters params)
 {
 try
 {
 m_requestLogger = ContentFactory.getRequestLogger(ctx.getRequestId());
 m_loggingEnabled = true;
 }
 catch (Exception ex)
 {
 // failed to get request logger
 }

 log(Level.INFO, "Starting the job.");
 // ...
 log(Level.INFO, "Ending the job.");
 }

 private void log(Level level, String message)
 {
 if (m_loggingEnabled)
 {
 m_requestLogger.log(level, message);
 }

Request Logs

Job Request Logs and Output 22-3

 }
}

Request Logging from a PL/SQL Job
To create logs from PL/SQL, your code can use the ESS_JOB PL/SQL package to write
log entries.

ESS_JOB Package Support for Creating Logs

Oracle Enterprise Scheduler provides the ESS_JOB package with functions and
procedures for logging from PL/SQL code.

Table 22-3 ESS_JOB Functions and Procedures for Request Logging

Method Description

procedure
write_log(p_level in
integer, p_text in
varchar2);

Writes p_text as a message to request log content for
the Oracle Enterprise Scheduler request associated
with the current session.

The message is logged only if the specified logging
level is equal or greater than the log level specified by
the SYS_EXT_requestLogLevel system property. If
the property isn't set, the default log level is
LEVEL_INFO.

Log level values correspond to those defined in
java.util.logging.Level.

Use the following values for the p_level parameter
(shown in descending order):

• LEVEL_SEVERE

• LEVEL_WARNING

• LEVEL_INFO

• LEVEL_CONFIG

• LEVEL_FINE

• LEVEL_FINER

• LEVEL_FINEST

PL/SQL Request Logging Example

An example of request logging by a SQL request job procedure is shown below.

create or replace procedure log_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
begin
 ess_job.write_log(ess_job.level_fine,
 'LOG_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduler request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.level_severe,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

Request Logs

22-4 Developing Applications for Oracle Enterprise Scheduler

 -- Job logic
 ess_job.write_log(ess_job.level_info,
 'Executing job logic...');

 ess_job.write_log(ess_job.level_fine,
 'LOG_EXAMPLE_JOB Procedure End');
end;
/

Request Logging from a Process Job
You can write to the job request log from process job. The way this works is quite
different from Java and PL/SQL jobs, where the executing code has access to an API
for writing entries at a particular level. Instead, for a process job, the job's standard
output and standard error are redirected to a file in the request's log work directory (a
location set by Oracle Enterprise Scheduler). Oracle Enterprise Scheduler imports this
file and append it to the request log in the content store.

In other words, to log from a process job, you need only write to standard output from
job logic code.

The encoding used to read the log file is determined as described in Process Job
Locale.

Note that you cannot log at particular levels from a process job (where the API for
setting the level isn't available). So the SYS_EXT_requestLogLevel system property
does not constrain log contents. Oracle Enterprise Scheduler always appends the
contents of the log file to the request log in the content store.

Request Logging and Output From an EJB Job
Because an EJB Job is a Java job that gets executed remotely, the remote EJB job
implementation can write content to logs and output. Use the
oracle.as.scheduler.request.RemoteContentHelper API to handle this
content. The following bullet items describe the high-level steps involved. Example
22-2 shows an EJB job implementation that illustrates this functionality.

• Set up the RemoteContentHelper. The parameters
RequestExecutionContext and RequestParameters can be obtained from
the execute() method of the job implementation.

RemoteContentHelper rch=new RemoteContentHelper(RequestExecutionContext,
RequestParameters);

• Write content to the log file.

rch.log(Level.INFO, logMessage)

• Write text output.

RuntimeServiceHandle rsh = null;
 ContentHandle ch = null;
 String contentName = "Content1";
 String contentData = "Some text content";
 try {
 rsh = rch.getRuntimeService().open();
 ch = rch.openOutputContent(rsh, contentName, ContentType.Text,
EnumSet.of(ContentHandle.ContentOpenOptions.Write));
 rchelper().write(ch, contentData);
 } catch (Exception ex) {

Request Logs

Job Request Logs and Output 22-5

 throw new ExecutionErrorException(ex);
 } finally {
 rch.closeOutputContent(ch);
 rch.getRuntimeService().close(rsh);
 }

• Write binary output.

RuntimeServiceHandle rsh = null;
 ContentHandle ch = null;
 String contentName = "Content1";
 String contentData = "Some binary content"; //Binary content can differ in
the variable declaration.
 try {
 rsh = rch.getRuntimeService().open();
 ch = rch.openOutputContent(rsh, contentName, ContentType.Binary,
EnumSet.of(ContentHandle.ContentOpenOptions.Write));
 rchelper().write(ch, contentData.getBytes());
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 rch.closeOutputContent(ch);
 rch.getRuntimeService().close(rsh);
 }

Example 22-2 shows an EJB job implementation that demonstrates how to handle
output and logs.

Example 22-2 SimpleSyncEssBean

import java.util.ArrayList;
import java.util.logging.Level;
import java.util.EnumSet;

import javax.ejb.Stateless;

import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.request.RemoteContentHelper;
import oracle.as.scheduler.request.ContentDetail;
import oracle.as.scheduler.request.ContentHandle;
import oracle.as.scheduler.request.ContentType;

@Stateless(name = "SimpleSyncEssBean")
public class SimpleSyncEssBean implements RemoteExecutable {
 private RemoteContentHelper m_rch = null;

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters) throws
ExecutionErrorException, ExecutionWarningException,

ExecutionCancelledException,

ExecutionPausedException {
 long requestId = requestExecutionContext.getRequestId();
 // setup helper now so it is available to println

Request Logs

22-6 Developing Applications for Oracle Enterprise Scheduler

 m_rch = setupRemoteContentHelper(requestExecutionContext,
requestParameters);

 ContentType contentType = ContentType.Text;
 String contentName = requestId + "Output.txt";

 ArrayList<String> srcLines = new ArrayList<String>();
 srcLines.add("SimpleSyncEssBean Output Details \n");
 boolean success = false;
 String exmsg = "";

 try {
 createOutputContent(contentName, contentType, srcLines);
 success = verifyOutputContent(contentName, contentType, srcLines);
 } catch (ExecutionErrorException ex) {
 exmsg = ex.getMessage();
 }

 if (!success) {
 throw new ExecutionErrorException("Output test failed: " +
contentName + ", " + exmsg);
 } else {
 printToLog("Output test succeeded: " + contentName);
 }
 printToLog(" SimpleSyncEssBean job succeeded. RequestId:" + requestId);
 }

 /**
 * Creates the remote content helper for log/output.
 */
 private RemoteContentHelper
setupRemoteContentHelper(RequestExecutionContext ctx, RequestParameters
params) throws ExecutionErrorException {

 RemoteContentHelper rch = null;
 try {
 rch = new RemoteContentHelper(ctx, params);
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 }

 return rch;
 }

 /**
 * Gets the remote content helper that is setup.
 * Throws if it is not setup.
 */
 private RemoteContentHelper rchelper() throws ExecutionErrorException {
 if (null == m_rch) {
 throw new ExecutionErrorException("RemoteContentHelper is not
setup");
 }

 return m_rch;
 }

 private void printToLog(String message) throws ExecutionErrorException {
 System.out.println(message);
 if (m_rch != null) {

Request Logs

Job Request Logs and Output 22-7

 try {
 m_rch.log(Level.INFO, message);
 } catch (Exception ex) {
 // ignore
 }
 } else {
 rchelper();
 }

 }

 /**
 * Writes dataList as either Text or Binary output content.
 */
 private void createOutputContent(String contentName, ContentType contentType,
 ArrayList<String> dataList) throws
ExecutionErrorException {
 RuntimeServiceHandle rsh = null;
 ContentHandle ch = null;
 try {
 rsh = rchelper().getRuntimeService().open();
 ch =
 rchelper().openOutputContent(rsh, contentName, contentType,

EnumSet.of(ContentHandle.ContentOpenOptions.Write));

 for (String data : dataList) {
 if (ContentType.Text == contentType) {
 rchelper().write(ch, data);
 } else {
 rchelper().write(ch, data.getBytes());
 }
 }
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 if (ch != null) {
 try {
 rchelper().closeOutputContent(ch);
 } catch (Exception ex) {
 printToLog("Error while closing ch: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 if (rsh != null) {
 try {
 rchelper().getRuntimeService().close(rsh);
 } catch (Exception ex) {
 printToLog("Error while closing rsh: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 }
 }

 /**
 * Verifies Text or Binary output content.
 */
 private boolean verifyOutputContent(String contentName, ContentType

Request Logs

22-8 Developing Applications for Oracle Enterprise Scheduler

contentType, ArrayList<String> srcDataList) throws
ExecutionErrorException {

 String actualData = getOutputContent(contentName, contentType);

 StringBuffer sb = new StringBuffer();
 for (String str : srcDataList) {
 sb.append(str);
 }
 String srcData = sb.toString();

 boolean success = srcData.equals(actualData);

 if (!success) {
 printToLog("Test failed for " + contentName);
 printToLog("Expected data: <\n" + srcData + ">");
 printToLog("Actual data: <\n" + actualData + ">");
 }

 try {
 if (rchelper().outputContentExists(contentName)) {
 ContentDetail detail =
rchelper().getOutputContentDetail(contentName);
 printToLog("ContentDetail:\n" + detail);
 } else {
 printToLog("The output content details are not present:\n");
 }

 } catch (Exception ex) {
 String exm = "Failed to get output content detail: " + contentName;
 printToLog(exm);
 throw new ExecutionErrorException(ex);
 }

 return success;
 }

 /**
 * Gets either Text or Binary output content as String.
 */
 private String getOutputContent(String contentName, ContentType
contentType) throws ExecutionErrorException {
 RuntimeServiceHandle rsh = null;
 long requestId = rchelper().getRequestExecutionContext().getRequestId();
 ContentHandle ch = null;
 String result = null;
 try {
 rsh = rchelper().getRuntimeService().open();
 ch =
 rchelper().openOutputContent(rsh, contentName, contentType,

EnumSet.of(ContentHandle.ContentOpenOptions.Read));

 if (ContentType.Text == contentType) {
 char[] chars = rchelper().getTextContent(ch, Integer.MAX_VALUE);
 result = new String(chars);
 } else {
 byte[] bytes = rchelper().getBinaryContent(ch,
Integer.MAX_VALUE);
 result = new String(bytes);

Request Logs

Job Request Logs and Output 22-9

 }
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 if (ch != null) {
 try {
 rchelper().closeOutputContent(ch);
 } catch (Exception ex) {
 printToLog("Error while closing ch: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 if (rsh != null) {
 try {
 rchelper().getRuntimeService().close(rsh);
 } catch (Exception ex) {
 printToLog("Error while closing rsh: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 }

 return result;
 }

}

Request Logging from a Web Service Job
Progress messages are only available to asynchronous jobs. The Oracle Enterprise
Scheduler AsyncWebServiceJob callback endpoint supports a new
logAsyncWSJobProgressMessage one-way operation. This operation allows an
asynchronous SOA composite (or other asynchronous web service) to log progress
messages using ws-addressing for correlation and the same callback endpoint and
associated callback OWSM policy. This provides a simple, convenient option for
logging progress messages from asynchronous SOA composites.

