ORACLE"

Oracle® Fusion Middleware

Developing Applications for Oracle Enterprise Scheduler
12¢(12.1.3)

E28544-04

November 2016

Documentation for developers that describes how to use Oracle
Enterprise Scheduler to develop jobs that execute Java, PL/
SQL, EJB, web services and binary process code to schedule
and off-load enterprise application work.

Oracle Fusion Middleware Developing Applications for Oracle Enterprise Scheduler, 12c (12.1.3)
E28544-04

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...ttt XV
BN o 1T Ve < ISR PR RRRRRRRRN XV
Documentation AcCeSSIDILILYcccvvvviimiiiiiiiiiiiii s XV
Related DOCUITIENES........oeiuveeeeiieeeieeeeeete ettt ettt et e et e eete e et e e eaeeesee e teseseeeteeeseseseesnssensesenseesesenseeseean XV
(@03 0 M7= 110) 1= J0UTRT RO ORRRRRR XVi

What's NEW IN THIS GUITE..........ooeoeeeeeeeeeeeeeeeeeeeeeeeee et XVii

1 Introduction to Oracle Enterprise Scheduler

1.1 About Oracle Enterprise Scheduler............ccccocoviviiiniiiiiiiniiis 1-1
1.2 Oracle Enterprise Scheduler Overview for Application Developers.........c.cccccovvrvvrrenenne. 1-2
1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-Time.............. 1-2
1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime...................... 1-3
1.2.3 Oracle Enterprise Scheduler Job Requests............ccccouiiiiiiiiiiiiiiie 1-4
124 Overview of Integration Steps.........ccccvveuiriiicinicieicc s 1-6
1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler.............ccococovnnvnnnnnnnnnnnnene 1-6

2 Planning Job Development

2.1 Job Development FIOW.......ccccccoiiiiiiiiriiiiiiiiceecceceee s 2-1
2.2 The Hosting APPLCAtIONc.ovuiuiuiiiiiiiiiiii e 2-3
2.3 The Client APPLCAtiON.cuoviimiieiiicice e 2-3
2.4 Create the Job Implementation...........cc.coiiiiii 2-4
2.5 Create JOD Metadataccccccieuieiiciisierieieicieeetet ettt ettt st r bbb bt esaesbesseseesaeseebesreerensesrens 2-4

2.5.1 Automatic Metadata Refresh Post-Submission...........ccoeeevueririeninennennineineenecenne 2-4

3 Installing and Verifying the Oracle Enterprise Scheduler Installation

3.1 Installing Oracle Enterprise SChedulerccccccvviviiiiiiiininiiiiiiicrceeeeas 3-1
3.1.1 Targeting Oracle Enterprise Scheduler During Domain Creation...........ccccccoeevinnnee. 3-1
3.1.2 OWSM-PM Targeting With Oracle Enterprise Scheduler...............ccoooniini. 3-2

3.2 Introduction to Verifying the Oracle Enterprise Scheduler Installation..............cccccocevennne. 3-2

3.3 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser....................... 3-3

3.4 How to Programmatically Verify the Oracle Enterprise Scheduler Installation.................... 3-3
3.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified. 3-4

Using the Pre-Deployed Native Hosting Application

471 INITOAUCHON ..o 4-1
4.2 PrOPEItIES c.cooviiiiiiiciccc e 4-1
4.3 Metadata.. ..o e 4-2
4.4 Security POrmiSSIONScceuiiiiiuiieiiiicicie ettt 4-2
441 Configuring the Policy Stripec.cccoooiiiiiiiiiiiiiiccc s 4-2
442 Support for Multiple Application Stripes.........ccccoiiiiiiiiiiniiiiicieccceeeeees 4-3

Using Ant to Generate a Hosting Application

5.1 Introduction to Generating a Hosting Application with Antcccccocovviiiiinniiinne 5-1

5.1.1 Prerequisites for Using the Ant Build Filesccccoiiiiiiiiiiiiie, 5-2
52 Ant Targets for Creating and Deploying a Hosting Applicationcccooeeieiieiiiiinnnan. 5-2
5.3 Creating a Hosting Application and Project Workspace with Ant ..o, 5-3
5.4 Creating a Java Job as a Shared Library with Antcccccocoviiinnniiiccrreeeeeenes 5-7
5.5 Packaging a Java Job as a Shared Library with Antccccccooiiiinniiniiccneene 5-9
5.6 Deploying a Shared Library with Ant.........ccccocoiiiiiiiiiii 5-10
5.7 Packaging a Hosting Application with Ant..........c.cooooii, 5-10
5.8 Deploying a Hosting Application with Ant ..., 5-10
5.9 Configuring the Generated Ant Targets.........cccccceerirriiirreieeecreeeeeeeeeeeeeee s 5-11

Creating a Thin Client Application

6.1 INErOAUCHION c..coviiii s 6-1
6.2 IMPlementation ... e 6-2
6.2.1 Secured INVOCAtIONccocviiiiiiiiiiiiiiiii s 6-3
6.2.2 RemoteConnector API and the Server Affinity Property ..., 6-4
0.2.3 EXAMPIES...coiiiiiiiiiiiiiiiiiiiciic s 6-4
6.3 Using JDeveloper to Build a Thin Client Application for MAR Deployment........................ 6-6
6.3.1 Create and Deploy a Thin Client Application for the Standalone Environment........ 6-7
6.4 Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata........... 6-16

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application

7.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications .. 7-1
7.2 Understanding Oracle Enterprise Scheduler Application Support Created by Oracle

JDEVEIOPET ... 7-2

7.3 Building a Combined Oracle Enterprise Scheduler Application............ccccevvnvninnnnnnnnnes 7-3

7.3.1 Creating the Application and Projects for EssDemoApp Application..............c.......... 7-4
7.3.2 Creating Metadata and an Implementation Class for the EssDemoApp Application

... 7-7

7.3.3 Adding Application Code to Submit Job Requests............cccccevuvvninnininnnnnnnnn, 7-9

7.3.4 Setting Oracle Enterprise Scheduler Properties...........ccccooiriiiniiniiiicii, 7-11

10

11

7.3.5 Assembling the EssDemoApp Application........c.cccoviiieieiiiiiiiiiicce, 7-12

7.3.6 Deploying and Running the EssDemoApp Application...........cccceceuveeeveverveveveencenennnes 7-21

7.4 Building Split Submitting and Hosting Applicationscccccceeeiiiciiiiiicciiecenenas 7-24

74.1 How to Create the Back-End Hosting Application for EssDemoApp.........ccccceueuuee. 7-24
742 How to Create the Front-End Submitter Application for Oracle Enterprise

SCREAUIET ... 7-35

Using the Metadata Service

8.1 Introduction to Using the Metadata SEIVICE..........cccouvuviriririririiiiiiiiiiccrecceeeee s 8-1
8.1.1 Introduction to Metadata Service Name Spaces...........cccceeuiiurieieinicncinieicceieccee, 8-2
8.1.2 Introduction to Metadata Service Operations.............ccccoeueieiirieieiiiicieeiccice, 8-2
8.1.3 Introduction to Metadata Service Transactionsc.cccoevvvviviviiiiiiinniniiiiinn, 8-3

8.2 Accessing the Metadata SErviCe.........cocovuiuiurririiiiiiiiircccceeeee s 8-3
8.2.1 How to Access the Metadata Service with a Stateless Session EJB..........ccccccevveueenenee. 8-3

8.3 Accessing the Metadata Service with Oracle JDeveloper ..o 8-4

8.4 Querying Metadata Using the Metadata Service............coooeueiiiniiiiiiiiiiice 8-4
8.4.1 How to Create a Filter ... 8-4
8.42 How to Query Metadata ODJects..........cocovuvurirririririrnrirrrreecceeeee s 8-5

Using Parameters and System Properties

9.1 Introduction to Using Parameters and System Propertiescccocovvrvvvvrrrnnnnnnenenes 9-1
9.1.1 What You Need to Know About Application Defined Property and System
Property NamiNgccccoeveieiiiiiiiieiiii s 9-1
9.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter
MaterialiZationccciiiiiiiii s 9-2
9.2 Using Parameters with the Metadata Service.........cccouoiiriiiiiicie 9-4
9.2.1 How to Use Parameters and System Properties in Metadata Objects.............cccu.e... 9-5
9.3 Using Parameters with the RUntime Serviceccocovuvvviviviniiiinirriircrrceeeeeeeeeeaes 9-6
9.3.1 How to Use Parameters with the Runtime Serviceccoooviiiiiiiiiiiiiinn, 9-6
9.3.2 How to Use Parameters with a Step ID for Job Set Steps.......c.cccooveiriiiiiiiinii, 9-7
9.4 Using System Properti@s.........ccooccueiiiiiiiiiiicice e 9-8

Using Tokens and Logical Clusters

10.1 Using Token SUbSHEULIONc.cvviieiii s 10-1
10.1.1 Nested SUDSHEULIONScviieieieieieieieietee ettt e st ssesbesaesaessesseseesessessessens 10-2
10.1.2 Automatic SUDSHEULION.cceieieieieietetee ettt ettt ese e esessessessessens 10-2

10.2 Using Logical CIUSLETSccciiuimimiiiiiiiiiccicise e 10-3

Creating and Using PL/SQL Jobs

11.1 Introduction to Using PL/SQL Stored Procedure Job Definitions.............cccccoeeueuiiiiinnnes 11-1
11.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler................c.c........... 11-2
1121 How to Define a PL/SQL Stored Procedure with the Correct Signature................. 11-2

12

13

14

Vi

11.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored

PrOCEAULE ...ttt ettt 11-3
11.2.3 How to Access Job Request Information In PL/SQL Stored Procedures 11-4
11.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure............. 11-4
11.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures............cccccococucueueucnennne 11-4
11.3.1 How to Grant PL/SQL Stored Procedure Permissionsccceeeeeeevveereevreereesveeneens 11-4
11.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions
... 11-5
114 Creating and Storing Job Definitions for PL/SQL Job TYPE€Scccccceoeueemieiicccccicenenas 11-6
11.4.1 How to Create a PL/SQL JOb TYPE ...cvvmimimimiiiiiiiiiiciciiccciccccccceeeeee e 11-6
11.4.2 How to Create and Store a Job Definition for PL/SQL Job Type........ccceoeueueununnnnes 11-7
11.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler
APPLCATION .. 11-8
Creating and Using EJB Jobs
12.1 Introduction to Creating EJB JODS ... 12-1
12.2 Planning Job Development............ccccciiiiiiiiiiiiiiiicccccc e 12-2
12.3 Creating and Storing Job Definitions for EJB Job Types ..o 12-2
124 Secured INVOCALIONc.coviiiiiiiiiiiiiiic s 12-4
12.4.1 Forward INVOCAtION.c.ciuiuiiiiiiiiiiiicccccccecccce e 12-5
12.4.2 Callback INVOCAHION......c.cuiuiiiiiiiiiiiiiiccccc e 12-5
12.4.3 RemoteConnector API and the Server Affinity Property.........ccccccoeiiiiiiiiinnnns 12-6
12.4.4 CSF Lookup From a Remote Server ... 12-6
12.5 Synchronous BEAN ..o 12-7
12,51 Metadata ...c.oueeiuiiiiiccccccc e 12-7
12.52 EJBJob Sample Code ... 12-7
12,6 Asynchronous Bean.............cooiiiiii 12-8
12.6.1 Metadatacccoiiiiiiiiii e 12-9
12.6.2 EJB JOb Sample Codecooiimiiiiiiiiiiiciccecicceeieeieeeie e 12-10
Creating and Using Web Service Jobs
13.1 INEFOAUCHON .. 13-1
13.2 Predefined Web Service JOb TYPES.......cocciiiimiiiiiiiiiiicicccciceeieeereeeeese e 13-2
13.3 Cancel and Fault SUPPOTt ... 13-3
13.4 Configuration Properties for Web Service JObs..........ccooiiiiiiiiiiii 13-4
13.5 Oracle Web Services Manager Policy Configurationc.ccceevevvieiiininiennceccce 13-5
13.6 Creating a Web Service Job Definition ... 13-6
13.6.1 Using Oracle JDeveloper to Create a Job Definitionccccccceciiiiiciciccnnes 13-7
13.6.2 Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job
DIEFINTEION ..ottt 13-10
Creating and Using Process Jobs
14.1 Introduction to Creating Process Job Definitionsccccccoeiiiiiiicccciiccceeceenenes 14-1

15

16

17

14.2 Creating and Storing Job Definitions for Process Job Types..........cc.cocoevuririeiiiciniciniciennn. 14-1

14.2.1 How to Create and Store a Process JOb TYPecccccueuiuiuiiiieiiicccccceeceeenenenes 14-2
14.2.2 How to Create and Store a Process Type Job Definitioncccccoceueciiiciccnnes 14-4
14.3 Using an Agent Handler for Process JObSs ... 14-5
14.3.1 Choosing an Agent Handler.............cccoooiiiiiiii 14-5
144 Process JOD LOCALEc.coiiiriiiiriiieteseee ettt sttt ettt st 14-6
Defining and Using Schedules
15.1 Introduction to Schedules...........coiiiiiiiiiii e 15-1
15.2 Defining @ RECUTTEICEc.cuiuiiiiiiiiiicccccceeeee e 15-1
15.2.1 How to Define a Recurrence with a Recurrence Fields Helper-..............cccccccceueie. 15-2
15.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification................. 15-4
15.2.3 What You Need to Know When You Use a Recurrence Fields Helper-.................... 15-5
1524 What You Need to Know When You Use an iCalendar Expressionccc...... 15-6
15.3 Defining an EXplicit Date..........ccocooiiiiiiiiiiiiiicccccccceeeecere e 15-6
15.3.1 How to Define an EXplicit Date..........ccccccoiiiiiiiiiiiiiiiciiccciccccccceennes 15-6
15.3.2 What You Need to Know About Explicit Datesccccceuoiiiriiiiiie 15-7
15.4 Defining and Storing EXCIUSIONScccooeuiiiiiiiiiiciccicc e 15-7
15.4.1 How to Define an EXCIUSIONccccviiiiiiiiiiniiiiiiiicccc s 15-7
15.4.2 How to Create an Exclusions Definition............ccccooevviiiiiiniiiniceeee, 15-7
15.5 Defining and Storing SChedules ... 15-8
15.5.1 How to Define and Store a Schedule............ccccoiiiiiiiiiiiiiiiiiccca, 15-8
15.5.2 What Happens When You Define and Store a Schedule...........cccccooovriiininninnnnnes 15-8
15.5.3 What You Need to Know About Handling Time Zones with Schedules-................ 15-9
15.6 Identifying Job Requests That Use a Particular Schedule............cccccccoeiiiiiiiiiiiininnnnns 15-9
15.7 Updating and Deleting Schedules..............cccccoiiiiiiiiiiiiiiiiccccnes 15-9
Using the Oracle Enterprise Scheduler Web Service
16.1 Introduction to the Oracle Enterprise Scheduler Web Service............cccooeieiiiininiiinnnnn 16-1
16.2 Developing and Using ESSWebservice Applications.........c.cccooorrieiniiiciiiiiiiiciecicice 16-3
16.2.1 How to Develop and Use an ESSWebservice Java EE Applicationcccccceueee. 16-3
16.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL 16-4
16.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation.. 16-4
16.2.4 Restrictions When Using ESSWebservice............ccoooiiiiiiiiiice 16-4
16.2.5 ESSWebservice Implementationooceuiiireiici 16-5
16.3 ESSWebservice WSDL File ...t 16-5
16.4 Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process 16-5
Defining and Using Job Sets
17.1 Introduction to Defining and Using Job Sets.........cccccooiiiiiiiiiiiiiiicicccceccennas 17-1
17.2 Defining JOD Setsc.cviiiiiiiiiicii e 17-2
17.2.1 HOW t0 Define @ JOD Set.....ccuoiiiieiiiiieieiieeeeeteee sttt ettt 17-2
17.2.2 How to Define Serial Job Set Stepscccoeuviuiiiiieiiiiiciiccci 17-4

Vii

18

19

viii

17.2.3 How to Define Parallel Job Set Steps.........c.ccoevieiriiinieiiieiicccc 17-6

17.2.4 What Happens When You Define a Job Set.........cccccccciiiiiiiiiiiiiicccccccnenes 17-7
17.2.5 What You Need to Know About Serial Job Setsc.ccoouvveviieievieiecieieeeeieereeeenens 17-7
17.2.6 What You Need to Know About Job Set Application Defined Properties and
SyStem PrOPeItiesccooeviviiiiiiiiiiiiiicccc s 17-8
17.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions 17-8
17.3 Cross Application JOD Sets.........ccoiiiiiiiiiiiiiiiicccccc e 17-10
17.3.1 Overview of Cross Application Job Sets..........ccooeriiiiiiriiiiiiiiicc 17-11
17.3.2 Requirements for Cross Application Job Setscccccoeviiiiiiiiiiiniciiiiice, 17-11
17.4 Supporting Input and Output Forwarding in Job Setscccccoviiiiiiiiiicnccciccenns 17-12
Defining and Using a Job Incompatibility
18.1 Introduction to Using a Job Incompatibilitycccccoeoiiiiiiiiiiiiiiiceiccceeeeeenenes 18-1
18.1.1 Job Self Incompatibilityccccociiiiiiiiiiiiiiiiicccccc e 18-2
18.2 Defining Incompatibility with Oracle JDeveloper ... 18-2
18.2.1 How to Define a Global Incompatibility...........cccooeuiiiiiiiiiiiiiiie 18-3
18.2.2 How to Define a Domain Incompatibilityccccooevviiiiiiininiiiicc 18-4
18.3 What Happens at Runtime to Handle Job Incompatibilityc.cccoooeeiiiiiiiiiiicncnes 18-6
18.3.1 What Happens to Subrequests with an Incompatible Parent Request..................... 18-6
Using the Runtime Service
19.1 Introduction to the RUntime Service...........ccooiiiiiiiiiiiiiiiiciccccccccceeeenas 19-1
19.2 Accessing the Runtime Serviceoooieueiiiiiiiiic 19-1
19.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle........... 19-2
19.3 Submitting Job REQUESES.......cccccvviimiiiiiiiiiiiic s 19-3
19.3.1 How to Submit a Request to the Runtime Service...........cccccoeeuiiciiiiiniccccccnnas 19-3
19.3.2 What You Should Know About Default System Properties When You Submit a
REQUEST ...ttt 19-3
19.3.3 What You Should Know About Metadata When You Submit a Request................ 19-4
19.3.4 DMS ECID and FIOWId SUPPOTtc.coeuimimimimiiiiiiiiiiciiiciccciccccccceeceece e 19-4
19.4 Managing Job ReqUESLS..........cccoiiiiiiiiiiiiiiccc e 19-5
19.4.1 How to Get Job Request Information with getRequestDetail............c.c.cccooeeeinni. 19-6
19.4.2 How to Change Job Request Stateccoooeviiiiiiiiiiii 19-6
19.4.3 How to Update Job Request Priority and Job Request Parameters 19-8
19.5 Querying Job ReqUESTES........ccccoiiiiiiiiiiiiiiccc e 19-8
19.6 Submitting Ad Hoc Job Requests ..o 19-11
19.6.1 How to Create an Ad Hoc Request............coccouiiiiiiiinii 19-11
19.6.2 What Happens When You Create an Ad Hoc Requestccccviiviniiinininnnn, 19-13
19.6.3 What You Need to Know About Ad Hoc Requestscccccoeeeiiiiiiccciccncnns 19-13
19.7 Implementing Pre-Process and Post-Process Handlerscccccoiiiiiiiiiiiiininnns 19-13
19.7.1 Implementing a Pre-Process Handler ..o 19-13
19.7.2 Implementing a Post-Process Handler ... 19-14

20 Using Subrequests

20.1 Introduction to Using SUDIrequestsccceueiiiuiiiiiiiicicieicc e 20-1
20.2 Creating and Managing Subrequests...........ccceevrieiiiiiiieiiiic 20-2
20.2.1 How to Submit SUDTeqUESTEScoviimiiiiiiiiiiiccc e 20-2
20.2.2 How to Cancel SUbIequestS...........ccooviiiiiiiiiiiiiccccccc e 20-2
20.2.3 How to Hold SUbrequests..........cccoiiiiiiiiiiiiiiicc s 20-3
20.2.4 How to Submit Multiple Subrequests..........ccccoovoiiiiiiiiiiiec 20-3
20.2.5 How to Manage Paused Subrequests..........ccceuoviiiiiiiiiciciii 20-3
20.2.6 How Subrequests Are Processed ..ot 20-4
20.2.7 How to Identify SUbTeqUESLS.........cccociimiiiiiiiiiiiic e 20-5
20.2.8 How to Manage Subrequests and Incompatibility.........cccooooioiiiiiiiiiiiiiii 20-5
20.3 Creating a Java Procedure that Submits a Subrequest..............ccooeeiiiiiiic, 20-5
204 Creating a PL/SQL Procedure that Submits a Subrequest............cccocoevuviviiviiiniiiinennnen, 20-8

21 Working with Asynchronous Java Jobs

21.1 Introduction to Working with Asynchronous Java Jobs.........ccccccevueieirirneinnrcceeeene 21-1
21.2 Creating an Asynchronous Java JOD ... 21-1
21.2.1 Implementing the Asynchronous Java Job Asynchronous Interface........................ 21-2
21.2.2 Asynchronous Java Job execute() Method.........cccooiiie, 21-2
21.2.3 Invoking a Remote Job from an Asynchronous Java Job ..o 21-2
21.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates...........cccccuu...e. 21-3
21.2.5 Updating the Asynchronous Java JOb ..., 21-3
21.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes... 21-3
21.2.7 Asynchronous Java Job AsyncCancellable Interface..............cocoooeueiiiiiiiiiiinnn 21-5
21.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event
Delivery NEtWOTIKcccociiiiiiiiiiiiiiiiiii s 21-5
21.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job 21-10
21.3.1 Introduction to the Recommended Design Pattern..........ccccccoooreieiiiiiiiiiicncine, 21-11
21.3.2 Potential APProaches........c.cccccocccciiiiiiiiiiiciicceeeeeeee e 21-11
21.3.3 Use Case SUMMATYcccevuviimimiiiiiiiriiiiecces s s 21-11
21.4 How to Implement BPEL with an Asynchronous Job.........cccccviinnnnninnnnnne. 21-12
21.4.1 Use Case: Add Oracle JDeveloper Libraries..........cccocoooiiiiiiiicci 21-12
21.4.2 Use Case: Create the Asynchronous Job Definition..........c.cccoccoeevviiiniiinininininnnnn, 21-13
21.4.3 Use Case: Design the Event Payload Schema and Event Definition Files 21-14
21.44 Programmatically Raise a Business Event from the Asynchronous Job Methods 21-15
21.4.5 Design the SOA Composite with Meditator and BPEL..............cccccccceviivinninnnnnnn 21-17
21.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job 21-18
21.4.7 Validating the Deployment.............cooooiiiiiiiiiiiic 21-24
21.4.8 Troubleshooting the Use Case.........ccccccueueuiucuiiemciiieiiicciciceeieeereeieeereene s 21-26
21.5 Handling Time Outs and Recovery for Asynchronous Jobs...........cccccccevricivnnicicncnnne. 21-26
21.5.1 Asynchronous Request Time Outsccccceeiuiiiiiiiiiiiiiiiiiiiiiiccces 21-26
21.5.2 Handling Asynchronous Jobs Marked for Manual Recoverycccccoeirrnnnnne. 21-27

21.5.3 Using RecoverRequest to Manually Recover a Job Request ..o 21-28
21.6 Oracle Enterprise Scheduler Interfaces and Classes.........ccccceueueurueueieieerieieeicieeeeenennnes 21-29

22 Job Request Logs and Output

22,1 ReqUESE LOZS....cucuiiiiiiiiiiiiiciiic s 22-1
22.1.1 System Properties.........ciiiiiiiiiiiiccccc s 22-1
22.1.2 Log Header ... 22-1
22.1.3 Request Logging from a Java JObcccceoiiiiiiiiii 22-2
22.1.4 Request Logging from a PL/SQL JOb.......ccocovoeiiiiiiniiiiiciiciccc e 22-4
22.1.5 Request Logging from a Process JObcccoiiiiniiiiicccccccceene, 22-5
22.1.6 Request Logging and Output From an EJB Jobcccoviiiie, 22-5
22.1.7 Request Logging from a Web Service JOb......c.c.coooriiiiii 22-10
22.1.8 APIs for Handling Request LOgs........cccccuoiimirieiiiiiicci i 22-11

22.2 Request OULPULcccoiiiiiieiic s 22-11
22.2.1 Using the Request File DIirectory ... 22-12
22.2.2 System Properties........iiiiiiiiiiiiciccc s 22-14
22.2.3 Creating Request Output from a Java Jobc.coooiiii 22-14
2224 Creating Request Output from a PL/SQLJObcccoooiiiiiiiiiiiiccee, 22-20
22.2.5 Creating Request Output from a Process Job........c.cccccccveiiiiiiiiiicccicccceee 22-24
22.2.6 Creating Request Output from an EJB JOb........ccccccceiiiiiiiiiiiiiicccccccee 22-25
22.2.7 Creating Request Output from a Web Service Jobcccooooviiiniii 22-25
22.2.8 APIs for Handling Request Output..........ccooooiiiiiiiii 22-25

23 Oracle Enterprise Scheduler Security

23.1 Introduction to Oracle Enterprise Scheduler Securitycccccoovoiiiiiiiiniiiiice, 23-1
23.1.1 Oracle Enterprise Scheduler Metadata Access Control..........cccoovviivininiiinininen, 23-1
23.1.2 Oracle Enterprise Scheduler Job Execution Security..........ccccoveiniinininnncncncninecnce. 23-2

23.2 Configuring Metadata Security for Oracle Enterprise Scheduler.............ccccooevvvinirnnnnnnnen. 23-2
23.2.1 How to Enable Application Security with Oracle ADF Security Wizard. 23-3
23.2.2 Including Security Files in EAR File........cccocoooiiiii 23-3
23.2.3 How to Define Principals for Security..........cccoooiemniiininiiiniiiiccccce, 23-4
23.2.4 Creating Enterprise ROLe ... 23-4
23.2.5 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages 23-5
23.2.6 About MetadataPermission APIs...........cccoiiiiiiii 23-6
23.2.7 What Happens When You Configure Metadata Securitycccocoevvrniiiniiininnnnn. 23-7

23.3 Configuring Data Security for Oracle Enterprise Scheduler............cccccccooviniiinninnnnnn. 23-7
23.3.1 How to Change Data Security Permissions............ccocoeiiriiiiinininincncninencccceenen. 23-7
23.3.2 EXAMIPIES...ooiiiiiiiiiiiiiiicicci s 23-10

23.4 Configuring Web Service Security for Oracle Enterprise Scheduler..............cccccccccc.o... 23-13

23.5 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler.............cccccceevrinnen. 23-13

23.6 Elevating Privileges for Oracle Enterprise Scheduler Jobs.........cccccccccoeeiiiiinneccennn 23-13

23.7 Configuring a Single Policy Stripe in Oracle Enterprise Schedulercccccccceeuenniee. 23-13
23.7.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler 23-14

23.7.2 What Happens When You
23.7.3 What Happens at Runtime

Configure a Single Policy Stripe.........ccccocoevvriririnnen.

Xi

Xii

List of Tables

3-1
4-1
5-1
5-2
5-3
5-4
5-5
7-1
8-1
8-2
9-1
9-2
9-3
10-1
111
11-2

12-1
12-2
13-1
13-2
13-3
13-4
14-1
15-1
16-1
17-1
17-2
17-3
17-4
19-1
19-2
19-3
19-4
19-5

19-6
19-7
22-1
22-2
22-3
22-4
22-5
22-6
22-7
22-8
22-9
22-10
22-11
23-1

HTTP Response Codes..........coviiiiiiiiniiiiiii s 3-4
Pre-Deployed Native Hosting Application Properties.........ccccoouorriiiiiiiiiiiiccicic 4-2
Ant Targets in the Included Build File.........ccccccccceviiiiiiiiiiiiicccccces 5-3
Ant Targets in the Generated Build File...........ccoooiiiiiiiiiiiccceceeecenes 5-3
Information Needed by the Ant Target........c.ccccoveiniiioiniiiiinicccc s 5-4
Information Needed by the Ant Target...........ccccceeueiiiiiiiiiiiiiiiiiiiiias 5-7
Build Properties for Customizing Ant Builds...........cccccoveiiiiiiiiicccee 5-11
EJB Resources for the Front-End Submitter Application...........cccccovvivvviiiviiiniinns 7-52
Filter Comparison OPerators........cccceeuiiueieiiiiicieiecce et 8-4
MetadataService Query Fields..........ccccooiiiiiiiiiiiiiiicccee e 8-5
Parameter Precedence Levels...........cccooviiiiiiiiiiiiiiiicnes 9-2
ParameterInfo Parameter Properties.............coooooioiiiiiiiiiciiicc 9-4
SyStem PrOPerties.......ccociiiiiiiiiiiiccce s 9-8
Properties Associated With a Job LoCation.........ccccocvvviiiiiiniciniiiicccccccce, 10-4
Terminal States for PL/SQL Stored Procedure ReSUltscccovevieveiireevreieenecieereeeenenn 11-3
Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job

Y et 11-7
EJB JOb Type Properties..........ccouiiiiiiiiiiiiiiccciccciciiceeciciesesesesess e 12-3
Additional Properties..........ccviiiiiiiiiiiiiiiic s 12-4
The Predefined Web Service Job Types........cooceuiiiiiiieiiiic e 13-3
SOAP Web Service Operation Statuses..........ccoceueieeueieiriciieiiccceec e 13-3
Oracle SOA Suite Status OPerations.........cccovveveeeriririrereririninree e 13-4
Web Service Job Configuration Properties...........cccocoeureiiiniieiiiniiieceecce 13-4
System Properties for Process Type Jobs........cccoooiiiiiiiiii e, 14-2
Recurrence Field Helper Patterns.........cccccccuiiiiiiiiiiiiiiiiiiiiiiccccciccceeceeeeeeeeeeae 15-2
Summary of Operations Available with ESSWebservice..........cccccoovviiiniininiinnn 16-2
JOb Set Step Property ... 17-2
Job Set Serial Execution Step Terminal States...........ccoooeviieininicicicece 17-4
Job Set Terminal State TranSItONS.cc.ecveveieieeeieieeeesesresestess e essetesesseseeseessessesessessenns 17-9
Possible Job Set RUNTIME States.......cccueiiiririiiiieieiesiese ettt 17-9
Runtime Service Default Value Fields and Corresponding System Properties............... 19-4
Runtime Service Get Request Methods..........cccuiiniiiniiiiniiniii s 19-6
Runtime Service Job Request State Methods............cccoeeiiiiiiiiiiiie, 19-7
Runtime Service Update Methods...........ccoouiiiii e 19-8
Query Filter Fields For Querying the Runtime (Defined in Enum

RuntimeService.QuUeryField)..........cccoovviiiiiiiiiiiiiiiiiiicccras 19-9
Runtime Service Query Methods...........cccovirnninninnr e 19-11
Ad Hoc Request Job Definition System Properties for Job Types.......cccccovviiriiinnnnn. 19-12
ContentFactory Methods for Creating Request LOgs..........ccccceueiniiiiniiiniccieccee, 22-2
RequestLogger Methods for Creating Request LOgs..........ccovvvevirrrrrinnrnniicneee 22-3
ESS_JOB Functions and Procedures for Request Logging.........cccccoovvveviininieiiininicinn, 22-4
RuntimeService Methods for Handling Request Logs..........c.cccooorueiiiiiiniiiiiiicce 22-11
System Properties for Creating Request Output.........ccccvvvvivivininiiininnnnniniccnae, 22-14
ContentFactory Methods for Java Request Output........ccccoovvirvviiiicinicniiii, 22-15
RequestOutput Methods for Java Request Output..........ccooovrieieiiiiiiii 22-15
OutputContentHelper Methods for Java Request Qutput..........cccooveviieiiiiicniiiiinnnnn, 22-16
CommitSemantics Enum Members to Express Commit Semantics..........c.cccevuvervrerence. 22-18
ESS_JOB Procedures and Functions for Request Output..........ccovovuevieiiniiciiicinnn. 22-20
RuntimeService Methods for Handling Request Output..........ccooooeiiiiiiiiiiniicne, 22-25
Grant Actions for Metadata SECUTitY........cccocovviriiiniiniiirrrcccr s 23-6

Xiii

Xiv

23-2

Condition Query Fields and Their Corresponding Request History View Column

Audience

Preface

This document describes how to develop jobs and other extensions of Oracle
Enterprise Scheduler.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic
Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high
availability and scalability, with load balancing and provides monitoring and
management through Oracle Enterprise Manager Fusion Middleware Control.

This document is intended for Oracle applications developers and assumes familiarity
with Java and SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle 12¢ Fusion
Middleware documentation set:

o WLST Command Reference for SOA Suite
o Installing and Configuring Oracle SOA Suite and Business Process Management

® Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework

e Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

* Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

® Oracle Fusion Middleware Application Security Guide

* Oracle Fusion Middleware Administering Oracle Enterprise Scheduler

The following chapters in this guide describe Oracle Enterprise Scheduler
administrative functions:

"Managing Oracle Enterprise Scheduler Service and Jobs"
"Troubleshooting Oracle Enterprise Scheduler”

- "High Availability for Oracle Enterprise Scheduler"”

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVi

What's New Iin This Guide

There are no updates to this guide for the 12¢ (12..1.3) release.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA
Products and Oracle AIA Foundation Pack" at ht t p: / / www. or acl e. conf

t echnet wor k/ m ddl ewar e/ docs/ soa- ai af p-

knowni ssuesi ndex- 364630. ht m .

XVii

http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html

1

Introduction to Oracle Enterprise Scheduler

This chapter introduces Oracle Enterprise Scheduler as a service for developing jobs
that off-load work such as executing Java, PL/SQL, and binary process code.

This chapter includes the following sections:
* About Oracle Enterprise Scheduler
¢ Oracle Enterprise Scheduler Overview for Application Developers

¢ Fixed-Rate Scheduling with Oracle Enterprise Scheduler

1.1 About Oracle Enterprise Scheduler

Using Oracle Enterprise Scheduler you can run different job types, including: Java,
PL/SQL, binary scripts, web services and EJBs distributed across the nodes in an
Oracle WebLogic Server cluster.

Oracle Enterprise Scheduler runs these jobs securely, with high availability and
scalability, with load balancing and provides monitoring and management through
Fusion Middleware Control.

Fusion Middleware Control provides accessibility options for the pages on which you
monitor and manage Oracle Enterprise Scheduler applications. Fusion Middleware
Control supports screen readers and provides standard shortcut keys to support
keyboard navigation. You can also view the console pages in high contrast or with
large fonts for better readability. For information and instructions on configuring
accessibility in Fusion Middleware Control, see "Using Oracle Fusion Middleware
Accessibility Options" in Oracle Fusion Middleware Administrator’s Guide.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:
e To distribute job request processing across a grid of application servers

¢ Torun Java, PL/SQL, binary process jobs, web services and EJBs

* To group job requests into job sets

¢ To schedule job requests based on recurrence expressions

¢ To administer job requests with Fusion Middleware Control

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

* Support sophisticated scheduling and workload management,
¢ Automate the running of administrative jobs,

® Schedule the creation and distribution of reports,

Introduction to Oracle Enterprise Scheduler 1-1

Oracle Enterprise Scheduler Overview for Application Developers

® Schedule a future time for a step in a business flow for business process
management.

Oracle Enterprise Scheduler provides features to manage the complete life cycle of a
job definition: development, distribution, scheduling, and monitoring. Using Oracle
JDeveloper, application developers can easily create job requests in their development
environment. Application administrators and other users can specify when and where
they want their job requests to run. Users and administrators can monitor how the job
ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of
diverse machines to handle the workload of their users. Oracle Enterprise Scheduler
provides the ability to control how work is distributed to individual machines or
groups of machines.

1.2 Oracle Enterprise Scheduler Overview for Application Developers

Oracle Enterprise Scheduler is primarily a Java EE application that provides time- and
schedule-based callbacks to other applications to run their jobs.

Oracle Enterprise Scheduler compares with the Calendar application you might use in
your phone or the Oracle Calendar, where you create events and meetings with details
about time and recurrence; the application sends an alarm or notification at the right
time for the particular event. Similarly, Oracle Enterprise Scheduler applications
define jobs and specify when those jobs need to be executed, and Oracle Enterprise
Scheduler gives these applications a callback when that time or when a particular
event arrives. This is a simplified model of how a particular application can interact
with an instance of Oracle Enterprise Scheduler. Oracle Enterprise Scheduler does not
execute the jobs itself, it gives a callback to the application and the application actually
executes the job request. This implies that Oracle Enterprise Scheduler is not aware of
the details of the job request, all the job request details are owned and consumed by
the application. An application that submits requests to run a job is called a client
application.

For development purposes, both Oracle Enterprise Scheduler and the Oracle
Enterprise Scheduler client application are deployed on the same Oracle WebLogic
Server. The Fusion Middleware Control can provide an interface for interacting with
Oracle Enterprise Scheduler. Typically, however, you provide a client application with
which the end user can set up a job request and to specify when the job request is
scheduled to be executed, and eventually gets a callback from Oracle Enterprise
Scheduler when the time or event arrives.

1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-Time

At design time an application developer uses Oracle JDeveloper to create a Java EE
application that contains the Oracle Enterprise Scheduler executable class and Oracle
Enterprise Scheduler specific metadata for this executable. The Oracle Enterprise
Scheduler metadata consists of job definitions, including the executable class and
parameters, and schedules. Schedules capture the times when a job request can be sent
for execution. Schedules are defined independent of job requests and get associated
with job requests at runtime when the job request is submitted for execution. Figure
1-1 shows the design time view of an Oracle Enterprise Scheduler application.

1-2 Developing Applications for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-1 Oracle Enterprise Scheduler Design Time Integration

{ Oracle JDeveloper client-app.ear

L Developing a A class
il i client application B. class
&

AJob.class

Metadata
Store

Metadata _l

| Essjar —> ‘ metadata

In Figure 1-1, although the metadata is written to the MDS store through Oracle
Enterprise Scheduler APIs, the client application owns the metadata and the metadata
does not belong to the Oracle Enterprise Scheduler application. This metadata together
with the job implementation is packaged in an OAR, including the EAR for the
application and the MAR containing the metadata; this is deployed in the runtime
environment.

You can create the following types of metadata at design time.

* Job type: This is a basic definition of what a job would be comprised of and defines
the following;:

1. The type of job to be run, such as Java, PL/SQL, binary script, and so on.

2. The Java executable class if the job is of Java type, or the PL/SQL function if
the job is of PL/SQL type, or the script if the job is of Script type.

3. Parameters definitions for the job and their data type, and default values.

* Job definition: A job definition, or job, is the smallest unit of work which gets
performed in context of the client application. It is defined by an underlying job
type and any parameters additional to the ones defined in the job type.

* Job set: A job set is a sequential or parallel set of job steps, where a job step can be a
single job or another job set. A job set and each of its job set steps can have
additional parameters, the value for which is provided when the job or job set is
submitted as a job request.

* Schedule: A job schedule is a predefined time or a recurrence for a period of time
or indefinite. Schedules are defined independent of jobs but are associated with one
or more jobs at runtime when a job request is submitted.

¢ Incompatibility: An incompatibility lets you specify job definitions and job sets
that cannot run at the same time.

1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime

At runtime an application user associates a schedule with the job to be submitted and
provides values for the job parameters. This information is then submitted as a job
request. After Oracle Enterprise Scheduler receives a job request it determines the
right time to execute the job request, and at that time sends a message to the owning
client application. The client application then executes the job based on the job
metadata and runtime values for the parameters.

Introduction to Oracle Enterprise Scheduler 1-3

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-2 Oracle Enterprise Scheduler Runtime Integration

Oracle Weblogic Server

i‘ —Q——n-| client application

P

| Oracle Enterprise Scheduler

4 I

p. 7

¢ “_ ki
Oracle Enterprise Oracle Enterprise
Scheduler metadata Scheduler Data

Figure 1-2 shows the sequence involved with running an application using Oracle
Enterprise Scheduler, and the following steps:

1.

2.

User submits a request using a client application.
Client application sends the request to Oracle Enterprise Scheduler.
Oracle Enterprise Scheduler reads the metadata for the request.

Oracle Enterprise Scheduler puts the request in a wait queue in Oracle Enterprise
Scheduler data store, along with the metadata.

At the appropriate time, according to the request specifics, Oracle Enterprise
Scheduler sends a message to the client application with all the request
parameters and metadata captured at the time of submission.

Client application performs the jobs and returns a status.

Oracle Enterprise Scheduler updates the history with the job request status.

1.2.3 Oracle Enterprise Scheduler Job Requests

Figure 1-3 shows the important Oracle Enterprise Scheduler components, including
the following:

The scheduler component itself, including the runtime module, request dispatcher
and request processor.

The client application, including the runtime EJB and end point Message-Driven-
Bean (MDB) which it calls and the job it requests to execute.

Oracle Metadata Store and the client application metadata.

Oracle Enterprise Scheduler schema, including the wait and ready queues and job
history.

1-4 Developing Applications for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-3 Oracle Enterprise Scheduler Runtime Details

Oracle Weblogic Server
client application

C
. (
.u__ = FI client interface | scheduled job

' f
2
k; ¢
Runtims EJB Cracle Enterprise
Scheduler application

Endpoint MDB -i—|

@ 5

Oracle Enterprise Scheduler

Runtirme
Module

Request
Dispatcher

Request
Processor

A

l—l

T
1 1
— |
k% —s 6 7
Oracle Metadata
Store

Wait
- Queue
client aﬂpllcalion
metadata

As shown in Figure 1-3, a client application is composed and runs as follows:

Cracle Enterprise
Scheduler Schema

1. A user interacts with the client application, submitting a job request.

2. The client application specifies the two E]JBs and the Endpoint MDB in its ejb-
jar.xml. These beans are then instantiated in the client application context.

3. The beans in the application context contact the underlying Oracle Enterprise
Scheduler modules. The runtime EJB sends the job request to the underlying
runtime module in Oracle Enterprise Scheduler.

4. The runtime module accesses the client application metadata from Oracle MDS.

5. The runtime module persists the request along with its metadata and schedule in
the wait queue in the Oracle Enterprise Scheduler schema.

6. The Oracle Enterprise Scheduler request dispatcher determines the correct time to
run the job request based on its corresponding schedule. At this time, the request
dispatcher moves the request to a ready queue in Oracle Enterprise Scheduler
schema.

7. The Oracle Enterprise Scheduler request processor continues picking up job
requests to be processed from the ready queue.

8. The request processor sends a message to the application using the endpoint
MDB.

Introduction to Oracle Enterprise Scheduler 1-5

Fixed-Rate Scheduling with Oracle Enterprise Scheduler

9. Oracle Enterprise Scheduler executes the scheduled job.

In most cases or at least in the simplified case, this application is the same as the
application which submitted the request.

1.2.4 Overview of Integration Steps

After you have installed a basic Oracle WebLogic Server instance, take the following
steps to set up Oracle Enterprise Scheduler.

1. Configure Oracle Enterprise Scheduler.

2. Develop your client application which has your job definitions and other required
metadata.

3. Deploy your client application.

4. Invoke your client application to submit job request, which in turn calls Oracle
Enterprise Scheduler.

5. Invoke your client application to check the status of job request, or other history,
which in turn calls Oracle Enterprise Scheduler. Alternatively, use Fusion
Middleware Control to check the status of a given job request.

1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Oracle Enterprise Scheduler supports fixed-rate scheduling where instances of a
repeating job request are executed at a constant rate starting from the initial scheduled
execution time.

Each job request runs as near to the absolute time of the schedule as possible. Oracle
Enterprise Scheduler ensures that only one job request in a repeating request is
running at any one time. If a job request runs beyond the scheduled execution time of
the next job request, the next job request becomes late and is dispatched immediately
upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The
execution time for the next job request is the next time in the schedule that is no earlier
than the current time. Oracle Enterprise Scheduler skips time slots that are in the past.

If the desired behavior is to run all instances of the repeating request regardless of
when they are run and regardless of the requested or recurrence end date, the request
must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduler does not support fixed-delay scheduling. Using fixed-delay
scheduling, each request is executed a fixed delay period after the previous request
completes. This means that when one request is late, all subsequent requests are late as
well. In contrast, fixed-rate scheduling tries to get things back on schedule after a late
request.

1-6 Developing Applications for Oracle Enterprise Scheduler

2

Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Some options use out-of-the-box components that are simpler to
implement, while other options are more complex but allow for a great deal of
customization. This chapter describes the different options you should consider when
planning your Oracle Enterprise Scheduler deployment.

This chapter includes the following sections:

Job Development Flow

The Hosting Application

The Client Application

Create the Job Implementation

Create Job Metadata

2.1 Job Development Flow

This section describes the steps in the job development process and describes the
options available for each step.

Figure 2-1 contains a diagram that shows the Oracle Enterprise Scheduler components.

1.

2.

3.

Create and deploy the hosting application. You have the following options:

* Use the pre-deployed native hosting application instead of creating a hosting
application.

* Generate and deploy the hosting application from an Ant script.

* Use JDeveloper to create the hosting application from scratch and then deploy
it.

Create and deploy the Ul or client application. You have the following options:
¢ The client application uses the thin client shared library.
¢ The client application uses the client library.

* Use Oracle Enterprise Manager Fusion Middleware Control as the client
application instead of creating a Ul or client application.

Create and deploy the job implementation. You have the following options:

* For non-Java-based jobs, you can implement and deploy the job independent
of Oracle Enterprise Scheduler.

Planning Job Development 2-1

Job Development Flow

* For Java-based jobs, the Java class must be part of a custom hosting
application.

4. Create job metadata. You have the following options:

¢ Define the metadata in Oracle Enterprise Manager Fusion Middleware
Control.

* Use Oracle JDeveloper to create predefined /seeded job metadata for
deployment as part of the hosting application.

¢ Programmatically create the job metadata using the metadata service APL

5. Provide submission and metadata permissions to the deployed job. You have the

following options:

* Use Oracle Enterprise Manager Fusion Middleware Control to specify
permissions.

¢ Provision permissions as part of your hosting or client application EAR

deployment.

See chapter Oracle Enterprise Scheduler Security for more information.
Figure 2-1 Oracle Enterprise Scheduler Components

Java Jobs

Server

Hosting Application
(Pre-Deployed or Custom)

Client Application

Job 1 Job 2 Job 3 (EM or Custom Ul)
4_.

— =
| §

ESS MDS

Non-Java Jobs

Server

/ Hosting Application
Job1 <« (Pre-Deployed or
. Custom)
> Client Application

/ (EM or Custom Ul)
ﬁ

Nh o
{ > ’
N o *

ESS MDS

2-2 Developing Applications for Oracle Enterprise Scheduler

The Hosting Application

2.2 The Hosting Application

Jobs execute in the context of a hosting application. If the job is remote (for example,
an EJB), the job is invoked in the hosting application. The pre-deployed native hosting
application is convenient to use, but cannot execute custom Java jobs.

The pre deployed native hosting application is well suited for custom remote jobs like
EJB and web service jobs. See Using the Pre-Deployed Native Hosting Application for
details about the pre-deployed native hosting application.

See Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application
for more information about developing a custom hosting application using
JDeveloper.

See Using Ant to Generate a Hosting Application for more information about
developing a custom hosting application using the Oracle Enterprise Scheduler Ant
script.

2.3 The Client Application

Client applications are J2EE applications that use the thin client shared library or the
client shared library.

Client applications are J2EE applications that are typically used to:
¢ Submit jobs

* Request status

¢ Read job output and logs

® Possibly, host EJB job implementations that Oracle Enterprise Scheduler can invoke
remotely

Client applications can be combined with a hosting application, but this is not a best
practice.

Deploying a client application to a server other than the Oracle Enterprise Scheduler
server is an advanced use case and requires use of Oracle Enterprise Scheduler
internal templates that are only available to other Oracle embedding products.

Client applications use the thin client shared library or the client shared library. The
main differences between the two libraries are:

® The thin client shared library does not depend on the Oracle Enterprise Scheduler
server or any of the Oracle Enterprise Scheduler data sources being deployed and
is ideal if Oracle Enterprise Scheduler deployment is optional. The thin client
shared library contacts a hosting application to access the Oracle Enterprise
Scheduler metadata and runtime store to do its work.

¢ The client shared library has an advantage. The Oracle Enterprise Scheduler server
need not be running to submit the job and query status because the library allows
direct access to the Oracle Enterprise Scheduler metadata and runtime store. It is
recommended for use when the client application is co-located on the same
WebLogic server as the Oracle Enterprise Scheduler

¢ Developing client applications using the thin client shared library is easier because
the client application is not required to have an adf - confi g. xm file to talk to
MDS or have Oracle Enterprise Scheduler EJB deployment descriptors that the
client shared library requires.

Planning Job Development 2-3

Create the Job Implementation

If the metadata is not automatically provisioned by the client application at
deployment time, then the thin client application does not depend on the Oracle
Enterprise Scheduler MDS data source.

Refer to Creating a Thin Client Application for more information about creating a
client application.

2.4 Create the Job Implementation
You use different job implementations for non-Java_based jobs, Java-based jobs, and
EJB jobs.

For non-Java-based jobs (PL/SQL and binary process jobs), you can implement, setup
and deploy the process binaries or PL/SQL procedures independent of Oracle
Enterprise Scheduler.

For Java-based jobs, the Java implementation must conform to the Oracle Enterprise
Scheduler defined interface and must be included as part of a custom hosting
application.

For E]B jobs, the E]JB interface must conform to an Oracle Enterprise Scheduler defined
interface. The interface is in the Oracle Enterprise Scheduler shared library. See
Creating and Using E]JB Jobs for information about how to create an EJB job
implementation.

See Creating and Using Web Service Jobs for information about how to use a SOA
composite as a web service job implementation.

2.5 Create Job Metadata

The simplest way to create job metadata is to define it through the Oracle Enterprise
Manager Fusion Middleware Control.

You can also use JDeveloper to create metadata and place it in a MAR archive that is
part of a client or hosting application and then deploy the metadata to MDS when the
application is deployed. SOA Suite creates the metadata programmatically on first use
using the metadata APIs.

See Using the Metadata Service for a description of the metadata APL

2.5.1 Automatic Metadata Refresh Post-Submission

Oracle Enterprise Scheduler ensures that a job request and all of its children use a
consistent snapshot of metadata from submission until the request reaches a terminal
state. This is accomplished by caching, at job request submission, all metadata known
to be used by the request. However, this caching prevents long-running recurring
requests from using important metadata changes. In order for incompatibilities to
function as expected, new and updated incompatibilities must apply to all relevant
requests, whether previously or newly submitted. For job metadata, customizable
parameters might have changed and should apply to previously submitted requests.
For example, the request category on a job definition might have changed and this
must be applied to pre-existing requests so that work allocation functions as expected.

To address these issues, Oracle Enterprise Scheduler automatically refreshes metadata
for previously submitted requests that are:

* Singleton requests that have not yet run

® Recurring requests that have more recurrences to run

2-4 Developing Applications for Oracle Enterprise Scheduler

Create Job Metadata

Cached metadata remains consistent during execution of an instance request tree that
consists of the instance parent and all child requests of that instance parent, including
jobset steps and sub-requests. For a singleton request, the instance request tree
includes the submitted request and any child requests. For a recurring request, each
recurrence is an instance request tree that includes the instance parent and any child
requests of that instance parent.

Planning Job Development 2-5

Create Job Metadata

2-6 Developing Applications for Oracle Enterprise Scheduler

3

Installing and Verifying the Oracle
Enterprise Scheduler Installation

This chapter describes how to ensure that Oracle Enterprise Scheduler has been
correctly installed.

This chapter includes the following sections:

¢ Installing Oracle Enterprise Scheduler

¢ Introduction to Verifying the Oracle Enterprise Scheduler Installation

* How to Verify the Oracle Enterprise Scheduler Installation Using a Browser
¢ How to Programmatically Verify the Oracle Enterprise Scheduler Installation

e What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is
Verified

3.1 Installing Oracle Enterprise Scheduler

Oracle Enterprise Scheduler does not have its own installer, but is installed by the
installer of the embedding product such as Oracle SOA Suite.

Refer to the embedding product's installation documentation for details.

The IDE is installed by the Oracle SOA Quick Start for Developers which is described
in Installing Oracle SOA Suite and Business Process Management for Developers. The
installer installs the IDE and automatically configures it to Oracle JDeveloper. Before
you run JDeveloper, make sure to set the variable MW HOVE to the middleware home
location as required by the IDE.

The Oracle Enterprise Scheduler runtime component is installed by the design time or
production installer of the embedding product (for example, Oracle SOA suite whose
installation is described in Installing and Configuring Oracle SOA Suite and Business
Process Management). The embedding product may automatically deploy Oracle
Enterprise Scheduler, but if it does not, then it can be deployed using the “Oracle
Enterprise Scheduler Service Basic" template to a server or cluster. The “Oracle
Enterprise Manager Plugin for ESS" template can then be deployed for Oracle
Enterprise Manager Fusion Middleware Control functionality.

3.1.1 Targeting Oracle Enterprise Scheduler During Domain Creation

When you extend SOA with Oracle Enterprise Scheduler, ess- ser ver 1 is created
and by default the ESS-MGD-SVRS server group is targeted to ess_server 1. You
can use the following steps in the FMW Configuration Wizard to re-target Oracle
Enterprise Scheduler to soa_ser ver 1:

1. Check ESS-MGD-SVRS for soa_server1l

Installing and Verifying the Oracle Enterprise Scheduler Installation 3-1

Introduction to Verifying the Oracle Enterprise Scheduler Installation

2. Uncheck ESS-MGD-SVRS for ess_server 1

3. Deleteess_serverl

See Creating WebLogic Domains Using the Configuration Wizard for more information

about the wizard.

3.1.2 OWSM-PM Targeting With Oracle Enterprise Scheduler

OWSM-PM is intended to be targeted to just one server in a domain. To facilitate this
requirement, Oracle Enterprise Scheduler templates no longer target OWSM-PM. If
another product in the domain automatically targets OWSM-PM, then there is nothing
to do. However, if there are no managed servers in the domain except for Oracle
Enterprise Scheduler, or none of these servers has OWSM-PM, then OWSM-PM must

be targeted manually.

3.1.2.1 Targeting OWSM-PM Manually

In the Fusion Middleware Configuration Wizard, select the Managed Servers,

Clusters and Coherence check box as shown in Figure 3-1.

Figure 3-1 Fusion Middleware Configuration Wizard

Fusion Middleware Configuration Wizard - Page 8 of 15

_ORACLE"

Advanced Configuration

FUSIUH MIDDLEWARE

Create Domain

by
4. Tamples
1
[
T
iz
¥

Adrministration Server

Maodify Settings

Adminisirator Account
Domain Mode and JOF Mode Manager
Database Configuration Type
Component Daasourees

Canfigure Mode Manager

¥ Managed Servers, Clusters and Coherence

Add or Delete or Modify Settings

Advanced Caonfiguration
Domain Frontend Host Capture

Managed Servers
s Configure Domain Fromtend Host

Clusters

Eoherence Cliaers Deploymens and Services

Target 1o Servers or Clusters
Machines

€ —€ —¢ —f —€—%

Canfigur

M5 File Store
Madify Settings

1 Sum mary

Help < Back Hext =

o

Cancel

On the Managed Server screen, for ess_ser ver 1, select the WSMPM-MAN-SVR

server group. ESS-MGD-SVRS should already be selected.

3.2 Introduction to Verifying the Oracle Enterprise Scheduler Installation

The Oracle Enterprise Scheduler health check enables verifying the Oracle Enterprise

Scheduler installation using a web browser.

The health check web page submits a simple scheduled job so as to verify that Oracle

Enterprise Scheduler works as it should.

3-2 Developing Applications for Oracle Enterprise Scheduler

How to Verify the Oracle Enterprise Scheduler Installation Using a Browser

3.3 How to Verify the Oracle Enterprise Scheduler Installation Using a

Browser

You can verify the installation of Oracle Enterprise Scheduler using a web browser.

Access the Java health check servlet in a web browser. Access to the health check page
is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduler installation:
1. In a web browser, enter the following URL:
http://<host Nane>: <port >/ EssHeal t hCheck/ checkHeal th. j sp

where host Nane is the server to which Oracle Enterprise Scheduler is installed
and port is the port number.

To verify an Oracle Enterprise Scheduler cluster, use the following URL:

http://<host Nanme>: <port >/ EssHeal t hCheck/ di agnoseHeal th. j sp

The Oracle Enterprise Scheduler Diagnostic Health Check page displays, as shown
in Figure 3-2.

Figure 3-2 Diagnostic Health Check Page
ESS - Diagnostic health check service

Checlk Health

2. Log in to the diagnostic servlet using an Oracle WebLogic Server administrator
user name and password.

3. Click the Check Health button to verify the installation.

3.4 How to Programmatically Verify the Oracle Enterprise Scheduler

Installation

You can programmatically access the health check servlet from your application to
verify the Oracle Enterprise Scheduler installation.

Access to the health check page is available only to users with administrator
privileges.

To programmatically verify the Oracle Enterprise Scheduler installation:

Installing and Verifying the Oracle Enterprise Scheduler Installation 3-3

What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

1. Access the following URL:

http://<host Nane>: <port >/ EssHeal t hCheck/ checkHeal t h

where host Nane is the server to which Oracle Enterprise Scheduler is installed
and port is the port number.

2. Use the HTTP response codes to gauge the health of the Oracle Enterprise
Scheduler installation, as shown in Table 3-1.

Table 3-1 HTTP Response Codes

Response Code Oracle Enterprise Scheduler Comments
Status Code

200(OK) Oracle Enterprise Scheduler is The test job has been submitted and has
up and running. succeeded within the default duration.
202(ACCEPTED) Oracle Enterprise Scheduler is The test job has been submitted but has failed to

up and running but a delay in complete within the default duration.
processing has occurred.

A value of 202
(SC_ACCEPTED) indicates to
the client that the request is

being acted upon but

processing is not yet

complete.
500 The Oracle Enterprise An error has occurred during the submission or
(I NTERNAL_SERVER_ERRO Scheduler installation has execution of the job.
R) errors.

3.5 What Happens at Runtime: How the Oracle Enterprise Scheduler

Installation is Verified

The health check servlet schedules a job with Oracle Enterprise Scheduler as part of an
HTTP request and waits for the job to either reach a terminal state, or run for 10
seconds

The health check servlet schedules a trivial job with Oracle Enterprise Scheduler as
part of an HTTP request. After a few seconds, the servlet calls

Runt i meSer vi ceBean. get Request St at e() to check the status of the job and
constructs a response message within the servlet code. The servlet then returns a
response indicating the success or failure of the job.

The servlet waits for the job to either reach a terminal state, or run for 10 seconds,
whichever occurs first.

o If the job reaches a terminal state in less than 10 seconds, the job results in a state of
success.

e [f the job's terminal state does not change within 10 seconds, the job results in a
state of success. However, the job is listed as not having been executed. This is
because the system may be overloaded such that executing the job may take some
time.

¢ If any problems occur when submitting or executing the job, the job results in a
state of failure.

3-4 Developing Applications for Oracle Enterprise Scheduler

A

Using the Pre-Deployed Native Hosting
Application

The pre-deployed native hosting application is included as part of Oracle Enterprise
Scheduler. It greatly simplifies the process of getting Oracle Enterprise Scheduler up
and running because you do not have to create your own custom hosting application.

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Planning Job Development is a high-level discussion about how
to plan your job development and deployment process

This chapter includes the following sections:
¢ Introduction

* Properties

* Metadata

® Security Permissions

4.1 Introduction

The pre-deployed native hosting application provides a convenient alternative to
developing your own custom hosting application and can be used to run any job
except a Java-based job.

The pre-deployed native hosting application is collocated with the Oracle Enterprise
Scheduler core on the Oracle Enterprise Scheduler server. The pre-deployed native
hosting application can be deployed to only one cluster in the domain. The "Enterprise
Scheduler Basic" template deploys the pre-deployed native hosting application along
with scheduler server components and therefore can be targeted to only one cluster in
the domain.

The pre-deployed native hosting application exposes the remote interfaces of Oracle
Enterprise Scheduler beans mapped to the following JNDI Names:

¢ Runtime service bean: j ava: conp/ env/ essnati ve/ runti meservi ce
¢ Metadata service bean: j ava: conp/ env/ essnat i ve/ net adat aservi ce

e Asyncrequest bean:j ava: conp/ env/ essnati ve/ asyncr equest

If the user uses some other hosting apps, the beans are to be exposed in the above
fashion by declaring in weblogic's ejb-jar.xml.

4.2 Properties

Pre-deployed native-hosting application properties lists the properties and their
default settings.

Using the Pre-Deployed Native Hosting Application 4-1

Metadata

Table 4-1 Pre-Deployed Native Hosting Application Properties

Property Name Value

Pol i cyStri pe EssNat i veHost i ngApp
Logi cal AppName EssNat i veHost i ngApp
J2ee App Nane EssNat i veHost i ngApp

Runti meServi ce EJB JNDI nane essnative/runti neservice

Met adat aServi ce EJB JNDI nane essnative/ netadataservice

AsyncRequest Bean JNDI nane essnati ve/ asyncr equest
MDS Partition essUser Met adat a
MDS nanespace [oracl e/ apps/ ess

4.3 Metadata

Normally, a hosting application contains the MAR metadata to be loaded into MDS,
however, you cannot add a MAR archive directly into the pre-deployed native hosting

application.

If you have a MAR archive that you want to deploy to the pre-deployed native hosting
application, you have to deploy it through a client application or using the metadata

API (see Using the Metadata Service).

Oracle Enterprise Scheduler promotes the native hosting application's stripe by
registering it with OPSS. This in turn exposes the stripe as viewable from Oracle
Enterprise Manager Fusion Middleware Control and other MBeans. Application roles
and policies can then be configured at runtime for the metadata available in the native

hosting application.

4.4 Security Permissions

Permission must be granted for all jobs run by the pre-deployed native hosting

application.

By default, EssNat i veHost i ngApp extends support for permissions defined in SOA
and Service Bus. This is configured in ess- conf i g. xm using the property

Host i ngAppPol i cyStri pe specified with the value
"EssNat i veHost i ngApp,soa-i nfra,Servi ce_Bus_Consol e".

If you install Oracle Enterprise Scheduler with another product (other than SOA or
Service Bus) then you must use Oracle Enterprise Scheduler or WLST scripts to extend

this property list of stripes.

4.4.1 Configuring the Policy Stripe

The EssNativeHostingApp security policy stripe is configured by customizing the
ess-config. xm file. The Oracle Enterprise Scheduler property name is
Host i ngAppPol i cyStri pe. The following examples show how to use WLST

commands to check the policy stripe value and change it.

