
Oracle® Fusion Middleware
Administering Oracle Event Processing

12c Release (12.1.3)

E28536-05

October 2015

How to administer Oracle Event Processing applications and
server clusters. Includes application deployment and Oracle
Coherence, Jetty, JDBC and security configuration procedures.

Oracle Fusion Middleware Administering Oracle Event Processing, 12c Release (12.1.3)

E28536-05

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Madhubala Ponnekanti, Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xi

Audience ... xi

Related Documents.. xi

Conventions... xii

What's New in This Guide.. xiii

Part I Overview

1 Introduction to Server Administration

1.1 Server-Provided Services.. 1-1

1.2 Server Domains .. 1-2

1.3 Server Life Cycle .. 1-2

1.3.1 Server Startup Actions... 1-2

1.3.2 Server Shutdown Actions.. 1-3

1.4 Server Configuration... 1-3

1.4.1 Server Configuration Files .. 1-4

1.4.2 Edit the config.xml File.. 1-4

1.4.3 Manage Configuration History .. 1-6

1.4.4 Configure the Server bootclasspath... 1-6

1.5 Server Administration Tools .. 1-7

1.6 Server Administration Tasks.. 1-7

Part II Standalone-Server Domains

2 Standalone-Server Domains

2.1 Configuration Wizard ... 2-1

2.2 Create a Standalone-Server Domain ... 2-1

2.2.1 Create a Standalone-Server Domain in Graphical Mode ... 2-2

2.2.2 Create a Standalone-Server Domain in Silent Mode... 2-3

2.3 Update a Standalone-Server Domain ... 2-6

iii

2.3.1 Update a Standalone-Server Domain in Graphical Mode.. 2-6

2.3.2 Update a Standalone-Server Domain in Silent Mode ... 2-8

2.4 Start and Stop a Server in a Standalone-Server Domain.. 2-9

2.4.1 Start a Standalone-Server with the startwlevs Script .. 2-9

2.4.2 Stop a Standalone-Server with the stopwlevs Script .. 2-9

3 Standalone-Server Domain Application Deployment

3.1 Deploy with the Deployer Utility.. 3-1

Part III Multiserver Domains

4 About Multiserver Domains

4.1 Multiserver Administration ... 4-1

4.1.1 Oracle Coherence.. 4-1

4.1.2 Oracle Event Processing Native Clustering ... 4-2

4.2 Server Groups... 4-2

4.2.1 Singleton Server Deployment Group .. 4-2

4.2.2 Domain Deployment Group... 4-2

4.2.3 Custom Deployment Groups.. 4-3

4.3 Multiserver Notifications and Messaging.. 4-3

4.4 Multiserver Domain Directory Structure ... 4-4

4.5 Order of Cluster Element Child Elements ... 4-4

4.6 High Availability and Multiserver Domains... 4-5

4.7 Scalability and Multiserver Domains ... 4-5

5 Multiserver Domains with Oracle Coherence

5.1 Create a Multiserver Domain... 5-1

5.2 Create a Multiserver Domain with Default Groups ... 5-1

5.3 Create a Multiserver Domain with Custom Groups .. 5-4

5.4 Configure the Oracle Coherence Cluster.. 5-5

5.5 Update a Multiserver Domain ... 5-6

5.6 Secure the Messages Sent Between Servers ... 5-7

5.7 Use Multiserver Domain APIs to Manage Group Membership ... 5-10

5.8 Start and Stop a Server in a Multiserver Domain ... 5-11

6 Multiserver Domains with Native Clustering

6.1 Create a Multiserver Domain... 6-1

6.2 Create a Multiserver Domain with Default Groups ... 6-1

6.3 Create a Multiserver Domain with Custom Groups .. 6-4

6.4 Update a Multiserver Domain ... 6-6

6.5 Secure the Messages Sent Between Servers in a Multiserver Domain..................................... 6-6

6.6 Use Multiserver Domain APIs to Manage Group Membership Changes............................... 6-8

6.7 Start and Stop a Server in a Multiserver Domain ... 6-9

iv

7 Multiserver Domain Application Deployment

7.1 Target Server Groups .. 7-1

7.2 Deploy to a Server Singleton Group ... 7-2

7.3 Deploy to a Server Domain Group.. 7-2

7.4 Deploy to a Server Custom Group.. 7-2

7.5 Troubleshooting ... 7-3

Part IV Configure Services

8 Network I/O

8.1 Network I/O Providers .. 8-1

8.2 Configure Network I/O Server (netio)... 8-2

8.3 Configure Network I/O Client (netio-client) .. 8-3

9 Security

9.1 Users, Groups, and Roles.. 9-1

9.2 Java SE Security for an Oracle Event Processing Server .. 9-3

9.3 Security Provider ... 9-5

9.4 Password Strength... 9-12

9.5 SSL to Secure Network Traffic ... 9-14

9.5.1 Configure SSL Manually ... 9-15

9.5.2 Create a Key Store Manually .. 9-16

9.5.3 Configure SSL in a Multiserver Domain for Visualizer.. 9-18

9.5.4 Configure SSL Between an SAML2 Service Provider and Identity Provider............ 9-20

9.6 FIPS .. 9-20

9.7 SSO with SAML2 ... 9-22

9.7.1 Configure SAML2 Service Provider Options ... 9-23

9.7.2 Configure SAML2 Identity Provider Options.. 9-24

9.7.3 Configure SAML2 Web Application Options .. 9-25

9.8 HTTPS-Only Connections .. 9-25

9.9 Security for Server Services .. 9-27

9.9.1 Configure Jetty Security .. 9-27

9.9.2 Configure JMX Security... 9-27

9.9.3 Configure JDBC Security... 9-27

9.9.4 Configure HTTP Publish-Subscribe Server Channel Security..................................... 9-28

9.10 Cross-Domain Security for Visualizer .. 9-28

9.11 Security Auditor... 9-29

9.12 Disable Security.. 9-30

9.13 Security Utilities... 9-31

9.14 User Credentials for Command-Line Utilities... 9-31

9.15 Security in Oracle Event Processing Examples and Domains... 9-32

v

10 Jetty

10.1 Jetty Features .. 10-1

10.2 Thread Pools ... 10-2

10.3 Work Manager Configuration ... 10-2

10.4 Application Development and Deployment ... 10-3

10.5 Configure a Jetty Server Instance .. 10-3

10.5.1 Example Jetty Configuration .. 10-3

10.5.2 Jetty Configuration Objects... 10-4

11 JMX

11.1 MBean Usage.. 11-1

11.2 Access the Oracle Event Processing JMX Server... 11-2

11.3 Types of MBeans.. 11-3

11.3.1 Configuration MBeans... 11-3

11.3.2 Configuration MBean Naming... 11-3

11.3.3 Run Time MBeans .. 11-5

11.3.4 Run Time MBean Naming .. 11-5

11.3.5 Oracle Event Processing MBean Hierarchy.. 11-6

11.4 Configure JMX.. 11-6

11.4.1 Example JMX Configuration... 11-6

11.4.2 JMX Configuration Objects ... 11-7

11.5 Manage with JMX .. 11-9

11.5.1 Connect with APIs to a JMX Server from a Non-Oracle Event Processing Client 11-10

11.5.2 Connect with APIs to a JMX Server From an Oracle Event Processing Client...... 11-11

11.5.3 Configure an Oracle Event Processing Component with JMX APIs 11-12

11.5.4 Monitor the Throughput and Latency of a Component with JMX APIs 11-13

11.5.5 Connect to a Local or Remote JMX Server using JConsole with Security.............. 11-14

11.5.6 Connect to Local or Remote JMX Server Using JConsole with Security Disabled 11-16

12 JDBC

12.1 Database Access ... 12-1

12.1.1 Oracle JDBC Driver .. 12-1

12.1.2 Supported Databases ... 12-2

12.2 Oracle Event Processing Data Sources ... 12-2

12.2.1 Default Data Source Configuration ... 12-3

12.2.2 Custom Data Source Configuration... 12-3

12.2.3 Get the Native JDBC Connection ... 12-4

12.3 Configure Access to a Database with an Oracle JDBC Driver .. 12-4

12.4 Configure Database Access with Microsoft SQL Server JDBC Driver................................. 12-5

12.5 Configure Access to a Different Database Driver or Driver Version................................... 12-6

12.5.1 Access a Database Driver with an Application Library Built With bundler.sh 12-6

12.5.2 Access a Database Driver with bootclasspath.. 12-9

vi

13 HTTP Publish-Subscribe Server

13.1 Default HTTP Pub-Sub Server ... 13-1

13.2 HTTP Publish-Subscribe Adapters ... 13-2

13.3 Server Architecture.. 13-3

13.4 Create a New HTTP Publish-Subscribe Server ... 13-3

13.5 Configure an Existing HTTP Publish-Subscribe Server... 13-6

14 Logging and Debugging

14.1 Logging Configuration Scenarios.. 14-1

14.2 Commons Apache Logging Framework .. 14-2

14.2.1 Set the Log Factory .. 14-2

14.2.2 Use Log Severity Levels .. 14-2

14.2.3 Log Files... 14-4

14.2.4 Log Message Format .. 14-4

14.3 OSGi Framework Logger.. 14-5

14.4 Log4j Logger ... 14-5

14.4.1 Loggers... 14-5

14.4.2 Appenders ... 14-5

14.4.3 Layouts... 14-5

14.5 Configure the Logging Service .. 14-6

14.5.1 logging-service.. 14-7

14.5.2 log-file .. 14-8

14.5.3 log-stdout... 14-10

14.5.4 Configure Severity for an Individual Module ... 14-10

14.6 Configure Log4j Logging.. 14-13

14.6.1 Configure log4j Properties .. 14-13

14.6.2 Configure Application Manifest .. 14-14

14.6.3 Enable Log4j Logging .. 14-14

14.6.4 Debug Log4j Logging .. 14-14

14.7 Use the Apache Commons Logging API ... 14-14

14.8 Configure Debugging Options .. 14-15

14.8.1 Configure Debugging Options with System Properties... 14-18

14.8.2 Configure Debugging Options with a Configuration File 14-19

Part V Command Reference

A wlevs.Admin Command-Line Reference

A.1 Overview of the wlevs.Admin Utility.. A-1

A.2 Configure the wlevs.Admin Utility Environment ... A-2

A.3 Running the wlevs.Admin Utility Remotely .. A-2

A.4 Run wlevs.Admin Utility in SSL Mode ... A-3

A.5 Syntax for Calling the wlevs.Admin Utility.. A-4

vii

A.5.1 Example Environment .. A-5

A.5.2 Exit Codes Returned by wlevs.Admin ... A-5

A.6 Connection Arguments .. A-5

A.7 User Credentials Arguments... A-7

A.8 Common Arguments.. A-7

A.9 HELP Command ... A-7

A.10 SHUTDOWN Command ... A-8

A.11 Commands to Manage Oracle CQL Rules .. A-9

A.11.1 GETRULE.. A-9

A.11.2 ADDRULE .. A-10

A.11.3 DELETERULE .. A-12

A.11.4 REPLACERULE ... A-13

A.11.5 STARTRULE... A-14

A.11.6 STOPRULE ... A-15

A.11.7 UPLOAD... A-16

A.11.8 DOWNLOAD... A-18

A.12 Commands to Manage MBeans .. A-19

A.12.1 Specifying MBean Types .. A-19

A.12.2 MBean Management Commands.. A-19

A.12.3 GET .. A-20

A.12.4 INVOKE .. A-21

A.12.5 QUERY .. A-22

A.12.6 Query for Application and Processor Names.. A-23

A.12.7 SET ... A-24

A.13 Commands for Controlling Event Record and Playback.. A-25

A.13.1 STARTRECORD... A-26

A.13.2 STOPRECORD ... A-27

A.13.3 CONFIGURERECORD ... A-28

A.13.4 SCHEDULERECORD.. A-31

A.13.5 LISTRECORD... A-32

A.13.6 STARTPLAYBACK ... A-33

A.13.7 STOPPLAYBACK .. A-35

A.13.8 CONFIGUREPLAYBACK .. A-36

A.13.9 SCHEDULEPLAYBACK .. A-40

A.13.10 LISTPLAYBACK.. A-41

A.14 Commands for Monitoring Throughput and Latency .. A-42

A.14.1 MONITORAVGLATENCY.. A-43

A.14.2 MONITORAVGLATENCYTHRESHOLD... A-44

A.14.3 MONITORMAXLATENCY ... A-46

A.14.4 MONITORAVGTHROUGHPUT .. A-47

A.15 Commands for Managing Configuration History ... A-48

A.15.1 CONFIGHISTORY... A-49

A.15.2 DELETECONFIGCHANGEHISTORY .. A-49

viii

A.15.3 LISTCHANGERECORDS... A-50

A.15.4 LISTRESOURCEREVISIONS ... A-51

A.15.5 UNDOCONFIGCHANGE ... A-52

B Deployer Command-Line Reference

B.1 Overview of Using the Deployer Utility .. B-1

B.2 Configure the Deployer Utility Environment ... B-2

B.3 Run the Deployer Utility Remotely .. B-2

B.4 Syntax to Invoke the Deployer Utility .. B-2

B.4.1 Connection Arguments ... B-3

B.4.2 User Credential Arguments.. B-3

B.4.3 Deployment Commands ... B-4

B.5 Deployer Utility Examples ... B-6

C Security Utilities Command-Line Reference

C.1 The cssconfig Command-Line Utility... C-1

C.2 The encryptMSAConfig Command-Line Utility .. C-2

C.3 The GrabCert Command-Line Utility .. C-3

C.4 The passhash Command-Line Utility... C-4

C.5 The policygen Command-Line Utility ... C-4

C.6 The encrypttool Command-Line Utility .. C-5

ix

x

Preface

This document describes how to configure and manageOracle Event Processing
servers. Use Oracle Event Processing Visualizer for most administrative tasks. See
Using Visualizer for Oracle Event Processing.

This administration guide describes command-line utilities and programmatic
interfaces. The programmatic interfaces include management beans (MBeans) and
interfaces to manage server group and domain membership. The interfaces enable
developers to design and create a management console for their Oracle Event
Processing installation to be used by their administrators. The command-line utilities
are for administrators who prefer to conduct administrative tasks from the command
line.

Audience
This section identifies the audience for whom the document is intended.

This document is intended for Oracle Event Processing server administrators.

Related Documents
For more information, see the following:

• Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack at:
http://www.oracle.com//technetwork/middleware/soasuite/documentation/
soaknown-2644661.html.

• Developing Applications for Oracle Event Processing

• Getting Started with Oracle Event Processing

• Getting Started with Oracle Edge Analytics

• Schema Reference for Oracle Event Processing

• Customizing Oracle Event Processing

• Using Visualizer for Oracle Event Processing

• Customizing Oracle Event Processing

• Developing Applications with Oracle CQL Data Cartridges

• Oracle CQL Language Reference for Oracle Event Processing

• Java API Reference for Oracle Event Processing

xi

http://www.oracle.com//technetwork/middleware/soasuite/documentation/soaknown-2644661.html
http://www.oracle.com//technetwork/middleware/soasuite/documentation/soaknown-2644661.html

• Java API Reference for Oracle Edge Analytics

• Using Oracle Stream Explorer

• Getting Started with Oracle Stream Explorer

• Oracle Database SQL Language Reference at: http://docs.oracle.com/cd/
E16655_01/server.121/e17209/toc.htm

• SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

• Oracle Event Processing Forum: http://forums.oracle.com/forums/
forum.jspa?forumID=820

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://forums.oracle.com/forums/forum.jspa?forumID=820
http://forums.oracle.com/forums/forum.jspa?forumID=820

What's New in This Guide

This guide has been updated for the 12c release. File names, screen shots, and text is
updated to reflect new file names and file system structure. The following table lists
other changes.

Sections Changes Made

Entire Guide Product renamed to Oracle Event Processing.

Network I/O Providers Removed reference to several classes that are for internal use only.

Deployment Commands Removed the startLevel command, which is not supported.

xiii

Part I
Overview

This part page contains the chapters that provide an overview.

Overview contains the following chapter:

• Introduction to Server Administration

1
Introduction to Server Administration

Oracle Event Processing server administration tasks involve creating domains and
administering domains, servers, and applications. This guide describes the server
administration tools you run from the command line to accomplish these tasks.

You can also use Oracle Event Processing Visualizer. Visualizer is a browser-based
tool that enables you to administer Oracle Event Processing servers and domains, and
to view, develop, configure and monitor aspects of Oracle Event Processing
applications and security. See Using Visualizer for Oracle Event Processing.

This chapter includes the following sections:

• Server-Provided Services

• Server Domains

• Server Life Cycle

• Server Configuration

• Server Administration Tools

• Server Administration Tasks

See also Java API Reference for Oracle Event Processing for information about the Oracle
Event Processing APIs described in this guide.

1.1 Server-Provided Services
An Oracle Event Processing server consists of logically related resources and services
to which you deploy Oracle Event Processing applications. Services include:

• Network I/O: Server and client Internet Protocol (IP) port access, IPv4 and IPv6
support, and a variety of blocking and non-blocking network I/O providers.

• Security: Security services such as SSL, password stores, and authentication and
authorization providers.

• Jetty: HTTP publish-subscribe server: To enable web clients to subscribe to
channels and publish asynchronous messages to these channels over HTTP

• Java Management Extensions (JMX): Programmatic access to Oracle Event
Processing server and application behavior.

• JDBC data sources: To access relational databases to store events for event record
and playback, to access a table as an event source for Oracle CQL queries.

• HTTP publish-subscribe server: To push event messages to subscribed clients such
as the Oracle Event Processing Visualizer and your own Web 2.0 applications.

Introduction to Server Administration 1-1

• Logging: To monitor and troubleshoot server and application operation.

1.2 Server Domains
An Oracle Event Processing domain is the management unit of a set of one or more
servers. There are two types of domain:

• Standalone-server domain: A domain that contains a single server. This is the type
of domain that is created by default by the Configuration Wizard and is the starting
point for a multiserver domain. See Standalone-Server Domains.

• Multiserver domain: A domain that contains two or more servers that share the
same multicast address, multicast port, domain, and security provider. The
multicast address, multicast port, and domain are configured in the config.xml
file for each server in the domain. You can create server groups within a
multiserver domain and deploy applications to each server in the specified server
group. The servers within a multiserver domain can be located on the same
computer or on separate computers.

1.3 Server Life Cycle
Figure 1-1 shows a state diagram for the Oracle Event Processing server life cycle. In
this diagram, the state names (STARTING, RUNNING, and SHUTTING_DOWN)
correspond to the ServerRuntimeMBean.getState method return values. These
states are specific to Oracle Event Processing. They are not OSGi bundle states.

Figure 1-1 Server Life Cycle State Diagram

1.3.1 Server Startup Actions
After you start the Oracle Event Processing server, it performs the following actions:

1. Starts core engine bundles.

2. Starts Oracle Event Processing bundles and extension libraries.

3. Registers MBeans.

4. Oracle Event Processing server state is now STARTING.

Server Domains

1-2 Administering Oracle Event Processing

5. Starts application libraries and then application bundles.

6. Oracle Event Processing server state is now RUNNING.

1.3.2 Server Shutdown Actions
After you shutdown the Oracle Event Processing server, it performs the following
actions:

1. Oracle Event Processing server state is SHUTTING_DOWN.

2. Unregister ServerRuntimeMBean.

Oracle Event Processing server ceases to have a state.

3. Shuts down Oracle Event Processing bundles.

4. Shuts down application bundles.

5. Shuts down core engine bundles.

1.4 Server Configuration
You can configure the server and configure applications deployed to the server and
perform the asks statically or dynamically. Static configuration involves editing XML
files. Dynamic configuration involves manipulating management beans (MBeans) with
Oracle Event Processing Visualizer, the wlevs.Admin command-line tool, or
programmatically with JMX APIs.

Static Configuration

There are some server configuration tasks that you can only perform statically, such as
configuring Jetty.

To configure the server statically:

1. Stop the Oracle Event Processing server.

2. Edit the Oracle Event Processing server config.xml file located in the server's
domain directory

3. Start the Oracle Event Processing server.

Dynamic Configuration

There are some server configuration tasks that you can perform dynamically using
JMX and MBeans. In this case you do not have to manually stop and start the server
for the changes to take effect.

After you deploy an application, you can dynamically change its configuration and the
configuration of its individual components by manipulating the MBeans that the
Oracle Event Processing server automatically creates for the application and its
components. A typical task is to dynamically configure the Oracle CQL rules for the
processors of a deployed application. You do this using Oracle Event Processing
Visualizer, wlevs.Admin command-line utility, or JMX.

Related Information

For more information, see:

• Configure Servers

Server Configuration

Introduction to Server Administration 1-3

• Using Visualizer for Oracle Event Processing

• wlevs.Admin Command-Line Reference

• JMX .

1.4.1 Server Configuration Files
All server files are contained in a single server directory. The main server
configuration file is config.xml. The config.xml file is where you configure the
server services and specify the domain to which the server belongs.

By default, the Configuration Wizard creates server domains in the /Oracle/
Middleware/my_oep/user_projects/domains directory. The following list
describes the important server files and directories that are in each domain:

• deployments.xml: An XML file that contains the list of applications, packaged as
OSGi bundles, that are currently deployed to the Oracle Event Processing instance
of this domain. You never update this file manually to deploy applications, but use
the Deployer tool.

• startwlevs.cmd: A command file that you use to start an instance of an Oracle
Event Processing server. The UNIX equivalent is startwlevs.sh.

• stopwlevs.cmd: A command file that you use to stop an instance of an Oracle
Event Processing server. The UNIX equivalent is stopwlevs.sh.

• config/config.xml: An XML file that describes the configured services for the
Oracle Event Processing server instance. Services include logging, debugging, Jetty
Web Service, and JDBC data sources.

• config/security*: Files that configure security for the domain.

• config/atnstore.txt: A File that lists the configured users and user groups for
the domain.

1.4.2 Edit the config.xml File
The most efficient and least error-prone way to configure an Oracle Event Processing
server is to use one or more of the Oracle Event Processing administration tools
described in Server Administration Tools.

Optionally, you can perform Oracle Event Processing server configuration by editing
the Oracle Event Processing server config.xml file.

Caution:

If you update the config.xml file manually to change the configuration of
an Oracle Event Processing server, you must restart the server for the change
to take effect.

You can configure the following server objects and features using the config.xml
file. The referenced sections describe the exact elements you must add or update:

• How the servers in a multiserver domain are configured together. This includes the
multicast address and multicast port, the server groups, and so on. See:

Server Configuration

1-4 Administering Oracle Event Processing

– Standalone-Server Domains

– Multiserver Domains with Oracle Coherence

– Multiserver Domains with Native Clustering

• Network I/O. See Network I/O.

• Security. See Security.

• Jetty, an open-source, standards-based, full-featured Java Web Server. See Jetty.

• JMX, required to use the Oracle Event Processing Visualizer, wlevs.Admin utility,
and Deployer utility See JMX .

• JDBC data source, used to connect to a relational database. See JDBC.

• HTTP publish-subscribe server. See HTTP Publish-Subscribe Server.

• Logging and debugging properties of the server. By default, the log level is set to
NOTICE. See Logging and Debugging.

The following example shows a sample config.xml that contains configurations for
some of these services.

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2007 sp2 (http://www.altova.com)-->
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <netio>
 <name>NetIO</name>
 <port>9002</port>
 </netio>
 <netio>
 <name>sslNetIo</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <port>9003</port>
 </netio>
 <work-manager>
 <name>JettyWorkManager</name>
 <min-threads-constraint>5</min-threads-constraint>
 <max-threads-constraint>10</max-threads-constraint>
 </work-manager>
 <jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 </jetty>
 <rmi>
 <name>RMI</name>
 <http-service-name>JettyServer</http-service-name>
 </rmi>
 <jndi-context>
 <name>JNDI</name>
 </jndi-context>
 <exported-jndi-context>
 <name>exportedJndi</name>
 <rmi-service-name>RMI</rmi-service-name>
 </exported-jndi-context>
 <jmx>
 <rmi-service-name>RMI</rmi-service-name>
 <jndi-service-name>JNDI</jndi-service-name>
 </jmx>
 <ssl>

Server Configuration

Introduction to Server Administration 1-5

 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 <key-store-pass>
 <password>{Salted-3DES}j4XEtuXmmvEl4M/NInwq0A==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
 </ssl>
 <http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <name>/pubsub</name>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
 </http-pubsub>
 <cluster>
 <server-name>productionServer</server-name>
 </cluster>
 <domain>
 <name>oep_domain</name>
 </domain>

1.4.3 Manage Configuration History
When you deploy an application to a server, the server creates a configuration history
for the application. Any configuration changes you make to the application are
recorded in this history. You can view and roll back (undo) these changes with Oracle
Event Processing Visualizer or the wlevs.Admin tool.

1.4.4 Configure the Server bootclasspath
Use the -Xbootclasspath command set the search path for bootstrap classes and
resources. For example, you can use this command to satisfy server dependencies
beyond those set by the server configuration file (config.xml). You can also use this
command to satisfy application and application library dependencies beyond those set
by application import statements and found in the library and library extensions
directories.

Configure the bootclasspath:

1. Change directories to the server directory of the domain for which you want to
configure the bootclasspath.

Server Configuration

1-6 Administering Oracle Event Processing

The location is:

/Oracle/Middleware/my_oep/user_projects/domains/<domainname>/
<server_name>

2. In the server directory open the start script (startwlevs.sh or
startwlevs.cmd, depending on your operating system in an editor.

3. Locate the following line:

"$JAVA_HOME/bin/java" $JVM_ARGS $JVM_D64 $DEBUG_ARGS -
Dwlevs.home="$USER_INSTALL_DIR" -jar "${USER_INSTALL_DIR}/bin/wlevs.jar" $ARGS
/wlevs.jar

4. Set the -Xbootclasspath/a option to the full path name of the native library
you are going to use.

For example, if you want to use the native library mynativelib located in Oracle
Event Processing server directory %USER_INSTALL_DIR%\bin, update the java
command in the start script as follows.

The example is broken for readability. Put the full command on one line.

%JAVA_HOME%\bin\java -Dwlevs.home=%USER_INSTALL_DIR% -Dbea.home=%BEA_HOME%
-Xbootclasspath/a:\Oracle\Middlware\my_oep\oep\bin\mynativelib.jar
-jar "%USER_INSTALL_DIR%\bin\wlevs.jar"
-disablesecurity %1 %2 %3 %4 %5 %6

5. If Oracle Event Processing is running, restart it so it reads the new java option and
data source information. See “Start and Stop Servers”.

1.5 Server Administration Tools
This section describes the server administration tools that you can use to administer
Oracle Event Processing servers, domains, and applications.

• Configuration Wizard. A Java application that you can invoke graphically to create
and update Oracle Event Processing servers and domains. For the 12.1.3 release,
the Configuration Wizard can generate an Oracle database configuration only. See
Standalone-Server Domains.

• wlevs.Admin command-line utility. A Java application that you can invoke
locally or remotely to perform a wide variety of Oracle Event Processing server,
domain, and application administration tasks. See wlevs.Admin Command-Line
Reference.

• Deployer command-line utility. A Java application that you can invoke locally or
remotely to perform application deployment and application administration tasks.
See Deployer Command-Line Reference.

• Security administration utilities. See Security Utilities Command-Line Reference.

• JMX. A set of standards-based interfaces that enable you to perform server,
domain, and application administration tasks using JMX and management beans
(MBeans). See JMX .

1.6 Server Administration Tasks
This section briefly describes some of the important server administration tasks.

Server Administration Tools

Introduction to Server Administration 1-7

Create Servers and Domains

The primary administrative task in setting up an Oracle Event Processing platform is
creating and configuring the server domains. Oracle Event Processing supports
standalone-server domains and multiserver domains.

For more information, see:

• Standalone-Server Domains

• Multiserver Domains with Oracle Coherence

• Multiserver Domains with Native Clustering

Update Servers and Domains

Once you create an Oracle Event Processing server and domain, you can update it to
change its configuration or server group membership. See:

• Update a Standalone-Server Domain

• Update a Multiserver Domain

• Update a Multiserver Domain

Configure Servers

Once you create an Oracle Event Processing server and domain, you must configure
the various services they provide. See:

• Network I/O

• Security

• Jetty

• Configure JMX

• JDBC

• HTTP Publish-Subscribe Server

• Logging and Debugging

Start and Stop Servers

After you have created an Oracle Event Processing domain along with at least a single
server, you start a server instance so you can then deploy applications and begin
running them. During upgrades and after some configuration changes, you must stop
and start the Oracle Event Processing server. See:

• Start and Stop a Server in a Standalone-Server Domain

• Oracle Coherence: Start and Stop a Server in a Multiserver Domain

• Oracle Event Processing Native Clustering: Start and Stop a Server in a Multiserver
Domain

Server Administration Tasks

1-8 Administering Oracle Event Processing

Note:

On Windows, do not stop the Oracle Event Processing server by clicking the
Close button in the command prompt in which you started it. Always stop the
Oracle Event Processing server using the stopwlevs.cmd script or Ctrl-C.

Deploy Applications to Servers

Once you have created and configured an Oracle Event Processing server and domain,
you can deploy Oracle Event Processing applications to them. See:

• Standalone-Server Domain Application Deployment

• Target Server Groups

Manage Applications, Servers, and Domains

Once you have deployed applications to an Oracle Event Processing server and
domain, you must manage the application to perform tasks such as monitor its
performance and perform upgrades. See:

• Server Administration Tools

• Manage with JMX

Server Administration Tasks

Introduction to Server Administration 1-9

Server Administration Tasks

1-10 Administering Oracle Event Processing

Part II
Standalone-Server Domains

Standalone-Server Domains contains the following chapters:

• Standalone-Server Domains

• Standalone-Server Domain Application Deployment

2
Standalone-Server Domains

An Oracle Event Processing standalone-server domain contains a single Oracle Event
Processing server. By default, the Configuration Wizard creates a standalone-server
domain, which can be the starting point for a multiserver domain.

This chapter includes the following sections:

• Configuration Wizard

• Create a Standalone-Server Domain

• Update a Standalone-Server Domain

• Start and Stop a Server in a Standalone-Server Domain

2.1 Configuration Wizard
The Configuration Wizard is an administration tool that enables you to create a new
domain or update an existing domain. You can use the Configuration Wizard in
graphical mode (interactive) or silent mode.

Silent mode is non-interactive and requires an XML properties file for selecting
configuration options. You can run silent-mode configuration as part of a script or
from the command line. The advantage to silent-mode configuration is that if you plan
to create a multiserver domain, you can set the domain configuration options once and
use the same options to set the configuration on the other servers.

The following procedures show how to perform the create and update operations in
graphical mode and in silent mode. You can update only the listen port and the JDBC
data source configuration of a standalone-server domain.

2.2 Create a Standalone-Server Domain
Use the Configuration Wizard to create a new domain to which to deploy your
applications. The Configuration Wizard creates a single default server in the domain.
All of the server files are in a subdirectory of the domain directory. The domain
directory has the same name as the server. You also configure the following:

• Server administration user name and password.

• A database or database driver that is different from the default.

• Server listen port.

• Password for the identity keystore and private keystore.

Standalone-Server Domains 2-1

2.2.1 Create a Standalone-Server Domain in Graphical Mode
Once launched, the Configuration Wizard in graphical mode is self-explanatory, but
the full procedure is provided here for your information.

1. Go to the /Oracle/Middleware/my_oep/oep/common/bin directory.

2. Run the config command to start the wizard:

UNIX:
./config.sh

Windows: config.cmd

The Oracle Welcome screen displays.

3. Click Next.

The Choose Create or Update Domain screen displays.

4. In the Choose Create or Update Domain window, select Create a New OEP
Domain and click Next.

The Configure Administrator Username and Password screen displays.

5. In the Configure Administrator Username and Password screen, enter the
following:

User name: oepadmin User password: welcome1 Confirm user password:
welcome1

6. Click Next.

7. Enter basic configuration information about the default server in the domain. In
particular:

The Configure Server screen displays.

• Enter the name of the default server. This name is also used for the name of the
directory that contains the default server files.

• The listen port for Oracle Event Processing itself. Default is 9002.

8. In the Configure Server screen, enter the server name and listen port as follows:

Server name: The name of the default server. This name is also the name of the
directory that contains the default server files.

Server listen port: The port where Oracle Event Processing listens for events. The
default is 9002.

9. Click Next.

The Configure Domain Identity Keystore screen displays.

10. In the Configure Domain Identity Keystore screen, enter the following:

Keystore file: Accept the default. Keystore password: welcome1. Confirm
keystore password: welcome1.

By default, the password for the certificate private key is the same as the
password for the domain identity keystore.

Create a Standalone-Server Domain

2-2 Administering Oracle Event Processing

11. Click Next.

The Configuration Options screen displays.

12. In the Configuration Options screen, decide whether or not to update the JDBC
data source configuration.

If you select No, no JDBC data source is configured. If select Yes, you proceed to
the page in which you can enter the JDBC data source information.

a. To create a JDBC data source:

• Select Yes and Click Next.

The Configure Database Properties screen displays.

• In the Configure Database Properties screen, enter the new JDBC data
source values.

In the top section, enter the data source name, type, driver name and
location.

In the lower section, enter information about the data base to which this
data source connects.The JDBC connection URL is generated based on the
information you enter.

• Click Next.

The Create OEP Domain screen displays

b. To not create a JDBC data source, select No and click Next.

The Create OEP Domain screen displays.

13. In the Create OEP Domain screen, enter the following information:

Domain name: The name of the new domain. Domain location: Accept the default.