The Oracle Enterprise Scheduler asynchronous web service job callback endpoint
WSDL provides the necessary information for using this operation. A portion of the
WSDL is shown in Example 22-3.

Example 22-3 Asynchronous Web Service Job Callback Endpoint WSDL

 <xsd:complexType name="logAsyncWSJobProgressMessage">
 <xsd:sequence>
 <xsd:element name="level" type="tns:logLevel" form="qualified"/>
 <xsd:element name="message" type="xsd:string" form="qualified"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="logAsyncWSJobProgressMessage"
type="tns:logAsyncWSJobProgressMessage"/>
 <message name="logAsyncWSJobProgressMessageInput">
 <part name="parameters" element="tns:logAsyncWSJobProgressMessage"/>
 </message>

 <portType name="RequestPort">
 <operation name="logAsyncWSJobProgressMessage">

Request Logs

22-10 Developing Applications for Oracle Enterprise Scheduler

 <input
message="tns:logAsyncWSJobProgressMessageInput"
xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
ns1:Action="logAsyncWSJobProgressMessage"/>
 </operation>
 </portType>

APIs for Handling Request Logs
You can use methods of the oracle.as.scheduler.RuntimeService class to handle logs
stored in the Oracle Enterprise Scheduler content store. You'll need to first get a
RuntimeServiceHandle instance. You'll pass this instance as an argument for each
of these RuntimeService methods.

For more on the RuntimeServiceHandle, see How to Access the Runtime Service
and Obtain a Runtime Service Handle.

Table 22-4 RuntimeService Methods for Handling Request Logs

Method Description

getLogContentDetail(Runtime
ServiceHandle handle, long
requestId)

Returns a ContentDetail instance with the log
content detail for the request, or null if the log does
not exist.

openLogContent(RuntimeServ
iceHandle handle, long
requestId)

Returns a ContentHandle instance from opening
the request log to retrieve log data for the specified
request. You can use the handle to retrieve output
data. The content must be closed to release the
handle.

getLogLines(RuntimeService
Handle handle,
ContentHandle
contentHandle, int
maxLines)

Returns a String array with at most maxLines lines
from the request log, continuing from the last call to
this method. The content handle is from the previous
call to openLogContent. This returns a String array
of lines from the log without line terminators; if no
more lines, array is empty.

getTextContent(RuntimeServ
iceHandle handle,
ContentHandle
contentHandle, int
maxChars)

Returns a char array with at most maxChars
characters from the log or output text content.

closeContent(RuntimeServic
eHandle handle,
ContentHandle
contentHandle)

Closes the previously opened log or output content
and releases the handle.

Request Output
You can have your job create output content at runtime. For example, your job might
collect data that would be useful in a report for users. When you generate output at
runtime, it's available to be retrieved later through a client user interface or the Fusion
Middleware Control.

The output your code creates can be created directly in the Oracle Enterprise
Scheduler content store, or it can be created in the file system and imported to the
content store. Oracle Enterprise Scheduler can import it automatically or your job can
use Oracle Enterprise Scheduler APIs to import it explicitly.

Request Output

Job Request Logs and Output 22-11

When you use the file system, you write to a particular directory whose location has
been configured in the Oracle Enterprise Scheduler ess-config.xml file. Oracle
Enterprise Scheduler creates a request file directory to contain files written from all
requests. Your code writes to a subdirectory of this created specifically for the request.
Oracle Enterprise Scheduler automatically imports all of the request's output to the
content store, and then deletes request-specific subdirectories.

Oracle Enterprise Scheduler provides APIs for managing output content in the content
store.

Using the Request File Directory
The request file directory is specified in the Oracle Enterprise Scheduler ess-config.xml
file. For each request, Oracle Enterprise Scheduler can create request-specific
subdirectories of this request file directory: a working directory for temporary files
and an output directory for output files that should be imported into the content store.

Your code can write temporary and output files to their respective request-specific
directories at runtime. Oracle Enterprise Scheduler imports to the content store files in
the request's output directory. When the content is imported depends on whether the
request file directory is shared or local, as described in Common Request File
Directory Behavior, Shared Request File Directory Behavior, and Local Request File
Directory Behavior.

After automatically importing all of the request's output to the content store, Oracle
Enterprise Scheduler deletes the request-specific output directory and its contents.

The request file directory can be local, meaning that it is used only for work done on a
single server. It can also instead be shared, in which a single directory is used for work
done on multiple servers. Runtime behavior differs depending on whether the
directory is configured to be local or shared.

The directory is specified in the ess-config.xml file, as shown in Example 22-4.
Oracle Enterprise Scheduler sets USER_FILE_DIR (SYS_userFileDir) based on
RequestFileDirectory and then makes the property read-only. The job cannot
override this by setting USER_FILE_DIR.

Example 22-4 Request File Directory Configuration with ess-config.xml file

<ess:EssConfig xmlns:ess="http://ess.oracle.com"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ess:EssProperties>
 <ess:EssProperty key="RequestFileDirectory" value="/etc/outputfiles"
 immutable="true"/>
 <ess:EssProperty key="RequestFileDirectoryShared" value="false"
 immutable="true"/>
 </ess:EssProperties>
</ess:EssConfig>

Common Request File Directory Behavior

Oracle Enterprise Scheduler automatically imports all request output files from the
output directory to the content store, and deletes the request working directory and all
files in it.

Imported files always overwrite existing content of the same file name as long as the
existing content was previously imported. If the existing content was created using the
API, then it is considered to be distinct from the new file, and the new file does not
overwrite and is ignored. In other words, content created with the API has precedence.

Request Output

22-12 Developing Applications for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler does not import output files of zero length.

Shared Request File Directory Behavior

Any files created by the request remains in its working and output directories until the
request completes and goes to a terminal state. Any files created by a request in a
shared file directory are available to all stages of the request.

Error Handling When a Shared Request File Directory is Used

Oracle Enterprise Scheduler creates the request work directory before the job request
transitions to the RUNNING state. Any error while creating the directory results in a
system error for the request.

For process a job, importing the log occurs after the request transitions to a terminal
state. If an error occurs while importing the log, the error is logged and the request log
is left in the file system. You must manually import the log to the content store.

Importing output files for any job type occurs after the request transitions to a terminal
state. If there is an error while importing output files, the error is logged and the
output files are left in their directories on the file system. You must remove the output
files.

Local Request File Directory Behavior

Oracle Enterprise Scheduler creates request-specific directories before any stage of the
request runs. If the request file directory is local, it must be a location that is
guaranteed to exist locally on every server. In this case, files created by one stage of the
request are not guaranteed to be available in the next stage because stages are
independent units of work and may run on different servers.

For a local request file directory, the common behavior holds except that Oracle
Enterprise Scheduler performs the actions for each stage. The reason is that each stage
may execute on a different server, and it is necessary for Oracle Enterprise Scheduler
to capture and clean up the files for each stage because they may not be there for the
next stage.

In case a request requires access to all previously imported output files, it can set the
parameter SYS_EXT_executeAutoExport = true. If this is set, at the beginning of
the execute stage, Oracle Enterprise Scheduler automatically exports previously
imported output files to the request's working output directory. This gives you an
opportunity to update the file before it is imported back to the content store at the end
of the execute stage. (Note that the content isn't removed from the content store when
the content is exported.) Furthermore, Oracle Enterprise Scheduler provides an API for
a request to selectively export previously imported output files.

Error Handling When a Local Request File Directory is Used

When a local request file directory is used, file imports happen at the end of each stage
(pre-processing, execution, update, post-processing). If an error occurs while
importing logs or output files, the log and output files that failed to import are moved
to a mirror directory at request_file_directory/preserve. For example, for request 18
this would be request_file_directory/preserve/18.

For the pre-processing stage, an error creating the request directory at the beginning of
the stage or importing output files at the end of the stage results in a system error for
the request.

Request Output

Job Request Logs and Output 22-13

For the post-processing stage, an error creating the request directory at the beginning
of the stage or importing output files at the end of the stage results in a warning for
the request.

For the execution stage of a Java job, asynchronous Java job, and process job request,
an error creating the request directory or automatically exporting previously imported
output files (such as when the SYS_EXT_executeAutoExport system property is
used) at the beginning of the stage or importing output files at the end of the stage
results in a system error for the request.

If the request is a process job, an error importing the request log is logged and not
treated as an error. The log is left in the file system, and you may manually import it to
the content store. If there is an internal error during execution of a process job, log and
output files are not imported because the job could still be running. The log and
output files are imported when the job is terminated, either automatically or manually
by the user. If the job goes to ERROR_MANUAL_RECOVERY, it is the user's responsibility
to clean up the request log and output files.

For the update stage, an error creating the request directory or importing output files
is logged only.

System Properties
Setting the SYS_EXT_supportOutputFiles system property is essential to using
the request file directory and automatic importing of output files.

To use the request output directory to create output files, the job must define a
parameter using the system property SYS_EXT_supportOutputFiles. Depending
on what sort of files the job wants to create, the property can be set in one of the
following ways:

• Set it to "output" in order to have files written to the request output directory
imported to the content store.

• Set it to "work" in order to write files to the request working directory that are not
intended for import, such as temporary files.