Check the value of the current policy stripe:

4-2 Developing Applications for Oracle Enterprise Scheduler

Security Permissions

oracl e_common/ bi n/ essManageRunt i neConfi g. sh \
-u weblogic -p welconel -P 7001 -H | ocal host -s ess_serverl \
- A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS

Change the value of the policy stripe:

oracl e_common/ bi n/ essManageRunt i neConfi g. sh \
-u weblogic -p welconel -P 7001 -H | ocal host -s ess_serverl \
-m - A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS
-v MyPolicyStripe

See Oracle Fusion Middleware WLST Command Reference for SOA Suite for more
information about WLST commands.

4.4.2 Support for Multiple Application Stripes

The pre-deployed native hosting application supports multistripes. The pre-deployed
native hosting application policy stripes are pre-configured for SOA and Service Bus
applications.

<EssProperty key="HostingAppPolicyStripe"
val ue="EssNat i veHost i ngApp, soa-infra, Servi ces_Bus_Consol "/ >

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST to
extend this list of stripes by appending the policy stripes to the value of the
Host i ngAppPol i cyStri pe property. You can also use the Oracle Enterprise
Manager Fusion Middleware Control Application Properties page to change the
Host i ngAppPol i cySt ri pe property for the pre-deployed native hosting
application.

This property is applicable only for the configuration file of the pre-deployed native
hosting application. Note that there is no static definition of policy stripes in the pre-
deployed native hosting application's ej b-j ar . xm file, therefore, you must preserve
the existing policy stripes specified in the Host i ngAppPol i cySt r i pe property.

Using the Pre-Deployed Native Hosting Application 4-3

Security Permissions

4-4 Developing Applications for Oracle Enterprise Scheduler

5

Using Ant to Generate a Hosting
Application

This chapter describes how you can use Ant targets from a build.xml file included
with Oracle Enterprise Scheduler to create a hosting application for use with Java jobs.

Using these targets, you can create the application artifacts in an Oracle JDeveloper
workspace, create a template for a Java job implementation, and package and deploy
both the application and the Java job (as a shared library).

Note that the Ant targets described here do not create a client user interface with
which users can interact with the job. To perform client tasks, you can use Fusion
Middleware Control or develop a client user interface with Oracle JDeveloper. Also,
custom hosting applications are generally seeded with metadata that is packaged and
deployed to the metadata repository when the application is deployed. Ant-based
scripts that generate custom hosting applications do not provide a way to create
metadata artifacts. For that reason, after you generate a hosting application, you must
open the workspace (. j ws) in Oracle JDeveloper, and add the necessary metadata
before you deploy the application into the server.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

This chapter includes the following sections:

¢ Introduction to Generating a Hosting Application with Ant

¢ Ant Targets for Creating and Deploying a Hosting Application

* C(Creating a Hosting Application and Project Workspace with Ant
¢ Creating a Java Job as a Shared Library with Ant

* Packaging a Java Job as a Shared Library with Ant

¢ Deploying a Shared Library with Ant

¢ Packaging a Hosting Application with Ant

¢ Deploying a Hosting Application with Ant

* Configuring the Generated Ant Targets

5.1 Introduction to Generating a Hosting Application with Ant

Oracle Enterprise Scheduler includes an Ant build file through which you can
generate the basic artifacts you'll need to get a hosting application running, along with
a Java job you can deploy to be executed by the application.

Using Ant to Generate a Hosting Application 5-1

Ant Targets for Creating and Deploying a Hosting Application

You use the included Ant build file to generate a hosting application. When you do,
you also generate another Ant build file that contains targets you can use to generate
artifacts for a Java job, as well as to build and deploy the generated components.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

You can also use a generated build.properties file to customize the work Ant does by
setting values for variables a target uses when it runs.

The steps described in this chapter include the following you can do with Ant.

1. Create a hosting application that can execute jobs. Use the create-user-home in the
included bui I d. xm file.

2. Create a JDeveloper project workspace through which you can edit application
artifacts with the IDE. This is done when you create the hosting application.

3. Create an Ant build file with targets for building and deploying parts of the
application.

4. Create a Java job template to which you can add business logic. Use the cr eat e-
new-j ob- def target in the generated bui | d. xm file.

5. Package the implemented Java job as a shared library. Use the
package_essj ob_I i brary target in the generated bui | d. xm file.

6. Deploy the shared library to the hosting application. Use the
depl oy_essj ob_| i brary target in the generated bui | d. xm file.

7. Package the hosting application. Use the package_host i ng_app target in the
generated bui | d. xni file.

8. Deploy the hosting application. Use the depl oy_host i ng_app target in the
generated bui | d. xnl file.

5.1.1 Prerequisites for Using the Ant Build Files

Before you get started with the provided and generated build files, make sure you're
set up with the following prerequisites:

* You must have Ant installed and set up, with the ANT_HOVE variable set properly
and the PATH pointing to ant's bin directory.

* You must install and set up Oracle JDeveloper. Your PATH variable must contain
the Oracle JDeveloper bi n directory so that the] dev command can be executed
from the command prompt.

5.2 Ant Targets for Creating and Deploying a Hosting Application

Oracle Enterprise Scheduler includes an Ant build file to get you started toward
deploying a hosting application that can execute jobs.

However, you're actually using two build files to finish the job: one that is included
with Oracle Enterprise Scheduler and another that is generated by a target in the
included build file. The following tables list and describe the targets that are included
by default in the two files.

5-2 Developing Applications for Oracle Enterprise Scheduler

Creating a Hosting Application and Project Workspace with Ant

By default, the included build.xml file is located in the Oracle Enterprise Scheduler
extensi bility_scripts directory. For example, in an Oracle JDeveloper
installation, you'll find them in MW HOVE/ or acl e_conmon/ ess/

extensi bility_scripts/build. xm ;with installations of products that include
Oracle Enterprise Scheduler, you'll probably find them in an ORACLE_HOVE/
extensi bility_scripts directory.

Table 5-1 Ant Targets in the Included Build File
]

Ant Target Description
create-user-home Default target to create a user home.
help-create-user-home Help on creating a user home.

When you run the cr eat e- user - hone target from the included bui | d. xni file, one
of the target's actions is to create another bui | d. xmi file. That file contains the
following targets that you can use to create, build and deploy artifacts for your
application.

Table 5-2 Ant Targets in the Generated Build File
__|

Ant Target Description

build_ears Package the job shared library and the hosting application.
create-new-job-def Create Java job as a shared library.

deploy Package and deploy the job library and hosting application.
deploy_essjob_library Deploy the Java job shared library.

deploy_hosting_app Deploy the hosting application.

deploy_job_logic Package and deploy the job shared library.
package_essjob_library Package the Java job as a shared library.
package_hosting_app Package the hosting application.

5.3 Creating a Hosting Application and Project Workspace with Ant

You can create a hosting application by running the cr eat e- user - home Ant target
in the bui I d. xnl file included with Oracle Enterprise Scheduler.

After the script completes successfully, you'll have the artifacts for a hosting
application that you can package and deploy. The artifacts are generated within a
JDeveloper-compatible workspace in the target directory you specified. The created
workspace has a bui | d. xm that you can use to build, package and deploy the
hosting application and the generated Java job as a shared library.

As the target runs, you'll be prompted to enter details that guide the target's work.
These details include the environment for which the target's work is intended (such as
to run with a particular application), the new application's name and target directory,
and so on.

Before you get started, you should have in hand the following information for which
you'll be prompted by the Ant target:

Using Ant to Generate a Hosting Application 5-3

Creating a Hosting Application and Project Workspace with Ant

Table 5-3 Information Needed by the Ant Target
|

Input Prompt Description

Which template should be used ~ Possible values are Fusi on and St andal one. If you're
developing for use with Oracle Fusion Applications, enter
Fusi on here.

If you're not developing for use with Oracle Fusion
Applications, enter St andal one.

There are significant differences between the Oracle
Fusion Applications and standalone contexts. For
example, in the Oracle Fusion Applications context, the
target generates a slightly different hosting application, as
well as a client application.

Middleware Home directory The Middleware Home directory that was created when

path Oracle Enterprise Scheduler was installed (probably with
another product that embeds it). The locations of
supporting libraries are found relative to this directory.

This feature relies on the oj depl oy utility to create,
package and deploy artifacts to the server. If the
middleware home path does not contain an Oracle
JDeveloper directory with oj depl oy in the bi n
directory, specify the directory where Oracle JDeveloper
is installed.

Hosting application name The name you want the new hosting application to have.

Hosting application JPS stripe ID A stripe is a security construct that defines the subset of
values in the policy store that the application intends to
use. At runtime, it determines which set of policies are
applicable for the application. The application name is

often used.
Shared library name for job The name for the shared library into which the generated
business logic Java job source code should be placed.
Empty directory where the The directory where you want the generated files to go.
application will be created This is the location of the JDeveloper workspace, where
artifacts such as the bui | d. xmi file you use later is
created.

To create a hosting application with Ant

1. To get started, open a console window and change directory to where the included
build.xml is located. By default, this is the Oracle Enterprise Scheduler
extensi bility_scripts directory. For example, in MV HOVE/
oracl e_common/ ess/extensibility scripts/build.xm.

Run the target with a command such as the following. You can omit the target
name because it is the default target in the build file.

ant

If you want to use the target name, you can do so with the following command.

5-4 Developing Applications for Oracle Enterprise Scheduler

Creating a Hosting Application and Project Workspace with Ant

ant create-user-honme

In the following example of Ant console output, note that the prompts begin with
the word "[input]". For each prompt, type the value you want to use, then press
Enter.

After you've entered the information needed, the target creates the directories and
files you requested, copying needed files into your new workspace and setting up
some of the configuration for the new hosting application.

[extensibility scripts]$ ant
Bui I dfile: build. xn
-init:

creat e- user - hone:
[input] Enter which tenplate should be used (source_tenplate)
(def aul t =Fusi on)
[input] ([Fusi on], Standal one)
St andal one
[input] Enter Mddl eware Hone Directory path (fmw_ home_dir) (default=) []
/'scratch/ f mat ool s/ nw_horme
[input] Enter hosting application nane (hosting_application_nane)
(def aul t =MyAppEss) [MyAppEss]
NewDenoApp
[input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=M/AppEss) [MAppEss]
NewDenoApp
[input] Do you want to add shared library for the (java) job business
| ogic? (use_jobdef library) (default=yes)

[input] ([yes], no)
no
[input] Enter an enpty directory where the applications will be created
(user_hone)
[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp
[echo]
[echo]

[nkdir] Created dir:

[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenpApp

[propertyfile] Creating new property file:

/'scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ t enpl at e. properties
[copy] Copying 9 files to

[scrat ch/ W.Ser ver s/ MWV HOVE/ st andal one_apps/ NewDenpApp
[copy] Copied 15 enpty directories to 4 enpty directories under

[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp
[copy] Copying 1 file to

[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ ant/ confi g
[copy] Copying 1 file to

[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp
[copy] Copying 15 files to

[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenpApp
[move] Moving 1 file to

/'scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ Tenpl at e_Host i ng
[echo]
[echo]
[echo]
[echo] A new workspace has been created at:

[scrat ch/ W.Ser ver s/ MWV HOVE/ st andal one_apps/ NewDenoApp
[echo] This workspace can be opened and nodified using JDevel oper
[echo] To deploy the applications, run the following command:

Using Ant to Generate a Hosting Application 5-5

Creating a Hosting Application and Project Workspace with Ant

[echo] ant -f
/ scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ ant/ bui | d- ess. xni
depl oy

[echo] To create new jobs from predefined tenplates, run the fol | owi ng
command:

[echo] ant -f

/ scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ bui | d. xm
creat e- newj ob- def

BUI LD SUCCESSFUL
Total tinme: 49 seconds

[extensibility scripts]$ ant
Bui I dfile: build. xn
-init:

creat e- user - hone:
[input] Enter which tenplate should be used (source_tenplate)
(def aul t =Fusi on)
[input] ([Fusion], Standal one)
St andal one
[input] Enter Mddl eware Hone Directory path (fmw_ home_dir) (default=) []
/'scratch/ f mat ool s/ nw_home
[input] Enter hosting application nane (hosting_application_nane)
(def aul t =MyAppEss) [M/AppEss]
NewDenoApp
[input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=M/AppEss) [MAppEss]
NewDenoApp
[input] Do you want to add shared library for the (java) job business
| ogic? (use_jobdef library) (default=yes)
[input] ([yes], no)
yes
[input] Enter the shared library name for the job business |ogic
(j obdef _I'ibrary_nane) (default=M/JobsLibrary) [MJobsLibrary]
NewDermoAppJobsLi b
[input] Enter an enpty directory where the applications will be created
(user_hone)
[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenpApp
[echo]
[echo]
[nkdir] Created dir:
[scrat ch/ W.Ser ver s/ MWV HOVE/ st andal one_apps/ NewDenpApp
[propertyfile] Creating new property file:
/'scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ t enpl at e. properties
[copy] Copying 11 files to
[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenpApp
[copy] Copied 25 enpty directories to 9 enpty directories under
[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp
[copy] Copying 1 file to
[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ ant/ confi g
[copy] Copying 1 file to
[scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp
[copy] Copying 15 files to
[scrat ch/ W.Ser ver s/ MWV HOVE/ st andal one_apps/ NewDenoApp
[move] Moving 1 file to
/'scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ Tenpl at e_Host i ng
[echo]
[echo]

5-6 Developing Applications for Oracle Enterprise Scheduler

Creating a Java Job as a Shared Library with Ant

[echo]
[echo] A new workspace has been created at:
/'scrat ch/ W.Ser ver s/ M\ HOVE/ st andal one_apps/ NewDenoApp
[echo] This workspace can be opened and nodified using JDevel oper
[echo] To deploy the applications, run the follow ng command:

[echo] ant -f
/ scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ ant/ bui | d- ess. xni
depl oy

[echo] To create new jobs from predefined tenplates, run the fol | owi ng
command:

[echo] ant -f

/ scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ bui | d. xm
creat e- newj ob- def

BUI LD SUCCESSFUL
Total time: 1 minute 32 seconds

5.4 Creating a Java Job as a Shared Library with Ant

You can create a Java job class template by running the cr eat e- new-j ob- def Ant
target that is in the build file generated when you created a new hosting application.

For more information, see Creating a Hosting Application and Project Workspace with
Ant.

The Java class you create here is a template to which you can add logic that
implements your Java job. A Java job executes Java code. With the Java job
implemented, you can add metadata that comprises some of the specifics for the job.

Note:

Currently, you can create only synchronous Java job templates with this Ant
target.

As the target runs, you'll be prompted to enter details that guide the target's work.
Before you get started, you should have in hand the following information for which
you'll be prompted by the Ant target:

Table 5-4 Information Needed by the Ant Target

Input Prompt Description
Number of job definition A number corresponding to the type of Java job
template to create implementation you're creating. Currently, only

synchronous Java jobs can be created this way, so the only
supported value is "1".

Java package name for job The package name for the Java job you're creating.
definition

Java class name for job definition = The class name for the Java job you're creating.

To create a Java job class template with Ant:
1. To get started, in a console window change directory to the directory you specified

as the location to create the application. The bui | d. xn1 file should be there. Use
the following command to run the target:

Using Ant to Generate a Hosting Application 5-7

Creating a Java Job as a Shared Library with Ant

ant create-newj ob- def

In the following example of Ant console output, you can see where the prompts
occur. After you've entered that information, the target creates the file you
requested, copying needed files into your new workspace and setting up some of
the configuration for the new hosting application.

[extensibility_scripts]$ ant -f /scratch/W.Servers/ MV HOVE/ st andal one_apps/
NewDermoApp/ bui | d. xm creat e- newj ob- def

Bui I dfile: /scratch/W.Servers/ MV HOVE/ st andal one_apps/ NewDenoApp/ bui | d. xm
-init:

creat e- new-j ob- def:

[echo] Available Job Definition Tenpl ates:

[echo] 1) Sinple Synchronous Java Job

[input] Enter nunber of job definition tenplate to create
(job_tenplate_to_create)
1

[echo] Calling default target on /scratch/m scFiles/ExtnDeno/
extensibility_scripts/ Standal one/ Tenpl at e_JobLi brary/ si npl e_synchronous_j ob/
bui I d. xm

-init:

create-job-definition:
[input] Enter Java package nanme for Job Definition (jobdef_package_name)
(def aul t=oracl e. apps. ess. custom) [oracl e. apps. ess. custonj
oracl e. apps. ess. cust om
[input] Enter Java class nane for Job Definition (jobdef_class_name)
(def aul t =MySynchr onousJavaJob) [MySynchronousJavaJob]
NewDemoHel | oWor | d
[copy] Copying 1 file to /scratch/W.Servers/ MN HOVE/ st andal one_apps/
NewDermoApp/ NewDenoApp/ EssShar edLi brary/ src
[copy] Copying 1 file to /scratch/W.Servers/ MN HOVE/ st andal one_apps/
NewDermoApp/ NewDenoApp/ EssShar edLi brary/ src/ oracl e/ apps/ ess/ cust om

BUI LD SUCCESSFUL
Total tinme: 34 seconds

2. Having created the class template for the Java job, you can add code that
implements the job's logic. The template is located in project in the JDeveloper
workspace you created when you created the hosting application in Creating a
Hosting Application and Project Workspace with Ant. The file's directory path is
shown in the Ant console output. You can use the editor you prefer for editing Java
code, such as JDeveloper or a simple text editor.

Open the Java file and add code to implement the execut e() method. Example
5-1 shows what the generated code looks like. You would replace the simple
implementation of the or acl e. as. schedul er. Execut abl e interface's
execut e() method with code that does your Java job's work.

Example 5-1 Oracle Enterprise Scheduler HelloWorld Java Class

package oracl e. apps. ess. custom

inport java.io.StringWiter;

i mport java.security.AccessControl Context;
inport java.security.AccessController;
inport javax.security.auth. Subject;

5-8 Developing Applications for Oracle Enterprise Scheduler

Packaging a Java Job as a Shared Library with Ant

i mport oracl e. as. schedul er. Request Par anet er s;

import oracle. as. schedul er.j ob. BaseSynchr onousJavaJob;
import oracle. as. schedul er. request. Cont ent Type;

inmport oracle.security.jps.util.SubjectUil;

public class NewDemoHel | oWrl d extends BaseSynchronousJavaJob {

public NewDenoHel | oWorld() {

super();
}
protected void execute() throws Exception
{
I ong request!d = get Request ExecutionCont ext (). get Requestid();
Request Paraneters parans = get Request Paraneters();
AccessControl Context accContext = AccessController.getContext();
Subj ect subj ect = Subj ect. get Subj ect (accCont ext);
String username = SubjectUtil.getUser Nane(subject);
/*
* Wite contents to request log
*|
StringWiter strWiter = new StringWiter();
strWiter.wite("Sinple ESS Java job execution LOG');
strWiter.wite("ESS Job requestID: " + requestld);
strWiter.wite("Usernane: " + username);
writeToRequest Log(requestld, strWiter.toString());
/*
* Wite Text contents to request output
*|
strWiter = new StringWiter();
strWiter.wite("Sinple ESS Java job execution Text Qut");
strWiter.wite("ESS Job requestID: " + requestld);
strWiter.wite("Usernane: " + username);
writeToRequest Qut put (request!d, strWiter.toString(), ContentType. Text);
}

}

5.5 Packaging a Java Job as a Shared Library with Ant

You can package a Java job implementation by running the
package_essj ob_I i brary Ant target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The package_essj ob_l i brary target compiles and JARs the job code. The target
simply runs to completion, requiring no user input.

To package a Java job class implementation with Ant:

¢ In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant package_essjob_library

Using Ant to Generate a Hosting Application 5-9

Deploying a Shared Library with Ant

5.6 Deploying a Shared Library with Ant
You can deploy a Java job shared library by running the depl oy_essj ob_l i brary
Ant target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The depl oy_essj ob_l i br ary target deploys the job library. The target simply runs
to completion, requiring no user input.

To deploy a Java job shared library with Ant:

¢ In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant deploy_essjob_library

5.7 Packaging a Hosting Application with Ant
You can package a hosting application by running the package_hosti ng_app Ant
target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The package_host i ng_app target packages the hosting app created with the

creat e- user - hone target (for more information, see Creating a Hosting Application
and Project Workspace with Ant). The target simply runs to completion, requiring no
user input.

To package a hosting application with Ant:

¢ In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant package_hosting_app

5.8 Deploying a Hosting Application with Ant
You can deploy a hosting application by running the depl oy_host i ng_app Ant
target.

Note:

The build file containing this target is generated when you create a new
hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

5-10 Developing Applications for Oracle Enterprise Scheduler

Configuring the Generated Ant Targets

The depl oy_host i ng_app target deploys the hosting app created with the cr eat e-
user - hone target (for more information, see Creating a Hosting Application and
Project Workspace with Ant). This target simply runs to completion, requiring no user
input.

To deploy a hosting application with Ant:

¢ Ina console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant depl oy_hosting_app

5.9 Configuring the Generated Ant Targets

The file user_homel ant/ confi g/ ess-bui | d. properti es contains various
parameters to specify information used by the Ant scripts during build, packaging and
deployment. The user _hone is the directory specified to contain the application
workspace.

Before deployment of archives, the WebLogic server based details has to be changed
appropriate to the user's environment.

Use the build properties described in Table 5-5 to customize the Ant targets with
configuration values of your own.

Table 5-5 Build Properties for Customizing Ant Builds

Build Property Description

customEss.hostapp.earprofile -
customEss.hostapp.jarfile -
customEss.hostapp.jarprofile -
customEss.hostapp.jprproject -
customEss.hostapp.jwsfile -
customEss.hostapp.mds.jdbc -

customEss.hostapp.mds.partitio -
n

customEss.hostapp.name The name to be used for the generated hosting application.
customEss.hostapp.workspace -

customEss.project.dir The directory location for the generated JDeveloper
project.

customEss.shared.library.name The name to be given to the generated shared library.
ess.script.base.dir -
fmw.home -
jdev.home -

oracle.common -

Using Ant to Generate a Hosting Application 5-11

Configuring the Generated Ant Targets

Table 5-5 (Cont.) Build Properties for Customizing Ant Builds
__|

Build Property Description

ess.server.name Comma separated names of Oracle Enterprise Scheduler
admin/managed servers to which the Oracle Enterprise
Scheduler job library and hosting application is deployed.

weblogic.admin.user The WebLogic Server admin user name.

weblogic.server.host -

weblogic.server.port -

weblogic.server.ssl.port -

weblogic.t3.url -

ESS build properties
ess. script. base. di r=${ user _hone}

f mw. home=${ f my_hone}
j dev. hone=${f nw. hone}/j devel oper
oracl e. common=${ f mn. hone}/ or acl e_cormmon

========== ESS JDev project details ============z===
cust onEss. proj ect. di r=${ess. script. base. dir}

cust onEss. host app. wor kspace=${ host i ng_appl i cati on_nane}
cust onEss. host app. j wsfi | e=${ hosti ng_appl i cati on_nane}
cust onEss. host app. ear profi |l e=${hosti ng_appl i cati on_nanme}
cust onEss. host app. j prproj ect =EssShar edLi brary

cust onEss. host app. j arprofi | e=EssShar edLi brary

cust onEss. hostapp. j arfil e=${j obdef _| i brary_nane}

custonEss. shared. |i brary. nane=${j obdef _| i brary_nane}

cust onEss. host app. mds. partiti on=${hosting_appl i cati on_nane}
cust onEss. host app. nds. j dbc=nds- ESS_MDS DS
cust onEss. host app. nane=${ host i ng_appl i cati on_nane}

========== \Mbl ogi ¢ Server details ===============

MV HOVE=${ f mw. hone}

ORACLE_HOVE=${| dev. hone}

MV ORA_HOMVE=${] dev. home}

COMMON_COVPONENTS_HOVE=${ or acl e. common}

WEBLOG C_HOMVE=${ f mw. hore} /Wl server_10. 3

webl ogi c. server. host =adc2170657. exanpl e. com

WEBLOG C_HOMVE=${ f mw. hore} / wl server_10. 3

webl ogi c. server. host =adc2170657. exanpl e. com

webl ogi c. server. port=7001

webl ogi c. server. ssl. port=7002

webl ogi ¢. admi n. user =webl ogi ¢

webl ogi c.t3. url =t 3://${webl ogi c. server. host}: ${webl ogi c. server. port}
Conma separated nanes of ess adm n/ managed servers to which essjob library and
hosting app is depl oyed

ess. server. nane=Adm nSer ver

5-12 Developing Applications for Oracle Enterprise Scheduler

6

Creating a Thin Client Application

The thin client application is typically used to submit jobs, query status and optionally
used to host EJB job implementations. A thin client application uses the Oracle
Enterprise Scheduler thin client library for Oracle Enterprise Scheduler APIs. This
chapter describes the thin client library and how to use Oracle JDeveloper to develop a
thin client application.

This chapter contains the following sections:

¢ Introduction

¢ Implementation

¢ Using JDeveloper to Build a Thin Client Application for MAR Deployment

* Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6.1 Introduction

Client applications are J2EE applications that execute in the same WebLogic domain as
Oracle Enterprise Scheduler.

Client applications can use the Oracle Enterprise Scheduler APIs to do the following;:
¢ Submit jobs

* Query job status

¢ Look atjob output and logs

* Optionally, perform updates to Oracle Enterprise Scheduler metadata

¢ Host an EJB job implementation that the Oracle Enterprise Scheduler invokes
remotely

The Oracle Enterprise Scheduler thin client library is used by client applications to
access Oracle Enterprise Scheduler APIs (for example, the metadata service API or the
runtime service API). The thin client library is a thin layer that remotely invokes an
Oracle Enterprise Scheduler hosting application to perform all operations. The thin
client application may optionally have an Oracle Enterprise Scheduler metadata MAR
archive with Oracle Enterprise Scheduler metadata developed using Oracle
JDeveloper. This metadata is automatically loaded into the Oracle Enterprise
Scheduler MDS when the application is deployed. Alternatively, the application can
use APIs to create the metadata dynamically.

The thin client shared library differs from the client shared library in the following
ways:

® The client shared library includes local E]Bs that do all the Oracle Enterprise
Scheduler work by directly accessing the MDS and runtime databases. The thin

Creating a Thin Client Application 6-1

Implementation

client library does not include the data sources or EJBs, but instead remotely
accesses a hosting application that hosts the EJB and accesses the databases.

¢ The thin client library more cleanly hides Oracle Enterprise Scheduler internal
functionality from the application.

¢ Because it accesses the databases directly, the client shared library works even if
the Oracle Enterprise Scheduler server or cluster is down.

¢ The thin client library is also useful when deployment of the Oracle Enterprise
Scheduler is optional in an embedding product.

e All of the documented APIs exposed by the client shared library are available in the
thin client library. Therefore, thin client applications can:

— Request submission using the runtime service APIs

— Operate on requests using the runtime service APIs

- Update metadata artifacts using the Metadata Service API
— Remotely complete asynchronous requests

¢ Because the thin client library remotely invokes an Oracle Enterprise Scheduler
hosting application to perform all operations, it has to look up remote Oracle
Enterprise Scheduler beans instead of local beans. There is some overhead in
obtaining the | ni ti al Cont ext of a remote Oracle Enterprise Scheduler server.
The Renot eConnect or API provides the following assistance for the callback of
Oracle Enterprise Scheduler beans:

— Helper classes use Renpt eConnect or s to easily connect back to Oracle
Enterprise Scheduler beans (for example, Runt i meSer vi ce and
Met adat aSer vi ce)

- Log and output can be handled from a remote implementation
— Asynchronous requests can be completed easily

— Invocations and callbacks can be secured

6.2 Implementation

This topic lists some considerations to keep in mind when you use the thin client
library to implement a remote EJB job.

Consider the following when you use the thin client library to implement a remote EJB
job:

* Make sure the bean implements the Renpt eExecut abl e interface for execution
only, or the Renot eCancel | abl eExecut abl e interface for both the execute and
cancel operations.

* Use predefined system properties such as EJB_OPERATI ON_NAME instead of
defining specific properties such as SOA BEAN NANME.

e Theej b-jar.xm file should define the
oracl e.security.jps.ee.ejb.Jpslnterceptor interceptor. Use the
interceptor to obtain the subject propagated from the Oracle Enterprise Scheduler
layer and use it in other operations.

6-2 Developing Applications for Oracle Enterprise Scheduler

Implementation

* [t's best to move the job implementation out of the ej b-j ar . xm file to ensure
that the EJBs are not redeployed when the job logic changes.

Tip:
The application throws a j avax. nam ng. Nam ngExcept i on exception if
the JNDI context cannot be created with the passed in values. Alternatively,

the Scehdul er Except i on exception can be thrown when there is a problem
with look-ups that involve the credential key store.

6.2.1 Secured Invocation

Secured invocation of the remote E]B is required when the JNDI tree of its server is
authenticated. This is also the case when a remote E]B uses secure lookup to call back
to Oracle Enterprise Scheduler E]JBs. The following sections provides some guidance.

6.2.1.1 Forward Invocation

The following apply to forward invocation.

® When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the
executing job is always propagated.

* When Oracle Enterprise Scheduler executes a job, the Jndi Provi der Ur |l of the
current Oracle Enterprise Scheduler Server is always supplied to the remote EJB
through Request Par anet er s.

e If the JNDI tree of the remote server is authenticated, the JNDI _CSF_KEY property
must be specified in the request parameters or the EssConf i gur at i on of the
hosting application.

* Oracle Enterprise Scheduler looks up the keystore for the Csf Key to retrieve the
Passwor dCr edent i al and connects to the remote server.

6.2.1.2 Callback Invocation

The following apply to callback invocation.

¢ If the remote EJB must call back to Oracle Enterprise Scheduler beans, the
following properties can be specified:

— The JNDI names of Oracle Enterprise Scheduler Runt i ne, Met adat a and
AsyncRequest beans exposed in Host i ngApp must be specified in request
parameters or the EssConf i gur at i on of the hosting application. If
EssNat i veHost i ngApp is used, these entries are not required.

— If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated, the
ESS_JNDI _CSF_KEY_NAME property must be specified in the request
parameters or EssConf i gur at i on of the hosting application. Oracle
Enterprise Scheduler ensures that this property is available to the remote EJB
through Request Par anet er s.

¢ A remote EJB can make use of the Renpt eConnect or API to get the remote
instances of Oracle Enterprise Scheduler beans. This can be done by passing the
following:

— Request Paraneters

Creating a Thin Client Application 6-3

Implementation

- Request Par anmet er s and Jndi MappedNane of the bean (for hosting
applications other than the native hosting application)

- Request Par anet er s, user name and password (if the Oracle Enterprise
Scheduler server is authenticated)

— Initial Context (primarily for Java SE clients with
EssNat i veHost i ngApp)

- Initial Context andj ndi MappedNane (primarily for Java SE clients with
other hosting applications)

6.2.2 RemoteConnector API and the Server Affinity Property

If your code implementation relies on accessing Oracle Enterprise Scheduler E]Bs, use
the methods exposed in the Renot eConnect or API class. The Oracle Enterprise
Scheduler requires the server affinity property to be set in the | ni ti al Cont ext
environment before doing a JNDI lookup and the Renot eConnect or API class sets
this property for you. Note that this is especially important in multi-node cluster
scenarios. The Renot eConnect or class is packaged in the Oracle Enterprise
Scheduler client libraries.

If for some reason the Renot eConect or class cannot be used, you can set the
environment map property to the | ni ti al Cont ext before doing the look-up for the
Oracle Enterprise Scheduler E]JBs as shown in the following example.

if(Platformtils.isWbLogic())
envProps. put ("webl ogi c. j ndi . enabl eServer Affinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-
robin-affinity".

6.2.3 Examples

This section contains examples that illustrate how to use the thin client library.

6.2.3.1 Java EE Application That Uses RemoteConnector

The following code example shows a snippet from a Java EE application that uses
Renot eConnect or through the pre-deployed native hosting application.

Renot eConnect or essConnector = newRenot eConnector ();

/| Request Paraneters contains the Jndi Provi der URL of Oracle Enterprise Schedul er

[/ Server which is auto-populated fromthe Oracle Enterprise Schedul er end while
[linvoking an EJB. The CSF key is auto-popul ated in RequestParaneters fromthe

[/ Oracle Enterprise Scheduler end if configured for the

[/ Oracle Enterprise Schedul er Server and specified in the EssConfig of HostingApp.
[11f CSF key is present, the CSF | ookup is done from RenoteConnector to resolve
[/l aut henti cation.

RuntimeService rts = essConnector. get Runti meServi ceEJB(request Parameters);
// Sanpl e invocation using RuntimeServiceBean.
Runti meServi ceHandl e handl e = rts. open();

Request Detai| reqDetail = rts.getRequestDetail (handle,
request Execut i onCont ext . get Request 1 d());

6-4 Developing Applications for Oracle Enterprise Scheduler

Implementation

6.2.3.2 Implementation

The following example shows a skeletal implementation of an E]B job that uses the
thin client library. See Creating and Using E]JB Jobs for more information about
implementing EJB jobs.

@t at el ess(name = "JMXAdapter")

public class JMXAdapt er Bean i npl enents RenoteCancel | abl eExecut abl e
{

@esour ce

private SessionContext sctx;

public JMXAdapt er Bean() {

}

public void execut e(Request ExecutionCont ext request ExecutionContext,

Request Par anet ers request Paraneters) throws

Executi onError Excepti on,

Execut i on\r ni ngExcepti on,

Execut i onPausedExcepti on,

Executi onCancel | edExcepti on

{

[/"ESS Requestld:" + requestExecutionContext.getRequest!d();

[/"EIJB Operation:" + requestParameters. getVal ue(Syst enProperty. EJB_OPERATI ON_NAME) ;
/1" nvoke Message:" + requestParaneters. get Val ue(Syst enProperty. | NVOKE_MESSAGE) ;

public void cancel (Request ExecutionCont ext request ExecutionCont ext,

Request Paraneters request Paraneters)

{

//"ESS Requestld:" + requestExecutionContext.getRequest!d();

[/"EJB Operation:" + requestParameters. getVal ue(Syst enProperty. EJB_OPERATI ON_NAME) ;
/1" nvoke Message:" + requestParaneters. get Val ue(Syst enProperty. | NVOKE_MESSAGE) ;

1

}

6.2.3.3 Subject Propagation

When the Oracle Enterprise Scheduler invokes an EJB job, the subject associated with
the hosting application is always propagated to the job. This ensures that the subject
that executes the job is available in the business operation of the bean. Add the
following code to the ej b-j ar. xnl file to retrieve the subject from within the bean.

<i ntercept or s>

<interceptor>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>

<env-entry-nane>appl i cation. nane</ env-entry- nane>
<env-entry-type>java. | ang. String</env-entry-type>

<env-entry-val ue>NAME_OF_ENTERPRI SE_APPLI CATI ON</ env-ent ry- val ue>

<i njection-target>
<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-
cl ass>

<i nj ection-target-nane>application_name</injection-target-name>
</injection-target>

</env-entry>

</interceptor>

</interceptors>

<assenbl y- descri pt or >

<i nt er cept or - bi ndi ng>

<ej b- name>*</ ¢j b- nanme>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>

Creating a Thin Client Application 6-5

Using JDeveloper to Build a Thin Client Application for MAR Deployment

</interceptor-bindi ng>
</ assenbl y-descri pt or>

You can use the following code to invoke an MBean from an EJB operation in the
privileged context of the current subject:

AccessControl Context accContext = AccessController.getContext();
Subj ect current Subj ect = Subj ect. get Subj ect (accContext);

String currentUsername = SubjectUil.get User Name(current Subj ect);
Subj ect. doAs(current Subj ect, new PrivilegedExceptionAction() {
public Object run() {

//1ogic to invoke MBean

}

1Ok

6.3 Using JDeveloper to Build a Thin Client Application for MAR

Deployment

If your job uses the Oracle Enterprise Scheduler pre-deployed native hosting
application, you can simplify the creation of custom job metadata by building a client
application that assists in the creation of the metadata and deploys it to the pre-
deployed native hosting application MDS partition (essUser Met adat a).

The following instructions show how to use Oracle JDeveloper to create a thin client
application that:

¢ Addsjob metadata
* Creates an enterprise archive (EAR)
* DPackages the metadata archive (MAR) in the EAR

¢ Deploys the metadata to the pre-deployed native hosting application

The instructions in Using JDeveloper to Create and Configure an EJB and its Job
Definition Metadata describe how to create an EJB that can be invoked by the EJB job
definition added to the pre-deployed native hosting application.

The ADF infrastructure is used to deploy the metadata to a specific partition when an
application gets deployed. The MDS partition for the pre-deployed native hosting
application is essUser Met adat a.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information” in
Developing Applications with Oracle [Developer.

Note:

Be sure to set the MW HOVE environment variable before you start JDeveloper.
For example: export MN HOVE=/ scr at ch/ prh/ 12c/j dev If this variable
is not set, the Job Type dropdown menu is not populated.

6-6 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Build a Thin Client Application for MAR Deployment

6.3.1 Create and Deploy a Thin Client Application for the Standalone Environment

The following steps describe how to use JDeveloper to create and deploy a thin client
application.

1.

In the New Gallery dialog, create a custom application and project as shown in
Figure 6-1.

Figure 6-1 New Gallery Dialog

m
Q

R pplications

Connections
Deployment Descriptors
~Deployment Profiles

[ADF Fusion Web Application
ADF Jawa Desktop Application

[F] application from EAR File

Categories: Item s D Showe All Descriptions
B General [l Java Desktop Application
~Ant

-Diagrams
Java [E4 Application Template
Maven Custom Application
~Projects
) Creates an application that includes a single project that can be
e customized to include sny features
ML

=-Business Tier [&] Database Application

~ADF Business Compaonenms
~Business Rules

~Contexts and Dependency Inj
Data Controls

B

~Enterprize Scheduler Metadat

& Extension Application
E Jawa EE Web Application

OFP Application

Service Bus Application

o e,

Help (a1 % Cancel

2. In the Create Custom Application dialog, enter the application name and
application package prefix as shown in Figure 6-2.

Figure 6-2 Create Custom Application Dialog - Step 1 of 3

£y Create Custom Application - Step 1 of 3

Name your application
= === Application Mame
T AppICatity e [MySampleThinClientapp |
Project Mame
)Tk Directory:
‘fscra(ch]r’iyanu]MyWork[MySampleTthI\enlApp Brouese...
Application Package Prefiz
|com oracle samples ess thinclient
Help K Mext = Finish Cancel
T

3. Enter the project name, then add ESS Job Support, ESS Client Support and EJB
into the project features as shown in Figure 6-3.

Creating a Thin Client Application 6-7

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-3 Create Custom Application Dialog - Step 2 of 5

Create Custom Application - Step 2 of 6

Project Name: [Project1 |

Directory [1/aiahagir/jdevuseri2/mywork/Application2 Projectl| Browse

Project Features Generated Components Associated Libraries

Available: Selected:
wr vy
Project £S5 Job Suppoj
Project ESS |ob Suppol ;\;’:I ERSCIBH nRGH
Build Tool p ESS Job Support
ava

Composer >

Customizable Components

Database Modeling <

EIB Modeling

ESS Host Support

Extension Development Feature Description:

The extension development feature allows users to create extensions to
JDeveloper. These extensions may augment or modify the behavior of
JDeveloper.

Help < Back | Next > Einish Cancel

4. Configure the EJB settings as shown in Figure 6-4.

Figure 6-4 Create Custom Application Dialog - Step 4 of 5

| & create Custom Application - Step 4 of 5

Configure EJB settings

EIB Version
Application Mame -
() Enterprise JavaBeans 3.0 (lava EE 5.0)

) Enterprise JavaBeans 3 1 {Java EE 6.0
Project |ava Settings @ el = 2

EJB Version 3.x

/:T[\ Project Name
T— Project EJB Set(ings”
-

Select the preferences that you wish to set for your EJB 3.x project
Build Tool

[] Generate jndi.properties file for project

Generate gjb-jar xml in this project

Select storage type of £J8 meta-data preferences.

() Using annotations

() In ejb-jar.xm| and using annatations

Invoke Wizard: [None -

Help < Back | Mext= | Einish Cancel

5. Configure the application ID value as shown in Figure 6-5

6-8 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-5 Configure ESS Job Support Settings

Create Custom Application - Step 5 of 6

Configure ESS Job Support settings

Application Mame Enter values for weblogic-application.xml

Project Name Application Id:

Project |ava Settings
Project E|B Settings

) Project ESS Job Supy

o —) —

Build Tool

Help < Back ue'kt> Einish Cancel

6. Click Next.
7. Click Finish to complete the steps to create a new application.

8. Edit the MANIFEST .MF file generated in the previous step and remove the
following lines:

esscl i entapi - Speci fication-Version: 12
Extension-List: essruntine, essclientap

Vibl ogi c- Appl i cation-Version: 3.0
essclientapi - Extensi on- Nane: oracle.ess.client.ap
essrunti me- Ext ensi on- Nane: oracl e. ess. runtinme
essruntime- Speci fication-Version: 12

9. Right click the project node in the left tree panel, then select project properties and
click “Libraries and Classpath" as shown in Figure 6-6. Make sure to only select
“Java EE" and “Enterprise Scheduler" in the Classpath Entries pane.

Figure 6-6 Project Properties Dialog

Project Properties - /scratch/ababchak/jdeveloper/mywork/MySampleThinClientApp/1 x

Q Search Libraries and Classpath
[Project Source Paths (7) Use Custom Settings Customize Settings
[ADF Business Components) Use Praject Settings
[+~ ADF Model
. ADF Task Flows |ava SE Version
L ADF View |1 7.0_45 (Default) Change.
[Ant
- Compiler Classpath Entries [] showApplication Libraries
- Dependencies Export Description Add Library.
L. Deployment [v| glJavaEE P
- EJB Module v @lEE
- Extension [v] @ Enterprise Scheduler Remove
- Facelets Tag Libraries [v| gl TopLink
o Features -
*
[~ Javadoc hare &
- Java EE Application 4
[T 3
~o- JSPTag Libraries G
- JSPVisual Editor -
+o Maven
- Resource Bundle
~o Run/Debug
Help [Ok] Cancel
A

10. In the New Gallery dialog, select “Enterprise Scheduler Metadata" and “Job
Definition" as shown in Figure 6-7.

Creating a Thin Client Application 6-9

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-7 New Gallery Dialog

Applications
[E] MysampleThinClientapp = =

B @ V-E-

=l Projects

=3 ThinClientAppMARProj) New Gallery @
=[] Application Sources
&L META-INF Q
&y elb-saraml Categories Irems: [] show Al Descriptions
Y weblogic-gjb-jar x
Applicatinns 0B 100 Tyne

Connections
Deployment Descriptors
~Deployment Profiles

[Job Definition
Launches Job Definition Creation. To enable this option, you must select
aproject, or afile within a project in the Apolication Navigator,

-Diagrams
Java 18 Job set

~Maven

—Projects [& Incompatibility
umL
L @ Schedule

-Business Tier

- #DF Business Components
Business Rules

~Contexts and Dependency Inj

~Data Controls

—EB

| Application Resources
27 Build Files
w7 Connections
& [Descriptors
-] META-INF
. @[] ADF META-INF
-7 Libraries
& [Service Bus System Resources

S BCLFity
~TapLink/|Pa

Help oK Cancel Far

L "
3:15:46 AM1 [Denlover:14919170peration "deplov" on apolication "DocThinClientdon” is initial®

11. In the Create Job Definition dialog, select/ or acl e/ as/ ess/ cor e/
ProcessJobType from the Job Type dropdown to add simple spawned job
definition metadata as shown in Figure 6-8.

Figure 6-8 Create Job Definition Dialog
[EIES

|S|mp\e5pawnedjobDefn |

£ Create Job Definition
Job Definition

Ajob definition describes ajob (basic unit of wwark) that runs in the
scheduler. A job definition requires a job type.

Mame

Package: [foracle/apps/ess/custom |

lob Type: | foracle/as/ess/coreProcessionType -|

Locatian: [yanu/MyWork/MySam pleThinClientA pp/ ThinClientAppMARProj/essmeta/ |

(o] 8 Cancel

Help

To complete the addition of spawned job definition metadata, select the Override
check box and enter a value for the Command Line entry. Add a system property
named SYS_ef f ecti veAppl i cati on with a value of EssNat i veHost i ngApp.

12.

6-10 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Build a Thin Client Application for MAR Deployment

13.

14.

Figure 6-9 SimpleSpawnedJobDefn.xml Tab

swauodwo

Applications -1 | [B simplespawnediobDefn xml bt
=
MySampleThinClient&pp * [=|| [@F job Definition
=l Projects e
B@-7-= Name: SimpleSpawnedjobDefn
=3 ThinClienAppMARProj s G T ‘
isplay Name: [SimplespawnedjobDefn
&7 Application Sources R e
=-[3 ess
-3 oracle Description,
&7 apps
2-{F ess Job Type: foracle/as/ess/core [ProcessjobType
&) custom Command Line: [ps —ef | [+ owerride
= [Jobs s
- [B simplespawnedjobDefn.: [Publis
[simpleSyncEiblabDefn x
= [Application Defined Properties P
Mo Application Defined Properties
=l Application Resources ;
£ = E2 System Properties P
@[] Build Files
8@ Connections Mo System Properties
[Descriptars . i
&0 META-INE Job Definition Editor
i @[] ADF METR-INF Deployment - Log
&[] Libraries Q F Actians ~

-] Serwice Bus System Resources 2 T = %
[06:06:45 &M] Updating adf-config.xml with ESS ewent listener for jobset

[06:06:45 &M] Updating adf-config.xml with ESS ewent listener for job-definition

[06:06:45 AM] Updating adf-config.xml with ESS ewent listener for jobtype

[05:06:46 AM] Info: Namespace 'soraclefapps/ess/custon’ 15 mapped to deploy-target metadata-st
"demo-app' in adf-config.xml but no metadata from the namespace 15 included in the MAR.
[AG-AR-4% AHT birara Frreseeiss fanliearian Medils o

Add EJB job definition Metadata. Follow the steps in Using JDeveloper to Create
and Configure an EJB and its Job Definition Metadata.

Configure the MAR profile.
a. Select “Application Properties” and click “Deployment Node".
b. Select “"MAR Module" in the right side panel and click Edit.

c. Select “User Metadata" in the Edit MAR Deployment Properties dialog as
shown in Figure 6-10.

d. Make sure that the essmet a directory (under the path of the project created
above) is available. If it is not available, add the directory by manually
navigating to the essnet a directory.

Figure 6-10 Edit MAR Deployment Profile Properties Dialog
G CHa 9@ O O- ABA > & BEa Qe

Applications =1 [E simpleSpawnedjobDefnzml (9 SimpleSessionBeanjava 9 efb-jaraml [P weblogic-ejbsjaraml | simples,
=] MySampleThinClientspp. =~ || [o Definition

=] P"?Jecfs @ ®-¥-E- €3 Edit MAR Deployment Profile Properties [HES]

=@ ess

Jull structure

-1 thinclient Q Search User Metadata I
: =@ simplesed R)
5-F META-INF B i e File Group Name [ser Wetadata |
% ejb-jar.zml =N B
T - g weblagic-eje-jar] . Directaries
& Ii‘ ESS = ADF Library Customizat Grder of Contributors L
E-gl oracle L. Directories
= anps f3cra an ampleThinClisntappTh.. Add..
-3 ess
= custam Remove

=-{1 Jobs I
s
[si =

=l Application Resources onlk
-7 Build Files
171 Connections
=[] Descriptors
&[] META-INF
(-7 ADF META-INF
-] Libraries
-] Service Bus System Resourc

Delete i xm
i .
i
Hela OK. Cancel e

Creating a Thin Client Application 6-11

Using JDeveloper to Build a Thin Client Application for MAR Deployment

15. Select the appropriate metadata to package in the MAR. click the “Directories"
node under “User Metadata" and make sure that the newly added job definitions
are selected as shown in Figure 6-11.

Figure 6-11 Edit MAR Deployment Profile Properties Dialog

£ Edit MAR Deployment Profile Properties [o][x]
Q search Directories
- MAR Options Files

[Metadata File Groups

E‘ User Metadata Select All Customizations Deselect All Customizations

(= ADF Library Custamiza =[] 23 Merged Contents of This File Group's Contributors

Directories 2-[#] 3 oracle
B[] (3 apps
-] 0a ess
=[] £3 custom
s o
LGB simplespawnedjobDetn.xml
v L[V [B) simpleSyncEjbjabDefn xmi

Expand All Modes Collapse All Nodes

Help QK Cancel

16. Create a deployment profile for an enterprise archive (EAR).
a. Select “Application Properties” and click the deployment node.

b. Click New in the right panel to invoke the Create Deployment Profile dialog.
Choose “EAR File" from the Profile Type dropdown as shown in Figure 6-12.

Figure 6-12 Create Deployment Profile Dialog

Applications [simplespaumediobDetnom| 88 SimpleSessiorbeanjava [P eibcjaraoml 55 weblogic-eib-jar xml
(=] MySampleThinClientapp = | * [Job Definition

=l Projects - T aE
;J g j?fs% V= Hame: Sim pleSyncEjbjobDefn
i & thinclien Display Mame: [SimpleSyncEjbjabDefn
(P Simplesessi
{77 META-INF Description:
H % ejb-jar.zml
- [weblagic-ejb-jar.xt Job Type foraclejas/ess /core/SyncEjbjobType
= .
= Ess WPY? ¢} Create Deployment Profile [ol[x
=-J oracle
=0 apps TP click OK to create your new deployment profile and immediately open it to see its configuration
&3 ess Profile Type
=73 custom =
3-B3 Jobs |EarFile -
o Mo A
-~ simy Deployment Profile Mame:
L[Sim =
@ simy B @ [MysampleThinClientAppEad |
| Application Resources Mam{| Description
£ Build Files SY5| [Creates a profile for deploying the Java EE enterprise archive (EAR) file to an application
S5 :
-3 Connertions =l e The EAR file consists of the application's assembled WAR, EIB JAR, and client JAR
7] Descriptars =
4[] META-INF) Help QK Cancel
[ADF META-INF J : ==
17 Libraries Job Definition Editar,

17. Configure the application assembly for the EAR. In the dialog, make sure the
following two profiles are selected:

* The MAR profile you previously created
¢ The EJB profile. This profile is automatically created. If it is not automatically

created, create a new “EJB JAR" deployment profile for the project as
previously described beginning in step 2.

To create the EJB-JAR deployment profile:

6-12 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Build a Thin Client Application for MAR Deployment

In the Application Navigator, in the Projects panel, right-click the
Application project, then click Project Properties.

In the Project Properties window navigator, click Deployment.

Under Deployment Profiles, delete all profiles listed in the window, then click
New.

In the Create Deployment Profile dialog, from the Profile Type dropdown
list, select EJB JAR file.

In the Name field, enter a name for the E]JB. For this example, enter
MySanpl eThi nC i ent Ej b.

Click OK.

Figure 6-13 Create the EJB-JAR Deployment Profile

i Edit EJB JAR Deployment Profile Properties X
Q General
w EJB |AR File:
AR Opti
J % B0 p/ThinClientAppMARProj/ deploy /My SampleThinClientEjb jar Erowse...
=} File Croups
=t Project Qutput EAR File:
:::.Iontrllnutors)/ ThinClientAppMARProj /deploy /My Sam pleThinClientEjb.ear Erowse...
ilters
Library Dependencies Deployment Plan:
Profile Dependencies Browse
Flatform -
Enterprise Application Name: |MySampleThinClientEjb
Deployment Client Maximum Heap Size (in Megabytes): Auto =
Help ok | Cancel

In the Edit EJB JAR Deployment Profile Properties dialog navigator on the
left, click General.

In the General window, in the Enterprise Application Name field, enter
My Sanpl eThi nCl i ent App.

In the navigator, expand to File Groups > Project Output > Contributors.
In the Contributors window, select the following check boxes:

¢ Project Output Directory

* Project Source Path

¢ Project Dependencies

In the navigator, expand to File Groups > Project Output > Filters.

Creating a Thin Client Application 6-13

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-14 Edit EAR Deployment Profile Properties Dialog

Edit EJB JAR Depln-ymént Profile Properties

s Filters
Ceneral Files Patterns
JAR Options
= File Groups This file group incl_udes the project output _director_,f as a contributor. You
5. Project Output may need to compile the project to see all files coming from the output
directory.
- Contributors
EMCINE] 1erged Contents of This File Group's Contributars
Library Dependencies =[w| (1 META-INF
Profile Dependencies ~[v] 5] eib-jarml
Platfarm [v] [E] weblogic-gjb-jar.xml
= [v] 1 com
- =W 03 oracle
=[] G0 samples
=[] G ess
=-[w] 3 thinclient
~-[w] [E] simpleSessionBean.class
| ﬂ SimpleSessionBean.java
&[] G essmeta
[|3 oracle
Expand All Modes LCollapse All Nodes
Help [oK | Cancel

I In the Filters window, in the Files tab, ensure that the following folders are
selected:

¢ META-INF (and its contents)

e oracle (and its contents)
m. Inthe JAR Option window, deselect the Include Manifest File item.
n. Click OK.
0. Inthe Project Properties dialog, click OK.

18. Configure the library dependencies for the EAR. Be sure that none of the items are
selected in the Libraries Selected for Deployment pane.

Figure 6-15 Edit EAR Deployment Profile Properties Dialog

1 Edit EAR Deployment Profile Properties x
Library Dependencies
General Libraries Selected for Deployment:
Application Assembly ity —
- EAR Options 0 Java EE
=+ File Croups m ElE
(= Application Descriptor: L _ Enterprice Scheduler
Contributors W | TopLink
Filters
= Application Libraries
Contributors
Filters
“ Platfarm
Help ok Cancel

6-14 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Build a Thin Client Application for MAR Deployment

19.

20.

21.

Configure the adf - confi g. xnl file. When you deploy an ADF-based
application from JDeveloper, there is a dialog that asks you to select the MDS
partition into which the metadata is to be deployed. If the EAR file generated from
this application is to be deployed from the WLS console, certain MDS partition
entries must be specified in the adf - confi g. xm file. If this is the case, ensure
that the adf - conf i g. xm file contains the entries shown in Example 6-1. You
can find the adf - confi g. xm file in the Application Resources > Descriptors >
ADF META-INF section in bottom of the left panel.

Configure the webl ogi c-appl i cati on. xm file. Make sure the contents of the
webl ogi c-appl i cati on. xm file are as shown in Example 6-2.

Deploy the application. To complete the deployment of the EAR, select
essUser Met adat a in the Partition Name dropdown in the Deployment
Configuration dialog and click Deploy.

Figure 6-16 Oracle Deployment Configuration Dialog

Configure and custamize settings for this deployment -
MDS
- Metadata Repository
Repository Mame: |mds-ESS_MDS_DS "
Repository Type DB
Partition Name: kil
Path/JNDI Info jdbe/mds-ESS_MDS_DS
Shared Metadata Repositories
Mamespace Repasitary Type Partition Path/JMDI Infa
Help Deploy Cancel

Example 6-1 Contents of the adf-config.xml File

<?xm version="1.0" encodi ng="UTF-8" ?>

<adf

-config xm ns="http://xn ns.oracl e. conf adf/ config">
<adf - nds-config xm ns="http://xn ns. oracl e. coni adf/ nds/ confi g">

<nds-config xm ns="http://xn ns. oracl e. com nds/ config"

version="11.1.1.000">

<persi stence-confi g>
<met adat a- namespaces>
<namespace pat h="/oracl e/ apps/ ess/ cust onf

met adat a- st or e- usage="ess_cust om net adata"/ >

</ met adat a- nanespaces>
<met adat a- st or e- usages>
<net adat a- st or e- usage

i d="ess_cust om net adat a" depl oy-target="true" defaul t-cust-
store="true">

<ns3: met adat a- store cl ass-

name="or acl e. nds. per si st ence. st ores. db. DBMet adat aSt or e"
xm ns:ns3="http://xm ns. oracl e. com mds/ config">

nane"

<ns3: property name="repository-
val ue="nds- ESS_MDS _DS" />

Creating a Thin Client Application 6-15

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

<ns3: property name="partition-

name" val ue="essUser Met adata" />

<ns3: property name="j ndi -

dat asour ce" val ue="j dbc/ nds- ESS_MDS _DS" />

</ ns3: net adat a- st or e>
</ met adat a- st or e- usage>
</ met adat a- st or e- usages>
</ persi stence- confi g>
</ mds- confi g>
</ adf - mds- confi g>

</ adf - confi g>

Example 6-2 Contents of the weblogic-application.xml File

<?xm version = '1.0" encoding = 'UTF-8' ?>
<webl ogi c-application xm ns:xsi="http://ww. w3. org/ 2001/ XM.Schena-

i nstance"

xsi: schemalLocation="http://
xn ns. oracl e. con webl ogi ¢/ webl ogi c-application http://
xn ns. oracl e. conf xm ns="http://xm ns. oracl e. cont
webl ogi ¢/ webl ogi c- appl i cation">
<listener>

<listener-class>oracle.nds.| cmwebl ogi c. W.Li fecycl eLi stener</1istener-class>

</listener>
<library-ref>

<l'ibrary-name>oracl e.ess.thin.client</library-nane>

<[library-ref>
</ webl ogi c- appl i cati on>

6.4 Using JDeveloper to Create and Configure an EJB and its Job
Definition Metadata

You use JDeveloper to create and configure an EJB and its job definition metadata.

The following steps describe how to:

Create a simple synchronous EJB that conforms to Oracle Enterprise Scheduler's job
implementation requirements.

Create EJB job definition metadata and deploy it as a part of the enterprise
application.

Create a session bean. In the New Gallery dialog, select “Session Bean" to create a
new EJB as shown in Figure 6-17.

6-16 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Figure 6-17 New Gallery Dialog

Applications

[l MysampleThinClismaps + | =
@& V-E-

=& ThinClientAnpMaRPro)

=[] Application Sources

. =0 META-INF

ol ejb-jarxml

~| Projects

L weblogic-ejb-jar x
B-03 Ess
- oracle
=-(3 apps
B ess
-7 custom
=] Jobs

© 1 simp

| Application Resources

-3 Build Files

@[3 Connections

= [Descriptars

Um0 META-INF

. [ADF META-INF

&[] Libraries

[Service Bus System Resources

[simplespawnedjobDefn xml

[Job Definition

[New Gallery

Q

Categories

Items [] Show All Descriptions

=-Business Tier

-~ ADF Business Components

- Business Rules
Contexts and Dependency Inj
Data Controls

- Enterprise Scheduler Metadat
Security

-~ TopLink/IPA

~Weh Services

=-Client Tier
ADF Desktop Integration

A DF Swing

~Extension Development
Swing fAWT

~Database Tier
rDatabase Files

i Database Objects
Lo Offline Database Objects

Help

E EIE Data Contral

[E2 E18 Diagram (PA/EIB 330

@ Entities from Tables

@ Entity

@ Java Service Facade (IPA/TopLink)

[@ JPA Mappings (xMLy

[B JPa Persistence Descriptor (persistence. xmly
|E JPA Persistence Unit

&P Message-Driven Bean

3 session Bean

Launches the Create Session Beanwizard, which allows you to create a
stateful or stateless session bean. To enable this option, you must
select aproject in the Apolication Maviaator,

Ok Cancel

2. Configure the session bean. Enter the EJB name in the EJB Name field and enter the
mapped name in the Mapped Name field as shown in Figure 6-18. Click Next to

continue.

Figure 6-18 Create Session Bean Dialog - Step 2 of 5

General

£y Create Session Bean - Step 2 of 5

Enter an EJB name and choose from the Session EJB options below.

1
e, General EJE Name: |Simplesession |

T Class Definitions

Session Type () Stateless () stareful () singletan

Transaction Type|Comtainer-managed Transactions (CMT) with Implicit Commit = |

Mapped Mame: |ejb,'s\mp|e5essionﬁean |

[] Generate Session Facade Methods

Help Hext Einish Cancel

3. Configure the session bean business interface. Make sure that the Implement a
Remote Interface check box is checked and that
oracl e. as. schedul er. Renot eExecut abl e is set as the class for the Remote
Interface field as shown in Figure 6-19. Click Next and proceed to the Finish step.

Creating a Thin Client Application 6-17

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Figure 6-19 Create Session Bean Dialog - Step 4 of 5

#§ Create Session Bean - Step 4 of 5

Interfaces

Enter the EJE interface names.

[¥] Implement a Remote Interface

, Class Definitions et e

‘oracle.as.scheduler.Remo(eExecutable\ Browse..

I
i
! Imerfaces
| Implement a Local Interface
© Finish Dt i

[C]implement TimedObject Interface

Help < Back Hext > Finish Cancel

4. Configure the generated session bean. Make sure the generated session bean
implements the execute method defined in the Renot eExecut abl e interface

Figure 6-20 Configure the Generated Session Bean

Applications @ SimpleSpawnedlobDefr.zml & simplesessionfean java
[} MySampleThinClientapp v || Q= Find 2 40 48400 % 8 KT MEEB
=l Projects BV package com.oracle.samples.ess.thinclient;

1ClientA ppMaRProj
application Sources
il com aracle samples

| @ import ...

. Eastateless{nane = "SimpleSession”, mappedName = "ejb/sinpleSessionBean)
= ess N @local

E-1 thinclient [§¥] Epublic class SimpleSessionBean implements RemoteExecutable {

@ SimpleSessionBern fava @ |mplement Methods. ..
; M @ Make 'SimpleSessionBean' Abstract
ra clgclapnly Ay Set Initial Serialization Version
- By wmblogic-cibjaraam! B Set Default Serialization Version
%S At aile ;ﬂ Suppress "Miszing Serialization UID" By JDeveloper Mame (Suppresswarnings Annotation)
=[] apps
B[ess
=7 custam

=l Application Resources

-] Build Files
{7 Connections
&0 Descriptors

5. Complete the implementation of the session bean. Make sure the bean is complete
by implementing the execut e method.

Figure 6-21 Complete the Implementation of the Session Bean

(2] simplespavmedjabDefnxml | & Simplesessionfean ava
el B4 40RBRSE R R KNEE

1ackage com.oracle.samples.ess.thinclient;

| Eimport .ug
| H3statelessinane = “Simplesession”, mappediame = "ejbssimplesessionBean”)
ilocal
| Eublic class 5impleSessionBean implements RemoteExecutable {
@Resource

sessionContext sessionContext;

|a public SimpleSessionBean() {
i

@0werride
public void execute(RequestExecutionContext reguestExecutionContext,
ReguestParameters reguestParameters) throws ExecutionErrorException, ExecutionWarningExcept
ExecutionCancelledException,
=] ExecutionPausedException {
System.out.printin(“Simple Session Bean executed. " +
"ReguestId:" + requestExecutionContext. getRequestId{}]);

i)
b

SimpleSessionBean = execute(RequestExecutionContext, RegquestParameters) 31:62

6. Make sure the ej b-j ar. xmi file contains the declaration shown in Example 6-3.

6-18 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Make sure the webl
Example 6-4.

ogi c-ej b-j ar. xm file contains the declaration shown in

This completes the steps used to create an E]B that can be invoked by Oracle
Enterprise Scheduler using the EJB job type.