The Configuration Wizard creates the domain in the domain location directory
with the domain name that you specified

14. Click Create.

The Creating Domain screen displays.

If the creation of the domain succeeds, a message similar to the following displays
in the information window:

Domain created successfully!
Domain location: C:\Oracle\Middleware\my_oep\user_projects\domains\oep_domain

15. Click Done to exit Configuration Wizard.

16. Go to the domain location to see the domain you just created.

2.2.2 Create a Standalone-Server Domain in Silent Mode
This section describes the procedure to create a standalone-server domain in silent
mode.

Silent mode is a non-interactive way to update a domain and requires an XML
properties file for selecting configuration options.

• Create an XML Properties File

Create a Standalone-Server Domain

Standalone-Server Domains 2-3

• Use Silent Mode and Generate a Log File

• Return Exit Codes to the Command Window

2.2.2.1 Create an XML Properties File

1. Go to the computer on which you want to run the Configuration Wizard in silent
mode.

2. In an XML editor, create an empty file.

You can name the file anything you want as long as it has a .xml extension. For
this procedure, the file name is silent.xml.

3. Copy the contents of the following sample XML file into the silent.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<bea-installer xmlns="http://www.bea.com/plateng/wlevs/config/silent">
 <input-fields>
 <data-value name="CONFIGURATION_OPTION" value="createDomain" />
 <data-value name="USERNAME" value="wlevs" />
 <data-value name="PASSWORD" value="wlevs" />
 <data-value name="SERVER_NAME" value="my_wlevs_server" />
 <data-value name="DOMAIN_NAME" value="myDomain" />
 <data-value name="DOMAIN_LOCATION"
 value="C:\Oracle\Middleware\my_oep\user_projects\domains" />
 <data-value name="NETIO_PORT" value="9002" />
 <data-value name="KEYSTORE_PASSWORD" value="my_keystore_password" />
 <data-value name="PRIVATEKEY_PASSWORD" value="my_privatekey_password" />
 <data-value name="DB_URL" value="jdbc:bea:oracle://localhost:1521:XE" />
 <data-value name="DB_USERNAME" value="db_user" />
 <data-value name="DB_PASSWORD" value="db_password" />
 </input-fields>
</bea-installer>

4. In the silent.xml file, edit the values for the keywords shown in Table 2-1 to
reflect your configuration.

For example, to create a new domain in the /Oracle/Middleware/my_oep/
finance_projects/domains directory, update the corresponding <data-
value> element as follows

<data-value name="DOMAIN_LOCATION"
 value="/Oracle/Middleware/my_oep/finance_projects/domains" />

Table 2-1 Values for the silent.xml File

For this data-value
name...

Enter the following value...

CONFIGURATION_OPT
ION

Whether you want to create a new domain with a default server
or update a server in an existing domain.

Valid values are createDomain or updateDomain. Default
value is createDomain.

EXISTING_DOMAIN_P
ATH

The full path name of an existing server in the domain.

Use this option only when updating an existing server in a
domain.

USERNAME The user name of the administrator of the created or updated
server in the domain.

Create a Standalone-Server Domain

2-4 Administering Oracle Event Processing

For this data-value
name...

Enter the following value...

PASSWORD The password of the administrator of the created or updated
server in the domain.

SERVER_NAME The name of the new server in this domain. This name will also
be used as the name of the directory that contains the server
files.

DOMAIN_NAME The name of the domain.

DOMAIN_LOCATION The full name of the directory that will contain the domain.

The standard location for Oracle Event Processing domains is /
Oracle/Middleware/my_oep/user_projects/domains.

NETIO_PORT The port number to which the Oracle Event Processing server
instance itself listens.

KEYSTORE_PASSWORD The password for the Oracle Event Processing identity keystore.

PRIVATEKEY_PASSWO
RD

The password for the certificate private key.

The default value of this option is the value of the
KEYSTORE_PASSWORD.

DB_URL The URL used to connect to a database using JDBC. This option
is used to configure the data source.

The database configuration parameters are optional; if you do
not specify them, then no data source is configured for the
server.

DB_USERNAME The name of the user that connects to the database via the data
source.

The database configuration parameters are optional; if you do
not specify them, then no data source is configured for the
server.

DB_PASSWORD The password of the user that connects to the database via the
data source.

The database configuration parameters are optional; if you do
not specify them, then no data source is configured for the
server.

5. Save the file in a directory of your choice.

2.2.2.2 Use Silent Mode and Generate a Log File

1. Go to the /Oracle/Middleware/my_oep/oep/common/bin directory:

2. Run the config command to start the wizard in silent mode and generate a log file
to catch failures do to incorrect XML property entries:

UNIX:
./config.sh -mode=silent -silent_xml=path_to_xml_file -log=/logs/create_domain.log

Windows: config.cmd -mode=silent -silent_xml=path_to_xml_file -log=/logs/
create_domain.log

path_to_xml_file is the full path name to the XML properties file you created

Create a Standalone-Server Domain

Standalone-Server Domains 2-5

create_domain.log specifies to create a log file in the domain directory.

The command does not return any messages if it completes successfully. See
Return Exit Codes to the Command Window to get information about the success
or failure of the silent execution of the Configuration Wizard.

2.2.2.3 Return Exit Codes to the Command Window

When you run in silent mode, the Configuration Wizard generates exit codes that
indicate the success or failure of the creation and configuration of the domain. These
exit codes are shown in the following table.

Table 2-2 Exit Codes

Code Description

0 Configuration Wizard execution completed successfully

-1 Configuration Wizard execution failed due to a fatal error

-2 Configuration Wizard execution failed due to an internal XML parsing error

The following example provides a sample Windows command file that runs the
Configuration Wizard in silent mode and echoes the exit codes to the command
window from which the script is executed.

rem Execute the Configuration Wizard in silent mode
@echo off
config.cmd -mode=silent -silent_xml=c:\scripts\silent.xml -log=C:\logs
\create_domain.logs

@rem Return an exit code to indicate success or failure
set exit_code=%ERRORLEVEL%

@echo.
@echo Exitcode=%exit_code%
@echo.
@echo Exit Code Key
@echo ---------------
@echo 0=Configuration Wizard completed successfully
@echo -1=Configuration Wizard failed due to a fatal error
@echo -2=Configuration Wizard failed due to an internal XML parsing error
@echo.

2.3 Update a Standalone-Server Domain
Use the Configuration Wizard to update an existing standalone-server domain. You
can update only the listen port and the JDBC data source configuration.

2.3.1 Update a Standalone-Server Domain in Graphical Mode
Once launched, the Configuration Wizard in graphical mode is self-explanatory, but
the full procedure is provided here for your information.

1. Go to the /Oracle/Middleware/my_oep/oep/common/bin directory.

2. Run the config command to start the wizard:

UNIX:
./config.sh

Update a Standalone-Server Domain

2-6 Administering Oracle Event Processing

Windows: config.cmd

The Oracle Welcome screen displays.

3. Click Next.

The Choose Create or Update Domain screen displays.

4. In the Choose Create or Update Domain window, select Updating an existing
Oracle Event Processing domain.

5. Click Next.

The Choose an Existing OEP domain screen displays.

6. In the Choose an Existing OEP domain screen text box, enter or browse for the full
path name to the server directory for the server that you want to update.

In this example, the value is C:\Oracle\Middleware\my_oep
\user_projects\domains\myDomain\productionServer.

7. Click Next.

The Choose an Existing OEP Domain screen displays.

8. In the Choose an Existing OEP Domain screen, select the path to the domain that
you want to update from the drop-down list and click Next.

The Configure Server screen displays. The Server name field is grayed out, but
you can change the value in the Server listen port field.

Note:

To prevent any conflicts when all servers are running at the same time, be sure
that you do not enter the same values used by other servers in the domain.

9. In the Configure Server screen, either change the listen port and click Next or click
Next without changing the listen port.

The Configuration Options screen displays.

10. In the Configuration Options screen, decide whether to update the JDBC data
source configuration.

To update the JDBC data source configuration:

a. In the Configuration Options screen, select Yes and click Next.

The Configure Database Properties screen displays.

b. In the Configure Database Properties screen, enter your changes and click
Next.

The Create OEP Domain screen displays.

To leave the JDBC data source configuration unchanged:

a. In the Configuration Options screen, select No.

b. Click Next.

The Create OEP Domain screen displays.

Update a Standalone-Server Domain

Standalone-Server Domains 2-7

11. In the Create OEP Domain screen, click Update to update the server.

2.3.2 Update a Standalone-Server Domain in Silent Mode
Silent mode is a non-interactive way to update a domain and requires an XML
properties file for selecting configuration options.

1. Create an XML properties file that contains the updates that you want to make.

See Return Exit Codes to the Command Window if you need information about
how to create the file, but handle the update settings as follows:

• Set CONFIGURATION_OPTION to updateDomain.

• Set EXISTING_DOMAIN_PATH to the full path name of the server directory that
contains the server files that you want to update.

• Do not set the DOMAIN_NAME and DOMAIN_LOCATION options. This is because
the Configuration Wizard already knows these values, based on what you
entered for EXISTING_DOMAIN_PATH.

• Set the listen port to the new values.Be sure that the new server configuration
options, such as NETIO_PORT are different than the options for any other
servers in the domain.

• Set the JDBC data source options to the new values. The database options can be
the same if you want the updated server to connect to the same database as the
other servers.

The following XML properties file updates the listen port (NETIO_PORT) and data
source settings for \~mydomain\productionServer.

<?xml version="1.0" encoding="UTF-8" ?>
<bea-installer xmlns="http://www.bea.com/plateng/wlevs/config/silent">
 <input-fields>
 <data-value name="CONFIGURATION_OPTION" value="updateDomain" />
 <data-value name="EXISTING_DOMAIN_PATH"
 value="C:\Oracle\Middleware\my_oep\user_projects\domains\myDomain
\productionServer" />
 <data-value name="NETIO_PORT" value="9102" />
 <data-value name="DB_URL" value="jdbc:bea:oracle://localhost:1521:XE" />
 <data-value name="DB_USERNAME" value="db_user" />
 <data-value name="DB_PASSWORD" value="db_password" />
 </input-fields>
</bea-installer>

2. Go to the /Oracle/Middleware/my_oep/oep/common/bin directory.

3. Run the config command to start the wizard in silent mode and generate a log
file:

UNIX:
./config.sh -mode=silent -silent_xml=path_to_xml_file -log=/logs/create_domain.log

Windows: config.cmd -mode=silent -silent_xml=path_to_xml_file -log=/logs/
create_domain.log

path_to_xml_file is the full path name to the XML properties file you created

create_domain.log specifies to create a log file in the domain directory.

Update a Standalone-Server Domain

2-8 Administering Oracle Event Processing

The command does not return any messages if it completes successfully. See
Return Exit Codes to the Command Window to get information about the success
or failure of the silent execution of the Configuration Wizard.

2.4 Start and Stop a Server in a Standalone-Server Domain
You can start and stop an Oracle Event Processing standalone-server with any of the
command-line scripts or with Oracle Event Processing Visualizer. For information
about Visualizer, see Using Visualizer for Oracle Stream Explorer.

• Start a Standalone-Server with the startwlevs Script

• Stop a Standalone-Server with the stopwlevs Script.

2.4.1 Start a Standalone-Server with the startwlevs Script
Each Oracle Event Processing server directory contains a command script that starts a
server instance. By default, the script is called startwlevs.cmd (Windows) or
startwlevs.sh (UNIX).

1. Ensure that the JAVA_HOME variable in the server start script points to the correct
JDK. If it does not, edit the script.

The server start script is located in the server directory under the main domain
directory. For example, the default server directory for the HelloWorld domain is
in /Oracle/Middleware/my_oep/oep/examples/domains/
helloworld_domain/defaultserver.

2. Open a command window and change to the server directory of the domain
directory. For example, to start the HelloWorld sample server:

cd C:\Oracle\Middleware\my_oep\oep\examples\domains\helloworld_domain
\defaultserver

Note:

You must run the start scripts from within the target directory. Oracle Event
Processing does not support relative directory paths.

3. Run the startwlevs.cmd (Windows) or startwlevs.sh (UNIX) script:

startwlevs.cmd

Note:

On HP-UX, to avoid an OutOfMemoryError, you might need to increase the
MaxPermSize to 256 in startwlevs.sh. For example: -
XX:MaxPermSize=256m.

2.4.2 Stop a Standalone-Server with the stopwlevs Script
Each Oracle Event Processing server directory contains a command script that stops a
server instance; by default, the script is called stopwlevs.cmd (Windows) or
stopwlevs.sh (UNIX).

Start and Stop a Server in a Standalone-Server Domain

Standalone-Server Domains 2-9

Note:

The following procedure does not stop an Oracle Event Processing stand-
alone server running in SSL mode. To stop an Oracle Event Processing stand-
alone server running in SSL mode, run the wlevs.Admin utility, as described
in Run wlevs.Admin Utility in SSL Mode.

1. Open a command window and change to the server directory. For example, to stop
the running HelloWorld sample server:

cd C:\Oracle\Middleware\my_oep\oep\examples\domains\helloworld_domain
\defaultserver

2. Execute the stopwlevs.cmd (Windows) or stopwlevs.sh (UNIX) script.

Use the -url argument to pass the URL that establishes a JMX connection to the
server you want to stop. This URL takes the form service:jmx:msarmi://
host:port//jndi/jmxconnector, where host refers to the computer hosting
the server and port refers to the server's JNDI port, configured in config.xml
file. For example:

stopwlevs.sh -url service:jmx:msarmi://ariel:9002/jndi/jmxconnector

In the example, the host is ariel and the JMX port is 9002. The 9002 port is the
netio port defined in the Oracle Event Processing server config.xml configuration
file. MSA security uses it for JMX connectivity.

See Connection Arguments for additional details about the -url argument.

Note:

On Windows, do not stop the Oracle Event Processing server by clicking the
Close button in the command prompt in which you started it. Always stop the
Oracle Event Processing server with the stopwlevs.cmd script or with
Ctrl-C.

Start and Stop a Server in a Standalone-Server Domain

2-10 Administering Oracle Event Processing

3
Standalone-Server Domain Application

Deployment

To deploy an application to a standalone-server domain, use either Oracle Event
Processing Visualizer or the Deployer utility. This chapter describes how to use the
Deployer utility.

See Using Visualizer for Oracle Event Processing for information about using Visualizer
to deploy an application.

3.1 Deploy with the Deployer Utility
A standalone-server domain has one server (a singleton). When you deploy an Oracle
Event Processing application to the singleton server with the Deployer utility, you can
specify a server group to which to deploy. Whether or not you specify a server group,
Oracle Event Processing deploys the application to the single server in the standalone-
server domain. In a multiserver domain, you can organize the servers into server
groups and deploy applications specific server groups. See Server Groups.

The following example shows how to deploy to a singleton server group. The
command does not include the -group option for deployment to a singleton server
group:

java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer -install myapp_1.0.jar

In the example, the myapp_1.0.jar application is deployed to the singleton server
group that contains a single server, which is the server running on host ariel and
listening to port 9002.

For more information about the Deployer utility, see Deployer Command-Line
Reference.

Standalone-Server Domain Application Deployment 3-1

Deploy with the Deployer Utility

3-2 Administering Oracle Event Processing

Part III
Multiserver Domains

Multiserver Domains contains the following chapters:

• About Multiserver Domains

• Multiserver Domains with Oracle Coherence

• Multiserver Domains with Native Clustering

• Multiserver Domain Application Deployment

4
About Multiserver Domains

Oracle Event Processing multiserver domains (clusters) are created with Oracle
Coherence or Oracle Event Processing native technology. You add one or more servers
to a multiserver domain that become logically and physically connected by User
Datagram Protocol (UDP). All servers in an Oracle Event Processing multiserver
domain are aware of all other servers in the domain and any one server can be the
access point for changes to the deployments within the domain

This chapter includes the following sections:

• Multiserver Administration

• Server Groups

• Multiserver Notifications and Messaging

• Multiserver Domain Directory Structure

• Order of Cluster Element Child Elements

• High Availability and Multiserver Domains

• Scalability and Multiserver Domains.

4.1 Multiserver Administration
You administer servers in a multiserver domain at the domain (infrastructure) level.
You must configure every server in the domain with the same multicast address,
multicast port number, and the same domain name to avoid configuration errors. For
example, Oracle Event Processing raises an error when you configure servers with the
same multicast address and multicast port but with different domain names.

Every server in the domain detects failures, starts, and restarts by the other servers.
You can deploy an application to one server and undeploy it from another server
under the same domain.

4.1.1 Oracle Coherence
When you create a multiserver domain with Oracle Coherence, the domain receives
replicated and distributed (partitioned) data management services on top of a reliable
and highly scalable peer-to-peer clustering protocol. Oracle Coherence has no single
points of failure, but instead transparently fails over and redistributes its clustered
data management services when a server becomes inoperative or disconnected from
the network. When you add a new server or restart a failed server, the server joins the
cluster and Oracle Coherence transparently restores services and redistributes the
cluster load.

About Multiserver Domains 4-1

Note:

To use Oracle Event Processing with Oracle Coherence, you must first obtain a
valid Oracle Coherence license. See http://www.oracle.com/
technetwork/middleware/coherence/overview/index.html.

4.1.2 Oracle Event Processing Native Clustering
When you create a multiserver domain with Oracle Event Processing native clustering,
the domain receives a native clustering implementation based on TOTEM. However,
with Oracle Event Processing native clustering, you cannot take advantage of Oracle
Event Processing high availability quality of service options. See Multiserver Domains
with Native Clustering.

4.2 Server Groups
A server group is a set of one or more servers with a unique name within the domain.
In an Oracle Event Processing domain, an arbitrary number of server groups can exist
with a configurable server group membership. A server can be a member of more than
one server group. Users are not aware of the underlying server groups because server
groups serve as an administration tool that enables you to deploy and manage a
multiserver domain at a finer level.

When you deploy applications to the default server group in a multiserver domain,
they are deployed to all servers in the domain. All servers in the multiserver domain
must have the same correct configuration resources that are required by the
application

Oracle Event Processing provides the following predefined deployment server groups:

• Singleton Server Deployment Group

• Domain Deployment Group

You can also create a custom deployment server group so that you can deploy
applications to specific servers within a multiserver domain. See Custom Deployment
Groups. If you plan to deploy an Oracle Event Processing high availability application
and require scalability, you might need to configure an Oracle Event Processing high
availability notification group. See Using Visualizer for Oracle Event Processing.

You create a server group by deciding on a name and using that name it in the
groups element in the config.xml file for the servers you want to include in the
server group.

4.2.1 Singleton Server Deployment Group
The singleton server deployment group consists of one local server only. The
membership of this server group depends on the server from which it is accessed. You
can use this server group to pin deployments to a single server.

For more information, see Multiserver Domains with Oracle Coherence.

4.2.2 Domain Deployment Group
The domain deployment group contains all live members of the domain. Its
membership can only be changed by an administrator.

Server Groups

4-2 Administering Oracle Event Processing

http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html

The domain name is determined by the Oracle Event Processing server config.xml
file domain element. The default domain name is AllDomainMembers. In the
following example, the default domain name is changed to myDomain in the following
config.xml file entry:

<domain>
 <name>myDomain</name>
</domain>

4.2.3 Custom Deployment Groups
There are cases where the application logic cannot be replicated across a homogenous
set of servers in a multiserver domain. An example is an application that determines
the best price provided by different pricing engines. Another example is an
application that sends an alert when a position crosses a threshold. In either case, the
application does not perform multiple operations, but instead calculates once or sends
a single event, respectively. In other cases, the application has a singleton nature, such
as monitoring an application, the HTTP pub-sub server, and so on.

A more complex example is a domain with two applications. The first application,
strategies, uses several strategies to calculate different prices for a derivative and
feeds the results to the selector application. The selector application selects the
best price from the results sent to it by the strategies application.

The strategies application can be replicated to achieve fault-tolerance. However,
the selector application must keep state so it can determine the best price. Because
selector must maintain state, the selector application cannot be replicated across
a homogenous set of servers.

If a domain must support servers that are not completely homogeneous, you can
configure with custom deployment groups. Applications deployed to a custom
deployment group in a multiserver domain are deployed homogeneously to all
servers within the deployment group. All servers within the deployment group must
have the appropriate configuration resources required by the application or
applications.

For more information, see Multiserver Domains with Oracle Coherence.

4.3 Multiserver Notifications and Messaging
Oracle Event Processing provides a number of notification and messaging APIs for
server groups and servers. You can use these APIs to configure a server to receive
notification when its server group or domain membership changes. The change can be
because an administrator changed it or because of a server failure. You can also use
these APIs to send messages to individual server groups and to the domain.

When you configure your application to use Oracle Event Processing high availability
options, the primary Oracle Event Processing server uses Oracle Coherence to
communicate with its secondary servers to keep them up-to-date with the event
processing progress of the primary server.

You can also configure Oracle Event Processing servers in a multiserver domain to
communicate securely.

For more information, see:

• Secure the Messages Sent Between Servers

• Secure the Messages Sent Between Servers in a Multiserver Domain.

Multiserver Notifications and Messaging

About Multiserver Domains 4-3

4.4 Multiserver Domain Directory Structure
Servers in an Oracle Event Processing domain store their files in a single directory. By
convention, the directories of the servers in a multiserver domain are subdirectories of
the domain directory. Also, the name of the servers and domain correspond to the
name of the server directories and domain directory, respectively.

This is by convention only, and not required, although Oracle recommends you set up
your domains this way for simplicity and consistency. If the servers of the multiserver
domain are located on different computers, you can replicate the directory structure
on both computers, also for simplicity and consistency.

Figure 4-1 shows a multiserver domain directory with three servers.

Figure 4-1 Multiserver Domain Directory Structure

In Figure 4-1, the myServer1 configuration file snippet shows how the domain
directory and domain object are configured with the same name, and the server
directory and server name.

The domain directory is in the /Oracle/Middleware/my_oep/user_projects/
domains directory, which is the default location for Oracle Event Processing domains.

4.5 Order of Cluster Element Child Elements
The order of cluster element child elements in the config.xml file is important. If
you put elements in an incorrect order you can get an error. The following list
describes the order in which to list the child elements:

• server-name

• server-host-name: Specifies the host address/IP used for point-to-point HTTP
multiserver communication. Default value is localhost.

This element is mandatory if one or more Oracle Event Processing servers in your
multiserver domain are on different hosts and you plan to manage the multiserver
domain with Oracle Event Processing Visualizer. The element is also mandatory
when a server is deployed on a host machine that has multiple IP addresses
configured (whether in a multiserver or standalone-server environment).

• multicast-address: The multicast communication address. For Oracle
Coherence well-known addressing (WKA) a unicast address can be used.

• multicast-port: Optional. Specifies the port to use for multicast traffic. Default
value is 9001.

Multiserver Domain Directory Structure

4-4 Administering Oracle Event Processing

• identity: Mandatory only for Oracle Event Processing native clustering. This
element is not used for Oracle Coherence.

• enabled

• security

• groups

• operation-timeout: Optional. Specifies, in milliseconds, the time out for point-
to-point HTTP multiserver requests. Default value is 30000.

For a complete description of the Oracle Event Processing server config.xml file
cluster element, see Using Visualizer for Oracle Event Processing.

4.6 High Availability and Multiserver Domains
If you use Oracle Coherence clustering for your multiserver domain, you can take
advantage of Oracle Event Processing high availability quality of service options.
These options are not supported by Oracle Event Processing native clustering. For
more information, see Schema Reference for Oracle Event Processing.

4.7 Scalability and Multiserver Domains
With either Oracle Coherence or Oracle Event Processing native clustering, you can
take advantage of Oracle Event Processing scalability quality of service options. For
more information, see Schema Reference for Oracle Event Processing.

High Availability and Multiserver Domains

About Multiserver Domains 4-5

Scalability and Multiserver Domains

4-6 Administering Oracle Event Processing

5
Multiserver Domains with Oracle Coherence

You can create, configure, and administer multiserver domains that are based on
Oracle Coherence. With Oracle Coherence, the domain receives replicated and
distributed (partitioned) data management services on top of a reliable and highly
scalable peer-to-peer clustering protocol.

This chapter includes the following sections:

• Create a Multiserver Domain

• Create a Multiserver Domain with Default Groups

• Create a Multiserver Domain with Custom Groups

• Configure the Oracle Coherence Cluster

• Update a Multiserver Domain

• Secure the Messages Sent Between Servers

• Use Multiserver Domain APIs to Manage Group Membership

• Start and Stop a Server in a Multiserver Domain

If you plan to deploy an Oracle Event Processing high availability application and
require scalability, you might need to create an Oracle Event Processing high
availability notification group. For more information, see Schema Reference for Oracle
Event Processing.

5.1 Create a Multiserver Domain
To create a multiserver domain, start by using the Configuration Wizard to create one
domain with one server. This is a standalone-server domain. To convert the
standalone-server domain to a multiserver domain, you can either:

• Copy and rename the server you just created and then edit the config.xml file
for each server so that they all have the same multicast name, multicast port, and
domain name.

• Use the Configuration Wizard to generate additional stand-alone servers and then
edit the config.xml file for each server so that they all have the same multicast
name, multicast port, and domain name.

The procedures in this chapter use the first approach.

5.2 Create a Multiserver Domain with Default Groups
You can create a multiserver domain that uses only the two predefined deployment
groups described in Singleton Server Deployment Group. The predefined deployment

Multiserver Domains with Oracle Coherence 5-1

groups are the singleton group and the domain group. In a domain that uses default
groups, all servers must be completely homogeneous.

If a domain must support servers that are not completely homogeneous, configure this
by creating custom server groups. See Create a Multiserver Domain with Custom
Groups.

Create a Multiserver Domain with Default Server Groups

1. Use the Configuration Wizard to create a standalone-server domain.

See Standalone-Server Domains.

2. Change to the directory where you put the new standalone-server domain when
you created it.

By default, the location is

Oracle/Middleware/my_oep/user_projects/domains/<domainname>/

3. Copy and rename the server directory until you have the number of servers that
you need under the domain.

4. Update the config.xml file for each member server by adding a cluster child
element of the root config element. The following example shows a server that is
part of a domain called myDomain.

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>true</enabled>
 </cluster>
...
</config>

You can use the following child elements of cluster:

• server-name: The server-name child element of cluster specifies a
unique name for the server. Oracle Event Processing Visualizer Using Visualizer
for Oracle Event Processing uses the value of this element when it displays the
server in its console. The default is the Oracle Coherence member name if that is
set or WLEvServer-MEMBERID.

• server-host-name: Specifies the host address/IP used for point-to-point
HTTP multiserver communication. Default value is localhost. This element is
mandatory if one or more Oracle Event Processing servers in your multiserver
domain are on different hosts and you plan to manage the multiserver domain
using Oracle Event Processing Visualizer. It is also mandatory if a server is
deployed on a host machine that has multiple IP addresses configured (whether
in a multiserver or standalone-server environment).

• multicast-address: The multicast-address element is required unless
all servers of the multiserver domain are hosted on the same computer; in that
case you can omit the multicast-address element and Oracle Event
Processing automatically assigns a multicast address to the multiserver domain
based on the computer's IP address. If the servers are hosted on different

Create a Multiserver Domain with Default Groups

5-2 Administering Oracle Event Processing

computers, then you must provide an appropriate domain-local address. Oracle
recommends that you use an address of the form 239.255.X.X, which is what
the auto-assigned multicast address is based on. All the Oracle Event Processing
servers using this multicast-address must be on the same subnet. With
Oracle Coherence, you can specify a unicast address here and Oracle Coherence
will use WKA (Well Known Addressing).

• enabled: By default the clustering of the servers in a multiserver domain is
disabled for Oracle Coherence. The element <enabled>true</enabled> is
required if you want to enable Oracle Coherence.

For each server of the multiserver domain, the multicast-address elements
must contain the same value. The server-name element must be different for
each server in the multiserver domain. The following example shows the
config.xml file of a second server, called myServer2, in the myDomain
multiserver domain.

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>MyServer2</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>true</enabled>
 </cluster>
...
</config>

See Secure the Messages Sent Between Servers for a description of additional
multiserver-related configuration elements and the required order of child
elements.

5. Optionally, override the default Oracle Coherence clustering configuration on all of
the servers in the multiserver domain, if necessary.

See Configure the Oracle Coherence Cluster.

6. Optionally, secure the messages that are shared among all of the servers in the
multiserver domain by configuring encryption and digital signatures.

See Secure the Messages Sent Between Servers.

7. Consider enabling Oracle Event Processing Visualizer on a subset of machines
within the multiserver domain so that in the event of a failure, you can use
Visualizer to troubleshoot from a machine that is still operating.

Note:

Enabling Oracle Event Processing Visualizer on a given Oracle Event
Processing Server can impact the performance of the server depending on the
Oracle Event Processing Visualizer workload.

8. Start all of the servers in your multiserver domain.

See Start and Stop a Server in a Multiserver Domain.

Create a Multiserver Domain with Default Groups

Multiserver Domains with Oracle Coherence 5-3

5.3 Create a Multiserver Domain with Custom Groups
Use this procedure if you plan to deploy applications that are not homogeneous and
require a custom configuration. If all of the servers in your domain are completely
homogeneous, you do not need to create custom server groups. Instead, use the
predefined default server groups: the singleton group and the domain group. See
Create a Multiserver Domain with Default Groups.

In this procedure, assume you have created three servers: myServer1, myServer2,
and myServer3. You want myServer1 to be a member of the selector server
group and myServer2 and myServer3 to be members of the strategy server
group.

Create a Multiserver Domain with Custom Server Groups

1. Use the Configuration Wizard to create a standalone-server domain.

See Standalone-Server Domains.

2. Copy and rename the server directory until you have the number of servers that
you want under the domain.Update the config.xml file for each member server
by adding a cluster child element of the root config element. Within the
cluster child element, add a group element to specify the server group.

Note:

When you add cluster element child elements, observe the correct element
order as Order of Cluster Element Child Elements describes.

The groups element can include more than one server group name in a case where
the server is a member of more than one server group. Separate multiple server
group names with commas.

The groups element is optional. If a server configuration does not have a groups
element, then the server is a member of the default server groups (domain and
singleton). For more information about the domain and singleton groups, see
Server Groups.

The following examples show the relevant snippets from the config.xml file for
myServer1, myServer2, and myServer3. The groups entry for myServer1
puts it in the selector group. The groups entry for myServer2 and
myServer3, put them in the strategy group.

myServer1:

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>true</enabled>
 <groups>selector</groups>
 </cluster>
...
</config>

Create a Multiserver Domain with Custom Groups

5-4 Administering Oracle Event Processing

myServer2:

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer2</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>true</enabled>
 <groups>strategy</groups>
 </cluster>
...
</config>

myServer3:

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer3</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>true</enabled>
 <groups>strategy</groups>
 </cluster>
...
</config>

3. Optionally, override the default Oracle Coherence clustering configuration on all of
the servers in the multiserver domain, if necessary.

See Configure the Oracle Coherence Cluster.

4. Optionally, secure the messages that are shared among all of the servers in the
multiserver domain by configuring encryption and digital signatures.

See Secure the Messages Sent Between Servers.

5. Consider enabling Oracle Event Processing Visualizer on a subset of machines
within the multiserver domain so that in the event of a failure, you can use
Visualizer to troubleshoot from a machine that is still operating.

Note:

Enabling Oracle Event Processing Visualizer on a given Oracle Event
Processing Server can impact the performance of the server depending on the
Oracle Event Processing Visualizer workload.

6. Start all of the servers in your multiserver domain.

See Start and Stop a Server in a Multiserver Domain.

5.4 Configure the Oracle Coherence Cluster
For Oracle Coherence cluster configuration, Oracle Event Processing uses the Oracle
Coherence tangosol-coherence-override.xml configuration file. The
tangosol-coherence-override.xml file is a global per-server configuration file.

Configure the Oracle Coherence Cluster

Multiserver Domains with Oracle Coherence 5-5

It is referred to as operational configuration in the Oracle Coherence documentation.
Put this file with the config.xml server configuration file, which is in the Oracle
Event Processing server config directory.

When you declare that a caching system uses the Oracle Coherence provider, make
sure that all of the caches of the caching system map to an Oracle Coherence
configuration and not to an Oracle Event Processing local configuration. If you do not
do this and you have one or more caches mapping to an Oracle Event Processing local
configuration, Oracle Event Processing throws an exception.

Servers in a multiserver domain must be configured with the same multicast address
and port number and the same domain name. For example, Oracle Event Processing
throws an error if you configure servers with the same multicast address and port
number, but with different domain names.

The tangosol-coherence-override.xml file supports the following elements:
<cluster-config>, <management-config>, and <logging-config>. You
cannot override the cluster name because Oracle Event Processing always sets the
cluster name to the domain name. Choose a unique name for each Oracle Event
Processing domain to prevent accidental cluster discovery between different domains.

The following sample shows a simple configuration that specifies the time-to-live
setting that determines the maximum number of hops a packet can traverse. A hop is
measured as a traversal from one network segment to another via a router.

<?xml version='1.0'?>
<coherence xml-override="/tangosol-coherence-override.xml">
 <cluster-config>
 <multicast-listener>
 <time-to-live>3</time-to-live>
 </multicast-listener>
 ...
</coherence>

For detailed information about the tangosol-coherence-override.xml file, see
Oracle Coherence Developer's Guide.

5.5 Update a Multiserver Domain
You update servers in a multiserver domain the same way that you update the one
server in a standalone-server domain: You either launch the Configuration Wizard or
edit the XML properties file to use silent mode. The only difference between updating
one server and multiple servers is that in a multiserver domain, you perform the
update on each server individually. Using an XML properties file in silent mode might
be your best option in a multiserver domain.