• Set it to "none", or leave it undefined, if the job does not create any output or
temporary files.

Table 22-5 System Properties for Creating Request Output

Method Description

SYS_EXT_supportOutputFiles String property indicating whether a job creates files
in the file system. Supported values are work,
output, and none. An invalid value is treated as
none.

SYS_EXT_executeAutoExport Boolean property indicating whether previously
imported output files shall be exported at the start of
the execute stage. The content isn't removed from the
content store when it is automatically exported.

Creating Request Output from a Java Job
To create request output from Java, your job's code can use the Oracle Enterprise
Scheduler API to create output content directly in the content store, or your job can
create files in the request's output directory in the file system. If your job creates files
in the request's output directory, you can either explicitly import those files to the

Request Output

22-14 Developing Applications for Oracle Enterprise Scheduler

content store or allow Oracle Enterprise Scheduler to automatically import the files to
the content store.

Using the API, the job can create text or binary output content. Imported output files
are always imported as binary content, meaning the bytes are uninterpreted.

APIs for Handling Request Output from a Java Job

The Java APIs available for handling request output include the following:

• Use the ContentFactory class to get instances of other classes you can use to
create and manage output content, including RequestOutput and
OutputContentHelper output. See Table 22-6.

• Use the RequestOutput class to create output content directly in the content
store. See Table 22-7.

• Use the OutputContentHelper class to explicitly manage content you create as
files in the request output file directory, and to interact with the content store. See
Table 22-8.

The oracle.as.scheduler.request.ContentFactory class provides methods
to get your code access to the output content framework, as well as to an instance you
can use to create the output itself.

Table 22-6 ContentFactory Methods for Java Request Output

Method Description

getRequestOutput(RuntimeSe
rviceHandle rsh, long
requestId, ContentType
contentType, String
contentName)

Returns a RequestOutput instance with output for
the specified request and creates the output content
for the request. Each write uses the specified request
service handle; your calling code is responsible for
committing or rolling back the transaction.

getOutputContentHelper(lon
g requestId)

Returns a OutputContentHelper instance for
creating output content for requests with Standard
or Extended request mode. Each operation is
performed in a separate transaction.

getOutputContentHelper(lon
g requestId,
RuntimeServiceHandle rsh)

Returns a OutputContentHelper instance for
creating output content for requests with Standard
or Extended request mode. Each operation uses the
provided handle, and it is the caller's responsibility to
commit or rollback the transaction.

The oracle.as.scheduler.request.RequestOutput class represents the
output your code is creating. You get an instance of this class from
ContentFactory.getRequestOutput, then use its write methods to write to the
output content you are creating.

Table 22-7 RequestOutput Methods for Java Request Output

Method Description

writeln(String str) Appends str to the text output content, followed by
a line feed character.

write(String str) Appends str to the text output content.

Request Output

Job Request Logs and Output 22-15

Method Description

write(String str, int
offset, int length)

Appends str to the text output content.

write(char[] chars) Appends chars to the text output content.

write(char[] chars, int
offset, int length)

Appends chars to the text output content.

write(byte[] bytes) Appends bytes to the binary output content.

write(byte[] bytes, int
offset, int length)

Appends bytes to the binary output content.

Methods of the oracle.as.scheduler.request.OutputContentHelper class
do the heavy lifting for output file handling in Java jobs. Using these methods, your
code can work with the request file directory and the content store itself.

Note that methods for importing content to the content store take a
OutputContentHelper.CommitSemantics enum instance that you can use to
specify transaction semantics during import. For more information, see Table 22-9.

Table 22-8 OutputContentHelper Methods for Java Request Output

Method Description

workDirectoryExists() Returns true if the request's work directory exists.
Allows the job at any stage to determine if the work
directory exists before it attempts to create temporary
files.

The job must define the
SYS_EXT_supportOutputFiles system property
with a value of work or output to cause Oracle
Enterprise Scheduler to create the work directory.

outputDirectoryExists(); Returns true if the request's output directory exists.
Allows the job at any stage, such as update, to
determine if the output directory exists before it
attempts to create output files.

The job must define the
SYS_EXT_supportOutputFiles system property
with a value of output to cause Oracle Enterprise
Scheduler to create the output directory.

isRequestWorkDirectoryShare
d();

Returns true if the request file directory is shared. If
it is, then any files created in the request work dir or
output dir in any stage is available to all subsequent
stages of the request.

getResolvedWorkDirectory()
;

Returns a String with the request work directory as
resolved to the current server. The job may create
temporary files in the work directory, and Oracle
Enterprise Scheduler automatically deletes the work
directory at the end of request execution if the
RequestFileDirectory is shared, or at the end of
each stage (pre-processing, execution, update, post-
processing) if the RequestFileDirectory is local.

Request Output

22-16 Developing Applications for Oracle Enterprise Scheduler

Method Description

getResolvedOutputDirectory(
);

Returns a String with the request output directory,
resolved to the current server. The job may create
output files in the output directory that can be
automatically or manually imported to the Oracle
Enterprise Scheduler content store.

importOutputFiles(List<Str
ing> fileNames,
CommitSemantics
semantics);

Returns an ImportExportResult instance from
importing the specified files from the resolved output
directory. Imported content overwrites existing
content of the same name, unless the existing content
was created using the API. In that case, the file is not
imported.

importOutputFiles(CommitSe
mantics semantics);

Returns an ImportExportResult instance from
importing all files from the resolved output directory.
Imported content overwrites existing content of the
same name, unless the existing content was created
using the API. In that case, the file is not imported.

exportOutputContent(List<S
tring> contentNames);

Returns an ImportExportResult from exporting
the specified previously imported output content to
files in the request output directory. The exported files
overwrite any existing files of the same names. Note
that output content created using the API can not be
exported.

exportOutputContent(); Returns an ImportExportResult instance from
exporting all previously imported output content to
files in the request output directory. The exported files
overwrite any existing files of the same names. Note
that output content created using the API can not be
exported.

queryOutputContent() Returns a list of ContentDetail instances with
detailed information for all existing output content in
the content store. This returns information on both
output content that was imported and output content
created using the API.

queryOutputContent(String
contentName)

Returns a ContentDetail instance with detailed
information for the output content in the content
store, if it exists (null if it does not). This returns
information on both output content that was
imported and output content created using the API.

outputContentExists(String
contentName)

Returns true if the specified output content exists in
the content store for the request. This returns
information on output content that was imported and
output content created using the API.

deleteOutputContent(List<S
tring> contentNames)

Deletes the specified output content from the content
store for the request. Can delete output content that
was imported and output content created using the
API.

Use the
oracle.as.scheduler.request.OutputContentHelper.CommitSemantics
enum to specify what should happen if errors occur while importing content to the
content store.

Request Output

Job Request Logs and Output 22-17

Table 22-9 CommitSemantics Enum Members to Express Commit Semantics

Field Description

StopOnFirstError Stop the operation for all files when there is an error
on a file. If the handle is internal, it is committed.

IgnoreErrors Attempt the operation on all files regardless of errors.
If the handle is internal, it is committed.

Transactional Stop the operation for all files when any file has an
error. This is not valid with a user-provided handle.

Java Request Output Examples

Example 22-5 illustrates how to create output content using the RequestOutput API.
The output content is created directly in the content store.

Example 22-6 illustrates how to create an output file in the request output directory.
Remember that the job must define the SYS_EXT_supportOutputFiles system
property as output. This example is appropriate for a Java job, an asynchronous Java
job, a pre-processor, or a post-processor.

The following example shows how to manually export and import output files. This
would be useful if you need to create content from files during update. Be aware that
you can export only files that have been imported and not files that were created using
the API.

The example illustrates the scenario that a file that may have been created previously
must be updated and imported.

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.ImportExportResult;
import oracle.as.scheduler.request.ImportExportResult.ImportExportStatus;
import oracle.as.scheduler.request.OutputContentHelper;
import oracle.as.scheduler.request.OutputContentHelper.CommitSemantics;

class ExampleExportImport{

 OutputContentHelper helper =
ContentFactory.getOutputContentHelper(requestId);

 if (!helper.outputDirectoryExists())
 {
 // error - make sure job definition defines SYS_EXT_supportOutputFiles
 }

 String outputDir = helper.getResolvedOutputDirectory();
 String fileName = "myfile.out";
 List<String> fileNamesList = new ArrayList<String>();
 fileNamesList.add(fileName);

 // Export the file if it exists; otherwise, create it.

 if (helper.outputContentExists(fileName))
 {
 ImportExportResult exportResult =
helper.exportOutputContent(fileNamesList);
 if (exportResult.getStatus() != ImportExportStatus.Success)
 {
 // handle error
 }

Request Output

22-18 Developing Applications for Oracle Enterprise Scheduler

 }
 else
 {
 File f = new File(outputDir, fileName);
 f.createNewFile();
 }

 // ... update the file as needed ...

 // Import the new or updated file.
 // Updated file overwrites previous contents.

 ImportExportResult importResult =
 helper.importOutputFile(fileNamesList, CommitSemantics.IgnoreErrors);

 if (importResult.getStatus() != ImportExportStatus.Success)
 {
 // handle error
 }
}

Example 22-5 Creating Output Content using RequestOutput

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.ContentType;
import oracle.as.scheduler.request.RequestOutput;

class ExampleOutputContentCreator
{
 RuntimeService runtimeService = getRuntimeService();
 RuntimeServiceHandle handle;
 try {
 handle = runtimeService.open();
 RequestOutput requestOutput = ContentFactory.getRequestOutput(
 handle, requestId, ContentType.Text, “SampleOutput.txt");

 requestOutput.writeln(“Output data in sample output content.");
 }
 finally {
 runtimeService.close(handle);
 }
}

Example 22-6 Creating an Output File for Automatic Import

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.OutputContentHelper;

class ExampleOutputCreator{

 OutputContentHelper helper =
ContentFactory.getOutputContentHelper(requestId);
 String outputDir = helper.getResolvedOutputDirectory();

 File f = new File(outputDir, "myfile");
 f.createNewFile();
 if (f.exists())
 {
 // write to file
 }
}

Request Output

Job Request Logs and Output 22-19

Creating Request Output from a PL/SQL Job
To create request output from PL/SQL, your code can use the ESS_JOB PL/SQL
package to create output content directly in the content store.