The following two steps describe how to use JDeveloper to create an EJB Job

definition.

Create EJB job definition metadata. In the New Gallery dialog, select “Job
Definition" under “Enterprise Scheduler Metadata" and fill it in as shown in Figure

6-22.

Figure 6-22 Create Job Definition Dialog

Applications

(] MysampleThinClientapp = =

=l Projects R R
E\ -l com.oracle.samples
H () ess
£ thinclient
@ simplesessi
&£ META-INF
[ejb-jar xmi

- BY weblogic-ejb-jar.
R
- oracle
=3 apps
&3 ess
=~ custom
-3 jobs

C 8 simg

=l Application Resources

E-(7] Build Files

[Connections

-1 Descriptors

¢ - META-INF

@[] ADF META-INF

+-[7] Libraries

[0 service Bus System Resources

EB SimplespawnedlobDefn.xm| @ SimpleSessionbean java % ejb-jar,xm_\ % weblogic-ejb-jar.xm
Qi Fing W MR B

'3(? & Create Job Definition =E
=
Job Definition ogit
o £ job definition describes a job (hasic unit of work) that runs in the ks
scheduler. A job definitian requires a job type
B
=
Mame: |SimmesyncEJbJobDefn | L -rer
Package: [foraclejapps/essicustam |
Job Type: | foraclefas/ess fcore SyncEjblobType ~|
<,
S Location: |yanufMyWork[MySampleThinC\iemApp;TmnCI\enlAppMARPrm[essmetaf’l
weblogic—¢
Ovendew | 5
Deploymen
Q
EOB:IS:BZ inCl
[03:15:45 Help Ok Cancel
[03:15:46 p" i
[03:15: 47 SR TTEFTOVETT IS To7 [OPETET TO—TE Oy — ISP T ar oD eepp

Configure system properties in the job definition. In the Add System Property
dialog, specify EssNat i veHost i ngApp in the Initial Value field, and select the
system property SYS_ef f ecti veAppl i cati on from the Name dropdown as
shown in Figure 6-23.

Figure 6-23 Add System Property Dialog

(7} simplespannediobDetnam| (5 Simplesessionbeanjava 05 eib-jaraml [weblogic-ebojaraml | (3 simplesyncEiblabDefnxml
Job Definition
Mame SimpleSyncEjbjobDefn
Display Name: [SimpleSyncEibjobDefn
Description
Mame |5Ys_effectiverpplication -
Job Type Type STRING
Class Name: || Initial Value: [EsshativeHostingApp |
[T Publish [] Read Only
=] Applicati P 2
Mo Applicatio
= & System P| ra
Mo System Pro
5 B= Access Q) i
Mo Access Col
= & Localizat
Job Definition Ed
Deplayment - L
Help (o]% Cancel
Q

Creating a Thin Client Application 6-19

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Repeat the process, making sure that the SYS_EXT_j ndi MappedNane property is
configured with an initial value of j ndi Name. Also add properties like
SYS_EXT_j ndi Provi der Url if the application is deployed to a server other than
ESSAPP.

Figure 6-24 Job Definition Tab

@ SimpleSpannedlobDefn.xml @ SimpleSessionbean java % eib-jar.xml % weblogic-gjb-jar.xml @ SimplesyncEjblobDefn.xm|

I

(B Job Definition

Hame SimpleSyncEjbjabDefn

Display Mame; [SimpleSyncEibjobDefn

Description

lob Type Joraclefasfess/core/SyncEiblobType

Class Name: |oracle.as.scheduler job.ejb.SyncElBJob |

[T Publish

= [Application Defined Froperties 7+ R
Mo Application Defined Properties
= & System Properties 7R
Mame Type Initial Yalue Read Only
SYS_effectiveApplication STRING EssNMativeHostingApp
S¥S_EXT_jndiMappediiame STRING &jb/simpleSessionBean
SYS_EXT_jndiProwiderUrl STRING 13/ /localhost7001
= = Access Control R
Job Definition Editor D

Example 6-3 Contents of the ejb-jar.xml File

<?xm version = '1.0" encoding = 'UTF-8' 72>
<ejb-jar xmns:xsi="http://ww. w3. org/ 2001/ XM.Schena- i nst ance"
xsi : schemaLocation="http://java.sun.conf xm /ns/javaee http://
java.sun.com xm /ns/javaee/ ejb-jar_3_0."
version="3.0" xm ns="http://java.sun.con xm /ns/javaee">
<enterpri se-beans>

<sessi on>
<description>Sinpl e Session Bean</description>
<ej b- name>Si npl eSessi on</ ej b- nane> <gj b-

cl ass>oracl e. com sanpl es. ess. t hincl i ent. Si npl eSessi onBean
</ ejb-class>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<security-identity>
<use-cal ler-identity/>
</security-identity>

</ sessi on>
</ enterprise-beans>
</ejb-jar>

Example 6-4 Contents of the weblogic-ejb-jar.xml File

<?xm version = "1.0" encoding = 'UTF-8' ?>
<webl ogi c-ej b-jar xm ns:xsi="http://ww. w3. org/ 2001/ XM.Schena-
i nstance" xsi : schemaLocation="http://xm ns. oracl e. cont
webl ogi ¢/ webl ogi c-ej b-j ar http://xmns. oracl e. cont
xm ns="http://xm ns. oracl e. con webl ogi ¢/ webl ogi c-ej b-jar">
<webl ogi c-ent er pri se- bean>
<ej b- nane>Si npl eSessi on</ ej b- nane>
<st at el ess- sessi on-descri pt or>
<busi ness-i nterf ace-j ndi - nane- map>
<busi ness-renot e>or acl e. as. schedul er. Renot eExecut abl e</ busi ness-r enot e>
<j ndi - name>ej b/ si npl eSessi onBean</ j ndi - nane>
</ busi ness-interface-j ndi - nane- nap>
</ statel ess-sessi on-descri ptor>

6-20 Developing Applications for Oracle Enterprise Scheduler

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

</ webl ogi c-ent er pri se- bean>
</ webl ogi c-ej b-j ar>

Creating a Thin Client Application 6-21

Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6-22 Developing Applications for Oracle Enterprise Scheduler

v

Using Oracle JDeveloper to Generate an
Oracle Enterprise Scheduler Application

This chapter is a tutorial that describes how to create and run an application that uses
Oracle Enterprise Scheduler to run job requests and demonstrates how to work with
Oracle JDeveloper to create an application using Oracle Enterprise Scheduler.

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

Note:

For Oracle Enterprise Scheduler sample code, be sure to see the sample site at
https://java. net/projects/oracl esoasuitel2c.

This chapter includes the following sections:

¢ How to Start JDeveloper to Support Building Oracle Enterprise Scheduler
Applications

¢ Understanding Oracle Enterprise Scheduler Application Support Created by Oracle
JDeveloper

¢ Building a Combined Oracle Enterprise Scheduler Application

¢ Building Split Submitting and Hosting Applications

7.1 How to Start JDeveloper to Support Building Oracle Enterprise
Scheduler Applications

Some aspects of developing Oracle Enterprise Scheduler applications with Oracle
JDeveloper require that you set the Middleware Home environment variable to the
installation location of Oracle JDeveloper itself. Before you begin using Oracle
JDeveloper to develop Oracle Enterprise Scheduler applications, be sure to set this
variable.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle [Developer.

To set an environment for building Oracle Enterprise Scheduler applications:

1. Open a command prompt.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-1

https://java.net/projects/oraclesoasuite12c

Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper

2. Change directory to the installed location of Oracle JDeveloper. For example, on
Windows you might do the following:

>cd c:\Oracl e\ M ddl evar e\ j devel oper

3. Set MW_HOME to the location of Oracle JDeveloper. For example:
>set MW HOME=c:\ Oracl e\ M ddl ewar e

4. Start Oracle JDeveloper.

>j devel oper

7.2 Understanding Oracle Enterprise Scheduler Application Support
Created by Oracle JDeveloper

As you create projects in Oracle JDeveloper for developing Oracle Enterprise
Scheduler applications, you add underlying support for application functionality by
specifying support for particular project technologies.

For more information on creating Oracle Enterprise Scheduler applications, see
Building a Combined Oracle Enterprise Scheduler Application and Building Split
Submitting and Hosting Applications.

When you create an application using Oracle JDeveloper, you select from the
following technologies, depending on your application requirements:

¢ ESS Host Support for developing a hosting application, including:
- Updating weblogic-application.xml for application support.
— Updating EJB deployment profile for project support.
- Updating EAR deployment profile for application support.
— Adding the Oracle Enterprise Scheduler library.

- Adding context menu to project (accessed by right-clicking and selecting
Enterprise Scheduler Properties), which allows the following ejb-jar.xml
properties to be modified: Logical Application Name, Application Policy Stripe,
JPS Interceptor Application Name.

¢ ESS Client Support for developing a client application, including:
- Updating weblogic-application.xml for application support.
- Updating EJB deployment profile for project support.
— Adding the Oracle Enterprise Scheduler library.

— Adds context menu to project (accessed by right-clicking and selecting
Enterprise Scheduler Properties), which allows the following ejb-jar.xml
properties to be modified: JPS Interceptor Application Name.

e ESS Job Support for developing scheduler applications, including:
- Creating or updating a MAR profile.
— Creating a JAR deployment profile for project support.

— Adding the Oracle Enterprise Scheduler library.

7-2 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

7.3 Building a Combined Oracle Enterprise Scheduler Application

The EssDemoApp sample application you build in this tutorial includes a complete
application that you build with Oracle JDeveloper using Oracle Enterprise Scheduler
APIs.

In this example, you'll create a hosting application and a simple Java job
implementation. Though the example here is simple, its job class implements the
Execut abl e interface from which a more complex Java job might call out to other
code as part of its work.

To create an application that schedules job requests you do the following:

¢ Create the Java class that specifies the logic you want to schedule and run with
Oracle Enterprise Scheduler.

® Specify Oracle Enterprise Scheduler metadata and the characteristics for job
requests.

* Define the Java application that uses Oracle Enterprise Scheduler APIs to specify
and submit job requests. The application consists of two projects: one for hosting
jobs and another for submitting them.

* Assemble and deploy the Java application that uses Oracle Enterprise Scheduler
APIs.

¢ Run the Java application that uses Oracle Enterprise Scheduler APIs.

Note:

The instructions in this chapter assume that you are using a new Oracle
JDeveloper that you installed without previously saved projects or other
saved Oracle JDeveloper state. If you have previously used Oracle JDeveloper,
some of the instructions may not match the exact steps shown in this chapter,
or you may be able to shorten procedures or perform the same action in fewer
steps. In some cases Oracle JDeveloper does not show certain dialogs based on
your past use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application metadata is stored with
MDS. To use MDS you need to have access to a database with MDS user and schema
configured.

You also need a WebLogic Server instance to which Oracle Enterprise Scheduler is
deployed in standalone mode. You should have access to a database with the Oracle
Enterprise Scheduler schema installed.

This section includes the following subsections:

* Creating the Application and Projects for EssDemoApp Application

¢ C(Creating Metadata and an Implementation Class for the EssDemoApp Application
¢ Adding Application Code to Submit Job Requests

e Setting Oracle Enterprise Scheduler Properties

* Assembling the EssDemoApp Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-3

Building a Combined Oracle Enterprise Scheduler Application

* Deploying and Running the EssDemoApp Application

7.3.1 Creating the Application and Projects for EssDemoApp Application

Using Oracle JDeveloper you create an application and projects within the application
that contains the code and supporting files for the application. To create the sample
application you need to do the following:

* Create an application in Oracle JDeveloper.

* Create projects in Oracle JDeveloper. You create two projects -- one in which to
develop "Hello World"-style Java job and another in which to develop a client that
submits requests with the job.

7.3.1.1 How to Create the EssDemoApp Application and Host Project

To work with Oracle Enterprise Scheduler, you first create an application in Oracle
JDeveloper. You'll also create a hosting application to support job execution.

To create the EssDemoApp application and hosting project:

1. Start Oracle JDeveloper as described in How to Start JDeveloper to Support
Building Oracle Enterprise Scheduler Applications.

2. In the Select Role dialog, select the Default Role, then click OK.
3. Click the Application menu, then click New and select the From Gallery option.

4. In the Name your application window enter the name and location for the new
application.

a. Inthe New Gallery window, select Custom Application listed under the
General Categories Applications item, then click OK.

b. Inthe Application Name field, enter an application name. For this sample
application, enter ESsDenpApp.

c. In the Directory field, accept the default.

d. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial
project of an application.

e. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. See Figure 7-1.

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter EssHost .

b. On the Project Features tab, under Available, double-click ESS Host Support
and ESS Job Support so that they are both listed under Selected on the right
side of the dialog box.

For more on these, see Understanding Oracle Enterprise Scheduler
Application Support Created by Oracle JDeveloper.

c. Click Next.

7-4 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

Figure 7-1 Create the Custom Application

Create Custom Application - Step 2 of 6

Name your project

Project Name: ‘EssHosl |

¥ Application Name

L Project Name Directory: ‘,'scratchfababchakudeue\oper,’mywcrk;EssDemoApp;Eschsl | Browse
faat

Jr Project |ava Settings Project Features ~ Cenerated Components ~ Associated Libraries

Available: Selected:

W Database Modeling e |
1 EIE Modeling ESS Host Support

ESS Client Support ESS Job Support

Extension Development ava

HTML and C55

ava Modeling »

avasScript

avaServer Faces (J5F) «

SPand Servlets

Maven

OEP Library Suite
OEF Suite

(fflina Diatah

ESS Client Support Feature Description:

Used to build an Enterprise Scheduler Service based client application, which includes EJB.

Help < Back Next > Einish Cancel

6. Inthe Configure Java settings window, in the Default Package field, enter
oracl e. esshost.

Click Next.
7. In the Configure E]B settings window, select the following;:
* Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

* Under EJB Version 3.x, select the Generate ejb-jar.xml in this project check
box.

Click Next.

8. In the Configure ESS Host Support settings window, in the Application Id field,
enter EssDenpApp.

Click Finish.

This displays the EssDemoApp Overview page. You can use sections of this page
to get information about aspects of the application you're creating, as well as to
manage its development progress. For now, though, you'll move on to creating
project artifacts to support creating jobs.

7.3.1.2 How to Create the Client Project

In the preceding step, you created a project in which to develop the application to host
your jobs. In this section, you'll use Oracle JDeveloper to create another project in the

EssDemoApp application. This second project provides support for client interaction
with the hosting application.

To create the client project:
1. Click the File menu, then click New > Project.
2. Inthe New Gallery, under Categories, expand General, then click Projects.

3. Under Items, click Custom Project, then click OK.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-5

Building a Combined Oracle Enterprise Scheduler Application

4. In the Name your project window, enter the name for the client project you're
creating and select supporting technologies. See Figure 7-2.

a.

C.

In the Project Name field, enter a name for your client project. For this sample
application, enter EssCl i ent .

On the Project Features tab, under Available, double-click the following
items so that they are listed under Selected on the right side of the dialog box:
ESS Client Support

HTML & CSS

JSF

SP and Servlets

XML

For more on this, see Understanding Oracle Enterprise Scheduler Application
Support Created by Oracle JDeveloper.

Click Next.

Figure 7-2 Create a Custom Project

Name your project

Create Custom Project - Step 1 of 4

J= Project Name
Di i tch/ababchak/jdevel le/EssDi A EssClient B 7
T ot L AtE LS irectory |fscrac Jababchak/jdeveloper/mywork/EssDemoApp/EssClient | rowse,

Project Name: |EssCHent |

Project Features Cenerated Components Associated Libraries

Available: Selected:
orTT

Ccol
Database Modeling

ESS Client Support
HTML and C55

EJB Modeling

ava
ESS Host Support avascript
E52dob support & SPand Servlets
Extension Development ML
ava Modeling kS

avaServer Faces (JSF)

OEP Library Suite
OEF Suite

Maven Feature Description:

Apache Maven is a software project management and comprehensiontool. Based onthe
concept of a project object model (POM), Maven can manage a project's build, reporting
and documentation from a central piece of information

Help Next > Einish Cancel

5. In the Configure Java settings window, in the Default Package field, enter
oracl e. essclient.

Click Next.

6. Inthe Configure E]B settings window, select the following:

¢ Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

Click Next.

7. In the Configure ESS Client Support settings window, in the Application Id field,
ensure the EssDenpApp is displayed there.

Click Finish.

7-6 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

7.3.2 Creating Metadata and an Implementation Class for the EssDemoApp Application

For a Java job, which is what you'll be adding here, an implementation class
implements the logic of your job -- the code that does job's actual work. The class
implements the or acl e. as. schedul er. Execut abl e interface. The interface's
execut e method provides a place where you can add the job's logic. Though the code
in this example is very simple, the execute method can also serve as a starting place for
processing that continues into code to which the Java job has access.

As with other job types, including PL/SQL and process jobs, a Java job's work is
guided by metadata. This metadata forms a job-specific context that can include Oracle
Enterprise Scheduler-defined system properties, properties you create, and control of
who has access to the metadata. For example, metadata might be a way for you to
collect and pass instance data to downstream code.

To use the EssDemoApp sample application to submit a job request, you need to
create:

® Metadata in the form of a job definition that is the basic unit of work that defines a
job request in Oracle Enterprise Scheduler.

¢ A Javajob implementation class.

7.3.2.1 How to Create Metadata for the EssDemoApp Application

In this section, you use Oracle JDeveloper to create job definition metadata and a
simple implementation class for a Java job.

To create metadata for the application:
1. Inthe Application Navigator, select the EssHost project.
2. Press Ctrl-N. This displays the New Gallery.

3. Inthe Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

4. In the Items area, select Job Definition as shown in Figure 7-3.

Figure 7-3 Adding Job Type Metadata to the Sample Application

Ifo New Gallery x|
Q
Categories Items: |:| Show All Descriptions
- Diagrams 34 Job Type
Lo Java
L Maven [Job Definition
’ Projects Launches Job Definition Creation. To enable this option, you must select a
eUML project, or afile within a project in the Application Navigator.
XML
Job Set
=F~BPM Tier @
» Activity Cuide E"g Incompatibility
E—---Busmess Components
“-Simulation & schedule

=H-Business Tier

é---ADF Business Components
---Business Rules

E>---Con|axts and Dependency Inje
- Data Controls

L EJB

[crterprise Scheduler Metadata
?---Security’

Spring

- TopLink/IPA

- Web Services

Help 0K Cancel

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-7

Building a Combined Oracle Enterprise Scheduler Application

5. Click OK. This displays the Create Job Definition dialog.

6. In the Create Job Definition dialog, specify the following;:

a.

In the Name field, enter a name for the job definition. For this example, enter
the name: Hel | oWor | dJobDefi ni ti on.

In the Package field, enter a package name. For this example, enter /
oracl e/ esshost/ et adat a.

Note that you should use slashes, rather than dots, to delimit names in
metadata package names. A metadata package ending in ".metadata" is not
visible in Oracle JDeveloper.

In the Job Type field, from the dropdown list select /oracle/as/ess/core/
JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in How to Start J[Developer to Support Building
Oracle Enterprise Scheduler Applications.

Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class
for your Java job be created, saving you the trouble of creating one later.
Selecting the Synchronous option specifies that this is a synchronous Java job.

Under Java Class, specify details for the Java class you're creating. In the Java
Package field, enter its package name -- here, enter or acl e. esshost. i npl .
In the Class Name field, enter a name for the class -- here, enter

Hel | oWor | dI npl as shown in Figure 7-4

Figure 7-4 Creating a Job Definition with the Job Definition Creation
Wizard

7 Create Job Definition x
Job Definition
A job definition describes a job (basic unit of work) that runs in the scheduler. A job E
definition requires a job type
Name: ‘HelloWorIdJobDefiniUon |

Package: ‘,’wacle;esshusu’meladatal |

Job Type: ‘foraclE,’as,fessg‘corafjavajubType '|

Location: ‘,’scratchfababchakfjdE\felcperfmywork,’EssDemoApp;Eschsuessmelaf |

Create Java Class
Java Class

() Synchronous

(1 Asynchronous

Location |fscratEh,’ahahchak,fjdevelnper,’mywm’k,fEssDemﬂApp,’Esanstf;r: |

Java Package: |orac|e esshostimpl | Q

Class Name |HeHoWDrId\mpl |

Help QK Cancel

Click OK.

This creates the Java class you requested, along with the
Hel | oWor | dJobDef i ni tion. xm file. Oracle JDeveloper displays XML
file's contents in the Job Definition page.

7-8 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

10.

11.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

In the Job Definition page, in the Description field enter a description for the job
type. For this example enter: Sanpl e Java Job Definiti on.

Leave the rest of the metadata unchanged.

In the Application Navigator, locate the class you created by expanding the items
in the projects panel to EssHost > Application Sources > oracle.esshost.impl >
HelloWorldImpl.java.

Open HelloWorldImpl.java in the source editor.

In the source editor, add simple code to implement the execute method. The
execute method is where execution for a Java job begins. Your HelloWorldImpl
class should look something like Example 7-1.

Save and close HelloWorldImpl.java.

Example 7-1 HelloWorldimpl with Execute Method Implemented

public class Hel |l oWorldlnpl inplenments Executable, Cancellable

{

public void execute(Request ExecutionContext ctx, RequestParaneters parans)

}

throws ExecutionErrorException, ExecutionWarni ngException,

Executi onCancel | edException, ExecutionPausedException

Systemout. printIn("**** Sanple Job Running, Request ID. " +
ctx. get Request 1 d());

public void cancel ()

{
}

}

7.3.3 Adding Application Code to Submit Job Requests

In an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler
APIs to submit job requests from any component in the application. The EssDemoApp
sample application provides a Java servlet for a servlet-based user interface for
submitting job requests (using Oracle Enterprise Scheduler).

7.3.3.1 How to Add Application Code to Submit Job Requests

In this section, you'll create a servlet for receiving job submission requests.

To add a servlet to support job request submissions:

1.

2.

In the Application Navigator, select the EssClient project.
Press Ctrl-N. This displays the New Gallery.
In the New Gallery, in the Categories area, expand Web Tier and select Servlets.

In the Items area, select HTTP Servlet as shown in Figure 7-5.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-9

Building a Combined Oracle Enterprise Scheduler Application

Figure 7-5 Adding Job Type Metadata to the Sample Application

|r"’0 New Gallery x|

Q

Categories ltems: |:| Show All Descriptions
T - UEFFIlEs

[=-Service Bus Tier @ RSyt

—Services Launches the Create HTTP Servlet wizard, which allows you to add a
customized HTTP serviet {java) file to your active project. To enable this
option, you must select a project or a file within a project in the Application
Navigator.

~Interfaces
Transformations
~-Security
Utility @ Servlet Filter
~System [& servlet Listener
=H-SOA Tier
~Faults
Interfaces
~-Service Components
~Tests
~Transformations/Translations
=+-Web Tier
~HTML
JSF
JSF/Facelets
- JSP 3

~-All ltems

Help oK Cancel

5. Click OK. This displays the Create HTTP Servlet wizard.
6. Inthe Welcome page, click Next.

7. In the Create HTTP Servlet - Step 2 of 4: Servlet Information page, specify the
following:

a. In the Class field, enter a name for the servlet class. For this example, enter
the name: EssDenp.

b. In the Package field, enter a package name. For this example, enter
oracl e. essclient.servlet.

c. Inthe Generate Content Type field, from the dropdown list ensure the
HTML is selected.

d. Inthe Implement Methods area, select the doGet() and doPost() check boxes,
as shown in Figure 7-6.

Figure 7-6 Creating a Servlet -- Step 2 of 4

@ Create HTTP Servlet - Step 2 of 4 x

Enter servlet details

Welcome Llass |EssDema
Servlet Information | Package: |m’ac|e essclientservlet |w| Erowse

|

2erviet Mapping |
Aenviel Macoin Generate Content Type: !HTML -

c—e @ e

D Generate Header Comments
Registration:
() Configuration file (web.xmly
() Annotations

Implement Methods:
[v] doGeto [] doDeleteqy []doPutp [+]|doPost()

[] seryiceq

Help < Back Next > Finish Cancel

7-10 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

e. Inthe Registration area, select the Configuration file (web.xml) radio button.
f. Click Next.

In the Create HTTP Servlet - Step 3 of 4: Mapping Information page, specify the
following;:

a. Inthe Name field, enter a name for the servlet. For this example, enter the
name: EssDeno.

b. Inthe URL Pattern field, enter a URL for servlet mapping. For this example,
enter / essdeno/ *.

c. Click Finish.

The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace
the contents of the servlet with the contents of the file EssDemo.java supplied
with the sample application.

7.3.4 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following;:

Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to perform
security checks.

JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of
security policies are applicable.

7.3.4.1 How to Set Oracle Enterprise Scheduler Properties for the Application

In this section, you'll set default values for Oracle Enterprise Scheduler properties.

To set values for Oracle Enterprise Scheduler properties:

1.

2.

3.

In the Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

In the Enterprise Scheduler Properties dialog, enter EssDenpApp for all three of
the fields provided: Logical Application Name, Application Policy Stripe, and
JPS Interceptor Application Name.

Click OK.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-11

Building a Combined Oracle Enterprise Scheduler Application

Figure 7-7 Set Values for Oracle Enterprise Scheduler Properties

Enterprise Scheduler Properties

Enter values for ejb-jar.xml

Logical Application Name: |EssDem0App |

Application Policy Stripe: |E55DemuApp |

|PS Interceptor Application Nam e: |EssDemuApp |

Help oK Cancel

7.3.5 Assembling the EssDemoApp Application

After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following;:
e Create the EJB JAR files.

* Create the application MAR file.

¢ Create the application EAR file.

e Update WAR file options.

7.3.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp

The sample application must contain the required EJB descriptors. You need to create
the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any Java
implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This EJB jar should have its
required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java class
implementations that are going to be submitted to Oracle Enterprise Scheduler. The
descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the
Oracle Enterprise Scheduler E]Bs and should not be modified.

To create the EJB-JAR deployment profile:

1. In the Application Navigator, in the Projects panel, right-click the EssHost project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EJB JAR file.

7-12 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

5. In the Name field, enter a name for the EJB. For this example, enter ess- ej b.

6. Click OK.

Figure 7-8 Create the EJB-JAR Deployment Profile

(o Create Deployment Profile x|
Click OK to create your new deployment profile and immediately open it to see its configuration.
Profile Type:

'EJB JAR File ~
Deployment Profile Mame

ESS-EJb‘

Description:

Creates a profile for deploying the Java EE EJE module (E|B JAR) to an application server. The
EJE JAR contains the EJE components and the corresponding deployment descriptors.

Help I [e] 8 | Cancel

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator on the
left, click General.

8. In the General window, in the Enterprise Application Name field, enter
EssDenpApp.

9. In the navigator, expand to File Groups > Project Output > Contributors.
10. In the Contributors window, select the following check boxes:

® Project Output Directory

¢ Project Source Path

* Project Dependencies
11. In the navigator, expand to File Groups > Project Output > Filters.

12.In the Filters window, on the Files tab, ensure that the following folders are
selected:

e META-INF (and its contents)

e oracle (and its contents)
13.In the JAR Option window, deselect the Include Manifest File item.
14. Click OK.
15. In the Project Properties dialog, click OK.

7.3.5.2 How To Update the WAR Archive Options

In this section, you specify information that Oracle JDeveloper can use to generate a
WAR file.

To update the WAR archive options:

1. In the Application Navigator, in the Projects panel, right-click the EssClient
project, then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window and then click
New.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-13

Building a Combined Oracle Enterprise Scheduler Application

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
WAR file.

5. In the Name field enter WAR_EssDenpApp.
6. Click OK.

7. In the Edit WAR Deployment Profile Properties dialog, in the navigator on the left,
click General.

8. In the WAR Options window deselect | ncl ude Mani fest Fil e(META-1 NF/
MANI FEST. MF) .

9. In the General window, select the Specify Java EE Web Context Root option. In the
field beneath the option, enter EssDenpApp.

10. In the navigator, expand to File Groups > Web Files > Contributors.

11. In the Contributors window, select the following check boxes as shown in Figure
7-9:

® Project Output Directory
* Project HTML Root Directory
* Project Source Path

Figure 7-9 Update the WAR Archive Options

7 Edit WAR Deployment Profile Properties x|

Contributors

- General
WAR Options
(=~ File Groups
{ i=h Web Files
H [Contributors |w|[Project Source Path

|w| Project Output Directory

[v] Project HTML Root Directory

Filters
© [=h WEE-INF/classes
- Contributors

[] Project Dependencies

QOrder of Contributors:
Filters

\ = WEB-INF/lib ,_ Project HTML Root Directory | Add...
o Contributors Project Output Directory

Lo Filters Remove

Project Source Path

- Library Dependencies - N
- Profile Dependencies ove Up
- Platfarm

Help ! [o]'8 | Cancel

12. In the navigator, expand to File Groups > Web Files > Filters.

13.In the Filters window, on the Files tab, ensure that the following folders are
selected:

e oracle (and its contents)

e WEB-INF (and its contents)
Click OK.

14. Navigate to the Project Properties > Libraries and Classpath window. Use the
Add Library button to add the following libraries:

7-14 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

¢ ADF Common Runtime

e ADF Faces Runtimell

e ADF Common Web Runtime
* ADF Page FlowRuntime

e ADF Controller Schema

e ADF Controller Runtime

7.3.5.3 Create the Application MAR File
To create the MAR options:

1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. In the Under Deployment Profiles window, delete all profiles listed in the window
and then click New.

4. Select MAR File Option from dropdown menu and enter MAR_EssDenpApp as the
deployment profile's name.

5. Click OK.

6. In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
navigate to Metadata File Groups > User Metadata.

7. Add the EssDenpApp/ EssHost / essnet a directory.

This selects the appropriate Oracle Enterprise Scheduler user metadata for the
application.

8. Click OK.
9. Click Edit in the Edit MAR Deployment Profile Properties window.

10. Navigate to Metadata File Groups > User Metadata > Directories and select
Directories. Select the bottom most directory in the tree. Select the default values.

This is the directory from which the name space is created. For example, when you
select oracle, the name space is or acl e. When you select the product directory, the
names pace is or acl e/ apps/ pr oduct . To create the name space / or acl e/
esshost/ net adat a, click the metadata directory. The folder you select in this
dialog determines the top-level name space in the adf - confi g. xm file.

11.Click OK.

7.3.5.4 How to Update the EAR Options

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

¢ EJBJAR including the Oracle Enterprise Scheduler Java job implementation.

e WAR archive with the EssDemo servlet.

To update the EAR options:

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-15

Building a Combined Oracle Enterprise Scheduler Application

Click the Application menu, then click Application Properties.
In the Application Properties dialog, in the navigation pane, click Deployment.
In the Deployment window, click New.

In the Create Deployment Profile dialog, select EAR File from the dropdown
menu. In the Name field, enter EAR_EssDenmpApp as the deployment profile's
name.

Click OK.

In the Edit EAR Deployment Profile Properties dialog, in the navigation pane on
the left, click Application Assembly.

In the Application Assembly window, under Java EE Modules, ensure that all item
check boxes are selected.

In the EAR Options window, select Include Manifest File and add
EssHost/src/ META- | NF/ MANI FEST. M.

Click OK.

In the Application Properties dialog, click OK.

Figure 7-10 Update the EAR Archive Options

Edit EAR Deploymer;t Profile Properties

Application Assembly

GCeneral Select the Java EE modules that you would like to assemble into your Java EE
Application Assembly application
EAR Options
File Groups lava EE Modules
=i~ Application Descriptor: = @ EssClient jpr
Contributors v |;| WAR_EssDemodpp
Filters = D EssHaost jpr
=i Application Libraries 4 |;| ess-gjb
Contributors L4 E
Filters
Library Dependencies
PFlatform
Path in EAR:
Help I ok { Cancel

7.3.5.5 Configure Security for the Application

You must create a user that is assigned to the ESsAppl i cat i onRol e role. The
following steps describe how to configure security for the back-end hosting
application:

1.

2.

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

In the Authentication Type page, choose EssClient.jpr in the WebProject
dropdown.

7-16 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

4. Select HTTP Basic Authentication.
5. Click Finish.

A file named j ps- confi g. xm is generated. You can find this file in the
Application Resources panel by expanding Descriptors and META-INF. This file
contains a security context or security stripe named after the application.

6. Select Application > Secure > Test Users & Roles from the main menu.
A file named j azn- dat a. xm is generated.

7. In the overview editor for the j azn- dat a. xm file, click the Add button in the
Users list.

Set the name to EssUser and set the password to wel conel.

8. Click the Application Roles navigation tab to open the Application Roles window
as shown in Figure 7-11.

Figure 7-11 Application Roles Window

Applications @Jazn—data.xm\
(%] EssDemospp = =
=| Projects &) T-E-

#-{0] EssClient

pplication Roles .
Apr Application Roles
Resource Grants

& @ EssHost Create roles specific to this application. Map a role to users or enterprise roles for testing
Entitlement Grants
Test Users & Roles
Roles ap - 3¢ MName: EssApplicationRole
ﬂ anonymous-role Display Name:
._ﬁ authenticated-role
Description
H EssApplicationRole

Mappings Crants

Mapped Users and Roles

i EssUser

=/ Application Resources

.j Euild Files
73 connections
= J Descriptors

=73 META-INF
% jazn-data.xml
%JDS*CDHTIQ xml
@ weblogic-application.xml

+-[77] ADF META-INF

= . . Overview Source History
#1177 Libraries e]

9. Click the Add button in the Roles list and choose Add New Role.
10. Set the name to EssAppl i cati onRol e.
11. Click the Add button in the Mappings tab and choose Add User.

12.Select EssUser and click OK.

7.3.5.6 Add Resource Grants for ESS Application Role in the Job Definition

The following steps describe how to update the job definition by adding resource
grants for the ESS application role.

1. In the HelloWorldJobDefinition.xml Job Definition page, in the Description field,
enter Hel | oWwor | d Exanpl e.

2. In the System Properties section, click the Add button.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-17

Building a Combined Oracle Enterprise Scheduler Application

3. In the Add System Property dialog, from the Name dropdown menu, select
SYS_effectiveApplication.

4. In the Initial Value field, enter EssDenpApp.
5. Click OK.
6. In the Access Control section, click the Add button.

7. In the Add Access Control dialog, from the Role dropdown menu, select
EssApplicationRole. This is the role that you created Configure Security for the
Application.

8. Select the Read and Execute actions.
9. Click OK.

10. Verify that the contents of the generated file are identical to Example 7-2.

Example 7-2 jazn-data.xml

<?xm version = '1.0' encoding = 'UTF-8' standal one = 'yes' ?>
<jazn-data xm ns: xsi="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNamespaceSchemaLocation="http://xnl ns. oracl e. coni or acl eas/ schena/ j azn-
data. xsd">
<jazn-real m defaul t="j azn. cont' >
<real m»
<name>>Usernane / password is: EssUser / wel comel</nane>
<users>
<user >
<nanme>EssUser </ nanme>
<credential s>{903} LngEdVs3z 00/ QnPI0t i hXv4nRq5YqYSL</ credenti al s>
</ user>
</ users>
</real n»
</jazn-real m»
<pol i cy-store>
<appl i cati ons>
<application>
<name>EssDenpApp</ nanme>
<app-rol es>
<app-rol e>
<name>EssAppl i cati onRol e</ name>
<class>oracl e.security.jps.service.policystore. ApplicationRol e</class>
<menber s>
<menber >
<class>oracle.security.jps.internal.core.principals.JpsXm Userlnpl </cl ass>
<nane>EssUser </ name>
</ menber >
</ menber s>
</ app-rol e>
</ app-rol es>
<j azn-policy>
<grant >
<grant ee>
<princi pal s>
<principal >
<cl ass>oracl e. security.jps.service.policystore. ApplicationRol e</cl ass>
<name>EssAppl i cati onRol e</ nanme>
</ princi pal >
</ princi pal s>

7-18 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

</ grant ee>
<perm ssi ons>
<per ni ssi on>
<cl ass>oracl e. as. schedul er. security. Met adat aPer ni ssi on</
cl ass>
<name>or acl e. esshost . met adat a. JobDef i ni tion. Hel | oWr | dJobDef i ni ti on</ nanme>
<acti ons>Read, Updat e, Del et e, Execut e</ acti ons>
</ perni ssi on>
</ pern ssi ons>
</grant>
</jazn-policy>
</ application>
</ applications>
</ policy-store>
<system policy/>
</jazn-dat a>

7.3.5.7 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from webl ogi c-
application.xmn:

<library-ref>
<l'i brary-name>oracl e. appl cp. runtime</|i brary-name>
</library-ref>
<library-ref>
<l'ibrary-name>oracl e. xdo. runtinme</library-name>
</library-ref>

7.3.5.8 Update the EssHost MANIFEST File

Replace the content of the EssHost META- | NF/ MANI FEST. | NF file with the following
lines:

Mani f est-Version: 1.0

\\ebl ogi c- Application-Version: 3.0

Ext ensi on-List: essruntine

essrunti me- Ext ensi on- Nane: oracle.ess.runtine
essrunti me- Speci fication-Version: 12

7.3.5.9 Change the Realm Field

Navigate to EssClient > Web Content > WEB-INF > web.xml as shown in Figure 7-12.
Change the value in the Security window Realm field from:

e jazn.com

to:

e Usernane / password is: EssUser / wel conel

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-19

Building a Combined Oracle Enterprise Scheduler Application

Figure 7-12 Change the Realm Field

Applications %jﬂzn—dﬂla.xni Y web.xml
&I EssDemofpp b L
=| Projects - v SE. o
D _— E‘ Gﬂ ? S Application Security
=1 I.SS |enT:) Servlets
5 ‘:I Application Saurces Filters -] Login Authentication
=17 Web Content
[0 WEE-INF Security
r il
|_—'E| adfc-config.xml Pages HDnEB ic Autherticat RFC 2617
faces-config.xml REFEFENCES) Hitp Basic Authentication (}.
trinidad-config.xml Realm: T e sword is: EssUser / welcom
) web. x| Http Digest Authentication (RFC 2617)

|E| weblogic.xml
417 Page Flows
+ Iﬁl EssHost Form-EBased Authentication

Http Client Authentication { public key certificate)

+| Security Roles
= Application Resources

|:| Euild Files + Security Constraints
e timme

7.3.5.10 Edit the adf-config.xml File for the EssDemoApp Application

1. Inthe Application Resources panel, expand Descriptors, expand ADF META-
INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf - confi g. xm file with the
XML code shown in Example 7-3.

Example 7-3 adf-config.xml File for a EssDemoApp Application

<?xm version="1.0" encodi ng="UTF-8" ?>

<adf-config xm ns="http://xn ns. oracl e. com adf/confi g" xm ns:sec="http://

xm ns. oracl e. com adf / security/ config">

<sec: adf -security-child xm ns="http://xm ns. oracl e. conl adf/ security/config">

<Credenti al St oreCont ext

credential Stored ass="oracl e. adf . share. security. providers.jps. CSFCredenti al St ore"

credential StoreLocation="../../src/ META-INF/jps-config.xm"/>

<sec: JaasSecuri t yCont ext

i nitial ContextFactoryd ass="oracl e. adf. share. security.JAASI nitial ContextFactory"

j aasProvi der O ass="oracl e. adf . share. security. providers.jps. JpsSecurityContext"
aut hori zati onEnforce="fal se" authenticationRequi re="true"/>
</ sec: adf -security-child>
<adf - nds-config xm ns="http://xm ns. oracl e. com adf/ nds/ confi g">
<mds- config version="11.1.1. 000" xm ns="http://xnins. oracle.com nds/config">
<persi st ence-config>
<met adat a- namespaces>
<namespace path="/oracl e/ as/ ess/core" metadat a- st ore-usage="ess-core"/>
</ met adat a- nanespaces>
<met adat a- st or e- usages>
<net adat a- st or e- usage i d="ess-core" depl oy-target="fal se"
defaul t-cust-store="fal se">
<net adat a-store cl ass-
nane="or acl e. mds. per si st ence. st ores. db. DBMet adat aSt ore" >
<property name="jndi - dat asource" val ue="j dbc/ nds- ESS_MDS _DS"/ >
<property name="repository-nanme" val ue="nds-ESS MdS DS'/ >
<property name="partition-name" val ue="essapp-internal-partition"/>
</ net adat a- st or e>

7-20 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

</ net adat a- st or e- usage>
</ met adat a- st or e- usages>
</ persi st ence- confi g>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - confi g>

7.3.6 Deploying and Running the EssDemoApp Application

After you complete the steps to build and assemble the EssDemoApp application you
need to deploy the application to Oracle WebLogic Server. After you successfully
deploy an application you can run the application. For the EssDemoApp sample
application you use a browser to run the EssDemo servlet to submit job requests to
Oracle Enterprise Scheduler running on Oracle WebLogic Server.

7.3.6.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:

1. Check to make sure the Oracle WebLogic Server is up and running. If the Oracle
WebLogic Server is not running, start the server. Make sure Oracle JDeveloper has
a connection to the server (for this example, "MyConnection").

2. In the Application Navigator, select the EssDemoApp application.

3. Inthe Application Navigator from the Application Menu select Deploy >
EAR_EssDemoApp > to > MyConnection.

4. Oracle JDeveloper shows the Deployment Configuration page. Select the
appropriate options for your Metadata Repository.

5. Make the following choices when prompted during deployment. In the Metadata
Repository section choose the repository and partition names as follows and
shown in Figure 7-13:

a. Repository Name: mds-ESS_MDS_DS

b. Partition Name: essUser Met adat a

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-21

Building a Combined Oracle Enterprise Scheduler Application

Figure 7-13 Oracle Deployment Configuration Window

Oracle Depluyme_nt Configuration

Configure and customize settings for this deployment [
MD5
Metadata Repository
Repository Name: |mds=ESS_MDS_DS bt
Repository Type: DB
Partition Mame: essUserMetadatal il
Path/INDI Info: jdbc/mds-ESS_MDS_DS
Shared Metadata Repositories
MNamespace Repository Type Partition Path/JMDI Info
Joraclefas/ess/core mds-ESS_MDS_DS > |DE essapp-internal-partition ™ |jdbc/mds-ES5_MD5_DS

Help Leploy Cancel

6. Click Deploy.
7. Verify the deployment using the Deployment Log.

7.3.6.2 How to Run the EssDemoApp Sample Application

To run the EssDemoApp sample application you access the EssDemo servlet in a
browser.

To access the EssDemo servlet:
1. Enter the following URL in a browser:

http:/ /host:http-port / context-root / essdemo

For example,

http://nyserver. exanpl e. com 7101/ EssDenmoApp/ essdeno

This shows the EssDemo servlet, as shown in Figure 7-14.

7-22 Developing Applications for Oracle Enterprise Scheduler

Building a Combined Oracle Enterprise Scheduler Application

N

w

Fig

ure 7-14 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample

Application

Enterprise Scheduler Service DemoApp

Launch Job

Job: HelloWorldTestAppJob ~
Schedule: Immediately -

Messages

Request Status

|rquD | Description | Scheduled time | State |Acti0n
1 [Basiclavalob@lmmediately [Mon Feb 24 02:33:28 PST 2014 [SUCCEEDED |
2 |HelloWorldJobDefinition@Immediately [Mon Feb 24 05:24:16 PST 2014|SUCCEEDED |
3 [HelloWorldJobDefinition@Immediately [Mon Feb 24 05:25:44 PST 2014 |SUCCEEDED |

[4 [Basiclavalob@lmmediately [Mon Feb 24 05:25:49 PST 2014 SUCCEEDED |
5 [HelloWorldJobDefinition@Immediately [Mon Feb 24 05:25:52 PST 2014 [SUCCEEDED |
l6 [HelloWorldlob@lmmediately [Mon Feb 24 10:00:10 PST 2014 [SUCCEEDED |

Select a job definition from the Job drop-down menu.

Select a value from the Schedule drop-down menu.

Click Submit.

Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 7-15.

Fig

ure 7-15 Running EssDemo Servlet with Request Status for Submitted

Requests

Enterprise Scheduler Service Tutorial

Launch Job
Joh: | Job\WithParams v Messages
Schedule: | mmediately - Mew request 2 launched using Job_essdeme 1 @Immediately
Request Status
|req[D| Description | Scheduled time | State | Action

i

[Tob_essdemo 1 @lmmediately [Wed Jan 07 14:05:05 PST 2009 [SUCCEEDED | Purge |

B

[Tob_essdemo 1 @lmmediately [Fri Jan 09 14:31:47 PST 2009 [WAIT Ccancel]

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-23

Building Split Submitting and Hosting Applications

7.3.6.3 How to Purge Jobs in the EssDemoApp Sample Application

Using the EssDemoApp sample application and the EssDemo servlet you can remove
completed jobs from the Request Status list.

To remove completed jobs:

1. Click Purge to purge a request.

2. Click Cancel to cancel a request that is either RUNNI NGor WAI TI NG

7.4 Building Split Submitting and Hosting Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use
two split applications -- a job submission application, a submitter, and a job execution
application, a hosting application. Using this design, you need to configure and
deploy each application with options that support such a split configuration.

In addition, some Oracle Enterprise Scheduler deployments use a separate Oracle
WebLogic Server for the hosting and the submitting applications; for this deployment
option the submitting application and the hosting application are deployed to separate
Oracle WebLogic Servers. When the submitter application and the hosting application
for Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to
configure the Oracle WebLogic Server for the hosting application so that the
submitting application can find the hosting application.

Note:

This section creates a new application. If you have created EssDemoApp with
the sections beginning with Creating the Application and Projects for
EssDemoApp Application, note that this section creates a project of the same
name. You'll need to choose a different location for the application or delete
the previous application in order to use the EssDemoApp application name in
this section.

To build the sample split applications, you do the following;:

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.
This section includes the following subsections:

e How to Create the Back-End Hosting Application for EssDemoApp

* How to Create the Front-End Submitter Application for Oracle Enterprise
Scheduler

7.4.1 How to Create the Back-End Hosting Application for EssDemoApp

Using Oracle JDeveloper you create the back-end application. To create the
EssDemoApp back-end sample application you do the following:

¢ Create a back-end application and project.

7-24 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

¢ Configure security.
¢ Define the deployment descriptors.

* Create the Java class that implements the Oracle Enterprise Scheduler executable
interface.

* Create the Oracle Enterprise Scheduler metadata to describe the job
¢ Assemble the application.

¢ Deploy the application.

7.4.1.1 Creating the Back-End Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle
JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduler extensions to the project.

To create the back-end hosting application:
1. From JDeveloper choose File > New from the main menu.

2. Inthe New Gallery, expand General, select Applications and then Custom
Application, and click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDenpApp.

4. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you create and
save the Oracle Enterprise Scheduler metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter Super Ess.

b. On the Project Features tab, under Available, double-click ESS Host Support
and ESS Job Support so that both are listed under Selected on the right side
of the dialog box.

For more on these, see Understanding Oracle Enterprise Scheduler
Application Support Created by Oracle JDeveloper.

c. Click Next.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-25

Building Split Submitting and Hosting Applications

9.

Figure 7-16 Create the Back-End Hosting Application

i Create Custom Application - Step 2 of 6 x|

Name your project

Project Name: |SuperEss |
b Application Hame

Directory:

Browse...

I
Sl Project Name

+ Project |ava Setiings Project Features Generated Components Associated Libraries

l ADF Page Flow
I ADF Swing

- Ant

BPM »
[ay]]
Database Modeling 3
EJ& Maodeling

ESS Client Support

Available: Selected:
DT MU DO SIS S T

Extension Development

Extension Development Feature Description:

The extension development feature allows users to create extensions to
|Developer. These extensions may augment or modify the behavior of
Developer.

Help < Back Next > inish Cancel

Ei
b

In the Configure Java Settings page, change the default package to
oracl e. apps. ess. how o, then click Next.

In the Configure E]B Settings page, select Generate ejb-jar.xml in this project and
click Next.

In the Configure ESS Host Support settings page, in the Application Id field, enter
EssDemoApp.

Click Finish.

7.4.1.2 Configuring Security for the Back-End Hosting Application

You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:

1.

2.

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

In the Authentication Type page, accept the default values as this application does
not have a web module to secure.

Click Finish.

A file named j ps- confi g. xm is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding META-
INF. This file contains a security context or security stripe named after the
application.

Select Application > Secure > Test Users & Roles from the main menu.
A file named j azn- dat a. xm is generated.

In the overview editor for the j azn- dat a. xnl file, click the Add button in the
Users list.

Set the name to EssDenmpbAppUser and set the password to wel conel.

7-26 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

8. Click the Application Roles navigation tab.

9. Click the Add button in the Roles list and choose Add New Role.
10. Set the name to EssDenpAppRol e.

11. Click the Add button in the Mappings tab and choose Add User.
12.Select EssDenpAppUser and click OK.

Figure 7-17 Configuring Security

f-’) Start Page E’a HelloWerldjobDef.xml @j&zmda:a.xﬂrﬁ

@
Application Roles Application Roles Security Palicy: |EssDemofpp ™
Resource Grants)
Create roles specific to this application. Map a role to users or enterprise roles fortesting.
Entitlement Crants
Test Users & Roles
Roles o - x Name |[EssDemoAppRaole
’_ﬁ(anuﬂymuus—rule D\S|3|a\f Mame:
i _ﬂ authenticated-role ik
s Description:
ﬂ EssDemoAppRole
Mappings Crants
Mapped Users and Roles l* = %

\f‘ EssDemoAppUser

7.4.1.3 Defining Metadata for the Back-End Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you
need to create metadata that defines a job request, including the following:

¢ Ajob type: this specifies an execution type and defines a common set of parameters
for a job request.

* A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

To create metadata for the back-end hosting application:
1. Inthe Application Navigator, select the SuperEss project.
2. Press Ctrl-N. This displays the New Gallery.

3. Inthe Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

4. In the Items area, select Job Definition as shown in Figure 7-18.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-27

Building Split Submitting and Hosting Applications

Figure 7-18 Adding Job Definition to the Sample Application

& New Gallery rg|
(All Technologies r Current Project Technologies |
(8)
Categories: Items: [Show All Descriptions
- o
i o
: ML E; Job Type
= -Business Tier. EB. Job Definition
""" ADF Business Componients Launches Job Definition Creation.
----- Business Inteligence
..... Data Contrals Tao enable this option, wou must select a project, or a file within a project in the
Application Mavigator,
[Job et
E% Incompatibility
[Schedule
[=+-Client Tier
----- ADF Deskbop Integration
----- ADF Swing
----- Extension Development
----- Swingf AT
[=}-Database Tier
- Database Files
= ----- Database Objects

| Help | | K,] | Cancel
__ I

5. Click OK. This displays the Create Job Definition dialog.

6. In the Create Job Definition dialog, specify the following as shown in Figure 7-19:

a. Inthe Name field, enter a name for the job definition. For this example, enter
the name: Hel | oWor | dJobDef .

b. In the Package field, enter a package name. For this example, enter or acl e/
apps/ ess/ howt o/ net adat a.

c. Inthe Job Type field, from the dropdown list select /oracle/as/ess/core/
JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in How to Start JDeveloper to Support Building
Oracle Enterprise Scheduler Applications.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class
for your Java job be created, saving you the trouble of creating one later.
Selecting the Synchronous option specifies that this is a synchronous Java job.

e. Under Java Class, specify details for the Java class you're creating. In the Java
Package field, enter its package name - here, enter
oracl e. apps. ess. howt 0. In the Class Name field, enter a name for the
class -- here, enter Hel | oWor | dJob.

f. Click OK.

This creates the Java class you requested, along with the
Hel | oWor | dJobDef i ni ti on. xni file. Oracle JDeveloper displays XML
file's contents in the Job Definition page.

7-28 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

10.

11.

12.

13.

14.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

Figure 7-19 Create a Job Definition

3 Create Job Definition X

Job Definition

A job definition describes a job (basic unit of work) that runs in the
scheduler. A job definition requires a job type.

Name: HelloWorldjobDef

Package: oracle/apps/ess/howto/metadata

Job Type: Joraclefasfess/coreflavalobType -
Laocation: ‘scratch/ababchak/jdeveloper/mywork/EssDemofpp/SuperEs:

v | Create Java Class
Jawa Class

#) Synchronous

Asynchronous
Location: Jscratch/ababchak/jdeveloper/mywork/EssDemofpp/Sup
lava Package: |pracleapps.ess.howto Q

Class Mame: HeIIoWandJnIJ|

Help | (] 8 Cancel

In the HelloWorldJobDef.xml Job Definition page, in the Description field, enter
Hel | oWbr I d Exanpl e.

In the System Properties section, click the Add button.

In the Add System Property dialog, from the Name dropdown, select
SYS_effectiveApplication.

In the Initial Value field, enter EssDenpApp.
Click OK.
In the Access Control section, click the Add button.

In the Add Access Control dialog, from the Role dropdown, ensure that
EssDemoAppRole is selected. This is the role that you created during
Configuring Security for the Back-End Hosting Application.

Select the Read and Execute actions as shown in Figure 7-20.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-29

Building Split Submitting and Hosting Applications

Figure 7-20 Add Access Control Dialog

a Add Access Control x
Select arole and specify the actions it can perform.
Rale: | EecpemoAppRole -
+| Read
W | Execute
Update
Delete
Help | ok Cancel
15. Click OK.

7.4.1.4 Creating a Java Implementation Class in the Back-End Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Execut abl e interface. The Execut abl e interface specifies the contract
that allows you to use Oracle Enterprise Scheduler to invoke a Java class.

To implement the execute method:

1. In the Application Navigator, locate the class you created by expanding the items
in the projects panel to SuperEss > Application Sources > oracle.apps.ess > howto >
HelloWorldJob.java.

2. Open HelloWorldJob.java in the source editor.

3. In the source editor, add the following code to implement the execut e method.
The execut e method is where execution for a Java job begins. The code inside
your method should look something like Example 7-4.

Example 7-4 HelloWorldJob Execute Method Code

StringBuilder sb = new StringBuilder(1000);
sb. append("\n ")
sb. append("\ n= EssDenmbApp request i s now running");
long myRequestld = ctx. get Requestid();
sb. append("\n= Request Id =" + nyRequestld);
sb. append("\ n= Request Properties:");
for (String parankey : parans. get Nanes()) {
bj ect paranVal ue = parans. get Val ue(par ankey) ;
sb. append("\n=\t (" + paranmkKey + ", " + paranValue + ")");

}

sb. append("\n=");
sb. append("\n ")

Logger |ogger = Logger. get Logger ("oracle. apps. ess. howt0");
| ogger.info(sh.toString());

7-30 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

7.4.1.5 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following;:

e Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

* Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to perform
security checks.

e JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of
security policies are applicable.

To set values for Oracle Enterprise Scheduler properties:

1. Inthe Application Navigator, right-click the SuperEss project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter Ess DenmpApp for all three of
the fields provided: Logical Application Name, Application Policy Stripe, and
JPS Interceptor Application Name.

3. Click OK.

7.4.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise
Scheduler

After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following;:
e Create the EJB Java Archive
* Create the application MAR and EAR files

7.4.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application
The E]B Java archive file includes descriptors for the Java job implementations.

To create the EJB-JAR deployment profile:

1. In the Application Navigator, in the Projects panel, right-click the SuperEss project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EJB JAR file.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-31

Building Split Submitting and Hosting Applications

5. In the Name field, enter a name for the EJB. For this example, enter
JAR Super EssEj bJdar.

6. Click OK.

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator, expand
to File Groups > Project Output > Contributors.

8. In the Contributors window, select the following check boxes:
¢ Project Output Directory
* Project Source Path
¢ Project Dependencies
9. In the navigator, expand to File Groups > Project Output > Filters.

10. In the Filters window, on the Files tab, ensure that the following folders are
selected:

e META-INF (and its contents)

e oracle (and its contents)
11.In the JAR Option window, deselect the Include Manifest File item.
12. Click OK.
13.In the Project Properties dialog, click OK.

7.4.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the EJB JAR including the Oracle Enterprise
Scheduler Java job implementation.

To update the EAR options:

1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.
3. Select the default MAR file profile, then click Edit.

4. In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
expand to Metadata File Groups > User Metadata then click the Add button to
add a contributor and add this directory: EssDenbApp/ Super Ess/ essiet a

5. Click OK.
6. Click Edit on Edit MAR Deployment Profile Properties window.

7. In the Directories window, select the oracle.apps.ess.howto check box, then click
OK.

8. Delete all profiles listed in the Under Deployment Profiles window and click New.
9. Add the EssDemoApp/EssHost/essmeta directory.

This selects the appropriate Oracle Enterprise Scheduler user metadata for the
application.

7-32 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

10. Click OK.
11. Click Edit on Edit MAR Deployment Profile Properties window.

12.In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EAR File.

13.In the Name field, enter EAR_EssDenpAppEar .

Click OK.

14.In the Edit EAR Deployment Profile Properties dialog, in the navigation pane,
select General.

15.In the General window, in the Application Name field, enter ESsDenpApp.
16. In the navigation pane, select Application Assembly.

17.In the Application Assembly window, ensure that all check boxes are selected as
shown in Figure 7-21.

Figure 7-21 Edit EAR Deployment Profile Properties

Edit EAR Deployiient Profile Properties

Application Assembly

Select the Java EE modules that you would like to assemble into your Java EE

Application Assembly application.
----- EAR Options
- File Groups lava EE Modules:
E} Application Descriptors bt MAR_EssDemodpp
L Contributors - [E] SuperEss jpr
- Filters L JAR_SuperEssEjbjar
= Application Libraries
----- Contributors
L Filters
----- Library Dependencies
----- Flatfarm P
Help QK Cancel

18.In the EAR Options window, select Include Manifest File and add EssDenpApp/
Super Ess/ src/ META- | NF/ MANI FEST. M.

19. Click OK.
20. In the Application Properties dialog, click OK.

7.4.1.7 Update the SuperEss MANIFEST File

Replace the content of the SuperEss META- | NF/ MANI FEST. | NF file with the
following lines:

Mani f est - Ver si on:
1.0

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-33

Building Split Submitting and Hosting Applications

\\ebl ogi c- Application-Version: 3.0

Ext ensi on-List: essruntine

essrunti me- Ext ensi on- Nane: oracle.ess.runtine
essrunti me- Speci fication-Version: 12

7.4.1.8 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from webl ogi c-
application.xmn:

Path to the Weblogic application:
EssDenpApp/ src/ META- | NF/ webl ogi c-appl i cati on. xm

<library-ref>

<l'i brary-name>oracl e. appl cp. runtime</|i brary-name>
</library-ref>
<library-ref>

<l'i brary-name>oracl e. xdo. runtinme</library-name>
</library-ref>

7.4.1.9 Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...
2. Set up and deploy the application to a container.

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

7.4.1.10 Edit the adf-config.xml File for the EssDemoApp Application

In the Application Resources panel:
1. Expand Descriptors.

2. Expand ADF META-INF.

3. Double-click adf-config.xml.

4. In the source editor, replace the contents of the adf - confi g. xmi file with the
XML shown in Example 7-5.

Example 7-5 adf-config.xml File

<?xm version="1.0" encodi ng="UTF-8" ?>
<adf-config xm ns="http://xn ns.oracl e. com adf/confi g" xm ns:config="http://
xm ns. oracl e. coni bc4j / confi guration">
<adf-security-child xm ns="http://xm ns.oracl e. con adf / security/ config">
<JaasSecuri t yCont ext
i nitial ContextFactoryd ass="oracl e. adf. share. security.JAASI nitial ContextFactory"
jaasProvi der O ass="oracl e. adf . share. security. providers.jps.JpsSecurityContext"
aut hori zati onEnforce="fal se" authenticationRequire="true"/>
</ adf-security-child>
<adf-adf mconfig xm ns="http://xn ns. oracl e. coni adf m confi g">
<def aul ts changeEvent Pol i cy="ppr"
useBi ndvarsForViewCriterialiteral s="true"

7-34 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

useBi ndVal uesl nFi ndByKey="t rue"/>
<startup>
<anmconfi g-overri des>
<confi g: Dat abase jbo. | ocking. node="optinistic"/>
</ antonfi g-overrides>
</startup>
</ adf - adf m confi g>
<adf - mds-config xm ns="http://xm ns. oracl e. cont adf / nds/ confi g">
<mds- config version="11.1.1. 000" xm ns="http://xnins. oracle.com nds/config">
<persi st ence-config>
<met adat a- namespaces>
<namespace path="/oracl e/ as/ ess/core" metadat a- st ore-usage="ess-core"/>
</ met adat a- nanespaces>
<met adat a- st or e- usages>
<net adat a- st or e- usage i d="ess-core" depl oy-target="fal se"
defaul t-cust-store="fal se">
<net adat a-store cl ass-
nane="or acl e. nds. per si st ence. st or es. db. DBMet adat aSt ore" >
<property name="jndi - dat asource" val ue="j dbc/ nds- ESS_MDS _DS"/ >
<property name="repository-nanme" val ue="nds-ESS MdS DS"/>
<property name="partition-nane" val ue="essapp-internal-partition"/>
</ net adat a- st or e>
</ net adat a- st or e- usage>
</ met adat a- st or e- usages>
</ persi st ence- confi g>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - confi g>

7.4.2 How to Create the Front-End Submitter Application for Oracle Enterprise
Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise
Scheduler APIs to submit job requests from a front-end application. The
EssDenmpbAppUl application provides a Java servlet for a servlet based user interface
for submitting job requests (using Oracle Enterprise Scheduler).

To create the front-end submitter sample application you do the following:
¢ Create a front-end application and project.

e Configure the ej b-j ar. xm file.

¢ Create the web project

¢ Configure security.

* Create the HTTP servlet.

¢ Edit the web. xnl file.

e Edit the webl ogi c- appl i cati on. xnl file.

e [Edit the adf - conf i g file.

¢ Assemble the application.

¢ Deploy the application.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-35

Building Split Submitting and Hosting Applications

7.4.2.1 Creating the Front-End Submitter Application

You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

To create the front-end submitter application:

1. Complete the steps in Creating the Back-End Hosting Application but this time use
ESSDenpAppUl as the name of the application. When you configure ESS host
support settings, in the Application Id field, be sure to enter EssDemoApp.

7.4.2.2 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:
1. Right-click the SuperEss project and choose New.

2. Inthe New Gallery, expand General, select Projects and then Custom Project,
and click OK.

3. Inthe Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you create and
save the Oracle Enterprise Scheduler metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter Super V\éb.

b. On the Project Features tab, under Available, double-click ESS Client
Support, JSP and Servlets, so that both are listed under Selected on the right
side of the dialog box.