When you use the Configuration Wizard to update a server, you can update only the
listen port and the JDBC data source configuration. In silent mode, you can add a
server and update anything for which there is a data value.

To update the existing configuration of an existing server you provide values for the
following data values in the XML properties file:

• Set CONFIGURATION_OPTION to updateDomain.

• Set the DOMAIN_NAME and DOMAIN_LOCATION options to the name and location of
the existing domain. In our example, the values are myDomain and C:\Oracle
\Middleware\my_oep\user_projects\domains, respectively.

• Set the SERVER_NAME option to the name of the new server you want to add to the
existing domain. In our example, this would be myServer2.

Update a Multiserver Domain

5-6 Administering Oracle Event Processing

• If this server is running on the same computer as the other servers in the
multiserver domain, then be sure that the new server configuration options, such
as NETIO_PORT are different than the options for any existing server in the
domain. The database options can be the same if you want the new server to
connect to the same database as the existing servers.

If the server is on a different machine than the other servers in the multiserver
domain, then the ports do not have to be different.

The following example is an XML properties file that updates an existing server in a
multiserver domain.

<?xml version="1.0" encoding="UTF-8"?>
<bea-installer xmlns="http://www.bea.com/plateng/wlevs/config/silent">
 <input-fields>
 <data-value name="CONFIGURATION_OPTION" value="updateDomain" />
 <data-value name="USERNAME" value="wlevs" />
 <data-value name="PASSWORD" value="wlevs" />
 <data-value name="SERVER_NAME" value="myServer2" />
 <data-value name="DOMAIN_NAME" value="myDomain" />
 <data-value name="DOMAIN_LOCATION" value="C:\Oracle\Middleware\my_oep\user_projects
\domains" />
 <data-value name="NETIO_PORT" value="9102" />
 <data-value name="KEYSTORE_PASSWORD" value="my_keystore_password" />
 <data-value name="PRIVATEKEY_PASSWORD" value="my_privatekey_password" />
 <data-value name="DB_URL" value="jdbc:bea:oracle://localhost:1521:XE" />
 <data-value name="DB_USERNAME" value="db_user" />
 <data-value name="DB_PASSWORD" value="db_password" />
 </input-fields>
</bea-installer>

Note:

After you create the servlet and if the two servlets are on the same machine,
modify the SSL port to recognize the new servlet.

5.6 Secure the Messages Sent Between Servers
The servers in a multiserver domain update their state by exchanging multiserver-
related messages. These messages should be checked for integrity. You can use a
private key to ensure integrity. The private key must be shared by all of the servers
within the domain.

When you use the Oracle Coherence clustering implementation, you can secure the
messages sent between servers in a multiserver domain.

Secure Messages Sent Between Servers

1. Stop all servers in your multiserver domain, if they are currently running.

See Start and Stop a Server in a Multiserver Domain.

2. Edit the config.xml file of each server in the multiserver domain by adding the
security child element to the cluster element:

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer1</server-name>

Secure the Messages Sent Between Servers

Multiserver Domains with Oracle Coherence 5-7

 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>coherence</enabled>
 <security>encrypt</security>
 </cluster>
...
</config>

By default the config.xml file is in Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/config.

You must specify one of the following values for the security child element:

• none: No security is configured for the multiserver domain. This is the default
value.

• encrypt: Encrypt multiserver messages.

Observe the correct order of child elements in the cluster element. See Order of
Cluster Element Child Elements.

3. Edit the Oracle security-config.xml file for each server in the multiserver
domain by adding the encryption-service child element to the config root
element, as shown.

By default the security-config.xml files are in Oracle/Middleware/
my_oep/user_projects/domains/<domainname>/<servername>/
config/

<config>
 <encryption-service>
 <signature-enabled>true</signature-enabled>
 </encryption-service>
 <css-realm>
 ...
</config>

4. Ensure that the <domainname/<servername>/.aesinternal.dat file for
each server in the multiserver domain is exactly the same by copying the file from
one server to the other servers.

This file is created by the Configuration Wizard when you first created the server.
Oracle Event Processing uses this file for encrypting messages.

5. Start one of the servers in your domain.

See Start and Stop a Server in a Multiserver Domain.

Because of the encryption-service element that you added to the security-
config.xml file, Oracle Event Processing creates the *.msasig.dat file in the
main server directory. Oracle Event Processing uses this file for digitally signing
messages.

6. Stop the server you just started.

See Start and Stop a Server in a Multiserver Domain.

7. Copy the *.msasig.dat file to the other servers.

8. Perform the following steps on each server in the cluster:

Secure the Messages Sent Between Servers

5-8 Administering Oracle Event Processing

• Change to the server directory for your domain.

• Create a keystore coherence-identity.jks containing the boot user using
the JDK keytool utility and the following command line (broken here for
readability; in practice the full command should be on one line):

keytool -genkey -v -keystore config/coherence-identity.jks
-storepass PASSWORD -alias BOOT-USER -keypass BOOT-USER-PASSWORD
-dname CN=BOOT-USER

Where:

– PASSWORD is the password used to secure the keystore.

– BOOT-USER is the user name you used to log into the Oracle Event
Processing server host.

– BOOT-USER-PASSWORD is the password you used when you logged into the
Oracle Event Processing server host.

• Create a permissions.xml file.

By default the permissions.xml file goes in Oracle/Middleware/
my_oep/user_projects/domains/<domainname>/<servername>/
config

• Edit the permissions.xml file to add the following permission for the boot
user:

<permissions>
 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=BOOT-USER</name>
 </principal>

 <permission>
 <target>*</target>
 <action>all</action>
 </permission>
 </grant>
</permissions>

Where BOOT-USER is the user name you used to log into the Oracle Event
Processing server host.

• Save and close the permissions.xml file.

• Create a login.config file.

By default the login.config file goes in Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/config/

• Edit the login.config file to add the following:

Coherence {
 com.tangosol.security.KeystoreLogin required
 keyStorePath=".${/}config${/}coherence-identity.jks";
};

• Save and close the login.config file.

Secure the Messages Sent Between Servers

Multiserver Domains with Oracle Coherence 5-9

• Update the server startup script for your platform, startwlevs.cmd
(Windows) or startwlevs.sh (UNIX), by adding the following property to
the java command that actually starts the server:

-Djava.security.auth.login.config=./login.config

For example (put the full command should be on one line):

"%JAVA_HOME%/bin/java" %DGC% %DEBUG%
-Djava.security.auth.login.config=./login.config
-Dwlevs.home="%USER_INSTALL_DIR%" -Dbea.hoe="%BEA_HOME%"
-jar "%USER_INSTALL_DIR%/bin/wlevs.jar" %1 %2 %3 %4 %5 %6

9. If you plan to use Oracle Event Processing Visualizer with the servers in this
domain, see Configure SSL in a Multiserver Domain for Visualizer.

10. Start all servers in your multiserver domain.

See Start and Stop a Server in a Multiserver Domain.

5.7 Use Multiserver Domain APIs to Manage Group Membership
In an active-active system, you deploy actively executing applications homogeneously
across several servers. There are cases when these homogeneously-deployed
applications need to elect a coordinator application to lead. In this case, events that
result from the coordinator application are kept and passed to the next component in
the EPN. The results of secondary servers are dropped. If the coordinator fails, then
one of the secondary servers must be elected as the new coordinator.

To enable this behavior in an application, the adapter or event bean, usually in the role
of an event sink, must implement the following interface:

com.bea.wlevs.ede.api.cluster.GroupMembershipListener

This interface enables the event sink to listen for multiserver domain group
membership changes. At runtime, Oracle Event Processing calls the
onMembershipChange callback method whenever membership changes occur.

The callback method signature follows:

onMembershipChange(Server localIdentity, Configuration groupConfiguration);

In the implementation of the onMembershipChange callback method, the event sink
uses the Server object (localIdentity) to verify if it is the leader. This can be done
be comparing localIdentity with the result of
Configuration.getCoordinator() run on the second parameter,
groupConfiguration. This parameter also allows a server to know what the current
members of the group are by executing Configuration.getMembers().

Note:

There is a new API for notification groups. For more information, see Java API
Reference for Oracle Event Processing.

To only keep events when it is a coordinator, the event sink must get a new Server
identity every time membership in the group changes. Group membership changes
occur when, for example, another server within the group fails and is no longer the
coordinator.

Use Multiserver Domain APIs to Manage Group Membership

5-10 Administering Oracle Event Processing

The following interface is for listening to membership changes to the domain as a
whole, rather than changes to the server group.

com.bea.wlevs.ede.api.cluster.DomainMembershipListener

In a hot-hot configuration, there is a non-zero delay in failure notification. If you use
the notification APIs to implement clustering, you will lose and not process events that
occur in the window of time between the server failure and the notification being
delivered to the new master server.

See Java API Reference for Oracle Event Processing.

5.8 Start and Stop a Server in a Multiserver Domain
To start the servers in a multiserver domain, start each server separately by running its
start script. This is the same way you start a server in a standalone server domain. See
Start and Stop a Server in a Standalone-Server Domain for details.

If you have not configured custom groups for the multiserver domain, then all servers
are members of the predefined domain group, which contains all of the servers in the
multiserver domain, and a singleton group, one for each member server. This means,
for example, if there are three servers in the multiserver domain, then there are three
singleton groups.

If, however, you have configured custom groups for the multiserver domain, then the
servers are members of the groups for which they have been configured and the
predefined groups.

Note:

on Windows, do not stop the Oracle Event Processing server by clicking the
Close button in the command prompt in which you started it. Always stop the
Oracle Event Processing server using the stopwlevs.cmd script or Ctrl-C.

Start and Stop a Server in a Multiserver Domain

Multiserver Domains with Oracle Coherence 5-11

Start and Stop a Server in a Multiserver Domain

5-12 Administering Oracle Event Processing

6
Multiserver Domains with Native Clustering

You can create, configure, and administer multiserver domains that are based on
native clustering. With native clustering he domain receives a native clustering
implementation based on TOTEM, but you cannot take advantage of Oracle Event
Processing high availability quality of service options. If you require high availability
quality of service options, build your multiserver domain with Oracle Coherence.

This chapter includes the following sections:

• Create a Multiserver Domain

• Create a Multiserver Domain with Default Groups

• Create a Multiserver Domain with Custom Groups

• Update a Multiserver Domain

• Secure the Messages Sent Between Servers in a Multiserver Domain

• Use Multiserver Domain APIs to Manage Group Membership Changes

• Start and Stop a Server in a Multiserver Domain.

6.1 Create a Multiserver Domain
To create a multiserver domain, start by using the Configuration Wizard to create one
domain with one server. This is a standalone-server domain. To convert the
standalone-server domain to a multiserver domain, you can either:

• Copy and rename the server you just created and then edit the config.xml file
for each server so that they all have the same multicast name, multicast port, and
domain name.

• Use the Configuration Wizard to generate additional stand-alone servers and then
edit the config.xml file for each server so that they all have the same multicast
name, multicast port, and domain name.

The procedures in this chapter use the first approach.

6.2 Create a Multiserver Domain with Default Groups
You can create a multiserver domain that uses only the two predefined deployment
groups described in Singleton Server Deployment Group. The predefined deployment
groups are the singleton group and the domain group. In a domain that uses default
groups, all servers must be completely homogeneous.

If a domain must support servers that are not completely homogeneous, configure this
by creating custom groups. See Create a Multiserver Domain with Custom Groups.

Multiserver Domains with Native Clustering 6-1

Create a multiserver domain with default groups:

1. Use the Configuration Wizard to create a standalone-server domain.

See Standalone-Server Domains.

2. Change to the directory where you put the new standalone-server domain when
you created it.

By default, the location is

Oracle/Middleware/my_oep/user_projects/<domainname>.

3. Copy and rename the server directory until you have the number of servers that
you need under the domain.

4. Update the config.xml file for each member server by adding a cluster child
element of the root config element. The following example shows a server that is
part of a domain called myDomain.

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>evs4j</enabled>
 </cluster>
...
</config>

You can use the following child elements of cluster:

• server-name: The server-name child element of cluster specifies a
unique name for the server. Oracle Event Processing Visualizer uses the value of
this element when it displays the server in its console. The default value if the
element is not set is Server-identity where identity is the value of the
identity element.

• server-host-name: Specifies the host address/IP used for point-to-point
HTTP multiserver communication. Default value is localhost.

This element is mandatory if one or more Oracle Event Processing servers in
your multiserver domain are on different hosts and you plan to manage the
multiserver domain using the Oracle Event Processing Visualizer. It is also
mandatory if a server is deployed on a host machine that has multiple IP
addresses configured (whether in a multiserver or standalone-server
environment).

• multicast-address: The multicast-address element is required unless
all servers of the multiserver domain are hosted on the same computer; in that
case you can omit the multicast-address element and Oracle Event
Processing automatically assigns a multicast address to the multiserver domain
based on the computer's IP address.

If, however, the servers are hosted on different computers, then you must
provide an appropriate domain-local address. Oracle recommends you use an

Create a Multiserver Domain with Default Groups

6-2 Administering Oracle Event Processing

address of the form 239.255.X.X, which is what the auto-assigned multicast
address is based on.

All the Oracle Event Processing servers using this multicast-address must
be on the same subnet.

• identity: The identity element identifies the server's identity and must be
an integer between 1 and INT_MAX. Oracle Event Processing numerically
compares the server identities during multiserver operations; the server with
the lowest identity becomes the domain coordinator. Be sure that each server in
the multiserver domain has a different identity; if servers have the same
identity, the results of multiserver operations are unpredictable.

• enabled: By default the clustering of the servers in a multiserver domain is
disabled for Oracle Coherence, so to enable Oracle Event Processing native
clustering use <enabled>evs4j</enabled>.

Note:

When adding cluster element child elements, observe the correct element
order as Order of Cluster Element Child Elements describes.

For each server of the multiserver domain, the multicast-address elements
must contain the same value. The identity and server-name elements,
however, must be different for each server in the multiserver domain. The
following example shows the config.xml file of a second server, called
myServer2, in the myDomain multiserver domain. The identity value for his
server is 2.

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer2</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>2</identity>
 <enabled>evs4j</enabled>
 </cluster>
...
</config>

See Order of Cluster Element Child Elements for a description of additional
multiserver-related configuration elements and the required order of child
elements.

5. Optionally, secure the messages that are shared between the servers in a domain by
configuring encryption and digital signatures.

See Secure the Messages Sent Between Servers in a Multiserver Domain.

6. Consider enabling Oracle Event Processing Visualizer on a subset of machines
within the multiserver domain so that in the event of a failure, you can use
Visualizer to troubleshoot from a machine that is still operating.

Create a Multiserver Domain with Default Groups

Multiserver Domains with Native Clustering 6-3

Note:

Enabling Oracle Event Processing Visualizer on a given Oracle Event
Processing Server can impact the performance of the server depending on the
Oracle Event Processing Visualizer workload.

7. Start all servers in your multiserver domain.

See Start and Stop a Server in a Multiserver Domain.

6.3 Create a Multiserver Domain with Custom Groups
Use this procedure if you plan to deploy applications that are not homogeneous and
require a custom configuration. If all of the servers in your domain are completely
homogeneous, you do not need to create custom server groups. Instead, use the
predefined default server groups: the singleton group and the domain group. See
Create a Multiserver Domain with Default Groups.

In this procedure, assume you have created three servers: myServer1, myServer2,
and myServer3. You want myServer1 to be a member of the selector group and
myServer2 and myServer3 to be members of the strategy group.

Create a multiserver domain with Custom Server Groups:

1. Use the Configuration Wizard to create a standalone-server domain.

See Standalone-Server Domains.

2. Copy and rename the server directory until you have the number of servers that
you want under the domain.

3. Update the config.xml file for each member server by adding a cluster child
element of the root config element. Within the cluster child element, add a
group element to specify the server group.

Note:

When you add cluster element child elements, observe the correct element
order as Order of Cluster Element Child Elements describes.

The groups element can include more than one server group name in a case where
the server is a member of more than one server group. Separate multiple server
group names with commas.

The groups element is optional. If a server configuration does have a groups
element, then the server is a member of the default groups (domain and singleton).
For more information about the domain and singleton groups, see Server Groups.

The following examples show the relevant snippets from the config.xml file for
myServer1, myServer2, and myServer3. The groups entry for myServer1
puts it in the selector group. The groups entry for myServer2 and
myServer3, put them in the strategy group.

myServer1:

<config>
 <domain>

Create a Multiserver Domain with Custom Groups

6-4 Administering Oracle Event Processing

 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>evs4j</enabled>
 <groups>selector</groups>
 </cluster>
...
</config>

myServer2:

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer2</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>2</identity>
 <enabled>evs4j</enabled>
 <groups>strategy</groups>
 </cluster>
...
</config>

myServer3:

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer3</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>3</identity>
 <enabled>evs4j</enabled>
 <groups>strategy</groups>
 </cluster>
...
</config>

4. Optionally, secure the messages that are shared between the servers in a domain by
configuring encryption and digital signatures.

See Secure the Messages Sent Between Servers in a Multiserver Domain.

5. Consider enabling Oracle Event Processing Visualizer on a subset of machines
within the multiserver domain so that in the event of a failure, you can use
Visualizer to troubleshoot from a machine that is still operating.

Note:

Enabling Oracle Event Processing Visualizer on a given Oracle Event
Processing Server can impact the performance of the server depending on the
Oracle Event Processing Visualizer workload.

6. Start all servers in your multiserver domain.

Create a Multiserver Domain with Custom Groups

Multiserver Domains with Native Clustering 6-5

See Start and Stop a Server in a Multiserver Domain.

6.4 Update a Multiserver Domain
You update servers in a multiserver domain the same way that you update the one
server in a standalone-server domain: You either launch the Configuration Wizard or
edit the XML properties file to use silent mode. The only difference between updating
one server and multiple servers is that in a multiserver domain, you perform the
update on each server individually. Using an XML properties file in silent mode might
be your best option in a multiserver domain.

When you use the Configuration Wizard to update a server, you can update only the
listen port and the JDBC data source configuration. In silent mode, you can add a
server and update anything for which there is a data value.

To update the existing configuration of an existing server you provide values for the
following data values in the XML properties file:

• Set CONFIGURATION_OPTION to updateDomain.

• Set the DOMAIN_NAME and DOMAIN_LOCATION options to the name and location of
the existing domain. In the example, the values are myDomain and C:\Oracle
\Middleware\my_oep\user_projects\domains, respectively.

• Set the SERVER_NAME option to the name of the new server you want to add to the
existing domain. In the example, this would be myServer2.

• If this server is running on the same computer as the other servers in the
multiserver domain, then be sure that the new server configuration options, such
as NETIO_PORT are different than the options for any existing server in the
domain. The database options can be the same if you want the new server to
connect to the same database as the existing servers.

If the server is on a different machine than the other servers in the multiserver
domain, then the ports do not have to be different.

The following example is an XML properties file that updates an existing server in a
multiserver domain.

<?xml version="1.0" encoding="UTF-8"?>
<bea-installer xmlns="http://www.bea.com/plateng/wlevs/config/silent">
 <input-fields>
 <data-value name="CONFIGURATION_OPTION" value="createDomain" />
 <data-value name="USERNAME" value="wlevs" />
 <data-value name="PASSWORD" value="wlevs" />
 <data-value name="SERVER_NAME" value="myServer1" />
 <data-value name="DOMAIN_NAME" value="myDomain" />
 <data-value name="DOMAIN_LOCATION" value="C:\Oracle\Middleware\my_oep\user_projects
\domains" />
 <data-value name="NETIO_PORT" value="9102" />
 <data-value name="KEYSTORE_PASSWORD" value="my_keystore_password" />
 <data-value name="PRIVATEKEY_PASSWORD" value="my_privatekey_password" />
 <data-value name="DB_URL" value="jdbc:bea:oracle://localhost:1521:XE" />
 <data-value name="DB_USERNAME" value="db_user" />
 <data-value name="DB_PASSWORD" value="db_password" />
 </input-fields>
</bea-installer>

6.5 Secure the Messages Sent Between Servers in a Multiserver Domain
The servers in a multiserver domain update their state by exchanging multiserver-
related messages. These messages should be checked for integrity. You can use a

Update a Multiserver Domain

6-6 Administering Oracle Event Processing

private key to ensure integrity. The private key must be shared by all of the servers
within the domain.

Secure Messages Sent Between Servers

1. Stop all servers in your multiserver domain, if they are currently running.

See Start and Stop a Server in a Multiserver Domain.

2. Edit the config.xml file of each server in the multiserver domain by adding the
security child element to the cluster element.

By default the config.xml file is in Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/config/

<config>
 <domain>
 <name>myDomain</name>
 </domain>
 <cluster>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>evs4j</enabled>
 <security>encrypt</security>
 </cluster>
...
</config>

You must specify one of the following values for the security child element:

• none: No security is configured for the multiserver domain. This is the default
value.

• encrypt: Encrypt multiserver messages.

Observe the correct order of child elements in the cluster element. See Order of
Cluster Element Child Elements.

3. Edit the security-config.xml file for each server in the multiserver domain by
adding the encryption-service child element to the config root element.

By default the security-config.xml file is in Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/config/

<config>
 <encryption-service>
 <signature-enabled>true</signature-enabled>
 </encryption-service>
 <css-realm>
 ...
</config>

4. Ensure that the myDomain/servername/.aesinternal.dat file for each server
in the multiserver domain is exactly the same by copying the file from one server to
the other servers.

This file is created by the Configuration Wizard when you first created the server.
Oracle Event Processing uses this file for encrypting messages.

Secure the Messages Sent Between Servers in a Multiserver Domain

Multiserver Domains with Native Clustering 6-7

5. Start one of the servers in your domain.

See Start and Stop a Server in a Multiserver Domain.

Because of the encryption-service element that you added to the security-
config.xml file, Oracle Event Processing creates the *.msasig.dat file in the
main server directory. Oracle Event Processing uses this file for digitally signing
messages.

6. Stop the server you just started.

See Start and Stop a Server in a Multiserver Domain.

7. Copy the *.msasig.dat file to the other servers.

8. If you plan to use Oracle Event Processing Visualizer with the servers in this
domain, see Configure SSL in a Multiserver Domain for Visualizer.

9. Start all servers in your multiserver domain.

See Start and Stop a Server in a Multiserver Domain.

6.6 Use Multiserver Domain APIs to Manage Group Membership Changes
In an active-active system, you deploy actively executing applications homogeneously
across several servers. There are cases when these homogeneously-deployed
applications need to elect a coordinator application to lead. In this case, events that
result from the coordinator application are kept and passed to the next component in
the EPN. The results of secondary servers are dropped. If the coordinator fails, then
one of the secondary servers must be elected as the new coordinator.

To enable this behavior in an application, the adapter or event bean, usually in the role
of an event sink, must implement the following interface:

com.bea.wlevs.ede.api.cluster.GroupMembershipListener

This interface enables the event sink to listen for multiserver domain group
membership changes. At runtime, Oracle Event Processing calls the
onMembershipChange callback method whenever membership changes occur.

The callback method signature follows:

onMembershipChange(Server localIdentity, Configuration groupConfiguration);

In the implementation of the onMembershipChange callback method, the event sink
uses the Server object (localIdentity) to verify if it is the leader. This can be done
be comparing localIdentity with the result of
Configuration.getCoordinator() run on the second parameter,
groupConfiguration. This parameter also allows a server to know what the current
members of the group are by executing Configuration.getMembers().

To only keep events when it is a coordinator, the event sink must get a new Server
identity every time membership in the group changes. Group membership changes
occur when, for example, another server within the group fails and is no longer the
coordinator.

The following interface is for listening to membership changes to the domain as a
whole, rather than changes to the server group.

com.bea.wlevs.ede.api.cluster.DomainMembershipListener

Use Multiserver Domain APIs to Manage Group Membership Changes

6-8 Administering Oracle Event Processing

In a hot-hot configuration, there is a non-zero delay in failure notification. If you use
the notification APIs to implement clustering, you will lose and not process events that
occur in the window of time between the server failure and the notification being
delivered to the new master server.

See Java API Reference for Oracle Event Processing.

6.7 Start and Stop a Server in a Multiserver Domain
To start the servers in a multiserver domain, start each server separately by running its
start script. This is the same way you start a server in a standalone server domain. See
Start and Stop a Server in a Standalone-Server Domain for details.

If you have not configured custom groups for the multiserver domain, then all servers
are members of just the predefined domain group, which contains all the servers in the
multiserver domain, and a singleton group, one for each member server. This means,
for example, if there are three servers in the multiserver domain then there are three
singleton groups.

If, however, you have configured custom groups for the multiserver domain, then the
servers are members of the groups for which they have been configured, as well as the
pre-defined groups.

Start and Stop a Server in a Multiserver Domain

Multiserver Domains with Native Clustering 6-9

Start and Stop a Server in a Multiserver Domain

6-10 Administering Oracle Event Processing

7
Multiserver Domain Application

Deployment

You can deploy applications to Oracle Event Processing multiserver domains with
either Oracle Event Processing Visualizer or the Deployer utility. This chapter
describes how to use the Deployer utility.

See Using Visualizer for Oracle Event Processing for information about using Visualizer
to deploy an application.

This chapter includes the following sections:

• Target Server Groups

• Deploy to a Server Singleton Group

• Deploy to a Server Domain Group

• Deploy to a Server Custom Group

• Troubleshooting.

7.1 Target Server Groups
When you deploy an application to a multiserver domain, you typically specify a
target group, and Oracle Event Processing deploys the application to the set of
running servers in that group. Oracle Event Processing dynamically maintains group
membership based on running servers. When new servers in the group start, Oracle
Event Processing propagates the appropriate set of deployments to the new server.

For example, with the multiserver domain configured in Multiserver Domains with
Oracle Coherence, assume that only myServer1 has been started. You then deploy an
application to the domain group that includes myServer1 and myServer2. Because
only myServer1 of the multiserver domain is running, the application deploys to
myServer1 only. When you start myServer2, Oracle Event Processing replicates and
propagates the application deployment to myServer2.

Deployment propagation occurs based on the application version. When you deploy a
new version of an application, the new version propagates to all servers in the group.

For more information, see:

• Server Groups

• Deployer Command-Line Reference

• Using Visualizer for Oracle Event Processing.

Multiserver Domain Application Deployment 7-1

7.2 Deploy to a Server Singleton Group
If you do not specify a group when you deploy an application, Oracle Event
Processing deploys the application to the singleton server group that includes only the
specific server to which you deploy the application. This is the standard case in
standalone-server domains, but is also applicable to multiserver domains.

The following example shows how to deploy to a singleton group. In this case, the
command does not specify a -group option.

java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer -install myapp_1.0.jar

The myapp_1.0.jar application deploys to the singleton server group running on
host ariel and listening to port 9002. If the domain is multiserver and other servers
are members of the domain group, the application is not deployed to these servers.

7.3 Deploy to a Server Domain Group
The domain group is a live group that always exists and contains all servers in a
domain. All servers are always a member of the domain group. However, you must
still explicitly deploy applications to the domain group. The main reason for this is for
simplicity and usage consistency. When you explicitly deploy an application to the
domain group, Oracle Event Processing guarantees that all servers of this homogenous
environment have this deployment.

To deploy to the domain group, use the -group all option. The following example
shows how to deploy to a domain group.

java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer -install
myapp_1.0.jar -group all

The myapp_1.0.jar application deploys to all servers in the domain group through
the host ariel listen to port 9002.

7.4 Deploy to a Server Custom Group
To deploy to a custom group, use the -group groupname option of the deploy
command. In the following examples, assume the multiserver domain has been
configured as described in Multiserver Domains with Oracle Coherence.

The following example shows how to deploy an application called
strategies_1.0.jar to the strategygroup. Based on the multiserver domain
configuration, the command deploys the application to myServer2 and to
myServer3,which are the members of strategygroup.

java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer -install
strategies_1.0.jar -group strategygroup

The following example shows how to deploy the selector_1.0.jar application to
selectorgroup:

java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer -install
selector_1.0.jar -group selectorgroup

Based on the multiserver domain configuration, the preceding command deploys the
application to myServer1 only, which is the sole member of selectorgroup.

Deploy to a Server Singleton Group

7-2 Administering Oracle Event Processing

Both commands deploy to the same server on host ariel listening to port 9002. You
can specify any of the servers in the domain in the deploy command, even if the server
is not part of the group to which you want to deploy the application.

7.5 Troubleshooting
Oracle Event Processing server stops the application after deployment.

Problem: After you deploy an application to an Oracle Event Processing multiserver
domain, Oracle Event Processing stops the application after about 30 seconds.

Solution: Be sure you do not have more than one VPN software package installed on
the same computer hosting your multiserver domain.

Troubleshooting

Multiserver Domain Application Deployment 7-3

Troubleshooting

7-4 Administering Oracle Event Processing

Part IV
Configure Services

Configure Services contains the following chapters:

• Network I/O

• Security

• Jetty

• JMX

• JDBC

• HTTP Publish-Subscribe Server

• Logging and Debugging

8
Network I/O

Oracle Event Processing supports network I/O over TCP/IP with a variety of
providers in server and client mode. You can define a network I/O service for SSL and
non-SSL network access in the server config.xml file.

Oracle Event Processing servers are certified for use with IPv4 only or the IPv4/IPv6
dual-stack. For information about IPv6, see RFC 2460: Internet Protocol, Version 6
(IPv6) Specification at http://www.ietf.org/rfc/rfc2460.txt.

The jetty and weblogic-rmi-client server services depend on network I/O
configuration. The jetty service depends on network I/O server (netio)
configuration, and the weblogic-rmi-client service depends on network I/O
client (netio-client) configuration.

This chapter includes the following sections:

• Network I/O Providers

• Configure Network I/O Server (netio)

• Configure Network I/O Client (netio-client)

8.1 Network I/O Providers
The following table lists the network I/O providers that Oracle Event Processing
supports.

Table 8-1 Oracle Event Processing Network I/O Providers

provider-type SSL? Description

non-
blocking

No Provides fully non-blocking I/O for reads and writes. Each call to
read or write on the Connection interface returns immediately
without blocking. If the underlying connection is not ready, then the
read or write call returns zero. At that point, the calling code must
use one of the notification mechanisms in the NetIO API to wait
until the connection is ready to read or write. Non-Blocking
providers can also support a non-blocking connect call where a
thread need not block if it takes a long time to establish (or if it fails
to establish) a connection to a remote server.

semi-
blocking

No Provides non-blocking I/O for the read call, but each write call
blocks until the data is handed to the TCP/IP stack. Some platforms
enable you to implement a write-blocking provider that is faster than
a fully non-blocking provider, but still allows for high scalability.

Network I/O 8-1

http://www.ietf.org/rfc/rfc2460.txt

provider-type SSL? Description

blocking No Blocks on each read and write call until it completes. If there is no
data to read, then read blocks until there is. This provider is much
less scalable because there must a thread must wait for each network
connection that might have data. Oracle recommends that you not
use this type of provider.

native No Oracle Event Processing tries the NativeAsyncEngine, and if it is
not supported, then raises an error.

NIO Yes The NIOEngine is always used. This is the default provider type.

The following example shows how to specify a provider in the config.xml file
netio element using the provider-type child element.

<netio>
 <name>myNetio</name>
 <port>12345</port>
 <provider-type>non-blocking</provider-type>
</netio>

8.2 Configure Network I/O Server (netio)
You can define a network I/O service to be used by other services to act as the server
and listen for incoming connections. You can also create a client network I/O service
as Configure Network I/O Client (netio-client) describes.

You configure network I/O server services with the netio element in the Oracle
Event Processing server config.xml file. For more information, see:

• Server Configuration Files

• Network I/O Providers

• Schema Reference for Oracle Event Processing.

Configure Network I/O Server

1. In the Oracle Event Processing server config.xml file, create a netio element:

<netio>
</netio>

2. Add a name element that uniquely identifies this netio element on this Oracle
Event Processing server:

<netio>
 <name>MyNetIO</name>
</netio>

3. Add a port element to define the TCP/IP port on which this netio service listens
for connection requests:

<netio>
 <name>MyNetIO</name>
 <port>9002</port>
</netio>

4. Optionally, specify a provider-type:

Configure Network I/O Server (netio)

8-2 Administering Oracle Event Processing

<netio>
 <name>MyNetIO</name>
 <port>9002</port>
 <provider-type>NIO</provider-type>
</netio>

5. Optionally, specify the other netio child elements.

See Schema Reference for Oracle Stream Explorer.

8.3 Configure Network I/O Client (netio-client)
You can define a network I/O service to use to perform non-blocking network I/O,
but that does not act as a server and does not listen for incoming connections. You can
also create a server network I/O service as Configure Network I/O Server (netio)
describes.

You configure network I/O client services with the netio-client element in the
Oracle Event Processing server config.xml file.

For more information, see:

• Server Configuration Files

• Network I/O Providers

• Schema Reference for Oracle Stream Explorer.

To configure network I/O client:

1. In the Oracle Event Processing server config.xml file, create a netio-client
element:

<netio-client>
</netio-client>

2. Add a name element that uniquely identifies this netio element on this Oracle
Event Processing server:

<netio-client>
 <name>MyNetIOClient</name>
</netio-client>

3. Optionally, specify a provider-type:

<netio-client>
 <name>MyNetIOClient</name>
 <provider-type>NIO</provider-type>
</netio-client>

4. Optionally, specify the other netio-client child elements.

See Schema Reference for Oracle Stream Explorer.

Configure Network I/O Client (netio-client)

Network I/O 8-3

Configure Network I/O Client (netio-client)

8-4 Administering Oracle Event Processing

9
Security

Oracle Event Processing provides a variety of ways to protect server resources such as
data and event streams, configuration, user name and password data, security policy
information, remote credentials, and network traffic.