Using functions and procedures in the package, the job can create text or binary output
content.

PL/SQL Package Support for Creating Output

Table 22-10 ESS_JOB Procedures and Functions for Request Output

Method Description

open_text_output_content(p
_content_name in varchar2)
return varchar2

open_binary_output_content(
p_content_name in
varchar2) return varchar2

Returns a handle from opening the specified output
content for the request associated with the current
session.

These are convenience functions that call
open_output_content with the appropriate
content type constant. See open_output_content
for additional details.

open_output_content(p_cont
ent_name in varchar2,
p_content_type in integer)
return varchar2;

Returns an opaque handle from opening the output
content p_content_name for the request associated
with the current session.

This creates a new output content entry if one does
not already exist for the given name. If one already
exists, then the specified content type must match that
already established for that name.

p_content_type represents content type with one
of the content type constants:

CONTENT_TYPE_TEXT (value: 1) for text content.

CONTENT_TYPE_BINARY (value: 2) for binary
content.

This returns an opaque handle that is passed to
subsequent procedures that operate on that output
content.

The content entry is locked on successful return from
this function. It may or may not be locked if this
procedure fails. A commit or rollback releases the
lock. The write_text_content or
write_ntext_content procedures must be used to
write data for text content, while the
write_binary_content procedure must be used to
write data for binary content.

You should call close_content to free any resources
associated with the handle returned by this method.
The close should be done prior to transaction commit
or rollback.

NOTE: The content output support has DML
semantics. The caller is responsible for the commit/
rollback.

Request Output

22-20 Developing Applications for Oracle Enterprise Scheduler

Method Description

write_ntext_content(p_cont
ent_handle in varchar2,
p_data in nvarchar2)

write_text_content(p_conte
nt_handle in varchar2,
p_data in varchar2);

Writes data as p_data to the output content
associated with the given handle. These operations
are supported only for CONTENT_TYPE_TEXT content
type.

p_content_handle is the output handle from a
prior open_output_content call.

NOTE: The content output support has DML
semantics. The caller is responsible for the commit/
rollback.

write_binary_content(p_con
tent_handle in varchar2,
p_data in raw);

Writes binary data as p_data to the output content
associated with the given handle. This operation is
supported only for CONTENT_TYPE_BINARY content
type.

p_content_handle is the output handle from a
prior open_output_content call.

NOTE: The content output support has DML
semantics. The caller is responsible for the commit/
rollback.

close_content(p_content_ha
ndle in varchar2);

Closes the output content handle. This releases
resources associated with the given handle and it is no
longer valid. Call this method before transaction
commit or rollback.

p_content_handle is the output handle from a prior
open_output_content call.

NOTE: The content output support has DML
semantics. The caller is responsible for the commit/
rollback. This method does not automatically perform
a commit or rollback

output_content_exists(p_co
ntent_name in varchar2)
return boolean;

Returns true if an output content entry having the
specified name already exists for the request
associated with the current session.

p_content_name is the name of the output content
entity.

delete_output_content(p_co
ntent_name in varchar2);

Deletes the specified output content entry for the
request associated with the current session.

p_content_name is the name of the output content
entity.

PL/SQL Output Creation Examples

Example 22-7 illustrates how to write text content into output, as well as how to write
log entries along the way.

Example 22-8 illustrates how to write binary content for output.

Example 22-7 PL/SQL Output Creation Examples

create or replace procedure text_output_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
 v_content_name varchar2(100) := 'mycontent.txt';
 v_content_handle varchar2(100);

Request Output

Job Request Logs and Output 22-21

 v_ntext nvarchar2(100);
begin
 ess_job.write_log(ess_job.LEVEL_FINE,
 'TEXT_OUTPUT_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduler request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_SEVERE,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 begin
 -- ----------
 -- Delete content entry if it already exists.
 -- ----------
 if (not ess_job.output_content_exists(v_content_name)) then
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'Content does not exist: ' || v_content_name);
 else
 ess_job.write_log(ess_job.LEVEL_INFO,
 'Deleting existing content: ' || v_content_name);
 ess_job.delete_output_content(v_content_name);
 commit;
 end if;

 -- ----------
 -- Write text content. Source data has some non-ascii chars.
 -- Illustrate multiple writes.
 -- ----------
 ess_job.write_log(ess_job.LEVEL_FINE,
 'Write text content: '||v_content_name);

 v_content_handle := null;
 v_content_handle := ess_job.open_text_output_content(v_content_name);

 ess_job.write_text_content(v_content_handle,
 'Data ');
 ess_job.write_ntext_content(v_content_handle,
 unistr('(NTEXT data:\00c4\00c5)'));
 ess_job.write_text_content(v_content_handle,
 ' for CONTENT ' || v_content_name);

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 commit;
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_WARNING,
 'Error during text output operations. ' ||
 'content: ' || v_content_name || chr(10) ||
 'Error_Stack...' || chr(10) ||
 dbms_utility.format_error_stack() || chr(10) ||
 'Error_Backtace...' || chr(10) ||
 dbms_utility.format_error_backtrace());
 if v_content_handle is not null then

Request Output

22-22 Developing Applications for Oracle Enterprise Scheduler

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 end if;
 rollback;
 raise_application_error(-20000,
 'Output content operations failed for '||v_content_name);
 end;

 ess_job.write_log(ess_job.level_info,
 'TEXT_OUTPUT_EXAMPLE_JOB Procedure End');
end;
/

Example 22-8 Manual Export and Import of Request Output

create or replace procedure binary_output_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
 v_content_name varchar2(100) := 'mycontent.bin';
 v_content_handle varchar2(100);
 v_nchar_cs varchar2(100);
 v_dest_cs varchar2(100);
 v_ntext nvarchar2(100);
 v_raw raw(500);
begin
 ess_job.write_log(ess_job.LEVEL_FINE,
 'BINARY_OUTPUT_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduler request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_SEVERE,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 begin
 -- ----------
 -- Delete content entry if it already exists.
 -- ----------
 if (not ess_job.output_content_exists(v_content_name)) then
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'Content does not exist: ' || v_content_name);
 else
 ess_job.write_log(ess_job.LEVEL_INFO,
 'Deleting existing content: ' || v_content_name);
 ess_job.delete_output_content(v_content_name);
 commit;
 end if;

 -- ----------
 -- Write binary content.
 -- This is the UTF-8 representation of a string for a known byte
 -- encoding rather than whatever the charset/national charset
 -- happens to be for this database.
 -- Source data has couple non-ascii chars.

Request Output

Job Request Logs and Output 22-23

 -- ----------

 -- database national character set being used
 select value into v_nchar_cs
 from nls_database_parameters
 where parameter = 'NLS_NCHAR_CHARACTERSET';
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'NLS_NCHAR_CHARACTERSET = '||v_nchar_cs);

 ess_job.write_log(ess_job.LEVEL_FINE,
 'Write binary content: '||v_content_name);

 v_content_handle := null;
 v_content_handle := ess_job.open_binary_output_content(v_content_name);

 v_ntext := unistr('Data (NTEXT data:\00c4\00c5) for CONTENT ' ||
 v_content_name);

 v_dest_cs := 'AL32UTF8';
 v_raw := utl_raw.cast_to_raw(convert(v_ntext, v_dest_cs, v_nchar_cs));
 ess_job.write_binary_content(v_content_handle, v_raw);
 ess_job.write_log(ess_job.LEVEL_FINE,
 'Wrote '||utl_raw.length(v_raw)||' bytes' ||
 ' using ' || v_dest_cs || ' charset');

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 commit;
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_WARNING,
 'Error during binary output operations. ' ||
 'content_name=' || v_content_name || chr(10) ||
 'Error_Stack...' || chr(10) ||
 dbms_utility.format_error_stack());
 if v_content_handle is not null then
 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 end if;
 rollback;
 raise_application_error(-20000,
 'Output content operations failed for '||v_content_name);
 end;

 ess_job.write_log(ess_job.level_info,
 'BINARY_OUTPUT_EXAMPLE_JOB Procedure End');
end;
/

Creating Request Output from a Process Job
You create output from process job logic by writing the content to the location
specified by the ESS_OUTPUT_WORK_DIR environment variable that is available for all
process jobs. As with other jobs, ensure that the SYS_EXT_supportOutputFiles
system property is set to output so that the environment variable is defined for the
job.

After your process code writes the file, Oracle Enterprise Scheduler automatically
imports output files in the directory into the content store as binary content.

Request Output

22-24 Developing Applications for Oracle Enterprise Scheduler

Creating Request Output from an EJB Job
See Request Logging and Output From an EJB Job for a description and examples
about how to create output from an EJB job.

Creating Request Output from a Web Service Job
For synchronous and asynchronous web services, request output content is
automatically created from the response message payload as described below. The
output content is text data with the name WebServiceJobOutput-
REQUESTID.txt, where REQUESTID is the request ID of the request.

For a synchronous web service, the response message payload is captured as the
request output.

For an asynchronous web service, the callback/response message payload received at
EssWsJobAsyncCallbackService is captured as the request output when the job
status is SUCCESS.

APIs for Handling Request Output
You can use methods of the oracle.as.scheduler.RuntimeService class to
handle request output stored in the Oracle Enterprise Scheduler content store. You'll
need to first get a RuntimeServiceHandle instance. You'll pass this instance as an
argument for each of these RuntimeService methods. For more on the
RuntimeServiceHandle, see How to Access the Runtime Service and Obtain a
Runtime Service Handle.

Table 22-11 RuntimeService Methods for Handling Request Output

Method Description

getOutputContentDetail(Run
timeServiceHandle handle,
long requestId, String
contentName)

Returns a ContentDetail instance for the specified
output content for the specified request, or null if the
content does not exist.

getOutputContentDetail(Run
timeServiceHandle handle,
long requestId)

Returns a ContentDetail List instance for all
output content for the request. The list is empty if
there is no output content.

openOutputContent(RuntimeS
erviceHandle handle, long
requestId, String
contentName)

Opens the specified request output to retrieve output
data for the specified content, returning
ContentHandle instance. You can use the handle to
retrieve output data. The content must be closed to
release the handle.

getTextContent(RuntimeServ
iceHandle handle,
ContentHandle
contentHandle, int
maxChars)

Returns a char array with at most maxChars
characters from the log or output text content.

getBinaryContent(RuntimeSe
rviceHandle handle,
ContentHandle
contentHandle, int
maxBytes)

Returns a byte array with at most maxBytes bytes
from the binary content.