For more on ESS Client Support, see Understanding Oracle Enterprise
Scheduler Application Support Created by Oracle JDeveloper.

Click Next.

4. Inthe Default Package field of the Configure Java settings window, enter
oracl e. apps. ess. howt o. Click Next.

5. In the Configure E]JB Settings window, under EJB Version, select the Enterprise
JavaBeans 3.0 option button.

6. In the Configure E]JB Settings window, under EJB Version 3.x, select the Generate
ejb-jar.xml in this project check box.

7. Click Finish.

7.4.2.3 Configuring Security for the Front-End Submitter Application

You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application simply shares the users and roles created
by the EssDemoApp application.

To configure security for the front-end submitter application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. Inthe ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

7-36 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

Select HTTP Basic Authentication.

Figure 7-22 Configure ADF Security

Configure ADF Security - Step 2 of 4

Select authentication type
Configure authentication type for your web project. If configuring ADF security for a
AT ADF Security model application that doesn't require web authentication, select < No Web
\:_.' Authentication Type AT D R >
+ Authenticated Welcon Web Project: |SuperiWeb jpr o
Authentication Type
(3) HTTF Basic Authentication
() HTTP Digest Authentication
() HTTPS Client Authentication (Public Key Certificate)
(") Farm-Based Authentication
®
%
Example for ADF Faces pages: /faces/page. jspx
Help < Back Mewxt = Einish Cancel

5. Click Finish.

A file named j ps- confi g. xm is generated. You can find this file in the

Application Resources panel by expanding Descriptors, and expanding META-
INF.

7.4.2.4 Creating the HTTP Servlet for the Front-End Submitter Application

Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:

1.

2.

Right-click the SuperWeb project and choose New.

In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDenpAppSer vl et in the Class field.

Change the selection from Annotation to Configuration File(web.xml).
Enter or acl e. apps. ess. how o in the Package field and click Next.
Click Finish.

In the source editor, replace the contents of ESSDenpAppSer vl et . j ava with the
code in Example 7-6.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-37

Building Split Submitting and Hosting Applications

Example 7-6 HTTP Servlet Code for the Front-End Submitter Application

package oracle. apps. ess. howt o;

inport java.io.|CException;
inport java.io.PrintWiter;
inport java.io.StringWiter;

import java.util.Arraylist;
inport java.util.Cal endar;
inport java.util.Enuneration;
import java.util.HashSet;
inport java.util.lterator;
import java.util.List;

inport java.util.Listlterator;
inport java.util.Mp;

import java.util.Set;

import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
inport java.util.regex.Pattern;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

i mport javax.servlet.http. HtpServlet;

inmport javax.servlet.http. HtpServletRequest;
inport javax.servlet.http. HtpServletResponse;
i mport javax.servlet.http. HtpSession;

i mport oracl e. as. schedul er. Met adat albj ect | d;

i mport oracl e. as. schedul er. Met adat aChj ect | d. Met adat aChj ect Type;
i mport oracl e. as. schedul er. Met adat aSer vi ce;

inmport oracle. as. schedul er. Met adat aSer vi ce. Quer yFi el d;
i mport oracl e. as. schedul er. Met adat aSer vi ceHand| e;

i mport oracl e. as. schedul er. Request Det ai | ;

i mport oracl e. as. schedul er. Request Par anet ers;

i mport oracl e. as. schedul er. Runti nmeServi ce;

i mport oracl e. as. schedul er. Runti nmeServi ceHand| e;

i mport oracle.as.schedul er. State;

import oracle. as. schedul er.core. Jndi Wil;

public class EssDenmoAppServl et extends HtpServlet {
@uppr essWar ni ngs(" conpati bility: 4685800289380934682")
private static final long serial VersionUD = 1L;

private static final String CONTENT_TYPE = "text/htn; charset=UTF-8";
private static final String MESSAGE KEY = "Message";
private static final String PATH SUBMT = "/submitRequest”;
private static final String PATH ALTER = "/al ter Request";
private static final String MDO SEP = ";";
private static final String ACTI ON_CANCEL = "Cancel ";
private static final String ESS UNAVAIL_MSG =
"<p>Enterprise Scheduler Service is currently unavailable. Cause: %</ p>";

private enum PseudoSchedul eChoi ces {
| medi atel y(0),
I nTenSeconds(10),
InTenM nut es(10 * 60);

7-38 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

@uppr ess\War ni ngs("conpatibility:-5637079380819677366")
private static final long serial VersionUD = 1L;

private int mseconds;

private PseudoSchedul eChoi ces(int seconds) {
m seconds = seconds;

}

public int getSeconds() {
return mseconds;
}

public EssDenpAppServlet() throws ServletException {
super();

}

@wverride
public void init(ServletConfig config) throws ServletException {
super.init(config);

}

@wverride
public void doGet(HtpServletRequest request, HtpServletResponse response)
throws ServletException, |CException

{
response. set Cont ent Type(CONTENT_TYPE) ;
Ht t pSessi on session = request. get Sessi on(true);
String |astMessage = String.val ueCf (session. get Attribute(MESSAGE_KEY));
if ("null".equal s(lastMessage)) {
| ast Message = "";
}
try {
RuntimelLists runtineLists = getRuntimeLists();
Met adat aLi sts netadatali sts = get Met adat alLi sts();
render Response(net adat aLi sts, runtineLists,
request, response, |astMessage);
} catch (ServletException se) {
throw se;
} catch (Exception e) {
t hrow new Servl et Exception(e);
}
}
@verride

public void doPost (HttpServl et Request request,
Ht t pSer vl et Response response)
throws ServletException, |CException

response. set Cont ent Type(CONTENT_TYPE) ;
request . set Charact er Encodi ng(" UTF-8");

Ht t pSessi on session = request. get Session(true);

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-39

Building Split Submitting and Hosting Applications

String pathinfo = request.getPathlinfo();

/] Oear the nessage on every post request
StringBui | der nessage = new StringBuilder("");

try {
/] Select each handl er based on the formaction

if ("".equal s(pathinfo)) {
/1 No processing
} else if (PATH SUBM T. equal s(pathlnfo)) {
post Submi t Request (request, nessage);
} else if (PATH ALTER equal s(pathinfo)) {
post Al t er Request (request, message);
} else {
message. append(String. format ("<p>No handl er for pathlnfo=%s</p>",
pathinfo));
1

catch (ServletException se) {
Throwabl e t = se. get Cause();
String cause = (t == null) ? se.toString() : t.toString();
message. append (String.format(ESS_UNAVAIL_MSG cause));

}

/1 Storing the messages in the session allows themto persist
/1 through the redirect and across refreshes.
session. set Attribut e(MESSAGE_KEY, message.toString());

/'l render the page by redirecting to doGet(); this intentionally
[l strips the actions and post data fromthe request.
response. sendRedi rect (request . get Context Path() +

request . get Servl etPath());

}

/**

* Handl e the job subm ssion form

* (@aram request

* (@ar am nessage

* @hrows ServletException

*/

private voi d postSubm t Request (Ht t pServl et Request request,

StringBuil der message)

throws Servl et Exception

String jobDef Nane = request. get Paraneter("job");
String schedul eDef Nane = request. get Paranet er ("schedul e");

/] Various required args for submi ssion
Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, 2);

/1 Launch the job based on formcontents
if (jobDefName == null || schedul eDef Name == null) {
message. append("Both a job name and a schedul e nane nust be specified
\n");
} else {
PseudoSchedul eChoi ces pseudoSchedul e = nul | ;

/] See if schedule given is actually a pseudo schedul e
try {

7-40 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

pseudoSchedul e = PseudoSchedul eChoi ces. val uet (schedul eDef Nare) ;
} catch (Il1egal Argunent Exception e) {

[l The string is not a valid nenber of the enum

pseudoSchedul e = nul | ;

Met adat aCbj ect | d schedul eDefld = nul I ;
String schedul eDef NanePart = null;
Met adat aCbj ect 1 d jobDefld = stringToMet adat aChj ect | d(j obDef Nare) ;

/1 Don"t look up schedules that aren't real
if (pseudoSchedule !'= null) {
schedul eDef NanePart = schedul eDef Narre;
start.add(Cal endar. SECOND, pseudoSchedul e. get Seconds());
} else {
schedul eDefld = stringToMet adat aChj ect | d(schedul eDef Nane) ;
schedul eDef NanePart = schedul eDef | d. get NamePart ();

}

String jobDef NanePart = jobDefld. get NamePart();
String requestDesc = jobDef NanePart + "@ + schedul eDef NanePart ;

Logger |ogger = getLogger();
I ong request!d = submt Request (pseudoSchedul e, request Desc,
jobDefld, scheduleDefld, start, |ogger);

/| Popul ate the nessage bl ock based on results
message. append(String. format ("<p>New request %l | aunched using %</ p>",
requestld, requestDesc));

}

private Long submtRequest (final PseudoSchedul eChoi ces pseudoSchedul e,
final String requestDesc,
final MetadataCbjectld jobDefld,
final MetadataChjectld schedul eDefld,
final Calendar start,
final Logger |ogger)
throws Servl et Exception

Runt i meServi cePayl oad<Long> nyPayl oad = new Runti meServi cePayl oad<Long>() {
@verride
Long execut e(RuntineService service,
Runt i meSer vi ceHandl e handl e,
Logger | ogger)
throws Exception

{
Request Paraneters parans = new Request Paraneters();
return (null != pseudoSchedul e)
? service. subni t Request (handl e, requestDesc, jobDefld,
start, parans)
. service.subm t Request (handl e, requestDesc, jobDefld,
schedul eDef I d, null,
start, null, parans);
}
¥
try {

return perfornmOperation(nyPayl oad, |ogger);
} catch (Exception e) {

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-41

Building Split Submitting and Hosting Applications

t hrow new Servl et Exception("Error submitting request using job: " +
jobDefld + " and schedule: " +
schedul eDefl d, e);

}

/**
* Handl e the "Cancel" and "Purge" actions fromthe form enclosing
* the Request Status table.
* (@aram request
* (@ar am nessage
* @hrows ServletException
*/
private voi d post Al terRequest (HttpServletRequest request,
StringBuil der nessage)
throws Servl et Exception

String cancel ID = null;

/
there are a few assunptions going on here...

the HTTP button being used to transmit the action and

request is backwards fromits normal usage (eg. the name
shoul d be invariable, and the value variable). Because we
want to display either "Purge" or "Cancel" on the button, and
transmt the reqld with it, we are reversing the map entry
to get the key (which in this case is the reqlD), and

match it to the value (Purge or Cancel).

Assunptions are that there is only one entry in the nap

per request (one purge or cancel). Also, that the datatypes
for the key and val ue are those docunented for

Servl et Request (<K, V> = <String, String[]>).

R

*

*|
Map request Map = request. get Paranet er Map() ;
Iterator maplter = requestMap.entrySet().iterator();
while (maplter.hasNext()) {
Map. Entry entry = (Map. Entry)maplter. next();
String key = (String)entry.getKey();
String[] values = (String[])entry.getValue();
i f (ACTI ON_CANCEL. equal s(val ues[0])) {
cancel I D = key;
}

}

if (cancelID!= null) {
try {
final String cancell1d2 = cancel I D;
Runt i meSer vi cePayl oad<Voi d> nyPayl oad = new
Runt i meServi cePayl oad<Voi d>() {
@verride
Voi d execut e(Runti meServi ce service,
Runt i meServi ceHandl e handl e,
Logger | ogger)
throws Exception

servi ce. cancel Request (handl e, Long. val ueC (cancel 1d2));
return null;

b

Logger |ogger = getLogger();

7-42 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

per f or mOper at i on(myPayl oad, |ogger);
message. append
(String.format("<p>Cancel | ed request %</p>", cancellD));
} catch (Exception e) {
t hrow new Servl et Exception
("Error canceling or purging request", e);

} else {
message. append(“<p>No purge or cancel action specified</p>");
}
}

private String netadatahject|dToString(MetadataChject!d ndol D)
throws ServletException {

String ndoString =
mdol D. get Type() . val ue() + MDO_SEP + ndol D. get PackagePart () +
MDO_SEP + ndol D. get NanePart () ;

return ndoString;
}

private MetadataChjectld stringToMetadataChject!d(String ndoString)
throws ServletException {
String[] mdoStringParts = mdoString.split(Pattern.quote(MO SEP));
if (ndoStringParts.length !=3) {
t hrow new Servl et Exception(String. format("Unexpected nunber of
conponents %l found " +
"when converting % to
Met adat atbj ect | D',
mdoStringParts. | ength,
mdoString));
}

Met adat aCbj ect Type mdType =

Met adat aCbj ect Type. get MOType(ndoStri ngParts[0]);
String ndPackage = ndoStringParts[1];
String ndNane = ndoStringParts[2];

Met adat aCbj ect 1 d ndol D =
Met adat aCbj ect | d. cr eat eMet adat aChj ect | d(mdType, mdPackage, ndNane);
return ndol b;

/**

* this changes the format used in this class for job definitions to the one
* which is used in the runtime query.
* @aram strMet adat albj ect
* @eturn string representing object in runtime store
* @hrows ServletException
*|
private String fixMetadataString(String strMetadataQhject)
throws ServletException {
String fslash ="/";
String[] mdoStringParts =
st rMetadat aChj ect. split(Pattern.quote(MO SEP));
if (ndoStringParts.length != 3) {
t hrow new Servl et Exception(String. format("Unexpected nunber of
conponents %l found " +
"when converting % to
Met adat atbj ect | D',

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-43

Building Split Submitting and Hosting Applications

mdoStringParts. | ength,
strMetadat athj ect));
}
String[] trinBtringParts = new String[ndoStringParts.length];
for (int i =0; i <ndoStringParts.length; i++) {
String ndoStringPart = ndoStringParts[i];
trinStringParts[i] = mdoStringPart.replaceAl(fslash, " ").trim);
}

Met adat aCbj ect Type mdType =
Met adat aCbj ect Type. get MOType(trinStringParts[0]);
String ndPackage = fslash + trinStringParts[1];
String nmdNane = trinStringParts[2];
Met adat aCbj ect 1 d netadataChjld =
Met adat aCbj ect | d. cr eat eMet adat aChj ect | d(mdType, mdPackage, ndNane);
return netadataCbjld.toString();

}
private Set<String> get Set Fromvet adat aEnun(Enumer at i on<Met adat aCbj ect | d>
enumvet adat a)
throws ServletException {
Set<String> stringSet = new HashSet <String>();
whi | e (enumvet adat a. hashor eEl enents()) {
Met adat albj ect 1 d obj 1 d = enumet adat a. next El enent () ;
String strNanmePart = objld. get NanePart();
stringSet.add(strNanmePart);
}
return stringSet;
}
//**
/11
/1 HTM. Rendering Methods
/11

//**

/**
* Rendering code for the page displayed.
* In areal application this would be done using JSP, but this approach
* keeps everything in one file to make the exanple easier to follow
* @aram response The response object fromthe main request.
* (@aram nessage Text that appears in the nessage panel, may contain HTM
* @hrows | OException
*/
private void render Response(Met adataLists n,
Runtimelists rl,
Ht t pSer vl et Request request,
Ht t pSer vl et Response response,
String nessage)
throws | CException, ServletException

response. set Cont ent Type(CONTENT_TYPE) ;
PrintWiter out = response.getWiter();

String url Base = request.get ContextPath() + request.getServletPath();
/1 Indents maintained for clarity
out.println("<htm >");

out. println("<head><title>EssDeno</title></head>");
out. println("<body>");

7-44 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

out.println("<table align=\"center\"><tbody>");
out.printin(" <tr><td align=\"center\"><h1>Oracle Enterprise Schedul er

Tutorial </ h1></td></tr>");

}

out.printin(" <tr><td align=\"center\"><table cellspacing=6><tr>");

/1 Job launch form

out.println(" <td align=\"center\">");

out.println(" <h2>Launch Joh</h2>");

render LaunchJobForm(m, out, urlBase);

out.println(" <[td>");

out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

out.println(" </tr></table></td></tr>");
out.println(" <tr><td bgcolor=\"red\"/></tr>");

/'l Message panel

out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
out.println(" <tr><td>");

out. println(nessage);

out.println(" <ftd></tr>");

out.println(" <tr><td bgcolor=\"red\"/></tr>");

/'l Request status

out.println(" <tr><td align=\"center\">");

out.println(" <formname=\"attrs\" action=\"" + urlBase +
PATH ALTER + "\" net hod=\"post\">");

out.println(" <h2>Request Status</h2>");
out.println(" <tabl e border=2><tbody>");
out.println(" <th>reql D</th>");
out.println(" <th>Descri ption</th>");
out.println(" <th>Schedul ed tinme</th>");
out.println(" <th>State</th>");
out.println(" <th>Action</th>");

render Stat usTabl e(out, rl.requestDetails);

out.println(" </tbody></tabl e>");
out.println(" </form");
out.printin(" </td></tr>");
out. println("</thody></table>");
out. println("</body></htnm >");
out.close();

private voi d renderLaunchJobFor m(Met adat aLists m, PrintWiter out, String

url Base)

throws ServletException {
out.println(" <formname=\"attrs\" action=\"" + urlBase +
PATH SUBMT + "\" nethod=\"post\">");

out.println(" <t abl e><t body>");
out.println(" <tr><td align=\"right\">");
out.println(" Joh: </ b>");
out.println(" <sel ect name=\"job\">");

render Met adat aChoi ces(out, nl.jobDefList, false);
render Met adat aChoi ces(out, nl.jobSetList, false);

out.println(" </select>");

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-45

Building Split Submitting and Hosting Applications

out.println(" <ftd></tr>");

out.println(" <tr><td align=\"right\">");
out.println(" Schedul e: </ b>");
out.println(" <sel ect nane=\"schedul e\">");

render PseudoSchedul eChoi ces(out);
render Met adat aChoi ces(out, nl.schedul eList, false);

out.println(" </select>");
out.println(" <Jtd></tr>");
out.println(" <tr><td align=\"center\">");
out.println(" <input nanme=\"subm t\" val ue=\"Subnmi t\" type=
\"submit\">");
out.println(" <ftd></tr>");
out.println(" </tbody></tabl e>");
out.println(" </form");
}
/**

*

* @aramout - printwiter

* @aram jobChoices -- nmetadata to be displayed

* @aram bBl ankFirst -- blank first (so that this paramis not required)

* @hrows ServletException

*|

private void render Met adat aChoi ces(PrintWiter out,
Enuner at i on<Met adat athj ect | d> j obChoi ces,
bool ean bBl ankFirst)

throws Servl et Exception

if (jobChoices == null)
return;

bool ean bFirst = true;
whi | e (j obChoi ces. hasMoreEl ements()) {
Met adat aCbj ect1d job = jobChoi ces. next El enent ();
String strJob = netadataChject!ldToString(job);
String strNanePart = job. get NamePart();
if (strNamePart.conpareTo("BatchPurgedob") == 0) {
conti nue;
} else {
if (bFirst & bBlankFirst) {
out.printf("<option value=\"%\">%</option>", "", "");
bFirst = fal se;
}
out.printf("<option val ue=\"9%\">%</option>", strJob,
strNanePart);

}

/**
* hel per method for rendering choi ces based on strings, adding an enpty
* string to the beginning of the Iist
* @ar am out
* @aram choi ces
*/
private void renderStringChoices(PrintWiter out, Set<String> choices) {
if (choices == null)
return;

7-46 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

choi ces. add("");
SortedSet<String> sorted = new TreeSet<String>(choices);
Iterator choicelter = sorted.iterator();
whil e (choicelter.hasNext()) {
String choice = (String)choicelter.next();

out.printf("<option val ue=\"9%\">%</option>", choice, choice);

}

private voi d render PseudoSchedul eChoi ces(PrintWiter out) {
for (PseudoSchedul eChoices ¢ : PseudoSchedul eChoi ces. val ues()) {
out.printf("<option value=\"%\">%</option>", c, c);
}
}

private void renderStatusTabl e
(PrintWiter out, List<RequestDetail> reqgDetails)
{
if (regDetails == null) {
return;
}

for (RequestDetail reqDetail : reqgDetails) {
State state = reqDetail.getState();

Cal endar schedul edTine = reqDetai | . get Schedul edTi ne() ;
String schedul edTi meString = null;

if (schedul edTime == null) {

schedul edTi meString = "null schedul ed tine";
} else {

schedul edTi meString = String. val ueX (schedul edTi ne. getTine());
}

final String actionButton;
if (!state.isTermnal()) {
String action = ACTI ON_CANCEL;
String reqld = String.val ueX (reqDetail.getRequestld());
actionButton = String.format
("<button type=submt val ue=% name=\"%\">%</button>",
action, reqld, action);
} else {
actionButton = "é ";
}

out. printf("<tr><td>%</td><td>%s</td><td>%s</td><td>%</td><t d>%s</
td></tr>\n",
reqDet ai | . get Request I d(), reqDetail.getDescription(),
schedul edTi neString, state, actionButton);

private MetadataService get MetadataService() throws Exception {
return Jndi Uil .get Met adat aServi ceEJB();

}

private RuntimeService getRuntinmeService() throws Exception {
return Jndi Util.getRuntinmeServiceEJB();

}

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-47

Building Split Submitting and Hosting Applications

private abstract class Payl oad<SERVI CE, HANDLE, RETURN> {
abstract SERVI CE get Service() throws Exception;
abstract HANDLE get Handl e(SERVI CE service) throws Exception;
abstract void cl oseHandl e(SERVI CE servi ce,
HANDLE handl e,
bool ean abort)
throws Excepti on;
abstract RETURN execut e(SERVI CE service, HANDLE handl e, Logger |ogger)
throws Exception;

}

private abstract class MetadataServicePayl oad<T>
extends Payl oad<Met adat aServi ce, MetadataServiceHandl e, T>
{
@wverride
Met adat aServi ce get Service() throws Exception {
return get Met adat aService();

}

@verride
Met adat aSer vi ceHandl e get Handl e(Met adat aSer vi ce service)
throws Exception

{
}

@verride
voi d cl oseHandl e(Met adat aServi ce servi ce,
Met adat aSer vi ceHandl e handl e,
bool ean abort)
throws Exception

return service.open();

servi ce. cl ose(handl e, abort);

}

private abstract class RuntimeServicePayl oad<T>
extends Payl oad<Runti meService, RuntimeServiceHandle, T>
{
@verride
Runti meServi ce getService() throws Exception {
return get RuntineService();

}

@verride
Runt i meServi ceHandl e get Handl e(Runti meServi ce servi ce)
throws Exception

{
}

@verride
voi d cl oseHandl e(Runti meServi ce service,
Runt i meServi ceHandl e handl e,
bool ean abort)
throws Exception

return service.open();

servi ce. cl ose(handl e, abort);

7-48 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

private <S, H R> R perfornperation
(Payl oad<S, H, R> payload, Logger |ogger)
throws Exception

{
S service = payl oad. get Servi ce();
H handl e = payl oad. get Handl e(servi ce);
Exception origException = null;
try {
return payl oad. execute(service, handle, |ogger);
} catch (Exception e2) {
ori gException = e2;
throw e2;
} finally {
if (null !'= handle) {
try {
bool ean abort = (null != origException);
payl oad. cl oseHandl e(service, handle, abort);
} catch (Exception e2) {
if (null !'= origException) {
| ogger.log(Level . \WARNING, "An error occurred while " +
"closing handl e, however, a previous failure was " +
"detected. The following error will be logged " +
"but not reported: " + stackTraceToString(e2));
}
}
}
}
}

private final String stackTraceToString(Exception e) {
StringWiter sw= new StringWiter();
PrintWiter pw = new PrintWiter(sw;
e.printStackTrace(pw);
pw. fl ush();
pw. cl ose();
return sw.toString();

}

private Logger getLogger() {
return Logger. getLogger(this.getC ass().getNane());
}

private class Metadatalists {
private final Enumeration<MetadataChjectld> jobDefList;
private final Enumeration<MetadataChjectld> jobSetList;
private final Enumeration<MetadataCbject!|d> schedul eList;
private final Enumeration<MetadataCbjectld> jobTypelList;

private Metadatalists(Enunerati on<Met adat aChj ect|d> j obDef Li st,
Enuner at i on<Met adat athj ect | d> j obSet Li st
Enuner at i on<Met adat atbj ect | d> schedul eLi st,
Enuner at i on<Met adat aChj ect 1 d> j obTypeLi st)

{
this.jobDefList = jobDeflList;
this.jobSetList = jobSetlList;
this. schedul eLi st = schedul eLi st;
this.jobTypeList = jobTypeList;
}

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-49

Building Split Submitting and Hosting Applications

private class RuntinmeLists {
private final List<RequestDetail> requestDetails;
private final Set<String> applicationChoices;
private final Set<String> stateChoices;
private final Set<MetadataChjectld> jobDef MDOChoi ces;

private RuntimeLists(List<RequestDetail> requestDetails,
Set<String> applicationChoices,
Set<String> stateChoices,
Set <Met adat aQbj ect | d> j obDef MDOChoi ces)

{
super();
this.requestDetails = requestDetails;
this.applicationChoices = applicationChoices;
this. stateChoices = stateChoi ces;
t his. j obDef MDOChoi ces = j obDef MDOChoi ces;
}
}
/**

* Retrieve lists of jobs, schedules, and status for use by the renderer
* @hrows ServletException
*|
private Metadatalists getMetadatalists() throws Exception {
Logger |ogger = getLogger();

Met adat aSer vi cePayl oad<Met adat aLi st s> nyPayl oad =
new Met adat aSer vi cePayl oad<Met adat alLi st s>()

{
@verride
Met adat aLi sts execut e(Met adat aServi ce servi ce,
Met adat aSer vi ceHandl e handl e,
Logger | ogger)
throws Exception
{
Enuner ati on<Met adat albj ect | d> jobDefs =
service. queryJobDefinitions(handl e, null, QueryField. NAMVE, true);
Enuner ati on<Met adat albj ect 1 d> jobSets =
servi ce. queryJobSet s(handl e, null, QueryField. NAME, true);
Enuner ati on<Met adat athj ect | d> schedul es =
servi ce. querySchedul es(handl e, null, QueryField. NAVE, true);
Enuner ati on<Met adat athj ect | d> j obTypes =
servi ce. queryJobTypes(handl e, null, QueryField. NAVE, true);
return new Metadatali sts(jobDefs, jobSets, schedul es, jobTypes);
}
¥
Met adat aLi sts m = perfornOperation(myPayl oad, |ogger);
return n;

}

private RuntimeLists getRuntineLists() throws Exception {
Logger |ogger = getLogger();

Runt i meServi cePayl oad<Li st <Request Det ai | >> nyPayl oad2 =
new Runti meServi cePayl oad<Li st <Request Det ai | >>()
{
@verride
Li st <Request Det ai | > execut e(Runti neServi ce servi ce,
Runt i neServi ceHandl e handl e,

7-50 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

}

}

Logger | ogger)
throws Exception

{
Li st <Request Detai | > reqDetails =
new ArraylLi st <Request Det ai | >(10);
Enuneration requestlds = service. queryRequests
(handl e, null, RuntineService.QueryField. REQIESTID, true);
whil e (request!ds. hasMreEl ements()) {
Long reqld = (Long)request!ds. nextEl enent();
Request Detai | detail = service.getRequestDetail (handle, reqld);
reqDet ail s. add(detail);
}
return reqDetails;
}

¥

Li st <Request Det ai | > reqgDetai | s = perfornOperation(nyPayl oad2, |ogger);
RuntimelLists rl = getRuntineLists(reqDetails);

return rl;

private RuntimeLists getRuntineLists(List<RequestDetail> reqDetails) {

Set<String> applicationSet = new HashSet <String>(10);
Set<String> stateSet = new HashSet<String>(10);
Set <Met adat aChj ect | d> j obDef MOSet = new HashSet <Met adat aCbj ect | d>(10);

if (regDetails !'=null) {

Listlterator detaillter = regDetails.listlterator();

while (detaillter.hasNext()) {
Request Detai | detail = (RequestDetail)detaillter.next();
appl i cationSet. add(detail.get Depl oyedApplication());
State state = detail.getState();
if (state.isTerninal())

stateSet. add(state.nane());

j obDef MOSet . add(detai | . get JobDefn());

}

RuntimeLists rl = new RuntinmeLists
(reqDetails, applicationSet, stateSet, jobDefMXSet);
return rl;

7.4.2.5 Editing the web.xml File for the Front-End Submitter Application

You need to edit the web. xm file to and Oracle Enterprise Scheduler metadata and
runtime EJB references.

To edit the web.xml file for the front-end submitter application:

1.

In the Application Navigator, expand SuperWeb, expand Web Content, expand
WEB-INF and double-click web.xml.

In the overview editor, click the References navigation tab and expand the EJB
References section.

Add two EJB resources with the information shown in Table 7-1.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-51

Building Split Submitting and Hosting Applications

Table 7-1 EJB Resources for the Front-End Submitter Application

EJB Name Interface EJB Local/Remote Interface
Type Type
ess/ Local Session or acl e. as. schedul er. Met adat aSer vi ceL
met adat a ocal
ess/runtime Local Session oracl e. as. schedul er. Runti neSer vi celLo
cal

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the / essdempappser vl et URL pattern to/ essdenpappser vl et/ *.

7.4.2.6 Editing the weblogic-application.xml file for the Front-End Submitter
Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:

1. In Application Navigator, right-click the SuperEss project and select New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.
4. Click Next, click Next again, and click Finish.

5. In the source editor, replace the contents of the webl ogi c- appl i cati on. xm file
that you just created with the XML shown in Example 7-7.

Example 7-7 Contents to Copy to weblogic-application.xml for a Front-End
Submitter Application

<?xm version = '1.0' encoding = 'UTF-8' ?>
<webl ogi c-application xm ns: xsi="http://ww:. w3. org/ 2001/ XM.Schena- i nst ance"

xsi : schemaLocati on="htt p:// wwv. bea. conl ns/ webl ogi ¢/ webl ogi c-
application

http://ww:. bea. com ns/ webl ogi ¢/ webl ogi c-appl i cati on/ 1. 0/ webl ogi c- appl i cation. xsd"
xm ns="http:// ww. bea. com ns/ webl ogi ¢/ webl ogi c-appl i cati on">

<I-- The fol lowing application paraneter tells JPS which stripe it should
- use to upload the jazn-data.xm policy. |If this parameter is not
- specified, it uses the Java EE depl oyment nanme plus the version
- nunber (e.g. EssDenpApp#V2.0).
-->
<appl i cati on- paranp
<par am nane>j ps. pol i cystore. appl i cati oni d</ par am name>
<par am val ue>EssDenpAppUl </ par am val ue>
</ application- paran»

<I-- This listener allows JPS to configure itself and upload the
- jazn-data.xm policy to the appropriate stripe
-->
<listener>
<listener-
class>oracl e.security.jps.ws.listeners.JpsApplicationLifecyclelistener</listener-
cl ass>

7-52 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

</listener>

<I-- This listener allows MXS to configure itself and upload any netadata
- as defined by the MAR profile and adf-config.xn
-->
<listener>
<listener-class>oracle.nds. | cmwebl ogi c. W.Li fecycl eLi stener</listener-class>
</listener>

<I-- This listener allows Oracle Enterprise Scheduler to configure itself
-->
<listener>
<listener-

cl ass>oracl e. as. schedul er. pl atform w s. depl oy. ESSAppl i cati onLi f ecycl eLi st ener </
|'istener-class>

</listener>

<I-- This shared library contains all the Oracle Enterprise Schedul er classes
--2>
<library-ref>
<l'ibrary-nane>oracl e. ess.client</library-name>
<[library-ref>
<library-ref>
<l'ibrary-nane>adf. oracl e. domai n</|i brary- name>
<[library-ref>

</ webl ogi c- appl i cati on>

7.4.2.7 Editing the adf-config file for the Front-End Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:

1.

From the Application Resources panel, expand Descriptors, expand ADF META-
INF, and double-click adf-config.xml.

In the source editor, replace the contents of the adf - confi g. xm file with the
XML shown in Example 7-8.

Example 7-8 Contents to Copy to adf-config.xml for a Front-End Submitter
Application

<?xm version="1.0" encodi ng="UTF-8" ? >
<adf-config xm ns="http://xn ns. oracl e. con adf/config"

xm ns: sec="http://xm ns. oracl e. com adf / security/config">
<sec: adf -security-child xm ns="http://xm ns. oracl e. conl adf/security/config">

<Credenti al St or eCont ext
credential Stored ass="oracl e. adf . share. security. providers.jps. CSFCredenti al Sto

re"

credential StoreLocation="../../src/ META-I NF/jps-config.xm"/>

sec: JaasSecurit yCont ext

initial ContextFactoryC ass="oracle. adf.share. security.JAASI nitial ContextFactor

y"

j aasProvi der 0 ass="oracl e. adf . share. security. provi ders.jps. JpsSecurityContext"

aut hori zati onEnforce="fal se"
aut henti cationRequire="true"/
</ sec: adf -security-child>
<adf - mds-config xm ns="http://xm ns. oracl e. com adf/ nds/ config">

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-53

Building Split Submitting and Hosting Applications

<mds- config version="11.1. 1. 000"
xm ns="http://xm ns. oracl e. conf s/ confi g">
<type-config>
<type- definitions>
<cl asspat hschema/ Excl usi on. xsd/ cl asspat h>
<cl asspat hschema/ | nconpati bi li ty. xsd/ cl asspat h>
<cl asspat hschema/ JobDef i ni ti on. xsd/ cl asspat h>
<cl asspat hschema/ JobSet . xsd/ cl asspat h>
<cl asspat hschena/ JobType. xsd/ cl asspat h>
<cl asspat hschema/ Schedul e. xsd/ cl asspat h>
<cl asspat hschena/ Speci al i zati on. xsd/ ¢l asspat h>
<cl asspat hschensa/ Tri gger . xsd/ cl asspat h>
<cl asspat hschena/ Tri gger Expr essi on. xsd/ cl asspat h>
<cl asspat hschema/ Wor kAssi gnnent . xsd/ ¢l asspat h>
<cl asspat hschema/ Wor kshi f t . xsd/ cl asspat h>
</type-definitions>
</type-config>
<persi stence-confi g>
<met adat a- namespaces>
<namespace path="/oracl e/ as/ ess/ core"
met adat a- st or e- usage="ess-core"/ >
nanespace path="/oracl e/ apps/ ess"
met adat a- st or e- usage="deno- app"/ >
</ met adat a- nanespaces>
<met adat a- st or e- usages>
<net adat a- st ore- usage i d="ess-core" depl oy-target="fal se"
defaul t-cust-store="fal se">
<nmet adat a- store
cl ass-name="oracl e. nds. persi st ence. st or es. db. DBVet adat aSt or e" >
<property name="j ndi - dat asource" val ue="j dbc/ nds- ESS_MDS_DS"/ >
<property name="repository-name" val ue="nds-ESS MdS DS"/>
<property name="partition-nanme"
val ue="essapp-internal -partition"/>
</ met adat a- st ore>
</ met adat a- st or e- usage>
met adat a- st or e- usage i d="deno-app" depl oy-target="true"
defaul t-cust-store="fal se">
<nmet adat a- store
cl ass-name="oracl e. nds. persi st ence. st or es. db. DBVet adat aSt or e" >
<property name="j ndi - dat asource" val ue="j dbc/ nds- ESS_MDS_DS"/ >
<property name="repository-name" val ue="nds- ESS MdS DS"/ >
<property name="partition-name" val ue="essUser Metadata"/>
</ met adat a- st ore>
</ met adat a- st or e- usage>
</ met adat a- st or e- usages>
</ persi st ence- confi g>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - config>

7.4.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise
Scheduler

After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the front-end application you do the following:
e Create the EJB Java Archive

e (Create the WAR file

7-54 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

Create the application MAR and EAR files

7.4.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application

The E]JB Java archive file includes descriptors for the Java job implementations.

To assemble the E]JB JAR File for the front-end submitter application:

1.

2.

5.

6.

In Application Navigator, right-click the SuperEss project and choose New.

In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR _Super EssEj bJar.

On the Edit EJB JAR Deployment Profile Properties dialog, click OK.
Delete the other JAR profiles created by default. Only include EJB and WAR.

On the Project Properties dialog, click OK.

7.4.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application

You need to create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application

1.

2.

5.

6.

In Application Navigator, right-click the SuperWeb project and choose New.

In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_Super \ebVWr .

On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter
ESSDenmpAppUI .

Click OK.

On the Project Properties dialog, click OK.

7.4.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application

The sample application must contain the MAR profile and the EAR file that assembles
the EssDemoApp back-end application.

To create the MAR and EAR files for the front-end submitter application:

1.

2.

From the main menu, choose Application Menu > Application Properties...

In the Application Properties dialog, delete the profile listed under Deployment
Profiles and click New.

In the Create Deployment Profile dialog, select MAR File from the Profile Type
dropdown list.

In the Name field, enter MAR_EssDenpAppUl Mar and click OK.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-55

Building Split Submitting and Hosting Applications

5. Click OK.
6. In the Deployment page of the Application Properties dialog, click New.

7. In the Create Deployment Profile dialog, select EAR File from the Profile Type
dropdown list.

8. In the Name field, enter EAR_EssDenmpAppUl Ear and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDenpAppUl in the Application Name field.

10. Select WAR_Super WebWar .

11. Click the Application Assembly navigation tab, then select
MAR_ESSDenmpbAppUl Mar and select JAR_Super EssEj bJar .

12. Click OK.
13.In the Application Properties dialog, click OK.

7.4.2.8.4 Add ADF Libraries

Navigate to the Project Properties > SuperWeb > Libraries and Classpath window. Use
the Add Library button to add the following libraries:

¢ ADF Common Runtime

¢ ADF Faces Runtimell

e ADF Common Web Runtime
e ADF Page FlowRuntime

¢ ADF Controller Schema

¢ ADF Controller Runtime

7.4.2.8.5 Set Oracle Enterprise Scheduler Properties for the Application

The following steps describe how to set values for Oracle Enterprise Scheduler
properties:

1. In the Application Navigator, right-click the SuperEss project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDenmbAppUl as the value
for all three of the following fields:

* Logical Application Name

e Application Policy Stripe

¢ JPS Interceptor Application Name
3. Click OK.

7.4.2.9 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from webl ogi c-
application.xm :

7-56 Developing Applications for Oracle Enterprise Scheduler

Building Split Submitting and Hosting Applications

<library-ref

<l'ibrary-name>oracl e. xdo. runtinme</library-name>

<[library-ref>
<library-ref>

<l'ibrary-nane>oracl e. appl cp. runtime</|i brary-nane>

<[library-ref>

7.4.2.10 Deploying the Front-End Submitter Application

After assembling the application, you can deploy it to the server.

To deploy the front-end submitter application:

1. From the main menu, choose Application > Deploy > EAR_EssDemoUIEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the /
or acl e/ apps/ ess/ howt o0 name space. Change its partition to the partition used
when deploying EssDenpApp. If you used the default value, this should be

EssDemoApp_V2.0.

Figure 7-23 Oracle Deployment Configuration Window

1 Oracle Deployment Configuration x

Configure and customize settings for this deployment

MDS
Metadata Repository

Repository Name: |mds-ESS_MDS_DS

Repository Type: DB

Partition Name: essUserMetadatal

Path/JNDI Info: jdbc/mds-ESS_MDS_DS

Shared Metadata Repositories

Mamespace Repository Type
Joracle/apps/ess/howto |mds=-ESS_MDS_DS > |DE
Help
4. Click OK.

7.4.2.11 Update the EssHost MANIFEST File

essUserMetadata w|jdbc/mds-ES5_MD5_DS

Path/INDI Info

Deploy Cancel

Replace the contents of the EssHost META- | NF/ MANI FEST. | NF file with the

following lines:

Mani f est - Version: 1.0 Webl ogi c- Appl i cation-Version: 3.0

Ext ension-Li st: essruntine

essrunti me- Ext ensi on- Nane: oracle.ess.runtine

essrunti me- Speci fication-Version: 12

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 7-57

Building Split Submitting and Hosting Applications

7.4.2.12 Running the Split Application
To run the split application:
1. Enter the following URL in a browser:

http:/ /host:http-port: /ESSDemoAppUl/essdemoappservlet
For example,

http://nyserver. exanpl e. com 7101/ EssDenoAppUl / essdenpappser vl et
2. Login as EssDenpAppUser with the password wel conel.

3. Follow the same steps as in the combined application.

7-58 Developing Applications for Oracle Enterprise Scheduler

8

Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service to
create, update and manage schedules, job definitions, and other Oracle Enterprise
Scheduler metadata to a metadata store. You can also use the Metadata Service query
methods to list objects stored in the metadata repository.

This chapter includes the following sections:

¢ Introduction to Using the Metadata Service

® Accessing the Metadata Service

® Accessing the Metadata Service with Oracle JDeveloper

* Querying Metadata Using the Metadata Service

For information about how to create job definitions, see the following chapter:
Creating and Using PL/SQL Jobs , and Creating and Using Process Jobs .

8.1 Introduction to Using the Metadata Service

Oracle Enterprise Scheduler provides the Metadata Service and exposes it to your
application program as a Stateless Session Enterprise Java Bean (EJB). The Metadata
Service allows you to create, update and manage application-level metadata objects.

The Metadata Service uses Oracle Metadata Services (MDS) to save metadata objects
to a repository (the repository can be either database based or file based). The
Metadata Service allows you to reuse application-level metadata across multiple job
request submissions.

Oracle Enterprise Scheduler metadata objects include the following;:

* Application Level Metadata: You use the Metadata Service to store job type, job
definition, job set, and other application-level metadata object definitions for job
requests.

¢ Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle
Enterprise Scheduler metadata includes administrative objects such as schedules,
workshifts and work assignments. Oracle Enterprise Scheduler provides
Met adat aSer vi ceMXBean and the Met adat aSer vi ceMXBeanPr oxy to access
and store default administrative objects

Note:

Oracle Enterprise Scheduler metadata objects are used both in application-
level metadata and in global metadata

Using the Metadata Service 8-1

Introduction to Using the Metadata Service

Access to application level-metadata objects is exposed only with the

Met adat aSer vi ce interface. The Met adat aSer vi ce is exposed as a stateless
session EJB. External clients must access the service only through the corresponding
EJB. Clients should not interact with the internal API layer directly. When an
application client uses the metadata service through the stateless session EJB, all the
methods in this interface accept a reference to a MetadataServiceHandle argument,
which stores state across multiple calls, for example when multiple methods are to be
called within a user transaction. The MBeanPr oxy interface does not require a handle.

In an Oracle Enterprise Scheduler application you do not need to access or manipulate
the MetadataServiceHandle. The application must hold on to the reference created by
the open method and pass it in methods being called. Finally the handle must
explicitly be closed by calling the close method. Only upon calling the close method
are any changes made using a given handle be committed (or aborted).

Metadata object names must be unique within the scope of a given package or name
space. Within a given package, two metadata objects with the same name and of the
same type cannot be created.

8.1.1 Introduction to Metadata Service Name Spaces

Each Oracle WebLogic Server domain generally includes one metadata repository. A
metadata repository is divided into a number of partitions, where each partition is
independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose
to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is
organized hierarchically like the file system of an operating system. Where a file
system uses folders or directories, the Metadata Service uses name spaces or package
names which form a unique name used to locate a file.

For all other Oracle Enterprise Scheduler applications, the application name and an
optional package name containing the application-level metadata displays under the
name space / or acl e/ apps/ ess. For example, the metadata repository for an
application named appl i cat i onl can be divided into packages with the names dev,
t est,and producti on.

The metadata repository for this application has the following structure:

[oracl e/ apps/ ess/ appl i cationl/ dev/ net adat a
[oracl e/ apps/ ess/ applicationl/test/netadata
[oracl e/ apps/ ess/ appl i cationl/production/ metadata

Each Metadata Service method that creates a metadata object takes a required
packageName argument that specifies the package part of the directory structure.

8.1.2 Introduction to Metadata Service Operations

After you access an Oracle Enterprise Scheduler metadata repository you can perform
different types of Metadata Service operations, including:

* Add, Update, Delete: These operations have transactional characteristics.
® Copy: These operations have transactional characteristics.

* Query: These operations have read-only characteristics and let you list metadata
objects in the metadata repository.

8-2 Developing Applications for Oracle Enterprise Scheduler

Accessing the Metadata Service

® Get: These operations have either read-only or transactional characteristics,
depending on the value of the f or Updat e flag.

8.1.3 Introduction to Metadata Service Transactions

Because clients access the Metadata Service through a Stateless Session EJB, each
method uses a reference to a Met adat aSer vi ceHandl e argument; this argument
stores state for Metadata Service operations. The Metadata Service open() method
begins each metadata repository user transaction. In an Oracle Enterprise Scheduler
application client you obtain a Met adat aSer vi ceHand| e reference with the open()
method and you pass the reference to subsequent Metadata Service methods. The

Met adat aSer vi ceHand| e reference provides a connection to the metadata
repository for the calling application.

In a client application that uses the Metadata Service you must explicitly close a
Metadata Service transaction by calling cl ose() . This ends the transaction and
causes the transaction to be committed or rolled back (undone). The cl ose() not only
controls the transactional behavior within the Metadata Service, but it also allows
Oracle Enterprise Scheduler to release certain resources. Thus, the cl ose() is also
required for Metadata Service read-only quer y() and get() operations.

Note:

The Metadata Service does not support JTA global transactions, but you can
still make Metadata Service calls in the boundary of your transactions. While
you can make Metadata Service calls in bean/container managed transactions,
the calls are not part of your transaction.

8.2 Accessing the Metadata Service

There are several ways to access the Metadata Service.

To access the Metadata Service:

* Stateless Session EJB access: Use this type of access with Oracle Enterprise
Scheduler user applications.

® MBean access: This access is intended for use by applications that perform
administrative functions using the or acl e. as. schedul er . managenent APIs.

¢ MBean proxy access: This access is intended for use by applications that perform
administrative functions using the or acl e. as. schedul er. managenent APlIs.
Use the MBean proxy if the administrative client is remote to the Oracle Enterprise
Scheduler.

8.2.1 How to Access the Metadata Service with a Stateless Session EJB

User applications use a Stateless Session EJB to access the Metadata Service for
application level metadata operations. Using JNDI you can lookup the Metadata
Service associated with an Oracle Enterprise Scheduler application.

Example 8-1 shows the JNDI lookup for the Oracle Enterprise Scheduler Metadata
Service that allows you to use application level metadata. Note that the

get Met adat aSer vi ceEJB() method looks up the metadata service using the name
"ess/metadata". By convention, Oracle Enterprise Scheduler applications use "ess/
metadata" for the EJB reference to the Met adat aSer vi ceBean.

Using the Metadata Service 8-3

Accessing the Metadata Service with Oracle JDeveloper

Example 8-1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

/1 Demonstration on how to |ookup netadata service froma Java EE application
/1 JNDI | ookup on the netadata service EJB

import oracle. as. schedul er.core. Jndi Wil;

Met adat aService nms = Jndi Uil . get Met adat aServi ceEJB();

8.3 Accessing the Metadata Service with Oracle JDeveloper

Using Oracle JDeveloper at design time you can create, view, and update application
level metadata objects.

8.4 Querying Metadata Using the Metadata Service

The Metadata Service query methods let you view objects in the metadata repository.

You can query job types with the quer yJobTypes() method, query job definitions
with quer yJobDef i ni ti ons() method, and likewise you can query other metadata
objects using the corresponding Met adat aSer vi ce query method.

Associated with a query you can use a filter to restrict the output to obtain only items
of interest (in a manner similar to using a SQL WHERE clause).

8.4.1 How to Create a Filter

A filter specifies a comparison or a criteria for a query. You create a filter by creating a
comparison that includes a f i el d argument (St ri ng), a conpar at or, and an
associated val ue (Obj ect). In a filter, you can use the filter methods to combine
comparisons to form filter expressions.

Table 8-1 lists the comparison operators (conpar at or argument).

Table 8-1 Filter Comparison Operators
|

Comparison Operator Description

CONTAI NS Field contains the specified value
ENDS_W TH Field ends with the specified value
EQUALS Field equals the specified value
GREATER_THAN Field is greater than the specified value

GREATER_THAN_EQUALS Field is greater than or equal to the specified value

LESS _THAN Field is less than the specified value

LESS THAN_EQUALS Field is less than or equal to the specified value
NOT_CONTAI NS Field does not contain the specified value
NOT_EQUALS Field does not equal the specified value

STARTS W TH Field starts with the specified value

Example 8-2 shows code that creates a new filter.

8-4 Developing Applications for Oracle Enterprise Scheduler

Querying Metadata Using the Metadata Service

Table 8-2 MetadataService Query Fields
- __|

Query Field

Description

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

Met adat aSer vi

ce.

ce.

ce.

ce.

ce.

ce.

ce.

ce.

ce.

ce.

Quer yFi el d. PACKAGE
Quer yFi el d. NAME
Quer yFi el d. JOBTYPE

Quer yFi el d. EXECUTI ONTYPE

Quer yFi el d. REQUEST_CATEGORY

Quer yFi el d. EXECUTI ONMODE

Quer yFi el d. FI RSTSTEP
Quer yFi el d. ACTI VE

Quer yFi el d. PRODUCT

Quer yFi el d. EFFECTI VEAPPLI CATI ON

The name of the package.
The job definition name.
The job type associated with the job definition.

The type of job execution, synchronous or
asynchronous.

The name of the request category.

The mode of job set execution, parallel or
serial.

The first step in a job set.
Indicates whether a work assignment is active.

Indicates the name of the product with which
the job is associated.

The name of the hosting application wherein
this job should run.

ce. QueryFi el d. LOG CAL_CLUSTER _NAME The logical cluster associated with the job.

Example 8-2 Creating a Filter with a Filter Comparator for a Query

Fi

[ter filter =

new Fil ter (Met adat aServi ce. QueryFi el d. PACKAGE. fi el dNane(),

Fi | ter.Conparator. NOT_EQUALS, null);

8.4.2 How to Query Metadata Objects

A Met adat aSer vi ce query returns an enumeration list of Met adat aQbj ect | Ds of
the form:

java.util.Enumeration<Metadat albj ect | d>

Example 8-3 shows a sample routine that queries for a list of job types in the metadata.

Example 8-3, shows the following important steps for using the quer yJobTypes()
method:

* You need to supply a reference to a metadata repository by obtaining an instance of

Met adat aSer vi ceHandl e.

* Youneed to create a filter for the query. The filter contains the fields, comparators,

and values to search for.

You determine the field to sort by in the query using the or der By argument, or
you set the or der By argument to null to indicate that no specific ordering is

applied.

Using the Metadata Service 8-5

Querying Metadata Using the Metadata Service

* You set the ascendi ng argument for the query. When ordering is applied setting
the ascendi ng argument to t r ue indicates ascending order or f al se indicates
descending order for the result list.

Example 8-3 Using Metadata Service Query Methods

Enuner ati on<Met adat atbj ect 1 d> gryResul ts
= mservice. queryJobTypes(handl e, filter, null, false);

8-6 Developing Applications for Oracle Enterprise Scheduler

9

Using Parameters and System Properties

This chapter describes how you can define parameters and values in the Oracle
Enterprise Scheduler metadata and runtime services you submit with a job request. A
given parameter may represent a value for an Oracle Enterprise Scheduler system
property or a value for an application defined property.

This chapter includes the following sections:

¢ Introduction to Using Parameters and System Properties
* Using Parameters with the Metadata Service

e Using Parameters with the Runtime Service

¢ Using System Properties

9.1 Introduction to Using Parameters and System Properties

Oracle Enterprise Scheduler system properties are parameters with names that Oracle
Enterprise Scheduler reserves. For some system properties Oracle Enterprise
Scheduler also defines the values or provides a default value if you do not specify a
value.

You can define Oracle Enterprise Scheduler parameters as follows:
¢ In metadata associated with a job definition, a job type, or a job set.

® In the request parameters when a job request is submitted. A request parameter can
override a parameter specified in metadata or can specify a value for a parameter
not previously defined in the metadata associated with a job request (subject to
certain constraints). You can also add new parameters or update parameter values
(subject to certain constraints) after a job request has been submitted.

For more information on the Oracle Enterprise Scheduler system properties, see Using
System Properties.

9.1.1 What You Need to Know About Application Defined Property and System Property

Naming

Oracle Enterprise Scheduler application defined and system properties are case
sensitive. For example the application defined property name USER_PARA and
user _par a represent different parameters in Oracle Enterprise Scheduler.

When you use application defined properties, note that Oracle Enterprise Scheduler
reserves the names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler-defined system properties. Thus, you should not use application defined
properties with names that start with "SYS_" (case-insensitive).

Using Parameters and System Properties 9-1

Introduction to Using Parameters and System Properties

9.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter
Materialization

When submitting a job request, Oracle Enterprise Scheduler combines parameters
specified in the job metadata with any submission parameters to form the runtime
request parameters. The runtime parameters are saved to the database runtime store
and used for subsequent processing of the request. The metadata parameters are
obtained from the job definition, job type, and if applicable, the job set as they are
defined in the metadata repository at the time of submission. Any subsequent changes
to the metadata is normally not seen or used as the request is processed. Oracle
Enterprise Scheduler resolves parameter conflicts for parameters with the same name
associated with the job metadata or the submit parameters.

A parameter conflict can occur in the following cases:

¢ A parameter is defined repeatedly with different values. For example if the
Syst enProperty. PRI ORI TY property is set with different values in the job type
and in the job definition associated with a request.

® A parameter is defined repeatedly and at least one definition is specified as read-
only with the Par anet er I nf o r eadonl y flag settot r ue.

To resolve conflicts with parameters, Oracle Enterprise Scheduler uses one of the
following conflict resolution models and the parameter value inheritance hierarchy
shown in Table 9-1:

® Last definition wins: used when the same parameter is defined repeatedly with the
readonl y flag set to f al se in all cases. In the last definition wins model, conflicts
are resolved according to the precedence rules where the highest level wins (last
definition). For example a property specified at the job request level wins over the
same property specified at the job definition level.

e First read-only definition wins: used when the same parameter is defined repeatedly
and at least one definition is read-only (the Par anet er | nf o r eadonl y flag is set
to t r ue.) In the first read-only definition wins model, parameter conflicts are resolved
according to the precedence rules shown in Table 9-1, lowest level wins. For
example a readonly parameter specified at the job type definition level wins over
the same property specified at the job definition level, read-only or not.

Table 9-1 Parameter Precedence Levels

Object Level

JobType 1 - Lowest Level
JobDefinition 2

Job set step 3

job set 4

Job request (using 5 - Highest Level

Request Par anet er s passed to
submi t Request ())

9-2 Developing Applications for Oracle Enterprise Scheduler

Introduction to Using Parameters and System Properties

9.1.2.1 What You Need to Know About Job Definition Parameter Materialization

Figure 9-1 illustrates the order of precedence taken by parameters defined in various
components.

Figure 9-1 Parameter Precedence
Job definition request Job set request

Job Type Job Set Step

Job Definition Job Set (top-level)

‘ Request Parameters

In the case of a job request, the parameters defined by the job type take first
precedence, followed by the parameters defined in the job definition. The parameters
submitted with the job request take final precedence. In the case of a job set request,
the parameters defined in the job set take first precedence, followed by the parameters
defined by the job request run as a child of the job set.

9.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

When the job set step parameters are materialized, if the job set defines any of the
following system properties as read-only, and those properties are defined in the
definition of the topmost job set, that is the job set of the absolute parent, the job set
values override the values set at the job set step level. This causes every definition, job
definition, or job set definition that runs in the context of a specific job set to run with
the same values.

PRIORITY
REQUEST_EXPIRATION
RETRIES, only if the step definition value is > 0

There is an exception for RETRI ES because a value of 0 may mean that the job is not
capable of being restarted. So if a step is defined with RETRI ES = 0, it is not
overridden, but if the step has RETRI ES > 0, it is overridden with the job set value.

Properties for a job set step request are materialized during the processing of a job set
when the step is reached. Properties for a job step request are materialized in the
following order.

1. Job type and job definition (if the step is a job definition) or job set (if the step is a
job set).

2. Job set step.
3. Parent request properties and system properties (parent is step's parent job set).

4. Scoped request properties.

Example 9-2 illustrates the parameter precedence for job set steps.

Using Parameters and System Properties 9-3

Using Parameters with the Metadata Service

Figure 9-2 Parameter Precedence for Job Set Steps

Job definition Job set
step step

JobType JobSet (for step)
JobDefinition

Voo

| JobSet Step

l

Parent JobSet and
other parameters
from parent request

l

Overwrite specific
read-only System
FProperties with
values from top-level
JobSat

!

Scoped request
parameters

When job sets include steps that are job sets, this is a nested job set. For a nested job
set, the precedence shown in Table 9-1 applies. When a nested job set is reached,
Oracle Enterprise Scheduler applies the parameters of the parent request and the
parameters of the parent request follow the same precedence. The effect is that
parameters of the parent request, job set and job set step are inherited by nested job
sets.

9.2 Using Parameters with the Metadata Service

Oracle Enterprise Scheduler metadata includes parameters that you can associate with
a metadata object. The parameters can include both application defined properties and
system properties for a given definition (metadata object).

An instance of the Par anet er Li st class declares the parameters for a given job
definition, job type or job set. To set parameters for a given job definition, job type, or
job set definition, you can use a Par anmet er Li st object with the set Par anmet er s()
method for the metadata object or you can use the constructor and supply a

Par anmet er Li st . To supply parameter information in a parameter list, each

Par amet er Li st object includes Par anet er | nf o objects that represent parameters,
such that each parameter is defined with properties as shown in Table 9-2.

Table 9-2 Parameterinfo Parameter Properties
- -]

Parameter Property Description

Name Specifies the parameter name.

Value Specifies the parameter value.

9-4 Developing Applications for Oracle Enterprise Scheduler

Using Parameters with the Metadata Service

Table 9-2 (Cont.) Parameterinfo Parameter Properties
___|

Parameter Property Description

Readonly This boolean flag can be set for each parameter. This flag indicates
whether the parameter is read-only.

When t r ue, subsequent objects in the parameter precedence hierarchy,
such as request submission parameter, cannot change the parameter
value. Typically a read-only parameter has a default value that cannot
be changed by subsequent objects.

Note that the value of a read-only parameter can be changed in the
object itself where this parameter is defined. For example if this
parameter is defined in a job type as a read-only parameter, its value
can be changed in the job type definition itself, but a job definition that
uses the job type or a request submission parameter cannot override
the value, subject to the conflict resolution rules specified for parameter
values. For more information, see What You Need to Know About
Parameter Conflict Resolution and Parameter Materialization.

Legacy A boolean that specifies that a parameter should be visible when used
in a GUL
DataType Values can only be one of the supported types, including: Boolean,

Integer, Long, String, and DATETI ME that represents a date as a
java.util.Cal endar object.

You can set parameters at different levels appropriate to parameter precedence rules
for a job request. For example, you can set parameters that apply for a job type, a job
definition, a job set, a job set step, or a request submission parameter. For information
about the precedence rules, see What You Need to Know About Parameter Conflict
Resolution and Parameter Materialization.

9.2.1 How to Use Parameters and System Properties in Metadata Objects

Example 9-1 shows code that uses a Par anet er Li st to set parameter and system
property values in a metadata object.

Example 9-1, shows the following important steps for using parameters with a
metadata object:

You need a reference to a metadata service handle to create the metadata object
where you want to add parameters.

You need to use the Par anet er Li st add() method to add parameter
information.

You can use a Syst enPr oper t y as the name for a parameter to specify a value for
a system property.

You can specify an application defined property by using a name that you define
with the parameter information in a Par anet er Li st .

You need to use a metadata object set Par amet er s() method to apply the
parameters specified in the Par amet er Li st to the metadata object. In this case,
use the job definition set Par anet er s() method.

Using Parameters and System Properties 9-5

Using Parameters with the Runtime Service

Example 9-1 Adding Parameters and System Properties in a Metadata Object

String name = "JobDescription_nang";
Met adat aCbj ect | d j obt ype;

JobDefinition jd = new JobDefinition(nane, jobtype);

Paranet erLi st parlist = new ParaneterList();

parlist.add(SystenProperty. APPLI CATI ON, "METADATA_UNI TTEST_APP", fal se);
parlist.add(SystenProperty. PRODUCT, "METADATA UNI TTEST_PROD', false);
parlist.add(SystenProperty. CLASS NAME, "oracl e.as.schedul er.nyself", false);
parlist.add(SystenProperty. RETRIES, "2", false);

parlist.add(SystenProperty. REQUEST _EXPI RATION, "60", false);
parlist.add("MProp", "Value", false);

parlist.add("M/ReadOnl yProp", "readyOnlyVal ue", true);
jd.setParameters(parlist);

9.3 Using Parameters with the Runtime Service

You can specify parameters when a job request is submitted by supplying a

Request Par amet er s object with submi t Request () . A request parameter can
override a parameter specified in metadata or can specify a value for a parameter not
previously defined in the metadata associated with a job request (subject to certain
constraints).

You can also use the runtime service set Request Par anet er () method to set or
modify request parameters (subject to certain constraints) after the request has been
submitted.

The submi t Request () method validates each request parameter against its
definition in the metadata, if one exists. Such validations include checking the data
type of the parameter against the data type specified in the metadata, checking the
read-only constraint for the parameter, and so on. If a given request parameter does
not exist in the corresponding metadata, the data type for the parameter is determined
by doing an instanceof on the parameter value. The data type of a request parameter
value must be one of the supported types specified by Par aret er | nf o. Dat aType.

If the value of a request parameter is null and the property has not been assigned in
the metadata, it defaults to the STRI NGdata type when calling subrmi t Request () .
Oracle Enterprise Scheduler assigns a null value to the parameter. As such, a
parameter need not be assigned in the metadata.

The Runt i meSer vi ce set Request Par anet er () method allows a previously
undefined request parameter to be set by a job during execution.

9.3.1 How to Use Parameters with the Runtime Service

When you submit a job request you set a parameter in a Request Par anet er s object.
This parameter may represent an Oracle Enterprise Scheduler system property or an
application defined property. The Request Par anet er s parameter value may be
used to override a parameter specified in metadata, or to specify the value for a
parameter not previously defined in metadata associated with the job request.

Example 9-2 shows code using a Request Par amet er s object with the add()
method to set a system property value.

The example assumes that there is a user-created r unt i meSer vi ceHand| e named
rs_handl e.