This chapter contains the following sections:

• Users, Groups, and Roles

• Java SE Security for an Oracle Event Processing Server

• Security Provider

• Password Strength

• SSL to Secure Network Traffic

• FIPS

• SSO with SAML2

• HTTPS-Only Connections

• Security for Server Services

• Cross-Domain Security for Visualizer

• Security Auditor

• Disable Security

• Security Utilities

• User Credentials for Command-Line Utilities

• Security in Oracle Event Processing Examples and Domains.

9.1 Users, Groups, and Roles
Oracle Event Processing uses role-based authorization control to secure the Oracle
Event Processing Visualizer and the wlevs.Admin command-line utility. There are a
variety of default out-of-the-box security groups. You can add users to different
groups to give them the different roles.

Administrators who use Oracle Event Processing Visualizer, wlevs.Admin, or any
custom administration application that uses JMX to connect to an Oracle Event
Processing server use role-based authorization to gain access.

You can also use role-based authorization to control access to the HTTP publish-
subscribe server.

Security 9-1

There are two types of roles:

• Application roles: Application roles grant users the permission to access various
Oracle CQL applications deployed to the Oracle Event Processing server. You can
create application roles and associate them with the task roles that Oracle Event
Processing provides.

By default, administrator users can access any application and non-administration
users cannot access any applications. Before a non-administration user can access
an application, an administration user must grant the user the associated
application role.

Application Isolation enables administrators to create new roles that can associate
new roles to a given application to allow only a selected group access to this
application. After the new role is created, non-admin users without this role cannot
see the application in visualizer and cannot list or change the application
configuration through Admin tool.

• Task roles: Task roles grant users the permission to perform various tasks with the
applications their application role authorizes them to access. Oracle Event
Processing provides the default task roles that Table 9-1 describes.

Users that successfully authenticate themselves when using Oracle Event Processing
Visualizer or wlevs.Admin are assigned roles based on their group membership, and
then subsequent access to administrative functions is restricted according to the roles
held by the user. Anonymous users (non-authenticated users) will not have any access
to the Oracle Event Processing Visualizer or wlevs.Admin.

When an administrator uses the Configuration Wizard to create a new domain, he or
she enters an administrator user that is part of the wlevsAdministrators group. By
default, this information is stored in a file-based provider filestore. The password is
hashed using the SHA-256 algorithm. The default administrator user is named
oepadmin with password welcome1.

Table 9-1 describes the default Oracle Event Processing tasks roles available right after
the creation of a new domain, as well as the name of the groups that are assigned to
these roles.

Table 9-1 Default Oracle Event Processing Task Roles and Groups

Task Role Group Privileges

Admin wlevsAdministrato
rs

Has all privileges of all the other roles, and
permission to:

• Create users and groups
• Configure HTTP publish-subscribe security
• Change the system configuration, such as

Jetty, work manager, and so on.
All JMX get, set, start, stop, and deploy
operations.

All set and invoke methods on these
MBeans:

CQLProcessorMBeanCQLProcessorRuntim
eMBeanRecordPlaybackMBeanChannelMBe
anProfileMBeanProfileManagerBean

Users, Groups, and Roles

9-2 Administering Oracle Event Processing

Task Role Group Privileges

ApplicationAdm
in wlevsApplicationAdmi

ns

Has all Operator privileges and permission to
update the configuration of any deployed
application.

All set and invoke methods on
ChannelMBean.

BusinessUser
wlevsBusinessUsers

Has all Operator privileges and permission to
update the Oracle CQL rules associated with
the processor of a deployed application.

All set and invoke methods on these
MBeans:

CQLProcessorMBeanCQLProcessorRuntim
eMBean

Deployer
wlevsDeployers

Has all Operator privileges and permission to
deploy, undeploy, update, suspend, and
resume any deployed application.

All JMX get and set operations related to
deployment.

Monitor
wlevsMonitors

Has all Operator privileges and permission to
enable/disable diagnostic functions, such as
creating a diagnostic profile and recording
events (then playing them back.) Can also
inject and trace events.

All JMX get operations.

All set and invoke methods on these
MBeans:

RecordPlaybackMBeanProfileMBeanProf
ileManagerBean

Operator
wlevsOperators

Has read-only access to all server resources,
services, and deployed applications.

Once the domain is created, the administrator can use Oracle Event Processing
Visualizer to create a group and associate it with one or more roles. Each role grants
access to an application. When you assign a user to a group, the roles you associate
with the group give the user the privileges to access those applications.

For instructions on using Oracle Event Processing Visualizer to modify users, groups,
and roles, see Using Visualizer for Oracle Stream Explorer

For more information, see:

• Configure HTTP Publish-Subscribe Server Channel Security

• User Credentials for Command-Line Utilities.

9.2 Java SE Security for an Oracle Event Processing Server
The Java SE platform defines a standards-based and interoperable security
architecture that is dynamic and extensible. Security for features such as
cryptography, authentication and authorization, public key encryption, and more are
built in. See http://java.sun.com/javase/technologies/security/ for
more information.

Java SE Security for an Oracle Event Processing Server

Security 9-3

http://java.sun.com/javase/technologies/security/

Oracle Event Processing supports Java SE security with the following security policy
files. Oracle provides templates for these files in the product in the following
directory: /Oracle/Middleware/my_oep/oep/utils/security.

• policy.xml: Defines the security policies of all the bundles that make up Oracle
Event Processing. The first bundle set defines the policies for server-related
bundles; the second bundle set defines the policies for application bundles.

• security.policy: Defines the security policies for server startup and Web
applications deployed to the Jetty HTTP server. This file also defines policies for
the Oracle Event Processing Visualizer Web application.

You can define Java SE security policies for the following Oracle Event Processing
features:

• All bundles that make up Oracle Event Processing

• Server startup

• Web applications deployed to the Oracle Event Processing server Jetty HTTP server

• Oracle Event Processing Visualizer

Configure Java SE Security on a Server:

1. Stop the Oracle Event Processing server, if it is currently running.

See Start and Stop Servers.

2. Copy policy.xml and security.policy:

From:/Oracle/Middleware/my_oep/oep/utils/security/

To:

/Oracle/Middleware/my_oep/user_projects/domains/
<domainname>/<servername>/config/

3. Edit the two security policy files as needed.

4. Update the server startup script for your platform in the <servername>
directory by adding the following properties to the java command that starts the
server:

-Djava.security.manager
-Djava.security.policy=./config/security.policy
-Dcom.bea.core.security.policy=./config/policy.xml

For example with everything on one line:

"%JAVA_HOME%\bin\java" %DGC% %DEBUG% -Djava.security.manager
-Djava.security.policy=./config/security.policy
-Dcom.bea.core.security.policy=./config/policy.xml
-Dwlevs.home="%USER_INSTALL_DIR%" -Dbea.hoe="%BEA_HOME%"
-jar "%USER_INSTALL_DIR%\bin\wlevs.jar" %1 %2 %3 %4 %5 %6

5. Edit the Jetty configuration in the config.xml server file by adding a
<scratch-directory> child element of the <jetty> element to specify the
directory to which Jetty Web applications are deployed.

For example:

Java SE Security for an Oracle Event Processing Server

9-4 Administering Oracle Event Processing

<jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 <scratch-directory>./JettyWork</scratch-directory>
</jetty>

6. Restart the Oracle Event Processing server for the changes to take effect.

See Start and Stop Servers.

9.3 Security Provider
Oracle Event Processing supports the following security providers for authentication,
authorization, role mapping, and credential mapping. The default is the file-based
provider. If you use the default file-based security provider, then you do not need to
do any further configuration of your domain. If you want to use the LDAP or DBMS
providers, you must perform further configuration. Once you have configured the
security provider, you can add new users, assign them to groups, and map groups to
roles. See Users, Groups, and Roles.

• File-based: Default security provider that uses an operating system file to access
security data such as user, password, and group information. This provider
provides authentication and authorization. Authentication is the process whereby
the identity of users is proved or verified. Authorization is the process whereby a
user's access to an Oracle Event Processing resource is permitted or denied based
on the user's security role and the security policy assigned to the requested Oracle
Event Processing resource. Authentication typically involves user name and
password combinations.

• LDAP: Uses a Lightweight Data Access Protocol (LDAP) server to access user,
password, and group information. Provides only authentication.

When you use LDAP for authentication, you cannot add or delete users and groups
using Oracle Event Processing Visualizer, you can only change the password of a
user.

• RDBMS: Uses a DBMS to access user, password, and group information. Provides
both authentication and authorization.

The following procedures describe two different ways to configure a security provider
for authentication and authorization.

• Configure Authentication with LDAP and Authorization with the DBMS Provider

• Configure Authentication and Authorization with the DBMS Provider

Configure Authentication with LDAP and Authorization with the DBMS Provider

1. Add the Oracle/Middleware/my_oep/oep/bin directory to your PATH
environment variable:

set PATH=d:\Oracle\Middleware\my_oep\oep\bin;%PATH% (Windows)
PATH=/Oracle/Middleware/my_oep/oep/bin:$PATH (UNIX)

2. Go to the config directory for the server you want to configure.

By default, the config directory is in /Oracle/Middleware/my_oep/ user-
Projects/domains/<domainname>/<servername>/config/.

Security Provider

Security 9-5

3. In a text editor, create a file called myLDAPandDBMS.properties and copy the
entire contents of the following example into it.

Note:

Make sure the certificate of the boot user in the evsidentity.jks file is the
same as what is configured in the security.xml file.

For attributes of type boolean or Boolean, value can be "true" or "false"
and it's case insensitive.
For attributes of type String[], values are comma separated; blanks before
and after the comma are ignored. For example, if the property is defined as:
saml1.IntersiteTransferURIs=uri1, uri2, uri3
the IntersiteTransferURIs attribute value is String[]{"uri1", "uri2", "uri3"}
For attributes of type Properties, the value should be inputted as
a set of key=value pairs separated by commas; blanks before and after the
commas are also ignored. For example (in practice, the property should be all on one
line):
store.StoreProperties=DriverName=oracle.jdbc.driver.OracleDriver,
ConnectionURL=jdbc:oracle:thin:@united.bea.com:1521:xe, Username=user, Password=user
domain.mbean=com.bea.common.management.configuration.LegacyDomainInfoMBean
domain.DomainName=legacy-domain-name
domain.ServerName=legacy-server-name
domain.RootDirectory=legacy-rootdir
#domain.ProductionModeEnabled=
#domain.WebAppFilesCaseInsensitive=
domain.DomainCredential=changeit
jaxp.mbean=com.bea.common.management.configuration.JAXPFactoryServiceMBean
#jaxp.DocBuilderFactory=
#jaxp.SaxParserFactory=
#jaxp.SaxTransformFactory=
#jaxp.TransformFactory=
#ldapssl.mbean=com.bea.common.management.configuration.LDAPSSLSocketFactoryLookupServiceMBe
an
#ldapssl.Protocol=sslv3
#ldapssl.TrustManagerClassName=
namedsql.mbean=com.bea.common.management.configuration.NamedSQLConnectionLookupServiceMBean
store.mbean=com.bea.common.management.configuration.StoreServiceMBean
Split here for readability; in practice, a property should be all on one line.
store.StoreProperties=DriverName=oracle.jdbc.driver.OracleDriver,
 ConnectionURL=jdbc:oracle:thin:@localhost:1521:orcl, Username=wlevs, Password=wlevs
#store.ConnectionProperties=
#store.NotificationProperties=
realm.mbean=weblogic.management.security.RealmMBean
realm.Name=my-realm
#realm.ValidateDDSecurityData=
#realm.CombinedRoleMappingEnabled=
#realm.EnableWebLogicPrincipalValidatorCache=
#realm.MaxWebLogicPrincipalsInCache=
#realm.DelegateMBeanAuthorization=
#realm.AuthMethods=
adt.1.mbean=weblogic.security.providers.audit.DefaultAuditorMBean
adt.1.Severity=INFORMATION
#adt.1.InformationAuditSeverityEnabled=
#adt.1.WarningAuditSeverityEnabled=
#adt.1.ErrorAuditSeverityEnabled=
#adt.1.SuccessAuditSeverityEnabled=
#adt.1.FailureAuditSeverityEnabled=
#adt.1.OutputMedium=
#adt.1.RotationMinutes=
#adt.1.BeginMarker=
#adt.1.EndMarker=
#adt.1.FieldPrefix=
#adt.1.FieldSuffix=
adt.1.Name=my-auditor

Security Provider

9-6 Administering Oracle Event Processing

#adt.1.ActiveContextHandlerEntries=
atn.1.mbean=weblogic.security.providers.authentication.LDAPAuthenticatorMBean
#atn.1.UserObjectClass=
#atn.1.UserNameAttribute=
#atn.1.UserDynamicGroupDNAttribute=
atn.1.UserBaseDN=o=ECS,dc=bea,dc=com
atn.1.UserSearchScope=subtree
#atn.1.UserFromNameFilter=
#atn.1.AllUsersFilter=
atn.1.GroupBaseDN=ECS,dc=bea,dc=com
#atn.1.GroupSearchScope=
#atn.1.GroupFromNameFilter=
#atn.1.AllGroupsFilter=
#atn.1.StaticGroupObjectClass=
#atn.1.StaticGroupNameAttribute=
atn.1.StaticMemberDNAttribute=member
#atn.1.StaticGroupDNsfromMemberDNFilter=
#atn.1.DynamicGroupObjectClass=
#atn.1.DynamicGroupNameAttribute=
#atn.1.DynamicMemberURLAttribute=
atn.1.GroupMembershipSearching=unlimited
atn.1.MaxGroupMembershipSearchLevel=0
atn.1.UseRetrievedUserNameAsPrincipal=false
#atn.1.IgnoreDuplicateMembership=
#atn.1.KeepAliveEnabled=
atn.1.Credential=wlevs
#atn.1.Name=
#atn.1.PropagateCauseForLoginException=
atn.1.ControlFlag=REQUIRED
#atn.1.ConnectTimeout=
atn.1.Host=localhost
atn.1.Port=389
#atn.1.SSLEnabled=
atn.1.Principal=cn=Administrator,dc=bea,dc=com
#atn.1.CacheEnabled=
#atn.1.CacheSize=
#atn.1.CacheTTL=
atn.1.FollowReferrals=false
#atn.1.BindAnonymouslyOnReferrals=
#atn.1.ResultsTimeLimit=
#atn.1.ParallelConnectDelay=
#atn.1.ConnectionRetryLimit=
atn.1.EnableGroupMembershipLookupHierarchyCaching=true
#atn.1.MaxGroupHierarchiesInCache=
#atn.1.GroupHierarchyCacheTTL=
#atn.5.mbean=weblogic.security.providers.authentication.OpenLDAPAuthenticatorMBean
#atn.5.UserNameAttribute=
#atn.5.UserBaseDN=
#atn.5.UserFromNameFilter=
#atn.5.GroupBaseDN=
#atn.5.GroupFromNameFilter=
#atn.5.StaticGroupObjectClass=
#atn.5.StaticMemberDNAttribute=
#atn.5.StaticGroupDNsfromMemberDNFilter=
#atn.5.UserObjectClass=
#atn.5.UserDynamicGroupDNAttribute=
#atn.5.UserSearchScope=
#atn.5.AllUsersFilter=
#atn.5.GroupSearchScope=
#atn.5.AllGroupsFilter=
#atn.5.StaticGroupNameAttribute=
#atn.5.DynamicGroupObjectClass=
#atn.5.DynamicGroupNameAttribute=
#atn.5.DynamicMemberURLAttribute=
#atn.5.GroupMembershipSearching=
#atn.5.MaxGroupMembershipSearchLevel=
#atn.5.UseRetrievedUserNameAsPrincipal=
#atn.5.IgnoreDuplicateMembership=
#atn.5.KeepAliveEnabled=

Security Provider

Security 9-7

#atn.5.Credential=
#atn.5.PropagateCauseForLoginException=
#atn.5.ControlFlag=
#atn.5.Name=
#atn.5.ConnectTimeout=
#atn.5.Host=
#atn.5.Port=
#atn.5.SSLEnabled=
#atn.5.Principal=
#atn.5.CacheEnabled=
#atn.5.CacheSize=
#atn.5.CacheTTL=
#atn.5.FollowReferrals=
#atn.5.BindAnonymouslyOnReferrals=
#atn.5.ResultsTimeLimit=
#atn.5.ParallelConnectDelay=
#atn.5.ConnectionRetryLimit=
#atn.5.EnableGroupMembershipLookupHierarchyCaching=
#atn.5.MaxGroupHierarchiesInCache=
#atn.5.GroupHierarchyCacheTTL=
cm.1.mbean=weblogic.security.providers.credentials.DefaultCredentialMapperMBean
cm.1.Name=my-credential-mapper
cm.1.CredentialMappingDeploymentEnabled=true
#cm.3.mbean=weblogic.security.providers.credentials.FileBasedCredentialMapperMBean
#cm.3.FileStorePath=
#cm.3.FileStorePassword=
#cm.3.EncryptAlgorithm=
#cm.3.Name=
#cm.3.CredentialMappingDeploymentEnabled=
rm.1.mbean=weblogic.security.providers.xacml.authorization.XACMLRoleMapperMBean
rm.1.Name=my-role-mapper
rm.1.RoleDeploymentEnabled=true
atz.1.mbean=weblogic.security.providers.xacml.authorization.XACMLAuthorizerMBean
atz.1.Name=my-authorizer
atz.1.PolicyDeploymentEnabled=true
adj.1.mbean=weblogic.security.providers.authorization.DefaultAdjudicatorMBean
adj.1.RequireUnanimousPermit=false
adj.1.Name=my-adjudicator

a. Customize the property file by updating the store.StoreProperties
property to reflect your database driver information, connection URL, and
user name and password of the user that connects to the database. This is
how the default property is set:

Split for readability; in practice, the property should be on one line.
store.StoreProperties=DriverName=oracle.jdbc.driver.OracleDriver,
ConnectionURL=jdbc:oracle:thin:@mymachine:1521:orcl, Username=wlevs,
Password=wlevs

b. Update the property that specifies your LDAP server configuration.

c. Leave all the other properties to their default values.

4. Make a backup copy of the existing security.xml file in case you need to
revert.

5. Create a new security configuration file (security.xml) by executing the
following cssconfig command:

cssconfig -p myLDAPandDBMS.properties -c security.xml -i security-key.dat

myLDAPandDBMS.properties: The property file you created in step 3.
security.xml: The name of the new security configuration file.security-
key.dat: An existing file generated by the Configuration Wizard that contains
the identity key.

Security Provider

9-8 Administering Oracle Event Processing

See The cssconfig Command-Line Utility for additional information.

6. Go to /Oracle/Middleware/my_oep/oep/utils/security/sql.

This directory contains SQL scripts for creating the required security-related
database tables and populating them with initial data. Because you are using the
DBMS provider only for authorization, the relevant scripts for this procedure are:

atz_create.sql: Creates all tables required for authorization.

atz_drop.sql: Drops all authorization-related tables.

7. Run the atz_create.sql SQL script against the database you specified as the
database store in step 3.

8. Configure your LDAP server by adding the default groups described in Users,
Groups, and Roles and the administrator user you specified when you created the
domain. By default, this user is called oepadmin.

Refer to your LDAP server documentation for details.

9. Optionally, configure password strength in your new security.xml file.

See Password Strength.

Configure Authentication and Authorization with the DBMS Provider

1. Add the Oracle/Middleware/my_oep/oep/bin directory to your PATH
environment variable:

prompt> set PATH=d:\Oracle\Middleware\my_oep\oep\bin;%PATH% (Windows)
prompt> PATH=/Oracle/Middleware/my_oep/oep/bin:$PATH (UNIX)

2. Go to the config directory for the server you want to configure.

By default the config directory is in /Oracle/Middleware/my_oep/ user-
Projects/domains/<domainname>/<servername>/config/.

3. Make a backup copy of the existing security.xml file, in case you need to
revert.

4. In a text editor, create a file called myDBMS.properties and copy the entire
contents of the following example into it.

For attributes of type boolean or Boolean, value can be "true" or "false"
and it's case insensitive.
For attributes of type String[], values are comma separated; blanks before
and after the comma are ignored. For example, if the property is defined as:
saml1.IntersiteTransferURIs=uri1, uri2, uri3
the IntersiteTransferURIs attribute value is String[]{"uri1", "uri2", "uri3"}
For attributes of type Properties, the value should be inputted as
a set of key=value pairs separated by commas; blanks before and after the
commas are also ignored. For example (split for readability; in practice, the property
should be all on one line):
store.StoreProperties=DriverName=oracle.jdbc.driver.OracleDriver,
 ConnectionURL=jdbc:oracle:thin:@united.bea.com:1521:xe, Username=user, Password=user
domain.mbean=com.bea.common.management.configuration.LegacyDomainInfoMBean
domain.DomainName=legacy-domain-name
domain.ServerName=legacy-server-name
domain.RootDirectory=legacy-rootdir
#domain.ProductionModeEnabled=
#domain.WebAppFilesCaseInsensitive=
domain.DomainCredential=changeit
jaxp.mbean=com.bea.common.management.configuration.JAXPFactoryServiceMBean
#jaxp.DocBuilderFactory=
#jaxp.SaxParserFactory=

Security Provider

Security 9-9

#jaxp.SaxTransformFactory=
#jaxp.TransformFactory=
#ldapssl.mbean=com.bea.common.management.configuration.LDAPSSLSocketFactoryLookupServiceMBe
an
#ldapssl.Protocol=
#ldapssl.TrustManagerClassName=
namedsql.mbean=com.bea.common.management.configuration.NamedSQLConnectionLookupServiceMBean
store.mbean=com.bea.common.management.configuration.StoreServiceMBean
Split for readability; the property should be fully on one line.
store.StoreProperties=DriverName=oracle.jdbc.driver.OracleDriver,
 ConnectionURL=jdbc:oracle:thin:@mymachine:1521:orcl, Username=wlevs, Password=wlevs
#store.ConnectionProperties=
#store.NotificationProperties=
realm.mbean=weblogic.management.security.RealmMBean
realm.Name=my-realm
#realm.ValidateDDSecurityData=
#realm.CombinedRoleMappingEnabled=
#realm.EnableWebLogicPrincipalValidatorCache=
#realm.MaxWebLogicPrincipalsInCache=
#realm.DelegateMBeanAuthorization=
#realm.AuthMethods=
sqlconn.1.mbean=com.bea.common.management.configuration.NamedSQLConnectionMBean
sqlconn.1.Name=POOL1
sqlconn.1.JDBCDriverClassName=oracle.jdbc.driver.OracleDriver
sqlconn.1.ConnectionPoolCapacity=5
sqlconn.1.ConnectionPoolTimeout=10000
sqlconn.1.AutomaticFailoverEnabled=false
sqlconn.1.PrimaryRetryInterval=0
sqlconn.1.JDBCConnectionURL=jdbc\:oracle\:thin\:@fwang02\:1521\:orcl
sqlconn.1.JDBCConnectionProperties=
sqlconn.1.DatabaseUserLogin=wlevs
sqlconn.1.DatabaseUserPassword=wlevs
sqlconn.1.BackupJDBCConnectionURL=
sqlconn.1.BackupJDBCConnectionProperties=
sqlconn.1.BackupDatabaseUserLogin=
sqlconn.1.BackupDatabaseUserPassword=
adt.1.mbean=weblogic.security.providers.audit.DefaultAuditorMBean
adt.1.Severity=INFORMATION
#adt.1.InformationAuditSeverityEnabled=
#adt.1.WarningAuditSeverityEnabled=
#adt.1.ErrorAuditSeverityEnabled=
#adt.1.SuccessAuditSeverityEnabled=
#adt.1.FailureAuditSeverityEnabled=
#adt.1.OutputMedium=
#adt.1.RotationMinutes=
#adt.1.BeginMarker=
#adt.1.EndMarker=
#adt.1.FieldPrefix=
#adt.1.FieldSuffix=
adt.1.Name=my-auditor
#adt.1.ActiveContextHandlerEntries=
atn.1.mbean=weblogic.security.providers.authentication.SQLAuthenticatorMBean
atn.1.PasswordAlgorithm=SHA-1
atn.1.PasswordStyle=SALTEDHASHED
atn.1.PasswordStyleRetained=true
atn.1.SQLCreateUser=INSERT INTO USERS VALUES (? , ? , ?)
atn.1.SQLRemoveUser=DELETE FROM USERS WHERE U_NAME \= ?
atn.1.SQLRemoveGroupMemberships=DELETE FROM GROUPMEMBERS WHERE G_MEMBER \= ? ORG_NAME \= ?
atn.1.SQLSetUserDescription=UPDATE USERS SET U_DESCRIPTION \= ? WHERE U_NAME \= ?
atn.1.SQLSetUserPassword=UPDATE USERS SET U_PASSWORD \= ? WHERE U_NAME \= ?
atn.1.SQLCreateGroup=INSERT INTO GROUPS VALUES (? , ?)
atn.1.SQLSetGroupDescription=UPDATE GROUPS SET G_DESCRIPTION \= ? WHERE G_NAME \= ?
atn.1.SQLAddMemberToGroup=INSERT INTO GROUPMEMBERS VALUES(?, ?)
atn.1.SQLRemoveMemberFromGroup=DELETE FROM GROUPMEMBERS WHERE G_NAME \= ? AND G_MEMBER \= ?
atn.1.SQLRemoveGroup=DELETE FROM GROUPS WHERE G_NAME \= ?
atn.1.SQLRemoveGroupMember=DELETE FROM GROUPMEMBERS WHERE G_NAME \= ?
atn.1.SQLListGroupMembers=SELECT G_MEMBER FROM GROUPMEMBERS WHERE G_NAME \= ? AND G_MEMBER
LIKE ?
atn.1.DescriptionsSupported=true

Security Provider

9-10 Administering Oracle Event Processing

atn.1.SQLGetUsersPassword=SELECT U_PASSWORD FROM USERS WHERE U_NAME \= ?
atn.1.SQLUserExists=SELECT U_NAME FROM USERS WHERE U_NAME \= ?
atn.1.SQLListMemberGroups=SELECT G_NAME FROM GROUPMEMBERS WHERE G_MEMBER \= ?
atn.1.SQLListUsers=SELECT U_NAME FROM USERS WHERE U_NAME LIKE ?
atn.1.SQLGetUserDescription=SELECT U_DESCRIPTION FROM USERS WHERE U_NAME \= ?
atn.1.SQLListGroups=SELECT G_NAME FROM GROUPS WHERE G_NAME LIKE ?
atn.1.SQLGroupExists=SELECT G_NAME FROM GROUPS WHERE G_NAME \= ?
atn.1.SQLIsMember=SELECT G_MEMBER FROM GROUPMEMBERS WHERE G_NAME \= ? AND G_MEMBER \= ?
atn.1.SQLGetGroupDescription=SELECT G_DESCRIPTION FROM GROUPS WHERE G_NAME \= ?
atn.1.GroupMembershipSearching=unlimited
atn.1.MaxGroupMembershipSearchLevel=0
atn.1.DataSourceName=POOL1
atn.1.PlaintextPasswordsEnabled=true
atn.1.ControlFlag=REQUIRED
atn.1.Name=my-authenticator
atn.1.EnableGroupMembershipLookupHierarchyCaching=false
atn.1.MaxGroupHierarchiesInCache=100
atn.1.GroupHierarchyCacheTTL=60
cm.1.mbean=weblogic.security.providers.credentials.DefaultCredentialMapperMBean
cm.1.Name=my-credential-mapper
cm.1.CredentialMappingDeploymentEnabled=true
rm.1.mbean=weblogic.security.providers.xacml.authorization.XACMLRoleMapperMBean
rm.1.Name=my-role-mapper
rm.1.RoleDeploymentEnabled=true
atz.1.mbean=weblogic.security.providers.xacml.authorization.XACMLAuthorizerMBean
atz.1.Name=my-authorizer
atz.1.PolicyDeploymentEnabled=true
adj.1.mbean=weblogic.security.providers.authorization.DefaultAdjudicatorMBean
adj.1.RequireUnanimousPermit=false
adj.1.Name=my-adjudicator

a. Customize the property file by updating the store.StoreProperties
property to reflect your database driver information, connection URL, and
user name and password of the user that connects to the database. This is
how the default property is set:

store.StoreProperties=DriverName=oracle.jdbc.driver.OracleDriver,
ConnectionURL=jdbc:oracle:thin:@mymachine:1521:orcl, Username=wlevs,
Password=wlevs

b. Leave all the other properties to their default values.

5. Create a new security configuration file (security.xml) by executing the
following cssconfig command:

cssconfig -p myLDAPandDBMS.properties -c security.xml -i security-key.dat

myDBMS.properties: The property file you created in step 3.security.xml:
The name of the new security configuration file. security-key.dat: An
existing file generated by the Configuration Wizard that contains the identity key.

See The cssconfig Command-Line Utility for additional information.

6. Go to /Oracle/Middleware/my_oep/oep/utils/security/sql:

This directory contains SQL scripts for creating the required security-related
database tables and populating them with initial data. These scripts are:

atn_create.sql: Creates all tables required for authentication.

atn_drop.sql: Drops all authentication-related tables.

atn_init.sql: Inserts default values into the authentication-related user and
group tables. In particular, the script inserts a single default administrator user
called oepadmin, with password welcome1, into the user table and specifies that

Security Provider

Security 9-11

the user belongs to the wlevsAdministrators group. The script also inserts the
default groups listed in Table 9-1 into the group table.

atz_create.sql: Creates all tables required for authorization.

atz_drop.sql: Drops all authorization-related tables.

7. If, when you created your domain using the Configuration Wizard, you specified
an administrator user other than the default, edit the atn_init.sql file and add
the INSERT INTO USERS and corresponding INSERT INTO GROUPMEMBERS
statements.

For example, to add an administrative user juliet, with password shackell,
add the following statements to the atn_init.sql file:

INSERT INTO USERS (U_NAME, U_PASSWORD, U_DESCRIPTION) VALUES
('juliet','shackell','default admin');
INSERT INTO GROUPMEMBERS (G_NAME, G_MEMBER) VALUES
('wlevsAdministrators','juliet');

8. Run the following SQL script files, in the order listed against the database you
specified as the database store in step 3:

atn_create.sql

atn_init.sql

atz_create.sql

9. Optionally, configure password strength in your new security.xml file.

See Password Strength.

9.4 Password Strength
Password strength measures the effectiveness of a password as an authentication
credential. How you configure password strength determines the type of password a
user can specify, such as whether the password can contain the user name, the
minimum length of the password, the minimum number of numeric characters it can
contain, and so on.

You configure the strength of the passwords used for Oracle Event Processing
authentication by updating the <password-validator> element in the security
configuration file (security.xml).

By default, the security configuration file is in the Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/config directory.

The following example shows a snippet from the security.xml file with the default
values after you create a new domain.

<sec:password-validator
 xmlns:pas="http://www.bea.com/ns/weblogic/90/security/providers/passwordvalidator"
 xsi:type="pas:system-password-validatorType">
 <sec:name>my-password-validator</sec:name>
 <pas:reject-equal-or-contain-username>true</pas:reject-equal-or-contain-username>
 <pas:reject-equal-or-contain-reverse-username>
 false
 </pas:reject-equal-or-contain-reverse-username>
 <pas:max-password-length>50</pas:max-password-length>
 <pas:min-password-length>6</pas:min-password-length>
 <pas:max-instances-of-any-character>0</pas:max-instances-of-any-character>
 <pas:max-consecutive-characters>0</pas:max-consecutive-characters>
 <pas:min-alphabetic-characters>1</pas:min-alphabetic-characters>
 <pas:min-numeric-characters>1</pas:min-numeric-characters>

Password Strength

9-12 Administering Oracle Event Processing

 <pas:min-lowercase-characters>1</pas:min-lowercase-characters>
 <pas:min-uppercase-characters>1</pas:min-uppercase-characters>
 <pas:min-non-alphanumeric-characters>0</pas:min-non-alphanumeric-characters>
</sec:password-validator>

Table 9-2 describes all the child elements of <password-validator> that you can
configure. If you manually update the security.xml file, you must restart the
Oracle Event Processing server instance for the changes to take effect.

Table 9-2 Child Elements of <password-validator>

Child Element Description Default Value

reject-equal-or-contain-name When set to true, Oracle Event Processing rejects a
password if it is the same as, or contains, the user
name.

When set to false, Oracle Event Processing does not
reject a password for this reason.

true

reject-equal-or-contain-
reverse-username

When set to true, Oracle Event Processing rejects a
password if it is the same as, or contains, the reversed
user name.

When set to false, Oracle Event Processing does not
reject a password for this reason.

false

max-password-length Specifies the maximum length of a password.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

50

min-password-length Specifies the minimum length of a password.

Valid values for this element are integers greater than
or equal to 0.

6

max-instances-of-any-
character

Specifies the maximum number of times the same
character can appear in the password. For example, if
this element is set to 2, then the password bubble is
invalid.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

0

max-consecutive-characters Specifies the maximum number of repeating
consecutive characters that are allowed in the
password. For example, if this element is set to 2, then
the password bubbble is invalid.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

0

min-alphabetic-characters Specifies the minimum number of alphabetic
characters that a password must contain.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

1

Password Strength

Security 9-13

Child Element Description Default Value

min-numeric-characters Specifies the minimum number of numeric characters
that a password must contain.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

1

min-lowercase-characters Specifies the minimum number of lowercase characters
that a password must contain.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

0

min-uppercase-characters Specifies the minimum number of uppercase
characters that a password must contain.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

0

min-non-alphanumeric-
characters

Specifies the minimum number of non-alphanumeric
characters that a password must contain. Non-
alphanumeric characters include $, #, @, &,! and so on.