Request Output

Job Request Logs and Output 22-25

Method Description

closeContent(RuntimeServic
eHandle handle,
ContentHandle
contentHandle)

Closes the previously opened log or output content
and releases the handle.

Request Output

22-26 Developing Applications for Oracle Enterprise Scheduler

23
Oracle Enterprise Scheduler Security

This chapter describes Oracle Enterprise Scheduler Security features that provides
access control for its resources and application identity propagation for job execution.

This chapter includes the following sections:

• Introduction to Oracle Enterprise Scheduler Security

• Configuring Metadata Security for Oracle Enterprise Scheduler

• Configuring Data Security for Oracle Enterprise Scheduler

• Configuring Web Service Security for Oracle Enterprise Scheduler

• Configuring PL/SQL Job Security for Oracle Enterprise Scheduler

• Elevating Privileges for Oracle Enterprise Scheduler Jobs

• Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

Introduction to Oracle Enterprise Scheduler Security
Oracle Enterprise Scheduler Security includes the following:

• Protected operations on MetadataService; protected by
MetadataPermission, which enforces metadata access control. Access control on
metadata objects. Only a privileged user may create, delete, and update job and
schedule metadata. For more information see Oracle Enterprise Scheduler
Metadata Access Control.

• Support for the use of an application identity. Using an application identity enables
elevated privileges for completing a job that requires higher privileges than those
allotted to the submitting user. For more information, see Oracle Enterprise
Scheduler Job Execution Security.

Oracle Enterprise Scheduler Metadata Access Control
At design time the metadata creator must decide which job functions can access which
metadata objects. This is expressed by associating each metadata object with one or
more roles and specifying one or more actions for each role. Figure 23-1 shows the
metadata security summary.

Oracle Enterprise Scheduler Security 23-1

Figure 23-1 Design Time Metadata Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Job Execution Security
During job submission, the user under whose permissions the job request is submitted
is called the submitting user. At request execution time all user Java code including
pre-processing, post-processing, Java jobs, and substitution, is run as the submitting
user, retaining all roles and credentials.

If the job metadata specifies SYS_RUNAS_APPLICAITONID, however, the job runs
under the elevated privileges of an application ID. For more information, see Elevating
Privileges for Oracle Enterprise Scheduler Jobs.

Configuring Metadata Security for Oracle Enterprise Scheduler
When a user accesses Oracle Enterprise Scheduler services using the RuntimeService
or MetadataService, the identity of the user is acquired and Oracle Enterprise
Scheduler checks if the user has the required permissions to access resources (for
example metadata objects). For example, if a user named teller1 must call
getJobDefinition to access a metadata object named calculateFees, Oracle
Enterprise Scheduler ensures that teller1 has READ permission for the metadata object
calculateFees before returning the object.

At design time the metadata creator must decide which job functions can access which
metadata objects. This is expressed by associating each metadata object with one or
more roles and specifying one or more actions for each role.

There are two options for metadata role assignments:

• Using Oracle JDeveloper Tools Oracle ADF Security Wizard

• Using Oracle JDeveloper Oracle Enterprise Scheduler add-in metadata pages

Configuring Metadata Security for Oracle Enterprise Scheduler

23-2 Developing Applications for Oracle Enterprise Scheduler

Oracle JDeveloper ADF Security wizard creates the roles you use; the roles must be
created before you can register them with a metadata object.

How to Enable Application Security with Oracle ADF Security Wizard
These steps describe a minimal, validated security setup for an application using
Oracle Enterprise Scheduler.

Follow these steps to create a working jps-config.xml and a partially-populated
jazn-data.xml. Use these steps to configure servlets to work with JPS.

To enable security using the ADF Security wizard:

1. In Oracle JDeveloper, with an application open, from the Application menu select
Secure.

2. From the dropdown list, select Configure ADF Security. The Configure ADF
Security wizard displays.

3. In the Enable ADF Security page, select either ADF Authentication and
Authorization or ADF Authentication and click Next.

4. In the Select authentication type page, select either HTTP Basic Authentication or
Form-Based Authentication and click Next.

5. If you selected ADF Authentication and Authorization > Form-Based
Authentication in the Enable automatic policy grants page, select the appropriate
options from the Enable Automatic Grant area, and click Next.

6. In the Specify authenticated welcome page, select options as needed and click
Next.

7. In the Summary page verify the options and click Finish.

8. In the Security Infrastructure Created dialog, click OK.

Including Security Files in EAR File
To enable security and to ensure that the jazn-data.xml is included in the
application deployment, perform the following steps after assembling the EAR file for
the application.

1. In Oracle JDeveloper, select Application > Application Properties.

2. In the Application Properties page, in the Navigator select Deployment.

3. In the Deployment Profiles area, select the EAR file Deployment descriptor.

4. Click Edit. This displays the Edit EAR Deployment Profile Properties page.

5. In the Edit EAR Deployment Profile Properties page, expand File Groups >
Application Descriptors > Filters.

6. In the Filters area, select the Files tab.

7. Ensure that the files jazn-data.xml, jps-config.xml, and weblogic-
application.xml are selected under the META-INF folder.

8. Click OK to save the descriptor.

Configuring Metadata Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-3

How to Define Principals for Security
You need to define roles before the roles are used in Oracle Enterprise Scheduler
security. There are two types of roles that may be defined:

• Enterprise roles: These are defined directly in Oracle WebLogic Server either using
the Oracle WebLogic Server console, using the WLST scripts, or using the ADF
Security Wizard in Oracle JDeveloper.

• Application roles: These can be defined in the jazn-data.xml file or using the
ADF Security Wizard.

To create the application role:

1. In Oracle JDeveloper, open the application and expand Application Resources in
the Application Navigator.

2. In the Application Resources area, expand Descriptors and META-INF.

3. In META-INF, double-click to open jazn-data.xml.

4. In the page showing jazn-data.xml, select the Applications Role tab. Note, if
the Application Role tab is not shown, try closing jazn-data.xml and then
opening it again.

5. Click the Add button in the Roles list and choose Add New Role.

6. Set the name to EssApplicationRole in the Name field.

Figure 23-2 Creating the Application Role

Creating Enterprise Role
To create the enterprise role:

1. In Oracle JDeveloper, open the application and expand Application Resources in
the Application Navigator.

2. In the Application Resources area, expand Descriptors and META-INF.

3. In META-INF, double-click to open jazn-data.xml.

4. In the page showing jazn-data.xml, select the Test Users & Roles tab. Note, if
the Test Users & Roles tab is not shown, try closing jazn-data.xml and then
opening it again.

Configuring Metadata Security for Oracle Enterprise Scheduler

23-4 Developing Applications for Oracle Enterprise Scheduler

5. Select the Enterprise Roles tab.

6. Click the Add button in the Roles list and choose Add New Role.

7. Set the name to EssEnterpriseRole in the Name field.

Figure 23-3 Creating the Enterprise Role

How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
Access to all metadata is controlled by grants. In order to ensure access by the right
identities, you need to give the correct grants. It is expected that most metadata grants
are done using the Oracle Enterprise Scheduler Oracle JDeveloper add-in.

First, create any required Oracle Enterprise Scheduler metadata in an application
using File > New > Business Tier > Enterprise Scheduler Metadata.

Using Oracle JDeveloper, you can add security grants to Oracle Enterprise Scheduler
metadata objects.

To secure Oracle Enterprise Scheduler metadata objects:

1. Open the Editor page for any Oracle Enterprise Scheduler metadata object.

2. In the Access Control area, click Add to add a new access control item.

3. In the Add Access Control dialog, select a Role from the dropdown list. This selects
a role to grant access privileges.

4. Select one or more actions from the list, Read, Execute, Update, or Delete.

5. Click OK. This displays the updated role, as shown in Figure 23-4.

6. Repeat for as many roles as needed.

Configuring Metadata Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-5

Figure 23-4 Security Roles for Oracle Enterprise Scheduler Metadata

About MetadataPermission APIs
Grants for metadata are part of the class oracle.as.scheduler.
security.MetadataPermission. The name, or target of the permission is based
on the package, metadata object type, and name of the metadata object being
protected; this identifier can be retrieved from
MetdataObjectId#toPermissionString().

Table 23-1 lists the actions for the grants. The notation <Type> is a placeholder for all of
the metadata object types. For example, get<Type>() refers to the methods
getJobDefinition(), getJobType(), getJobSet().

Table 23-1 Grant Actions for Metadata Security

Action Implies Metadata Functions

READ None get<Type>(), query<Type>()

EXECUTE READ submitRequest()

CREATE READ add<Type>()

UPDATE READ update<Type>()

DELETE READ delete<Type>()

If you are submitting ad-hoc requests, you can have full wildcard ("*") permission with
both EXECUTE and CREATE actions. When submitting ad-hoc requests, that is, using
submitRequest() without certain MetadataObjectIds, you can grant
permissions with the full wildcard ("*") name using the EXECUTE and CREATE actions.

Configuring Metadata Security for Oracle Enterprise Scheduler

23-6 Developing Applications for Oracle Enterprise Scheduler

What Happens When You Configure Metadata Security
Each time a user application calls a MetdataService or RuntimeService method,
Oracle Enterprise Scheduler checks the current subject for privileges on the metadata
accessed by the methods. For example, submitting a request requires EXECUTE
permissions on the job definition or job set metadata object associated with the
submission. Methods that change metadata, for example calling
updateJobDefinition(), require UPDATE permissions.

For all MetadataService methods except queries, an exception is thrown when the
user tries to access a metadata object for which the user does not have permission.

The MetadataService query methods have different behavior. When a user
performs a query Oracle Enterprise Scheduler only returns metadata objects that have
READ permission. Thus a user who has no permissions on metadata objects receives an
empty list for all queries, but this user would not see an exception thrown due to lack
of permissions.

The value of SystemProperty.USER_NAME is overwritten at submission time; the
user cannot spoof an identity at submission time using
SystemProperty.USER_NAME.