9-6 Developing Applications for Oracle Enterprise Scheduler

Using Parameters with the Runtime Service

Example 9-2 Using the PRIORITY System Property with Request Parameters

i mport oracl e. as. schedul er. Request Par anet er s;

i mport oracl e. as. schedul er. Met adat albj ect | d;

i mport oracl e. as. schedul er. Runti nmeServi ce;

i mport oracl e.as. schedul er. Runti nmeServi ceHand| e;
i mport oracle. as. schedul er. SystenProperty;

Runti meServi ce runtineg;

Runt i meServi ceHandl e rs_handl e;
Met adat aCbj ect1d jobSetld;

int startsln;

I ong request!D = OL;

Request Paraneters reg_par = new Request Paraneters();
req_par. add(Syst enProperty. PRIORI TY, new |nteger(7));

Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, startsln);

requestID =
runtime. subnitRequest(rs_handle,"My job set", jobSetld, start, req_par);

9.3.2 How to Use Parameters with a Step ID for Job Set Steps

The Request Par anet er s object is a container for all the parameters for a request.
Some of the Request Par anet er s methods take a step ID as an argument. Such
methods allow you to specify parameters for a job set at request submission, where
parameters can be specified for, or scoped to, individual steps associated with a job set
request. For such methods, the step ID argument identifies the step within the job set
to which the given parameter applies. For non-job set requests, the step ID does not
apply, but you can use the parameter as required by your application requirements.

When a step ID is specified in a Request Par amet er s method such as add() , you
need to specify the step ID using the following format:

idl.id2.id3...
where the fully qualified step ID identifies the unique step, node, in the job set
hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters and
they apply to each step of the job set request. The step ID argument for

Request Par anet er s provides the capability to support shared parameters, where
the parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduler prepends the step ID to the name in the form of
st epl d: nane to generate the unique identifier, with a colon as a separator.

Example 9-3 shows code using a Request Par amet er s object with a step ID specified
with the add() method to set a system property value for a step in a job set.

The example assumes that there is a user-created r unt i meSer vi ceHand| e named
rs_handl e.

Using Parameters and System Properties 9-7

Using System Properties

Example 9-3 Using the CLASS_NAME System Property with Job Set Request
Parameters

i mport oracl e. as. schedul er. Request Par anet er s;

i mport oracl e. as. schedul er. Met adat albj ect | d;

i mport oracl e. as. schedul er. Runti nmeServi ce;

i mport oracl e. as. schedul er. Runti nmeServi ceHand| e;
i mport oracle. as. schedul er. SystenProperty;

Runti meServi ce runtineg;

Runt i meServi ceHandl e rs_handl e;
Met adat aCbj ect1d jobSetld;

int startsln;

I ong request!D = OL;

Request Paranet ers req_par = new Request Paranet ers();

req_par.add(SystenProperty. PRIORITY, "stepld-1", new |nteger(8));
req_par.add(SystenProperty. PRIORI TY, "stepld-2.stepld-1", new Integer(6));

Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, startsln);

requestID =
runtime. subnitRequest(rs_handle,"My job set", jobSetld, start, req_par);

9.4 Using System Properties

Oracle Enterprise Scheduler represents parameter names that are known to and used
by the system in the Syst enPr oper t y class. You can specify system properties as
parameter names in the application metadata and using request parameters when a
request is submitted. Oracle Enterprise Scheduler sets certain system properties when
a request is submitted or at some point in the life cycle of a request.

Table 9-3 lists the available system properties, as defined in

oracl e. as. schedul er. Syst enPr opert y. Most system properties are common to
all job types while some system properties are specific to a particular job type, as
indicated in the descriptions in Table 9-3.

When you use parameters, note that Oracle Enterprise Scheduler reserves the
parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler defined properties.

Table 9-3 System Properties

Name

Description

ALLOW MULT_PENDI NG Specifies whether multiple pending requests for the same job definition is allowed.

APPLI CATI ON

This property has no meaning for a job set step.
Type: BOOLEAN

Specifies the logical name of the Java EE application used for request processing. This
property is automatically set by Oracle Enterprise Scheduler during request
submission.

Type: STRI NG

9-8 Developing Applications for Oracle Enterprise Scheduler

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name

Description

ASYNC_REQUEST _TI ME
ouT

Bl Z_ERROR_EXI T_COD
E

CLASS_NAME

CMVDLI NE

CVDLI NE_UNI X

CNVDLI NE_W NDOWS

EFFECTI VE_APPLI CAT
I ON

EJB_OPERATI ON_NAVE

Specifies the time, in minutes, that the processor waits for an asynchronous request
after it has begun execution. Following this period, the request is considered to have
timed out.

Type: LONG

Specifies the process exit code for a Process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit code of
4 as an execution business error.

This property is optional for a Process job type. It is not used for other job types.

Type: STRI NG

Specifies the Java executable for a Java job request. This should be the name of a Java
class that implements the or acl e. as. schedul er. Execut abl e interface. This
property is required for a Java job type. It is not used for other job types.

Type: STRI NG

Specifies the command line used to invoke an external program for a Process job
request.

This property is required for a Process job type. It is not used for other job types.
Type: STRI NG

Specifies the full command line for executing a Process type request executable on a
Unix or Unix-like operating system. Typically, this property is specified in the job type
and the executable name, path, and arguments are used to indicate values to be
substituted at runtime.

See the following properties: EXECUTABLE_NAME, EXECUTABLE _DI R_UNI X,
EXECUTABLE_SUFFI X_UNI X, PROCESS_ARGUMENTS

Type: STRI NG

Specifies the full command line for executing a Process type request executable on a
Windows operating system. Typically, this property is specified in the job type and
the executable name, path, and arguments are used to indicate values to be substituted
at runtime.

See properties: EXECUTABLE_NAME, EXECUTABLE_DI R_W NDOWS5,
EXECUTABLE_SUFFI X_W NDOWS, PROCESS_ARGUVMENTS

Type: STRI NG

Specifies the logical name of the Java EE application that is the effective application
used to process the request. A job definition, job type, or a job set step can be
associated with a different application by defining the EFFECTI VE_APPL| CATI ON
system property. This property can only be specified using metadata and cannot be
specified as a submission parameter.

Type: STRI NG

Specifies the operation name of the EJB. This can be used by the Bean implementation
to branch to appropriate business methods. This property is used for the EJB job type.

Type: STRI NG

Using Parameters and System Properties 9-9

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name Description

ENVI RONMENT_VARI AB Specifies the environment variables to be set for the spawned process of a Process job
LES request.The property value should be a comma separated list of name value pairs
(name=value) representing the environment variables to be set.

This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

ESS_ASYNC_REQUEST_ Specifies the mapped name of the AsyncRequest EJB of Oracle Enterprise Scheduler
JNDI _MAPPED_NAME bound to the JNDI of an Oracle Enterprise Scheduler server.

Type: STRI NG
ESS_JNDI _CSF_KEY_N Specifies the name that denotes the CSF KEY name of a JNDI provider of the
AMVE underlying Oracle Enterprise Scheduler server. This property can be set in EssConfig
of a hosting application.
Type: STRI NG
ESS_RUNTI ME_JNDI _M Specifies the mapped name of the RuntimeService EJB of the Oracle Enterprise
APPED_NAME Scheduler bound to the JNDI of an Oracle Enterprise Scheduler server. This property
is used for the EJB job type.
Type: STRI NG
ESS_METADATA JNDI _ Specifies the mapped name of the MetadataService EJB of the Oracle Enterprise
MAPPED_NANME Scheduler bound to a JNDI of Oracle Enterprise Scheduler server.
Type: STRI NG
EXECUTABLE_NAME Specifies the name of the executable for a Process type request. The value should not

include the path to the executable.
See properties: EXECUTABLE_DI R_UNI X, EXECUTABLE_DI R_W NDOWS

Type: STRI NG
EXECUTABLE_DI R_UNI Specifies the directory where the executable resides for a Process type request on a
X Unix or Unix-like operating system.

Type: STRI NG

EXECUTABLE DI R_ W N Specifies the directory where the executable resides for a Process type request on a
DOWS Windows operating system.

Type: STRI NG
EXECUTABLE_SUFFI X_ Specifies the file extension of the executable for a Process type request if executed on a
UNI X generic Unix or Unix-like operating system. The default is no extension.

Type: STRI NG

EXECUTABLE_SUFFI X_ Specifies the file extension of the executable for a Process type request if executed on a
W NDOWS Windows operating system. The default is no extension.

Type: STRING

9-10 Developing Applications for Oracle Enterprise Scheduler

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name

Description

EXECUTE_AUTO_EXPOR
T

EXECUTE_PAST

EXTERNAL_I D

EXTERNAL_JOB_TYPE

GROUP_NAME

Specifies whether the request's previously imported output content is automatically

exported to the request's output directory before the job's execute stage runs. This

property is applicable to the execute stage for Process, synchronous Java, and

asynchronous Java job types. It does not apply to the update stage of asynchronous

Java job types or PL/SQL job types.

Valid values are:

e true: All previously imported output content are exported to files in the request's
output directory before the job's execute stage.

¢ fal se: No output content is automatically exported. The job may choose to
manually export output content.

If this property is not specified, the system default f al se is used.

Type: BOOLEAN

Specifies whether instances of a repeating request with an execution time in the past
should be generated. Instances are never generated before the requested start time nor
after the requested end time. To cause past instances to be generated, you must set this
property to TRUE and specify the requested start time as the initial time from which
instances should be generated. Note that a null requested start time defaults to the
current time.

Valid values for this property are:

* TRUE: All instances specified by a schedule are generated regardless of the time of
generation.

* FALSE: Instances with a scheduled execution time in the past (that is, before the
time of generation) are not generated.

If this property is not specified, the system defaults to TRUE.

Type: BOOLEAN

Specifies an identifier for an external portion of an asynchronous Java job. For
example, an asynchronous Java job usually invokes some remote process and then
returns control to Oracle Enterprise Scheduler. This property can be used to identify
the remote process. This property should be set by the job implementation of
asynchronous Java jobs when the identifier is known. It is never set by Oracle
Enterprise Scheduler.

Type: STRI NG

Specifies an indicator of the type of the remote component of the job. For requests that
have a remote component such as asynchronous Java jobs, WebService jobs, or EJB
jobs this property specifies the nature of the remote job. Currently supported external
job types are the names of the elements in the Syst enPr operty. Ext er nal JobType
property.

The supported values are SOA, OSB, ADFBC

This property is optional. If it is not specified, Oracle Enterprise Scheduler does not
associate the request with an external job type, regardless of how the job is
implemented.

Type: STRI NG

Specifies the name of the Oracle Enterprise Scheduler isolation group to which this
request is bound. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRI NG

Using Parameters and System Properties 9-11

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name Description

I NPUT_LI ST Specifies input to a request. The input to a serial job set is forwarded as input to the
first step only. The input to a parallel job set is forwarded as input to all the parallel
steps.

Oracle Enterprise Scheduler imposes no format on the value of this property.

Type: STRI NG

| NVOKE_MESSAGE Specifies the XML message payload used as the input for invoking the remote web
service. This property is used for the EJB job type and WebService job type. This
property is a pass-through parameter for the EJB job type.

Type: STRI NG

JNDI _CSF_KEY Specifies the CSF alias that is mapped to the user name and password in keystore.
This specific user name/password is the credential needed to access the secured JNDI
for Indi MappedNarre lookup. This property is needed only if the JNDI tree is
secured. This property is used for the EJB job type.

Type: STRI NG

JNDI _MAPPED_ NAME Specifies the mapped name of an EJB that is bound to the JNDI of a local/remote
server. This property is used for the EJB job type.

Type: STRI NG

JNDI _PROVI DER_URL Specifies the URL of the JNDI provider pertaining to a remote server. This property is
optional, needed only if the EJB and Oracle Enterprise Scheduler are remotely located.
If this property is not specified, the job is executed in a local server. This property is
used for the EJB job type.

Type: STRI NG

LI STENER Specifies the event listener class associated with the request. This should be the name
of a Java class that implements the or acl e. as. schedul er. Event Li st ener
interface.

Type: STRI NG

LOCALE Specifies the locale associated with the request.
Type: STRI NG

LOG CAL_CLUSTER _NA Specifies the name of a logical cluster. A logical cluster consists of information related

ME to a physical cluster and is usually stored in the hosting application's configuration.
The logical cluster name is a reference to a set of physical cluster information in the
application's configuration. If the property is not specified, no logical cluster is
associated with the request.

Type: STRI NG

QUTPUT_LI ST Specifies output from a request.

The output of a serial job set is the OUTPUT_LI ST of the last step. The output of a
parallel job set is the concatenation of the QUTPUT_LI ST of all the steps, in no
guaranteed order, with

oracl e. as. schedul er. Syst enProperty. OUTPUT_LI| ST_DELI M TERas a
separator.

Type: STRI NG

POST_PROCESS Specifies the post-process callout handler class. This should be the name of a Java class
that implements the or acl e. as. schedul er . Post ProcessHandl er interface.

Type: STRI NG

9-12 Developing Applications for Oracle Enterprise Scheduler

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name Description

PRE_PROCESS Specifies the pre-process callout handler class. This should be the name of a Java class
that implements the or acl e. as. schedul er. PreProcessHandl er interface.
Type: STRI NG

PRIORITY Specifies the request processing priority. The priority interval is [0..9] with 0 as the

PROCEDURE_NAME

PRODUCT

PROCESS_ARGUVENTS

REDI RECTED_OUTPUT _
FI LE

REPROCESS_DELAY

REQUEST CATEGORY

REQUEST_EFFECTI VE_
ENCODI NG

lowest priority and 9 as the highest.
Default: If this property is not specified, the system default value used is 4.
Type: | NTEGER

Specifies the name of the PL/SQL stored procedure to be called for a SQL job request.
The stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.
Type: STRI NG

Specifies the product within the application that submitted the request.
Type: STRI NG

Specifies the arguments passed to the executable of a Process type spawned process.
Type: STRI NG

Specifies the file where standard output and error streams are redirected for a Process
job request. This represents the full path of the log file where the standard output and
error streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

Specifies the callout handler processing delay time. This represents the time, in
minutes, to delay request processing when a delay is requested by a callback handler.

Default: If this property is not specified, the system default used is 5.
Type: | NTEGER

Specifies an application-specific label for a request. The label, defined by an
application or system administrator, allows administrators to group job requests
according to their own specific requirements.

Type: STRI NG

Specifies the effective encoding associated with a Process job request.

SpawnLauncher determines the Locale setting for a spawned job request in the
following precedence order:

1. LC_ALL/LANGspecified in environment properties
(Syst enPr oper t y. ENVI RONVENT_VARI ABLES) for the request

2. LC_ALL/LANGspecified in the hosting application ess- confi g. xm file

3. Weblogic server LC_ALL/LANG

The effective encoding is computed before the process is spawned and is stored in this
property. This is later used to determine the encoding to use for the request log and
output.

Type: STRI NG

Using Parameters and System Properties 9-13

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name Description

REQUEST_EXPI RATI ON Specifies the expiration time for a request. This represents the time, in minutes, that a
request expires after its scheduled execution time. A expiration value of zero (0)
means that the request never expires. If this property is not specified, the system
default value used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits
longer than the specified expiration period, it does not run. After a request starts
running the request expiration no longer applies.

Type: | NTEGER

REQUEST_LOG LEVEL Specifies the log level for request logging. Valid values for log level are the String
representations of levels defined in j ava. uti | . | oggi ng. The level is obtained using
Level . get Name() . The default log level is "INFO".
Type: STRI NG

REQUESTED_PROCESSO Specifies the request processor node on which the request should be processed. This

R allows processor affinity to be specified for a request. If this property is not specified,
the request can run on any available request processor node. In general, this property
should not be specified.

If this property is specified for a request, the request processor's work assignments
oracl e. as. schedul er. Wr kAssi gnent (specialization) must allow the
execution of such requests, otherwise the request is never executed. If the specified
node is not running, the request remains in the READY state and is not executed until
the node is restarted.

Type: STRI NG

RESOLVED_CMDLI NE Specifies the command line used for a Process type job request. This property is only
set by Oracle Enterprise Scheduler. It is meant for diagnostic purposes only.

Type: STRI NG

RETRI ES Specifies the retry limit for a failed request. If request execution fails, the request
retries up to the number of times specified by this property until the request succeeds.
If retry limit is zero (0), a failed request is not retried.
Default: If this property is not specified, the system default used is 0.

Type: | NTEGER

RUNAS_APPLI CATI ONI Specifies the r unAs identifier that should be used to execute the request. Normally, a

D request runs as the submitting user. However, if this property is set in the metadata of
the job associated with the request, then the request executes under the user identified
by this property. This property can only be specified using metadata and cannot be
specified as a submission parameter.

Type: STRI NG

SELECT_STATE Specifies whether the result state of a job set step affects the eventual state of its parent
job set. In order for the state of a job set step to be considered when determining the
state of the job set, the SELECT_STATE must be set to t r ue. If SELECT_STATE is not
specified on a job set step, the state of the step is included in the determination of the
state of the job set.

Type: BOOLEAN

9-14 Developing Applications for Oracle Enterprise Scheduler

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name

Description

SQL_JOB_CLASS

SUBM TTI NG_APPLI CA
TI ON

SUCCESS_EXI T_CODE

SUPPORT_OUTPUT_FI L
ES

UPLOAD_CONTENT_TO_
REPCS| TORY

USE_ALTERNATE_ENV

Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle
Enterprise Scheduler job used to execute a SQL job request. This property need not be
specified unless the job used for a job request is associated with a particular Oracle
Database resource consumer group or has affinity to a database service.

If this property is not specified, a default Oracle Enterprise Scheduler job class is used
for the job that executes the SQL request. That job class is associated with the default
resource consumer group. It belongs to the default service, such that it has no service
affinity and, in an Oracle RAC environment, any one of the database instances within
the cluster might run the job. No additional privilege or grant is required for an Oracle
Enterprise Scheduler SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.

Type: STRI NG

Specifies the logical name of the Java EE application for the submitted (absolute
parent) request. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRI NG

Specifies the process exit code for a Process job request that denotes an execution
success. If this property is not specified the system treats a process exit code of 0 as
execution success.

This property is optional for a Process job type. It is not used for other job types.

Type: STRI NG

Specifies whether the request creates temporary or output files. The property applies
during these stages: pre-processing, execution, async update, and post-processing. The
request can always use the API to create output content directly in the content store.

The property value specifies the action to take. If this property is not specified, no
directories are created. Non-valid values are treated as though the property is not
specified.

Valid values are:

e SystenProperty. SUPPORT_OUTPUT_FI LES_NONE

e SystenProperty. SUPPORT_OUTPUT_FI LES_WORK

e SystenProperty. SUPPORT_OUTPUT_FI LES OUTPUT

Type: STRI NG

Specifies whether to upload request log and output files to a separate repository, such
as Universal Content Management (UCM), from the internal repository when the
request execution completes.

Property value specifies the action to take. If this property is not specified, content is
not uploaded. Non-valid values are treated as though the property were not specified.

Valid value is:
Syst enProperty. UPLOAD_CONTENT_TO_REPGCSI TORY_COPY
Type: STRI NG

Specifies whether to use an alternative environment from a callout rather than the
normal application environment. If this property is not specified, the normal
application environment is used.

Type: BOOLEAN

Using Parameters and System Properties 9-15

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name Description

USE_EXTENDED _SETUP Specifies whether to initiate capabilities like Appl Sessi ons prior to invoking job-
related code such as the job executable or pre-process handler, post-process handler.
Extended functionality is invoked only in an environments where it is available. If this
property is not specified, no extended functionality is set up prior to job execution.

Type: BOOLEAN

USER FILE DI R Specifies a base directory in the file system where files, such as input and output files,
may be stored for use by the request executable.
Oracle Enterprise Scheduler supports a configuration parameter that specifies a file
directory where requests may store files. At request submission, a USER_FI LE_DI R
property is automatically added for the request if the configuration parameter is
currently set and USER_FI LE_DI R property was not specified for the request. If the
property is added, it is initialized to the value of the configuration parameter. The
property is not added if the configuration parameter is not set at the time of request
submission.

Type: STRI NG

USER _FI LE_DI R_SHAR Specifies whether the request's USER_FI LE_DI R (configured Request Fi | eDi r)
ED directory is shared. This property represents the value of Request Fi | eDi r Shar ed.
This property is valid for a request in standard or extended request mode.
Valid values are:
e true:USER _FI LE_DI Ris a shared directory.
e fal se:USER FI LE DI Ris a local directory.
If this property is not specified, system default f al se is used.

Type: BOOLEAN

USER_NAME Specifies the name of the user used to execute the request. Normally this is the
submitting user unless the RUNAS_APPLI CATI ONI D property was set in the job
metadata. This property is automatically set by Oracle Enterprise Scheduler during
request submission.

Type: STRI NG

WARNI NG_EXI T_CCODE Specifies the process exit code for a Process job request that denotes an execution
warning. If this property is not specified, the system treats a process exit code of 3 as
execution warning.

This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

WORK_DI R_ROOT Specifies the working directory for the spawned process of a Process job request.
This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

WS_WSDL_URL Specifies the relative URL for web service WSDL. The base URL is given by the
W5_WSDL_BASE_URL system property. This property is used for a WebService job
type.

Type: STRI NG

9-16 Developing Applications for Oracle Enterprise Scheduler

Using System Properties

Table 9-3 (Cont.) System Properties
. ___|

Name

Description

Ws_WSDL_BASE_URL

WS_TARGET_NS

Ws_ENDPOI NT_URL

Ws_ENDPOl NT_BASE_U
RL

WS_SERVI CE_NANME

Ws_PORT_NAVE

WS_OPERATI ON_NAME

WS_CANCEL_OPERATI O

N_NAVE

W5_CANCEL_MESSAGE

Specifies a base URL that can be used in conjunction with the W5_W5DL_URL system
property to provide a full URL for the web service WSDL. The property is usually
used in conjunction with the LOG CAL_CLUSTER NAME system property. It is meant
to be a generic base URL that is common for all web service WSDLs in the cluster. This
property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved
from the information associated with the LOG CAL_CLUSTER_NAME system property
of the request if it is configured in the hosting application's configuration.

Type: STRI NG

Specifies the target name space for the web service. This property is used for a
WebService job type.

Type: STRI NG

Specifies the relative URL for a web service endpoint. The base URL is given by the
W5_ENDPQO NT_BASE_URL system property. This property is used for a WebService
job type.

Type: STRI NG

Specifies a base URL that can be used in conjunction with the W5_ENDPO NT__URL
system property to provide a full URL for the web service endpoint. This property is
usually used in conjunction with the LOG@ CAL_CLUSTER_NAME system property. It is
meant to be a generic base URL that is common for all web service endpoints in the
cluster. This property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved
from the information associated with the LOG CAL_CLUSTER_NAME system property
of the request if it is configured in the hosting application's configuration.

Type: STRI NG

Specifies the WSDL service name for a web service operation. This property is used for
a WebService job type.

Type: STRI NG

Specifies the WSDL port name for a web service operation. This property is used for a
WebService job type.

Type: STRI NG

Specifies the WSDL operation name for a web service operation. This property is used
for a WebService job type.

Type: STRI NG

Specifies the WSDL operation name for a web service cancel operation. This property
is used for a WebService job type.

Type: STRI NG

Specifies the XML message payload used as the input for invoking cancel on remote
web service. This property is used for a WebService job type.

Type: STRI NG

Using Parameters and System Properties 9-17

Using System Properties

9-18 Developing Applications for Oracle Enterprise Scheduler

10

Using Tokens and Logical Clusters

In order to make job definitions easily portable from test environments to production
environments, it is best for job definitions not to contain environment-specific
information such as host names and port numbers. The Oracle Enterprise Scheduler
token substitution and logical cluster features allow you to abstract metadata so that it
can be easily changed to correctly fit the target deployment during the T2P process.

This chapter contains the following sections:
¢ Using Token Substitution

* Using Logical Clusters

10.1 Using Token Substitution

To improve the flexibility of configuration and reduce the need for provisioning,
Oracle Enterprise Scheduler allows you to include substitutable tokens in request
parameters and environment properties.

Tokens take the following form: ${ TokenPrefix: token}

Where token is the name of the token and TokenPrefix is where the substitution value is
specified. Supported token prefixes are: APP_ENV, ESS_ENV, and ESS_REQ The
examples given below are simple, but illustrate the capabilities of Oracle Enterprise
Scheduler substitution.

e APP_ENV
The substitution value comes from the application environment properties.

For example, the following environment variable is specified in the hosting
application configuration properties using Oracle Enterprise Manager Fusion
Middleware Control or WLST:

AppEnvVar 1=f oo
A request parameter is specified in a job definition:
My Par amr${ APP_ENV: appEnvVar 1}

After the substitution, the value of MyPar amis f 00.

e ESS_ENV

Substitution values come from the Oracle Enterprise Scheduler server
environment. This includes the following three possible sources:

— JVM system properties: The token value is the name of the system property.

— JVM environment variables: The token value is the name of the environment
variable.

Using Tokens and Logical Clusters 10-1

Using Token Substitution

— JRF: Token values are j r f Server LogPat h,j r f Server Confi gDi rectory,
and j r f Domai nConfi gDi rectory.

The following example shows the use of the ESS_ENV token prefix in the
specification of an environment variable in the hosting application configuration
properties.

w st Locati on = ${ESS_ENV: cormopn. conponent s. honme}/ cormon/ bi n/
w st. sh.

When the substitution is performed, the Oracle Enterprise Scheduler process job
environment includes an environment variable named wl st Locat i on whose
value is a complete path. For example:

/ nmyl nst al | Hone/ mw_hone/ or acl e_conmon/ common/ bi n/ Wl st. sh.
¢ ESS_REQ

ESS_REQsubstitutions come from information specific to the Oracle Enterprise
Scheduler request in question. The following are the supported tokens:

~ REQUEST_I D
— REQUEST_HANDLE
~ |'S_RESUMED

— PAUSED_STATE

— Request parameter names for those requests

10.1.1 Nested Substitutions

Nested substitutions are automatically resolved when the top-level substitution is
done. For example, the following request parameters are specified in a job definition
for a process job:

MyPar aml=${ ESS_REQ MyPar an2}

MyPar an2=${ APP_ENV: MyEnvPr op1}

An application's environment properties includes the following;:

M/EnvProp1=${ ESS_ENV: webl ogi c. Nane}

The value of the JVM system property webl ogi c. Nane might be something like
ess_server 1. When substitution is performed on MyPar ami, it resolves to the value

of MyPar an®, which in turn resolves to the value of MyEnvPr opl. The the result of
the nested substitution is that the value of MyPar aml is ess_ser ver 1.

10.1.2 Automatic Substitution

Automatic Oracle Enterprise Scheduler substitution is available for process job
command lines and environment properties, as well as for some request properties
used by EJB and web service jobs.

These sections list the automatically substituted request parameters for E]B jobs, web
service jobs, and process jobs.

For more information about these properties refer to the following chapters:

¢ Creating and Using EJB Jobs

10-2 Developing Applications for Oracle Enterprise Scheduler

Using Logical Clusters

¢ Creating and Using Web Service Jobs

® Creating and Using Process Jobs .

EJB Job Type Automatically Substituted Properties
The automatically substituted properties for the EJB job type are:

e SYS EXT j ndi Provider Url

e SYS EXT_essRunti nedndi MappedNane

e SYS EXT_essMet adat aJndi MappedNane

e SYS EXT_essAsyncRequest Jndi MappedNane
e SYS EXT_essJndi Csf Key

e SYS EXT_invokeMessage

Web Services Job Type: Automatically Substituted Properties
The automatically substituted properties for the web service job type are:
e SYS EXT_wsEndpoi nt BaselUr |

e SYS EXT wsEndpoi nt Ur |

e SYS EXT _wsWsdl Baselr |

* SYS _EXT_wsWsdl Url

e SYS EXT_invokeMessage

e SYS EXT wsCancel Message

Process Job Type: Automatically Substituted Properties

The automatically substituted properties for the process job type are:
e SYS cndLi ne

e SYS EXT _cndLi ne. Uni x

e SYS EXT_cndLi ne. W ndows

e SYS environnent Vari abl es

10.2 Using Logical Clusters

Oracle Enterprise Scheduler provides the means by which EJB and web service jobs
can define an abstract job location. The job location is specified by the Oracle
Enterprise Scheduler SYS_| ogi cal O ust er Nane system property and specifies a
logical cluster name (LCN).

If the job definition for an EJB or web service job specifies a value for an LCN, certain
environment-specific properties are specified using Oracle Enterprise Manager Fusion
Middleware Control or WLST commands at the hosting application level rather than
in the job definition. All job definitions with the same LCN share the value of the
properties entered in the hosting application configuration properties using Oracle
Enterprise Manager Fusion Middleware Control or WLST commands.

Using Tokens and Logical Clusters 10-3

Using Logical Clusters

Note:

Oracle Enterprise Manager Fusion Middleware Control refers to logical cluster
functionality as "job location.” The terms "logical clusters" and "job location"
can be used interchangeably.

If a job definition specifies a value for the SYS_| ogi cal C ust er Nane property, then
the value is used as a prefix for a set of application configuration properties that define
attributes of the logical cluster. Table 10-1 lists the properties associated with job
location, where prefix represents the logical cluster name. Note that these properties
need not be specified if they are configured in the hosting application.

Table 10-1 Properties Associated With a Job Location

Property Name Corresponding System Description
Property
LCN. prefix.Jndi Provi der U SYS_EXT_j ndi Provid The JNDI provider for the
I erurl cluster. Used with the EJB job
type. The corresponding system
property,

SYS_EXT_j ndi Provi derUrl,
need not be specified in the job.

LCN. prefix. WENndpoi nt Bas SYS_EXT_wsEndpoi nt The host and port. For example,

eUrl BaseUr | htt p: // host: port/ . Used with
the EJB job type. The
corresponding system property,
SYS_EXT_wsEndpoi nt BaseUr
|, need not be specified in the
job.

LCN. prefix. W6\ dl BaseUrl SYS_EXT_wsWsdl Base The host and port of the WSDL.
gl For example, ht t p: //
host: portl . Used with the EJB job
type. The Corresponding system
property,
SYS_EXT_wsWsdl BaseUr |,
need not be specified in the job.

For example, if a job defines the SYS_| ogi cal Cl ust er Name property as
SOA_C ust er 1, then the application configuration might contain the following
properties:

LCN. SOA d ust er 1. V6Endpoi nt BaseURL=ht t p: // host : port/
LCN. SOA C uster1. VWsdl BaseURL=ht t p: // host: port/
LCN. SOA d uster1. Jndi Provi der URL=t 3: // host 1; port 1; host 2: port 2/

Note:

The value of the SYS_| ogi cal Cl ust er Nanme property cannot contain the “."
character.

10-4 Developing Applications for Oracle Enterprise Scheduler

11

Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle
Enterprise Scheduler, and describes Oracle Database tasks that you need to perform to
use PL/SQL stored procedures with Oracle Enterprise Scheduler.

After you create a PL/SQL procedure and define a job definition, you can use the
Oracle Enterprise Scheduler runtime service to submit a job request for a PL/SQL
procedure.

This chapter includes the following sections:

¢ Introduction to Using PL/SQL Stored Procedure Job Definitions

¢ Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
e Performing Oracle Database Tasks for PL/SQL Stored Procedures

¢ Creating and Storing Job Definitions for PL/SQL Job Types

For information about how to use the Runtime Service, see Using the Runtime Service.

11.1 Introduction to Using PL/SQL Stored Procedure Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including:
Java classes, PL/SQL stored procedures, and process requests that run as a forked
process.

To use Oracle Enterprise Scheduler with PL/SQL stored procedures you need to do
the following;:

¢ Create or obtain the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler.

¢ Load the PL/SQL stored procedure in the Oracle Database and grant the required
permissions and perform other required DBA tasks.

® Use Oracle JDeveloper to create job type and job definition objects and store these
objects with the Oracle Enterprise Scheduler application metadata.

® Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduler
APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduler APIs
you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information, see Using the Runtime Service.

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL
stored procedure job requests. This means that Oracle Enterprise Scheduler does not
directly call the PL/SQL stored procedure, but instead uses Oracle Database Scheduler

Creating and Using PL/SQL Jobs 11-1

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

(an Oracle Database feature). When a PL/SQL stored procedure job request is ready to
execute, Oracle Enterprise Scheduler creates an immediate, run-once Oracle Database
Scheduler job. This Oracle Database Scheduler job is created by the Oracle Enterprise
Scheduler runtime schema user associated with the container instance that executes
the PL/SQL request, and is owned by the application procedure owner. The Oracle
Database Scheduler job procedure is a PL/SQL wrapper procedure owned by the
Oracle Enterprise Scheduler runtime schema user. Finally, when the Oracle Database
Scheduler job runs, the wrapper procedure calls the application stored procedure
using dynamic SQL. After the PL/SQL stored procedure completes, either by a
successful return or by raising an exception, the Oracle Database Scheduler job
finishes and creates an event that informs Oracle Enterprise Scheduler that the remote
executable finished.

11.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduler,
the PL/SQL procedure must have certain characteristics to work with an Oracle
Enterprise Scheduler application and a DBA must assure that certain Oracle Database
permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

¢ Define the PL/SQL stored procedure that has the correct signature for use with
Oracle Enterprise Scheduler

® Perform the required DBA tasks to make the PL/SQL stored procedure available to
Oracle Enterprise Scheduler

11.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature

The PL/SQL stored procedure that you call from Oracle Enterprise Scheduler must
have a specific signature and include specific procedure parameters, as follows:

PROCEDURE my_proc(request _handl e | N VARCHAR?) ;
The r equest _handl e parameter is an opaque value representing an execution
context for the Oracle Enterprise Scheduler request being executed.

Example 11-1 shows a sample HELLO_WORL D stored procedure for use with Oracle
Enterprise Scheduler.

Example 11-1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO WORLD(request _handle in varchar2)

as
v_request _id nunber := null;
v_prop_nanme varchar2(500) := null;
v_prop_int integer := null;
begin
- Get the Oracle Enterprise Schedul er request 1D being executed.
begin
v_request _id := ess_runtine.get_request_id(request_handl e);
exception

when others then
rai se_application_error(-20000,
"Failed to get request id for request handle ' ||
request _handle || ". [" || SQLERRM || ']');
end;

- Retrieve value of an existing request property.

11-2 Developing Applications for Oracle Enterprise Scheduler

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

begin
v_prop_name := "nytestintProp';
v_prop_int := ess_runtine.get_reqprop_int(v_request_id, v_prop_nane);
exception
when others then
rol | back;
rai se_application_error(-20001,
"Failed to get request property ' || v_prop_nane ||
" for Oracle Enterprise Schedul er request ID"' || v_request_id ||
o0 SQLERRMI| T)
end;

- Update an existing request property with a new val ue.
- This procedure is responsible for commit/rollback of the update operation.
begin
v_prop_nane : = 'nyJobdefProp';
ess_runtine. updat e_reqprop_varchar2(v_request _id, v_prop_nane,
"myUpdat eVal ue');

comit;
exception
when others then
rol | back;
rai se_application_error(-20002,
"Failed to update request property ' || v_prop_nane ||
" for Oracle Enterprise Schedul er request ID' || v_request_id ||
0] SQLERRMI T)

end;
end hel | oworl d;
/

11.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored

Procedure

In the PL/SQL stored procedure, you can handle exceptions and other issues by
raising a RAI SE_APPLI CATI ON_ERRCR exception. The

RAI SE_APPLI CATI ON_ERRORrequires that the error code from the PL/SQL stored
procedure range from -20000 to -20999. The PL/SQL stored procedure can use

RAI SE_APPLI CATI ON_ERRCRIf it must raise an exception.

RAI SE_APPLI CATI ON_ERRORrequires that the error code range from -20000 to
-20999.

Table 11-1 indicates the Oracle Enterprise Scheduler state based on the result of the
PL/SQL stored procedure.

Table 11-1 Terminal States for PL/SQL Stored Procedure Results

Final State Description

SUCCEEDED If the PL/SQL stored procedure returns normally, without raising an
exception, the request state transitions to the SUCCEEDED state, bearing any
subsequent errors completing the request.

WARNI NG If the PL/SQL stored procedure returns with an exception, the request state
is based on the SQL error code of the exception.

The request transitions to the WARNI NG terminal state if the SQL error code
ranges from -20900 to -20919.

Creating and Using PL/SQL Jobs 11-3

Performing Oracle Database Tasks for PL/SQL Stored Procedures

Table 11-1 (Cont.) Terminal States for PL/SQL Stored Procedure Results
__|

Final State Description

ERRCR If the PL/SQL stored procedure returns with an exception, the request state
is based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside
the range of -20900 to -20919 (error codes within this range indicate a
WARNI NG).

Return codes in the range -20920 to -20929 result in an ERROR state with a
BUSI NESS error type, where the request is not subject to automatic retries.

11.2.3 How to Access Job Request Information In PL/SQL Stored Procedures

Oracle Enterprise Scheduler provides a PL/SQL package, ESS_RUNTI ME to perform
certain operations that you may need when you are working in a PL/SQL stored
procedure. You can use these procedures perform job request operations and to obtain
job request information for an Oracle Enterprise Scheduler runtime schema. For
example, you can use these runtime procedure to submit requests and retrieve and
update request information associated with an Oracle Enterprise Scheduler job
request.

The following sample code shows use of an ESS_RUNTI ME procedure:

v_request _id := ess_runtine.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTI ME package require a request handle parameter
and provide information on an executing request (these should only be called from the
PL/SQL stored procedure that is executing the PL/SQL stored procedure request).
You can call some procedures in the ESS_RUNTI ME package from outside of the
context of an executing request; these procedures may include a request ID parameter.

11.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

You need to know the following when you create an use a PL/SQL stored procedure
with Oracle Enterprise Scheduler:

¢ Itis not required that the PL/SQL stored procedure exist when the Oracle
Enterprise Scheduler request is submitted, but the PL/SQL stored procedure must
exist and be callable when the request is ready to run.

e The PL/SQL stored procedure must exist on the same database as the Oracle
Enterprise Scheduler Runtime schema.

11.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures

After you create the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler a DBA must load the PL/SQL stored procedure in the Oracle
Database and grant the required permissions.

11.3.1 How to Grant PL/SQL Stored Procedure Permissions

Before the DBA grants permissions, the DBA must determine the Oracle Database and
the Oracle Enterprise Scheduler runtime schema that is associated with the deployed

11-4 Developing Applications for Oracle Enterprise Scheduler

Performing Oracle Database Tasks for PL/SQL Stored Procedures

Java EE application that is going to submit the Oracle Enterprise Scheduler PL/SQL
stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

ess_schena: specifies the Oracle Enterprise Scheduler runtime schema associated
with the Java EE application.

user _schema: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the
Oracle Enterprise Scheduler job request.

To grant Oracle Database permissions:

1. In the Oracle Database grant execute on the ESS_RUNTI ME package to the
application user schema. For example:

GRANT EXECUTE ON ess_schema. ESS RUNTI ME to user _schemg;

2. In the Oracle Database, create a private synonym for the ESS_RUNTI ME package.
This is a convenience step that allows the PL/SQL stored procedure to reference
the ESS_RUNTI ME as simply ESS_RUNTI ME rather than using the full
schema_name.ESS _RUNI ME. For example:

CREATE OR REPLACE SYNOWYM user _schema. ESS_RUNTI ME for ess_schenma. ESS_RUNTI ME;

3. In the Oracle Database, grant execute on the ESS_J OB package to the application
user schema. This step can be skipped if ESS_JOB is not used. For example:

GRANT EXECUTE ON ess_schema. ESS JOB to user_scheng;

4. In the Oracle Database, create a private synonym for the ESS_J OB package. This is
a convenience step that allows the PL/SQL stored procedure to reference the
ESS_JOB as simply ESS_J OB rather than using the full schema_name. ESS_J OB.
This step can be skipped if ESS_JOB is not used. For example:

CREATE OR REPLACE SYNONYM user _schema. ESS JOB for ess_schema. ESS_JOB;

5. In the Oracle Database, grant execute on a PL/SQL stored procedure owned by the
Oracle Enterprise Scheduler runtime schema user that serves as the Oracle
Enterprise Scheduler job procedure. For example:

GRANT EXECUTE ON ess_schema. ESS_SCHIOB_PROC to user _schems;

As an example, if the Oracle Enterprise Scheduler runtime schema is TEST_ESS, the
application user schema is HOM O, and the PL/SQL procedure is named
HELLO_WORLD, the DBA operations are:

GRANT EXECUTE ON test ess.ess_runtine to how o;

CREATE OR REPLACE SYNONYM howto.ess runtime for test ess.ess_runting;
GRANT EXECUTE ON test_ess.ess_job to how o;

CREATE OR REPLACE SYNONYM howt 0. ess_job for test_ess.ess_job;

GRANT EXECUTE ON test ess.ESS SCHIOB PROC to howt o;

11.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

The two steps shown for DBA tasks for granting permissions on the ESS_RUNTI ME
package are only required if the ESS_RUNTI ME package is referenced by a PL/SQL
procedure. The two steps shown for DBA tasks use to grant permissions on the
ESS_JOB package are only required if the ESS JOB package is referenced by a
PL/SQL procedure. The step shown for the ESS_SCHJOB_PROC procedure is always

Creating and Using PL/SQL Jobs 11-5

Creating and Storing Job Definitions for PL/SQL Job Types

required since it allows the Oracle Enterprise Scheduler wrapper procedure to be
called.

All PL/SQL stored procedures in a given application user schema that are used for
Oracle Enterprise Scheduler PL/SQL stored procedure jobs should always be
associated with the same (single) Oracle Enterprise Scheduler Runtime schema. While
this is not technically required, it greatly simplifies the DBA setup and does not
require the PL/SQL stored procedure to explicitly specify the Oracle Enterprise
Scheduler runtime schema if the procedure references the ESS_RUNTI ME.

11.4 Creating and Storing Job Definitions for PL/SQL Job Types

To use PL/SQL stored procedures with Oracle Enterprise Scheduler you need to locate
the Metadata Service and create a job definition. You create a job definition by
specifying a name and a job type. When you create a job definition you also need to set
certain system properties. You can then store the job definition and other associated
objects using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata
Service .

Oracle Enterprise Scheduler uses an Oracle Database Scheduler job to execute the
PL/SQL stored procedure for a SQL job request. An Oracle Database Scheduler job
class can be associated with the job when that job must have affinity to a database
service or is to be associated with an Oracle Database resource consumer group. The
Oracle Database Scheduler job owner must have EXECUTE privilege on the Oracle
Database Scheduler job class in order to successfully create a job using that job class.

You can use Oracle Enterprise Scheduler system properties to specify certain attributes
for the Oracle Enterprise Scheduler job that calls the PL/SQL stored procedure.

These SystemProperty properties apply specifically to SQL job types;
PROCEDURE_NAME, SQL_JOB_CLASS.

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored
procedure to be executed. The stored procedure name should have a owner. name
format, where owner is the schema owner of the job procedure and name is the
procedure name. This property must be specified for either the job type or job
definition.

The SQL_JOB_CLASS system property specifies an Oracle Database Scheduler job
class to be assigned to the Oracle Database Scheduler job used to execute an SQL job
request. This property does not need to be specified unless the Oracle Database
Scheduler job used for a request should be associated with a particular Oracle
Database resource consumer group or have affinity to a database service.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Database
Scheduler job class created by Oracle Enterprise Scheduler is used for the Oracle
Database Scheduler job. The default job class is associated with the default resource
consumer group. It belongs to the default service, which means it has no service
affinity and in an Oracle RAC environment any one of the database instances within
the cluster might run the job. No additional privilege grant is needed for an Oracle
Enterprise Scheduler SQL request to use that default job class.

11.4.1 How to Create a PL/SQL Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and
defines a common set of properties for a job request. A job type can be defined and
then shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

11-6 Developing Applications for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for PL/SQL Job Types

¢ JAVA _TYPE: for job definitions that are implemented in Java and run in the
container.

* SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

* PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes.

When you specify the JobType you can also specify properties that define the
characteristics associated with the JobType. Table 11-2 describes the
Syst enProperti es that are appropriate for a PL/SQL stored procedure job type.

Table 11-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job Type
. __|

System Property

Description

PROCEDURE_NANME Specifies the name of the stored procedure to run as part of PL/SQL job execution.

SQL_JOB_CLASS

For a SQL_TYPE application, this is a required property.

Specifies an Oracle Database Scheduler job class to be assigned to the Oracle Database
Scheduler job used to execute an SQL job request.

This is an optional property for a SQL_TYPE job type.

When you create and store a PL/SQL job type, you do the following:

* Use the JobType constructor and supply a St ri ng name and a
JobType. Execut i onType. SQL_TYPE argument.

¢ Set the appropriate properties for the new JobType.

® Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use the
Metadata Service addJobType() method to store the JobType in metadata.

¢ Use a Met adat aQbj ect | d that uniquely identifies metadata objects in the
metadata repository, and, using a unique identifier the Met adat aCbj ect I D
contains the fully qualified name for a metadata object.

See Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler
Application for sample code.

11.4.2 How to Create and Store a Job Definition for PL/SQL Job Type

To use PL/SQL with Oracle Enterprise Scheduler, you need to create and store a job
definition. A job definition is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler. Each job definition belongs to one and only one job type.

Note:

After you create a job definition with a job type, you cannot change the type or
the job definition name. To change the type or the job definition name, you
need to create a new job definition.

Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application
shows how to create a job definition using the job definition constructor and the job

type.

Creating and Using PL/SQL Jobs 11-7

Creating and Storing Job Definitions for PL/SQL Job Types

11.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler

Application

This section shows sample code in which job type and job definition application
metadata are created for a SQL job type.

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

oracl e. as. schedul er. JobType;

oracl e. as. schedul er. JobDefinition;

oracl e. as. schedul er. Met adat aSer vi ce;

oracl e. as. schedul er. Met adat aSer vi ceHandl e;
oracl e. as. schedul er. Met adat athj ect | d;

oracl e. as. schedul er. Paranet er | nf o;

oracl e. as. schedul er. Paranet er | nf 0. Dat aType;
oracl e. as. schedul er. Par anet er Li st ;

voi d createDefinition()

{
Met

Met

try

{

}

cat

{

adat aService nmetadata = ...
adat aSer vi ceHandl e nshandl e = nul|;

Paranet er I nfo pinfo;
Paranet erLi st plist;

nshandl e = net adat a. open();

/| Define and add a PL/SQ. job type for the application netadata.
String jobTypeName = "PLSQLJobDef Type";

JobType jobType = null;

Met adat aCbj ect1d jobTypeld = nul | ;

j obType = new JobType(j obTypeName, JobType. ExecutionType. SQ._TYPE);

plist = new ParaneterList();

pi nfo = SystenProperty. get SysPropl nf o(Syst enPr operty. PROCEDURE_NAME) ;
plist.add(info.getNane(), pinfo.getDataType(), "HOMO HELLO WORLD', false);
pi nfo = SystenProperty. get SysPropl nf o(Syst enPr operty. PRODUCT) ;
plist.add(pinfo.getNanme(), pinfo.getDataType(), "HONTO PROD', false);

j obType. set Paramet ers(plist);

jobTypel d = netadat a. addJobType(nmshandl e, jobType, "HOWTO PROD");
/1 Define and add a job definition for the application netadata.
String jobDef Nane = "PLSQLJobDef";

JobDefinition jobDef = null;
Met adat aChj ect1d jobDefld = null;

j obDef = new JobDefinition(jobDefNanme, jobTypeld);
j obDef . set Description("Deno PLSQ Job Definition " + jobDefNane);

plist = new ParaneterList();

plist.add("nyJobdef Prop", DataType.STRING "myJobdefVal", false);

j obDef . set Paramet ers(plist);

jobDefld = netadata.addJobDefinition(nshandl e, jobDef, "HOWTO PROD');
ch (Exception e)

[...]

11-8 Developing Applications for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for PL/SQL Job Types

}
finally
{
Il always close metadata service handle in finally block
if (null !'= mshandl e)
{
met adat a. cl ose(nshandl e) ;
mshandl e = nul | ;
}
}

Creating and Using PL/SQL Jobs 11-9

Creating and Storing Job Definitions for PL/SQL Job Types

11-10 Developing Applications for Oracle Enterprise Scheduler

12

Creating and Using EJB Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Enterprise
Java Bean (E]B) jobs.

This chapter contains the following sections:

¢ Introduction to Creating EJB Jobs

¢ Planning Job Development

¢ Creating and Storing Job Definitions for EJB Job Types
® Secured Invocation

e Synchronous Bean

® Asynchronous Bean

12.1 Introduction to Creating EJB Jobs

The EJB job type allows you to create Java-based jobs and take advantage of the
convenience of the pre-deployed hosting application. In addition, the EJB can be
located remotely on a different server.

Unlike Java SE-based jobs, E]B jobs are not required to be embedded inside the hosting
application. This allows them to be located remotely and to be used with the pre-
deployed hosting application. An EJB job can be invoked from any hosting
application, including the pre-deployed hosting application. Note that the E]B
implementation must be in the same WebLogic domain as the scheduler server.

The E]B conforms to an interface defined by Oracle Enterprise Scheduler (defined in a
shared library). The EJB is non-transactional. Both synchronous and asynchronous EJB
jobs are supported. When running asynchronously, the EJB returns quickly and the
Oracle Enterprise Scheduler EJB is invoked later when the job completes. The EJB
implementation can work with any of the three shared libraries—server

(or acl e. ess), client (or acl e. ess. cl i ent), and thin client

(oracl e. ess. thin.client). The thin client shared library does not depend on
Oracle Enterprise Scheduler data sources. See Creating a Thin Client Application for
more information about using the thin client library.

The E]B can submit sub-requests and it can write to output and a log. The EJB interface
is similar or the same as a Java job and can do similar things. To improve performance,
it is possible to consolidate multiple job implementations under a single shared E]B.

An EJB job is a Java job that is executed remotely using the EJB remote business
interface. The execution type is JAVA_TYPE. The remote job is an EJB deployed in a
remote server. The remote business interface of this bean extends the

oracl e. as. schedul er. Renot eExecut abl e interface and defines the execut e
method. The contract between Oracle Enterprise Scheduler and the servicing

Creating and Using EJB Jobs 12-1

Planning Job Development

component is defined with the execut e method. Figure 12-1 shows the components
in a typical EJB job deployment.

The EJB must be located in the same domain as the hosting application and the
Subj ect object is propagated to the E]JB. For JNDI lookup operations, you can supply
optional credentials. The default identity is "anonymous".

Figure 12-1 EJB Job Environment

server/cluster/domain

oracle.ess.thin.client
shared library

EM <<interface>>

RemoteCancellableExecutable
execute()
cancel()
Metadata &
Request A
Submission :
<business-remote>:
RemoteExecutable or ;
v RemoteCancellableExecutable !
ESS server/cluster/domain RemoteJobBean
@stateless
. — execute ——> execute()
ESSAPP Hosting A
g APP cancel()
— cancel ———> operation1()

- Implement RemoteExecutable if execute functionality is sufficient.
- Implement RemoteCancellableExecutable if execute and cancel functionalities are required.

12.2 Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Planning Job Development is a high-level discussion about how
to plan your job development and deployment process.

12.3 Creating and Storing Job Definitions for EJB Job Types

To use EJB type jobs with Oracle Enterprise Scheduler, you must locate the Metadata
Service and create a job definition. You create a job definition by specifying a name
and a job type. When you create a job definition you must also set certain system
properties.

You can store the job definition in the metadata repository using the Metadata Service.
Sample metadata files are provided later in this chapter.

For information about how to use the Metadata Service, see Using the Metadata
Service .

When you specify the JobType for the job definition, you can also specify

Syst enPr operti es that define the characteristics associated with the JobType.
Table 12-1 and Table 12-2 describe the properties that specify how the request should
be processed.

12-2 Developing Applications for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for EJB Job Types

Table 12-1 EJB Job Type Properties
- - ___|

Property Name [Field in Description
SystemProperty class]

SYS_EXT_j ndi Provi der Ur | Optional. Specifies the URL of the remote server. Required
[IJNDI _PROVI DER_URL] only if the EJB is remotely located.

The Jndi Provi der Ur| can be specified to contain tokens
that are resolved at runtime.

The following are two examples:

e ${WRING urn:oracl e: f mm soa: t 3}
This URN is resolved at runtime and the actual URL
value is fetched.

e t3://1ocal host: 19283

Where | ocal host is the host where EJB's are
deployed and 19283 is the server port number.

SYS_EXT_j ndi MappedNare Required. Specifies the JNDI lookup name of a remote E]JB
[INDI _NMAPPED_NAME] implementation.

Example: ej b/ fi | eAdapt er

SYS_EXT_ej bQper at i onNane Optional. Specifies a pass-through parameter used by the
[EJB_OPERATI ON_NAME] EJB implementation to branch to the appropriate business
methods.

Example: manageFi | eAdapt er

SYS_EXT_j ndi CSFKey Required only if the JNDI tree of the EJB server is secured.

[INDI _CSF_KEY] Points to the CSF alias that is mapped to the user name
and password in the keystore. This specific user name/
password pair is the credential required to access the
secured JNDI for Jndi MappedNamne lookup.

This property can be added to either the
Request Par anmet er s object or to the Oracle Enterprise
Scheduler configuration of the hosting application.

Note:

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST
scripts to configure the CSF key aliases as a post installation step. Prior to the
post installation step, the Keystore's CSF map can be set to the default value of
oracl e. ess. security.

Table 12-2 lists the properties that can be added either to the Request Par anet er s
object or to the Oracle Enterprise Scheduler configuration of the hosting application. In
a production environment, environment specific data should not be entered into the
job definition because the job definition is replicated when going from the test
environment to the production environment. Instead, this data should be entered
separately as configuration data with the hosting application. The Oracle Enterprise
Scheduler token substitution and logical cluster features allow you to abstract
metadata so that it can be easily changed to correctly fit the target deployment during
the T2P process. See Using Tokens and Logical Clusters for information about using
these features.

Creating and Using EJB Jobs 12-3

Secured Invocation

Table 12-2 Additional Properties
- __|

Property Name [Field in Description
SystemProperty class]

SYS_EXT_essJndi Csf Key Optional. Specifies the CSF key alias of the

[ESS_JNDI _CSF_KEY_NAME] authenticated Oracle Enterprise Scheduler
server. This property is required only if the
Oracle Enterprise Scheduler JNDI tree is
authenticated.

Example: ess-j ndi - csf - key

SYS_EXT_essRunt i nedndi MappedNam Specifies the JNDI mapped name of Oracle

e{ ESS_RUNTI ME_JNDI _MAPPED _NAME] Enterprise Scheduler's Runt i neSer vi ce bean
that is defined in the hosting application and
bound to the Oracle Enterprise Scheduler
server's NDI tree.
This property is required only if you use a
hosting application other than
EssNat i veHost i ngApp and the remote bean
has to call the Oracle Enterprise Scheduler
runtime bean (for example, to write output or log
information, submit requests or operate on
requests).

SYS_EXT_essMet adat aJndi MappedNa Specifies the JNDI mapped name of Oracle

nme[ESS METADATA _JNDI _MAPPED NAM Enterprise Scheduler's Met adat aSer vi ce bean

E] defined in the hosting application and bound to
the Oracle Enterprise Scheduler server's JNDI
tree.
This property is required only if you use a
hosting application other than
EssNat i veHost i ngApp and the remote bean
requires access to Oracle Enterprise Scheduler's
metadata bean.

SYS_EXT_essAsyncRequest Jndi Mapp Specifies the JNDI mapped name of Oracle
edName[ESS_ASYNC_REQUEST_JNDI _M Enterprise Scheduler's AsyncRequest bean
APPED_NAME] defined in the hosting application and bound to
Oracle Enterprise Scheduler server's JNDI tree.
This property is required only if:
* The EJB invocation is asynchronous
* You use a hosting application other than
EssNat i veHost i ngApp
¢ The remote bean has to call back to Oracle
Enterprise Scheduler beans (for example, an
asynchronous callback).

For more information about system properties, see Using Parameters and System
Properties .

12.4 Secured Invocation

Secured invocation of remote EJBs is required when the JNDI tree of its server is
authenticated. This is also true when a remote EJB calls back to Oracle Enterprise
Scheduler E]Bs using secured lookup. The following sections provide some guidance.

12-4 Developing Applications for Oracle Enterprise Scheduler

Secured Invocation

12.4.1 Forward Invocation

The following apply to forward invocation.

When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the
executing job is always propagated.

When Oracle Enterprise Scheduler executes a job, the Jndi Provi der Ur| of the
current Oracle Enterprise Scheduler Server is always supplied to the remote EJB
through Request Par anet er s.

If the JNDI tree of the remote server is authenticated, the JNDI _CSF_KEY property
must be specified in the request parameters or the EssConf i gur at i on of the
hosting application.

Oracle Enterprise Scheduler looks up the keystore for the Csf Key to retrieve the
Passwor dCr edent i al and connects to the remote server.

12.4.2 Callback Invocation
The following apply to callback invocation.

If the remote EJB must call back to Oracle Enterprise Scheduler beans, the
following properties can be specified:

— The JNDI names of Oracle Enterprise Scheduler Runt i ne, Met adat a and
AsyncRequest beans exposed in Host i ngApp must be specified in request
parameters or the EssConf i gur at i on of the hosting application. If
EssNat i veHost i ngApp is used, these entries are not required.

— If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated, the
ESS_JNDI _CSF_KEY_NAME property must be specified in the request
parameters or EssConf i gur at i on of the hosting application. Oracle
Enterprise Scheduler ensures that this property is available to the remote EJB
through Request Par anet ers.

A remote EJB can make use of the Rerot eConnect or API to get the remote
instances of Oracle Enterprise Scheduler beans. This can be done by passing the
following;:

— Request Paraneters

- Request Par anet er s and Jndi MappedNane of the bean (for hosting
applications other than the native hosting application)

- Request Par anet er s, user name and password (if the Oracle Enterprise
Scheduler server is authenticated)

— Initial Context (primarily for Java SE clients with
EssNat i veHost i ngApp)

- Initial Context andj ndi MappedNarre (primarily for Java SE clients with
other hosting applications)

Creating and Using EJB Jobs 12-5

Secured Invocation

12.4.3 RemoteConnector APl and the Server Affinity Property

If your code implementation relies on accessing Oracle Enterprise Scheduler E]Bs, use
the methods exposed in the Renot eConnect or API class. The Oracle Enterprise
Scheduler requires the server affinity property to be set in the | ni ti al Cont ext
environment before doing a JNDI lookup and the Renpt eConnect or API class sets
this property for you. Note that this is especially important in multi-node cluster
scenarios. The Renot eConnect or class is packaged in the Oracle Enterprise
Scheduler client libraries.

If for some reason the Renpt eConect or class cannot be used, you can set the
environment map property to the | ni ti al Cont ext before doing the look-up for the
Oracle Enterprise Scheduler E]Bs as shown in the following example.

if(Platformldtils.isWbLogic())
envProps. put ("webl ogi c. j ndi . enabl eServer Affinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-
robin-affinity".

12.4.4 CSF Lookup From a Remote Server

If the beans of Oracle Enterprise Scheduler Services are authenticated, remote
applications must use a secured lookup to make callbacks to Oracle Enterprise
Scheduler. You can use Oracle Enterprise Scheduler's Renpt eConnect or API which
uses the ESS_JNDI _CSF_KEY_NAME property available in the request parameters to
do the look-up. But to assist this CSF lookup, the code that invokes the

Renot eConnect or must grant permission for credential store access. The following
XML fragment can be added to the j azn- dat a. xnl file of the remote application.

<j azn-policy>
<grant >
<grant ee>
<codesour ce>
<url>file:${donain. home}/servers/ ${webl ogi c. Name}/ t mp/
_W._user/ <AppNane>/ -</url >
</ codesour ce>
</ grant ee>
<perm ssi ons>
<perm ssi on>
<cl ass>oracl e. security.|ps.service.credstore. Credential AccessPerni ssion
</cl ass>
<name>cont ext =SYSTEM mapNane=or acl e. ess. securi ty, keyNanme=*</ nane>
<actions>READ</ acti ons>
</ perni ssi on>
<per ni ssi on>
<cl ass>oracl e. security.jps. JpsPernission</class>
<name>| dentityAssertion</nane>
<actions>execut e</ acti ons>
</ perni ssi on>
<per ni ssi on>
<cl ass>oracl e. security.jps. JpsPernission</class>
<nanme>AppSecurit yCont ext. set Appl i cati onl D. *</ nane>
</ perni ssi on>
</ perni ssi ons>
</ grant>
</jazn-policy>

12-6 Developing Applications for Oracle Enterprise Scheduler

Synchronous Bean

12.5 Synchronous Bean

This section contains examples that illustrate how to create a synchronous bean.

12.5.1 Metadata

This section shows metadata as it applies to synchronous beans.

The following example shows a sample job definition for an EJB job located in the file
oracl e/ apps/ ess/ cust omf Jobs/ EssGat ewayJobDef n. xmi

<?xm version = '1.0"?>
<j ob-definition xm ns:xsi="http://ww.w3.org/ 2001/ XM_.Schena-
i nstance" xm ns="http://xm ns. oracl e. conf schedul er"
nane=" SoakEj bJobDef n"
j ob-type="/oracl e/ as/ ess/ core/ JobType/ SyncEj bJobType. xm ">
<description/ >
<di spl ay- name>EssGat ewayBean</ di spl ay- nane>
<paraneter-|ist>
<paranet er name="SYS_EXT_j ndi KeyNane" data-type="string" read-only="true">
ej b/ essGat ewayBean</ par anet er >
<par anet er name="SYS_EXT_j ndi ProviderU|" data-type="string" r ead-
onl y="true">URL</ par anet er >
<paranet er name="SYS EXT_ej bOperati onNane" dat a-type="string"
read-onl y="true">activat eFi | eAdapt er </ par anet er >
<paranet er name="SYS effectiveApplication" data-type="string">
ESS_NATI VE_HOSTI NG_APP_LOG CAL_NAME</ par anet er >
</ paraneter-list>
</job-definition>

12.5.2 EJB Job Sample Code

This section shows a sample implementation of a synchronous EJB job expected by
Oracle Enterprise Scheduler.

The following code snippet shows a fragment of the ej b-j ar. xml file that defines
this bean.

<sessi on>

<descripti on>ESS Gateway Bean</description>
<ej b- name>EssCat eway</ ¢j b- name>
<ej b- cl ass>com soa. beans. EssGat ewayBean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<security-identity>

<use-cal ler-identity/>

</security-identity>

</ sessi on>

The following code snippet shows a fragment of the webl ogi c-ej b-j ar. xm file
that defines this bean.