A value of 0 means there is no restriction.

Valid values for this element are integers greater than
or equal to 0.

0

9.5 SSL to Secure Network Traffic
Oracle Event Processing provides one-way Secure Sockets Layer (SSL) to secure
network traffic as between:

• A browser running the Oracle Event Processing Visualizer and the Oracle Event
Processing server that hosts the data-services application that the Oracle Event
Processing Visualizer uses.

• The wlevs.Admin command-line utility and an Oracle Event Processing instance.

See Run wlevs.Admin Utility in SSL Mode.

• The member servers of a multiserver domain.

You can configure Oracle Event Processing to use a Federal Information Processing
Standards (FIPS)-certified pseudo-random number generator for SSL. After you
configure SSL, you can configure the Oracle Event Processing server to accept only
client requests on the HTTPS port. See HTTPS-Only Connections.

You configure SSL in the server's config.xml file. When you create an Oracle Event
Processing server, the server config.xml includes a default SSL configuration. The
following procedures show how to configure SSL and a key store.

• Configure SSL Manually

• Create a Key Store Manually

• Configure SSL Between an SAML2 Service Provider and Identity Provider

• Configure SSL Between an SAML2 Service Provider and Identity Provider.

SSL to Secure Network Traffic

9-14 Administering Oracle Event Processing

9.5.1 Configure SSL Manually

1. Use the Configuration Wizard to create a standalone-server domain or a
multiserver domain.

See:

Standalone-Server Domains

Multiserver Domains with Oracle Coherence

Multiserver Domains with Native Clustering

2. In an XML editor, open the config.xml file for the server you want to configure.

By default, the config.xml file is in /Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/config.

3. Configure the ssl element.

The following example shows the default ssl element the Configuration Wizard
creates.

<ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 <key-store-pass>
 <password>{Salted-3DES}sdlUX8aEDeNpQ4VhsaCnFA==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
</ssl>

The key-store element points to a certificate file. The Configuration Wizard
creates a default certificate file called evsidentity.jks in the ssl directory for
the server you want to configure.

By default, the password for the certificate private key is the same as the password
for the identity key store.

Note:

The Oracle Event Processing Server will not start unless the password for the
certificate private key is the same as the password for the identity key store.

The evsidentity.jks file contains a self-signed certificate. Optionally, create
your own certificate file and either replace the evsidentity.jks file, or update
the key-store element in the config.xml file.

Note:

In a production environment, the system administrator should replace the
default self-signed certificate with a CA signed certificate.

SSL to Secure Network Traffic

Security 9-15

For more information about creating a key store, see Create a Key Store Manually.

For more information about the enforce-fips element, see FIPS.

4. Configure a netio element for SSL.

The following example shows the default netio element the Configuration
Wizard creates.

<netio>
 <name>sslNetIo</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <port>9003</port>
</netio>

The ssl-config-bean-name must match the ssl element name child element.

The default secure port is 9003 by default. You can change the port.

5. Configure the jetty element to add a secure-network-io-name child element.

The following example shows the default jetty element.

<jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
</jetty>

The secure-network-io-name must match the SSL netio element name child
element.

6. Save and close the config.xml file.

7. Restart the Oracle Event Processing server (if it is running).

See Start and Stop Servers.

9.5.2 Create a Key Store Manually
By default, the Configuration Wizard creates a default key store certificate file called
evsidentity.jks.

By default the evsidentity.jks file is in the Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>/ssl directory.

The password is the same as the password you entered when you created the server.
Optionally, you can create a key store manually.

1. Use the JDK keytool command to generate a key store:

keytool -genkey -alias evsidentity -keyalg RSA -validity 10958 -keystore
evsidentity.jks -keysize 1024

2. Enter the key store password, when prompted:

Enter keystore password:

3. Enter the key-store attributes, when prompted:

What is your first and last name?
 [Unknown]: OEP

SSL to Secure Network Traffic

9-16 Administering Oracle Event Processing

What is the name of your organizational unit?
 [Unknown]: SOA
What is the name of your organization?
 [Unknown]: ORACLE
What is the name of your City or Locality?
 [Unknown]: SF
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=OEP, OU=SOA, O=ORACLE, L=SF, ST=CA, C=US correct?
 [no]: y

4. When prompted for a key password, do not enter a password, but press Return:

Enter key password for <evsidentity>
 (RETURN if same as keystore password):

Note:

The Oracle Event Processing Server will not start unless the password for
certificate private key is the same as the password for the identity key store.

5. In an XML editor, open the Oracle Event Processing server config.xml file.

By default, the Configuration Wizard creates the config.xml file in the /
Oracle/Middleware/my_oep/user_projects/domains/ <domainname>/
<servername>/config directory.

6. Configure the ssl element.

The following example shows the default ssl element.

<ssl>
 <name>sslConfig</name>
 <key-store>KEYSTORE_PATH</key-store>
 <key-store-pass>
 <password>PASSWORD</password>
 </key-store-pass>
 <key-store-alias>KEYSTORE_ALIAS</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
</ssl>

KEYSTORE_PATH: The file path to the key store file. The file name comes from the -
keystore argument to the keytool command.

PASSWORD: The cleartext key store password.

KEYSTORE_ALIAS: The key store alias. The key store alias is from the -alias
argument to the keytool command.

7. Save and close the config.xml file.

8. Encrypt the cleartext password in the key-store-pass element password child
element of the config.xml file by using the encryptMSAConfig utility.

See The encryptMSAConfig Command-Line Utility.

SSL to Secure Network Traffic

Security 9-17

9.5.3 Configure SSL in a Multiserver Domain for Visualizer
In a multiserver domain, you can configure one-way SSL between the server that hosts
the Oracle Event Processing Visualizer data services application and another server. In
the following procedure, the server that hosts the data services application is
myServer1, and the second server is myServer2. Both servers are in the /Oracle/
Middleware/my_oep/user_projects/domains/myServer1 directory. Repeat
this procedure for other servers in the domain, if required.

For information about securing the messages sent between servers in a multiserver
domain, see:

• Oracle Coherence: Secure the Messages Sent Between Servers

• Native Clustering: Secure the Messages Sent Between Servers in a Multiserver
Domain

For information about starting Oracle Event Processing Visualizer in a multiserver
domain, see Using Visualizer for Oracle Stream Explorer.

Configure SSL in a Multiserver Domain for Use by Visualizer

1. Ensure that SSL is configured for the two servers in the domain.

If you used the Configuration Wizard to create the servers, then SSL is configured
by default.

See Configure SSL Manually for details and information about how to change the
default configuration.

2. Start myServer2.

See Start and Stop Servers.

3. Change to the ssl sub-directory of the myServer1 directory:

cd /Oracle/Middleware/my_oep/user_projects/domains/myDomain/myServer1/ssl

4. Generate a trust key store for myServer1 that includes the certificate of
myServer2 by specifying the following command (split for readability; in practice,
the command should be on one line):

prompt> java -classpath Oracle\Middleware\my_oep\oep\
\common\lib\evspath.jar;Oracle\Middleware\my_oep\oep\utils\security
\wlevsgrabcert.jar
com.bea.wlevs.security.util.GrabCert host:secureport
-alias=alias truststorepath

host: The computer on which myServer2 is running.

secureport: The SSL network I/O port configured for myServer2. The default
value is 9003. For more information, see Configure SSL Manually.

alias: The alias for the certificate in the trust key store. Default value is the host
name.

truststorepath: The full path name of the generated trust key store file; default
is evstrust.jks

For example (put everything on one line):

SSL to Secure Network Traffic

9-18 Administering Oracle Event Processing

java -classpath C:\Oracle\Middleware\
my_oep\oep\common\lib\evspath.jar;C:\Oracle\Middleware\
my_oep\oep\utils\security\wlevsgrabcert.jar
com.bea.wlevs.security.util.GrabCert myServer2:9003
-alias=myServer2 evstrust.jks

For more information, see The GrabCert Command-Line Utility.

5. When prompted, enter the Oracle Event Processing administrator password:

Please enter the Password for the trust store :

6. When prompted, select the certificate sent by myServer2:

Created TrustStore evstrust.jks
Opening connection to myServer2:9003...
Starting SSL handshake...

No certificates in evstrust.jks are trusted by myServer2:9003

Server sent 1 certificate(s):

 1 Subject CN=localhost, OU=Event Server, O=BEA, L=San Jose, ST=California, C=US
 Issuer CN=localhost, OU=Event Server, O=BEA, L=San Jose, ST=California, C=US
 sha1 00 07 c0 f4 10 48 9a f9 07 82 4f b6 9c 7f 7c d0 37 57 90 7d
 md5 a4 d4 ff d2 43 69 95 ca c3 43 e6 f6 b8 08 df b7

Enter certificate to add to trusted keystore evstrust.jks or 'q' to quit: [1]

7. Update the config.xml file of myServer1, by adding trust key store information
to the ssl element and adding a use-secure-connections element, as shown
in bold in the following example:

<ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 <key-store-pass>
 <password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <trust-store>./ssl/evstrust.jks</trust-store>
 <trust-store-pass>
 <password>wlevs</password>
 </trust-store-pass>
 <trust-store-alias>evstrust</trust-store-alias>
 <trust-store-type>JKS</trust-store-type>
 <trust-manager-algorithm>SunX509</trust-manager-algorithm>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
</ssl>
<use-secure-connections>
 <value>true</value>
</use-secure-connections>

The config.xml file is in the config directory of the main server directory. In
this example, the location is /Oracle/Middleware/my_oep/user_projects/
domains/myDomain/myServer1/config/.

SSL to Secure Network Traffic

Security 9-19

8. Encrypt the cleartext password in the trust-store-pass element password
child element of the config.xml file by using the encryptMSAConfig utility.

See The encryptMSAConfig Command-Line Utility.

9. Start myServer1.

9.5.4 Configure SSL Between an SAML2 Service Provider and Identity Provider
You can use SSL to secure communications between the service provider (SP) and
identity provider (IDP) in an SSO environment by configuring an Oracle Event
Processing Server as a SAML2 SP and configure the SP with the needed SAML2
identity IDP options.

The following examples shows an ssl element with a sample configuration. The
procedure edits the example to configure SSL between a SAML2 SP and an IP.

<ssl>
 <name>samlsslConfig</name>
 <key-store>security_files/DemoIdentity.jks</key-store>
 <key-store-pass>
 <password>DemoIdentityKeyStorePassPhrase</password>
 </key-store-pass>
 <key-store-type>JKS</key-store-type>
 <trust-store>security_files/DemoTrust.jks</trust-store>
 <ssl-protocol>TLS</ssl-protocol>
 <key-store-alias>demoidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
</ssl>

Configure SSL between a SAML2 SP and an IP

1. Configure the mandatory SAML2 IDP options.

See Configure SAML2 Identity Provider Options.

2. Add a transport-layer-client-cert-alias element to the saml2-
identity-provider element in your Oracle Event Processing server
config.xml:

<transport-layer-client-cert-alias>sp1</transport-layer-client-cert-alias>

3. Add an ssl-config-bean-name element to the saml2-identity-provider
element in your Oracle Event Processing server config.xml:

<ssl-config-bean-name>samlsslConfig</ssl-config-bean-name>

ssl-config-bean-name: The name of your ssl element.

4. Restart the Oracle Event Processing server for the changes to take effect.

See “Start and Stop Servers”.

9.6 FIPS
The National Institute of Standards and Technology (NIST) creates standards for
Federal computer systems. NIST issues these standards as Federal Information
Processing Standards (FIPS) for government-wide use.

FIPS

9-20 Administering Oracle Event Processing

Oracle Event Processing supports FIPS with the
com.rsa.jsafe.provider.JsafeJCE security provider. Use this provider to
configure Oracle Event Processing to use a FIPS-certified pseudo-random number
generator for SSL.

For more information, see:

• SSL to Secure Network Traffic

• http://www.itl.nist.gov/fipspubs/

You can configure Oracle Event Processing servers to use a FIPS-certified pseudo-
random number generator.

Configure FIPS for an Oracle Event Processing Server

1. Configure Java SE security.

See Java SE Security for an Oracle Event Processing Server.

2. Configure SSL.

See SSL to Secure Network Traffic.

3. Copy com.bea.core.jsafejcefips_version.jar:

From: /Oracle/Middleware/my_oep/oep/utils/security

To: JRE_HOME/jre/lib/ext

JRE_HOME : The directory that contains your JDK installation.

4. Stop the Oracle Event Processing server, if it is currently running.

See Start and Stop Servers.

5. Edit the JRE_HOME/jre/lib/security/java.security file to add
com.bea.core.jsafejcefips_2.0.0.0.jar as a JCE provider as the
following example shows.

security.provider.N=com.rsa.jsafe.provider.JsafeJCE

N: A unique integer that specifies the order in which Java accesses security
providers. To make the JsafeJCE provider the default provider, set N to 1. In this
case, change the value of N for any other providers in the java.security file so
that each provider has a unique number as the following shows.

security.provider.1=com.rsa.jsafe.provider.JsafeJCE
security.provider.2=sun.security.provider.Sun

6. Edit the ssl element in the config.xml server file to add the following child
elements:

• enforce-fips: set this option to true.

• secure-random-algorithm: set this option to FIPS186PRNG

• secure-random-provider: set this option to JsafeJCE.

<ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>

FIPS

Security 9-21

http://www.itl.nist.gov/fipspubs/

 <key-store-pass>
 <password>s4YUEvH4Wl2DAjb45iJnrw==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>true</enforce-fips>
 <need-client-auth>false</need-client-auth>
 <secure-random-algorithm>FIPS186PRNG</secure-random-algorithm>
 <secure-random-provider>JsafeJCE</secure-random-provider>
</ssl>

7. Restart the Oracle Event Processing server for the changes to take effect.

See Start and Stop Servers.

9.7 SSO with SAML2
The Security Assertion Markup Language (SAML) is an OASIS XML standard for
exchanging authentication and authorization data between security domains. Oracle
Event Processing server supports SAML2.

With SAML configuration, you can define a web application single sign-on (SSO)
environment between Oracle Event Processing servers and a SAML-compliant system
such as Oracle WebLogic Server or Oracle Access Manager.

SSO enables you to have a user to sign on to an application once and gain access to
many different application components even when these components have their own
authentication schemes. Single sign-on enables users to log in securely to all of their
applications with one identity.

There are two roles in a SAML2 SSO environment as Figure 9-1 shows:

• Identity Provider (IDP): The process that performs authentication. You configure
SAML2 options for the IDP in the Oracle Event Processing server config.xml file.

• Service Provider (SP): The process that delegates authentication to an IDP. You
configure SAML2 options for the SP in the Oracle Event Processing
security.xml file.

In the context of Oracle Event Processing, the Oracle Event Processing server is the
service provider. The identity provider is any SAML2-compliant system such as
Oracle WebLogic Server or Oracle Access Manager.

Figure 9-1 SSO Using SAML2

SSO with SAML2

9-22 Administering Oracle Event Processing

Be aware that Oracle Event Processing Visualizer supports SSO with SAML2, but the
Oracle Event Processing HTTP Publish-Subscribe Server (HTTP pub-sub server) does
not support SSO with SAML2.

For more information, see:

• Understanding Security for Oracle WebLogic Server

• Developing Applications with the WebLogic Security Service

• http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=security.

The following procedures explain how to configure SSO with SAML2 on an Oracle
Event Processing server:

• Configure SAML2 Service Provider Options

• Configure SAML2 Identity Provider Options

• Configure SAML2 Web Application Options.

9.7.1 Configure SAML2 Service Provider Options
In this configuration, the Oracle Event Processing server receives client requests and
delegates their authentication to a SAML2 IDP. You configure SAML2 SP options in
the security.xml file with the cssconfig command-line tool.

Configure SAML2 Service Provider Options

1. Add the Oracle\Middleware\my_oep\oep\bin directory to your PATH
environment variable:

set PATH=d:\Oracle\Middleware\my_oep\oep\bin;%PATH% (Windows)
PATH=/Oracle/Middleware/my_oep/oep/bin:$PATH (UNIX)

2. Change to the config directory for the server you want to update.

By default the domain directory is Oracle/Middleware/my_oep/
user_projects/domains/<domainname>.

3. Make a backup copy of the existing security.xml file in case you need to revert:

4. In a text editor, create a file called saml2.properties and copy the entire
contents of the following example into it.

You can customize the properties file.

samlkey.mbean=com.bea.common.management.configuration.SAMLKeyServiceMBean
samlkey.Type=JKS
samlkey.Filename=security_files\\DemoIdentity.jks
samlkey.Passphrase=keystore_passphrase
samlkey.DefaultAlias=demoidentity
samlkey.DefaultPassphrase=keystore_passphrase
saml2.mbean=com.bea.common.management.configuration.SingleSignOnServicesMBean
saml2.PublishedSiteURL=http://localhost:9002/saml2
saml2.EntityID=http://localhost:9002/saml2
saml2.ServiceProviderEnabled=true
saml2.ServiceProviderPreferredBinding=HTTP/POST
saml2.SignAuthnRequests=true
saml2.WantAssertionsSigned=true
saml2.SSOSigningKeyAlias=sp1
saml2.SSOSigningKeyPassPhrase=password

SSO with SAML2

Security 9-23

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

saml2.TransportLayerSecurityKeyAlias=sp1
saml2.TransportLayerSecurityKeyPassPhrase=password
saml2.BasicAuthUsername=spBasicAuth
saml2.BasicAuthPassword=password
saml2.WantArtifactRequestsSigned=true
saml2.WantTransportLayerSecurityClientAuthentication=false
atn.10.mbean=weblogic.security.providers.saml.SAMLAuthenticatorMBean
atn.10.Name=saml2-atn-provider
ia.4.mbean=com.bea.security.saml2.providers.SAML2IdentityAsserterMBean
ia.4.Name=saml2-Identity-Asserter

5. Create a new security configuration file (security.xml) by executing the
following cssconfig command:

cssconfig -p saml2.properties -i security-key.dat -c security.xml

saml2.properties: The property file you created in security.xml is the name
of the new security configuration file, and security-key.dat: An existing file,
generated by the Configuration Wizard, that contains the identity key.

See The cssconfig Command-Line Utility for additional information.

6. Restart the Oracle Event Processing server for the changes to take effect.

See “Start and Stop Servers”.

9.7.2 Configure SAML2 Identity Provider Options
In this configuration, you configure an Oracle Event Processing server with SAML2
IDP options that the server then uses to delegate authentication to a SAML2-compliant
IDP. You configure SAML2 IDP options in the Oracle Event Processing server
config.xml file.

This procedure uses Oracle WebLogic Server as an example IDP. Refer to your IDP
documentation for configuration details specific to your IDP and use this procedure as
a guide.

Configure SAML2 Identity Provider Options

1. Obtain the IDP metadata file from your IDP.

If Oracle WebLogic Server is your IDP, you can generate the IDP metadata file as
follows:

a. Open a browser and log into the Oracle WebLogic Server console:

http://localhost:1010/console

b. Under your domain, select Environment > Servers > SERVER_NAME >
Federation > Services > SAML 2.0 General

Where SERVER_NAME is the name of your Oracle WebLogic Server.

c. Click Publish Meta Data and specify a file name.

In this example, call it myidp.xml.

2. Change to the config directory for the server you want to update.

By default, the directory is Oracle/Middleware/my_oep/user_projects/
domains/<domainname>/<servername>/config.

SSO with SAML2

9-24 Administering Oracle Event Processing

3. Copy the myidp.xml file to your Oracle Event Processing server config
directory.

4. Make a backup copy of the existing config.xml file, in case you need to revert:

5. In a text editor, edit the config.xml file and add a saml2-identity-
provider element as the following example shows.

You can configure only one IDP per Oracle Event Processing server.

<saml2-identity-provider>
 <meta-data-file-name>myidp.xml</meta-data-file-name>
 <partner-name>partnerIdP1</partner-name>
 <redirect-uris>
 <uri>/unleashed_saml/</uri>
 <uri>/unheardof_saml/</uri>
 </redirect-uris>
</saml2-identity-provider>

meta-data-file-name: partner-name: The name of this IDP
instance.redirect-uris: SAML2 authentication URIs.

6. Restart the Oracle Event Processing server for the changes to take effect.

See Start and Stop Servers.

9.7.3 Configure SAML2 Web Application Options
After you configure SAML2 SP and IDP options, you must configure the web.xml file
for the web applications that will access the SP.

Configure SAML2 Web Application Options

1. Change to the directory that contains the web.xml file for the web application that
needs to access the SP.

2. In a text editor, edit the web.xml file and add a filter element:

<filter>
 <filter-name>SAML2Filter</filter-name>
 <filter-class>com.bea.core.saml2.SAML2Filter</filter-class>
</filter>

3. Add a filter-mapping element:

<filter-mapping>
 <filter-name>SAML2Filter</filter-name>
 <url-pattern>/welcome.jsp</url-pattern>
</filter-mapping>

The protected resource defined in the filter-mapping child element url-
pattern must match the redirectUri you configured in the config.xml file.

4. Repackage and deploy the web application.

9.8 HTTPS-Only Connections
You can lock down the server to allow only HTTPS connections.

HTTPS-Only Connections

Security 9-25

Configure HTTPS-Only Connections for a Server

1. Ensure that SSL is configured for the server.

See SSL to Secure Network Traffic for details.

2. Remove the HTTP port configuration from the config.xml server file.

By default the file is in Oracle/Middleware/my_oep/user_projects/
domains/<domainname>/<servername>/config/

The following example shows config.xml entries with a standard configuration
where both an HTTP and HTTPS ports are configured. The HTTP port is 9002 and
the HTTPS port is 9003. Clients can access the Jetty server through both ports.

<netio>
 <name>NetIO</name>
 <port>9002</port>
</netio>
<netio>
 <name>sslNetIo</name>
 <port>9003</port>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
</netio>
<jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 ...
</jetty>
<ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 ...
</ssl>

The following example shows the same config.xml file with HTTP access
removed. Clients can now access the Jetty server using the HTTPS port only.

<netio>
 <name>sslNetIo</name>
 <port>9003</port>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
</netio>
<jetty>
 <name>JettyServer</name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 ...
</jetty>
<ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 ...
</ssl>

3. If you have a multiserver domain, make sure that SSL is configured between the
member servers.

See Configure SSL in a Multiserver Domain for Visualizer for details.

HTTPS-Only Connections

9-26 Administering Oracle Event Processing

9.9 Security for Server Services
After you complete basic security tasks such as configuring Java SE security, a security
service provider, and SSL, you can configure security details specific to the various
services that Oracle Event Processing server provides.

This section describes:

• Configure Jetty Security

• Configure JMX Security

• Configure JDBC Security

• Configure HTTP Publish-Subscribe Server Channel Security

9.9.1 Configure Jetty Security
Oracle Event Processing supports Jetty as a Java web server to deploy HTTP servlets
and static resources. See http://mvnrepository.com/artifact/
org.mortbay.jetty. For more information about Jetty, see Jetty.

The following security tasks affect Jetty configuration:

• Java SE Security for an Oracle Event Processing Server

• SSL to Secure Network Traffic.

9.9.2 Configure JMX Security
Clients that access the Oracle Event Processing server with JMX are subject to Oracle
Event Processing role-based authentication. For more information about roles, see:

• Users, Groups, and Roles

• Using Visualizer for Oracle Stream Explorer.

For more information about JMX, see JMX .

9.9.3 Configure JDBC Security
If you update a data source with a new password using the Configuration Wizard,
then the Configuration Wizard performs password encryption for you. If you update
the config.xml file manually by adding or modifying a data-source element,
then you enter the password in plain text and encrypt the password with the
encryption utility, encryptMSAConfig.

The following example shows a config.xml file data-source element with a new
plain text password, secret, specified in the properties element with the name
password.

<data-source>
 <name>epcisDS</name>
 <driver-params>
 <url>jdbc:sqlserver://localhost:1433;databaseName=myDB;SelectMethod=cursor</url>
 <driver-name>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>juliet</value>
 </element>

Security for Server Services

Security 9-27

http://mvnrepository.com/artifact/org.mortbay.jetty
http://mvnrepository.com/artifact/org.mortbay.jetty

 <element>
 <name>password</name>
 <value>secret</value>
 </element>
 </properties>
 </driver-params>
</data-source>
<transaction-manager>
 <name>TM</name>
 <rmi-service-name>RMI</rmi-service-name>
</transaction-manager>

The following example shows the config.xml file data-source element after
encryption. Note the plain text password is encrypted.

<data-source>
 <name>epcisDS</name>
 <driver-params>
 <url>jdbc:sqlserver://localhost:1433;databaseName=myDB;SelectMethod=cursor</url>
 <driver-name>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>juliet</value>
 </element>
 <element>
 <name>password</name>
 <value>{Salted-3DES}hVgC5iZ3nZA=</value>
 </element>
 </properties>
 </driver-params>
</data-source>
<transaction-manager>
 <name>TM</name>
 <rmi-service-name>RMI</rmi-service-name>
</transaction-manager>

For more information, see:

• User Credentials for Command-Line Utilities

• The encryptMSAConfig Command-Line Utility.

For more information about JDBC, see JDBC.

9.9.4 Configure HTTP Publish-Subscribe Server Channel Security
After you configure at least one HTTP publish-subscribe server channel, you can use
role-based authentication to control access to individual HTTP publish-subscribe
server channels using the Oracle Event Processing Visualizer.

For more information, see:

• Users, Groups, and Roles

• HTTP Publish-Subscribe Server

• Using Visualizer for Oracle Stream Explorer.

9.10 Cross-Domain Security for Visualizer
Oracle Event Processing Visualizer provides an Adobe Flash-based user interface with
which you can create and configure event processing networks. To provide the most
flexible default performance for Visualizer, the software is installed with a configured

Cross-Domain Security for Visualizer

9-28 Administering Oracle Event Processing

trust level that allows access to Visualizer data from any domain. If this trust level is
inappropriate for your deployment, you can edit the application's Flash cross-domain
policy file to restrict access.

Review the domains the Flash cross-domain policy allows and determine whether it is
appropriate for the application to fully trust both the intentions and security posture
of those domains. See the Adobe web site for a thorough description of editing cross-
domain policy. See the Adobe security web site for information about using the Adobe
cross-domain policy files.

Update Cross-Domain Security

1. Locate the Oracle Event Processing Visualizer JAR file.

By default the file is in Oracle/Middleware/my_oep/oep/modules/
com.bea.wlevs.visualizer.jmxhttpadapter_version.jar.

2. Expand the JAR file and locate the crossdomain.war file.

3. Expand the crossdomain.war file to locate the crossdomain.xml file.

4. Edit the crossdomain.xml file to reflect your cross-domain security needs.

5. Repackage the crossdomain.war file and the Oracle Event Processing
Visualizer JAR file.

9.11 Security Auditor
Oracle Event Processing provides a security auditor that logs security-related activity.
By default, the security auditor logs to

Oracle/Middleware/my_oep/user_projects/domains/<domainname>/ <servername>/legacy-
rootdir/servers/legacy-server-name/logs

By default, the Oracle Event Processing security auditor logs security errors or failures
to keep the security auditor log file at a manageable size. You can configure the level
at which the Oracle Event Processing security auditor logs information.

For more information, see Administering Security for Oracle WebLogic Server 12c (12.2.1).

To configure security auditor logging:

1. Change to the config directory for the server you want to configure.

2. In a text editor, open the security.xml file and locate the sec:auditor element
element:

<sec:auditor xsi:type="wls:default-auditorType">
 <sec:name>my-auditor</sec:name>
 <wls:severity>CUSTOM</wls:severity>
 <wls:rotation-minutes>720</wls:rotation-minutes>
 <wls:error-audit-severity-enabled>true</wls:error-audit-severity-enabled>
 <wls:failure-audit-severity-enabled>true</wls:failure-audit-severity-enabled>
</sec:auditor>

3. Modify the sec:auditor element as required:

wls:rotation-minutes: How many minutes to wait before creating a new
DefaultAuditRecorder.log file. At the specified time, the audit file closes and
a new files is created. Oracle Event Processing creates a backup file named
DefaultAuditRecorder.YYYYMMDDHHMM.log in the same directory.

Security Auditor

Security 9-29

wls:severity: The severity level from the following list that is appropriate for
your server. The security auditor audits security events of the specified severity
and all events with a higher numeric severity rank. For example, if you set the
severity level to ERROR, the Oracle Event Processing security auditor audits
security events of severity level ERROR, SUCCESS, and FAILURE.

INFORMATION: 1WARNING: 2ERROR: 3SUCCESS: 4FAILURE: 5

You can also set the wls:severity level to CUSTOM, and enable (true) or disable
(false) the specific severity levels you want to audit by using one or more of the
following child elements:

• wls:information-audit-severity-enabled: If the severity value is
set to CUSTOM, setting this child element to true causes the Oracle Event
Processing security auditor to generate audit records for events with a severity
level of INFORMATION.

• wls:warning-audit-severity-enabled: If the severity value is set to
CUSTOM, setting this child element to true causes the Oracle Event Processing
security auditor to generate audit records for events with a severity level of
WARNING.

• wls:error-audit-severity-enabled: If the severity value is set to
CUSTOM, setting this child element to true causes the Oracle Event Processing
security auditor to generate audit records for events with a severity level of
ERROR.

• wls:success-audit-severity-enabled: If the severity value is set to
CUSTOM, setting this child element to true causes the Oracle Event Processing
security auditor to generate audit records for events with a severity level of
SUCCESS.

• wls:failure-audit-severity-enabled: If the severity value is set to
CUSTOM, setting this child element to true causes the Oracle Event Processing
security auditor to generate audit records for events with a severity level of
FAILURE.

4. Save and close the security.xml file.

5. Restart the Oracle Event Processing server for the changes to take effect.

See Start and Stop Servers.

9.12 Disable Security
You can disable security entirely on the Oracle Event Processing server. While this
configuration might be appropriate for development environments, Oracle does not
recommend disabling security in a production environment.

To temporarily disable security, you can run the startwlevs.cmd or
startwlevs.sh script with the -disablesecurity argument on the command
line. For example:

startwlevs.cmd -disablesecurity

Disable Security

9-30 Administering Oracle Event Processing

Note:

In some sample domains, the startwlevs.cmd and startwlevs.sh scripts
already include a -disablesecurity argument. Executing such a script
with -disablesecurity on the command line will fail with an Illegal
argument error.

9.13 Security Utilities
Oracle Event Processing provides a variety of command-line utilities to simplify
security administration. In addition to command-line utilities, you can use Oracle
Event Processing Visualizer to perform many security tasks.

For more information, see:

• Security Utilities Command-Line Reference

• User Credentials for Command-Line Utilities

• Using Visualizer for Oracle Stream Explorer.

9.14 User Credentials for Command-Line Utilities
Oracle Event Processing provides the following command-line utilities for performing
a variety of tasks:

• wlevs.Admin: a command-line interface to administer Oracle Event Processing
and, in particular, dynamically configure the rules for Oracle CQ processors and
monitor the event latency and throughput of an application. See wlevs.Admin
Command-Line Reference for details

• Deployer: a Java-based deployment utility that provides administrators and
developers command-line based operations for deploying Oracle Event Processing
applications. See Deployer Command-Line Reference for details.

• cssconfig: a command-line utility to generate a security configuration file
(security.xml) that uses a password policy. See The cssconfig Command-Line
Utility for details.

• encryptMSAConfig: an encryption command-line utility to encrypt cleartext
passwords, specified by the password element, in XML files. See The
encryptMSAConfig Command-Line Utility for details.

For each utility, you can specify user credentials (user name and password) using the
following three methods:

• On the command line using options such as -user and -password.

• Interactively so that the command line utility always prompts for the credentials.

• Specifying a filestore that stores the user credentials; the filestore itself is also
password protected.

In a production environment you should never use the first option (specifying user
credentials on the command line) but rather use only the second and third option.

When using interactive mode (command-line utility prompts for credentials), be sure
you have the appropriate terminalio native libraries for your local computer in

Security Utilities

Security 9-31

your CLASSPATH so that the user credentials are not echoed on the screen when you
type them. Oracle Event Processing includes a set of standard native libraries for this
purpose, but it may not include the specific one you need.

9.15 Security in Oracle Event Processing Examples and Domains
When you use the Configuration Wizard to create a new domain, you specify the
administrator user and password, as well as the password to the domain identity key
store. This user is automatically added to the wlevsAdministrators group. All
security configuration is stored using a file-based provider, by default.

All Oracle Event Processing examples are configured to have an administrator with
user name oepadmin and password welcome1. When you create a new domain you
specify the administrator name and password.

By default, security is disabled in the HelloWorld example. This means that any user
can start the server, deploy applications, and run all commands of the administration
tool (wlevs.Admin) without providing a password.

Security is enabled in the FX and AlgoTrading examples. In both examples, the user
oepadmin, with password welcome1, is configured to be the Oracle Event Processing
administrator with full administrator privileges. The scripts to start the server for
these examples use the appropriate arguments to pass this user name and password to
the java command. If you use the Deployer or wlevs.Admin utility, you must also
pass this user name/password pair using the appropriate arguments.

For more information, see User Credentials for Command-Line Utilities.

Security in Oracle Event Processing Examples and Domains

9-32 Administering Oracle Event Processing

10
Jetty

Oracle Event Processing supports Jetty as a Java web server to deploy HTTP servlets
and static resources. You can configure Jetty features to use them with Oracle Event
Processing. Features you can configure are network I/O, work managers, and
configuring a Jetty server instance.