Configuring Data Security for Oracle Enterprise Scheduler
The Oracle Enterprise Scheduler standalone data security implementation is based on
functional security permission checking using the RuntimeDataPermission class.
By default, Oracle Enterprise Scheduler supports the following levels of data security
enforcement:

• A user can only operate on the requests that he or she submits.

• A user can be granted permission to see all requests regardless of who submits
them by assigning the user to the Admin, Operator, or Monitor roles.

• A user can view the output generated by the requests that he or she submits or
executes.

If you want to add or change the default data security permissions, you must
reconfigure the jazn-data.xml file as shown in How to Change Data Security
Permissions.

How to Change Data Security Permissions
This section describes how configure the jazn-data.xml file to change the a job
request's data security from the "out-of-the-box" default settings described in
Configuring Data Security for Oracle Enterprise Scheduler.

The following is an example of ajazn-data.xml permission section that defines
RuntmeDataPermission.

<permission>
 <name>definition like 'oracle.apps.ess.custom.soa.*',product like "SOA
%",PROPERTY1=VALUE1</name>
 <class>oracle.as.scheduler.security.RuntimeDataPermission</class>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_OUTPUT_READ</actions>
</permission

Configuring Data Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-7

The permission conditions defined in the example above grant permission to a user to
read the details of a job request and to read job request output if the job request
matches the following criteria:

• Its job definition matches the pattern: oracle.apps.ess.custom.soa.* and

• If the value of the product field has "SOA"' and

• A user-defined property named PROPERTY1 is set with the value of VALUE1

Conditions

Conditions are specified in the <name> element and use the “=" and “like/LIKE"
operators. The “%" and “*" wildcard characters can be used with the “like/LIKE"
operators. Note that you cannot use the “%" wildcard character in a field name that
specifies a metadata object name, however, you can use it if the field name specifies
other data such as products, and request categories. For example, the following
examples work correctly:

• definition LIKE 'oracle.apps.ess.custom.soa.*'

• requestCategory LIKE 'EssFineGrained%',workAssignment LIKE
'FineGrainedWA%',className LIKE '%BasicJavaJob%'

While the following entry does not work correctly:

• definition LIKE 'oracle.apps.ess.custom.soa.%'

Conditions are specified as sets of key-value pairs with the following specific delimiter
syntax.

• Key-value pairs in conditions are separated by the “," character.

• Whitespace characters cannot be specified directly before or after the “," delimiter.

• The value portion of a key-value condition can be unquoted, single-quoted, or
double-quoted.

• Multiple conditions specified in the same element are interpreted as logically
ANDed together.

• You can logically OR conditions by defining two or more permission resources for a
same grantee.

The following rules apply to field names and reqProp keys:

• The field name must be the value represented by fieldName of
RuntimeService.QueryField. For example,
QueryField.DEFINITION.fieldName().

• You cannot specify ResultIndex as the field name because there is no equivalent
field in Request History View for ResultIndex. The Request History View is the
Database View created out of the Request_history table. The SQL query of the
standalone data security gets executed against this view.

• reqProp is a user property defined in Oracle Enterprise Scheduler job metadata or
during request submissions. For example, PARTITION_NAME='SOA'.

• Table 23-2 shows the list of valid field names and their corresponding request
history view column entries:

Configuring Data Security for Oracle Enterprise Scheduler

23-8 Developing Applications for Oracle Enterprise Scheduler

Table 23-2 Condition Query Fields and Their Corresponding Request History
View Column Entries

Query Field Request History View Column

QueryField.REQUESTID requestid

QueryField.APPLICATION application

QueryField.USERNAME userName

QueryField.PRODUCT product

QueryField.REQUEST_CATEGORY requestCategory

QueryField.PRIORITY priority

QueryField.NAME name

QueryField.ABSPARENTID absParentId

QueryField.TYPE type

QueryField.DEFINITION definition

QueryField.STATE state

QueryField.SCHEDULE schedule

QueryField.PROCESSSTART processStart

QueryField.PROCESSEND processEnd

QueryField.REQUESTEDSTART requestedStart

QueryField.REQUESTEDEND requestedEnd

QueryField.SUBMISSION submission

QueryField.PARENTREQUESTID parentRequestId

QueryField.WORKASSIGNMENT workAssignment

QueryField.SCHEDULE scheduled

QueryField.REQUESTTRIGGER requesttrigger

QueryField.PROCESSOR processor

QueryField.CLASSNAME processor

QueryField.ELAPSEDTIME elapsedtime

QueryField.WAITTIME waittime

QueryField.SUBMITTER submitter

QueryField.SUBMITTERGUID submitterguid

Configuring Data Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-9

Condition Examples

The following examples show validly specified conditions:

• fieldName=value
• fieldName like 'value%'
• fieldName like "value*"
• reqProp="value"
• reqProp LIKE "value*"
• PermissionName : <name>fieldName1=value1,fieldName2 like
'value2%',reqProp="value",reqProp like 'value*'</name>

Actions

Available actions include a combination of the following:

• ESS_REQUEST_READ

• ESS_REQUEST_UPDATE

• ESS_REQUEST_HOLD

• ESS_REQUEST_CANCEL

• ESS_REQUEST_LOCK

• ESS_REQUEST_RELEASE

• ESS_REQUEST_DELETE

• ESS_REQUEST_PURGE

• ESS_REQUEST_OUTPUT_READ

• ESS_REQUEST_OUTPUT_DELETE

Examples
Example 23-1 shows how permissions can be specified directly in the <permission>
element.

Example 23-2 shows how permissions can be specified using permission sets.

Note:

The content defined in the <permission-sets> - <permission-set> -
<member-resources> - <member-resource> - <resource-name>
element must be the same as the content defined in the <resources> -
<resource> - <name> element.

Example 23-1 PL/SQL Request Text Output

<app-roles>
 <app-role>
 <name>riyanu_soa_role</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <name>riyanu_soa_group</name>

Configuring Data Security for Oracle Enterprise Scheduler

23-10 Developing Applications for Oracle Enterprise Scheduler

 <class>weblogic.security.principal.WLSGroupImpl</class>
 </member>
 </members>
 </app-role>
</app-roles>
<grant>
 <grantee>
 <description>Allow soa role to pass through</description>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>riyanu_soa_role</name>
 </principal>
 </principals>
</grantee>
<permissions>
 <permission>
 <name>oracle.apps.ess.custom.soa.*</name>
 <class>oracle.as.scheduler.security.MetadataPermission</class>
 <actions>READ,EXECUTE,CREATE,DELETE,UPDATE</actions>
 </permission>
 <permission>
 <name>definition like oracle.apps.ess.custom.soa.*,
partitionName=SOA_PARTITION,product=SOA</name>
 <class>oracle.as.scheduler.security.RuntimeDataPermission</class>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_UPDATE,
ESS_REQUEST_OUTPUT_READ</actions>
 </permission>
</permissions>
</grant>

Example 23-2 PLSQL Request Binary Output Example

<app-roles>
 <app-role>
 <name>riyanu_soa_role</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <name>riyanu_soa_group</name>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 </member>
 </members>
 </app-role>
</app-roles>
<resource-types>
 <resource-type>
 <name>ESSSOAMetadataResourceType</name>
 <display-name>ESSSOAMetadataResourceType</display-name>
 <description>ESS SOA Metadata Resource</description>
 <matcher-class>oracle.as.scheduler.security.MetadataPermission</matcher-
class>
 <actions-delimiter>,</actions-delimiter>
 <actions>create,read,update,delete,execute</actions>
 </resource-type>
 <resource-type>
 <name>ESSSOARequestResourceType</name>
 <display-name>ESSSOARequestResourceType</display-name>
 <description>Resource type for simple ESS request accesscontrol</description>
 <matcher-class>oracle.as.scheduler.security.RuntimeDataPermission </
matcher-class>

Configuring Data Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-11

 <actions-delimiter>,</actions-delimiter>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_UPDATE,ESS_REQUEST_CANCEL,
ESS_REQUEST_DELETE,ESS_REQUEST_OUTPUT_READ</actions>
 </resource-type>
</resource-types>
 <resources>
 <resource>
 <name>oracle.apps.ess.custom.soa.*</name>
 <type-name-ref>ESSSOAMetadataResourceType</type-name-ref>
 <description>All SOA ESS metadata</description>
 <display-name>All SOA ESS metaddata</display-name>
 </resource>
 <resource>
 <name>definition like "oracle.apps.ess.custom.soa.*",
partitionName=SOA_PARTITION,product=SOA</name>
 <type-name-ref>ESSSOARequestResourceType</type-name-ref>
 <description>Any ESS Multi request</description>
 <display-name>Any ESS Multi request</display-name>
 </resource>
 </resources>
 <permission-sets>
 <permission-set>
 <name>READ_ALL_SOA_MULTI_METADATA_RIYANU</name>
 <display-name>Read privilege on all SOA ESS metadata
 </display-name>
 <description>Read privilege on all SOA ESS metadata</description>
 <member-resources>
 <member-resource>
 <type-name-ref>ESSSOAMetadataResourceType</type-name-ref>
 <resource-name>oracle.apps.ess.custom.soa.*</resource-name>
 <actions>create,read,execute</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 <permission-set>
 <name>READ_ALL_ESS_SOA_REQUESTS_RIYANU</name>
 <display-name>All privileges on all ESS Requests</display-name>
 <description>Allow read, update, cancel, hold, delete all the ESS
requests</description>
 <member-resources>
 <member-resource>
 <type-name-ref>ESSSOARequestResourceType</type-name-ref>
 <resource-name>definition like
"oracle.apps.ess.custom.soa.*", partitionName=SOA_PARTITION,product=SOA</
resourcename>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_OUTPUT_READ</actions>
 </member-resource>
 </member-resources>
 </permission-set>
</permission-sets>
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>riyanu_soa_role</name>
 </principal>
 </principals>
 </grantee>
 <permission-set-refs>

Configuring Data Security for Oracle Enterprise Scheduler

23-12 Developing Applications for Oracle Enterprise Scheduler

 <permission-set-ref>
 <name>READ_ALL_SOA_MULTI_METADATA_RIYANU</name>
 </permission-set-ref>
 <permission-set-ref>
 <name>READ_ALL_ESS_SOA_REQUESTS_RIYANU</name>
 </permission-set-ref>
 </permission-set-refs>
 </grant>
</jazn-policy>

Configuring Web Service Security for Oracle Enterprise Scheduler
For information about securing the Oracle Enterprise Scheduler web service, see Using
the Oracle Enterprise Scheduler Web Service .

Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
The PL/SQL job does not enforce data security checks when calling ess_runtime
package APIs.

Elevating Privileges for Oracle Enterprise Scheduler Jobs
When a user accesses Oracle Enterprise Scheduler services using the
RuntimeService or MetadataService interfaces, the identity of the user calling
the methods is acquired. This identity is used to check whether the user has the
required permissions to access certain resources such as metadata objects. For
example, if user teller1 calls the method getJobDefinition for metadata object
caclulateFees, Oracle Enterprise Scheduler ensures that teller1 has read
permissions for metadata object caclulateFees before returning the object.

The caller identity is also used to run jobs requested by the user. For example, if user
teller1 calls the method submitRequest() for a Java job, the requested jobs run
under teller1 and retain all roles and credentials assigned to that user.

Oracle Enterprise Scheduler supports the use of an application identity. Using an
application identity enables elevated privileges for completion of a job that requires
higher privileges than those allotted to the submitting user.

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
Oracle Platform Security policy store serves as the repository for authorization
policies. Authorization policies load at runtime into the Java Virtual Machine, and are
used to make decisions regarding authorization. Authorization policies comprise a
hierarchy of application roles, the mapping of enterprise roles to application roles and
permissions grants to application roles. Application roles can also be hierarchical.

Aside from authorization policies, Oracle Platform Security policy store also stores
administrative constructs that help in maintaining these authorization policies,
including resource catalogs (with associated resource types), permission sets and role
categories. The authorization polices and administrative components are scoped to an
application. This is known as an application stripe.

An application stripe is a collection of JAAS policies applicable to the application with
which it is associated. Out of the box, an application stripe maps to an Oracle Java EE
application. Oracle Platform Security also supports mapping multiple Java EE
applications to one application stripe. The application ID string identifies the name of
the application or applications.

Configuring Web Service Security for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-13

How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
Oracle Enterprise Scheduler allows specifying an applicationStripe name and
mapping it to a JPS policy context ID. You can assign multiple Oracle Enterprise
Scheduler hosting applications to a single policy context.

To configure an Oracle Enterprise Scheduler hosting application to a specific
applicationStripe:

1. Open the ejb-jar.xml file.

2. Under the message-driven element, add an activation-config-
properties element with the value applicationStripe.

3. Under the jpsinterceptor-class element, configure the JpsInterceptor.

Make sure to match the value of applicationStripe under the <message-
driven> element with the application.name value under the
<interceptor> element.

Example 23-3 shows an applicationStripe configuration for the policy context
ESS_FUNCTIONAL_TEST_APP_STRIPE.

4. If your application has a web module, configure the web module JpsFilter to
use the same applicationStripe in the file web.xml. Example 23-4 shows a
code sample.

Example 23-3 Configuring the applicationStripe and the JpsInterceptor

<ejb-jar>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>

 <activation-config-property>
 <activation-config-property-name>applicationStripe</activation-config-property-name>
 <activation-config-property-value>ESS_FUNCTIONAL_TESTS_APP_
 STRIPE</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 </enterprise-beans>

 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</env-entry-value>
 <injection-target>
 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>application_name</injection-target-name>

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

23-14 Developing Applications for Oracle Enterprise Scheduler

 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

Example 23-4 Configuring the Web Module in web.xml

<web-app>
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 ...
 <init-param>
 <param-name>application.name</param-name>
 <param-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</param-value>
 </init-param>
 </filter>

</web-app>

What Happens When You Configure a Single Policy Stripe
At design time, an application stripe manifests as:

• An <application> element under the <policystore> element in the jazn-
data.xml file.

• A node under the node
cn=<Weblogic.domain.name>,cn=JPSContext,cn=<root.node>, such as
cn=ATGDemo,cn=base_domain,cn=JPSContext,cn=MY_Node.

What Happens at Runtime
At runtime, an application stripe manifests as an instance of the class
oracle.security.jps.service.policystore.ApplicationPolicy.

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Security 23-15

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

23-16 Developing Applications for Oracle Enterprise Scheduler

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	1 Introduction to Oracle Enterprise Scheduler
	About Oracle Enterprise Scheduler
	Oracle Enterprise Scheduler Overview for Application Developers
	Introduction to Working with Oracle Enterprise Scheduler at Design-Time
	Introduction to Working with Oracle Enterprise Scheduler at Runtime
	Oracle Enterprise Scheduler Job Requests
	Overview of Integration Steps

	Fixed-Rate Scheduling with Oracle Enterprise Scheduler

	2 Planning Job Development
	Job Development Flow
	The Hosting Application
	The Client Application
	Create the Job Implementation
	Create Job Metadata
	Automatic Metadata Refresh Post-Submission

	3 Installing and Verifying the Oracle Enterprise Scheduler Installation
	Installing Oracle Enterprise Scheduler
	Targeting Oracle Enterprise Scheduler During Domain Creation
	OWSM-PM Targeting With Oracle Enterprise Scheduler
	Targeting OWSM-PM Manually

	Introduction to Verifying the Oracle Enterprise Scheduler Installation
	How to Verify the Oracle Enterprise Scheduler Installation Using a Browser
	How to Programmatically Verify the Oracle Enterprise Scheduler Installation
	What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

	4 Using the Pre-Deployed Native Hosting Application
	Introduction
	Properties
	Metadata
	Security Permissions
	Configuring the Policy Stripe
	Support for Multiple Application Stripes

	5 Using Ant to Generate a Hosting Application
	Introduction to Generating a Hosting Application with Ant
	Prerequisites for Using the Ant Build Files

	Ant Targets for Creating and Deploying a Hosting Application
	Creating a Hosting Application and Project Workspace with Ant
	Creating a Java Job as a Shared Library with Ant
	Packaging a Java Job as a Shared Library with Ant
	Deploying a Shared Library with Ant
	Packaging a Hosting Application with Ant
	Deploying a Hosting Application with Ant
	Configuring the Generated Ant Targets

	6 Creating a Thin Client Application
	Introduction
	Implementation
	Secured Invocation
	Forward Invocation
	Callback Invocation

	RemoteConnector API and the Server Affinity Property
	Examples
	Java EE Application That Uses RemoteConnector
	Implementation
	Subject Propagation

	Using JDeveloper to Build a Thin Client Application for MAR Deployment
	Create and Deploy a Thin Client Application for the Standalone Environment

	Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

	7 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application
	How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications
	Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper
	Building a Combined Oracle Enterprise Scheduler Application
	Creating the Application and Projects for EssDemoApp Application
	How to Create the EssDemoApp Application and Host Project
	How to Create the Client Project

	Creating Metadata and an Implementation Class for the EssDemoApp Application
	How to Create Metadata for the EssDemoApp Application

	Adding Application Code to Submit Job Requests
	How to Add Application Code to Submit Job Requests

	Setting Oracle Enterprise Scheduler Properties
	How to Set Oracle Enterprise Scheduler Properties for the Application

	Assembling the EssDemoApp Application
	How to Create the EJB-JAR Deployment Profile for the EssDemoApp
	How To Update the WAR Archive Options
	Create the Application MAR File
	How to Update the EAR Options
	Configure Security for the Application
	Add Resource Grants for ESS Application Role in the Job Definition
	Configure the weblogic-application.xml File
	Update the EssHost MANIFEST File
	Change the Realm Field
	Edit the adf-config.xml File for the EssDemoApp Application

	Deploying and Running the EssDemoApp Application
	How to Deploy the EssDemoApp Application
	How to Run the EssDemoApp Sample Application
	How to Purge Jobs in the EssDemoApp Sample Application

	Building Split Submitting and Hosting Applications
	How to Create the Back-End Hosting Application for EssDemoApp
	Creating the Back-End Hosting Application
	Configuring Security for the Back-End Hosting Application
	Defining Metadata for the Back-End Hosting Application
	Creating a Java Implementation Class in the Back-End Hosting Application
	Setting Oracle Enterprise Scheduler Properties
	Assembling the Back-End Hosting Application for Oracle Enterprise Scheduler
	How to Assemble the EJB JAR File for the Back-End Hosting Application
	How to Assemble the MAR and EAR Files for the Back-End Hosting Application

	Update the SuperEss MANIFEST File
	Configure the weblogic-application.xml File
	Deploying the Back-End Hosting Application
	Edit the adf-config.xml File for the EssDemoApp Application

	How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler
	Creating the Front-End Submitter Application
	Creating the SuperWeb Project
	Configuring Security for the Front-End Submitter Application
	Creating the HTTP Servlet for the Front-End Submitter Application
	Editing the web.xml File for the Front-End Submitter Application
	Editing the weblogic-application.xml file for the Front-End Submitter Application
	Editing the adf-config file for the Front-End Submitter Application
	Assembling the Front-End Submitter Application for Oracle Enterprise Scheduler
	How to Assemble the EJB JAR File for the Front-End Submitter Application
	How to Assemble the WAR File for the Front-End Submitter Application
	How to Assemble the MAR and EAR Files for the Front-End Hosting Application
	Add ADF Libraries
	Set Oracle Enterprise Scheduler Properties for the Application

	Configure the weblogic-application.xml File
	Deploying the Front-End Submitter Application
	Update the EssHost MANIFEST File
	Running the Split Application

	8 Using the Metadata Service
	Introduction to Using the Metadata Service
	Introduction to Metadata Service Name Spaces
	Introduction to Metadata Service Operations
	Introduction to Metadata Service Transactions

	Accessing the Metadata Service
	How to Access the Metadata Service with a Stateless Session EJB

	Accessing the Metadata Service with Oracle JDeveloper
	Querying Metadata Using the Metadata Service
	How to Create a Filter
	How to Query Metadata Objects

	9 Using Parameters and System Properties
	Introduction to Using Parameters and System Properties
	What You Need to Know About Application Defined Property and System Property Naming
	What You Need to Know About Parameter Conflict Resolution and Parameter Materialization
	What You Need to Know About Job Definition Parameter Materialization
	What You Need to Know About Job Set Level Parameter Materialization