<webl ogi c-ent erpri se- bean>
<ej b- nane>Fi | eAdapt er Bean</ ¢j b- nanme>
<st at el ess-sessi on-descri pt or>
<busi ness-i nter f ace-j ndi - name- map>
<busi ness-renot e>or acl e. as. schedul er. Renot eCancel | abl eExecut abl e
</ busi ness-r enot >

Creating and Using EJB Jobs 12-7

Asynchronous Bean

<j ndi - name>ej b/ essGat ewayBean</ j ndi - name>
</ busi ness-i nterface-j ndi - nane- map>
</ statel ess-sessi on-descri ptor>
</ webl ogi c-enterpri se-bean>

i mport javax.ejb. Statel ess;

import oracle. as. schedul er. SystenProperty;

i mport oracl e. as. schedul er. ExecutionCancel | edExcepti on;
i mport oracl e. as. schedul er. Executi onError Excepti on;

i mport oracl e. as. schedul er. Execut i onPausedExcepti on;

i mport oracl e.as. schedul er. Execut i onVr ni ngExcept i on;

i mport oracl e. as. schedul er. Renot eCancel | abl eExecut abl e;
i mport oracl e. as. schedul er. Request Execut i onCont ext ;

i mport oracl e. as. schedul er. Request Par anet er s;

@t at el ess(name = "EssGateway", nappedNane = "ej b/ essCGat ewayBean")
public class EssGat ewayBean inpl enents RenoteCancel | abl eExecut abl e
{

public EssCatewayBean()

{

}

public void execute(Request ExecutionContext context,
Request Paraneters paraneters) throws ExecutionErrorException,
Execut i onVMr ni ngExcepti on, ExecutionCancel | edExcepti on,
Execut i onPausedExcepti on

[1Get the value of 'SYS EXT ejbQperationNane' property
String opNane =
(String)paraneters. get Val ue(Syst enProperty. EJB_OPERATI ON_NAME) ;

i f ("manageFi | eAdapt er". equal s(opNane))

{
/11
/1 Call business method of this bean or some other bean
/11
[/H nt: User defined properties can be set in RequestParameters while
//submitting the job and can be retrieved here for further processing.
}

}

public void cancel (Request Executi onCont ext context,
Request Paraneters paraneters)

{
11
//Logic to cancel the execution of a business nethod.
11
/] Execute the actual logic of cancellation, notifies back to ESS
/1 by throwi ng ExecutionCancel | edException through execute nethod.
}

12.6 Asynchronous Bean

When Oracle Enterprise Scheduler invokes a bean asynchronously, it does not wait for
the execute method to finish. For that reason, the bean implementation has to notify
the Oracle Enterprise Scheduler after processing finishes. The Renpt eAsyncHel per
class can be used for this purpose. Alternatively, the AsyncRequest Bean obtained
from Renot eConnect or can be used to notify Oracle Enterprise Scheduler with a
status update.

12-8 Developing Applications for Oracle Enterprise Scheduler

Asynchronous Bean

Asynchronous E]Bs are typically used:
¢ For long-running operations

* For processor-intensive tasks

¢ For background tasks

e To increase application throughput

¢ Toimprove application response time if the method invocation result is not
required immediately

The synchronous EJB job is more appropriate for short-running user business
methods.

There are a couple of ways for Oracle Enterprise Scheduler to execute a bean
asynchronously:

* Explicit asynchrony: Use a synchronous stateless bean to invoke a message-driven
bean asynchronously. (Add a Java Message Service message to a topic/queue that
is listened to by a message-driven bean)

¢ Implicit asynchrony: Use the EJB Asynchronous annotation to declare a business
method (other than execute, cancel methods) to behave asynchronously.

Note:

Oracle Enterprise Scheduler can invoke a synchronous bean asynchronously.
However, if you use this method the bean must be modeled in a way that
long-running methods are marked for asynchrony.

Note:

As specified in the E]B standard, you cannot use the @Asynchr onous
annotation in the execut e method or the entire class because the execute
method throws custom exceptions which are not permitted. Oracle Enterprise
Scheduler requires the execut e method to throw custom exceptions.

12.6.1 Metadata

This section shows metadata as it applies to asynchronous beans.

This example shows a sample job definition for an EJB job located in the file or acl e/
apps/ ess/ cust om Jobs/ AsyncJobDef n. xm

<?xm version ='1.0'?>
<j ob-definition xm ns:xsi="http://ww:.w3.org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conl schedul er" nanme="EssAsyncJobDef n"
j ob-type="/oracl e/ as/ ess/ core/ JobType/ AsyncEj bJobType. xn " >
<di spl ay- name>EssGat ewayBean</ di spl ay- nane>
<paraneter-list>
<paranet er name="SYS_EXT_j ndi KeyNarme" dat a-type="string"
read- onl y="true">ej b/ essAsyncGat ewayBean</ par anet er >
<paranet er nanme="SYS_EXT_j ndi ProviderUrl" data-type="string"
read-onl y="true">t3://1 ocal host: 10801</ par anet er >
<par anet er name="SYS_EXT_ej bOper at i onNang"

Creating and Using EJB Jobs 12-9

Asynchronous Bean

data-type="string"read-onl y="true">activat eFi | eAdapt er </ par anet er >
<paraneter nane="SYS effectiveApplication" data-type="string">
ESS_NATI VE_HOSTI NG_APP_LOG CAL_NAME</ par anet er >
</ paraneter-list>
</job-definition>

12.6.2 EJB Job Sample Code

This section includes sample code that illustrates how to implement asynchrony using
both the explicit and implicit methods described in Asynchronous Bean.

12.6.2.1 Sample Implementation of Asynchrony Using a Message-Driven Bean

The following code sample shows a synchronous stateless bean that is used to invoke
a message driven bean asynchronously.

package com soa.test;

inport java.io.Serializable;

inmport java.util.Arraylist;

inmport javax.ejb. Statel ess;

import javax.jns. Qbj ect Message;

i mport javax.jnms. Queue;

i mport javax.jms. QueueConnecti on;

i mport javax.jms. QueueConnectionFactory;
import javax.jns. QueueSender;

i mport javax.jms. QueueSession;

import javax.jnms. Session;

i mport javax.naning.lnitial Context;

i mport oracl e. as. schedul er. AsyncRequest BeanRenot e;

i mport oracle. as. schedul er. Executi onCancel | edExcepti on;
i mport oracle. as. schedul er. Execut i onError Excepti on;

i mport oracl e. as. schedul er. Executi onPausedExcepti on;

i mport oracl e. as. schedul er. Execut i onVr ni ngExcepti on;

i mport oracle. as. schedul er. Renot eCancel | abl eExecut abl e;
i mport oracl e. as. schedul er. Request Execut i onCont ext ;
import oracl e. as. schedul er. Request Par anet er s;

i mport oracl e. as. schedul er. request . Renot eConnect or ;

@t at el ess(name = "EssAsyncPilot")
public class EssAsyncPil ot Bean i npl enents RenoteCancel | abl eExecut abl e
{

public EssAsyncPil ot Bean() {

}

public void execute(Request ExecutionContext requestExecutionContext,
Request Par anet ers request Par anet er s)
throws ExecutionErrorException, ExecutionWarningException,
Execut i onPausedException, ExecutionCancel | edException {
/1 Delegate the job request cancellation to message driven bean
post ToQueue("execute", request ExecutionContext, requestParaneters);

}
public void cancel (Request ExecutionCont ext request Executi onCont ext,
Request Par anet ers request Paraneters) {
Renmot eConnect or connector = new Renot eConnect or () ;
AsyncRequest BeanRenot e asyncRequest;

/| Delegate the job request cancellation to message driven bean

12-10 Developing Applications for Oracle Enterprise Scheduler

Asynchronous Bean

try {

post ToQueue("cancel ", request Executi onContext, requestParaneters);
} catch (Exception e) {

[/ Mark this request as ERRORed
1
/
O her ways to cancel the job request.

asyncRequest = connect or. get AsyncRequest EJB(r equest Par anet ers) ;
asyncRequest . onCancel (request Executi onCont ext);

(or)

asyncRequest = connect or. get AsyncRequest EJB(r equest Par anet ers) ;
asyncRequest . set Request St at us(
request Executi onContext, AsyncStatus. CANCEL, "Cancelling the job");

(or sinply)

Renot eAsyncHel per asyncHel per = new Renot eAsyncHel per (
request Executi onCont ext, requestParaneters);
asyncHel per. onCancel () ;

. I N TR

}

private voi d post ToQueue(String instruction,
Request Execut i onCont ext context, RequestParaneters parans) {
try {
QueueConnect i onFact ory gconFactory;
QueueConnection qcon;
QueueSessi on gsessi on;
QueueSender qsender;
Queue queue;
(bj ect Message nsg;
Initial Context ic = new Initial Context();

gconFactory = (QueueConnectionFactory) ic
. I ookup(" EssAsyncJnsConnFact ory");
gcon = gconFactory. creat eQueueConnection();
gsessi on = gcon. creat eQueueSessi on(fal se, Sessi on. AUTO_ACKNOW.EDGE) ;

queue = (Queue) ic.lookup("EssAsyncInsQueue");

gsender = gsession. creat eSender (queue) ;
meg = gsession. creat eChj ect Message() ;
gcon.start();

ArrayLi st<Serializabl e> objsList = new ArrayList<Serializable>(2);
obj sLi st. add(cont ext);

obj sLi st. add(parans);

obj sLi st. add(instruction);

msg. set Cbj ect (obj sList);

gsender. send(nsg) ;

Systemout. println("The nessage, " + instruction
+ ", has been sent to the EssAsyncJnsQueue.");
gsender. cl ose();
gsession. cl ose();
qcon. cl ose();
} catch (Exception e) {
Systemout.print("error " + e);

Creating and Using EJB Jobs 12-11

Asynchronous Bean

}

import java.util.List;
import java.io.Serializable;
inport javax.ejb. MessageDriven;

inport javax.jns. Message;
i nport javax.jms. Messageli stener;
inport javax.jns. Qbj ect Message;

i mport oracl e. as. schedul er. Request Execut i onCont ext ;
i mport oracl e. as. schedul er. Request Par anet er s;
inmport oracle. as. schedul er. async. Renot eAsyncHel per;

/**
* This message driven bean sanple relies on execute/cancel instructions.
* Upon conpl etion of execution or cancellation, this bean notifies
* ESS about its status so that the job request is marked for conpletion.
*/
@kssageDri ven(nappedNane = "ej b/ essAsyncJns")
public class EssAsyncJmsBean inpl ements Messageli stener {
public void onMessage(Message nessage) {
i f (message instanceof ObjectMessage) {
(bj ect Message obj Message = (Chj ect Message) message;
try {
Li st<Seri al i zabl e> obj sLi st
(List<Serializabl e>)obj Message. get Ghj ect();
Request Execut i onCont ext ctx
(Request Execut i onCont ext) obj sLi st. get (0);
Request Paraneters parans = (Request Paranet ers)obj sList.get(1);
String instruction = (String)objsList.get(2);
Renot eAsyncHel per asyncHel per = new Renot eAsyncHel per (ctx, parans);
if ("cancel".equal sl gnoreCase(instruction)) {
| EssAsyncJnsBean. cancel : Cancel Iing the Execution
try {
//Do the actual cancellation
Thr ead. sl eep(1000) ;
} catch (InterruptedException e) {
}
asyncHel per. onCancel () ;
/I EssAsyncJnsBean. cancel : Conpl eted cancel | ation
} else {
| EssAsyncJnsBean. execute: Started the Execution ");
try {
//Do the actual execution
Thr ead. sl eep(5000) ;
} catch (InterruptedException e) {
}
asyncHel per. onSuccess();
/| EssAsyncJmsBean. execut e: Conpl eted the Execution ");

} catch (Exception e) {
e.printStackTrace();
}

12-12 Developing Applications for Oracle Enterprise Scheduler

Asynchronous Bean

12.6.2.2 Sample Implementation of Asynchrony Using Annotations

The following code snippet uses the EJB Asynchr onousto declare a bean or its
methods to behave asynchronously.

package com soa.test;
inport java.util.concurrent.Future;
i nport javax.annotati on. Resour ce;

inport javax.ejb. AsyncResult;

i nport javax.ejh. Asynchronous;
inport javax.ejh. SessionCont ext;
inport javax.ejb. Statel ess;

import javax.xm .transformResult;

import oracle. as. schedul er. Executi onCancel | edExcepti on;
import oracle. as. schedul er. Execut i onError Excepti on;

i mport oracle. as. schedul er. Executi onPausedExcepti on;
inmport oracle. as. schedul er. Execut i onVar ni ngExcepti on;
import oracle. as. schedul er. Renot eExecut abl e;

import oracle. as. schedul er. Request Execut i onCont ext ;

i mport oracle. as. schedul er. Request Not FoundExcepti on;
import oracle. as. schedul er. Request Par anet er s;

import oracle. as. schedul er. Runti neServi ceExcepti on;
inport oracle. as. schedul er. Schedul er Excepti on;

i mport oracle. as. schedul er. async. Renot eAsyncHel per;

@t at el ess(name = "EssAsyncAnnot at edBean", mappedName = "ej b/ essAsyncAnnBean")
public class EssAsyncAnnot at edBean i npl enents Renot eExecut abl e {

@esour ce
Sessi onCont ext sessi onCont ext ;

public void execut e(Request ExecutionCont ext request ExecutionContext,
Request Par anet ers request Paraneters) throws

Executi onError Exception, ExecutionWrni ngExcepti on,

Execut i onPausedExcept i on, Executi onCancel | edExcepti on

{
Renot eAsyncHel per asyncHel per = nul |;

try {
asyncHel per = new Renot eAsyncHel per (request Execut i onCont ext,

request Paraneters);

[llnitiate processing
i nitiateProcessing(requestExecutionContext, requestParaneters);

/1 Get processed results
Future<Resul t[]> results = get ProcessedResul t s(request Executi onCont ext,
request Paraneters);

[/do further processing

[IFinally, conplete the request
asyncHel per. onSuccess();

}
catch (Exception e)

{
try

Creating and Using EJB Jobs 12-13

Asynchronous Bean

{
asyncHel per. onBi zError(e. get Message());
}
catch (Exception f)
{
}
}
}
@synchr onous

public void initiateProcessi ng(Request Executi onContext request ExecutionContext,
Request Par anet ers request Par anet ers)

{

'/ startProcessing
}
@synchr onous

public Future<Result[]> getProcessedResul t s(Request Executi onCont ext
request Execut i onCont ext ,

Request Par anet ers request Par anet er s)

{

Result[] resultsArr = null;

//do processing

return new AsyncResul t<Resul t[]>(resul tsArr);
}

12-14 Developing Applications for Oracle Enterprise Scheduler

13

Creating and Using Web Service Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Web Service
jobs and contains the following sections:

¢ Introduction

* Predefined Web Service Job Types

¢ Cancel and Fault Support

¢ Configuration Properties for Web Service Jobs

¢ Oracle Web Services Manager Policy Configuration

* Creating a Web Service Job Definition

13.1 Introduction

Web services provide a standard means to expose services on the web. Web services
are accessible from a URL and use SOAP and XML as their payloads. Web services are
described by the WSDL standard that defines the interface and the URL of the web
service.

The following are examples of web services
* SOA suite composites
® Oracle Service Bus proxy services

¢ ADF Business Component web services

Web services can expose one-way, synchronous, or asynchronous operations. A one-
way web service operation is a fire-and-forget operation where the web service does
not return a response. A synchronous web service operation returns a response as part
of the same web service invocation. Typically, a web service client blocks until the
synchronous operation response is received. An asynchronous web service operation
involves two one-way messages: one for the web service operation request and a
separate one for the response. Asynchronous web service operations typically
represent long running operations. A web service client invokes an asynchronous web
service operation, but does not wait for the response. Instead, the client specifies a
callback URL at which to receive the response from the web service. The web service
processes the request in the background and uses a callback operation to return the
response to the client-specified callback URL.

Oracle Enterprise Scheduler supports web service jobs that use synchronous, one-way
and asynchronous interfaces. The web service job definition can be defined using
JDeveloper (as part of a hosting application or client application) or using Oracle
Enterprise Manager Fusion Middleware Control. When the web service job type is
selected, a wizard leads the user through a simple set of steps to define the web

Creating and Using Web Service Jobs 13-1

Predefined Web Service Job Types

service job (see the example in Using Oracle Enterprise Manager Fusion Middleware
Control to Create a Job Definition). This wizard obtains the WSDL URL and asks the
user to select the WSDL service, port type, and operation. It then creates sample XML
for the payload based on the WSDL, and allows the user to update it. Asynchronous
and synchronous web service may optionally have a designated operation for cancel.
If there is a cancel operation, the operation is selected and the sample XML code for
the cancel operation is modified. The wizard populates a set of predefined system
properties in the job definition with values entered or derived from what the user
enters in the wizard.

Note:

The WSDL URL in a web services job type must be a concrete WSDL URL. It
cannot be an abstract WSDL URL.

The job definition can have user defined parameters. Elements or attributes in the
invoke or cancel payload XML code can specify that one of these parameters be
plugged in as the element value by specifying a token substitution instruction. For
example, plug in the parameter cust oner | Dwith the token substitution command $
{ ESS_REQ cust orrer | D} . This allows the job submitter to just enter parameter
values and have the XML payload constructed from them. Token substitutions can
also be specified for the WSDL base URL and WSDL relative URL system properties.
For more information about token substitution see Using Tokens and Logical
Clusters .

Web service jobs are secured by Oracle Web Services Manager (OWSM) policies. In
Oracle Enterprise Manager Fusion Middleware Control or JDeveloper, you can attach
OWSM directly attached policies for the job definition for the invocation (client policy)
and the callback (service policy) actions. You can use globally attached policies to
define policies globally or you can secure individual job definitions with directly
attached policies.

Note:

See the following sections in Securing Web Services and Managing Policies with
Oracle Web Services Manager for more information about using Oracle Web
Services Manager (OWSM) policies:

¢ '"Attaching Policies Globally Using Fusion Middleware Control"
e "Attaching Policies Globally Using WLST"

e "Attaching Policies Directly Using WLST"

Progress messages are supported for asynchronous web service jobs. These messages
are written to the job log. In the callback operation, the job can indicate if the job
succeeded or failed. The callback message comprises the job's output

13.2 Predefined Web Service Job Types

Oracle Enterprise Scheduler supports three predefined web services job types. The job
type you specify in the web service job definition implicitly determines whether the
configured web service operation is invoked using an asynchronous, synchronous or
one-way (fire-and-forget) operation.

13-2 Developing Applications for Oracle Enterprise Scheduler

Cancel and Fault Support

As described in Introduction, Oracle Enterprise Scheduler supports three predefined
web service job types. The web service predefined job types are shown in Table 13-1.

Table 13-1 The Predefined Web Service Job Types

Predefined Job Type Description

/ oracl e/ as/ ess/ cor e/ JobType/ (Asynchronous) The caller invokes the web

AsyncWebser vi ceJobType service, the web service runs asynchronously in the
background, and the web service calls back to the
caller at a callback URL

/ oracl e/ as/ ess/ core/ JobType/ (Synchronous) The caller blocks until the response

SyncWebser vi ceJobType is returned (request/response)

/ oracl e/ as/ ess/ core/ JobType/ (One-way) The caller does not expect a response.

OnewayWebser vi ceJobType The web service runs in the background (fire-and-
forget).

13.3 Cancel and Fault Support

Supporting a cancel operation for web service jobs is optional. The web service may
support a cancel operation that allows a running web service invocation to be
canceled.

The cancel operation must not be an abort operation (hammer-on-head style), where
the composite is terminated and never calls back to complete the original operation. A
well-behaved cancel implementation by a web service provider ensures the original
web service operation returns an "operation canceled response,” with a predefined
wsa: Act i on code (see Table 13-2) in the SOAP response header. The cancel web
service operation must be a synchronous web service operation.

Both synchronous and asynchronous web service jobs can indicate whether the web
service operation was canceled or resulted in a fault (error) by specifying the
appropriate value in the wsa: Act i on SOAP response message header. If the callback
response SOAP message does not match the “Canceled" or “Fault" response (through
one of the mechanisms listed below), then the job state is “Succeeded".

The Table 13-2 shows the different web service operation statuses that can be specified
using the SOAP wsa: Act i on header.

Table 13-2 SOAP Web Service Operation Statuses

Action Code Name Action URI

Cancelled

Fault

"http:/ /xmlns.oracle.com/schedulercallback /wsOperationCancelled"

e Standard web service addressing: "ht t p: / / schemas. xnl soap. or g/ ws/
2004/ 08/ addr essi ng/ faul t"

¢ Oracle application server: "htt p: // xnl ns. or acl e. con? or acl eas/ schenma/
oracle-fault-11 0/ Fault"

The Oracle SOA Suite does not support setting wsa: Act i on message headers. As an
alternative you can add one of the strings listed in Table 13-3 to the SOAP body
element of a callback message.

Creating and Using Web Service Jobs 13-3

Configuration Properties for Web Service Jobs

Table 13-3 Oracle SOA Suite Status Operations

Operation String
Cancelled "wsOperationCancelled"
Fault "wsOperationFault"

13.4 Configuration Properties for Web Service Jobs

Oracle Enterprise Scheduler uses specific configuration properties for web service jobs.

Table 13-4 lists the properties associated with the web service job type.

Table 13-4 Web Service Job Configuration Properties

Property Name

Description

SYS _EXT_wsWdl BaseUr | 1

SYS_EXT_wsWédl Url !

SYS_EXT_wsEndpoi nt BaseUr |
1

SYS_EXT_wsEndpoi nt Ur | 1

SYS _EXT_wsTar get Nanespace
SYS_EXT_wsSer vi ceNane
SYS_EXT_wsPort Name
SYS_EXT_wsOper at i onNane
SYS _EXT i nvokeMessagel

SYS_EXT_wsCancel Operati on
Narme

SYS EXT wsCancel Message!

SYS_ext er nal JobType

The base URL part of WSDL URL.

The relative part of the web service WSDL URL (must be a concrete WSDL
URL). Either the SYS_EXT_wsEndpoi nt Ur | property or the
SYS_EXT_wsWédl Ur | property must be completely specified. For example,
either SYS_EXT_wsWsdl BaseUr| and SYS_EXT_wsWdl Ur| are both
configured, or SYS_EXT_wsEndpoi nt BaseUr | and

SYS_EXT_wsEndpoi nt Ur| are both configured.

The base URL part of endpoint URL.

The relative part of the web service endpoint URL (must be a concrete WSDL
URL). Either the SYS_EXT_wsEndpoi nt Ur | property or the
SYS_EXT_wsWédl Ur | property must be completely specified. For example,
either SYS_EXT_wsWdl BaseUr | and SYS_EXT_wsWdl Ur | are both
configured, or SYS_EXT_wsEndpoi nt BaseUr | and

SYS_EXT_wsEndpoi nt Ur| are both configured.

The target name space.

The service name.

The port name.

The operation name.

The XML submit message used to invoke the web service.

Optional. The cancel operation name.

Optional. The XML message for the web service cancel operation.

Optional. The supported values are “ADFBC", “OSB" or “SOA". Any other
value is invalid.

1 This property can be specified using token substitution. Refer to Using Tokens and Logical Clusters for
more information.

If the SYS_EXT_wsEndpoi nt BaseUr | property and the SYS_EXT_wsEndpoi nt Ur |
property are specified in the job definition, Oracle Enterprise Scheduler has enough

13-4 Developing Applications for Oracle Enterprise Scheduler

Oracle Web Services Manager Policy Configuration

information to invoke the web service. If the SYS EXT_wsEndpoi nt BaseUr | and
SYS_EXT_wsEndpoi nt Ur | properties are not specified in the job definition and the
SYS_EXT_wsWsdl BaseUr| and the SYS _EXT_wsWsdl Ur | properties are specified,
Oracle Enterprise Scheduler retrieves the WSDL at runtime (before invoking the job),
gets the Endpoi nt Ur | and Tar get Nanmespace property values from the WSDL and
invokes the web service.

The SYS_EXT_wsSer vi ceNane, SYS_EXT_wsPor t Nane and
SYS_EXT_wsOper at i onNane properties must be specified to identify the specific
web service operation to be invoked.

The SYS_EXT_i nvokeMessage property contains the XML message (SOAP body
payload) for invocation. This can either be an XML template or full XML.

An XML template contains tokens that are replaced at runtime. The job submitter
specifies the parameter values to substitute for the tokens in the template. If full XML
is used without tokens, no substitution is required and the specified XML in the job
definition is used “as is" for job invocation.

Note:

The angle brackets (“<“and “>") in XML statements must be escaped.

After it is invoked, the remote web service can log progress messages to update its
status. These messages are logged by the web service job and are available in the
request logs. The web service response XML is captured as job output.

If the SYS_EXT_wsCancel Message and SYS_EXT_wsCancel Oper at i onNane
properties are configured with a cancel message, the message is invoked when a
cancel operation is initiated on a running web service job. The cancel operation is
always invoked as a synchronous web service operation.

The cancel message SOAP header is automatically populated with the W5~

Addr essi ng rel at esTol d property set to the wsa: nessagel d associated with the
invoke web service operation. The cancel operation uses the same OWSM policy as the
invoke operation. If the SYS_EXT_wsCancel Message property is not configured, it
indicates that the web service does not support cancellation and therefore cannot be
canceled.

The SYS_ext er nal JobType property allows web service job definitions to specify a
web service type (ADFBC, Service Bus or SOA). Intended for future customized web
service job implementations.

13.5 Oracle Web Services Manager Policy Configuration

The web service job type uses decoupled Oracle Web Services Manager (OWSM)
policy subjects (Job-Invoke, Job-Callback) and associated globally attached policies
and directly attached policies for web service invocation and callback operations.

The Job-Invoke policy subject is associated with all web service job types (one-way,
synchronous and asynchronous), whereas the Job-Callback policy subject is available
only for the asynchronous web service job type. The Job-Invoke and Job-Callback
globally attached policies can be specified at the domain level and configured using
EM or WLST.

If a Job-Invoke globally attached policy or a directly attached policy is not specified for
a web service job definition, an attempt is made to invoke the web service

Creating and Using Web Service Jobs 13-5

Creating a Web Service Job Definition

anonymously. This only works for the one-way and synchronous job type, because
anonymous callbacks are not supported for the asynchronous web service job type.

Job-Invoke and Job-Callback directly attached policies are specific to individual web
service job definitions and are captured in the policy assembly descriptor associated
with the web service job definition. These directly attached policies can be specified at
design time using JDeveloper or at runtime using Oracle Enterprise Manager Fusion
Middleware Control, or using WLST commands.

Globally attached policies for web service job policy subjects can be set up using
Oracle Enterprise Manager Fusion Middleware Control or using a WLST script to
configure domain-level globally attached policies for web service job policy subjects.
Example 13-1 shows how such a script might look.

Example 13-1 WLST Script to Configure Globally Attached Policies

connect (admi nuser, adm npassword, adminurl)

begi nReposi t or ySessi on()

del etePol i cySet (' domai n-defaul t-j ob-invoke-client-policies')
descri beReposi t orySessi on()

commi t Reposi t or ySessi on()

begi nReposi t or ySessi on()

del et ePol i cySet (' domai n- def aul t -j ob- cal | back- servi ce-policies')
descri beReposi t orySessi on()

conmi t Reposi t orySessi on()

print "-- create donain-default-job-invoke-client-policies --"

begi nReposi t or ySessi on()

descri beReposi t orySessi on()

createPolicySet (' domai n-defaul t-job-invoke-client-policies', 'job-invoke',
" Domai n("*")")

attachPol i cySet Pol i cy("oracl e/

wss1l sanl _token_with_nmessage _protection_client_policy")

descri beReposi t orySessi on()

conmi t Reposi t or ySessi on()

print "-- create donain-default-job-callback-service-policies --"

begi nReposi t or ySessi on()

descri beReposi t orySessi on()

creat ePol i cySet (' domai n-defaul t-j ob-cal | back-service-policies', 'job-callback',
" Domai n("*")")

attachPol i cySet Pol i cy("oracl e/

wss1l sanl _or_usernane_t oken_with_nessage_protection_service_policy")

descri beReposi t orySessi on()

conmi t Reposi t orySessi on()

13.6 Creating a Web Service Job Definition

Both Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control
offer convenient graphical user interfaces to help you create web service job
definitions.

Using Oracle JDeveloper to Create a Job Definition describes how to use Oracle
JDeveloper to create a job definition and Using Oracle Enterprise Manager Fusion
Middleware Control to Create a Job Definition describes how to use Oracle Enterprise
Manager Fusion Middleware Control to do the same.

13-6 Developing Applications for Oracle Enterprise Scheduler

Creating a Web Service Job Definition

13.6.1 Using Oracle JDeveloper to Create a Job Definition

You can use Oracle JDeveloper to create a web service job definition while creating
your application. Refer to Using Oracle JDeveloper to Generate an Oracle Enterprise
Scheduler Application for general information about how to use Oracle JDeveloper to
create applications that work with the Oracle Enterprise Scheduler.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see Oracle JDeveloper Accessibility Informationin
Developing Applications with Oracle [Developer.

The following steps show you how to create a job definition for an asynchronous web
service job type.

1. Navigate to the Job Definition tab. Fill in the Name, Display Name, and
Description fields and choose an appropriate web service job type as shown in the
example in Figure 13-1. Have the WSDL URL for the target web service available.

Figure 13-1 Oracle JDeveloper: Job Definition Tab

[#] Oracle JDeveloper 12c - EssDemoapp.jws : EssDemo.jpr : fscratchivnanjund/tmpitestDemoApp/Ess DemoApp/Ess Demo/essmetaioraclefappsiessiseeded/demopackage/Jobs AgTH
File Edit View Application Refagtor Search Mawigate Build Run Team Tools Window Help
E=l= =) =) Qo ©- iy) > &
Epplications (2) start Page (8} Asyncwsjenz.xm!]
=
Fssiemmkn = = | 08 Job Definition
| Projects - PrlE
. E@- 7= Mame: AsyncWsjobz
i DE’"DUI Display M. A Wilob2
= isplay Mame: |Asyncws]ol
= 3] Essbema play il
#-{7] Application Sources Inwoke Async SOA Compositel
=) Ess Description
=-[7] oracle
= DEPS Jab Type: Joraclefasfess/core fAsyncWebservicelobType g,
= ess
& [seeded Class Name: [oracle.as.scheduler jobaebservice Asyncwslob
Fublish
= [Application Defined Properties 7+ R
Mo Application Defined Properties
| Application Resources
| Data Contrals E @ System Properties 7+ R
+| Recent Files
Mame Type Initial Value Read Only
J T —— SYS_effectiveApplication STRING EssDemodpp
= &= Access Control 7 P R
Mo Access Contral
= ‘& Localization
Job Definition Editar 1]
Messages - Log - | Live Issues: AsyncWsjab2 xml - Issues |
Jul 03, 2013 6:41:30 &K oracle.security.jps.internal.config.xml.XnlConfigurationFactory initDefaul tConfiguration
SEWERE: jawa.io.FileNotFoundException: . /config/ips-config.xml [No such Tile or directary)
Jul 03, 2013 6:41:31 AK oracle.security.jps.internal.config.xml.XnlConFigurationFactary initDefaul tConfiguration
SEWERE: jawa.io.FileNotFoundException: ./config/jps-config.xml (Mo such file or directory)
Jul 03, 2013 £:41:31 &M oracle.security.jps.internal.config.xml.XnlConfigurationFactory initDefaultConfiguration
SEWERE: jawa.io.FileNotFoundException: ./config/ips-config.xml [No such file or directary)
Jul 03, 2013 6:41:32 &K oracle.security.jps.internal.config.xml.XnlConfigurationFactory initDefaul tConfiguration
SEWERE: jawa.io.FileMotFoundException: ./ config/ips-config.xml (Mo such file or directory)
Jul 03, 2013 6:41:32 AK oracle.security.jps.internal.config.xml.XnlConFigurationFactary initDefaul tConfiguration
SEWERE: jawa.io.FileNotFoundException: . config/ips-config.xml (Mo such file or directory)

2. Click the Web Service Explorer button to launch the Web Service configuration
wizard as shown in Figure 13-2. Enter the WSDL URL, the Service, Port, Operation
and configure the payload XML as shown in the example, then click OK.

Creating and Using Web Service Jobs 13-7

Creating a Web Service Job Definition

Note:

The example shown in Figure 13-2 shows the invoke XML payload with the
substitutable token Subrmi t Ar gunent 1, whose value is provided at
submission request time. Token substitution is described in Using Tokens and
Logical Clusters .

Figure 13-2 Oracle JDeveloper: Web Service Popup

[®] Oracle JDeveloper 12c - EssDemoApp.jws

5 =2dg i

Applications =| =

EssDemotpp > *
SFrojenis &) @t W =
] Demalll

=[5 EssDemo
[Application Sources
=3 Ess
= aracle
= apps
B[ess
-] seeded

| Application Resources
#l Data Conrols
| Recent Files

AsyncWslob2 xml - Structure < | =)

Mo Structure

[Job Definition

Mame AsyncWsjobz

Display Name: [Asyncwsjobz

Invoke Async SOA Com
Description

Job Type: foracle fas fess fcore /A
Class Name oracle.as scheduler job.
[] Publish

= [Application Defined Properties

o Application Defined Properties

= & System Properties

Hame 1
SYs_effectiveApplication

= &= Access Contral

Mo Access Contral

= @ Localization

Job Definition Editor| ¢

Messages - Log « | Live Issues: Asyrcil
Jul 03, 2013 6:41:32 AM oracle.s
SEVERE: java.io.FileNotFoundExce
Jul 03, 2013 6:43:43 A oracle.j
INFO: —--------- BEGIN MSG NODE-
Jul 03, 2013 6:43:43 A oracle.j
INFO: ---—- Complex Part payloadd
Jul 03, 2013 £:43:43 AM oracle.j
INFO: ----- End Complex Fart payl

s5Demo.jpr : fscratchivnanjund/tmp/testDemoApp/Ess Demofpp/EssDemoressmetajoraclefappsiessiseeded/idemopackagelJohsing

2013 6:43:43 AW oracle.

™
g
Specify 2 WSDL, select the service, port, and operation. An initial payload will be generated I
inwhich specific values can be inserted
WSDL: defaultjAsyncsOAProjectl fasyncsoacompositel_client_ep?wsDL| @,
weo Service Type: (50 -
Service Sacompositel _clisnt_ep
7R
7+ R
Port A synesos Compositel_pt - 1= - =
Invoke Operation
Operation: [pmcm -] g
@
Payload: | 2nsi process xmins:ns1="http:/xmins.oracle.com fAsyncSOARPpL /Asyn
<nsLinput>$(ESS_REQ:SubmitArgumentlj</nsLinputs
</nslprocess»
3]
ation -
[3
Help ok Cancel
CTOTTTE—prTTCm i
Q
> »

3. Click the Specify Security Policies button as shown in Figure 13-3. Select For
Request to configure the directly attached policy for the Job-Invoke policy subject.

13-8 Developing Applications for Oracle Enterprise Scheduler

Creating a Web Service Job Definition

Figure 13-3 Oracle JDeveloper: Job Definition Tab

[®] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratchivnanjundAmpitestDemoApp/Ess DemoApp/EssDemoressmetajoraclefappslessiseededidemopackage/Jobhs/AsT]
Eile Edit Miew Application Refagtor Search MNawigate Build Run Team Tools Window Help
Sda 23 9@ 0 @~ om0 Qe search
Applications (2) startPage | (B3 Asynewsiob2 xmi [
=
] EssDemnapp = = | [B Job Definition
=l Projects - E
Bl@- - = Mame: Asyncisjobz
emolt Display Name: [4syncisjonz |
T isplay Name: [Asyncwso
[#pplication Sources Irvoke Async SOA Compositel
= ess Description:
=20 aracle
E"“@ apps Job Type: foraclejasfessfcare/asynciebservicelobType @ (3 Far request
L D b . - X eorcallback
-] seeded Class Mame: [aracle as scheduler job webservice Asyncisjob |
] Publish
= [Application Defined Froperties 7+ R
No Application Defined Properties
+] Application Resources
| Data Controls = @ System Propertics 7+ R
+] Recent Files
5| Hame Type Initial Walue Read Only
P ————— SYS_effectiveApplication STRING EssDemoipp
SY5_EXT_wsWsdlBasellrl STRING htp:fjade00cglus. aracle.com:242... W
Y5 _EXT_weWsdiUrl STRING Fsoa-infrafservices fdefault/Asyne.. o
SY5_externaljobType STRING SOR L
SY5_EXT_wsServicenlame STRING asyncsoacompositel_client_ep L
SYS_EXT_wsPortName STRING AsyncsOACompositel_pt '
SYS_EXT_wsOperationhame STRING process «
SYS_EXT_invokeMessage STRING <nsliprocess xminsinsl="http:/x..
Job Definition Editor
Messages - Log - | Liwe Issues: AsyncWSjobZ xml - ssues |
Jul 03, 2013 6:41:32 AW oracle.security.jps.internal.config.=ml.XmlConfigurationFactory initDefaultConfiguration
SEVERE: java.io.FileNotFoundException: . config/ips-config.xml (Ne such file or directory)
Jul 03, 2013 6:43:43 AN oracle.jZee.ws.mdds.adt.aDTULi1s printHessageNode
INFO: ==----m--- BEGIN HSG NODE=----=-==---
Jul 03, 2013 6:43:43 AW oracle.jZee.ws.mdds.ade.ADTUTiTs printHessageNode
INFO: ----- Complex Part payload----
Jul 03, 2013 6:43:43 AW oracle.jZee.ws.mdds.adt.ADTUTiTs printHessageNode
INFO: ----- End Complex Part payload----
Jul 0%, 013 5:43:43 AW oracle.jzee.ws.mdds.adr.ADTUTiTS printHessageNode
INFO: ---------- END MSG NODE------------

4. The Job-Invoke policy subject is available for all web service job definition types

(one-way, synchronous and asynchronous. Select and attach the required OWSM
client policy for the Job-Invoke directly attached policy. You should see a screen
like the one shown in Figure 13-4.

Figure 13-4 Oracle JDeveloper: ESS Web Service Policies Popup

L ESS Web Service Policies by
ESS Request Web Service Policies
Configure web service policies for job definition: JobDefinition:/ fwer/asd/]obl
O % %%
Security I;IJJ / x| @ Ea
Management I:DJ / ﬁ| @ LB
Help o]} Cancel

A

5. This completes directly attached policy configuration for a synchronous or one-
way web service job definition. For asynchronous job definitions, you can also
configure the directly attached policy for the Job-Callback policy subject.

To configure a Job-Callback directly attached policy for an asynchronous job
definition, repeat step 3 of this procedure and instead of For request, select For

Creating and Using Web Service Jobs 13-9

Creating a Web Service Job Definition

callback. Select and attach the required OWSM service policy for the Job-Callback
directly attached policy as shown in Figure 13-4.

Note:

Post deployment, you can use Oracle Enterprise Manager Fusion Middleware
Control to change job policies associated with web service job definitions.

Figure 13-5 Oracle JDeveloper: ESS Web Service Policies Popup

[®] Oracl
Elle Edit Miew Application Refagtor Search MNavigate Build Bun Team Tools iWindow Help
Bl) Q w- oy o > &
Applications (3) start Page | [F3 AsyncWsiobZ xm!
] EssDemopp ~ .1~ 1| [Job Definition
I Projects @] G~ Y - Name: Asyncisjobz [8] ESS Web Service Policies
#-[E3] DemaLl
= (3] EssDema Display Name: |AsyncWSjobz2 ESS Callback Web Service Policies
(2 Application Sources i Inwoke Asyne SOA Ca Configure web service policies far job definition:
= [Ess Description JabDefinition: faracle fapps fess/seeded/dem opackage /A.synciSlab2
= (2 oracke LY
-3 apps [Configure web service palicies for job definition.
2 Fess Job Type foracle/as/ess/core /A obDefinition://oracle fapps/ess/seeded /dem opackage/Asyncws)ob2
[seeded Class Name: [oracle as.scheduleriot| wrom — —
Publish
= [Application Defined Properties | Reliability X B8 + 2%
Mo Application Defined Properties
| Application Resources Addressing 2R BE
-+ Data Contrals B (@ System Properties 5 oracie usaddr_pol @ a+ %
aracle fwsaddr_palic G
I Recent Files poliey
Name
S it
SY5_effectiveApplication seurity TSR BB
Asyncislobz.xml - Structure -
SYS_EXT_wshisdiBaseUrl [g oracle/wss10_saml_token_service_policy @
SYS_EXT_wshisdiUir
SY5_externallobType
SYS_EXT_wsServicelame
SYS_EXT_wsPortkame
SY5_EXT_wsOperationName
SY5_EXT_inwokeMessane
Job Definition Editar 1]
Messages - Log = | Live lssugs: Asyne
Management
Jul 03, 2013 G:43:43 AM oracle. 9 *sR BE
INFO: -~ e BEGIN MSG NODE-
Jul 03, 2013 G:43:43 AM oracle.
INFO: —---- Complex Part payload
013 6:43:43 AM oracle. Help ok Cancel
--End Complex Part pay
, 2013 G:43:43 AM orac]e. fecormrmETrTTe =
e END HSG HODE------------
, 2013 B:47:13 AM oracle.security.ips.internal.config.xnl.XnlConfigurationFactory initbefaultContiguration
SEVERE: jawa.io.FileNotFoundException: ./config/ips-config.zml (No such Tile or directory)

13.6.2 Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job
Definition

This procedure shows how to use the Oracle Enterprise Manger to create and
configure a web service job definition.

1. Start and log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the navigation pane, expand the Scheduling Services folder and select the
Oracle Enterprise Scheduler application.

From the Scheduling Services menu, select Job Metadata > Job Definitions and
then click the Create button.

Fill in the Name, Display Name, and Description fields and choose the
appropriate web service job type from the Job Type dropdown as shown in the
example in Figure 13-6.

13-10 Developing Applications for Oracle Enterprise Scheduler

Creating a Web Service Job Definition

Figure 13-6 Fusion Middleware Control Console: Create Job Definition Page

ORACLE Enterprise Manager Fusion Middleware Contral 12¢

1 WeblLogic Domain +

Target Navigation
View »
= [Application Deployments
&= 03 soa
v 3 WebLogic Domain

4 EssAPP @

Create Job Definition

[Scheduling Service ~ [StartUp

I3 Shut Down...

Scheduling Service Home > Job Definitions > Create Job Definition

v
ﬁ i) Application EssMativeHostingApp{v'1.0})
§| AdminServer
&l bam_servert |E]0b Definition
ft serverl
5 it sever *Name | AsyncWSIob1
§| soa_serverl
I= £ Business Activity Monitoring Displary Name | AsyncW/SJobl
I> (3 Metadata Repositaries Package [orade/apps/ess/custom
7 (3 scheduling Services Description [Tnvoke Async30AComposite

Help -

Logged in as weblogicl D blr2261789.idc. oracle.com
Page Refreshed Aug 7, 2013 11:55:23 PM IST C/

3 weblogic ~ Lgout O

OK | Cancel ([

(3 EsSAPP (mft_server)
I
L= 3 User Messaging Service

d * Job Type | AsyncWebservicelobType [Select Web Service...

Class Name orade.as.scheduler. job. webservice. AsyncW5Job

|[a5] Application Defined Properties

P
[Mame Type [tnitial value |Read only |
Mo Application Defined Properties found
~| i System Properties 7+ R
[Mame Type [tnitial value |Read only |
5Y5_effectiveApplication String EssNativeHostingA.

5. Click the Select Web Service button and enter the WSDL URL in the Select Web
Service popup window. After you enter the URL, select the Service, Port Type,
Operation and configure the Invoke Operation XML payload.

The example shown in Figure 13-7 shows the invoke XML payload with the

substitutable token Subm t Ar gunent 1, whose value is provided at submission
request time.

Note:

Token substitution is described in Using Tokens and Logical Clusters .

Creating and Using Web Service Jobs 13-11

Creating a Web Service Job Definition

Figure 13-7 Fusion Middleware Control Console: Select Web Service Popup

ORACLE Enterprise Manager Fusion Middleware Contral 12¢ telp - | 38 weblogic + | Logout O

@1 WebLogic Domain +

Target Navigat select web Service... 9.idc.oracle.com
la AM 1T G
View »
D I *WSDL | hitp://adcd0cal,us.oracle com: 13514/s0a-nfra/services default/Cancelizble. Go
I B3 Application De

* \ieb Service Type |SOA %
- £3 soa ()

7 3 weblLogic Don Cancel
7 £ sosinfra * Services asynchpelprocessd_dient_ep
S admins
Sl bam_se
&5 mft_ser
5 soa_sel
k> B3 Business Activ * Port Type | AsyncBPELProcess4_pt M
> £3 Metadata Rep
7 3 sScheduling Se Invoke Operation Cancel Operation
[i@ essaPp (m

I3

* Operation | process [»] Payload

*Payload [<ns 1iprocess ymingins 1="htto;://xmns. oracle. com/CancellableAsyncs0A4
[CancellableAsyncSOAComposited/AsyncBPELProcess 4>

<ns Liinput>S{ESS_REQ:SubmitArgument 13- /ns Linput>
«/nsl:process >

> B3 User Messagir

iE

E X
|

M Cancel
l S

6. After you create the job definition, return to the Job Definitions page and select the
job definition name (“AsyncWSJob1" in this example) in the Results table. Click the
Attach/Detach Policy button and select Invoke as shown in Figure 13-8 to
configure the directly attached policy for the Job-Invoke policy subject. The Job-
Invoke policy subject is available for all web service job type definitions.

Figure 13-8 Fusion Middleware Control Console: Job Definitions Page

ORACLE Enterprise Manager Fusion Middleware Contral 12¢ telp v | 28 weblogic~ | Logout O
i WebLogic Domain +
Target Navigation & Essapp @ Logged in 25 weblogic| [bir2251782 idc.oracle.com
View » @ Scheduling Service » [StartUp [Shut Down... Page Refreshed Aug 8, 2013 12:40:08 AM IsT ()
= 3 application Deployments
> B s0a Scheduling Service Home > Job Definitions
v 23 webLogic Domain Job Definitions
7 = soainfra
& Adminserver Select the appiication (125 application deplayment name) for which you want to view the job definitions.

5 bam_serverl
5 mft_serverl
& soa_server1 Application | EssMativeHostingApp(V1.0) [+]
1> [Business Activity Monitoring Name
[= [Metadata Repositories
W 3 Scheduling Services
[T EssaPP (mit_server1)
Iz

|Filter Criteria

Package

Results
L~ 3 User Messaging Service
Create.. #Edt.. 3§ Delete...) Web Service Policies +
4 =
[Name [P @ivoke | |30b Type [Description
AsynciWSJob1 h % Callback Lustom AsynciWebserviceJobType E\l\ﬁkcaso ACompasi
@ 2

13-12 Developing Applications for Oracle Enterprise Scheduler

Creating a Web Service Job Definition

7. In the Web Services Policy page, select the policy and click the Attach/Detach
button to attach the required OWSM client policy for the Job-Invoke directly
attached policy. This is shown in Figure 13-9. The Attach/Detach Policies popup is

displayed.

Figure 13-9 Fusion Middleware Control Console: Web Service Policies Page

ORACLE Enterprise Manager Fusion Widdlewars Contral 12¢ Help v | g weblogic ~ | logout O
@8 WebLogic Domain +
Logaed in 25 weblogicl [2] bir2261738.idc.orade.com

Target Navigation & essapp @
Page Refreshed Aug 8, 2013 5:29:05 AM IsT Cr

View - [/@ scheduiing Service » [StartUp [Shut Down...

> E3 Application Deployments

N Scheduling Service Home > Job Definitions > Web Service Polides
k- 3 s0a : i
7 3 WebLogic Domain Web Service Policies Back

Vi T
ﬁga”‘ﬁa Application EssNativeHostingApp(v1.0)
LTS Job Definition Name AsyncWSlob1
bam_serverl Subject Type Invoke
&l mt_servert
gl soa_serverl Select an expression from the Contraint dropdown to view the corresponding effective policy references. For policy set flagged as "Not Valid®, dick the link to view the
& B3 B Activity Moniit validation error details. For security policy references, dick the violations count link to view violation details. When policies are attached/detached, effective policy
usiness Actvity Monitaring references are recalculated.
b 3 Metadats Repositories Constraint None Status Mot Valid
|7 (3 Scheduing Services Globally Attached Policies
IS essire (it servert) Cat fPolicy N |Policy set Enabled | Total violations|
ategory Policy Name 'olicy Se rables otal Violations
[ESSAPP (s0a_serverl)|
@ e h rows yet
> B3 User Messaging Service
4
<« Ensble 3§ Dissble & Override Policy Configuration OEffective Only @ All | 1 Detach
| Effective | Enabled | Total violations|
7 addressing
oradefwsaddr_policy ~ 4 0

8. Select the policy and click OK to complete the attachment.

Creating and Using Web Service Jobs 13-13

Creating a Web Service Job Definition

Figure 13-10 Fusion Middleware Control Console: Policy Attachment Popup

ORACLE Enterprise Manager Fusion Middleware Control 12¢ Help v | 34 weblogic v | Logout ©

Target Navi p,jicy Attachment - Oracle Enterprise Manager @ [icorade.com

View ~ Attach/Detach Policies(WsmPolicy:/ [oracle/apps/ess/custom/AsyncWSIob1) «... OK validate Cancel st &
b [Applicatc Globally Attached Policies
&> 3 soa Mame Category Palicy Set Enabled |Description
7 3 weblogic anmws yet : : : : Bk
7) scaint
& ad
5 b 3 I | 2]
5 mf
&l s Directly Attached Policies id", dick the
re

> 3 Business Name Category Enabled [Desaiption View Detail

W 3 schedulin
[Essar
tal Violatiol

3 Es5A

L> £3 User Mes
o Attach ~ Detach

Available Policies

View & Detach

| ol [Tl \ | [fan | »
|Name ‘Category ‘ Status |Dasmpuon ‘ Wiew Detail | Violations
oradle/no_addressing_policy WiS-Addressi & Ths policy facilitates t... =) ~
oracleflog_palicy Management @ Ths policy causes the req... - o
oradlefno_mtom_policy MTOM Attac & Ths policy facilitates t... =)
oradefwsmtom_policy MTOM Attac... & Ths Message Transmission ... &d
oradefhttp_basic_auth_over_ssl_dient_policy Security & Ths policy includes usern... =)
oracefhttp_saml20_token_bearer_dient_policy Security & Ths policy includes SAML ... &d
oraclefhttp_saml20_token_bearer_over_ssl_client_policy Security & Ths policy includes SAML ... & M
e S S— — P - P sa
Showing 71 out of 71 Rows
’ |

9. This completes directly attached policy configuration for a synchronous or one-
way web service job definition. For an asynchronous job definitions, you can also
configure the directly attached policy for the Job-Callback policy subject.

To configure Job-Callback directly attached policy for an asynchronous job
definition, repeat step 6 of this procedure and instead of Invoke, select Callback.
Select and attach the required OWSM service policy for the Job-Callback directly
attached policy.

13-14 Developing Applications for Oracle Enterprise Scheduler

14

Creating and Using Process Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create process jobs,
which run a script or binary command in a forked process.

This chapter includes the following sections:

¢ Introduction to Creating Process Job Definitions

¢ Creating and Storing Job Definitions for Process Job Types
¢ Using an Agent Handler for Process Jobs

e Process Job Locale

For information about how to use the Runtime Service, see Using the Runtime Service.

14.1 Introduction to Creating Process Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including:
Java classes, PL/SQL stored procedures, or process jobs that run as spawned jobs.

To use Oracle Enterprise Scheduler to run process type jobs you need to specify
certain metadata to define the characteristics of the process type job that you want to
run. You may also want to specify properties of the job request, such as the schedule
for when it runs.

Specifying a process type job request with Oracle Enterprise Scheduler is a three step
process:

1. You create or obtain the script or binary command that you want to run with
Oracle Enterprise Scheduler. We do not cover this step because we assume that
you have previously created the script or command for the spawned process.

2. Using the Oracle Enterprise Scheduler APIs in your application, you create job
type and job definition objects and store these objects to the metadata repository.

3. Using the Oracle Enterprise Scheduler APIs you submit a job request. For
information about how to submit a request, see Using the Runtime Service.

After you create an application that uses the Oracle Enterprise Scheduler APIs, you
need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information on monitoring and managing job requests, see Using
the Runtime Service.

14.2 Creating and Storing Job Definitions for Process Job Types

To use process type jobs with Oracle Enterprise Scheduler, you need to locate the
Metadata Service and create a job definition.

Creating and Using Process Jobs 14-1

Creating and Storing Job Definitions for Process Job Types

You create a job definition by specifying a name and a job type. When you create a job
definition you also need to set certain system properties. You can store the job
definition in the metadata repository using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata
Service .

14.2.1 How to Create and Store a Process Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and
defines a common set of properties for a job request. A job type can be defined and
then shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

e JAVA TYPE: for job definitions that are implemented in Java and run in the
container.

* SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

* PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes under the control of the host operating system.

When you specify the JobType you can also specify Syst enPr oper ti es that define
the characteristics associated with the JobType. Table 14-1 describes the properties
that specify how the request should be processed if the request results in spawning a
process for a process job type.

Table 14-1 System Properties for Process Type Jobs

System Property

Description

Bl Z_ERROR_EXI T_CODE Specifies the process exit code for a process job request that denotes an execution

CMVDLI NE

business error. If this property is not specified, the system treats a process exit
code of 4 as an execution business error.

Command line required for invoking an external program.

ENVI RONMENT_VARI ABLES A comma-separated list of name/value pairs (name=value) representing the

environment variables to be set for spawned processes.

REDI RECTED_QUTPUT_FI L Specifies the file where standard output and error streams are redirected for a

E

process job request.

REQUESTED_PROCESSOR The Oracle WebLogic Server node on which a spawned job is executed.

SUCCESS_EXI T_CODE The process exit code for a process job request that denotes a successful execution.

If this property is not specified, the system treats a process exit code of 0 as a
successful completion.

WARNI NG_EXI T_CCODE The process exit code for a spawned job that denotes a successful execution. If this

WORK_DI R_ROOT

property is not specified, the system treats a process exit code of 3 as a warning
exit.

The working directory for a spawned process.

For more information about system properties, see Using Parameters and System
Properties .

Example 14-1 shows a sample job definition with a PROCESS_TYPE.

14-2 Developing Applications for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for Process Job Types

As shown in Example 14-1, when you create and store a process job type, you do the
following:

¢ Use the JobType constructor and supply a St ri ng name and a
JobType. Executi onType. PROCESS_TYPE argument.

® Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use the
Metadata Service addJobType() method to store the JobType in metadata.

¢ The Medat dat aCbj ect | d, returned by addJobType(), uniquely identifies
metadata objects in the metadata repository using a unique identifier.

Example 14-1 Creating an Oracle Enterprise Scheduler Job Definition and Setting
Job Definition Properties

i mport oracle. as. schedul er. Concurrent Updat eExcepti on;
i mport oracle. as. schedul er. JobType;

i mport oracle. as. schedul er. JobDefinition;

i mport oracl e. as. schedul er. Met adat aSer vi ce;

i mport oracl e. as. schedul er. Met adat aSer vi ceHand| e;

i mport oracl e. as. schedul er. Met adat albj ect | d;

i mport oracl e. as. schedul er. Met adat aSer vi ceExcepti on;
i mport oracl e. as. schedul er. Paraneter | nfo;

i mport oracle. as. schedul er. Paranet er | nf 0. Dat aType;

i mport oracl e. as. schedul er. ParaneterList;

i mport oracle. as. schedul er. Syst enProperty;

i mport oracl e. as. schedul er. Val i dati onExcepti on;

voi d createDefinition()
throws Metadat aServi ceException, Concurrent Updat eExcepti on,
Val i dati onException

Met adat aServi ce netadata = ...
Met adat aSer vi ceHandl e nshandle = nul | ;

try

{
Paranet er | nfo pinfo;
Paranet erList plist;

mshandl e = net adat a. open();

/1 Define and add a PL/SQ. job type for the application netadata.
String jobTypeName = "ProcessJobDef Type";

JobType jobType = nul | ;

Met adat aCbj ect 1 d jobTypeld = null;

jobType = new JobType(j obTypeNarme, JobType. ExecutionType.
PROCESS_TYPE) ;

plist = new ParaneterList();
pi nfo = SystenProperty. get SysPropl nf o(Syst enProperty. CMDLI NE) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "/bin/myprogram
argl arg2", false);
pinfo = SystenProperty. get SysPropl nf o(Syst enProperty.
ENVI RONVENT_VARI ABLES) ;
plist.add(pinfo.getName(), pinfo.getDataType(),

"LD_LI BRARY_PATH=/usr/lib", false);
pi nfo = SystenProperty. get SysPropl nf o(Syst enProperty. PRODUCT) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "HONTO PROD', false);
j obType. set Paraneters(plist);

Creating and Using Process Jobs 14-3

Creating and Storing Job Definitions for Process Job Types

jobTypel d = netadat a. addJobType(nshandl e, jobType, "HOWTO PROD');

/1 Define and add a job definition for the application netadata.
String jobDef Nane = "ProcessJobDef";

JobDefinition jobDef = null;

Met adat aCbj ect1d jobDefld = null;

j obDef = new JohDefinition(jobDef Name, jobTypeld);
j obDef . set Description("Deno Process Type Job Definition " +
j obDef Nane) ;

plist = new ParaneterList();
plist.add("nyJobdef Prop", DataType. STRING "nyJobhdefVal", false);

pinfo = SystenProperty. get SysPropl nf o(Syst enProperty.
REDI RECTED_OUTPUT_FI LE);
plist.add(pinfo.get Nane(), pinfo.getDataType(), "/tnp/" + jobDef Nane
+ ", out", false);
j obDef . set Paramet ers(plist);

jobDefld = netadata. addJobDefinition(nshandl e, jobDef, "HOWTO PROD');

}
catch (Exception e)
{
-]
}
finally
/1 COose netadata service handle in finally block.
if (null != mshandle)
{
met adat a. cl ose(nshandl) ;
mshandl e = nul | ;
}
}

}

14.2.2 How to Create and Store a Process Type Job Definition

To use process type jobs, you need to create and store a job definition.

Note:

After you create a job definition with a job type, you cannot change the type or
the job definition name. To change the job type or the job definition name, you
need to create a new job definition.

Example 14-1 shows how to create a job definition using the job definition constructor
and the job type. Table 14-1 describes some of the system properties that are associated
with the job definition.

As shown in Example 14-1, when you create and store a job definition you do the

following:

¢ Use the JobDef i ni ti on constructor and supply a St ri ng name and a
Met adat aCbj ect | Dthat points to a job type stored in the metadata.

14-4 Developing Applications for Oracle Enterprise Scheduler

Using an Agent Handler for Process Jobs

* Set the appropriate properties for the new job definition.

* Obtain the metadata pointer, as shown in Accessing the Metadata Service. Then,
use the Metadata Service addJobDef i ni ti on() method to store the job
definition in the metadata repository and to return a Met adat aCbj ect | D.

14.3 Using an Agent Handler for Process Jobs

Oracle Enterprise Scheduler requires an agent handler to manage individual process
jobs. The agent handler validates, spawns, monitors and controls process job
execution, and also returns the exit status of process jobs to Oracle Enterprise
Scheduler.

The agent handler also monitors Oracle Enterprise Scheduler availability and handles
job cancellation requests. In the event of abnormal job termination (or job cancellation
requests), the agent handler terminates the spawned process (along with its children)
and exits. It detects the operating system type and uses appropriate system calls to
invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduler agent handler can generate its log under the / t np
folder. Log generation must be enabled by setting the Oracle Enterprise Scheduler log
level to FI NE, FI NER or FI NEST and ensuring read and write access to the / t np
folder. One log file is generated for each process job invocation. The log file lists the
process job invocation log, including a list of environment variables, the command line
and redirected output file specified for the process job, process ID and exit code for the
process job or errors detected while spawning the process.

14.3.1 Choosing an Agent Handler

Oracle Enterprise Scheduler provides two different agent handlers, the Java agent
handler and the Perl agent handler. Both agent handlers are functionally equivalent
with the exception that the Java agent handler does not supportt er m nat e-
spawned- process- on-rest art behavior on Windows.

By default, Oracle Enterprise Scheduler uses the Java agent handler for requests in
standard and extended mode. It always uses the Perl agent handler for requests in
Fusion mode. To use the Perl agent handler in standard and extended request modes,
you must add the Per | Conmaind property to the ess- confi g. xii file associated
with the hosting application running the process job as shown in the following
example.

<EssProperties>
<EssProperty key="RequestFileDirectory" value="/tnp/ess/requestFileDirectory"/>
<EssProperty key="RequestFileDirectoryShared" val ue="fal se"/>

<EssProperty key="Per| Command" val ue="/usr/bin/perl"/>
</ EssProperties>

You can use token substitution to specify environment dependent values like directory
names. Refer to Using Tokens and Logical Clusters for more information.

The Oracle Enterprise Scheduler Perl agent handler requires Oracle Perl version 5.10
or later. Instructions for installing Perl to support process jobs can be found in the
chapter "Configuring Perl to Support Process Jobs" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

Creating and Using Process Jobs 14-5

Process Job Locale

Note:

If you run Oracle Enterprise Scheduler in a Fusion Applications environment
you must use the Perl agent handler.

14.4 Process Job Locale

Individual process jobs can use different locales and encoding as determined by the
locale environment variable settings applicable to the process job at execution time.
For a process job, Oracle Enterprise Scheduler imports the request log and output file
into the content store after completing the request.

Locale environment variables for a process job can be specified at multiple places
including the process job definition and the hosting application's ess- confi g. xm
file. The locale resolution logic for a process job uses the following precedence order to
determine the effective LC_ALL and LANG environment variable values for the
request:

1. SYS_envi ronnent variables associated with the request (highest precedence)
2. The hosting application's ess- conf i g. xni file

3. The WebLogic server locale (lowest precedence)

For every process job, the effective locale and encoding is determined based on the
above precedence order (with the effective LC_ALL value overriding the effective
LANGvalue). This encoding applies to the log only, and not the output.

14-6 Developing Applications for Oracle Enterprise Scheduler

15

Defining and Using Schedules

This chapter describes how to define schedules that you can associate with a Oracle
Enterprise Scheduler job definition, specifying when a job request runs and including
administrative actions such as workshifts that specify time-based controls for
processing with Oracle Enterprise Scheduler.

This chapter includes the following sections:

¢ Introduction to Schedules

¢ Defining a Recurrence

¢ Defining an Explicit Date

¢ Defining and Storing Exclusions

¢ Defining and Storing Schedules

¢ Identifying Job Requests That Use a Particular Schedule

e Updating and Deleting Schedules

15.1 Introduction to Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use a schedule for other purposes, such as determining when a work
assignment becomes active. A schedule can contain a list of explicit dates, such as July
14, 2012. A schedule can also include expressions that represent a set of recurring
dates (or times and dates).

Using Oracle Enterprise Scheduler you create a schedule with one or more of the
following:

¢ Explicit Date: Defines a date for use in a schedule or exclusion.

* Recurrence: Contains an expression that represents a pattern for a recurring date

and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM.

e Exclusion: Contains a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule.

15.2 Defining a Recurrence

A recurrence is an expression that represents a recurring date and time. You specify a
recurrence using an Oracle Enterprise Scheduler Recur r ence object. You use a
Recur r ence object when you create a schedule or with an exclusion to specify a list
of dates.

Defining and Using Schedules 15-1

Defining a Recurrence

The Recur r ence constructor allows you to create a recurrence as follows:
* Using the fields defined in the Recur r enceFi el ds class, such as DAY_OF_MONTH.