Oracle Event Processing Jetty support is based on Version 1.2 the OSGi HTTP Service.
The OSGi HTTP Service API enables dynamically registering and unregistering objects
with run time and static resources. This specification requires Java Servlet API 2.1 or
higher. See http://java.sun.com/products/servlet/docs.html.

This chapter includes the following sections:

• Jetty Features

• Thread Pools

• Work Manager Configuration

• Application Development and Deployment

• Configure a Jetty Server Instance.

10.1 Jetty Features
Oracle Event Processing supports the following Jetty features:

Servlets: Oracle Event Processing supports synchronous and asynchronous Java
servlets. An asynchronous servlet receives a request, gets a thread and performs some
work, and finally releases the thread while waiting for those actions to complete
before re-acquiring another thread and sending a response. See Application
Development and Deployment.

Network I/O Integration: Oracle Event Processing uses network I/O (Net IO) to
configure the port and listen address of Jetty services. Jetty has a built-in capability for
multiplexed network I/O. However, it does not support multiple protocols on the
same port.

Thread Pool Integration: Oracle Event Processing Jetty services use the Oracle Event
Processing work manager for scalable thread pooling. See Example Jetty
Configuration. Although, Jetty provides its own thread pooling capability, Oracle
recommends that you use the Oracle Event Processing self-tuning thread pool to
minimize footprint and configuration complexity.

Jetty Work Managers: Oracle Event Processing enables you to configure how your
application prioritizes the execution of its work. You define rules and monitor run
time performance to optimize application performance and maintain service-level
agreements. You define a work manager to define the rules and constraints for your
application. See Jetty Configuration Objects.

Jetty 10-1

10.2 Thread Pools
Oracle Event Processing uses a single thread pool to execute all types of work. Oracle
Event Processing prioritizes work based on rules you define and run-time metrics that
include the time it takes to execute a request, and the rate at which requests enter and
leave the pool.

The common thread pool changes size to maximize throughput. The queue monitors
throughput over time, and based on history, determines whether to adjust the thread
count. For example, if historical throughput statistics indicate that a higher thread
count increased throughput, Oracle Event Processing increases the thread count.
Similarly, if statistics indicate that fewer threads did not reduce throughput, Oracle
Event Processing decreases the thread count.

10.3 Work Manager Configuration
Oracle Event Processing prioritizes work and allocates threads based on an execution
model that accounts for defined parameters, and run time performance and
throughput. You can configure a set of scheduling guidelines and associate them with
one or more applications or with particular application components.

For example, you can associate one set of scheduling guidelines for one application,
and another set of guidelines for other applications. At run time, Oracle Event
Processing uses the guidelines to assign pending work and enqueued requests to
execution threads.

To manage work in your applications, define one or more of the following work
manager components:

• fairshare: The average thread-use time required to process requests.

For example, Oracle Event Processing runs two modules and the work manager for
ModuleA specifies a fairshare of 80 and the work manager for ModuleB
specifies a fairshare of 20. During a period of sufficient demand, with a steady
stream of requests for each module such that the number requests exceed the
number of threads, Oracle Event Processing allocates 80% and 20% of the thread-
usage time to ModuleA and ModuleB, respectively.

Note:

You specify a fair share request class as a relative value, not a percentage.
Therefore, in the above example, if the request classes are defined as 400 and
100, they still have the same relative values.

• max-threads-constraint: Limits the number of concurrent threads executing
requests from the constrained work set. The default is unlimited. For example,
consider a constraint defined with maximum threads of 10 and shared by 3 entry
points. The scheduling logic ensures that not more than 10 threads are executing
requests from the three entry points combined.

A max-threads-constraint can be defined in terms of a the availability of
resource that requests depend upon, such as a connection pool.

A max-threads-constraint might, but does not necessarily, prevent a request
class from taking its fair share of threads or meeting its response time goal. Once
the constraint is reached the Oracle Event Processing does not schedule requests of

Thread Pools

10-2 Administering Oracle Event Processing

this type until the number of concurrent executions falls below the limit. The
Oracle Event Processing then schedules work based on the fair share or response
time goal.

• min-threads-constraint: Guarantees a number of threads the server will
allocate to affected requests to avoid deadlocks. The default is zero. A min-
threads-constraint value of one is useful, for example, for a replication
update request, which is called synchronously from a peer.

A min-threads-constraint might not increase a fair share. This type of
constraint has an effect primarily when the Oracle Event Processing instance is
close to a deadlock condition. In that case, the constraint causes Oracle Event
Processing to schedule a request even when requests in the service class have
gotten more than their fair share recently.

10.4 Application Development and Deployment
Oracle Event Processing supports servlet development for deployment to Jetty.

The developer creates a standard Java EE web application and configures it with the
jetty-web-app configuration object in the config.xml file for the server where the
servlet will run.

Oracle Event Processing supports servlet deployments packaged either as war files or
as exploded war files, as described in version 2.4 of the Java Servlet Specification. You
can deploy pre-configured web applications from an exploded directory or war file by
including them in the server configuration.

Security constraints specified in the standard web.xml file are mapped to the Common
Security Services security provider. The Servlet API specifies declarative role-based
security, which means that particular URL patterns can be mapped to security roles.

10.5 Configure a Jetty Server Instance
This section presents an example Jetty configuration followed by a description of the
Jetty configuration objects.

You configure a Jetty server instance in the config.xml file for the server you want
to configure.For information about security configuration tasks that affect Jetty, see
Configure Jetty Security.

10.5.1 Example Jetty Configuration
The following snippet from a config.xml file provides an example Jetty
configuration. Only Jetty-related configuration information is shown:

<config>
 <netio>
 <name>JettyNetIO</name>
 <port>9002</port>
 </netio>
 <work-manager>
 <name>WM</name>
 <max-threads-constraint>64</max-threads-constraint>
 <min-threads-constraint>3</min-threads-constraint>
 </work-manager>
 <jetty>
 <name>TestJetty</name>
 <work-manager-name>WM</work-manager-name>
 <network-io-name>JettyNetIO</network-io-name>
 <debug-enabled>false</debug-enabled>

Application Development and Deployment

Jetty 10-3

 <scratch-directory>JettyWork</scratch-directory>
 </jetty>
 <jetty-web-app>
 <name>test</name>
 <context-path>/test</context-path>
 <path>testWebApp.war</path>
 <jetty-name>TestJetty</jetty-name>
 </jetty-web-app>
</config>

10.5.2 Jetty Configuration Objects
This section explains how to use the following configuration objects to configure an
instance of the Jetty HTTP server. You configure a Jetty HTTP server in the
config.xml file that describes your Oracle Event Processing server.

• jetty

• netio

• work-manager

• jetty-web-app.

jetty

Use the parameters described in the following table to define a jetty configuration
object in your config.xml file.

Table 10-1 jetty Element Configuration Parameters

Parameter Type Description

network-io-name String
The name of the Net IO service used. The Net IO service
defines the port the server listens on.

See Jetty Configuration Objects for details.

work-manager-name String
The name of the Work Manager that should be used for
thread pooling. If not specified, the default work manager
is used.

See Jetty Configuration Objects.

scratch-directory String
The name of a directory where temporary files required
for web applications, JSPs, and other types of web
artifacts are kept.

debug-enabled boolean
Enable debugging in the Jetty code using the OSGi Log
Service.

name String
The name of the jetty server instance.

netio

Use the parameters described in the following table to define a netio configuration
object in your config.xml file.

Configure a Jetty Server Instance

10-4 Administering Oracle Event Processing

Table 10-2 netio Element Configuration Parameters

Parameter Type Description

name String
The name of the configuration object.

port int
The listening port number.

listen-address String
The address on which an instance of netio service
listens for incoming connections.

• It can be set to a numeric IP address in the a.b.c.d
format, or to a host name.

• If not set, the service listens on all network interfaces.
The value of this parameter cannot be validated until the
service has started.

work-manager

Use the parameters described in the following table to define a work-manager
configuration object in your config.xml file.

Table 10-3 work-manager Element Configuration Parameters

Parameter Type Description

min-threads-constraint Integer
The minimum threads this work manager uses.

fairshare Integer
The fairshare value this work manager uses.

max-threads-constraint Integer
The maximum threads constraint this work
manager uses.

name String
The name of this work manager.

jetty-web-app

Use the following configuration object to define a web application for use by Jetty.

Table 10-4 jetty-web-app Element Configuration Parameters

Parameter Type Description

name String
The name of this work manager.

context-path String
The context path where this web app is deployed in the
web server's name space.

If not set, it defaults to "/".

scratch-directory String
The location where Jetty stores temporary files for this
web app.

Overrides the scratch-directory parameter in the
Configure a Jetty Server Instance.

Configure a Jetty Server Instance

Jetty 10-5

Parameter Type Description

path String
A file name that points to the location of the web app on
the server. It may be a directory or a war file.

jetty-name String
The name of the Jetty service where this web application
is deployed. It must match the name of an existing
Configure a Jetty Server Instance.

name String
The name of this configuration object.

Configure a Jetty Server Instance

10-6 Administering Oracle Event Processing

11
JMX

Oracle Event Processing provides standards-based interfaces that are fully compliant
with the Java Management Extensions (JMX) specification. Software developers can
use these interfaces to monitor Oracle Event Processing management beans (MBeans),
to change the configuration of an Oracle Event Processing domain, and to monitor
Oracle Event Processing applications.

This chapter includes the following sections:

• MBean Usage

• Access the Oracle Event Processing JMX Server

• Types of MBeans

• Configure JMX

• Manage with JMX.

11.1 MBean Usage
Software developers implement MBean interfaces to design and develop an Oracle
Event Processing management console to be used by the administrators at a customer
installation. MBeans enable a developer to dynamically configure EPN components
and perform server, domain, and application configuration and life cycle
management. EPN configuration tasks include adding and removing Oracle CQL or
rules, changing the channel maximum size, subscribing to notifications, and executing
operations.

Currently there is no MBean support for deploying and undeploying application
libraries on a local or remote server. See Deployer Command-Line Reference for more
information.

You can manipulate MBeans with any of the following tools:

• Oracle Event Processing Visualizer. See Using Visualizer for Oracle Stream Explorer.

• wlevs.Admin command-line utility. See wlevs.Admin Command-Line Reference.

• Deployer command-line deployment utility. See Deployer Command-Line
Reference.

• jconsole, which is the JMX console provided by the JDK.

• In Java code with standard JMX APIs. See http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-142926.html.

JMX 11-1

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-142926.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-142926.html

11.2 Access the Oracle Event Processing JMX Server
To access Oracle Event Processing MBeans, you must first connect to the Oracle Event
Processing JMX server.

Oracle Event Processing does not support the JRMP protocol. Instead, JMX clients
must use the more secure MSA protocol for both local and remote access to the Oracle
Event Processing JMX server.

When you connect to the Oracle Event Processing JMX server that is running on
localhost or on a remote host, you must copy the following Oracle Event
Processing server JAR files to the client class path of the host from which you want to
connect to the Oracle Event Processing server:

• Oracle\Middleware\my_oep\oep\wlserver\modules
\com.bea.core.jmx_13.0.0.0.jar

• Oracle\Middleware\my_oep\oep\wlserver\modules
\com.bea.core.rmi_13.0.0.0.jar

• Oracle\Middleware\my_oep\oep\wlserver\modules
\com.bea.core.jndi.context_13.0.0.0.jar

• Oracle\Middleware\my_oep\oep\wlserver\modules
\com.bea.core.logging_3.0.0.0.jar

• Oracle\Middleware\my_oep\oep\wlserver\modules
\com.bea.core.bootbundle_13.0.0.0.jar

You must launch your JMX client (such as jconsole) using the following command
line options and classpath (split for readability.

java -Djmx.remote.protocol.provider.pkgs=com.bea.core.jmx.remote.provider
-Dmx4j.remote.resolver.pkgs=com.bea.core.jmx.remote.resolver
-Djava.naming.factory.initial=com.bea.core.jndi.context.ContextFactory
-classpath %JAVA_HOME%\lib\jconsole.jar;MODULE_HOME\modules
\com.bea.core.jmx_13.0.0.0.jar;
MODULE_HOME\modules\com.bea.core.rmi_7.0.0.0.jar;
MODULE_HOME\modules\com.bea.core.jndi.context_7.0.0.0.jar;
MODULE_HOME\modules\com.bea.core.logging_1.5.0.0.jar;
MODULE_HOME\modules\com.bea.core.bootbundle_8.0.0.0.jar
sun.tools.jconsole.JConsole

Where MODULE_HOME is the directory you copied the Oracle Event Processing server
JAR files to.

To connect to the Oracle Event Processing JMX server, you must use the JMX URL
service:jmx:msarmi://HOST-NAME:port/jndi/jmxconnector so that you
are always using the MSA connector (where HOST-NAME is either localhost or the
name of the remote host and port is the Oracle Event Processing server JNDI port).

For more information, see:

• Connect with APIs to a JMX Server from a Non-Oracle Event Processing Client

• Connect to Local or Remote JMX Server Using JConsole with Security Disabled.

Access the Oracle Event Processing JMX Server

11-2 Administering Oracle Event Processing

11.3 Types of MBeans
Oracle Event Processing exposes configuration and run time MBeans.

Configuration MBeans contain configuration information about EPN components, a
deployed applications, servers, and domains. These MBeans have a fixed management
interface and represent the information contained in the server config.xml file and the
component configuration file. CQLProcessorMBean and EventChannelMBean are
examples of configuration MBeans.

Every component in a deployed application (adapter, channel, or processor) has a
configuration MBean that manages the underlying configuration of the component.
Each type of component has its own set of manageable artifacts. For example, you can
dynamically configure the maximum number of threads for a channel or the Oracle
CQL rules associated with a processor.

Run time MBeans contain monitoring information for each component in the EPN
with run time MBeans. Monitoring information includes throughput (number of
events passing through a component) and latency (how long it takes an event to pass
through a component).

See the API Overview in Developing Applications for Event Processing with Oracle Stream
Explorer for a list of packages that contain MBeans. See Java API Reference for Oracle
Stream Explorer for information about specific MBeans.

11.3.1 Configuration MBeans
When you deploy an Oracle Event Processing application, the server creates a
configuration MBean for each component in the EPN whose manageability has been
enabled or for each component registered in the EPN assembly file. If you have
extended the configuration of an adapter, then the server deploys a custom
configuration MBean for the adapter.

Using JMX, you can dynamically configure the component using its configuration
MBean. For example, using the EventChannelMBean.setMaxSize() method you
can set the size of a channel component.

11.3.2 Configuration MBean Naming
Oracle Event Processing configuration MBeans are arranged in a hierarchy. The object
name of each MBean reflects its position in the hierarchy.

A typical object naming pattern is as follows:

com.bea.wlevs:Name=name,Type=type,[TypeOfParentMBean=NameOfParentMBean]

where:

• com.bea.wlevs: is the JMX domain name.

• Name=name,Type=type,[TypeOfParentMBean=NameOfParentMBean] is a
set of JMX key properties.

The order of the key properties is not significant, but the object name must begin with
com.bea:wlevs:.

For example, the object name of the MBean corresponding to a processor called
myprocessor in the application myapplication in the domain is as follows:

com.bea.wlevs:Name=myprocessor,Type=CQLProcessor,Application=myapplication

Types of MBeans

JMX 11-3

Table 11-1 describes the key properties that Oracle Event Processing encodes in its
MBean object names.

Table 11-1 Oracle Event Processing MBean Object Name Key Properties

This Key Property Specifies

Name=name
The string that you provided when you created the
resource that the MBean represents. This is typically the
name of a component.

The name of a particular component is specified in the
EPN assembly file using the id attribute of the
component registration.

For example, in the case of processors, the entry in the
EPN assembly file might look like the following:

<wlevs:processor id="myprocessor"
advertise="true" />

In this case, the key property would be
Name=myprocessor.

Type=type
The short name of the MBean's type. The short name is
the unqualified type name without the MBean suffix.

For example, for an MBean that is an instance of the
CQLProcessorMBean, use CQLProcessor. In this
case, the key property would be
Type=CQLProcessor.

TypeOfParentMBean=NameOfParentM
Bean

Specifies the type and name of the parent MBean.

For components, this is always
Application=application_name, where
application_name refers to the name of the
application of which the component is a part.

The name of a particular Oracle Event Processing
application is specified with the Bundle-
SymbolicName header of the MANIFEST.MF file of the
application bundle. For example, if an application has
the following MANIFEST.MF snippet (only relevant
parts are shown):

Manifest-Version: 1.0
Archiver-Version:
Build-Jdk: 1.5.0_06
....
Bundle-SymbolicName: myapplication

then the key property would be
Application=myapplication.

Table 11-2 shows examples of configuration MBean object names that correspond to
the component declarations in the HelloWorld sample EPN assembly file. In each
example, the application name is helloworld and the domain name is myDomain.

Types of MBeans

11-4 Administering Oracle Event Processing

Table 11-2 Component Declaration Example With Corresponding MBean Object
Names

EPN Assembly File Component Declaration Corresponding Configuration MBean
Object Name

<wlevs:processor
id="helloworldProcessor" />

com.bea.wlevs:Name=helloworldProcessor,
Type=CQLProcessor,Application=helloworl
d,Domain=myDomain

CQLProcessor is the standard
configuration MBean for processor
components. The manageable property is
rules.

<wlevs:channel id="helloworldInstream">
 <wlevs:listener
ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

com.bea.wlevs:Name=helloworldInstream,T
ype=EventChannel,Application=helloworld
,Domain=myDomain

Channel is the standard configuration
MBean for a channel component. The
manageable properties are MaxSize and
MaxThreads.

11.3.3 Run Time MBeans
You can gather monitoring information for each component in the EPN with run time
MBeans. Oracle Event Processing server defines the following metrics that you can
monitor for each component:

• Throughput: The number of events processed by the component. The parameters
for this metric are: throughput time interval, aggregation time interval, the unit of
time for the intervals.

• Average Latency: The average amount of time it takes an event to pass through a
component, or latency. Parameters: aggregation time interval, the unit of time for
the interval.

• Maximum Latency: The maximum amount of time it takes an event to pass through
a component. Parameters: aggregation time interval, the unit of time for the
interval.

• Average Latency Threshold: Specifies whether the average latency of events
between the start- and end-points of a component crosses a specified threshold.
Parameters: aggregation time interval, threshold, the unit of time for the interval.

11.3.4 Run Time MBean Naming
Run time MBeans are named using the same pattern as configuration mbeans except
for one extra property: Direction. This property has two valid values: OUTBOUND or
INBOUND that refer to the point at which you want to gather the statistic OUTBOUND
means that you want to gather throughput or latency as events flow out of the
specified component; similarly INBOUND means you want to gather the monitoring
information as events flow into a component.

For example, the object name of the run time MBean corresponding to a processor
called myprocessor in the application myapplication, in which events will be
monitored as they flow into the component, is as follows:

Types of MBeans

JMX 11-5

com.bea.wlevs:Name=myprocessor,Type=CQLProcessor,Application=myapplication,Direction=INBOUND

See Configuration MBean Naming for details about configuration MBean naming.

11.3.5 Oracle Event Processing MBean Hierarchy
All MBeans must be registered in an MBean server under an object name of type
javax.management.ObjectName. Oracle Event Processing follows a convention in
which object names for child MBeans contain part of its parent MBean object name.

There are two main MBean roots: DomainMBean and DomainRuntimeMBean. The
former includes configuration MBeans for the entire domain, the latter contains run
time information, such as statistics, and local services, such as Monitor, that are
generally kept to a single server instance.

ApplicationMBean is a child of the DomainMBean instead of the ServerMBean.
This is because an application is unique within a domain, and can span multiple
servers.

Figure 11-1 shows the main classes and relationships that make up the object model.

Figure 11-1 Oracle Event Processing MBean Object Model

Most MBeans emit notifications and generate AttributeChangeNotifications. A
JMX client can register to receive attribute change notifications regarding changes to
application state, insertion and removal of applications at the domain, channel size
and thread changes, insertion and removal of rules, and so on.

11.4 Configure JMX
Before you can manage Oracle Event Processing applications, servers, and domains
using JMX and Oracle Event Processing MBeans, you must first configure the JMX
service on your Oracle Event Processing server.

11.4.1 Example JMX Configuration
The following snippet from a config.xml files shows a JMX configuration.

Configure JMX

11-6 Administering Oracle Event Processing

<config>
 <netio>
 <name>JettyNetio</name>
 <port>12345</port>
 </netio>
 <work-manager>
 <name>WM</name>
 <fairshare>5</fairshare>
 <min-threads-constraint>1</min-threads-constraint>
 <max-threads-constraint>4</max-threads-constraint>
 </work-manager>
 <jetty>
 <name>TestJetty</name>
 <work-manager-name>WM</work-manager-name>
 <network-io-name>JettyNetio</network-io-name>
 </jetty>
 <rmi>
 <name>RMI</name>
 <http-service-name>TestJetty</http-service-name>
 </rmi>
 <jndi-context>
 <name>JNDI</name>
 </jndi-context>
 <exported-jndi-context>
 <name>exportedJNDI</name>
 <rmi-service-name>RMI</rmi-service-name>
 </exported-jndi-context>
 <jmx>
 <jndi-service-name>JNDI</jndi-service-name>
 <rmi-service-name>RMI</rmi-service-name>
 </jmx>
</config>

11.4.2 JMX Configuration Objects
You configure the Oracle Event Processing JMX service with the following elements in
the config.xml file that describes your Oracle Event Processing server:

• jmx

• rmi

• jndi-context

• exported-jndi-context

For information on security configuration tasks that affect JMX, see Configure JMX
Security.

jmx

Table 11-3 lists the jmx element child elements in the config.xml file that you must
configure.

Table 11-3 Configuration Parameters for the jmx Element

Parameter Type Description

rmi-service-
name

Strin
g

The name of the RMI service with which the jmx server will
register to receive calls.

Configure JMX

JMX 11-7

Parameter Type Description

jndi-service-
name

Strin
g

The name of the JNDI service to which the jmx server will bind its
object.

rmi

The Oracle Event Processing RMI service provides the following:

• Ability to register a POJO interface in a server for remote method invocation from a
client.

• Ability to register for any context propagation from the client to the server on a
remote method invocation, intercept, and act on this propagated context in the
server.

Table 11-4 lists the rmi element child elements in the config.xml file that you use to
export server-side objects to remote clients.

Table 11-4 Configuration Parameters for the rmi Element

Parameter Type Description

heartbeat-period int
The number of failed heartbeat attempts before triggering
disconnect notifications to all registered listeners.

http-service-
name

Strin
g

The name of the HTTP service used to register remote objects
(such as Jetty, see Jetty.).

heartbeat-
interval

int
The amount of time, in milliseconds, between heartbeats.

Once the number of unsuccessful heartbeat attempts has reached
the value specified by the HeartbeatPeriod parameter, all
registered DisconnectListener instances are notified.

name Strin
g

The name of this configuration object.

jndi-context

The JNDI Factory Manager is responsible for supporting JNDI in an OSGi
environment. It allows JNDI providers to be supplied as OSGi bundles, and for code
running inside OSGi bundles to have full access to the JNDI environment.

The Factory Manager consists of two components:

• An OSGi bundle, which provides the OSGi-specific factory management code, to
look up JNDI objects using the appropriate OSGi classloader.

• JNDI glue code, internal to Oracle Event Processing, that initializes the JNDI
environment to support the factory manager bundle.

Table 11-5 lists the jndi-context element child elements in the config.xml file
that you must configure.

Configure JMX

11-8 Administering Oracle Event Processing

Table 11-5 Configuration Parameters for the jndi-context Element

Parameter Type Description

default-
provider

boolea
n

If true, the default Oracle Event Processing JNDI provider is
used.

Default value is true.

name String
The name of this configuration object.

exported-jndi-context

Requires a configured jndi-context.

Use this configuration object to export a remote JNDI service to a client using RMI. A
JNDI context is registered with the RMI service to provide remote access to clients that
pass a provider URL parameter in their InitialContext object.

Table 11-6 lists the exported-jndi-context element child elements in the
config.xml file that you must configure.

Table 11-6 Configuration Parameters for the exported-jndi-context Element

Parameter Type Description

rmi-service-
name

Strin
g

The name of the RMI service that should be used to serve this JNDI
context over the network. It must match an existing <rmi>
configuration object. See rmi.

name Strin
g

The name of this configuration object.

The value of this element must be different from the value of the
<name> child element of <jndi-context> in the same
config.xml file.

11.5 Manage with JMX
This section describes detailed examples of managing Oracle Event Processing
components using JMX, including:

• Connect with APIs to a JMX Server from a Non-Oracle Event Processing Client

• Connect with APIs to a JMX Server From an Oracle Event Processing Client

• Configure an Oracle Event Processing Component with JMX APIs

• Monitor the Throughput and Latency of a Component with JMX APIs

• Connect to a Local or Remote JMX Server using JConsole with Security

• Connect to Local or Remote JMX Server Using JConsole with Security Disabled.

Note:

When using JConsole, you must start it with the Oracle Event Processing
wlevsjconsole.cmd or wlevsjconsole.sh script. You cannot start
jconsole directly.

Manage with JMX

JMX 11-9

11.5.1 Connect with APIs to a JMX Server from a Non-Oracle Event Processing Client
This section describes how to write Java code using the JMX API (http://
java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement)
to connect to the Oracle Event Processing JMX server from a non-Oracle Event
Processing client. This is the first step to all programmatic JMX management.

For information on connecting to the Oracle Event Processing JMX server from
another Oracle Event Processing server, see Connect with APIs to a JMX Server From
an Oracle Event Processing Client.

Use APIs to connect to a JMX server from a non-Oracle Event Processing client:

1. Be sure that the JMX service is configured for your domain.

For details see Configure JMX.

2. Write the http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement Java code to configure the component using the
appropriate MBean.

Consider the following JMX programming hints.

One of the first things you must do in your JMX program is to establish a
connection to the JMX server running in the Oracle Event Processing server as
shown below.

public static void initConnection(String hostname, int port, String username, char[]
password)
 throws IOException,MalformedURLException {

 Map<String,Object> env = makeSecureEnv();
 env.put("jmx.remote.protocol.provider.pkgs","com.bea.core.jmx.remote.provider");
 env.put("mx4j.remote.resolver.pkgs","com.bea.core.jmx.remote.resolver");
 env.put("java.naming.factory.initial","com.bea.core.jndi.context.ContextFactory");

 JMXServiceURL serviceUrl = new JMXServiceURL(
 "MSARMI","localhost",9002,"/jndi/jmxconnector"
);

 System.out.println("Service: " + serviceURL.toString());

 JMXConnector connector = JMXConnectorFactory.connect(serviceUrl,env);

 MBeanServerConnection connection = connector.getMBeanServerConnection();
}

// The JMXConnectorFactory.connect() method's second parameter is a Map object that sets up
a
// secure environment using the makeSecureEnv() method, which looks like the following:

private static Map<String,Object> makeSecureEnv() {
 Map<String,Object> env = new HashMap<String,Object>();
 String username = "wlevs" ;
 char[] password = { 'w','l','e','v','s' };
 env.put(JMXConnector.CREDENTIALS, new Serializable[]{username,password});
 env.put("jmx.remote.authenticator", "com.bea.core.jmx.server.CEAuthenticator");
 System.setProperty("jmx.remote.authenticator",
"com.bea.core.jmx.server.CEAuthenticator");
 return env;
}

Manage with JMX

11-10 Administering Oracle Event Processing

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

11.5.2 Connect with APIs to a JMX Server From an Oracle Event Processing Client
This section describes how to write Java code using the JMX API (http://
java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement)
to connect to the Oracle Event Processing JMX server from another Oracle Event
Processing server. This is the first step to all programmatic JMX management.

For information on connecting to the Oracle Event Processing JMX server from a non-
Oracle Event Processing client, see Connect with APIs to a JMX Server from a Non-
Oracle Event Processing Client.

Use APIs to connect to the JMX server from an Oracle Event Processing client:

1. Be sure that the JMX service is configured for your domain.

For details see Configure JMX.

2. Write the http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement Java code to configure the component using the
appropriate MBean.

Consider the following JMX programming hints.

One of the first things you must do in your JMX program is to establish a
connection to the JMX server running in the Oracle Event Processing server as
shown below.

public static void initConnection(String hostname, int port, String username, char[]
password)
 throws IOException,MalformedURLException {

 Map<String,Object> env = makeSecureEnv();

 // This is an OSGi necessity
 env.put(
 JMXConnectorFactory.DEFAULT_CLASS_LOADER,
 com.bea.core.jmx.remote.provider.msarmi.ServerProvider.class.getClassLoader()
);
 env.put(
 JMXConnectorFactory.PROTOCOL_PROVIDER_CLASS_LOADER,
 com.bea.core.jmx.remote.provider.msarmi.ServerProvider.class.getClassLoader()
);

 JMXServiceURL serviceUrl = new JMXServiceURL(
 "MSARMI","localhost",9002,"/jndi/jmxconnector"
);

 System.out.println("Service: " + serviceURL.toString());

 env.put(
 JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "com.bea.core.jmx.remote.provider"
);

 System.setProperty("mx4j.remote.resolver.pkgs", "com.bea.core.jmx.remote.resolver");

 JMXConnector connector = JMXConnectorFactory.connect(url, env);
 connector.connect();

 MBeanServerConnection connection = connector.getMBeanServerConnection();
 ...
}

// The JMXConnectorFactory.connect() method's second parameter is a Map object that sets up

Manage with JMX

JMX 11-11

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

a
// secure environment using the makeSecureEnv() method, which looks like the following:

private static Map<String,Object> makeSecureEnv() {
 Map<String,Object> env = new HashMap<String,Object>();
 String username = "wlevs" ;
 char[] password = { 'w','l','e','v','s' };
 env.put(JMXConnector.CREDENTIALS, new Serializable[]{username,password});
 env.put("jmx.remote.authenticator", "com.bea.core.jmx.server.CEAuthenticator");
 System.setProperty("jmx.remote.authenticator",
"com.bea.core.jmx.server.CEAuthenticator");
 return env;
}

11.5.3 Configure an Oracle Event Processing Component with JMX APIs
This section describes how to write Java code using the JMX API (http://
java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement)
to access Oracle Event Processing MBeans.

Configure an Oracle Event Processing component with JMX APIs:

1. Acquire a connection to the Oracle Event Processing JMX server.

For details see Connect with APIs to a JMX Server from a Non-Oracle Event
Processing Client.

2. Write the http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement Java code to configure the component using the
appropriate MBean.

Consider the following JMX programming hints.

The following example shows how to use the connection to start getting
information about the domain and its deployed applications by querying MBeans.

First the code shows how to get all MBeans whose type is Domain; there should
only be one. Then, using the DomainMBean, the sample shows how to retrieve a
list of all the deployed applications in the domain (using ApplicationMBean):

Set domainObjectNames = connection.queryMBeans(
 ObjectName.getInstance(
 ManagementConstants.DOMAIN_NAME + ":" +
 ManagementConstants.TYPE_PROPERTY + "=" +
 DomainMBean.MBEAN_TYPE + ",*"
),
 null
);
ObjectName domainName = ((ObjectInstance)
domainObjectNames.iterator().next()).getObjectName();
System.out.println("Domain Name: " +
domainName.getKeyProperty(ManagementConstants.NAME_PROPERTY));
ObjectName [] applicationNames =
 (ObjectName[]) connection.getAttribute(domainName, "ApplicationMBeans");
ObjectName selectedApplicationObjectName = null ;
for (ObjectName applicationName : applicationNames) {
 String name =
 applicationName.getKeyProperty(ManagementConstants.NAME_PROPERTY);
 String status =
 (String) connection.getAttribute(applicationName, "State");
 System.out.println("Application: " + name + " Status: " + status);
 selectedApplicationObjectName = applicationName ;

Manage with JMX

11-12 Administering Oracle Event Processing

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

11.5.4 Monitor the Throughput and Latency of a Component with JMX APIs
This section describes how to write Java code using the JMX API (http://
java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement) to access
Oracle Event Processing MBeans and dynamically monitor the throughput and latency
of an Oracle Event Processing component.

Dynamically configure an Oracle Event Processing component with JMX APIs:

1. Acquire a connection to the Oracle Event Processing JMX server.

For details see Connect with APIs to a JMX Server from a Non-Oracle Event
Processing Client.

2. Acquire an instance of a MonitorRuntimeMBean for the component you want to
monitor as shown below.

ObjectName processorInbound = ObjectName.getInstance(
 "com.bea.wlevs:Name=myprocessor," +
 "Type=CQLProcessor," +
 "Application=myapplication," +
 "Direction=INBOUND"
);

Be sure you specify whether you want to monitor incoming events (INBOUND) or
outgoing events (OUTBOUND).

3. Use the MonitorRuntimeMBean to acquire an instance of ProbeRuntimeMBean
for the type of statistic you want as shown below.

ObjectName monitorName =
 ObjectName.getInstance(
 "com.bea.wlevs:ServerRuntime=localhost," +
 "Name=MonitorRuntime," +
 "Type=MonitorRuntime");

MonitorRuntimeMBean monitorMBean =
 (MonitorRuntimeMBean)MBeanServerInvocationHandler.newProxyInstance(
 connection,
 monitorName,
 MonitorRuntimeMBean.class,
 false);

ObjectName probeName = monitorMBean.monitorAvgThroughput(
 processorInbound,
 1000,
 1000
);

ProbeRuntimeMBean probeOn =
(ProveRuntimeMBean)MBeanServerInvocationHandler.newProxyInstance(
 connection,
 probeName,
 ProbeRuntimeMBean.class,
 false
);

The MonitorRuntimeMBean has methods for each type of statistic you can
gather. For example, you execute monitorAvgLatency() if you want to

Manage with JMX

JMX 11-13

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

monitor the average latency, monitorAvgThroughput() to monitor the average
throughput, and so on. These methods all return ProbeRuntimeMBean.