	Using Parameters with the Metadata Service
	How to Use Parameters and System Properties in Metadata Objects

	Using Parameters with the Runtime Service
	How to Use Parameters with the Runtime Service
	How to Use Parameters with a Step ID for Job Set Steps

	Using System Properties

	10 Using Tokens and Logical Clusters
	Using Token Substitution
	Nested Substitutions
	Automatic Substitution

	Using Logical Clusters

	11 Creating and Using PL/SQL Jobs
	Introduction to Using PL/SQL Stored Procedure Job Definitions
	Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
	How to Define a PL/SQL Stored Procedure with the Correct Signature
	Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored Procedure
	How to Access Job Request Information In PL/SQL Stored Procedures
	What You Need to Know When You Define a PL/SQL Stored Procedure

	Performing Oracle Database Tasks for PL/SQL Stored Procedures
	How to Grant PL/SQL Stored Procedure Permissions
	What You Need to Know About Granting PL/SQL Stored Procedure Permissions

	Creating and Storing Job Definitions for PL/SQL Job Types
	How to Create a PL/SQL Job Type
	How to Create and Store a Job Definition for PL/SQL Job Type
	Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application

	12 Creating and Using EJB Jobs
	Introduction to Creating EJB Jobs
	Planning Job Development
	Creating and Storing Job Definitions for EJB Job Types
	Secured Invocation
	Forward Invocation
	Callback Invocation
	RemoteConnector API and the Server Affinity Property
	CSF Lookup From a Remote Server

	Synchronous Bean
	Metadata
	EJB Job Sample Code

	Asynchronous Bean
	Metadata
	EJB Job Sample Code
	Sample Implementation of Asynchrony Using a Message-Driven Bean
	Sample Implementation of Asynchrony Using Annotations

	13 Creating and Using Web Service Jobs
	Introduction
	Predefined Web Service Job Types
	Cancel and Fault Support
	Configuration Properties for Web Service Jobs
	Oracle Web Services Manager Policy Configuration
	Creating a Web Service Job Definition
	Using Oracle JDeveloper to Create a Job Definition
	Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition

	14 Creating and Using Process Jobs
	Introduction to Creating Process Job Definitions
	Creating and Storing Job Definitions for Process Job Types
	How to Create and Store a Process Job Type
	How to Create and Store a Process Type Job Definition

	Using an Agent Handler for Process Jobs
	Choosing an Agent Handler

	Process Job Locale

	15 Defining and Using Schedules
	Introduction to Schedules
	Defining a Recurrence
	How to Define a Recurrence with a Recurrence Fields Helper
	How to Define a Recurrence with an iCalendar RFC 2445 Specification
	What You Need to Know When You Use a Recurrence Fields Helper
	What You Need to Know When You Use an iCalendar Expression

	Defining an Explicit Date
	How to Define an Explicit Date
	What You Need to Know About Explicit Dates

	Defining and Storing Exclusions
	How to Define an Exclusion
	How to Create an Exclusions Definition

	Defining and Storing Schedules
	How to Define and Store a Schedule
	What Happens When You Define and Store a Schedule
	What You Need to Know About Handling Time Zones with Schedules

	Identifying Job Requests That Use a Particular Schedule
	Updating and Deleting Schedules

	16 Using the Oracle Enterprise Scheduler Web Service
	Introduction to the Oracle Enterprise Scheduler Web Service
	Developing and Using ESSWebservice Applications
	How to Develop and Use an ESSWebservice Java EE Application
	How to Develop and Use an ESSWebservice SOA Application with BPEL
	Setting Web Service Addressing Headers for getCompletionStatus() Operation
	Restrictions When Using ESSWebservice
	ESSWebservice Implementation

	ESSWebservice WSDL File
	Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

	17 Defining and Using Job Sets
	Introduction to Defining and Using Job Sets
	Defining Job Sets
	How to Define a Job Set
	How to Define Serial Job Set Steps
	How to Define Parallel Job Set Steps
	What Happens When You Define a Job Set
	What You Need to Know About Serial Job Sets
	What You Need to Know About Job Set Application Defined Properties and System Properties
	What Happens at Runtime for Job Set State Priorities and State Transitions

	Cross Application Job Sets
	Overview of Cross Application Job Sets
	Requirements for Cross Application Job Sets

	Supporting Input and Output Forwarding in Job Sets

	18 Defining and Using a Job Incompatibility
	Introduction to Using a Job Incompatibility
	Job Self Incompatibility

	Defining Incompatibility with Oracle JDeveloper
	How to Define a Global Incompatibility
	How to Define a Domain Incompatibility

	What Happens at Runtime to Handle Job Incompatibility
	What Happens to Subrequests with an Incompatible Parent Request

	19 Using the Runtime Service
	Introduction to the Runtime Service
	Accessing the Runtime Service
	How to Access the Runtime Service and Obtain a Runtime Service Handle

	Submitting Job Requests
	How to Submit a Request to the Runtime Service
	What You Should Know About Default System Properties When You Submit a Request
	What You Should Know About Metadata When You Submit a Request
	DMS ECID and FlowId Support
	ECID and FlowID for Child Requests
	DMS FlowId and SOA CorrelationFlowId

	Managing Job Requests
	How to Get Job Request Information with getRequestDetail
	How to Change Job Request State
	How to Update Job Request Priority and Job Request Parameters

	Querying Job Requests
	Submitting Ad Hoc Job Requests
	How to Create an Ad Hoc Request
	What Happens When You Create an Ad Hoc Request
	What You Need to Know About Ad Hoc Requests

	Implementing Pre-Process and Post-Process Handlers
	Implementing a Pre-Process Handler
	Implementing the PreProcessHandler Interface

	Implementing a Post-Process Handler
	Implementing the PostProcessHandler Interface

	20 Using Subrequests
	Introduction to Using Subrequests
	Creating and Managing Subrequests
	How to Submit Subrequests
	How to Cancel Subrequests
	How to Hold Subrequests
	How to Submit Multiple Subrequests
	How to Manage Paused Subrequests
	Indicating Paused Status
	Storing the Paused State for a Parent Request

	How Subrequests Are Processed
	How to Identify Subrequests
	How to Manage Subrequests and Incompatibility

	Creating a Java Procedure that Submits a Subrequest
	Creating a PL/SQL Procedure that Submits a Subrequest

	21 Working with Asynchronous Java Jobs
	Introduction to Working with Asynchronous Java Jobs
	Creating an Asynchronous Java Job
	Implementing the Asynchronous Java Job Asynchronous Interface
	Asynchronous Java Job execute() Method
	Invoking a Remote Job from an Asynchronous Java Job
	Calling Back to Oracle Enterprise Scheduler with Status Updates
	Updating the Asynchronous Java Job
	Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes
	Using the Web Service to Notify When an Asynchronous Job Completes
	Using EJB to Notify When an Asynchronous Job Completes

	Asynchronous Java Job AsyncCancellable Interface
	Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery Network
	Sample BPEL Process Design Time with Oracle Enterprise Scheduler

	A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job
	Introduction to the Recommended Design Pattern
	Potential Approaches
	Use Case Summary

	How to Implement BPEL with an Asynchronous Job
	Use Case: Add Oracle JDeveloper Libraries
	Use Case: Create the Asynchronous Job Definition
	Use Case: Design the Event Payload Schema and Event Definition Files
	Programmatically Raise a Business Event from the Asynchronous Job Methods
	Design the SOA Composite with Meditator and BPEL
	Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
	Create Correlation Set and Define Initiate Activity
	Create the onMessage Branch with Use of Correlation Set
	Create the Fault Branch
	 Populate the onMessage and Fault Branch

	Validating the Deployment
	Troubleshooting the Use Case

	Handling Time Outs and Recovery for Asynchronous Jobs
	Asynchronous Request Time Outs
	Setting the Time Out Value
	Discovering the Asynchronous Job Requests that Have Timed Out
	Completing Asynchronous Requests without a Time Out
	What Happens When an Asynchronous Job Request Times Out

	Handling Asynchronous Jobs Marked for Manual Recovery
	Using RecoverRequest to Manually Recover a Job Request

	Oracle Enterprise Scheduler Interfaces and Classes

	22 Job Request Logs and Output
	Request Logs
	System Properties
	Log Header
	Request Logging from a Java Job
	APIs for Java Job Logging
	Java Request Logging Example

	Request Logging from a PL/SQL Job
	ESS_JOB Package Support for Creating Logs
	PL/SQL Request Logging Example

	Request Logging from a Process Job
	Request Logging and Output From an EJB Job
	Request Logging from a Web Service Job
	APIs for Handling Request Logs

	Request Output
	Using the Request File Directory
	Common Request File Directory Behavior
	Shared Request File Directory Behavior
	Error Handling When a Shared Request File Directory is Used

	Local Request File Directory Behavior
	Error Handling When a Local Request File Directory is Used

	System Properties
	Creating Request Output from a Java Job
	APIs for Handling Request Output from a Java Job
	Java Request Output Examples

	Creating Request Output from a PL/SQL Job
	PL/SQL Package Support for Creating Output
	PL/SQL Output Creation Examples

	Creating Request Output from a Process Job
	Creating Request Output from an EJB Job
	Creating Request Output from a Web Service Job
	APIs for Handling Request Output

	23 Oracle Enterprise Scheduler Security
	Introduction to Oracle Enterprise Scheduler Security
	Oracle Enterprise Scheduler Metadata Access Control
	Oracle Enterprise Scheduler Job Execution Security

	Configuring Metadata Security for Oracle Enterprise Scheduler
	How to Enable Application Security with Oracle ADF Security Wizard
	Including Security Files in EAR File
	How to Define Principals for Security
	Creating Enterprise Role
	How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
	About MetadataPermission APIs
	What Happens When You Configure Metadata Security

	Configuring Data Security for Oracle Enterprise Scheduler
	How to Change Data Security Permissions
	Conditions
	Condition Examples

	Actions

	Examples

	Configuring Web Service Security for Oracle Enterprise Scheduler
	Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
	Elevating Privileges for Oracle Enterprise Scheduler Jobs
	Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
	How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
	What Happens When You Configure a Single Policy Stripe
	What Happens at Runtime