¢ Using a recurrence expression compliant with the iCalendar (RFC 2445)
specification. For information about using iCalendar RFC 2245 expressions see,

http://ww.ietf.org/rfc/rfc2445.txt

Note:

When you create a recurrence you can only use one of these two mechanisms
for each recurrence instance.

A recurrence can also include the following (these are not required):
e Start date: The starting time and date for the recurrence pattern.
¢ End date: The ending time and date for the recurrence pattern.

e Count: The count for the recurrence pattern. The count indicates the maximum
number of occurrences the object generates. For example, if you specify a
recurrence representing a regular period such as Mondays at 10:00AM, and a count
of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a
Recur r enceFi el ds helper based instance or an iCalendar based instance of a
recurrence.

You can validate a recurrence using the recurrence val i dat e() method that checks if
an instance of a Recur r ence object represents a well defined and complete
recurrence pattern. A Recur r ence instance is considered complete if it has the
minimum required fields that can generate occurrences of dates or dates and times.

15.2.1 How to Define a Recurrence with a Recurrence Fields Helper

You can create a recurrence using a recurrence fields helper. The Recur r enceFi el ds
helper class provides a user-friendly way to specify a recurrence pattern. Table 15-1
shows the recurrence fields helper classes available to specify a recurrence pattern.

Table 15-1 Recurrence Field Helper Patterns

Recurrence Field Description

DAY_OF _MONTH Defines the day of a month

DAY_OF_WEEK Enumeration of the day of a week

FREQUENCY Defines the repeat frequency of a Recurrence. Choices are:

e DAl LY: Indicates every day repetition

¢ HOURLY: Indicates every hour repetition

* M NUTELY: Indicates every minute repetition
* MONTHLY: Indicates every month repetition

e SECONDLY: Indicates every second repetition
e VEEEKLY: Indicates every week repetition

* YEARLY: Indicates every year repetition

15-2 Developing Applications for Oracle Enterprise Scheduler

http://www.ietf.org/rfc/rfc2445.txt

Defining a Recurrence

Table 15-1 (Cont.) Recurrence Field Helper Patterns
|

Recurrence Field Description

MONTH_OF YEAR Defines the months of the year

TI ME_OF_DAY Defines the time of the day
WEEK_OF_MONTH Enumerations for the week of a month
YEAR Encapsulate the value of a year

Example 15-1 shows a sample recurrence created using the Recur r enceFi el ds
helper class with a weekly frequency (every Monday at 10:00 a.m.) using no start or
end date.

In Example 15-1, note the following;:

® The schedule becomes active as specified with the start time supplied at runtime by
Oracle Enterprise Scheduler when a job request that uses the schedule is submitted.

* The interval parameter 1 specifies that this recurrence generates occurrences every
week. You calculate this value by multiplying the frequency with the interval.

Example 15-2 shows a sample recurrence for every 4 hours with no start or end date.
The recurrence was created using the Recur r enceFi el ds helper class with an
hourly frequency, an interval multiplier of 4, a null start date, and a null end date.

In Example 15-2, note the following;:

¢ The schedule becomes active as specified with the start time supplied at runtime by
Oracle Enterprise Scheduler when a job request that uses the schedule is submitted.

¢ The interval parameter 4 specifies that this recurrence generates occurrences every
4 hours. You calculate this value by multiplying the frequency with the interval.

Example 15-3 shows a sample recurrence created using the Recur r enceFi el ds
helper class and a monthly frequency.

Example 15-3 specifies a recurrence with the following characteristics:

¢ Includes an interval parameter with the value 1 specifies that this recurrence
generates occurrences every month.

® Includes a specification for the week of month, indicating the second week.
¢ Includes a specification for the day of week, Tuesday.

® Includes the specification for the time of day, with the value 11:00.

Example 15-4 shows a sample recurrence created using the Recur r enceFi el ds
helper class and a monthly frequency specified with a start date and time.

Example 15-4 defines a recurrence with the following characteristics:
¢ The end date is specified as null meaning no end date.

¢ Using this recurrence, the start date is specified with the Cal endar instance cal ,
and its value is set with the set () method calls.

Defining and Using Schedules 15-3

Defining a Recurrence

Example 15-1 Defining a Recurrence with Weekly Frequency

Recurrence recurl =

new Recurrence(RecurrenceFi el ds. FREQUENCY. VEEKLY, 1, null, null);
recur 1. addDayOf ek (Recur renceFi el ds. DAY_OF_WEEK. MONDAY) ;
recur 1. set Recur Ti me(RecurrenceFi el ds. TI ME_OF_DAY. val ueCf (10, 0, 0));
recurl.validate();

Example 15-2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur2 =
new Recurrence(RecurrenceFi el ds. FREQUENCY. HOURLY, 4, null, null);
recur2.validate();

Example 15-3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =

new Recurrence(RecurrenceFi el ds. FREQUENCY. MONTHLY, 1, null, null);
recur 3. addWeekOf Mont h(Recur renceFi el ds. WEEK_OF_MONTH. SECOND) ;
recur 3. addDayOf ek (Recur renceFi el ds. DAY_OF_W\EEK. TUESDAY) ;
recur 3. set Recur Ti me(Recur renceFi el ds. TI ME_OF_DAY. val ueO (11, 00, 00));
recur3.validate();

Example 15-4 Defining a Recurrence with Start Date and Time Specified

Cal endar cal = Cal endar.getlnstance();

cal . set(Cal endar. YEAR 2007);

cal . set(Cal endar. MONTH, Cal endar. JULY);

cal . set(Cal endar. DAY_OF_MONTH, 1);

cal . set(Cal endar. HOUR, 9);

cal . set(Cal endar. M NUTE, 0);

cal . set(Cal endar. SECOND, 0);

Recurrence recur4 = new Recurrence(RecurrenceFi el ds. FREQUENCY. WEEKLY,
1,
cal,
null);

recurd.validate();

15.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification

You can specify a recurrence pattern using the Recur r ence constructor with a
St ri ng containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:
http://ww.ietf.org/rfc/rfc2445.txt

Example 15-5 shows a sample recurrence created using an iCalendar expression.

Note:
The following are not supported through iCalendar expressions:
COUNT, UNTI L, BYSETPOCS, \KST

You can still directly specify a count on the Recur r ence object using the
set Count method.

15-4 Developing Applications for Oracle Enterprise Scheduler

http://www.ietf.org/rfc/rfc2445.txt

Defining a Recurrence

Example 15-5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new Recurrence(" FREQ=YEARLY; | NTERVAL=1; BYMONTH=5; BYDAY=2MO, ") ;
recur5.validate();

15.2.3 What You Need to Know When You Use a Recurrence Fields Helper

When you define a recurrence with a Recur r enceFi el ds helper, note the following;:

* Providing a frequency with one of the Recur r enceFi el ds. FREQUENCY
constants is always mandatory when you define a recurrence pattern using the
Recur r enceFi el ds helper classes (for more information on frequency, see Table
15-1).

¢ The frequency interval supplied with the recurrence constructor is an integer that
acts as a multiplier for the supplied frequency. For example if the frequency is
RecurrenceFi el ds. FREQUENCY. HOURLY and the interval is 8, then the
combination represents every 8 hours.

* Providing either a start or end date is optional. But if a start or end date is specified,
it is guaranteed that the object does not generate any occurrences before the start
date or after the end date (and if specified, any associated start time or end time).

* In general if both start date and recurrence fields are used, then the recurrence
fields always take precedence. This qualification means the following;:

— If a start date is specified with just the frequency fields from the
Recur renceFi el ds then the start date defines the occurrences with the
frequency field, starting with the first occurrence on the start date itself. For
example if a start date is specified as 01-MAY-2007:09:00:00 with a
Recur r enceFi el ds. FREQUENCY of WEEKLY without using other recurrence
fields, the occurrences happen once every week starting on 01-
MAY-2007:09:00:00 (and including 08-MAY-2007:09:00:00, 15-
MAY-2007:09:00:00, and so on).

Thus, providing a start date along with a specification of frequency fields
provides a quick way of defining a recurrence pattern.

— If the start date or end date is specified together with additional recurrence
fields, the recurrence fields take precedence, and the start date or end date only
act as absolute boundary points. For example, with a start date of 01-
MAY-2007:09:00:00 and a frequency of WEEKLY if the additional recurrence field
DAY_OF_WEEK is used with a value of WEDNESDAY the occurrence happens on
every Wednesday starting with the first Wednesday that comes after 01-
MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence happens on
02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TI ME_COF_DAY is
also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding the
09:00:00 time from the starting date specification.

e When just a frequency is supplied and a recurrence does not include either a start
date, start time, or a TI ME_OF_DAY field, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example, when a recurrence indicates a 2 hour recurrence then the time of the
job request submission determines the start time for the occurrences. Thus, in such
cases the occurrences for a job request are each 2 hours apart, but when multiple

Defining and Using Schedules 15-5

Defining an Explicit Date

job requests are submitted, the start times are different and are set at the request
submission time for the job requests.

When the start date is not used, recurrence fields can be included such that a
recurrence pattern is completely defined. For example, specifying a
MONTH_OF_YEAR alone does not define a recurrence pattern when a start date is
not also present. Without a start date the number of minimum recurrence fields
required to define a pattern depends upon the value of the frequency used. For
example with frequency of WEEKLY, only DAY_OF_WEEK and TI ME_OF_DAY are
sufficient to define which day the weekly occurrences should happen. With a
frequency of YEARLY, MONTH_CF_YEAR, DAY_OF_MONTH (or the WEEK_OF_MONTH
and DAY_OF_ WEEK) and the TI ME_OF_DAY are sufficient to define the recurrence
pattern.

You can supply multiple values for recurrence fields, except for the frequency field.
However, at runtime Oracle Enterprise Scheduler skips invalid combinations
silently. For example with MONTH_OF_ YEAR specified as January and ending in
June, and with DAY_OF_MONTH as 30, the recurrence skips an invalid day, that is
day 30 for February.

15.2.4 What You Need to Know When You Use an iCalendar Expression

When you define a recurrence with an iCalendar expression, note the following:

When the recurrence does not include either a start date or time and the iCalendar
expression does not specify a time of day, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date and
time of the job request submission determines the exact start time for the
occurrences. Note that in such cases, when the start time is not specified,
occurrences for different job requests can happen at different times, based on the
submission time, but the individual occurrences are 2 hours apart.

Providing either a start date with set St ar t Dat e() or an end date with

set EndDat e() is optional. But if a start or end date is specified, it is guaranteed
that the object does not generate any occurrences before the start date or after the
end date (and if specified, any associated start time or end time).

15.3 Defining an Explicit Date

An explicit date defines a date and time for use in a schedule or an exclusion. You
construct an Expl i ci t Dat e using appropriate fields from the Recur r enceFi el ds
class.

15.3.1 How to Define an Explicit Date

Example 15-6 shows an explicit date definition.

Example 15-6 Defining an Explicit Date

ExplicitDate date = new Expli citDate(RecurrenceFiel ds. YEAR val ueCf (2007),
RecurrenceFi el ds. MONTH_OF_YEAR. AUGUST, RecurrenceFi el ds. DAY_OF _MONTH. val ueCf (17));

In Example 15-6 a Recur r enceFi el ds helper defines a date in the constructor and
the value does not include a time of day. You can optionally use set Ti ne to set the
time associated with an explicit date.

15-6 Developing Applications for Oracle Enterprise Scheduler

Defining and Storing Exclusions

15.3.2 What You Need to Know About Explicit Dates

The Expl i ci t Dat e class provides the ability to define a partial date, when compared
with j ava. uti | . Cal endar where the time part is not specified. Also all other
java. util. Cal endar fields such as Ti neZone are not defined with an

Expl i ci t Dat e. When the time part is not specified in an Expl i ci t Dat e, Oracle
Enterprise Scheduler computes the time appropriately. For example, consider a
schedule that indicates every Monday after June 1, 2007, and adds an explicit date for
the 17th of August 2007 (a Friday). In this example, the 17th of August 2007 is a partial
date since it does not include a time.

15.4 Defining and Storing Exclusions

Using an Oracle Enterprise Scheduler exclusion you can represent dates that need to
be excluded from a schedule. For example, you can use an exclusion to create a list of
holidays to skip in a schedule.

15.4.1 How to Define an Exclusion

You represent an individual exclusion with an Excl usi on object. You can define the
dates to exclude in an exclusion using either an Expl i ci t Dat e or with a
Recur r ence object.

Example 15-7 shows how to create an Excl usi on instance using a recurrence.

Example 15-7 defines an individual exclusion. For information about creating a list of
Exclusions, see How to Create an Exclusions Definition.

Example 15-7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence(RecurrenceFi el ds. FREQUENCY. YEARLY, 1);
recur. addMbnt h(Recur renceFi el ds. MONTH_OF_YEAR JULY) ;

recur. addDayOf Mont h(Recur renceFi el ds. DAY_OF_MONTH. val ueO (4));

Excl usion e = new Excl usi on("|ndependence Day", recur);

15.4.2 How to Create an Exclusions Definition

To create a list of exclusions and persist the exclusion dates you do the following:

1. Create a list of exclusions.
2. Define an Excl usi onsDef i ni ti on object using the list of exclusions.

3. Use the Metadata Service addExcl usi onDef i ni ti on() method to persist the
Excl usi onsDefi ni tion.

Example 15-8 Creating and Storing a List of Exclusions in an ExlusionDefinition

Col | ecti on<Excl usi on> exclusi ons = new ArrayLi st <Excl usi on>();

Excl usion e = new Excl usi on("|ndependence Day", recur);

excl usions. add(e);

Excl usi onsDefinition exDefl =

new Excl usi onsDefinition("OrclHolidaysl", "Annual Holidays", exclusions);
Met adat aSer vi ceHandl e handl e = m service. open();

Met adat aCbj ect 1d exl d1 = m service. addExcl usi onDefi ni ti on(handl e, exDef 1,
" METADATA_UNI TTEST_PROD') ;

Defining and Using Schedules 15-7

Defining and Storing Schedules

Finally, when you want to associate an Excl usi onsDef i ni ti on with a schedule,
you use the schedule addExcl usi on() method.

Example 15-8 shows how to create an Excl usi onDef i ni ti on and store the
definition to the metadata repository.

Note in Example 15-8 that the Excl usi onsDef i ni ti on constructor requires three
arguments.

15.5 Defining and Storing Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use the schedule for other purposes (such as determining when a work
assignment becomes active). A schedule contains a list of explicit dates, such as June
13,2007 or a set of expressions that represent a recurring date or date and time. A
schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following;:

* Explicit Dates: Define a date for use in a schedule or exclusion. For more
information, see Defining an Explicit Date

® Recurrences: Contain an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM. For more information, see Defining a Recurrence

e Exclusions: Contain a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule. For more information, see Defining and Storing
Exclusions

15.5.1 How to Define and Store a Schedule

To define a schedule:

1. Create a schedule by defining an Oracle Enterprise Scheduler Schedul e object and
using the schedule constructor to create a new schedule.

2. Obtain a metadata service reference, m et adat aSer vi ce, and open a metadata
session in a t r y block with Met adat aSer vi ceHandl e.

Met adat aCbj ect1d schedul el d =
m servi ce. addSchedul eDefi ni ti on(handl e, schedul e, "HON TO PROD") ;

3. Define the date, recurrences and exclusions.
4. Store the schedule using addSchedul eDef i ni ti on.

5. Close the session with a f i nal | y block.

15.5.2 What Happens When You Define and Store a Schedule

Example 15-9 shows a sample schedule definition using a recurrence with the
Recur renceFi el ds helper class for a weekly schedule, specified to run on Mondays
at 10:00AM.

The schedule uses the addl ncl usi onDat e() method to add an explicit date to the
occurrences in the schedule, and the addExcl usi onDat e() method to explicitly
exclude the date of May 15 from schedule occurrences.

15-8 Developing Applications for Oracle Enterprise Scheduler

Identifying Job Requests That Use a Particular Schedule

Example 15-10 shows sample code used to store a schedule. The method
addSchedul eDefiniti on() isused to store the schedule within at ry block,
followed by a fi nal | y block that includes error handling.

Example 15-9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence(RecurrenceFi el ds. FREQUENCY. WEEKLY, 1);
recur. addDayOf Week(Recur renceFi el ds. DAY_OF_WEEK. MONDAY) ;
recur. set Recur Ti me(RecurrenceFi el ds. TI ME_OF_DAY. val ueCf (10, 0, 0));

ExplicitDate julyl0 = new ExplicitDate(RecurrenceFiel ds. YEAR val ueCf (2008),
RecurrenceFi el ds. MONTH_OF_YEAR. JULY,
RecurrenceFi el ds. DAY_OF_MONTH. val ueOr (10)) ;

ExplicitDate mayl5 = new ExplicitDat e(RecurrenceFi el ds. YEAR. val uef (2008),
RecurrenceFi el ds. MONTH_OF_YEAR. MAY,
RecurrenceFi el ds. DAY_OF_MONTH. val ueOr (15)) ;

Schedul e schedul e = new Schedul e("everyMnday", "Wekly Schedul e", recur);
schedul e. addl ncl usi onDat e(j ul y10);
schedul e. addExcl usi onDat e(may15);

Example 15-10 Storing a Schedule

Met adat aSer vi ceHandl e handle = nul | ;
bool ean abort = true;

try
{
handl e = m service. open();
m servi ce. addSchedul eDefinition(handl e, schedule, "HOWTO PROD');
abort = fal se;
}
finally
{
if (handle !'= null)
{
m servi ce. cl ose(handl e, abort);
1
}

15.5.3 What You Need to Know About Handling Time Zones with Schedules

Youcanuseaj ava. util . Ti neZone object to set the time zone for a schedule. Use
the Schedule set Ti meZone() method to set or clear the Ti neZone for a Schedule.
The Schedule method get Ti meZone() returnsaj ava. uti |l . Ti meZone value if the
Schedule object has as Ti meZone set.

15.6 Identifying Job Requests That Use a Particular Schedule

You can use Fusion Middleware Control to search for job requests that use a particular
schedule.

For more information about searching for job requests that use a certain schedule, see
the section "Searching for Oracle Enterprise Scheduler Job Requests" in the chapter
"Managing Oracle Enterprise Scheduler Requests" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

15.7 Updating and Deleting Schedules

You can use Fusion Middleware Control to edit and delete schedules.

Defining and Using Schedules 15-9

Updating and Deleting Schedules

For information about editing and deleting schedules, see the section "Managing
Schedules” in the chapter "Managing Oracle Enterprise Scheduler Requests" in Oracle
Fusion Middleware Administering Oracle Enterprise Scheduler.

15-10 Developing Applications for Oracle Enterprise Scheduler

16

Using the Oracle Enterprise Scheduler Web
Service

This chapter describes how you can use the Oracle Enterprise Scheduler web service
for accessing a subset of the Oracle Enterprise Scheduler runtime functionality.

This chapter includes the following sections:

¢ Introduction to the Oracle Enterprise Scheduler Web Service
¢ Developing and Using ESSWebservice Applications

¢ ESSWebservice WSDL File

¢ Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16.1 Introduction to the Oracle Enterprise Scheduler Web Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level
scheduling.

This functionality includes support for the following operations:
¢ C(Creating and managing Oracle Enterprise Scheduler metadata
¢ Submitting and managing Oracle Enterprise Scheduler job requests

¢ Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service
(ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime
functionality. The ESSWebservice is provided primarily to support SOA integration,
for example invoking Oracle Enterprise Scheduler from a BPEL process. However, any
client that requires a web service to interact with Oracle Enterprise Scheduler can use
ESSWebservice. ESSWebservice exposes job scheduling and management functionality
for request submission and request management.

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where
the application is a Java EE application within the Oracle Enterprise Scheduler
runtime framework. Thus, the ESSWebservice is available on every node where Oracle
Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked
are synchronous operations. Although the Oracle Enterprise Scheduler internal job
execution model is asynchronous, the ESSWebservice APIs need not be asynchronous.
However, Oracle Enterprise Scheduler web service also provides the capability to
retrieve the job completion events asynchronously (in a manner similar to
implementing the Oracle Enterprise Scheduler EventListener contract in the core API
layer).

Using the Oracle Enterprise Scheduler Web Service 16-1

Introduction to the Oracle Enterprise Scheduler Web Service

The ESSWebservice WSDL describes the complete functionality for the
ESSWebservice. Table 16-1 summarizes the operations available with ESSWebservice.

Table 16-1 Summary of Operations Available with ESSWebservice

Operation Communication Description
Type

addPPAct i on Synchronous Adds a post-processing action to a step in a job set request.
This method is called prior to submitting the request. The
method provides support for action previously supported by
add_printer, add_notification, add_layout in concurrent
processing. The parameters to these legacy routines are passed
as arguments to addPPAction in the order in which they were
declared in the original routine.

addPPAct i ons Synchronous Similar to addPPAct i on, except that you can package
multiple actions in your request.

cancel Request Synchronous Cancels the processing of a request that is not in a terminal
state.

Oracle Enterprise Synchronous Marks a request in a terminal state for deletion. This does not

SchedulerOracle physically remove any data, although the request is no longer

Enterprise be accessible by most methods.

SchedulerOracle For parent requests, this operation cascades to all children.

Enterprise Scheduler

Oracle Enterprise

SchedulerOracle

Enterprise Scheduler

get Conpl eti onStatus Asynchronous Registers for an asynchronous status update when the request
completes. A one-way operation with a separate asynchronous
response.

get Request Executi on Synchronous Gets an

Cont ext oracl e. as. schedul er. Request Exect i onCont ext
object from a serialized request execution context string. This
operation should only be invoked from a remote running ESS
job.

get Request Det ai | Synchronous Gets the runtime details of the specified request.

get Request St at e Synchronous Retrieves the current state of the specified request.

hol dRequest Synchronous Withholds further processing of a request that is in WAl T or
READY state. For parent requests, this operation cascades to all
eligible child requests.

rel easeRequest Synchronous Releases a request from the HOLD state. For parent requests,
this operation cascades to all eligible child requests.

set AsyncRequest Stat Synchronous Sets the status of an asynchronous java job.

us

set NLSOpt i ons Synchronous Sets NLS environment options for a request.

set St epsArgs Synchronous Marshals arguments in the previous concurrent processing

style into a Oracle Enterprise Scheduler properties for a step in
a job set request. This operation is invoked prior to submitting
a request.

16-2 Developing Applications for Oracle Enterprise Scheduler

Developing and Using ESSWebservice Applications

Table 16-1 (Cont.) Summary of Operations Available with ESSWebservice
. ___|

Operation Communication Description
Type
set Submi t Args Synchronous Marshals arguments in the previous concurrent processing

style into Oracle Enterprise Scheduler properties.This
operation is invoked prior to submitting the request. The key
of each argument is ARGUMENT_PREFIX#, where # is the
ordinal value of the argument. For example
ARGUMENT_PREFIX1="firstArg" and
ARGUMENT_PREFIX2="secondArg".

subni t Recurri ngRequ Synchronous Submits a new recurring job request (a request with a

est schedule).

submi t Request Synchronous Submits a new job request. For more information, see Use
Case: Using Oracle Enterprise Scheduler ESSWebservice from
a BPEL Process

16.2 Developing and Using ESSWebservice Applications

Oracle Enterprise Scheduler executes a job request, for example a Java type job
request, in the context of the application that submitted the job.

Typically, for development purposes, Oracle Enterprise Scheduler and client
applications co-exist locally on any given node which allows Oracle Enterprise
Scheduler to execute the job in the context of the target application. For the purposes
of production, the client application and Oracle Enterprise Scheduler often reside on
different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle
Enterprise Scheduler artifacts including the following:

® Metadata, including a job type, a job definition, a schedule, and any other required
metadata such as a job set.

* Job implementation classes (for Java jobs).

* A Required Oracle Enterprise Scheduler endpoint description (an MDB description
inejb-jar.xm).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to
provide this type of Java EE application, so that Oracle Enterprise Scheduler can run
jobs in the context of the correct target application. All such web service clients must
know the name of the corresponding Java EE hosting application and should pass it to
Oracle Enterprise Scheduler and should pass it to the Oracle Enterprise Scheduler web
service call wherever required (as defined in the WSDL).

Such an application is a regular Oracle Enterprise Scheduler client application, where
the job request submission and management are done using ESSWebservice
operations.

16.2.1 How to Develop and Use an ESSWebservice Java EE Application

When the Oracle Enterprise Scheduler functionality is accessed using the
ESSWebservice web service, a corresponding hosting Java EE application must be
available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle
Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service, the

Using the Oracle Enterprise Scheduler Web Service 16-3

Developing and Using ESSWebservice Applications

associated Java EE hosting application must still be co-located with Oracle Enterprise
Scheduler. This allows Oracle Enterprise Scheduler to execute job requests in the
correct application context. Therefore, ESSWebservice clients must still develop,
package and deploy a corresponding Java EE hosting application that contains all the
required Oracle Enterprise Scheduler artifacts.

16.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL

For SOA clients all the SOA components such as a BPEL process are deployed as a
SOA composite. A SOA composite is not a Java EE application. The composite is
executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the
proxy between the composite and Oracle Enterprise Scheduler. This hosting
application can either be created in a one-to-one association with one Oracle
Enterprise Scheduler application for each composite deployed, or multiple composites
can share a single Java EE hosting application. The Java EE hosting application
contains all the desired Oracle Enterprise Scheduler artifacts.

16.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation

As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously
on job completion they can invoke the get Conpl et i onSt at us() operation. Upon
job completion, Oracle Enterprise Scheduler invokes the callback operation
onJobConpl eti on() following ws-addressing where ESSWebservice captures the
caller's address in the incoming call. Clients should be capable of receiving the
callback at any arbitrary time in the future. Such a callback depends entirely upon the
time required to complete the job. This is similar to the Oracle Enterprise Scheduler
functionality for invoking a client's listener (that implements the Oracle Enterprise
Scheduler EventListener contract) upon job completion.

When you use get Conpl et i onSt at us() clients must include certain required web
service addressing headers (in particular the wsa: Messagel Dand wsa: Repl yTo
headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously
notify the job completion status be sent to the correct Repl yTo address. When you use
get Conpl eti onSt at us() from a BPEL process the SOA runtime automatically
adds the required headers. When using get Conpl et i onSt at us()

programmatically on the client side, using the web service proxies, the web service
client must set these addressing headers.

16.2.4 Restrictions When Using ESSWebservice

ESSWebservice does not support the following Oracle Enterprise Scheduler features:

® Ad hoc Request Submission: ESSWebservice does not support ad hoc job request
submission (ad hoc request submission is available using the EJB APIs). Therefore
any job that is submitted using the ESSWebservice must have its corresponding
definition, including a job type and job definition along with the schedule
definitions created as metadata objects in the associated proxy application. The web
service operation can then refer to such metadata objects using their identifier
arguments as specified in the WSDL.

¢ Query API: ESSWebservice does not expose the query APIs. Web service clients do
not need to obtain the query information for Oracle Enterprise Scheduler requests.
ESSWebservice web service clients do not provide generic monitoring and
managing functionality that would require the use of query APIs.

16-4 Developing Applications for Oracle Enterprise Scheduler

ESSWebservice WSDL File

16.2.5 ESSWebservice Implementation

The Oracle Enterprise Scheduler functionality is exposed as web a service using a
Service Endpoint Interface (SEI) annotated with the JAX-WS annotations. The web
service implementation of this SEI web service invokes the common Oracle Enterprise
Scheduler implementation layer. The ESSWebservice is exposed in Document/literal
wrapped mode for maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in a web
service directly. Such data types cannot be readily converted into corresponding XML
representation. Therefore, the Oracle Enterprise Scheduler web service layer defines
wrapper classes around these data types that are exposed in the ESSWebservice, and
visible in the WSDL. In general, the web service layer reuses the existing data types
where possible.

16.3 ESSWebservice WSDL File

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL
definition file from the web services page.

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL
definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservi ce?WsDL

For example,

http://systentl: 7001/ ess/ esswebser vi ce?\WSDL

Note that you cannot invoke web service operations by directly accessing the
ESSWebservice URL from a browser.

16.4 Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a
BPEL Process

This example demonstrates how to use the ESSWebService from a BPEL process; in the
BPEL process you use ESSWebService to submit a job request.

The use case demonstrates one way of using Oracle Enterprise Scheduler for BPEL and
SOA users. Experienced SOA users and designers may have other ideas for how to
work with Oracle Enterprise Scheduler using the web service.

Oracle JDeveloper is used to create an application and the projects within the
application that contain the code and support files for the application.

JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle [Developer.

To create the ESSWebService sample application, follow these steps:
1. Start Oracle JDeveloper.
2. Click the New Application button.

3. Inthe New Gallery - Items area select SOA Application.

Using the Oracle Enterprise Scheduler Web Service 16-5

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

4. Click OK.

5. Use the Name your application window to enter the name and location for the
new application and to specify the application template.

a. Inthe Application Name field, enter an application name. For this example,
enter ESsWebAppl i cati on.

b. In the Directory field, accept the default or specify a location for the
application to be created.

c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial
project of an application.

d. Click Next.
6. In the Name Your Project dialog, select SOA project options.

a. Inthe Project Name field, enter a project name or accept the default,
Proj ect 1.

b. On the Project Features tab, select SOA Suite.
c. Click Next.

7. In the Configure SOA Settings dialog, select Composite with BPEL Process and
click Finish.

8. Choose one of the two BPEL specifications as shown in Figure 16-1.

Figure 16-1 Choose a BPEL Specification

|rﬁ Create BPEL Process x|

BPEL Process ._"_l

A BPEL process is a service orchestration, based on the BPEL specification, used to ﬁ
describe/execute a business process {or large grained service), which is implemented as a
stateful service.

(%) BPEL 2.0 Specification| () BPEL 1.1 Specification

Mame: |BPELF‘rocessl |

Mamespace: |http:,’,’xmIns.oracle.com;AppIicationl;ProjectlfBPELProcessl |

Directory: |fscratch,fshai\term,ftest_jdev,,"jdeveloper,fmywork,fAppIicationlerojectlfSOA,fBPEL | Q

Template: |f-! Asynchronous BPEL Process "l 7]

Service Mame: |bpe|processl_client |

Expose as a SOAP service

Delivery: |a5ync.per5i5t 'l 2

Input: |{http:,’jxmIns.oracle.com,'Application1jProjectl,’EPELProcessl}process | Q

Qutput: |j}xmIns.oracle.com,’AppIicationl,’Projectl,’BPELProcessl}processRespon5e| Q

Help Ok Cancel

16-6 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

9. Select the service type from the Template dropdown menu as shown in Figure
16-2 and click OK.

Figure 16-2 Selecting the Service Type

y

Create BPEL Process

BPEL Process L:l

A BPEL process is a service orchestration, based on the BPEL specification, used to ﬁ

describefexecute a business process {or large grained service), which is implemented as a
stateful service.

(@) BPEL 2.0 Specification () BPEL 1.1 Specification

Mame: |BPELProcessl |

MNamespace: |http:,‘,‘xmIns.oracle.comfAppIin:ation2/Project1,’BPELProcessl |

Directaory: |,’scratchjshai\rermjtest_Jdev,’jdeveloper}mvwork,’AppIication2,’Project1/SDAjBPEL | Q®

Template:

a Asynchronous BPEL Process
+— Asynchronous BPEL Pro 5
= Synchronous BPEL Process
=& One Way BFEL Process

g0k Define Service Later

ﬂ Base on a WSDL

¥ Subscribe to Events

g frn 15 L s LiLalid T T 7 LLid T Ck

Qutput: |,’,’xmIns.oracle.com,'AppIication2}ProjectljEPELProcessl}processResponsel Ck

Service Mame:

Help (o].% Cancel

10. In the Editor pane (BPELPr ocess1. bpel), drag the Schedule Job component
from the Oracle Extensions section of the Components palette to the position

between the receiveInput and callBackClient components as shown in Figure
16-3.

Using the Oracle Enterprise Scheduler Web Service 16-7

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-3 Adding the Schedule Job Component

@ Start Page

| & Main Process

D{E Projectl

Partner Links

B

bpelprocessl_client

F %l

process/sequence/scope

| Design| Source History

ﬁga BPELProcess1.bpel

W& &~

B w- S

O

. Components

s T O
E@ [Ea] @ | sreL20
Partner e | M | 2 BPEL Constructs

+| Subprocesses
=l Oracle Extensions
3

=
Dehydrate Java
Embedding
@ S &
Phase Replay
receivelnput —
Schedule Translate
o - = Job
e = P
i . Transfarm
'
VLI EEE T 3 E
HQuery HELT
Transform Transform
callbackClient % lﬂ

o)

+| SOA Components
+| BPEL Services
+| Custom Activity Templates

Properties

Q, Find @

E schedule Job

zoom:| 100[Z] [CF General

Applic
Application Properties

11. Create a connection to the metadata server as shown in Figure 16-4.

a. Click the New button in the resource window.

b.

In the dropdown menu, select IDE Connecitons > SOA-MDS. In the Create

SOA-MDS Connection dialog, fill in the appropriate information about your

MDS server.

Note:

You can also create the connection by choosing File > New Gallery > General
> Connections > SOA-MDS Connections.

16-8 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-4 Creating a Connection to the Metadata Server
n{a Applications Places System %@Q@@

Oracle |JDeveloper 12c Development Build - Applicationl.jws : Projectl.]pr = o|x

Applications | @ | du BPELProcessl.bpel Resources - |
| Py L M S N X T T T
SPr. RIE- V- E- -QB @ New Catalog
BPEL
=0 Partner Links Partner Links L Import
igh BPELProcessi.bpel =] @) merresn
efres|
-] Events P O Ry
ADF Business Components REST Service...
= schemas ;
£ BPELProcessi xsd = Application Server...
= D testsuites = v EAM Connection
- [@] fileListxm = = Dartabase..
@[] Transformations b@ Eile System...
-3 wsdLs = recemveinpuy M
[C 5 13 LDAP
] Application Resources QEP Connection...
domacom. @ 7 =+ ©
\,‘b
+] Recent Files W UDDI Registry.
H bpelprocessi_client Seheduleloh URL
BPELPr... - | Thumbnail | - chedulejo WebDAY..
WEIL...
TYalw +7/X - =
aa BPELFrocessl.bpel =
B[] Partner Links p
B[] Variables callbackClient
[Correlation sets
~[7 Extensions
B[Impons
~ [0 Properties -
+[0 Propeny Aliases O = =
[Message Types Properties =
~-[Inline Subpracesses Q, Find @
B[] Activities —
BPEL2.0
ow Detailed Node Inforf : E e & |a
[Shom Detaled Hode 0forn | process/sequence/scope Zoom ®a e]
Source | BPEL| Design| Source Histary [T 1 »

@% Terminal 1 [VNC cenfig] O oracle D per 12c D pment ... :---

12. Right-click the Schedulejob1 component and select the Edit item. This invokes
the Edit Schedule Job dialog shown in Figure 16-5.

Figure 16-5 Editing Schedule Job

-

il Edit Schedule Job x

System Properties Skip Condition Targets Sources

Application: | |

Mame: [schedulejobl |
Description; | | By
o | | Q
sencaute | Q¢

st Time: | | B

Help Apply [QK] Cancel

13. Click the Job browse button to select the job definition through the MDS
connection. Figure 16-6 shows an example.

Using the Oracle Enterprise Scheduler Web Service 16-9

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-6 Selecting the Job Definition Through the MDS Connection

q{ Enterprise Scheduler Browser X

MDS Connection:

[ESS Metadata
SOA_DesignTimeRepository

=& oracle
@ (3 apps

MDSConnectionl hd

Help

Cancel

" Enterprise Scheduler Browser

MDS Connection: |MDSConnectionl

= ESS Metadata
=L oracle
(& apps
(2= ess
=& demopackage

: @ ob_essdemol

@ RemoteExecutableSyncEssSubRequ

s @ RemoteExecutableAsyncEbjobWith
[0 RemoteExecutableSyncEjbjobWithL
i @ RemoteE]EMetadataOperationjobDi
: EBtestComentHeIperManuaIlmport
@ LogginglLevelTestGetLoggerExpn

: @TestAsynchrnousWebServicejob
: @TestSvnchronousWebservicejob
@ testContentHelperBasicOutput

; @RemoteAsvncSubRequestjobDefn

Help OK

Cancel

14. If the Sys_effectiveApplication property is not defined in the job definition you
selected, you are prompted to provide it in Application field on the general tab. If
Sys_effectiveApplication property is defined in the selected job definition, it
appears in the Application field and cannot be edited. See Figure 16-7.

Figure 16-7 Defining the Sys_effectiveApplication Property (if not Already

Defined)

(D swnkage o projecit

| éh EPeLPracess.opel ®)
i as O - . 0¥ Ao O WY i ol

B MainPr o% AP

Edit Schedule Job

Applicaion: |

System Froperties | Skip Condition Targets Saurces
General

Application Properties

Hame. [

[schedulejobl. |

Description: |

C&

Mo application (5YS_effectiveApplication) was found. Make sure o specify an application.

[foracle apps ess /demopackage [Basiclavajob

ok

Help Apgly | 0K Cancel
process/sequence/scope znm- ———— Q|8
\M Source Histary
15. Add system properties:

a. Select the System Properties tab.

Edit Schedule Job

Skip Condition Targets Sources

Application Properties

System Properties
Ceneral

Application: [[SEITLYTY

Mame: [schedulejob1 |
Description: | | B
Job: |/oracle fapps/ess/demopackage /Basicjavajob] &
Schedule: | | Q &
Start Time: | | B
Help Apply oK Cancel

b. The Job Properties pane should be populated with system properties
obtained through the MDS connection from the job definition.

c. Use the Add button to add additional system properties in the User Defined
Properties pane.

16-10 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-8 Adding User Defined Properties

I Edit Schedule Job

x|

System Properties Skip Condition Targets Sources

Ceneral Application Properties

Job Properties

MName Type Walue
User Defined Properties EF R
Mam e Type Value

SYS_outputList

SYS_postProcess
SY5_preProcess
SYS_priarity

SYS_procedureMame
SYS_product
SYS_reprocessDelay

SYS_requestCategory
Help

Apply Ok Cancel

16. Add application properties:
a. Select the Application Properties tab.

b. The Job Properties pane should be populated with properties obtained
through the MDS connection from the job definition.

c. Use the Add button to add additional properties in the User Defined
Properties pane.

Using the Oracle Enterprise Scheduler Web Service 16-11

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-9 Adding Additional User Defined Properties

(] Edit Schedule Job

System Properties Skip Condition Targets Sources

GCeneral Application Properties

Job Properties

Marme Type Value
User Defined Properties 4= X
Mame Type Value

tppprop | ——

Help Apply Ok Cancel

17. Attach the WSDL URL.
a. Click the Project Editor tab (Figure 16-10).

b. Edit the ESSService component. Provide the Name, WSDL URL, Port Type
and other information (Figure 16-11).

16-12 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-10 The Project Editor Tab

|® Start Page | ﬂﬁ Projectl ‘gga BFELProcess1 bpel | [25]
P @ EAXANKDD B Projectl
Exposed Services Components External References

=
bpelprocessl_clie..

EssService
QOperations:

submitRequest
submitRecurring...
gerCom pletionSta...
getRequestState
getRequestDetail
getRequestExecu. ..

Operations:

process
processResponse

holdRequest
releaseRequest

Figure 16-11 The Update Reference Dialog

| T Update Reference X
SOAP
Web service is a service external to the SOA composite.
Name: |Ess§enrice |
WSDL URL: [/Application1 /Project1/SOA /WSDLs /ESSWebServiceAbstractwsdl|
Port Type: [ESS\N‘EbSErVi(E ']
Callback Port Type: [ESSWebServi(eCallback ']

|:| copy wsdl and its dependent artifacts into the project.

Transaction Participation: \WSDLDriven

Help oK Cancel

18. Add a security policy to the service.

a. Inthe Project Editor tab, right-click the Oracle Enterprise Scheduler web
service and select Configure SOA WS Policies > For Request to open the
Configure SOA WS Policies dialog as shown in Figure 16-12.

Using the Oracle Enterprise Scheduler Web Service 16-13

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-12 Opening the Configure SOA WS Policies

‘@ Start Page | n{t& Projectl | ﬁg. BPELProcess1.bpel | [22]
YPdTHAXVNLLI D Project
Exposed Services Components External References

=
bpelprocess1_clie...

Operations:
process

& y \
() gpELProc (3) b
EssService k

Operations E

submitRequest
submitRecurring...
getCompletionSta...
getRequestState
& edit

IiEI Rename...

* Delete

+ validate

@ For Request

ﬂ For Callback... | Protect Sensitive Data »

g9 Configure Sensors...

TODO Tasks

Design Source History

b. Inthe Security area of the Configure SOA WS Policies, click the Add button
to attach the desired security policies. For example, oracle/
wss_ht t p_t oken_cl i ent _pol i cy as shown in Figure 16-13 and Figure
16-14. If you are creating an asynchronous BPEL process you must also use
this process to attach a service policy to the callback.

Figure 16-13 The Configure SOA WS Policies Dialog

[Configure SOA WS Policies %

SOA Client WS Policies: EssService - Binding WS

Port: SchedulerServicelmplPort

% %%

MTOM X BB
\ |
Reliability % x| @ G
|

Addressing + x| L—.; EB

Security @ x| @ G

Management % / x| @ EB

Help Cancel

16-14 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-14 The Select Security Policies Dialog

7

x|

Select Security Policies

Select Security policies from the list:

oracle/no_authentication_client_policy
oraclef/no_messageprotection_client_policy

oracle/sts_trust_config_client_policy

oraclefwss_http_token_over_ssl_client_policy

oraclefwss_saml_token_bearer_client_policy
oracle/wss_sam|_token_bearer_over_ssl_client_policy
oracle fwss_sam|_token_over_ssl_client_policy

oraclefwss_sam|20_token_bearer_over_ssl_client_policy

eeeeceeceeee

oraclefwss_sam|20_token_over_ssl_client_policy

Help oK

m
o
3
a
o

19. Add the Invoke activity for the get Conpl et i onSt at us operation.

a.

Click the Design tab to switch the display from the source view back to the
design view.

From the BPEL Constructs section of the Component Palette, drag and drop

an Invoke component between Schedulejob1 and callbackClient as shown
in Figure 16-15.

Figure 16-15 Drag and Drop an Invoke Component Between Schedulejobl
and callbackClient

Oracle JDeveloper 12c Development Build - myTestApplication. jws : myTestProject. jpr

File Edit View Application Refactor Search MNavigate Build Run Team Tools Window Help
CHE B 90 O O- & HBS > & Q- searcr
Applications ..luslﬁgn BPELProcessl.bpel "B{E myTestProject | & BPELProcess1.bpel (1] . Compon Resources
[l myTestApplication = | | | [& Wain Frocess @ A0 [@ F-E-FIR 2D s
AP Bl @ V- E- E@E‘@ BPEL 2.0
 BPEL - ! "~ |m| - EPEL Constructs
i BPELProcessl.bpel E
7 Events N ieb Service
") Schemas @
i BPELProcesslxsd raceivelnput Bl L
) testsuites
i [eo] fileList.xmi w8 2
] Transformations T Receive Reply
"] wsbLs G | &) Subprocesses
| Oracle Extensions
| Application Resources Schedulejobl +/ SOA Components
=+l Data Cont.. @ 7 35 - | 4 BPEL Services
| Recent Files bpelprocessl_client < PR S — +| Custom Activity Templates
S 1
H [Emd !
BPELPr.. Thumbnail | }'4‘ B K Properties
i
Invoke 1] = ind
T@a® % L kel | (T @
o BPELProcessl.bpel @ invoke
[Partner Links v
: General
B Wariables &) Name:
i s Process Correlations
Correlation Sets callbackClient Froperties Conversatiol
Extensions JN—
[imports
3 Properties Annotations
[Property Aliases Headers
a Message Types O Documentation Interactic
B Inline Subprocesses
B3 & eriviries EL) ERElED Partner Li
Targets
[_| show Detailed Node Inform... | process/sequence /invoke[1] zoom:| 105[H m————— @ A GTES Port Type
Anaratior
Source | BPEL,

Design| Source History

Right-click the Invokel button to open the Edit Invoke dialog. Rename the
component getStatusAsync.

Drag the arrow from the getStatusAsync component to the EssService

component in the Partner Links area. The Edit Invoke dialog opens as shown
in Figure 16-16.

Using the Oracle Enterprise Scheduler Web Service 16-15

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

e. From the Edit Invoke dialog Operation dropdown, select
getCompletionStatus as shown in Figure 16-16.

f. Create an input variable named x and click OK to close the Edit Invoke
dialog.

Figure 16-16 The Edit Invoke Dialog
.E_. Applications Places System %@Q@ [

O Oracle JD per 12c Dev P Build - App] P jws : Projob! P Jpr : /scratch/shaiverm/jd E]E]@
Eile Edit Wiew Application Refagtor Search Navigate Build Bun Team Tools Window Help
cda @ 9@ @ ©- EoR R Q- search
Applicatio.. @ startrage o ool Edit Invoke b C Re. |
[= Applob.> | = " @ |
= |M Headers Documentation Skip Condition Targets Sources | O
@ v V' =& General Carrelations Properties Assertions Annotations W BPEL2.0
ProjobComple =1 BPEL Constructs
Mame: [gerstatusasyne | &
Conversation ID: | | - Invoke
g & .) | Subprocesses
bpelprocessl] [invake as Detall [=l Oracle Extensio.
Interaction Type: |} Partner Link)
Renlay
Partner Link: [EssService |
=+ Application R. =a =+ SOA Campone..
EallEatla Port Type: |5 Esswebservice = :
. 8T E- -+ BPEL Services
+| Recent Files Operation Gy submitRequest hd | Custom Activit...
2 Input Ouf T SUbmitRequest 2
B Th \ T submitRecurringReguest Properties
(@YU = getCompletionStatus & e =
7T @ . T getRequestState Q Find @
& BPELProcesslEk Input: @ getRequestDetail BN
£ Partner Lint T getRequestExecutionContext
(53 variables Ty holdRequest
& Process Ty releaseRequest
[Correlation
[Extensions
L3 imparts
L) Properties
L) Property Al
[Message Ty = &) e
~[J Inline subpi Help Apply oK Cancel
B A tiities Design| Source Histo
Build - Issues
[Show Detaled .. =
BdAd@o | Lo =
Source | BPEL a Live Issues: BPELProcess1.bpel | Build = =
[5:17:55 AM] Successful c. (2]
[B Terminal][3 vNC config][O Oracle JDeveloper 12¢c Development ...]l:l

g. Dragand drop an Assign component from the BPEL Construct area in the
Component Palette to between the ScheduleJob1 and the getStatusAsync
component.

h. Double-click the Assign component to open the Edit Assign dialog and map
the ScheduleJob1 output parameter r equest | D to the getStatusAsync input
parameter r equest | Das shown in Figure 16-17. Click OK.

16-16 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-17 Use the Edit Assign Dialog to Map the ScheduleJobl Output
parameter requestID to the getStatusAsync Input Parameter requestiD

i

i Edit Assign

General Copy Rules Annotations Documentation Skip Condition Targets Sources

Insert Mew Rule After =

&a BPELProcessl bpel
B Partner Links
B3 variables
B ﬁgi Process
=3 variables
H ﬁ.‘) inputVariable client:BPELProcess1RequestMessac
() outputvariable client BPELFrocess1Responzebles
P xnsLigetCompletionstatusinput
=-[E] Scope - Schedulejobl
-5 variables
(&) Essinput nsl submitRequestinput
=-(¥) EssOutput nslsubmitRequestOutput
=% parameters
=-4¥ nslsubmitRequestResponse submitk
-4 requestid long

inputyariable clientEPELProcessIRequestMessage ﬂ)
outputyariable clientBPELFrocess1Responselessage (6
x nsl:getCompletionstatusinput Q-2

: parameters [E]-=2
nsligetCompletionStatus getCompletionSiatus €92 H
nslrequestld lang €3 - H
Scope - Schedulejobl [B]-2

B Q=
BPELProcess1 bpel gg
Partrer Links (-
variables [(5-=
Process ga =l
Wariables =

wariables (-

+R e

Bl $EssOutput.parametel

EL $x.parameters/nslirequestid

Help

[oK] Cancel

20. Receive job completion status.

a. From the BPEL Constructs section of the Component Palette, drag and drop
a Receive component between the getStatusAsync and the callbackClient

components as shown in Figure 16-18.

Figure 16-18 Drag and Drop a Receive Component Between the

getStatusAsync and the callbackClient Components

ProjobCompletionStatus. jpr

Partner Links

raceivelnput

>
4
- EssService

Schedulelobl

!
= bpelprocessi_client getStatusAsync

P S———

)
R
D@ |
) . 1
& v el)
v
(&

callbackClient

(0]

BPEL 2.0

=| BPEL Constructs

process/sequence/receive[2]

Design| Source History

s
0
Rep
Basic Activities
AR . P
g > »
+| Subprocesses
| Oracle Extensions
4/ S0A Components
-+ BPEL Services
| Custom Activity Te
Properties =
Q Find @
B receive
General
am
Carrelations
Properties Con'
Annotations
Assertions
Headers !
Timeout ra
Documentation
Skip Condition o
Targets O
e »

Using the Oracle Enterprise Scheduler Web Service 16-17

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from

a BPEL Process

Attach the Receivel component to ESSService in Partner Links area by
dragging the arrow from the Receivel component to the ESSService
component. This action also opens the Edit Receive dialog. Rename the
Receivel component to OnJobCompletion as shown in Figure 16-19.

Figure 16-19 Rename the Receivel component to OnJobCompletion
.g. Applications Places System %@Q@

o

0 Oracle JD: per 12c D

Build - AppjobC

jws : ProjobCompletionStatus. jpr : /scratch/shaiverm/jd Q@@

File Edit View Application Refactor Search Navigate Build Run Team Tools Window Help

CcHa @ 9@ Q@ @~ dh B B i Q- search
Applicatio icy &% BPELProcessl.bpel oS ProjobCompletionStatus & BPELProcessibpel &y . Compon Resources
B ®- 7~ E- W EPEL20
= Documentation | Skip Condition | Targets | Sources
/5] ProjobComple =
Annotations Assertions Headers Timeout = BPEL Constructs
Ceneral Correlations Properties Web Service
{4)
rf)g. Name: |Receive1 | @ o N
2 Invoke Partner Link
bpelpracess1_cien =
Conversation D! iy
' | G w ®
[7] Create Instance Receive Reply
Interaction Type: |3 Partner Link~ | Subpruces“s.
—— + Oracle Extensions
< Application R Partner Link [Essservice | Q I SOA Components
4.0 T E- -+ BPEL Services
-+ Recent Files Port Type: | EsswebserviceCaliback - -+ Custom Activity Tem plates
Operation: | @ onjobCompletion -
B. Th.. Properties
() Arguments Mapping (3) Variable @ i @
= @ ful ®) (v ind 2
7@m . Qin @
------ I Extensions variable: | | Q = P
3 imports g
[Properties Auto-Create Variable
3 properry a1
[Message Ty
------ 2 Inline Subp
=2 Activities
B3 sequen
Lo rece
Help Apply ok Cancel
B sch & k2 e
4 inve
-5 A\ 1~ | Design| Source History
Build - Issues
[] show Detailed ——
Qo Ao@o | L Q
Source | BPEL & Live Issues: BPELProcess1.bpel | Build = -
[5:17:55 AM] Successful compilation: 0 errors, 0 warnings. [a]g
[B Terminal l[O vNC config] O Oracle |Developer 12c Development ... [0]

Select the OnJobCompletion operation and add a variable named y as shown
in Figure 16-19. Click OK to close the Edit Receive dialog.

Drag and drop an Assign component from the BPEL Construct area in the
Component Palette to between the onJobCompletion component and the
callbackClient component.

Double-click the Assign component to open the Edit Assign dialog and map
the onJobCompletion component's output parameter r esul t Message to
the callbackClient component's input parameter r esul t variable as shown

in Figure 16-20. Click OK.

16-18 Developing Applications for Oracle Enterprise Scheduler

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-20 Map the onJobCompletion Component's Output Parameter
resultMessage to the callbackClient Component's input Parameter result

Variable

7 Edit Assign

Documentation Skip Condition Targets Sources

Ceneral Copy Rules Annotations
Bk O

Insert New Rule After ¥
BPELProcessL.bpel g
Partner Links [

iPELProcessi.bpel
7 Fartner Links
3 variables Wariables (33
Sy Process Pracess gy &
B3 varlables Wariables =]

0 inputvariable client:BPELProcess1Requesthiiessage inputWariable client:BPELProcess1Requesibessage ()

@) outputvariable client BPELProcessIResponseMessage outputvariable clien:EPELProcessLResponseMessage (8)-2

) x nslgetCompletionstatusinput payload &

' client:processResponse <annrym ol s> §@-E

clientresult string €%
x nil:getCompletionstatusinput ()
y nslionjobCompletioninput ()

268 v nslionjobCompletionlnput
& parameters
=-@® n:lionjebCompletion onlobCompletion
4% requestld long
fez] state state
4P resultMessage string

+X4D

Apply 0K Cancel

Help

Using the Oracle Enterprise Scheduler Web Service 16-19

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16-20 Developing Applications for Oracle Enterprise Scheduler

17

Defining and Using Job Sets

This chapter describes how to define and submit an Oracle Enterprise Scheduler job
set, a collection of job definitions that can be grouped together to run as a single unit.

This chapter includes the following sections:

¢ Introduction to Defining and Using Job Sets
¢ Defining Job Sets

® Cross Application Job Sets

* Supporting Input and Output Forwarding in Job Sets

17.1 Introduction to Defining and Using Job Sets

Oracle Enterprise Scheduler provides for collections of job definitions that can be
grouped together to run as a single unit called a job set. A job set may be nested; thus a
job set may contain a collection of job definitions or one or more child job sets. Each
job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle
Enterprise Scheduler runs parallel job set steps together, in parallel. When a serial job
set runs, Oracle Enterprise Scheduler runs the steps one after another in a specific
sequence. Using a serial job set Oracle Enterprise Scheduler supports conditional
branching between steps based on the execution status of a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to
include a serial job set. Job sets that include a mix of parallel and serial job sets are
called complex job sets. For example, when a serial job set contains a child parallel job
set, the serial job set runs serially until it reaches the child parallel job set. Then, all the
job definitions or job set definitions in the child parallel job set run in parallel. Upon
completion of the child parallel job set the serial job set continues running its
remaining steps serially. Nested parallel job sets behave the same as non-nested
parallel job sets.

For every step in a job set Oracle Enterprise Scheduler supports a property

(SYS_sel ect St at e) that provides runtime flexibility for how a particular step affects
the entire job set. This property is defined on a per step basis. Table 17-1 describes
SYS_selectState.

Defining and Using Job Sets 17-1

Defining Job Sets

Table 17-1 Job Set Step Property

Property Description

SYS_sel ect State Specifies whether the result state of a job set step should be included when
determining the state of the job set. Specifies whether the execution state of the step
affects the eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular
job set step from affecting the state of the job set, set SELECT_STATE to f al se for that
step. To allow the state of a job set step to affect the overall state of the job set, set
SELECT_STATE to t r ue for that step.

Oracle Enterprise Scheduler provides the capability for a job set to execute across
multiple applications. A job set runs in its hosting application and by default all job set
steps also run in this application.

17.2 Defining Job Sets

The contents of a job set are specified when you define the job set steps. For example,
for a serial job set you specify the name and the execution mode and then you add the
job set steps to define the sequence of job definitions or child job sets that run when
the job set runs.

You can define a job set in Oracle JDeveloper by specifying the following:
¢ The name, package, and description for the job set

¢ The application defined properties for the job set

¢ The system properties for the job set

® Specifying the job set steps

17.2.1 How to Define a Job Set

An Oracle Enterprise Scheduler job set is defined by a name, a package, a job set
execution mode, step definitions, application defined properties, and system
properties.

To create a job set:
1. InOracle JDeveloper, right-click in the project to view the New Gallery.

2. Inthe All Technologies tab, under Categories, expand Business Tier and select
Enterprise Scheduler Metadata.

3. Under Items, select Job Set and click OK. This displays the Create Job Set
window.

4. In the Create Job Set window, specify the following;:
a. In the Name field, enter a name for the job set or accept the default name.
b. In the Package field, enter a package name for the job set.

c. The Location field displays the full path of the directory where the job set file
is stored.

17-2 Developing Applications for Oracle Enterprise Scheduler

Defining Job Sets

d. Click OK. This creates the job set and displays the Job Set Definition page, as
shown in Figure 17-1.

Figure 17-1 Job Set Editor with Serial Job Set

@Example]ohﬁet.nml ll E]
[10b Set

Marme: ExampleJobSet

Display Manne: |ExampIeJobSet

Diescription:

[Publish

= ‘@ Job Set Steps P B Wl

() Parallel (%) Serial

Available Steps

Application Defined Properties / “i‘ ®
@ System Properties R
E= Access Control / =ﬂ- b’

&) Localization

Jobset Editor IR

In the Job Set Editor pane, in the Description field enter a description for the job
set.

In the Job Set Steps area, select the Parallel or Serial radio button to specify
parallel or serial execution mode for the job set.

In the Job Set Editor pane add the job set steps. For more information on adding
job set steps, see How to Define Serial Job Set Steps or How to Define Parallel Job
Set Steps.

In the Application Defined Properties area, click Add to add properties associated
with the job set. You use these to represent an application-specific or step-specific
application defined property for the job set. For more information on using
application defined properties, see Introduction to Using Parameters and System
Properties. For more information, see What You Need to Know About Job Set
Level Parameter Materialization.

Defining and Using Job Sets 17-3

Defining Job Sets

9. In the System Properties area, click Add to add system properties associated with
the job set. For more information on using system properties, see Using System
Properties.

10. In the Access Control area, click Add to modify the list of roles that have access to
this metadata, along with their access levels. For more information on defining
access, see Oracle Enterprise Scheduler Security .

11. In the Localization area, enter the following information for localizing this job set:

¢ Resource Bundle Base Name -- The base name for the resource bundle that
specifies internationalized values.

¢ Display Name Resource Key -- The resource key that specifies the display
name value in the resource bundle.

* Description Resource Key -- The resource key that specifies the description text
in the resource bundle.

12. Save the job set.

17.2.2 How to Define Serial Job Set Steps

To define serial job set steps you select the serial execution mode and then add job set
steps. Job set steps are created from the available job definitions and job sets defined in
the current project. You define serial job set steps when you specify a step ID and a job
definition child job set definition associated with the step. You also define links from a
job set step terminal states to specify the next step. Table 17-2 lists the possible
terminal states that you can specify using JDeveloper.

Table 17-2 Job Set Serial Execution Step Terminal States

Terminal State Description

SUCCEEDED Oracle JDeveloper indicates this state with a check mark button. This path represents a child
step or child job set was successfully processed by the system.

WARNI NG Oracle JDeveloper indicates this step with a warning button. A child step or child job set
resulted in a warning.

ERRCOR Oracle JDeveloper indicates this step with an error button. Some aspect of the request to run
the child step or child job set processing resulted in an error.

To add serial job set steps:

1. First, define the appropriate job definitions or job sets and define the parent job set
to contain the steps.

2. In the Job Set Editor pane, in the Job Set Steps area, select Serial execution mode.
3. Click the Add button to add a job set step. This displays the Add Step window.
4. In the Step ID field, enter the step ID. For example, enter st ep1.

5. In the Job field, from the dropdown list select a job definition or a job set to
associate with the step. For example, select Job1.

17-4 Developing Applications for Oracle Enterprise Scheduler

Defining Job Sets

6. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

7. If you need to define step level system properties, then select the System Properties
tab and add job set step system properties for the step.

8. Select a destination for the step. The step can be added as part of the job set by
selecting Insert into main diagram. To make the step available for use in another
step, for either error or warning states, select Add to list of available steps.

9. Click OK, this adds the job set step, as shown in Figure 17-2.

Figure 17-2 Job Set with a Step Added

(B ExampleJobSet.xml * |

3 3ob Set

Marne: ExamplzJobSet

Display Mame: |ExampleJobSet

Descripkion:

[] Publish

= “@* Job Set Steps AR

(CParallel (3) Serial

Available Steps
| Step_error

| Skep_warning

@ |Step_error b |
Stepl

|Step_warning bt |

l::

10. From the dropdown list next to the error icon, select Stop or select the step for the
ERROR terminal state for the step. For example, from the dropdown list select
Step_error (Step_error must be defined).

11. From the dropdown list next to the warning icon, select Stop or select the step for
the WARNI NG terminal state for the step. For example, from the dropdown list select
St ep_war ni ng (Step_warning must be defined).

12.Click the Add button and add additional steps as needed.

13.Click OK, as shown in Figure 17-3.

Defining and Using Job Sets 17-5

1«

Defining Job Sets

Figure 17-3 Job Set with Two Steps Added

@Example]ﬂbSet.xnﬂ x I

i Job Set

Tame: ExampleJobset

Display Marme: |E><amp|eJobSet

Descripkion:

[Publish

= @JthetSteps / + Rav

() Parallel () Serial

Available Steps

O | |Step_error

:Step_warning
@ |Step_err0r "|
Stepl
kY |Step_warning b |
L4
@ |Step_err0r "|
Step2
kY |Step_warning b |
L4

®)

17.2.3 How to Define Parallel Job Set Steps

You can add parallel job set steps to a job set.

To add parallel job set steps:

1. First, define the appropriate job definitions and job set definitions and the parent
job set.

2. In the Job Set Editor, select the Parallel execution mode.

3. Click the Add button to add a job set step to the job set.
The Add Step window displays.

4. Inthe Job field, select a job definition or a job set.

5. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

6. If you need to define step level system properties, then select the System Properties
tab and add job set step system properties for the step.

7. Click OK, this adds the job set step.

17-6 Developing Applications for Oracle Enterprise Scheduler

Defining Job Sets

8. Click the Add button.

9. In the Add Step dialog, select the job set or job definition to use for next job in the
parallel job set.

10. Click OK. The job set step displays in the job set, as shown in Figure 17-4.

Figure 17-4 Adding Job Set Steps to a Parallel Job Set

@Example]ﬂbSet.xml x | E]

[1ob Set

Tame: ExampleJobSet

Display Mame: |ExampIeJ0bSet

Description:

[Publish
= @JthetSteps / + R o v
() Parallel () Serial

Step2 Stepl

17.2.4 What Happens When You Define a Job Set

When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML
file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together. A
parallel job set only contains steps, and does not contain links between steps, as all the

steps execute together and do not depend on each other or upon the order in which
each step runs.

When you define a job set Oracle JDeveloper creates an XML document that conforms
to the Oracle Enterprise Scheduler job step schema.