4. Use the ProbeRuntimeMbean instance to get the actual run time metrics in one
of the following ways:

a. Use the ProbeRuntimeMBean method getMetric() to pull the
information.

b. Use
javax.management.NotificationBroadcaster.addNotificationL
istener() to have the information pushed to you every time there is a
change in the metrics.

5. When you are finished gathering monitoring information, unregister the MBean
from the MBean server as shown below.

probON.terminate();

For additional details about these MBean interfaces and how to use them to
monitor throughput and latency, see the
com.bea.wlevs.monitor.management package in the Java API Reference for
Oracle Stream Explorer.

11.5.5 Connect to a Local or Remote JMX Server using JConsole with Security
You can use the wlevsjconsole script to connect to an Oracle Event Processing JMX
server running on your local host or on a remote host to browse and manage Oracle
Event Processing MBeans with the JDK jconsole.

This procedure describes how to use JConsole when the Oracle Event Processing
server has security enabled. This is the default configuration and is recommended for
production servers. Alternatively, you can connect to the JMX server with security
disabled (see Connect to Local or Remote JMX Server Using JConsole with Security
Disabled).

For more information, see Access the Oracle Event Processing JMX Server.

Note:

When using JConsole, you must start it with the Oracle Event Processing
wlevsjconsole.cmd or wlevsjconsole.sh script. You cannot start
jconsole directly.

Connect to a local or remote JMX server using JConsole with security enabled:

1. Ensure that the local or remote Oracle Event Processing server is running.

2. Launch jconsole using the wlevsjconsole.cmd or wlevsjconsole.sh
script located in the /Oracle/Middleware/my_oep/oep/bin directory.

a. To connect to a local Oracle Event Processing server, enter:

prompt> wlevsjconsole.cmd

b. To connect to a remote Oracle Event Processing server, enter:

prompt> wlevsjconsole.cmd HOST-NAME:PORT

Manage with JMX

11-14 Administering Oracle Event Processing

Where HOST-NAME is the name of the remote host and PORT is the Net IO
port as configured in the remote host's /Oracle/Middleware/my_oep/
user_projects/domains/myDomain/defaultserver/config/
config.xml file.

The jconsole browser attempts to log into the JMX server and initially fails as
Figure 11-2 shows.

Figure 11-2 Jconsole Initial Login Attempt

3. Click Cancel.

The Jconsole New Connection dialog appears as shown in Figure 11-3.

Figure 11-3 JConsole New Connection Dialog

4. Configure the New Connection dialog as Table 11-7 describes.

Manage with JMX

JMX 11-15

Table 11-7 JConsole New Connection Attributes

Attribute Description

Remote

Process

Enter the following URL:

service:jmx:msarmi://HOST-NAME:PORT/jndi/jmxconnector

Where HOST-NAME is the name of the local or remote host and PORT is
the Net IO port as configured in the remote host's /Oracle/
Middleware/my_oep/user_projects/domains/myDomain/

defaultserver/config/config.xml file (default: 9002).

Username Enter the Oracle Event Processing administration user name:
oepadmin.

Password Enter the Oracle Event Processing administration password:
welcome1.

5. Click Connect.

The jconsole browser opens and provides access to Oracle Event Processing
MBeans as Figure 11-5 shows.

Figure 11-4 JConsole Browser

11.5.6 Connect to Local or Remote JMX Server Using JConsole with Security Disabled
You can use the wlevsjconsole script to connect to an Oracle Event Processing JMX
server running on your local host or on a remote host to browse and manage Oracle
Event Processing MBeans with the JDK jconsole.

Manage with JMX

11-16 Administering Oracle Event Processing

This procedure describes how to use JConsole when the Oracle Event Processing
server has security disabled. This is a common development configuration and is not
recommended for production servers. Alternatively, you can connect to the JMX
server with security enabled (see Connect to a Local or Remote JMX Server using
JConsole with Security).

For more information, see Access the Oracle Event Processing JMX Server.

Note:

When using JConsole, you must start it with the Oracle Event Processing
wlevsjconsole.cmd or wlevsjconsole.sh script. You cannot start
jconsole directly.

Connect to a local or remote JMX server using JConsole with security disabled:

1. Ensure that the local or remote Oracle Event Processing server is running with
security disabled.

For more information, see Disable Security.

2. Launch jconsole using the wlevsjconsole.cmd or wlevsjconsole.sh
script located in the /Oracle/Middleware/my_oep/oep/bin directory.

a. To connect to a local Oracle Event Processing server, enter:

prompt> wlevsjconsole.cmd

b. To connect to a remote Oracle Event Processing server, enter:

prompt> wlevsjconsole.cmd HOST-NAME:PORT

Where HOST-NAME is the name of the remote host and PORT is the Net IO
port as configured in the remote host's /Oracle/Middleware/my_oep/
user_projects/domains/myDomain/defaultserver/config/
config.xml file.

The script automatically connects to the JMX server and the jconsole browser
opens and provides access to Oracle Event Processing MBeans as Figure 11-5
shows.

Manage with JMX

JMX 11-17

Figure 11-5 JConsole Browser

Manage with JMX

11-18 Administering Oracle Event Processing

12
JDBC

You can configure Java Database Connectivity (JDBC) for relational database access
from an Oracle Event Processing application.

Oracle Event Processing supports JDBC 4.0. To download JDBC, go to http://
java.sun.com/products/jdbc/download.html.

This chapter includes the following sections:

• Database Access

• Oracle Event Processing Data Sources

• Configure Access to a Database with an Oracle JDBC Driver

• Configure Database Access with Microsoft SQL Server JDBC Driver

• Configure Access to a Different Database Driver or Driver Version.

12.1 Database Access
The JDBC API provides a standard, vendor-neutral way for applications to connect to
and interact with database servers and other types of tabular resources that support
the JDBC API. A database driver can implement the JDBC javax.sql.DataSource
interface to define a database connection factory. Applications use the DataSource
objects to obtain database connections (java.sql.Connection). An application
obtains a connection and interacts with the data resource by sending SQL commands
and receiving results.

Oracle Event Processing provides a DataSource abstraction that encapsulates a JDBC
driver DataSource object and manages a pool of pre-established connections. Also,
the Oracle WebLogic Server WLConnection interface provides methods that enable
access to and manipulation of Oracle data sources. For more information, see Oracle
Event Processing Data Sources.

Oracle Event Processing provides the Oracle 12c thin driver. Optionally, you can use
your own JDBC driver. See Access a Database Driver with bootclasspath.

12.1.1 Oracle JDBC Driver
Oracle Event Processing includes the Oracle 12c Thin driver for use with Java SE 7.
The JDBC Thin driver is a pure Java, Type IV driver that you can be use in
applications and applets. It is platform-independent and does not require any
additional Oracle software on the client side. The JDBC Thin driver communicates
with the server using SQL*Net to access the Oracle Database.

The Oracle 12c Thin drive is in the following JAR file:

/Oracle/Middleware/wlserver/modules/
com.bea.oracle.ojdbc6_1.0.0.0_11-2-0-3-0.jar

JDBC 12-1

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html

For more information, see:

• Supported Databases

• Configure Access to a Database with an Oracle JDBC Driver

• http://www.oracle.com/technetwork/database/application-
development/index-099369.html.

12.1.2 Supported Databases
Oracle Event Processing servers support different databases depending on the type of
JDBC driver you use.

Oracle JDBC Driver

Using the Oracle JDBC driver, you can access the Oracle Database 12c release. See
Oracle JDBC Driver.

SQL Server Type 4 JDBC Driver from DataDirect

Using the SQL Server Type 4 JDBC Driver from Microsoft, you can access the
following SQL Server databases:

• Microsoft SQL Server 2012

• Microsoft SQL Server 2005

• Microsoft SQL Server 2000

• Microsoft SQL Server 2000 Desktop Engine (MSDE 2000)

• Microsoft SQL Server 2000 Enterprise Edition (64-bit)

• Microsoft SQL Server 7.0.

12.2 Oracle Event Processing Data Sources
An Oracle Event Processing DataSource provides a JDBC data source connection
pooling implementation that supports the JDBC 4.0 specification. Applications reserve
and release Connection objects from a data source with the standard
DataSource.getConnection and Connection.close APIs respectively.

Figure 12-1 shows the relationship between data source, connection pool, and
Connection instances.

Figure 12-1 Oracle Event Processing Data Source

You must use the Oracle Event Processing server default data source or configure your
own Oracle Event Processing DataSource in the server's config.xml file if you
want to access a relational database in any of the following ways. See Schema Reference
for Oracle Stream Explorer.

Oracle Event Processing Data Sources

12-2 Administering Oracle Event Processing

http://www.oracle.com/technetwork/database/application-development/index-099369.html
http://www.oracle.com/technetwork/database/application-development/index-099369.html

• From an Oracle CQL processor rule.

• Event record and playback.

• From a cache loader or store.

You do not have to configure a DataSource in the server's config.xml file if you
use the JDBC driver's API, such as DriverManager, directly in your application code.

12.2.1 Default Data Source Configuration
By default, the Oracle Event Processing server creates a local transaction manager. The
transaction manager depends on a configured RMI object, as described in JMX
Configuration Objects. Oracle Event Processing server guarantees that there will never
be more than one transaction manager instance in the system.

If a database is unavailable when you start Oracle Event Processing server, by default,
an Oracle Event Processing server data source retries every 10 seconds until it creates a
connection. The retries enable the Oracle Event Processing server to start when a
database is unavailable. You can change the retry interval by providing a value for the
connection-creation-retry-frequency-seconds child element of the
connection-pool-params element. A value of zero disables connection retry.

12.2.2 Custom Data Source Configuration
The Oracle Event Processing server config.xml file requires a configuration element
for each data source that is to be created at runtime that references an external JDBC
module descriptor.

When you create an Oracle Event Processing domain with the Configuration Wizard,
you can optionally configure a JDBC data source that uses one of the two supported
Data Direct JDBC drivers. In this case the wizard updates the config.xml file for
you. When you configure the data source, you provide basic information, such as the
database you want to connect to, and the connection user name and password.

You can also update the config.xml file manually by adding a data-source
element as the following example shows.

<data-source>
 <name>rdbms</name>
 <data-source-params>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
 <connection-pool-params>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <connection-creation-retry-frequency-seconds>
 60
 </connection-creation-retry-frequency-seconds>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:5521:rdb</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element><name>user</name><value>scott</value></element>
 <element><name>password</name><value>tiger</value></element>
 </properties>
 <use-xa-data-source-interface>true</use-xa-data-source-interface>
 </driver-params>
</data-source>

Oracle Event Processing Data Sources

JDBC 12-3

<transaction-manager>
 <name>TM</name>
 <rmi-service-name>RMI</rmi-service-name>
</transaction-manager>

A data source depends on the availability of a local transaction manager. You can rely
on the default Oracle Event Processing server transaction manager or configure one
with the transaction-manager element in config.xml as the example shows.
The transaction manager depends on a configured RMI object, as described in JMX
Configuration Objects.

If a database is unavailable when you start Oracle Event Processing server, by default,
an Oracle Event Processing server data source retries every 10 seconds until creates a
connection. The retries enable Oracle Event Processing server to start when a database
is unavailable. The example changes the retry interval in the config.xml file by
providing a value for the connection-creation-retry-frequency-seconds
child element of the connection-pool-params element. In the example, the value
is 60 seconds.

For a full list of child elements of the data-source element such as the
connection-pool-params and data-source-params elements, see Schema
Reference for Oracle Stream Explorer. For information about security configuration tasks
that affect JDBC, see Configure JDBC Security.

12.2.3 Get the Native JDBC Connection
The Java API Reference for Oracle WebLogic Server provides a WLConnection interface
that contains methods for getting and manipulating Oracle data sources. For example,
the following Java code gets the native Oracle database connection from the pooled
connection object.

private DataSource ods;
private Connection wlConnection;
private OracleConnection connection;

wlConnection = ods.getConnection();
connection = (OracleConnection) ((WLConnection) wlConnection)
.getVendorConnection();

Note:

Close pooled connections when you finish and do not use a native connection
object after the pooled connection is closed.

12.3 Configure Access to a Database with an Oracle JDBC Driver
This section explains the procedure to configure access to a database with an Oracle
JDBC driver.

The Oracle JDBC driver is installed with Oracle Event Processing and ready to use.

Configure access to a database using the Oracle JDBC driver:

1. Configure the data source in the server config.xml file.

a. To update the Oracle Event Processing server config.xml file using the
Configuration Wizard, see Create a Standalone-Server Domain.

Configure Access to a Database with an Oracle JDBC Driver

12-4 Administering Oracle Event Processing

b. To update the Oracle Event Processing server config.xml file manually, see
Custom Data Source Configuration.

The url element for the Oracle JDBC driver has the following form. See also
Custom Data Source Configuration.

<url>jdbc:oracle:thin:@HOST:PORT:SID</url>

2. If Oracle Event Processing is running, restart it so it reads the new data source
information.

For more information, see “Start and Stop Servers”.

12.4 Configure Database Access with Microsoft SQL Server JDBC Driver
To access a data source with a Microsoft SQL server JDBC driver, add the
wlsqlserv.jar and the fmwgenerictoken.jar files to the -Xbootclasspath as
follows:

-Xbootclasspath/a:/Oracle/Middleware/my_oep/oracle_common/modules/datadirect/
wlsqlserver.jar:/Oracle/Middleware/my_oep/oracle_common/modules/datadirect/
fmwgenerictoken.jar

-Xbootclasspath/a:/Oracle/Middleware/oracle_common/modules/datadirect/
wlsqlserver.jar:/Oracle/Middleware/oracle_common/modules/datadirect/
fmwgenerictoken.jar

Add the following SQL server data source configuration to the config.xml file.

<data-source>
 <name>ds-sqlserver-datadirect-driver</name>
 <data-source-params>
 <jndi-names />
 <global-transactions-protocol>OnePhaseCommit
 </global-transactions-protocol>
 </data-source-params>
 <connection-pool-params>
 <credential-mapping-enabled></credential-mapping-enabled>
 <test-table-name>SQL SELECT 1</test-table-name>
 <initial-capacity>5</initial-capacity>
 <max-capacity>20</max-capacity>
 <capacity-increment>1</capacity-increment>
 </connection-pool-params>
 <driver-params>
 <use-xa-data-source-interface>true</use-xa-data-source-interface>
 <driver-name>weblogic.jdbc.sqlserver.SQLServerDriver</driver-name>
 <url>
 jdbc:weblogic:sqlserver://hostname:port;databaseName=fmwcerts;SelectMethod=cursor
 </url>
 <properties>
 <element>
 <value>sa</value>
 <name>user</name>
 </element>
 <element>
 <value>{AES}XcrEKM8RegvOT3jZ4d46WQ==</value>
 <name>password</name>
 </element>
 </properties>
 </driver-params>
</data-source>

Configure Database Access with Microsoft SQL Server JDBC Driver

JDBC 12-5

12.5 Configure Access to a Different Database Driver or Driver Version
In some cases, you might need to use a different version of the Oracle Database driver
or Data Direct drivers than the version bundled with Oracle Event Processing, or you
might need to use a database driver other than the Oracle Database driver or Data
Direct drivers.

12.5.1 Access a Database Driver with an Application Library Built With bundler.sh
This procedure describes how to create an OSGi bundle for your driver using the
bundler utility and deploy it on the Oracle Event Processing server.

See Developing Applications for Event Processing with Oracle Stream Explorer.

1. Execute the bundler.sh script to create an OSGi bundle that contains your driver.

The bundler.sh script is in the /Oracle/Middleware/my_oep/oep/bin
directory. The following example lists the bundler.sh command-line options and
Table 12-1 describes them.

Note:

There is no Windows support for bundler.sh (no bundler.cmd).

bundler.sh
 -source <jar>
 -name <name>
 -version <version>
 [-factory <class>+]
 [-service <interface>+]
 [-stagedir <path>]
 [-targetdir <path>]

Table 12-1 bundler.sh Command Line Options

Argument Description

-source The path of the source JAR file to be bundled.

-name The symbolic name of the bundle. The root of the target JAR file name is
derived from the name value.

-version The bundle version number. All exported packages are qualified with a
version attribute with this value. The target JAR file name contains the
version number.

-factory An optional argument that specifies a space-delimited list of one or more
factory classes that are to be instantiated and registered as OSGi services.
Each service is registered with the OSGi service registry with name (-
name) and version (-version) properties.

-service An optional argument that specifies a space-delimited list of one or more
Java interfaces that are used as the object class of each factory object
service registration. If no interface names are specified, or the number of
interfaces specified does not match the number of factory classes, then
each factory object will be registered under the factory class name.

Configure Access to a Different Database Driver or Driver Version

12-6 Administering Oracle Event Processing

Argument Description

-stagedir An optional argument that specifies where to write temporary files when
creating the target JAR file.

Default: ./bundler.tmp

-targetdir An optional argument that specifies the location of the generated bundle
JAR file.

Default: current working directory (.).

The following example shows how to use the bundler.sh to create an OSGi
bundle for an Oracle JDBC driver.

bundler.sh \
 -source /scratch/drivers/com.bea.oracle.ojdbc6_1.0.0.0_11-2-0-3-0.jar \
 -name oracle12c \
 -version 12.1.3 \
 -factory oracle.jdbc.xa.client.OracleXADataSource oracle.jdbc.OracleDriver \
 -service javax.sql.XADataSource java.sql.Driver \
 -targetdir /scratch/stage

The source JAR is an Oracle driver located in the C:\drivers directory. The name
of the generated bundle JAR is the concatenation of the -name and -version
arguments and is created in the C:\stage directory. The bundle JAR contains the
files that the following example shows:

1465 Thu Jun 29 17:54:04 EDT 2006 META-INF/MANIFEST.MF
1540457 Thu May 11 00:37:46 EDT 2006 ccom.bea.oracle.ojdbc6_1.0.0.0_
 11-2-0-3-0.jar
1700 Thu Jun 29 17:54:04 EDT 2006 com/bea/core/tools/bundler/Activator.class

The command-line options specify that there are two factory classes to instantiate
and register as an OSGi service when the bundle is activated, each under a separate
object class as the following table shows.

Table 12-2 Factory Class and Service Interface

Factory Class Service Interface

oracle.jdbc.xa.client.OracleXADataSource javax.sql.XADataSource

oracle.jdbc.OracleDriver java.sql.Driver

Each service registration will be made with a name property set to oracle12c and
a version property with a value of 12c. the following example shows the Oracle
Event Processing server log messages showing the registration of the services.

...
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=12c,
name=oracle12c, objectClass=[javax.sql.XADataSource], service.id=23 }
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=12c,
name=oracle12c, objectClass=[java.sql.Driver], service.id=24 }
INFO: [Jun 29, 2006 5:54:18 PM] Bundle oracle12c STARTED
...

2. Copy the bundler JAR to the Oracle Event Processing server library extensions
directory.

Because your Oracle Event Processing application is an application library that
contains a driver, you copy it to the Oracle Event Processing server library

Configure Access to a Different Database Driver or Driver Version

JDBC 12-7

extensions directory. By default the library extensions directory is in /Oracle/
Middleware/user_projects/domains/<domainname>/ <servername>/
modules/ext/.

3. In the Oracle Event Processing server config.xml file, create a custom data-
source element for your driver version and add a driver-params child element
as the following example shows.

For more information, see Server Configuration Files.

 <driver-params>
 <url>jdbc:oracle:thin:@lcw2k18:1531:lcw101</url>
 <driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name
 <properties>
 <element>
 <name>user</name>
 <value>scott</value>
 </element>
 <element>
 <name>password</name>
 <value>{3DES}EoIfSBMhnW8=</value>
 </element>
 <element>
 <name>com.bea.core.datasource.serviceName</name>
 <value>oracle12c</value>
 </element>
 <element>
 <name>com.bea.core.datasource.serviceVersion</name>
 <value>12.1.3</value>
 </element>
 <element>
 <name>com.bea.core.datasource.serviceObjectClass</name>
 <value>javax.sql.XADataSource</value>
 </element>
 </properties>
 <use-xa-data-source-interface>true</use-xa-data-source-interface>
 </driver-params>

Table 12-1 describes the relevant properties.

Table 12-3 driver-params Properties

Property Description

com.bea.core.dataso
urce.serviceName

Specifies the value of the serviceName registration
property.

This must match the NAME property in your Activator
class.

com.bea.core.dataso
urce.serviceVersion

Specifies the value of the serviceVersion registration
property.

This must match the VERSION property in your Activator
class.

com.bea.core.dataso
urce.serviceObjectC
lass

Specifies the interface name of the OSGI service registration.

4. Stop and start the Oracle Event Processing server.

For more information, see Start and Stop Servers.

Configure Access to a Different Database Driver or Driver Version

12-8 Administering Oracle Event Processing

12.5.2 Access a Database Driver with bootclasspath
Optionally, you can use the bootclasspath to access your own JDBC driver.

Oracle recommends that you use an application library instead, as described in Access
a Database Driver with an Application Library Built With bundler.sh.

1. Go to the server directory of the domain that you want to configure.

By default, the server directory is in /Oracle/Middleware/my_oep/
user_projects/domains/<domainname/<servername>/.

2. In a text editor, open the start script for your platform.

3. Add the -Xbootclasspath/a option to the Java command that executes the
wlevs.jar file and set the -Xbootclasspath/a option to the full pathname of
the JDBC driver you are going to use.

For example, to use the Windows Oracle thin driver, update the java command
in the start script as follows with everything on one line:

%JAVA_HOME%\bin\java -Dwlevs.home=%USER_INSTALL_DIR% -Dbea.home=%BEA_HOME%
-Xbootclasspath/a:\Oracle\Middleware\my_oep\oep\bin
\com.bea.oracle.ojdbc14_10.2.0.jar
-jar "%USER_INSTALL_DIR%\bin\wlevs_3.0.jar" -disablesecurity %1 %2 %3 %4 %5 %6

4. Configure the data source in the server's config.xml file:

a. To update the Oracle Event Processing server config.xml file using the
Configuration Wizard, see Create a Standalone-Server Domain.

b. To update the Oracle Event Processing server config.xml file manually, see
Custom Data Source Configuration.

5. If Oracle Event Processing is running, restart it so it reads the new java option
and data source information.

For more information, see “Start and Stop Servers”.

Configure Access to a Different Database Driver or Driver Version

JDBC 12-9

Configure Access to a Different Database Driver or Driver Version

12-10 Administering Oracle Event Processing

13
HTTP Publish-Subscribe Server

An HTTP Publish-Subscribe (HTTP pub-sub) server enables web clients to subscribe to
channels and publish messages to the channels using asynchronous messaging over
HTTP. You can configure an HTTP pub-sub server to subscribe to channels, use a
specific type of transport, set a time out, indicate a specific work manager to deliver
messages to clients, and so on.

This chapter includes the following sections:

• Default HTTP Pub-Sub Server

• HTTP Publish-Subscribe Adapters

• Server Architecture

• Create a New HTTP Publish-Subscribe Server

• Configure an Existing HTTP Publish-Subscribe Server.

13.1 Default HTTP Pub-Sub Server
Every Oracle Event Processing server has a default HTTP pub-sub server. Oracle
Event Processing Visualizer and the Record and Playback sample application use the
default HTTP pub-sub server internally. An installation can use the default HTTP pub-
sub server, or have a software developer create a custom HTTP pub-sub server.

In Oracle Event Processing, HTTP pub-sub server instances are configured in the
config.xml file of the server instance. System administrator uses the config.xml
to configure the name of the HTTP pub-sub server, specify the transport and other
parameters. An administrator then uses Oracle Event Processing Visualizer to add
new channels and configure security for the channels. See Using Visualizer for Oracle
Stream Explorer.

The <http-pubsub> element in the config.xml file contains the HTTP pub-sub
server configuration. By default, the HTTP pub-sub server has the following
configuration. See Schema Reference for Oracle Stream Explorer for information about the
supported configuration settings.

<http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <name>/pubsub</name>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>

HTTP Publish-Subscribe Server 13-1

 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
 </http-pubsub>

• <path>/pubsub</path>: The URL to the HTTP pub-sub server. In a browser, you
can locate the HTTP pub-sub server by typing http://host:port/pubsub,
where host and port refer to the computer on which Oracle Event Processing is
running and the port number to which it listens, respectively. For example,
http://myhost.com:9102/pubsub.

• <supported-transport>: The transport mode. The default is long-polling
transport.

• <publish-without-connect-allowed>true</publish-without-connect-allowed>:
Allows clients to publish messages to a channel without having to explicitly
connect to the HTTP pub-sub server.

• Includes the following three channels that are used internally by Oracle Event
Processing Visualizer. Do not delete these channels:

– /evsmonitor

– /evsalert

– /evsdomainchange

13.2 HTTP Publish-Subscribe Adapters
Oracle Event Processing provides two built-in adapters that provide HTTP pub-sub
server functionality in applications. A software developer adds these adapters to an
application to publish messages or subscribe to a server to receive messages.

In an application, a software developer uses the HTTP pub-sub adapters as follows:

• Uses the HTTP Publisher adapter to send JavaScript Object Notation (JSON) event
data out of the EPN to a web-based user interface.

• Uses the HTTP Subscriber adapter to accept JavaScript Object Notation (JSON)
event data entering the EPN. JSON event data comes from an HTTP server where
user actions generate events.

If a software developer needs the HTTP pub-sub server to perform additional steps
such as monitoring, collecting, or interpreting incoming messages from clients, then he
or she must use the server-side HTTP pub-sub server APIs to program this
functionality. See the following packages:

• com.bea.wlevs.adapters.httppubsub.api

• com.bea.wlevs.adapters.httppubsub.support

HTTP Publish-Subscribe Adapters

13-2 Administering Oracle Event Processing

See Java API Reference for Oracle Stream Explorer.

13.3 Server Architecture
The HTTP Publish-Subscribe server enables clients to subscribe to a channel (similar to
a topic in JMS) and receive messages as they become available. In contrast traditional
web applications require that all communication be initiated by the client. The server
can only push updated data to its clients if it receives an explicit request. However,
dynamic real-time applications require that the server send data regardless of whether
the client explicitly requested it.

The HTTP pub-sub server is based on the Bayeux protocol proposed by the cometd
project. The Bayeux protocol defines a contract between the client and the server for
communicating with asynchronous messages over HTTP. It allows clients to register
and subscribe to channels that are named destinations or sources of events. Registered
clients, or the HTTP pub-sub server itself, then publishes messages to these channels
which in turn any subscribed clients receive.

The HTTP pub-sub server can communicate with any client that can understand the
Bayeux protocol. The HTTP pub-sub server is responsible for identifying clients,
negotiating trust, exchanging Bayeux messages, and pushing event messages to
subscribed clients. For Web 2.0 Ajax clients (such as Dojo) or rich internet applications
(such as Adobe Flex) to communicate with the HTTP pub-sub server, the clients need
a library that supports the Bayeux protocol. The Dojo JavaScript library provides four
different transports, of which two are supported by the HTTP pub-sub server: long-
polling and callback-polling.

There is a one-to-one relationship between a servlet and an HTTP pub-sub server.
Each servlet has access to one unique HTTP pub-sub server. Each HTTP pub-sub
server has its own list of channels. The servlet uses a context object to obtain a handle
to its associated HTTP pub-sub server.

Figure 13-1 shows the basic Oracle Event Processing HTTP pub-sub server
architecture.

Figure 13-1 HTTP Publish-Subscribe Server in Oracle Event Processing

13.4 Create a New HTTP Publish-Subscribe Server
The following procedure describes how to create a new HTTP pub-sub server. See
Default HTTP Pub-Sub Server for a full example from the config.xml of a
configured HTTP pub-sub server.

Server Architecture

HTTP Publish-Subscribe Server 13-3

Create a New HTTP Publish-Subscribe Server

1. If the Oracle Event Processing server is running, stop it.

See Start and Stop Servers.

2. In an XML editor, open the Oracle Event Processing server config.xml file.

By default this file is in Oracle/Middleware/my_oep/user_projects/
domains/<domainname>/<servername>/config.

3. Add an http-pubsub child element of the root config element of
config.xml, with name, path and pub-sub-bean child elements, as shown in
bold:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:config xmlns:ns2="http://www.bea.com/ns/wlevs/config/server">
 <domain>
 <name>myDomain</name>
 </domain>

 <http-pubsub>
 <name>myPubSubServer</name>
 <path>/myPath</path>
 <pub-sub-bean>
 ...
 </pub-sub-bean>
 </http-pubsub>
 ...
</ns2:config>

a. Set the name element to the internal name of the HTTP pub-sub server.

b. Set the path element to the string that you want to appear in the URL for
connecting to the HTTP pub-sub server.

c. The next step describes the pub-sub-bean element.

4. Add server-config and channels child elements of the pub-sub-bean
element:

 <http-pubsub>
 <name>myPubSubServer</name>
 <path>/myPath</path>
 <pub-sub-bean>
 <server-config>
 ...
 </server-config>
 <channels>
 ...
 </channels>
 </pub-sub-bean>
 </http-pubsub>

5. Update the server-config child element of the pub-sub-bean element with
HTTP pub-sub server configuration as required.

For the full list of possible elements, see Schema Reference for Oracle Stream Explorer.

The following are the most common configuration options:

• Add a supported-transport element to specify the transport.

Create a New HTTP Publish-Subscribe Server

13-4 Administering Oracle Event Processing

The format of this element is as follows:

<server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
...
</server-config>

Oracle Event Processing server supports the following transports:

– long-polling: Using this transport, the client requests information from
Oracle Event Processing server and if Oracle Event Processing server does
not have information available, it does not reply until it has. When the
Oracle Event Processing server replies, the client typically sends another
request immediately.

– callback-polling: Use this transport for HTTP publish-subscribe
applications using a cross domain configuration in which the browser
downloads the page from one Web server (including the JavaScript code)
and connects to another server as an HTTP publish-subscribe client. This is
required by the Bayeux protocol.

• Add a publish-without-connect-allowed element to specify whether
clients can publish messages without having explicitly connected to the HTTP
pub-sub server; valid values are true or false:

<server-config>
...
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
</server-config>

• Add a work-manager element to specify the name of the work manager that
delivers messages to clients. The value of this element corresponds to the value
of the <name> child element of the work-manager you want to assign.

<server-config>
...
 <work-manager>myWorkManager</work-manager>
</server-config>

See Schema Reference for Oracle Stream Explorer.

• Add a client-timeout-secs element to specify the number of seconds
after which the HTTP pub-sub server disconnects a client if the client has not
sent back a connect/reconnect message.

<server-config>
...
 <client-timeout-secs>600</client-timeout-secs>
</server-config>

6. Update the channels child element with at least one channel pattern.

Channel patterns always begin with a forward slash (/). Clients subscribe to these
channels to either publish or receive messages. Add a channel pattern as shown:

<channels>
 <element>

Create a New HTTP Publish-Subscribe Server

HTTP Publish-Subscribe Server 13-5

 <channel-pattern>/mychannel</channel-pattern>
 </element>
</channels>

7. Save the config.xml file.

8. Start the Oracle Event Processing server.

See Start and Stop Servers.

9. Use Oracle Event Processing Visualizer to configure or add channels. See:

• See Using Visualizer for Oracle Stream Explorer

10. Use Oracle Event Processing Visualizer to configure security for the channels. See:

• See Using Visualizer for Oracle Stream Explorer

• Configure HTTP Publish-Subscribe Server Channel Security.

13.5 Configure an Existing HTTP Publish-Subscribe Server
The following procedure describes how to configure an existing HTTP pub-sub server.
See Default HTTP Pub-Sub Server for a full example from the config.xml of a
configured HTTP pub-sub server.

Configure an Existing HTTP Publish-Subscribe Server

1. If the Oracle Event Processing server is running, stop it.

See Start and Stop Servers.

2. In an XML editor, open the Oracle Event Processing server config.xml file.

By default this file is in Oracle/Middleware/my_oep/user_projects/
domains/<domainname>/<servername>/config.

3. Search for the http-pubsub element that corresponds to the HTTP pub-sub server
you want to configure.

For example, to configure the default HTTP pub-sub server, locate the following
entry:

<http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 ...
</http-pubsub>

4. Update the server-config child element of the pub-sub-bean element, which
is a child element of http-pubsub, with HTTP pub-sub server configuration as
required.

For the full list of possible elements, see Schema Reference for Oracle Stream Explorer.

The following are the most common configuration options:

• Add a supported-transport element to specify the transport.

Configure an Existing HTTP Publish-Subscribe Server

13-6 Administering Oracle Event Processing

The format of this element is as follows:

<server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
...
</server-config>

Oracle Event Processing server supports the following transports:

– long-polling: Using this transport, the client requests information from
Oracle Event Processing server and if Oracle Event Processing server does
not have information available, it does not reply until it has. When the
Oracle Event Processing server replies, the client typically sends another
request immediately.

– callback-polling: Use this transport for HTTP publish-subscribe
applications using a cross domain configuration in which the browser
downloads the page from one web server (including the JavaScript code) and
connects to another server as an HTTP publish-subscribe client. The Bayeux
protocol requires this. For more about the Bayeux protocol, see http://
svn.cometd.org/trunk/bayeux/bayeux.html.

• Add a publish-without-connect-allowed element to specify whether
clients can publish messages without having explicitly connected to the HTTP
pub-sub server; valid values are true or false:

<server-config>
...
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
</server-config>

• Add a work-manager element to specify the name of the work manager that
delivers messages to clients. The value of this element corresponds to the value
of the name child element of the work-manager you want to assign.