17.2.5 What You Need to Know About Serial Job Sets

When you define a serial job set, the associated XML document includes job set steps

and links. Oracle Enterprise Scheduler enforces the following limitations for serial job
set definitions:

¢ To prevent looping within a job set, job set definitions should not contain circular

execution paths. A circular execution path, or a loop, is defined at the job set level
as follows: loop is a path from one job set step along the links of any number of

Defining and Using Job Sets 17-7

Defining Job Sets

other steps back to the same job set step. For example, in a job set with a flow from
Job_A, to Job_B, to Job_Cdefined, Oracle Enterprise Scheduler does not allow
you to define an execution path from Job_B or Job_Cback to Job_A. For example
you could a create circular execution path, or a loop, if one of the links in a job set
step for success, error, or warning links back to the same job set step. Thus, each job
set step can link to any of the available job definitions or job sets, or they could all
use the same job definition or job set as a link for the success, error and warning
case. There is only a possible loop based on the path through the job set steps, as
identified by the job set step ID. Oracle Enterprise Scheduler validates job sets at
submission time to try to prevent job set step level looping. Also, Oracle
JDeveloper does not allow you to create a job set containing a job set step level
loop.

* To prevent looping within a job set, job set definitions should not contain self-
referencing execution paths. For example, in a job set with Job_B defined, Oracle
Enterprise Scheduler does not allow you to define an execution path from Job_B to
Job_Bitself if Job_B ends up with a terminal state of ERROR However using the
RETRI ES property available for a job definition or a job set, you can have multiple
executions up to the configured RETRI ES number.

* When there is no job set link defined for a terminal state of a step, it implies that the
job set should stop if the step ends with the unspecified terminal state. For example
if there is no link defined for a step Job_D for the state WARNI NG, and if the step
Job_Dends up with the state of WARNI NG, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets,
and multiple steps may use the same job definition or job set.

17.2.6 What You Need to Know About Job Set Application Defined Properties and
System Properties

There are cases where job set application defined properties or system properties may
conflict with application defined properties or system properties set either in metadata
or when a job request is submitted. For more information on how job set application
defined properties and system properties are handled, see Using Parameters with the
Metadata Service and Using Parameters with the Runtime Service.

17.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

At runtime, the individual steps in a job set can end up with different terminal states,
as indicated in Table 17-2. When a job set step is a job set, the job set step also ends
with one of these terminal states. Oracle Enterprise Scheduler provides a priority
hierarchy for the terminal states of job set steps. This means that when there are
multiple steps in a job set, the job set terminal state is applied the terminal state of the
step with the highest priority terminal state. Thus, the highest priority terminal state of
the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing within
the system. A job set always follows the basic rule of transitioning to a terminal state
based on the terminal states of its child requests, only after the completion of all child
requests. As a rule, the job set transitions to one of the computed terminal states only
after all child requests have finished and transitioned to terminal states. For example,
if a given job set is actually a step within another job set, then the way in which the
state of the inner job set request is computed affects the conditional execution within
the outer job set.

17-8 Developing Applications for Oracle Enterprise Scheduler

Defining Job Sets

Table 17-3 shows the possible job set terminal states with the level indicated in the

Priority column.

Table 17-3 Job Set Terminal State Transitions

Terminal State Description Priority
ERROR If any step in a job set finishes with the terminal state of ERROR, the entire The ERRCR state
job set is marked with the terminal state of ERRORno matter what the state has the highest
of the other steps. priority.
For serial job sets, if one step goes to ERROR, subsequent steps do not
execute. For parallel job sets, all steps begin at the same time, and the job set
state is not determined until the job set steps reach a terminal state.
WARNI NG If any step in a job set ends up with the terminal state of WARNI NG, and Lower than
there is no step with the terminal state of ERROR then the job set is marked =~ ERROR
with the terminal state WARNI NG When the terminal state is WARNI NG, post
processing begins.
EXPI RED The job set transitions to EXPl RED state if at least one of the child requests ~ Lower than
expires while there is no step that ends with the terminal state of ERRORor ERRORand
VWARNI NG WARNI NG
CANCELLED Based on the actual outcome of a cancellation attempt, the job set can Lower than
transition to CANCELLED if at least one child request successfully processes ~ERROR, WARNI NG,
the cancellation attempt and transitions to CANCELLED state. The and EXPI RED
cancellation might have been requested on the entire job set or just a
specific child request.
Further the transition to CANCELLED follows the priorities of terminal
states. Therefore the job set transitions to CANCELLED terminal state only if
there is no step that ends with the state of ERROR, WARNI NG, or EXPI RED
and there is at least one step with terminal state of CANCELLED.
When a job set is canceled, steps that have not been added or run are
considered to be CANCELLED for the purpose of final state.
SUCCEEDED The job set is considered as SUCCEEDED if and only if all child requests The SUCCEEDED

completed with the terminal state of SUCCEEDED.

state has the
lowest priority
among all
terminal states

Table 17-4 lists additional possible states for a job set:

Table 17-4 Possible Job Set Runtime States
- - - - -]

State Description

VAT This is the initial state of the submitted job set request. After the job set request
transitions to RUNNI NGstate, however, all generated child requests transition
directly to READY state rather than WAI T state.

READY Job sets go from WAI T to READY to RUNNI NG This is true for all job set steps,
whether the step is a job definition or nested job set.

RUNNI NG The submitted job set transitions from WAI T to READY to RUNNI NG Nested job sets

start in READY and transition to RUNNI NG

Defining and Using Job Sets 17-9

Cross Application Job Sets

Table 17-4 (Cont.) Possible Job Set Runtime States
. __|

State Description

CANCELLI NG A job set transitions to CANCELLI NGwhen the user requests a cancellation for the
entire job set. This can be done by calling cancel Request () with the request ID of
the parent request representing the job set. Passing the parent request ID indicates
that the user wants to cancel entire job set irrespective of its current, non-terminal,
state and the states of its child requests.

In such cases, a cancellation is attempted on all child requests that are still active and
have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the
job set, there won't be any state change for the parent request and only the particular
child request transitions to CANCELLI NGif possible.

If the cancel happens during post-processing, the state is set to WARNI NGrather than
CANCELLED. If the job set finishes before the cancel is issued, the job set can have
state SUCCEEDED.

COVPLETED This state indicates that the job set or job set step has finished executing and post-
processing begins.

BLOCKED The BLOCKED state is not a terminal state. However any request can remain in a
BLOCKED state for a long period until the blocking condition is eliminated (such as
incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps
either complete or may be running. The job set itself, however, remains in a

RUNNI NGstate. Eventually if all steps in the job set complete except the ones that are
in the BLOCKED state, the job set cannot continue further until the blocking step is
ready to run. When the blocked step unblocks and completes, the job set can
proceed. After the steps complete, the job set eventually goes to the appropriate
terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In such
cases, all previous steps are complete and the job set cannot continue until the
blocked step executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further,
while some steps are blocked, other steps can still continue to run.

HOLD The HOLD state is very similar to the BLOCKED state. Following the same rules for the
BLOCKED state, a job set cannot continue running while a step is in HOLD state. A
serial job set cannot continue if the current step in the execution flow is stuck at HOLD
state. In the case of a parallel job set, if at least one step is stuck in HOLD state while

all other steps have completed, the job set can complete when the step is no longer in
HOLD state.

17.3 Cross Application Job Sets

Oracle Enterprise Scheduler provides the capability for a job or a job set to execute
across multiple applications.

* Job set FIN has three steps, two of which are defined to execute in different
applications.

® Job set FIN is submitted to the GL application.

¢ Step 1 has the EFFECTI VE_APPLI CATI ONsystem property set to ODI, so Step 1
executes in the ODI application.

17-10 Developing Applications for Oracle Enterprise Scheduler

Cross Application Job Sets

* Step 2 does not have an effective application set, so it executes in the GL
application.

* Step 3 has the EFFECTI VE_APPLI CATI ON system property set to INV, so Step 3
executes in the INV application.

Figure 17-5 Cross Application Job Set Steps

Jobset FIN Definition Oracle Weblogic Server

Stepi Submit Jobset FIN
EFFECTIVE_APPLICATION to GL App
="0DI"

GL ool INV

| FIN.Step2 | FIN.Step1 FIN.Step3

Step2

‘ Oracle Enterprise Scheduler
Step3

EFFECTIVE_APPLICATION
="INV"

17.3.1 Overview of Cross Application Job Sets

A job set runs in its hosting application and by default, all job set steps also run in this
application. The system property SYS_ef f ecti veAppl i cat i on should be defined
on the job definition or job set (rather than the job set step). For a nested job set that
defines SYS_ef f ecti veAppl i cati on, the application applies to any child requests
of that nested job set. If it is a nested job set, the jobs in the nested job set execute in the
effective application. When SYS_ef f ect i veAppl i cat i on is defined for a job, the
request for the job set and any child requests of the job set are associated with the
effective application, meaning the APPLI CATI ONsystem property for those requests is
set to the effective application.

The SYS_ef f ecti veAppl i cati on system property may only be defined in
metadata, specifically job set, job set step, job type, and job. The property
SYS_effectiveApplicati on isnot supported in the request parameters. The
effective application must be in the same cluster as the hosting application, or an error
results. If a submitted job set defines the effective application, that value must be the
same as the hosting application, or the job set submission is rejected.

For a job set that executes across multiple applications, querying for requests by
application is not sufficient to retrieve all children. Oracle Enterprise Scheduler
supports absolute parent ID as a query field, making it possible to query for all
requests in a job set regardless of the application. The absolute parent ID is the request
ID of the job set that was submitted to the hosting application.

17.3.2 Requirements for Cross Application Job Sets

Oracle Enterprise Scheduler supports cross-application job set subject to the following
requirements:

1. All applications for a given job set must be deployed in the same cluster.
2. All applications in the job set must share the same enterprise security.

3. All request metadata must be accessible from the application the job set is
submitted to, referred to as the hosting application. All metadata for the request
are persisted to the runtime store for the hosting application. The persisted
metadata include all metadata used by the submitted job set and any nested job
set.

Defining and Using Job Sets 17-11

Supporting Input and Output Forwarding in Job Sets

4. Metadata for subrequests must be accessible from the application that submits the
subrequest, unless the metadata used by the subrequest were already persisted to
the runtime store at job set submission time.

17.4 Supporting Input and Output Forwarding in Job Sets

Sometimes a step in a job set requires input from the previous step in the job set.
Oracle Enterprise Scheduler uses two system properties SYS_i nput Li st and
SYS_out put Li st to facilitate forwarding the output from one step to the input of the
next step.

When a job produces information, such as a list of output files, that must be passed on
to the next step in a job set, the job adds the information to the SYS_out put Li st
property. Upon completion of the job request execution, Oracle Enterprise Scheduler
forwards the SYS_out put Li st property of the request so that it becomes the

SYS_i nput Li st property of the next step before it executes. The next step takes as its
input the output of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduler supports
forwarding with nested job sets as well. For a serial job set, Oracle Enterprise
Scheduler defines the output of the job set as the output of the last step of the job set,
meaning that only the SYS_out put Li st property of the last step is forwarded to the
next step. Similarly, the input to a serial job set is forwarded only to the first step of the
job set; that is, only the first step of a serial job set has the SYS_i nput Li st property
set to the value of the SYS_out put Li st property of the previous step.

For a parallel job set, Oracle Enterprise Scheduler specifies that the output of the job
set is the concatenation of the SYS_out put Li st property of every job in the job set,
separated by a delimiter (with no order guaranteed). The input to a parallel job set is
forwarded to every job in the job set, meaning that every job in the parallel job set has
the same | NPUT_LI ST property. The system property QUTPUT_LI ST_DELI M TER
specifies the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, fi | el. t xt
and fil e2. t xt. The system property SYS_out put Li st for that job set has the
valuesfil el. txt; fil e2.txt,assuming the value of OUTPUT_LI| ST_DELI M TER
is a semi-colon. The concatenated list of output files enables the next job step in the job
set to access output files generated by previous steps within the job set.

The | nput Fi | e class provides access to files as input to a job definition. There is
currently no mechanism for accepting a file as an input to a job request.

Except for forwarding the value of the SYS_out put Li st property of a step to the
value of the SYS_i nput Li st property of the next step, Oracle Enterprise Scheduler
treats the two properties like any other system properties. Oracle Enterprise Scheduler
does not define the format for the value of the properties (except for the semicolon
delimiter in case of parallel job set). It is the responsibility of the job to define the
syntax and semantics for the properties; for example using a fully qualified name or
relative path name and a comma or space as a delimiter.

17-12 Developing Applications for Oracle Enterprise Scheduler

18

Defining and Using a Job Incompatibility

This chapter describes how to use an Oracle Enterprise Scheduler job incompatibility,
with which you can specify job requests that cannot run together.

This chapter includes the following sections:
¢ Introduction to Using a Job Incompatibility
¢ Defining Incompatibility with Oracle JDeveloper

¢ What Happens at Runtime to Handle Job Incompatibility

For information about how to create and submit job requests see Creating and Using
PL/SQL Jobs, and Creating and Using Process Jobs . For more information on using
job sets, see Defining and Using Job Sets .

Note:

To simplify the discussion we refer only to job definitions in this
incompatibility chapter, but in all cases this discussion applies to both job
definitions and job sets.

18.1 Introduction to Using a Job Incompatibility
A given incompatibility specifies either a global incompatibility or a domain,
property-based, incompatibility. Oracle Enterprise Scheduler supports incompatibility
between job definitions or job sets based on an incompatibility definition as
represented by the or acl e. as. schedul er. | nconpati bi | i ty Java class. The
I nconmpati bi | i t yType enum specifies the valid incompatibility types.

* Domain-Specific (DOVAI N): where one or more job definitions are marked as
incompatible within the scope of a resource, where the resource is identified by a
system property name or a user-defined parameter name. A property name must
be specified for each job definition used to define the incompatibility. Oracle
Enterprise Scheduler ensures that requests for the incompatible jobs do not run at
the same time if they have the same value for that resource. Parameters specified
through par amet er VOare submitted as request properties having the property
name submi t. argurent 1, ... submi t . ar gunrent #. To use such a parameter as
the domain incompatibility property, specify submi t. ar gunent 1, ...
submi t. ar gunent # for the incompatibility property name.

* Global (GLOBAL): where one or more job definitions are marked as incompatible,
regardless of any resource or property. Oracle Enterprise Scheduler ensures that
requests for the incompatible jobs do not run at the same time.

An Oracle Enterprise Scheduler incompatibility definition specifies either a global
incompatibility or a domain (property-based) incompatibility. An incompatibility

Defining and Using a Job Incompatibility 18-1

Defining Incompatibility with Oracle JDeveloper

consists of one or more entities (job definition or job set) and the resource over which
they must be incompatible. A resource is not specified for a global incompatibility.
Each entity can be flagged as being self-incompatible. If an incompatibility is defined
for only one entity that entity must be flagged as self-incompatible. Oracle Enterprise
Scheduler does not support a mixed mode where one entity represents a domain
(property-based) entity and another entity represents a global (no property) entity.

For a domain incompatibility, the resource is represented by a property name that
might be different for each entity of the incompatibility. For example, if a domain
incompatibility is created for two job definitions, JobA and JobB, then the resource
(property) identified for each entity might have different property names in JobA and
JobB. It might be called f 00 in JobA while it might be called f 002 in JobB. Oracle
Enterprise Scheduler considers a request for JobA and a request for JobB to be
incompatible if they have the same value for their respective property, and those
requests would not run at the same time. If the requests have a different value for their
respective property, they are considered compatible and allowed to run concurrently.

An incompatibility definition specifies which job definition is incompatible with
another job definition. A given job definition does not directly point to or reference
any incompatibility definitions.

Oracle Enterprise Scheduler determines which, if any, incompatibility definitions
reference the job definition of a request when it is about to executed for the first time.
It also determines the resource (property) value for any domain incompatibility at that
time. That information is used throughout the subsequent processing life cycle of the
request, including any retries of the request. For job set requests, Oracle Enterprise
Scheduler determines which, if any, incompatibility definitions reference the job
definition of any potential job set step when the top-most job set request is about to be
executed rather than when individual step requests are executed.

For a Schedule-based submission, Oracle Enterprise Scheduler creates new child
requests for instances of the Schedule. Only one instance request is executed at a given
time. Oracle Enterprise Scheduler tracks metadata changes made to incompatibility
definitions and may refresh the incompatibility definitions, if any, when an instance
request is about to be executed for the first time. This means the incompatibility
definitions used when the next instance request is executed may be different than the
incompatibility definitions used when a prior instance request was executed.

18.1.1 Job Self Incompatibility

A job definition or job set can be defined as self incompatible where the job definition
or job set is incompatible with itself. A self-incompatibility implies that multiple job
requests associated with a single job definition cannot run together. An
incompatibility definition can contain a single entity if it is marked as self-
incompatible. For global self-incompatibly, Oracle Enterprise Scheduler ensures that
multiple requests for that particular job or job set definition are not run
simultaneously. For property-based self-incompatibly, Oracle Enterprise Scheduler
ensures that requests for that particular job or job set definition, and having the same
value for the property, are not run at the same time.

18.2 Defining Incompatibility with Oracle JDeveloper

You can define an incompatibility in Oracle JDeveloper by specifying the following;:
® The name and package for the incompatibility

¢ The incompatibility type

18-2 Developing Applications for Oracle Enterprise Scheduler

Defining Incompatibility with Oracle JDeveloper

¢ The entity for the incompatibility and whether there is a self incompatibility

¢ For a domain specific incompatibility, the property associated with the

incompatibility for each entity

18.2.1 How to Define a Global Incompatibility

An Oracle Enterprise Scheduler global incompatibility is defined by a name, a package
and entities.

To create a global incompatibility:

1.

2.

In Oracle JDeveloper, right-click in the project to view the New Gallery.

Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window, as shown in Figure 18-1.

Figure 18-1 Create Incompatibility Window

Create Incompatibility, E|
Incompatiblity |‘—'="]
Allowes you to specify jobs that cannot be executed at the same time. %

Mame: | Incompatibility 1 |

Package: | |

Location: |,I'C:,l’JDeveIoper,l'myworKl'Application1S,fProjectl,l’ |

Incompatibility Type:
(5) Glabal (entire job)

() Domain {property of the job)

| Help | | o] | | Cancel |

Use the Create Incompatibility dialog to specify the following:

a. Inthe Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Global. and click OK.

The incompatibility is created, and the Incompatibility Definition page
displays.

In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

Defining and Using a Job Incompatibility 18-3

Defining Incompatibility with Oracle JDeveloper

6. In the Entities area, click Add to add entities. This displays the Add Entity dialog,
as shown in Figure 18-2.

Figure 18-2 Incompatibility Add Entity Window

Add Entity X

Select one or more jobs.

Jobz
Jobsetl

| Help | | [a]4 | | Cancel |

7. Select one or more entities for the incompatibility and click OK. The
Incompatibility Editor displays.

8. To specify a self incompatibility or to change the entity, double-click the entity in
the Entities area. This displays the Edit Entity dialog as shown in Figure 18-3.

Figure 18-3 Edit Entity Window for Global Incompatibility

Edit Entity X
Self Incompatible
Job | Job1 -
| Help | | (o] 4 J | Cancel |

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

18.2.2 How to Define a Domain Incompatibility

An Oracle Enterprise Scheduler domain incompatibility is defined by a name, a
package, entities, and properties for each entity.

To create an incompatibility:

1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

18-4 Developing Applications for Oracle Enterprise Scheduler

Defining Incompatibility with Oracle JDeveloper

Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window.

Use the Create Incompatibility dialog to specify the following:

a. Inthe Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, optionally enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. Inthe Incompatibility Type field, select Domain, as shown in Figure 18-4.

Figure 18-4 Create Incompatibility Window

Create Incompatibility E|
Incompatiblity |‘_':"‘
Allows you to specify jobs that cannot be executed at the same time. %

Mame: | Incompatibility 1 |

Package: | |

Location: | [f1Developer fmywork/application15/Project 1/ |

Incompatibility Type:
() Global {entire job)

() Damain {property of the job)

| Help | | [o]:4 J | Cancel |

Click OK. This creates the incompatibility and displays the Incompatibility
Editor.

In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

In the Incompatibility Entities area, click Add.

The Add Entity window displays.

Select one or more jobs or job sets to add to the incompatibility and click OK.

The Incompatibility Editor displays.

To specify a self incompatibility or modify an entity or its properties, under the
Entities field, double-click an entity.

The Edit Entity window displays, as shown in Figure 18-5.

Defining and Using a Job Incompatibility 18-5

What Happens at Runtime to Handle Job Incompatibility

Figure 18-5 Incompatibility Edit Entity Window

Edit Entity X

[] 5elf Incompatible

Joby | Job5 - |

Property: | parametert -

Databype: STRIMNG

| Help | | [0]4 | | Cancel |

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

18.3 What Happens at Runtime to Handle Job Incompatibility

Oracle Enterprise Scheduler handles incompatibility definitions according to the
incompatibility type, global or domain (property-based), at runtime.

When a job request is about to be executed, Oracle Enterprise Scheduler determines
which incompatibility definitions reference the job or job set definition used for the
request submission. For each domain incompatibility it also determines the value of
the resource or property, to use for that incompatibility. Oracle Enterprise Scheduler
checks to determine if there are any incompatible requests already executing. If so, the
request is blocked until all requests with which it is incompatible have completed.

Note:

The value of the property for a domain incompatibility is obtained from the
request parameters at request execution. That value usually originates either
in the job definition or in a request parameter specified at request submission.
If no such parameter is found, that incompatibility is ignored during
subsequent request processing. The request is compatible with any other
request with regard to that incompatibility definition. This initial property
value is used as the incompatibility resource value even if the property is
subsequently altered.

18.3.1 What Happens to Subrequests with an Incompatible Parent Request

A request which is incompatible with another request is also incompatible with the
sub-requests of that request (the children). A request that has been blocked by a sub-
request parent remains blocked while any sub-requests execute and until the sub-
request parent request is resumed and completes.

18-6 Developing Applications for Oracle Enterprise Scheduler

19

Using the Runtime Service

This chapter describes how to use the Oracle Enterprise Scheduler runtime service
APIs for submitting and managing job requests and for querying job request
information from the job request history.

Note:

The runtime service also includes log and output APIs. These APIs are
documented separately in Job Request Logs and Output .

This chapter includes the following sections:

Introduction to the Runtime Service

® Accessing the Runtime Service

® Submitting Job Requests

* Managing Job Requests

* Querying Job Requests

® Submitting Ad Hoc Job Requests

¢ Implementing Pre-Process and Post-Process Handlers

19.1 Introduction to the Runtime Service

Oracle Enterprise Scheduler lets you define and run different job types including: Java
classes, PL/SQL procedures, and process job types (forked processes). To run these job
types you need to submit a job definition.

You can use the runtime service to perform different types of operations, including:

* Submit: These operations let you supply a job definition to Oracle Enterprise
Scheduler to create job requests.

* Manage: These operations allow you to change the state of job requests and to
update job requests.

* Query: These operations let you find the status of job requests and report job
request history.

19.2 Accessing the Runtime Service

Like the metadata service, Oracle Enterprise Scheduler provides a runtime MBean
proxy interface.

Using the Runtime Service 19-1

Accessing the Runtime Service

The runtime service open() method begins each Oracle Enterprise Scheduler runtime
service user transaction. In an Oracle Enterprise Scheduler application client you
obtain a Runt i meSer vi ceHandl e reference that is created by open() and you pass
the reference to runtime service methods. The Runt i meSer vi ceHand! e reference
provides a connection to the runtime service for the client application. In the client
application you must explicitly close the runtime service by calling cl ose() . This
ends the transaction and causes the transaction to be committed or rolled back
(undone). The cl ose() not only controls the transactional behavior within the
runtime service, but it also allows Oracle Enterprise Scheduler to release the resources
associated with the Runt i meSer vi ceHandl e.

19.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

Oracle Enterprise Scheduler exposes the runtime service to your application program
as a Stateless Session Enterprise Java Bean (E]B). You can use JNDI to locate the Oracle
Enterprise Scheduler runtime service Stateless Session EJB.

Example 19-1 shows a lookup for the Oracle Enterprise Scheduler runtime service
using the Runt i meSer vi ceLocal Home object.

Note:

When you access the runtime service:

e Jndi Util.getRuntimeServi ceEJB() assumes that the
RuntimeService EJB has been mapped to the local JNDI location "ess/
runtime". This happens automatically in the hosted application's message-
driven bean (MDB).

* Theopen() call providesa Runti meSer vi ceHandl e reference. You use
this reference with the methods that access the runtime service in your
application program.

¢ When you finish using the runtime service you must call cl ose() to
release the resources associated with the Runt i meSer vi ceHandl e.

Example 19-1 JNDI Lookup to Access Oracle Enterprise Scheduler Runtime
Service

i mport oracle. as. schedul er.core. Jndi Wil;
/1 Demonstration of howto |ookup runtinme service froma
/1 Java EE application conponent

RuntimeService runtime = Jndi Util.get RuntimeServiceEJB();
Runti neServi ceHandl e rHandle = nul | ;

try

{
rHandl e = runtine. open();
}
finally
{

if (rHandle !'= null)

19-2 Developing Applications for Oracle Enterprise Scheduler

Submitting Job Requests

runtime. cl ose(rHandl e);

}

19.3 Submitting Job Requests

When you submit a job definition you create a new job request.

You can submit a job request using a job definition that is persisted to a metadata
repository, or you can create a job request in an ad hoc manner where the job
definition or the schedule is not stored in the metadata repository (for information
about ad hoc requests, see Submitting Ad Hoc Job Requests).

19.3.1 How to Submit a Request to the Runtime Service

You create a job request by calling submi t Request () . Depending on your
requirements, you can create a job request with one of the following formats:

* Create a new job request using a job definition stored in the metadata repository, to
run once at a specific time.

¢ Create a new job request using a job definition and a schedule, each stored in the
metadata repository.

Example 19-2 shows the submni t Request () method that creates a new job request
with a job definition that resides in the metadata repository. You can also submit an ad
hoc job request where the job definition and schedule are not stored in the metadata
repository. For more information, see Submitting Ad Hoc Job Requests. You can also
submit a sub-request. For more information, see Using Subrequests .

Note:

When you submit a job request using the runtime service:
* You obtain the runtime service handle as shown in Example 19-1.

¢ The runtime service internally uses the metadata service to obtain job
definition metadata with the supplied Met adat aCbj ect | d, j obDef nl d.

Example 19-2 Creating a Job Request with submitRequest()

I ong request!D = OL;
Met adat aCbj ect | d j obDef nl d;

Request Paraneters p = new Request Paraneters();

Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, startsln);

request| D = runtime. subnitRequest(r, "My Java job", jobDefnld, start, p);

19.3.2 What You Should Know About Default System Properties When You Submit a
Request

When you create a job request Oracle Enterprise Scheduler resolves and stores the
properties associated with the job request. Certain system properties can be associated
with a job request. If you do not set these properties anywhere in the properties

Using the Runtime Service 19-3

Submitting Job Requests

hierarchy when a job request is submitted, then Oracle Enterprise Scheduler provides
default values.

Table 19-1 shows the default runtime service field names and the corresponding
system properties.

Table 19-1 Runtime Service Default Value Fields and Corresponding System Properties
- - - -~~~ |

Value Runtime Service Default Value Corresponding System Description
Field Property
0 DEFAULT_REQUEST_EXPI RATI O SYS request Expira The default expiration time, in
N tion minutes, for a request. The default

value is 0 which means the request
never expires.

4 DEFAULT_PRI ORI TY SYS priority The default system priority associated
with a request.
5 DEFAULT_REPROCESS DELAY SYS reprocessDel a The default period, in minutes, in
y which processing must be postponed

by a callout handler that returns
Act i on. DELAY.

0 DEFAULT_RETRI ES SYS retries The default number of times a failed
request is retried. The default value is
0 which means a failed request is not

retried.
0 DEFAULT_ASYNC_REQUEST_TIM SYS request_timeo Specifies the time in minutes that the
EQUT ut processor waits for an asynchronous

response after the job execution has
begun. After the time elapses, the
request is timed out.

19.3.3 What You Should Know About Metadata When You Submit a Request

All Oracle Enterprise Scheduler Metadata associated with a job request is persisted in
the runtime store at the time of request submission. Persisted metadata objects include
job definition, job type, job set, schedule, incompatibility definitions, and exclusion
definition. Metadata is stored in the context of a top level request, and each metadata
object is uniquely identified by the absolute parent request ID and its metadata ID.
Each unique metadata object is stored only once for a top-level request, even if the
definition is used multiple times in the request. This ensures that every child request
uses the same definition.

When a request is submitted, all known metadata for the request is persisted. For
subrequests, the metadata is not know until the subrequest is submitted, so subrequest
metadata is persisted when the subrequest is submitted, after first checking that the
metadata object is not already persisted in the runtime store.

Metadata persisted in the runtime store is removed when the absolute parent request
is deleted.

19.3.4 DMS ECID and Flowld Support

Oracle Enterprise Scheduler associates a DMS ECID and Fl ow d value with every
request. Oracle Enterprise Scheduler usually obtains the ECID and FI ow d from the
current DMS execution context, if present, at request submission and uses that ECID

19-4 Developing Applications for Oracle Enterprise Scheduler

Managing Job Requests

and Fl ow d value during subsequent processing of the request. For example, Oracle
Enterprise Scheduler sets up a DMS execution context that associates the ECID and
FI ow d with the request when it initiates the job executable.

If a DMS FI owl d property is not present in the DMS execution context at request
submission, then a new Fl oW d is associated with the request. For example, if the
request is not submitted by SOA, there might not be a FI ow d present on the DMS
execution context and Oracle Enterprise Scheduler associates a new FI owl d with the
request.

If no DMS execution context is present at request submission, then a new ECID and
new FlI owl d are associated with the request. For example, if a request is submitted
using the Oracle Enterprise Scheduler PL/SQL interface, there might be no DMS
context information available from the database session when the PL/SQL submit
procedure is called. A new ECID and new FI ow d are associated with the request
after it is successfully validated by the Oracle Enterprise Scheduler mid-tier.

19.3.4.1 ECID and FlowID for Child Requests

In general, child requests inherit the ECID and FI oW d from their parent request. For
example, Oracle Enterprise Scheduler uses the ECID and FI ow d of the parent request
when a job set step request is created.

A sub-request is a submitted request, therefore the ECID and Fl ow d of the current
DMS execution context of the sub-request submission is associated with the sub-
request. Usually the ECID and Fl ow d values are the same as those of the parent
request because Oracle Enterprise Scheduler sets up a DMS execution context that has
the ECID and FI ow d of the parent request prior to initiating the parent job
executable. It is possible that the application or some component layer changed the
ECID or FI ow d prior to Oracle Enterprise Scheduler receiving the sub-request
submission. If that is the case, the parent and sub-request might have a different ECID
or Fl ow d.

If a schedule is specified at request submission, the submitted request represents an
absolute parent that does not execute. Oracle Enterprise Scheduler automatically
creates child instance requests according to the specified schedule and a new ECID
and Fl ow d is used for each child instance. The child instance request represents an
instance parent request and may have children of its own; for example, a sub-request
or job set step request. Any such children typically have the same ECID and FI ow d
as its instance parent request.

19.3.4.2 DMS Flowld and SOA CorrelationFlowld

Oracle Enterprise Scheduler uses the DMS Flowld property whose property name is
"Flowld". SOA has several properties that might be present on a DMS execution
context. Two such properties are the SOA Cor r el at i onFl ow d and SOA Fl ow d.
properties. The DMS FI ow d property ("Flowld") is used to propagate the value for
the SOA Correl at i onFl owl d. The DMS property name "oracle.soa.tracking.FlowId"
is used to propagate the value for the SOA FlI ow d property. For that reason, the

FI ow d property associated with an Oracle Enterprise Scheduler request submitted
by SOA might match the SOA Corr el ati onFl ow d value.

19.4 Managing Job Requests

After you submit a job request, using the r equest | D you can do the following:

* Getrequest information

Using the Runtime Service 19-5

Managing Job Requests

¢ Change the state of the request

¢ Update request parameters

19.4.1 How to Get Job Request Information with getRequestDetail

Using the runtime service, with a r equest | D, you can obtain information about a job
request that is in the system. Table 19-2 shows the runtime service methods that allow
you to obtain job request information.

Table 19-2 Runtime Service Get Request Methods

Runtime Service Method Description

get Request Detai |l () Retrieves complete runtime details for the specified request

get Request Det ai | Basi c() Retrieves basic runtime details of the specified request. The
RequestDetail returned by this method includes most of
the information as get Request Det ai | (), but certain less
commonly used information is omitted to improve

performance.
get Request Par anet er () Retrieves the value of a request parameter.
get Request s() Retrieves an enumeration of immediate child request

identifiers associated with the specified request. This
includes IDs for requests that did not complete, such as
when the request transaction is rolled back or an error
occurs.

get Request St at e() Retrieves the current state of the specified request

Example 19-3 shows code that determines if there is any immediate child request in
the HOLD state.

Example 19-3 Determining Whether Any Immediate Child Job Requests Are on
Hold

h = s_runtine. open();
try {

s_runtime. hol dRequest (h, reqi d);
Enumeration e = s_runtine.get Requests(h, reqid);

bool ean foundHol d = fal se;
whi l e (e.hasMoreEl enents()) {

long childid = ((Long)e.nextEl enent()).|ongVal ue();
State state = s_runtine. get Request State(h, childid);
if (state == State.HOLD) {

foundHol d = true;

break;

}
19.4.2 How to Change Job Request State

Using the runtime service, with a r equest | D, you can change the state of a job
request. Table 19-3 shows the runtime service job request state change methods. The

19-6 Developing Applications for Oracle Enterprise Scheduler

Managing Job Requests

job request management methods allow you to change the state of a request,
depending on the state of the job request. For example, you cannot cancel a request
with cancel Request () if the request is in the COMPLETED state.

Table 19-3 Runtime Service Job Request State Methods
- -~ - -]

Runtime Service Description

Method

cancel Request () Cancels the processing of a request that is not in a terminal state.

del et eRequest () Marks a request in a terminal state for deletion.

hol dRequest () Withholds further processing of a request that is in WAI T or
READY state.

r el easeRequest () Releases a request from the HOLD state.

Example 19-4 shows a submi t Request () with methods that control the state of the
job request. The hol dRequest () holds the processing of the job request. The
corresponding r el easeRequest () releases the request. This example does not show
the conditions that require the hold for the request.

Note:

Note the following in Example 19-4:

* You obtain the runtime service handle, r Handl e, as shown in Example
19-1.

e The hol dRequest () places the request in the HOLD state.

* You may do some required processing while the request is in the HOLD
state.

e Therel easeRequest () releases the request from the HOLD state.

Example 19-4 Runtime Service releaseRequest() Usage

rHandl e = runtine. open();

try
{
runtime. hol dRequest (rHandl e, reqi d);
runtime.rel easeRequest (rHandl e, reqid);
}
finally
{
if (rHandle !'= null)
{
runtime. cl ose(rHandl e);
}
}

Using the Runtime Service 19-7

Querying Job Requests

19.4.3 How to Update Job Request Priority and Job Request Parameters

Using the runtime service you can update job request system properties or request
parameters. Table 19-4 shows the runtime service methods that allow you to lock and
update up a job request.

Table 19-4 Runtime Service Update Methods

Runtime Service Method Description

| ockRequest () Acquires a lock for the given request. The lock is released
when cl ose() operation is subsequently invoked or the
encompassing transaction is committed. If an application
tries to invoke this operation while the lock is being held by
another thread, this method blocks until the lock is released.
Use this method to ensure data consistency when updating
request parameters or system properties.

set Request Par aret er () Updates the property value of the specified request subject
to the property read-only constraints.

Example 19-5 shows code that updates a job request parameter. This code would be
wrapped in a try/finally block as shown in Example 19-1.

Example 19-5 shows the following:

¢ Obtain the runtime service handle, r handl e, as shown in Example 19-1.
® Acquire a lock for either the request using | ockRequest ()

e Perform the update operation with set Request Par anet er ()

e Usecl ose() to cause the transaction to be committed or rolled back (undone).
The cl ose() not only controls the transactional behavior within the runtime
service, but it also allows Oracle Enterprise Scheduler to release the resources
associated with the Runt i neSer vi ceHandl e.

Example 19-5 Sample Runtime Service Parameter Update

s_runtime. | ockRequest (rhandl e, reqid);
s_runtime. set Request Paramet er (rhandl e, reqld, paranNane, "yy");

19.5 Querying Job Requests

Using the runtime service you can query job request information.

This involves the following steps:
* Query for request identifiers and limit results with a filter.

* Getrequest details to provide additional information for each request ID that the
query returns.

There is only one query method; the runtime service quer yRequest s() method
returns an enumeration of request IDs that match the query. The quer yRequest s()
met hod includes a filter argument that contains field, comparator, and value
combinations that help select query results. Note that the return value includes IDs for

19-8 Developing Applications for Oracle Enterprise Scheduler

Querying Job Requests

requests that did not complete, such as when the request transaction is rolled back or
an error occurs. For more information on filters, see How to Create a Filter.

When you create a filter for a query, you can use any of the field names shown in
Table 19-5 when querying the runtime store.

Table 19-5 Query Filter Fields For Querying the Runtime (Defined in Enum
RuntimeService.QueryField)

Name Description

ABSPARENTI D The absolute parent request ID of a request.

APPLI CATI ON The application name.

ASYNCHRONCUS Indicates if the job is asynchronous, synchronous or unknown. The value of the field
is not set until the request is processed. The field data type is j ava. | ang. Bool ean.
The value may be NULL if the nature of the job has not yet been determined.

CLASSNAME The name of the executable class that processed the request

COVPLETED_TI ME

DEFI NI TI ON
ELAPSEDTI ME
ENTERPRI SE_I D
ERROR_TYPE

EXTERNAL_I D

EXTERNAL_JOB_TYPE

I NSTANCEPARENTI D

JOB_TYPE

LOG CAL_CLUSTER NAM

E

NAME

PARENTREQUESTI D

PRI ORI TY
PROCESS_PHASE

PROCESSEND

PROCESSOR

The date and time that Oracle Enterprise Scheduler finished processing the request.
This field represents the time the process phase was set to COMPLETED.

The job definition ID (Metadata Object ID).

The amount of time, in milliseconds, that elapsed while the request was running.
The enterprise ID.

The request error type.

The identifier for an external portion of an Oracle Enterprise Scheduler
asynchronous Java job.

Indicates the type of the remote job
The request ID of the instance parent request.
The job type ID (Metadata Object ID).

Indicates the logical cluster on which a remote job is executed.

The request description.

The parent request ID.

The priority of the request.

The process phase of the request.

The date and time that the process ended. The PROCESSSTART is set only when a
request transitions from READY to RUNNI NG This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNI NGto the time it transitions to a terminal state.

The name of the instance that processed the request.

Using the Runtime Service 19-9

Querying Job Requests

Table 19-5 (Cont.) Query Filter Fields For Querying the Runtime (Defined in Enum

RuntimeService.QueryField)
L ___|]

Name Description

PROCESSSTART The date and time that the process started. The PROCESSSTART is set only when a
request transitions from READY to RUNNI NG This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNI NG to the time it transitions to a terminal state.

PRODUCT The product name.

READYWAI T_TI ME

REQUEST CATEGORY
REQUEST_DMS_ECI D
REQUESTEDEND
REQUESTEDSTART
REQUESTI D
REQUESTTYPE

RESULTI NDEX

RETRI ED_COUNT

REQUESTTRI GGER
SCHEDULE

SCHEDULED

STATE

SUBM SSI ON

SUBM TTER

SUBM TTER DMS_ECI D
SUBM TTER_FLOW D
SUBM TTERGUI D

TI MED_OUT

TYPE

USERNANE

WAI TTI ME

The amount of time, in milliseconds, a request has been waiting to run since it
became READY.

The request category specified for the request.

The DMS ECID used for processing of a request.

The requested end time.

The requested start time.

The request ID of a submitted request.

The type of request (that is, an element of Request Type)

Controls the starting and ending index of the returned results. This field allows users
to express result constraints such as "return only results 10 through 20".

The retried count associated with a job. This field represents the number of times the
job was retried.

The Trigger ID (Metadata Object ID).

The schedule ID (Metadata Object ID).

The time when the request is scheduled to be executed.

The job request state.

The submission time of the request.

The submitter of the request.

The DMS ECID from the DMS context at request submission.
The SOA /DMS Flowld from the DMS context at request submission.
The submitter GUID of the request.

Indicates whether the job has timed out.

The execution type of the request.

The name of the user who submitted the request.

The amount of time, in milliseconds, a request has been waiting to run.

19-10 Developing Applications for Oracle Enterprise Scheduler

Submitting Ad Hoc Job Requests

Table 19-5 (Cont.) Query Filter Fields For Querying the Runtime (Defined in Enum
RuntimeService.QueryField)

Name Description

WWORKASSI GNVENT The name of the work assignment that was active when the request was processed.

Table 19-6 shows the runtime service method for querying job requests and Example
19-6 shows the use of this method.

Table 19-6 Runtime Service Query Methods

Runtime Query Method Description

quer yRequest s() Gets a summary of requests.

Example 19-6 Using queryRequest() Method

Filter filter =
new Filter(RuntimeService. QueryField. DEFI NITION. fiel dNane(),
Fi | ter. Conpar at or. EQUALS,
myJavaSucJobDef . toString())
.and(Runt i meServi ce. Quer yFi el d. STATE. fi el dName(),
Fi | ter. Conpar at or . EQUALS,
new I nteger(12));

11
Enuneration requests =
runtime. queryRequests(h, filter,
Runt i meServi ce. Quer yFi el d. REQUESTI D, true);

19.6 Submitting Ad Hoc Job Requests

To use an ad hoc request you supply request parameters, a job definition, and
optionally a schedule that you create and define without saving it to a metadata
repository.

An ad hoc request does not require you define the details of a job request in a
metadata repository. Thus, ad hoc requests support an abbreviated job request
submission process that can occur without using a connection to the metadata
repository.

Note:

Ad hoc requests have the following limitation: job sets are not supported with
ad hoc requests.

19.6.1 How to Create an Ad Hoc Request

To create an ad hoc request you use the ad hoc version of subni t Request () . For the
job definition, instead of supplying a job definition Met adat aObj ect | d, you can
define the job definition object and use a system property that corresponds to the job
type, as shown in Table 19-7.

Using the Runtime Service 19-11

Submitting Ad Hoc Job Requests

Table 19-7 Ad Hoc Request Job Definition System Properties for Job Types
|

System Property Description

CLASS_NAME Specifies the Java class to execute (for a Java job type).

PROCEDURE_NAME Specifies the PL/SQL stored procedure to execute (for an SQL job type).

CMVDLI NE Specifies the command line used to invoke an external program for a process job
request.

With one signature of the ad hoc version of submi t Request () you do not need to
supply Met adat aCbj ect | ds, you can provide the Schedul e object as an argument
as object instances directly to submi t Request () . Other ad hoc subni t Request ()
signatures allow you to submit a job request using a job definition from metadata and
an instance for the Schedul e object.

Example 19-7 shows sample code for an ad hoc request submission that uses a
schedule.

In this example, note the following ad hoc specific details for the request submission:

® The CLASS name is set to define the Java class that runs when Oracle Enterprise
Scheduler executes the job request: p. add(Syst enPr oper ty. CLASS_NAME,
"test.job. HelloWrld"),;

¢ The submi t Request () includes an argument that specifies the job type:
JobType. Executi onType. JAVA TYPE.

® Specify the Java class, the procedure name, or the command line program to
execute when the ad hoc Request is processed by setting one of the system
properties shown in Table 19-7.

¢ (all the ad hoc version of submi t Request () specifying the type argument to
correspond with the system property you set to define the request. The type you
supply must be one of JAVA_TYPE, SQL_TYPE, or PROCESS_TYPE.

* As with any job request, set the appropriate system properties to be associated with
the job request.

Example 19-7 Creating Request Parameters and a Schedule for an Ad Hoc Request

Request Paranmeters p = new Request Parameters();

String propNane = "testProp";

String propVal ue = "testVal ue";

p. add(propNane, propVal ue);

. add(Syst enProperty. REQUEST_EXPI RATI ON, new I nteger(10));
.add(SystenProperty. LI STENER "test.listener.TestListener");
. add(Syst enProperty. EXECUTE_PAST, "TRUE");
.add("application", getApplication());

.add(Syst enProperty. CLASS_NAME, "test.job. HelloWrld");

T T T T O

Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, 5);

Cal endar end = (Cal endar) start.clone();
end. add(Cal endar . SECOND, 5);

Recurrence recur = new Recurrence(RecurrenceFi el ds. FREQUENCY. SECONDLY,
2, start, end);

19-12 Developing Applications for Oracle Enterprise Scheduler

Implementing Pre-Process and Post-Process Handlers

Schedul e schedul e = new Schedul e(" nySchedul e",
"Run every 2 sec for 5 seconds.", recur);

/1 adhoc submission, no netadata definitions passed
regld = runtime. subnitRequest(h,
"t est AdhocJavaW t hSchedul e",
JobType. Executi onType. JAVA_TYPE,
schedul e, nul |, Cal endar.getlnstance(), null,

p);

19.6.2 What Happens When You Create an Ad Hoc Request

The ad hoc submi t Request () returns the request identifier for the request. You can
use this request identifier with runtime calls such as set Request Par anmet er () or
get Request Det ai | () as you would with any other job request.

There is only one subni t Request signature that creates a request with an ad hoc job
definition. The job definition ID, obtained from Request Det ai | . get JobDef n(), is
null in this case. Without an ad hoc job definition, a request cannot be considered ad
hoc.

19.6.3 What You Need to Know About Ad Hoc Requests

If you want to define a schedule to use with an ad hoc request and you want to specify
exclusion dates, you need to exclude the dates using the addExcl usi onDat e()
method for the schedule. For ad hoc requests, you cannot use a schedule that specifies
exclusion dates using addExcl usi on() method for the schedule.

Currently, if the schedule is ad hoc, a check of Excl usi onDef i ni ti on is skipped.
Thus, if you use a schedule and use addExcl usi on() and submit an ad hoc job
request, then Oracle Enterprise Scheduler does not use the Excl usi onsDef i ni ti on
IDs with the job request.

19.7 Implementing Pre-Process and Post-Process Handlers

Along with the core logic of your job, you can include code that executes before and
after the job's main execution code. With code that executes before, known as a pre-
process handler, you can do such things as set up certain conditions for the job
executable.

With code that executes after, known as a post-process handler, you can do such
things as processing the results of the job executable, perhaps by printing reports or
sending notifications.

You provide pre- and post-process handlers by implementing specific interfaces, then
connecting your implementations to the service through a system property that
indicates which of your classes to use.

19.7.1 Implementing a Pre-Process Handler

With a pre-process handler, your code can do things to create an environment for your
job to execute. This could include creating connections to resources that your job
requires, for example.

The pre-processor is instantiated and invoked at the start of request execution when
the request transitions to RUNNING state. This is done each time the request is
executed, including when a failed request is retried or a paused request is resumed
after its sub-requests have completed.

Using the Runtime Service 19-13

Implementing Pre-Process and Post-Process Handlers

You create a pre-process handler by implementing the

oracl e. as. schedul er. PreProcessHandl er interface. With your pre-process
handler class in hand, you specify that it should be used by setting the

SYS_pr eProcess system property to the fully-qualified name of your handler class.
You can define the property on job metadata or include it in the request submission
parameters.

19.7.1.1 Implementing the PreProcessHandler Interface

Your Pr eProcessHandl er implementation should do the pre-process actions your
job requires, then return an or acl e. as. schedul er. Handl er Act i on instance from
the interface's one method, pr ePr ocess. (Your class may also implement the

Cancel | abl e interface if you want the job to support cancellation. It must also
provide an empty constructor.)

The Handl er Act i on instance your pr ePr ocess implementation returns should
give status about whether, and under what conditions, the job should proceed. When
constructing the Handl er Act i on class, you pass it a Handl er St at us instance that
indicates the status of pre-processing for the request.

Supported Handl| er St at us values and actions are listed below. An unsupported
status causes the request to transition to an error state and be subject to retries if
configured.

¢ PROCEEDinforms Oracle Enterprise Scheduler that request processing should
commence. The request remains in the RUNNING state.

¢ \WARNinforms Oracle Enterprise Scheduler that request processing should
commence but that a warning should be logged. The request remains in the
RUNNING state.

* CANCEL informs Oracle Enterprise Scheduler that request pre-processing has been
canceled. The request transitions to the CANCELLED state.

e DELAY informs Oracle Enterprise Scheduler to postpone request processing by the
quantum of time specified by the SYS_r epr ocessDel ay system property. The
request remains in RUNNING state during the delay.

e SYSTEM ERRCRinforms Oracle Enterprise Scheduler that the handler has
experienced an error. The request transitions to an error state and is subject to
retries if configured.

e Bl Z_ERRORinforms Oracle Enterprise Scheduler that the handler has experienced
a business error. The request transitions to an error state not subject to retries.

19.7.2 Implementing a Post-Process Handler

With a post-process handler, your code can do things that should take place after your
job has executed. This could include releasing connections to resources that your job
required, for example, or generating a report based on request-specific data or status.

The post-processor is instantiated and invoked after job execution, when the request
transitions to COMPLETED state. The post-processor is invoked only once for a
request, in contrast to the pre-processor.

You create a post-process handler by implementing the

oracl e. as. schedul er. Post ProcessHandl er interface. With your post-process
handler class in hand, you specify that it should be used by setting the

SYS_post Process system property to the fully-qualified name of your handler class.

19-14 Developing Applications for Oracle Enterprise Scheduler

Implementing Pre-Process and Post-Process Handlers

You can define the property on job metadata or include it in the request submission
parameters.

19.7.2.1 Implementing the PostProcessHandler Interface

Your Post ProcessHandl er implementation should do the post-process actions

your job requires, then return an or acl e. as. schedul er. Handl er Act i on instance
from the interface's one method, post Pr ocess. (Your class may also implement the
Cancel | abl e interface if you want the job to support cancellation. It must also
provide an empty constructor.)

The Handl er Act i on instance your post Pr ocess implementation returns should
give status about whether, and under what conditions, the job should conclude. When
constructing the Handl er Act i on class, you pass it a Handl er St at us instance that
indicates the status of post-processing for the request.

Supported Handl| er St at us values and actions are listed below. An unsupported
status causes the request to transition to WARNING state.

¢ PROCEED to inform Oracle Enterprise Scheduler that request post-processing
completed successfully. The request transitions to the SUCCEEDED state or
WARNING state depending on the status of the request prior to invoking the post-
processor.

¢ WARN to inform Oracle Enterprise Scheduler that request post-processing resulted
in a warning. The request transitions to WARNING state.

* CANCEL informs Oracle Enterprise Scheduler that request post-processing has been
canceled. The request transitions to WARNING state.

e DELAY to inform Oracle Enterprise Scheduler to postpone request processing by
the quantum of time specified by the SYS_r epr ocessDel ay system property. The
request remains in COMPLETED state during the delay.

* SYSTEM ERRORto inform Oracle Enterprise Scheduler that the handler has
experienced an error. The request transitions to the WARNING state.

e Bl Z_ERRORto inform Oracle Enterprise Scheduler that the handler has
experienced a business error. The request transitions to the WARNING state.

Using the Runtime Service 19-15

Implementing Pre-Process and Post-Process Handlers

19-16 Developing Applications for Oracle Enterprise Scheduler

20

Using Subrequests

This chapter describes how to use Oracle Enterprise Scheduler subrequests to process
data in parallel, particularly in a dynamic context, where the number of parallel
requests can vary.

This chapter includes the following sections:

¢ Introduction to Using Subrequests

* C(Creating and Managing Subrequests

* Creating a Java Procedure that Submits a Subrequest

¢ Creating a PL/SQL Procedure that Submits a Subrequest

20.1 Introduction to Using Subrequests

Oracle Enterprise Scheduler subrequests are useful when you want to process data in
parallel. A request submitted from a running job is called a subrequest.

You can submit multiple subrequests from a single parent request. The customary
method of parallel execution in Oracle Enterprise Scheduler is the job set concept but
there might be cases where the number of parallel processes may not be fixed in
number. For example, when you want to allocate one request per million rows and in
the last week 9.7 million rows have accumulated to process. In this case, you would
allocate ten requests as opposed to 5 for a week that accumulated 4.6 million rows.

Oracle Enterprise Scheduler supports subrequest functionality so that a given running
request (Job Request) can submit a subrequest and wait for the completion of such a
request before it continues.

Oracle Enterprise Scheduler supports subrequests by exposing an overloaded
subrequest method submi t Request () . An application that submits a job request can
invoke this API to submit a subrequest.

The following restrictions apply to subrequests:

* A subrequest can be submitted only for onetime execution. No schedule can be
specified. The subrequest is always treated as a "run now" request.

* Ad hoc subrequests are not supported. A subrequest must be submitted for an
existing JobDef i ni ti on object in the application.

* Job sets are not supported for subrequests. A subrequest can only be submitted to a
JobDef i ni ti on object. However, any running job (which may be part of a job set)
can submit a subrequest.

These restrictions simplify the execution of subrequests and avoid any complications
and delays in the execution of the submitting request itself.

Using Subrequests 20-1

Creating and Managing Subrequests

There are different kinds of parent requests in Oracle Enterprise Scheduler, for the
description in this chapter, a parent request refers to the request that is submitting a
subrequest.

A subrequest follows the normal flow of a regular one-time request. However the
processing of a subrequest starts only when the parent request pauses its execution. To
indicate this, Oracle Enterprise Scheduler uses the PAUSED state. This state implies
that the parent request is paused and waiting for the subrequest to finish.

After a parent request submits a subrequest, that parent must return control back to
Oracle Enterprise Scheduler, in the manner appropriate for its job type, indicating that
it has paused execution. Oracle Enterprise Scheduler then sets the parent state to
PAUSED and starts processing the subrequest. After the subrequest finishes, Oracle
Enterprise Scheduler places the parent request on the ready queue, where it remains
PAUSED, until it is picked up by an appropriate request processor. The parent is then
set to RUNNI NGstate and re-run as a resumed request.

20.2 Creating and Managing Subrequests

¢ How to Submit Subrequests

e How to Cancel Subrequests

¢ How to Hold Subrequests

* How to Submit Multiple Subrequests
¢ How to Manage Paused Subrequests
* How Subrequests Are Processed

¢ How to Identify Subrequests

¢ How to Manage Subrequests and Incompatibility

20.2.1 How to Submit Subrequests

A subrequest can be submitted by calling the submi t Request APL The subrequest is
set to WAI T state, but Oracle Enterprise Scheduler does not process the request while
the parent request is running. A subrequest can be processed only after the parent
request has paused.

20.2.2 How to Cancel Subrequests

There are two main ways a subrequest can be canceled, either by the user cancelling
the subrequest directly or as a result of the parent request being canceled. For either
method, the cancellation process of the subrequest is handled in the same manner as
any other executable request. The difference lies in how Oracle Enterprise Scheduler
treats the parent request after all pending subrequests have completed and reached a
terminal state.

Oracle Enterprise Scheduler sets a subrequest that is in WAl T or READY state directly to
CANCELLED. If a subrequest is currently running, then the subrequest is set to
CANCELLI NGand Oracle Enterprise Scheduler then attempts to cancel the running
executable in the manner appropriate for its job type. Usually, the subrequest ends up
in CANCELLED state, but it may end in some other terminal state depending on the life
cycle stage where the subrequest was at. The parent request remains in PAUSED or
CANCELLI NGstate until all subrequests have reached a terminal state.

20-2 Developing Applications for Oracle Enterprise Scheduler

Creating and Managing Subrequests

If the user cancels a subrequest, then Oracle Enterprise Scheduler cancels that
subrequest, as described previously. The parent request remains in PAUSED state until
all subrequests are complete, at which point Oracle Enterprise Scheduler resumes or
restarts the parent request. This enables the parent request to handle the completion of
the subrequest, possibly as canceled, in an appropriate fashion. Cancellation of
subrequests is thus not propagated upwards.

If the user cancels the parent request, Oracle Enterprise Scheduler sets the parent
request to CANCELLI NGstate, and then initiates a cancellation for all pending
subrequests in the manner described previously. After all subrequests have
completed, Oracle Enterprise Scheduler sets the parent request to CANCELLED, and the
parent request does not resume. Cancellation of a parent request is propagated down
to its subrequests.

20.2.3 How to Hold Subrequests

A subrequest has the same life cycle as an ordinary request, and can be held when it is
in WAI T or READY state. The parent request remains in PAUSED state while the
subrequest is on hold.

20.2.4 How to Submit Multiple Subrequests

Oracle Enterprise Scheduler allows requests to submit multiple subrequests. A
running request may submit more than one subrequest. All of these subrequests are
processed by Oracle Enterprise Scheduler when the parent request pauses and goes to
PAUSED state.

In case of multiple such subrequests, the parent request is resumed only when all the
subrequests finish.

Also it is possible to submit subrequests up to any depth. This creates nested
subrequests. As such there are no restrictions on the depth of such subrequest
submissions. This is kind of similar to stack push and pop operations.

20.2.5 How to Manage Paused Subrequests

¢ Indicating Paused Status

¢ Storing the Paused State for a Parent Request

20.2.5.1 Indicating Paused Status

A Java executable can submit subrequests using

Runt i meSer vi ce. submi t Request . After the subrequest has been submitted, the
parent request must indicate to Oracle Enterprise Scheduler that it is pausing to allow
the subrequest to be processed. This is accomplished by the parent throwing an
Execut i onPausedExcpet i on which causes the request to transition to PAUSED
state. After the subrequests have completed, the parent request is run again as a
resumed request. The Request Execut i onCont ext can be used to determine if the
executable is being run as a resumed request.

20.2.5.2 Storing the Paused State for a Parent Request

When a job execution pauses after submitting a subrequest, Oracle Enterprise
Scheduler regards its execution as complete, for all intents and purposes, as
implementation-wise there is no notion of pausing an execution thread. Therefore, to
resume such a paused job, Oracle Enterprise Scheduler must restart the job. In such
cases, the job execution restarts from the beginning, whereas the desired behavior is to

Using Subrequests 20-3

Creating and Managing Subrequests

continue from the point at which execution was paused. This requires the job
execution to store some kind of execution state that would represent the paused point.
On resuming, the job can retrieve such a state and jump to the paused point to
continue from there.

In general, it is incumbent on individual jobs to define an execution state that would
allow it to resume in a deterministic way from each pause point throughout the
business logic (jobs can have multiple pause points). In some cases, it can be as simple
as storing the step number and jumping to that particular step on resuming, while in
other cases it can be a huge data set that stores critical state for the business logic when
it pauses. Oracle Enterprise Scheduler cannot provide a complete solution or
framework to store the entire state.

Oracle Enterprise Scheduler provides a simplistic means for jobs to store their pause
point in the form of a string that can be specified when the parent job pauses its
execution. Upon resuming the parent job, the paused state value can be obtained by
the parent to use as required.

Java jobs can specify a paused state string using a special

Execut i onPausedExcept i on constructor. The state parameter represents the
paused state string saved by Oracle Enterprise Scheduler when it sets the parent
request to PAUSED state.

public ExecutionPausedException(String message, String state)

The resumed parent can retrieve the paused state value by calling
get PausedSt at e() on the Request Execut i onCont ext passed to the parent
executable.

In case a single string value is not sufficient, the parent job can write any number of
properties back into Oracle Enterprise Scheduler using set Request Par anet er (),
and retrieve those properties on resuming using get Request Par anet er () .

20.2.6 How Subrequests Are Processed

When a subrequest is submitted, Oracle Enterprise Scheduler sets the request state to
WAI T but in a deferred mode so it is not dispatched until the parent request pauses.

The parent request of a Java job indicates that it is ready for subrequests to be
processed by throwing Execut i onPausedExcept i on. When the Oracle Enterprise
Scheduler receives such an exception, it sets the parent request state to PAUSED,
publishes a system event message that the parent has paused, and then dispatches all
waiting subrequests for that parent to the ready queue.

Subrequest execution follows the normal life cycle within Oracle Enterprise Scheduler.
After all subrequests for a given parent request are finished, the parent request can be
resumed.

When a parent is ready to resume, Oracle Enterprise Scheduler places the parent
request in the ready queue. The parent state remains as PAUSED while it is waiting to
be picked up. After Oracle Enterprise Scheduler picks up the parent request from the
ready queue, the request state is set to RUNNI NGand the request executable called as a
resumed request.

If a request is paused without submitting any subrequests, it is treated as if all
subrequests had finished. That is, it is placed in the ready queue, at PAUSED state, to
be picked up for processing as a resumed request.

The final state of a subrequest does not influence how Oracle Enterprise Scheduler
handles the parent request or the final state of the parent request after that parent

20-4 Developing Applications for Oracle Enterprise Scheduler

Creating a Java Procedure that Submits a Subrequest

executable has completed. When the parent request resumes, the parent request job
logic can retrieve information about the subrequest, using this data as needed to
determine subsequent actions. The final state of the parent request is based entirely on
the state in which the parent request completed: succeeded, error, warning or
canceled.

20.2.7 How to Identify Subrequests

In Oracle Enterprise Scheduler, each request has a Request Type attribute. That
attribute indicates whether the request is a singleton, part of a job set, a recurring
request, a subrequest, and so on.

A subrequest has a Request Type of SUB_REQUEST or

UNVALI| DATED_SUB_REQUEST. An UNVALI DATED_SUB_REQUEST represents a
subrequest that was submitted using the Oracle Enterprise Scheduler PL/SQL
interface but has not yet been validated. The Request Type of the parent request is
either SI NGLETON, RECUR_CHI LD, JOBSET_STEP, or SUBREQUEST. All other request
types represent requests that can never be the parent of a subrequest.

The parent request ID attribute for a subrequest is the request that submitted the
subrequest.

20.2.8 How to Manage Subrequests and Incompatibility

In general, a request acquires incompatibility locks when the request transition from
READY to RUNNI NGstate. Those locks are not released until the request finishes and is
set to a terminal state; for example, SUCCEEDED, ERROR, WARNI NG, CANCELLED.

Incompatibility locks acquired by a subrequest parent remain in effect even while a

parent request is in a PAUSED state. Any requests that were blocked by a subrequest
parent remain blocked while the subrequests execute and until the parent request is
resumed and finishes.

Subrequests follow all the rules of incompatibility. A subrequest therefore may get
blocked if any incompatible requests are currently running when Oracle Enterprise
Scheduler is ready to execute the subrequest. During such time windows, the parent
request remains in PAUSED state while the subrequest transitions to BLOCKED state.

20.3 Creating a Java Procedure that Submits a Subrequest

This is an example of the Java class for a Java job type that submits subrequests. The
procedure submits two subrequests, pausing between each one. Each subrequest uses
the same JobDef i ni ti on but specifies a different value for the request parameter
named SubRequest Dat a.

The or acl e. as. schedul er. Execut abl e. execut e method of the parent request
is called a total of three times for a given Oracle Enterprise Scheduler request and the
following summaries the expected conditions and a