<server-config>
...
 <work-manager>myWorkManager</work-manager>
</server-config>

See Using Visualizer for Oracle Stream Explorer.

• Add a client-timeout-secs element to specify the number of seconds after
which the HTTP pub-sub server disconnects a client if the client does has not
sent back a connect/reconnect message.

<server-config>
...
 <client-timeout-secs>600</client-timeout-secs>
</server-config>

5. Save the config.xml file.

6. Start the Oracle Event Processing server.

See Start and Stop Servers.

Configure an Existing HTTP Publish-Subscribe Server

HTTP Publish-Subscribe Server 13-7

http://svn.cometd.org/trunk/bayeux/bayeux.html
http://svn.cometd.org/trunk/bayeux/bayeux.html

7. Use Oracle Event Processing Visualizer to configure or add channels. See:

• See Using Visualizer for Oracle Stream Explorer.

8. Use Oracle Event Processing Visualizer to configure security for the channels. See:

• See Using Visualizer for Oracle Stream Explorer.

• Configure HTTP Publish-Subscribe Server Channel Security.

Configure an Existing HTTP Publish-Subscribe Server

13-8 Administering Oracle Event Processing

14
Logging and Debugging

System administrators and developers configure logging output and filter log
messages to troubleshoot errors or to receive notification for specific events.

Oracle Event Processing supports the Commons Apache Logging Framework, OSGi
Framework Logger, and Log4j Logger logging systems. Oracle Event Processing also
provides a variety of debugging options that you can enable and disable to help
diagnose your Oracle Event Processing applications.

This chapter includes the following sections:

• Logging Configuration Scenarios

• Commons Apache Logging Framework

• OSGi Framework Logger

• Log4j Logger

• Configure the Logging Service

• Configure Log4j Logging

• Use the Apache Commons Logging API

• Configure Debugging Options.

For information about Oracle Event Processing security auditor logging, see Security
Auditor. For information about how to parse message catalogs to validate and
generate classes used for localizing text in log messages, see Developing Applications for
Event Processing with Oracle Stream Explorer.

14.1 Logging Configuration Scenarios
The following tasks describe some logging configuration scenarios:

• Stop DEBUG and INFO messages from going to the log file.

• Allow INFO level messages from the HTTP subsystem to be published to the log
file, but not to standard out.

• Specify that a handler publishes messages that are WARNING level or higher.

• Specify a default logging level for the entire server, and have a specific module
override the default logging level. For example, the default logging level of the
server could be WARNING while the logging level of the module is DEBUG.

• Configure a logging level for a deployed application. The application must use the
Commons Apache Logging Framework if it is required to output log messages to
the single server-wide log file to which server modules also log their messages.

Logging and Debugging 14-1

14.2 Commons Apache Logging Framework
This section explains the commons Apache logging framework.

Oracle Event Processing provides a commons-logging interface. The interface
provides commons.logging.LogFactory and Log interface implementations. It
includes an extension of the org.apache.commons.logging.LogFactory class
that acts as a factory to create an implementation of the
org.apache.commons.logging.Log that delegates to the LoggingService in
the logging module. The name of this default implementation is
weblogic.logging.commons.LogFactoryImpl. See http://jakarta.apache.org/
commons/logging/apidocs/index.html.

14.2.1 Set the Log Factory
The following list provides information about setting the log factory using system
properties:

• The highest priority is given to the system property
org.apache.commons.logging.LogFactory.

• You can set logging from the command line using:

-Dorg.apache.commons.logging.LogFactory=weblogic.logging.commons.LogFactoryImpl

• You can programmatically implement the logging by:

import org.apache.commons.logging.LogFactory;
System.setProperty(
 LogFactory.FACTORY_PROPERTY,
 "weblogic.logging.commons.LogFactoryImpl"
);

• The weblogic.logging.commons.LogFactoryImpl is the default log factory,
if not explicitly set.

• To use another logging implementation, you must use the standard commons
logging factory implementation. The
org.apache.commons.logging.impl.LogFactoryImpl implementation is
available in the commons logging jar. For example:

-
Dorg.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryI
mpl

or the equivalent programming would be:

System.setProperty(
 LogFactory.FACTORY_PROPERTY,
 "org.apache.commons.logging.impl.LogFactoryImpl"
);

14.2.2 Use Log Severity Levels
Each log message has an associated severity level. The level gives a rough guide to the
importance and urgency of a log message. Predefined severities, ranging from TRACE
to EMERGENCY, are converted to a log level when dispatching a log request to the
logger. A log level object can specify any of the following values, from lowest (left-
most) to highest (right-most) impact:

Commons Apache Logging Framework

14-2 Administering Oracle Event Processing

http://jakarta.apache.org/commons/logging/apidocs/index.html
http://jakarta.apache.org/commons/logging/apidocs/index.html

TRACE, DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL, ALERT, EMERGENCY

You can set a log severity level on the logger, the handler, and a user application.
When set on the logger, none of the handlers receive an event which is rejected by the
logger. For example, if you set the log level to NOTICE on the logger, none of the
handlers will receive INFO level events. When you set a log level on the handler, the
restriction only applies to that handler and not the others. For example, turning DEBUG
off for the File Handler means no DEBUG messages will be written to the log file,
however, DEBUG messages will be written to standard out.

Users (Oracle Event Processing module owners or owners of user applications) are
free to define the names that represent the logging category type used by the Apache
commons logging for individual modules. However if the category names are defined
as package names then based on the naming convention, a logging level hierarchy is
assumed by default. For example, if two modules name their logging category names
com.oracle.foo and com.oracle.foo.bar, then com.oracle.foo becomes the
root node of com.oracle.foo.bar. This way any logging level applied to parent
node (com.oracle.foo) automatically applies to com.oracle.foo.bar, unless the
child node overrides the parent.

In other words, if the logging severity is specified for a node, it is effective unless the
severity is inherited from the nearest parent whose severity is explicitly configured.
The root node is always explicitly configured, so if nothing else if set, then all the
nodes inherit the severity from the root.

Table 14-1 lists the severity levels of log messages.

Table 14-1 Log Message Severity

Severity Meaning

TRACE
Used for messages from the Diagnostic Action Library. Upon enabling diagnostic
instrumentation of server and application classes, TRACE messages follow the
request path of a method.

DEBUG
A debug message was generated.

INFO
Used for reporting normal operations, a low-level informational message.

NOTICE
An informational message with a higher level of importance.

WARNING
A suspicious operation or configuration has occurred but it might not affect
normal operation.

ERROR
A user error has occurred. The system or application can handle the error with no
interruption and limited degradation of service.

CRITICA
L

A system or service error has occurred. The system can recover but there might be
a momentary loss or permanent degradation of service.

ALERT
A particular service is in an unusable state while other parts of the system
continue to function. Automatic recovery is not possible; the immediate attention
of the administrator is needed to resolve the problem.

Commons Apache Logging Framework

Logging and Debugging 14-3

Severity Meaning

EMERGEN
CY

The server is in an unusable state. This severity indicates a severe system failure or
panic.

The system generates many messages of lower severity and fewer messages of higher
severity. For example, under normal circumstances, they generate many INFO
messages and no EMERGENCY messages.

14.2.3 Log Files
By default, Oracle Event Processing server writes log messages to the server.log
and consoleoutput.log files in the /Oracle/Middleware/my_oep/
user_projects/domains/DOMAIN_DIR/servername directory, where
DOMAIN_DIR refers to the domain directory (such as my_domain), and servername
refers to the server instance directory (such as myServer1).

For information on configuring log file attributes, see log-file.

14.2.4 Log Message Format
Oracle Event Processing server writes log messages in different formats depending on
the type of log file it is writing to.

14.2.4.1 Format of Output to a Log File

The system writes a message to the specified log file consisting of a #### prefix,
Timestamp, Severity, Subsystem, Server Name, Connection, Thread ID or
User ID or Transaction ID, Message ID, and the Message, along with a stack
trace if any. Each attribute is contained between angle brackets.

The following is an example of a message in the server log file (split for readability; in
practice, the message might be on one line):

####<May 25, 2015 10:23:32 AM EST> <Notice> <Deployment> <> <myServer>
<RMI TCP Connection(4)-141.144.123.236> <> <> <> <1235575412801> <BEA-2045000>
<The application bundle "Hello" was deployed successfully to file
[C:\Oracle\Middleware\my_oep\user_projects\domains\oep_domain\defaultserver
\applications\Hello\Hello.jar]
with version 1235575412708>

14.2.4.2 Format of Output to Console, Standard Out, and Standard Error

The system writes a message to the console, standard out, or standard error consisting
of Locale-formatted Timestamp, Severity, Subsystem, Message ID, and
Message.

The following is an example of how the message from the previous section would be
printed to standard out (split for readability; in practice, the message might be on one
line):

<May 25, 2015 10:23:32 AM EST> <Notice> <Deployment> <BEA-2045000>
<The application bundle "Hello" was deployed successfully to file
[C:\Oracle\Middleware\my_oep\user_projects\domains\oep_domain\defaultserver
\applications\Hello\Hello.jar]
with version 1235575412708>

Commons Apache Logging Framework

14-4 Administering Oracle Event Processing

14.3 OSGi Framework Logger
Oracle Event Processing has a low-level framework logger that is started before the
OSGi framework. It is used to report logging event deep inside the OSGi framework
and function as a custom default for the logging subsystem before it is configured.

For example, a user may see some log message, which has lower level or severity than
what is set in the config.xml but higher or equal to what is set on the Launcher
command line on the console or in the log file. Until the logging subsystem has
started, log messages come from the framework logger and use the framework logging
level to filter messages.

14.4 Log4j Logger
Log4j is an open source tool developed for putting log statements in your application.
Log4j has three main components: loggers, appenders, and layouts, which are all
described in this section.

The Log4j Java logging facility was developed by the Jakarta Project of the Apache
Foundation. See:

• The Log4j Project at http://logging.apache.org/log4j/.

• The Log4j API at http://logging.apache.org/log4j/1.2/apidocs/index.html.

• Short introduction to log4j at http://logging.apache.org/log4j/1.2/manual.html.

14.4.1 Loggers
Log4j defines a Logger class. An application can create multiple loggers, each with a
unique name. In a typical usage of Log4j, an application creates a Logger instance for
each application class that will emit log messages. Loggers exist in a name space
hierarchy and inherit behavior from their ancestors in the hierarchy.

14.4.2 Appenders
This section explains about defining appenders.

Log4j defines appenders (handlers) to represent destinations for logging output.
Multiple appenders can be defined. For example, an application might define an
appender that sends log messages to standard out, and another appender that writes
log messages to a file. Individual loggers might be configured to write to zero or more
appenders. One example usage would be to send all logging messages (all levels) to a
log file, but only ERROR level messages to standard out.

14.4.3 Layouts
Log4j defines layouts to control the format of log messages. Each layout specifies a
particular message format. A specific layout is associated with each appender. This
lets you specify a different log message format for standard out than for file output,
for example.

OSGi Framework Logger

Logging and Debugging 14-5

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/1.2/apidocs/index.html
http://logging.apache.org/log4j/1.2/manual.html

14.5 Configure the Logging Service
You configure Oracle Event Processing logging service attributes using Oracle Event
Processing Visualizer or by editing the Oracle Event Processing server config.xml
file.

For more information on configuring logging using Oracle Event Processing
Visualizer, see Using Visualizer for Oracle Event Processing.

The config.xml file is located in the /Oracle/Middleware/my_oep/
user_projects/domains/DOMAIN_DIR/servername/config directory, where
DOMAIN_DIR refers to the domain directory (such as my_domain), and servername
refers to the server instance directory (such as myServer1).

The following example shows a typical Oracle Event Processing server config.xml
file with logging elements.

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2007 sp2 (http://www.altova.com)-->
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server
wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
 <name>myLogService</name>
 <log-file-config>myFileConfig</log-file-config>
 <stdout-config>myStdoutConfig</stdout-config>
 <logger-severity>Notice</logger-severity>
 <logger-severity-properties>
 <entry>
 <key>LifeCycle</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Management</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>CQLProcessor</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>CqlProcessor</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Stream</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Ede</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Cache</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Adapters</key>

Configure the Logging Service

14-6 Administering Oracle Event Processing

 <value>Notice</value>
 </entry>
 <entry>
 <key>Spring</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Channel</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Recplay</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Monitor</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Server</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>EventTrace</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Deployment</key>
 <value>Notice</value>
 </entry>
 </logger-severity-properties>
 </logging-service>
 <log-file>
 <name>myFileConfig</name>
 <rotation-type>none</rotation-type>
 </log-file>
 <log-stdout>
 <name>myStdoutConfig</name>
 <stdout-severity>Debug</stdout-severity>
 </log-stdout>

</n1:config>

The following sections provide information on configuring Oracle Event Processing
logging:

• logging-service

• log-file

• log-stdout

• Configure Severity for an Individual Module.

14.5.1 logging-service
This section provides information on the logging-service element:

Configure the Logging Service

Logging and Debugging 14-7

Table 14-2 Configuration Parameters for logging-service

Parameter Type Description

name String
The name of this configuration object.

log-file-config String
The configuration of the log file and its rotation
policies.

See log-file.

stdout-config String
The name of the stdout configuration object
used to configure stdout output. See log-stdout.

logger-severity String
Defines the threshold importance of the
messages that are propagated to the handlers.

The default value is Info.

To see Debug and Trace messages, configure
the logger-severity to either Debug or
Trace.

Valid values are: Emergency, Alert,
Critical, Error, Warning, Notice, Info,
Debug, and Trace.

logger-severity-
properties

One or more
<entry>
child
elements.

List of name-value pairs, enclosed in an
<entry> element, that list individual modules
(package name, application name, class name, or
component such as CQLProcessor) and their
logging severity. These severities override the
default severity of the Oracle Event Processing
server.

See Configure Severity for an Individual Module.

14.5.2 log-file
This section provides information on the log-file element:

Table 14-3 Configuration Parameters for log-file

Parameter Type Description

name String
The name of this configuration object.

base-log-file-name String
The log file name. Default value is server.log.

Configure the Logging Service

14-8 Administering Oracle Event Processing

Parameter Type Description

log-file-severity String
Specifies the least important severity of messages
written to the log file. Default value is Trace.

Valid values are:

• Emergency

• Alert

• Critical

• Error

• Warning

• Notice

• Info

• Debug

• Trace.

log-file-rotation-dir String
Specifies the directory where old rotated files are
stored.

If not set, the old files are stored in the same
directory as the base log file.

rotation-type String
Specifies how rotation is performed based on size,
time, or not at all.

Valid values are:

• bySize

• byTime

• none

rotation-time String
The time in k:mm format, where k is the hour
specified in 24 hour notation and mm is the minutes.

Default is 00:00

rotation-time-span-factor Long
Factor applied to the timespan to determine the
number of milliseconds that becomes the frequency
of time based log rotations. Default is 3600000.

rotated-file-count Intege
r

Specifies the number of old rotated files to keep if
number-of-files-limited is true. Default
value is 7.

rotation-size Intege
r

The size threshold, in KB, at which the log file is
rotated. Default is 500.

rotation-time-span Intege
r

Specifies the interval for every time-based log
rotation. Default value is 24.

rotate-log-on-startup-
enabled

Boolea
n

If true, the log file is rotated on startup. Default
value is true.

number-of-files-limited Boolea
n

If true, old rotated files are deleted. Default is
false.

Configure the Logging Service

Logging and Debugging 14-9

14.5.3 log-stdout
This section provides information on the log-stdout element:

Table 14-4 Configuration Parameters for log-stdout

Parameter Type Description

name String
The name of this configuration object.

stdout-severity String
The threshold severity for messages sent to stdout. Default
value is Notice.

Valid values are:

• Emergency

• Alert

• Critical

• Error

• Warning

• Notice

• Info

• Debug

• Trace.

stack-trace-depth Intege
r

The number of stack trace frames to display on stdout.

A default value of -1 means all frames are displayed.

stack-trace-
enabled

Boolea
n

If true, stack traces are dumped to the console when included
in logged messages. Default value is true.

14.5.4 Configure Severity for an Individual Module
Individual modules of Oracle Event Processing can specify their logging severity. This
severity overrides the default logging severity of the Oracle Event Processing server.

You do this by specifying an entry child element in the logger-severity-
properties element in the Oracle Event Processing server config.xml file. You
can specify multiple entry child elements for any number of modules.

Configure Severity for an Individual Module

1. Edit the Oracle Event Processing server config.xml file.

2. Add an entry child element to the logger-severity-properties element as
the following example shows.

 <logging-service>
 <name>myLogService</name>
 <logger-severity>Warning</logger-severity>
 <logger-severity-properties>
 ...
 <entry>
 <key>CQLProcessor</key>
 <value>Debug</value>
 </entry>

Configure the Logging Service

14-10 Administering Oracle Event Processing

 ...
 </logger-severity-properties>
 ...
 </logging-service>

3. Set the key element to any of the following:

• Component name: a component name constant exactly as Table 14-5 lists.

Table 14-5 Logging Component Name Constants

Component Name
Constant

Description

Adapters Applies to log messages from adapter instances running
on the Oracle Event Processing server.

Cache Applies to log messages from caching systems and cache
instances running on the Oracle Event Processing server.

Cartridges Applies to log messages related to the Oracle Event
Processing cartridge infrastructure.

Channel Applies to log messages from channels running on the
Oracle Event Processing server.

CQLProcessor Applies to log messages from Oracle CQL processors
running on the Oracle Event Processing server.

CQLServer Applies to log messages from the CQLEngine, which is at
the core of each CQLProcessor.

CQLServerTrace Applies to log messages from the CQLEngine, which is at
the core of each CQLProcessor

Coherence Applies to log messages from Oracle Coherence,
including messages related to clustering.

The value you enter here is mapped to Oracle Coherence
severity levels in the following way:

Error: 1
Warning: 2
Notice: 3
Info: 4
Debug: 5
Trace: 9

You can customize logging from Oracle Coherence by
overriding the logging-config setting in its
configuration. For example, you can override the default
log destination used for Oracle Coherence (log4j) and use
another. For more information on overriding
configuration, see Configure the Oracle Coherence
Cluster.

Deployment Applies to log messages related to the deployment
infrastructure.

Ede Applies to log messages from the Event-Driven
Environment, the Oracle Event Processing server event-
dispatching infrastructure.

Configure the Logging Service

Logging and Debugging 14-11

Component Name
Constant

Description

EventTrace When set to Info or Debug, allows you to trace events as
they flow through the EPN for all applications. You can
dynamically change the severity of this log key using
Oracle Event Processing Visualizer.

At the Info severity, you see log messages like:

<May 26, 2009 5:53:49 PM PDT> <Info> <EventTrace>
 <BEA-000000> <Application [helloworld],
 Stage [helloworldOutputChannel] received
insert event>

At the Debug severity, the log messages include details
of the event:

<May 26, 2009 6:02:34 PM PDT> <Debug> <EventTrace>
 <BEA-000000> <Application [helloworld],
 Stage [helloworldOutputChannel] received
insert
 event [HelloWorldEvent: HelloWorld - the
current
 time is: 6:02:34 PM]>

FaultHandler Applies to log messages related to fault handling in
Oracle CQL.

HadoopCartridge Applies to log messages related to the Hadoop cartridge.

JavaCartridge Applies to log messages related to the use of Java in
Oracle CQL.

Lifecycle Applies to log messages from Oracle Event Processing
server and application life cycle operations.

Management Applies to log messages from Oracle Event Processing
server general JMX-related management API operations.

Monitor Applies to log messages from the Oracle Event
Processing server monitoring service.

NoSQLCartridge Applies to log messages related to the Oracle NoSQL
cartridge.

Recplay Applies to log messages from Oracle Event Processing
server event recording and playback operations.

Server Applies to log messages related to server infrastructure
components.

SpatialCartridge Applies to log messages related to the spatial cartridge.

Spring Applies to log messages from Spring container
operations.

Stream Applies to log messages from stream instances running
on the Oracle Event Processing server.

For example:

Configure the Logging Service

14-12 Administering Oracle Event Processing

<entry>
 <key>CQLProcessor</key>
 <value>Debug</value>
</entry>

• Application name: the module name of any Oracle Event Processing server or
user-defined application. For example:

<entry>
 <key>sample.HelloWorld</key>
 <value>Debug</value>
</entry>

4. Set the value element to a severity level.

See Use Log Severity Levels.

For example:

<entry>
 <key>CQLProcessor</key>
 <value>Debug</value>
</entry>

This severity level applies to the module you specified in the key element and
overrides the default Oracle Event Processing server logging severity level set in
the logger-severity element.

5. Repeat from step 2 for any other modules.

6. Save and close the config.xml file.

14.6 Configure Log4j Logging
Oracle Event Processing supports the open-source log4j logging system.

This section describes the following tasks:

• Configure log4j Properties

• Configure Application Manifest

• Enable Log4j Logging

• Debug Log4j Logging.

14.6.1 Configure log4j Properties
The default configuration file is log4j.properties. It can be overridden by using
the log4j.configuration system property. See https://www.qos.ch/shop/
products/log4j/log4j-Manual.jsp.

The following is an example of a log4j.properties file:

 log4j.rootLogger=debug, R
 log4j.appender.R=org.apache.log4j.RollingFileAppender
 log4j.appender.R.File=D:/log4j/logs/mywebapp.log
 log4j.appender.R.MaxFileSize=10MB
 log4j.appender.R.MaxBackupIndex=10
 log4j.appender.R.layout=org.apache.log4j.PatternLayout
 log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n
 log4j.logger=DEBUG, R

Configure Log4j Logging

Logging and Debugging 14-13

https://www.qos.ch/shop/products/log4j/log4j-Manual.jsp
https://www.qos.ch/shop/products/log4j/log4j-Manual.jsp

14.6.2 Configure Application Manifest
Update the MANIFEST.MF file of your application to import the following required
Log4j packages.

Import-Package:
 org.apache.log4j;version="1.2.13",
 org.apache.log4j.config;version="1.2.13",
 ...

14.6.3 Enable Log4j Logging
To specify logging to a Log4j Logger, set the following system properties on the
command line:

 -
Dorg.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl
 -Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger
 -Dlog4j.configuration=<URL>/log4j.properties

Another very useful command line property is -Dlog4j.debug=true. Use this
property when log4j output fails to appear or you get cryptic error messages.

14.6.4 Debug Log4j Logging
If log4j output fails to appear or you get cryptic error messages, consider using the
command line property -Dlog4j.debug=true on the command line.

For more information, see Enable Log4j Logging.

14.7 Use the Apache Commons Logging API
You can use Apache Commons logging API in your Oracle Event Processing
applications to log application-specific messages to the Oracle Event Processing
server.log and consoleoutput.log files.

To use the commons logging API:

1. Set the system property org.apache.commons.logging.LogFactory to
weblogic.logging.commons.LogFactoryImpl.

This LogFactory creates instances of
weblogic.logging.commons.LogFactoryImpl that implement the
org.apache.commons.logging.Log interface.

2. From the LogFactory, get a reference to the Commons Log object by name.

This name appears as the subsystem name in the log file.

3. Use the Log object to issue log requests to logging services.

The Commons Log interface methods accept an object. In most cases, this will be a
string containing the message text.

The Commons LogObject takes a message ID, subsystem name, and a string
message argument in its constructor. See org.apache.commons.logging at
http://jakarta.apache.org/commons/logging/api/index.html.

Use the Apache Commons Logging API

14-14 Administering Oracle Event Processing

http://jakarta.apache.org/commons/logging/api/index.html

4. The weblogic.logging.commons.LogImpl log methods direct the message to
the server log.

import org.apache.commons.logging.LogFactory;
import org.apache.commons.logging.Log;

public class MyCommonsTest {
 public void testCommonsLogging() {
 System.setProperty(LogFactory.FACTORY_PROPERTY,
 "weblogic.logging.commons.LogFactoryImpl");
 Log clog = LogFactory.getFactory().getInstance("MyCommonsLogger");
 // Log String objects
 clog.debug("Hey this is common debug");
 clog.fatal("Hey this is common fatal", new Exception());
 clog.error("Hey this is common error", new Exception());
 clog.trace("Dont leave your footprints on the sands of time");
 }
}

14.8 Configure Debugging Options
Table 14-6 lists the debugging options that Oracle Event Processing provides. You can
enable and disable these debugging options to help diagnose problems with your
Oracle Event Processing applications.

Table 14-6 Debug Flags

Debug Flag Description

com.bea.core.debug.DebugBootBundle
Boot Debugging

com.bea.core.debug.DebugBootBundle.stdout
Boot Debugging debug strings go to stdout

com.bea.core.debug.DebugCM
Configuration Manager

com.bea.core.debug.DebugCM.stdout
Configuration Manager debug strings go to
stdout

com.bea.core.debug.DebugConfigurationRunt
ime

Runtime information from the Runtime
MBeans

com.bea.core.debug.DebugCSS
CSS

com.bea.core.debug.DebugCSS.stdout
CSS debug strings go to stdout

com.bea.core.debug.DebugCSSServices
CSS Services

com.bea.core.debug.DebugCSSServices.stdou
t

CSS Services debug strings go to stdout

Configure Debugging Options

Logging and Debugging 14-15

Debug Flag Description

com.bea.core.debug.DebugJDBCConn
JDBC Connection

com.bea.core.debug.DebugJDBCInternal
JDBC Internal

com.bea.core.debug.DebugJDBCRMI
JDBC RMI

com.bea.core.debug.DebugJDBCSQL
JDBC SQL

com.bea.core.debug.DebugJTA2PC
JTA 2PC

com.bea.core.debug.DebugJTA2PCDetail
JTA 2PCDetail

com.bea.core.debug.DebugJTA2PCStackTrace
JTA 2PCStackTrace

com.bea.core.debug.DebugJTAGateway
JTA Gateway

com.bea.core.debug.DebugJTAGatewayStackTr
ace

JTA GatewayStackTrace

com.bea.core.debug.DebugJTAHealth
JTA Health

com.bea.core.debug.DebugJTAJDBC
JTA JDBC

com.bea.core.debug.DebugJTALifecycle
JTA Lifecycle

com.bea.core.debug.DebugJTALLR
JTA LLR

com.bea.core.debug.DebugJTAMigration
JTA Migration

com.bea.core.debug.DebugJTANaming
JTA Naming

com.bea.core.debug.DebugJTANamingStackTra
ce

JTA NamingStackTrace

com.bea.core.debug.DebugJTANonXA
JTA NonXA

Configure Debugging Options

14-16 Administering Oracle Event Processing

Debug Flag Description

com.bea.core.debug.DebugJTAPropagate
JTA Propagate

com.bea.core.debug.DebugJTARecovery
JTA Recovery

com.bea.core.debug.DebugJTAResourceHealth
JTA ResourceHealth

com.bea.core.debug.DebugJTATLOG
JTA TLOG

com.bea.core.debug.DebugJTAXA
JTA XA

com.bea.core.debug.DebugJTAXAStackTrace
JTA XAStackTrace

com.bea.core.debug.DebugNetIO
NetIO

com.bea.core.debug.DebugOX
OSGi to JMX (OX)

com.bea.core.debug.DebugOX.stdout
OSGi to JMX (OX), debug goes to standard
out.

com.bea.core.debug.DebugSCP
Simple Configuration Provider

com.bea.core.debug.DebugSCP.stdout
Simple Configuration Provider debug
strings go to stdout

com.bea.core.debug.DebugSDS
Simple Declarative Services

com.bea.core.debug.DebugSDS.stdout
SDS debug strings go to stdout

com.bea.core.debug.DebugServiceHelper
Service Helper

com.bea.core.debug.DebugServiceHelper.std
out

Service Helper debug strings go to stdout

com.bea.core.debug.DebugStoreAdmin
Store Administration

com.bea.core.debug.DebugStoreIOLogical
Store IOLogical

Configure Debugging Options

Logging and Debugging 14-17

Debug Flag Description

com.bea.core.debug.DebugStoreIOLogicalBoo
t

Store IOLogicalBoot

com.bea.core.debug.DebugStoreIOPhysical
Store IOPhysical

com.bea.core.debug.DebugStoreIOPhysicalVe
rbose

Store IOPhysicalVerbose

com.bea.core.debug.DebugStoreXA
Store XA

com.bea.core.debug.DebugStoreXAVerbose
Store XAVerbose

com.bea.core.debug.servicehelper.dumpstac
k

Dump stack traces when Service Helper
times out.

The following sections provide information on how to use these Oracle Event
Processing debugging options:

• Configure Debugging Options with System Properties

• Configure Debugging Options with a Configuration File

If you are using Log4j logging, see also Debug Log4j Logging.

14.8.1 Configure Debugging Options with System Properties
Use the following steps to configure debugging using system properties.

In this procedure, you will turn on Simple Declarative Services (SDS) debugging
(com.bea.core.debug.DebugSDS from Table 14-6) using the Oracle Event
Processing server startwlevs.sh file.

Configure Debugging Options using System Properties

1. Locate the DebugSDS flag in Table 14-6:

com.bea.core.debug.DebugSDS

2. Create a property by prepending -D to the flag:

-Dcom.bea.core.debug.DebugSDS

3. Enable this debug flag by setting the property to true:

-Dcom.bea.core.debug.DebugSDS=true

4. Start the Oracle Event Processing server using the startwlevs.sh with this
property:

./startwlevs.sh -Dcom.bea.core.debug.DebugSDS=true

Configure Debugging Options

14-18 Administering Oracle Event Processing

14.8.2 Configure Debugging Options with a Configuration File
This section describes the procedure to configure debugging options with a
Configuration File.

Use the following steps to configure debugging from a configuration file.

In this procedure, you will turn on Simple Declarative Services (SDS) debugging
(com.bea.core.debug.DebugSDS from Table 14-6) in the Oracle Event Processing
server config.xml file.

Configure Debugging Options with a Configuration File

1. Locate the DebugSDS flag in Table 14-6:

com.bea.core.debug.DebugSDS

2. Create an XML tag by omitting the com.bea.core.debug. package name from
the flag name:

<DebugSDS></DebugSDS>

3. Edit the Oracle Event Processing server config.xml file and add a debug
element with a debug-properties child element as step 5 shows.

4. Add your DebugSDS element to the debug-properties element as step 5 shows.

5. Enable this debug flag by setting the DebugSDS element to true as the following
example shows.

<config>
 <debug>
 <debug-properties>
 <DebugSDS>true</DebugSDS>
 </debug-properties>
 </debug>
</config>

6. Set logger-severity to Debug in the logging-service element as step 6
shows.

7. Set stdout-severity to Debug in the log-stdout element as the following
example shows.

<config>
 <debug>
 <debug-properties>
 <DebugSDS>true</DebugSDS>
 </debug-properties>
 </debug>

 <logging-service>
 <logger-severity>Debug</logger-severity>
 <stdout-config>logStdout</stdout-config>
 <log-file-config>logFile</log-file-config>
 </logging-service>

 <log-file>
 <name>logFile</name>
 <log-file-severity>Debug</log-file-severity>

Configure Debugging Options

Logging and Debugging 14-19

 <number-of-files-limited>true</number-of-files-limited>
 <rotated-file-count>4</rotated-file-count>
 <rotate-log-on-startup-enabled>true</rotate-log-on-startup-enabled>
 </log-file>

 <log-stdout>
 <name>logStdout</name>
 <stdout-severity>Debug</stdout-severity>
 </log-stdout>
</config>

Configure Debugging Options

14-20 Administering Oracle Event Processing

Part V
Command Reference

This part page contains links to the command reference appendices.

Command Reference contains the following appendices:

• wlevs.Admin Command-Line Reference

• Deployer Command-Line Reference

• Security Utilities Command-Line Reference.

A
wlevs.Admin Command-Line Reference

You can use the wlevs.Admin to administer Oracle Event Processing, dynamically
configure rules for Oracle Continuous Query Language (Oracle CQL) processors, and
monitor event latency and throughput.

This appendix includes the following sections:

• Overview of the wlevs.Admin Utility

• Configure the wlevs.Admin Utility Environment

• Running the wlevs.Admin Utility Remotely

• Run wlevs.Admin Utility in SSL Mode

• Syntax for Calling the wlevs.Admin Utility

• Connection Arguments

• User Credentials Arguments

• Common Arguments

• HELP Command

• SHUTDOWN Command

• Commands to Manage Oracle CQL Rules

• Commands to Manage MBeans

• Commands for Controlling Event Record and Playback

• Commands for Monitoring Throughput and Latency

• Commands for Managing Configuration History.

A.1 Overview of the wlevs.Admin Utility
The wlevs.Admin utility is a command-line interface to administer Oracle Event
Processing, to dynamically configure the rules for Oracle CQL processors, and to
monitor the event latency and throughput of an application. The utility uses JMX to
query the configuration and run time MBeans of servers and deployed applications.

The Oracle Event Processing configuration framework enables concurrent changes to
the application and server configuration by multiple users. The framework does not
use locking to manage this concurrency, but uses optimistic version-based
concurrency. This means that two users can always view the configuration of the same
object with the intention to update it, but only one user can commit their changes. The

wlevs.Admin Command-Line Reference A-1

other user get an error when they try to update the same configuration object and
must refresh their session to view the updated configuration.

Each wlevs.Admin utility command runs in its own transaction, which means that
there is an implicit commit after each execution of a command. If you want to batch
multiple configuration changes in a single transaction, use JMX directly to make these
changes rather than the wlevs.Admin utility.

A.2 Configure the wlevs.Admin Utility Environment
Before you can use the wlevs.Admin utility, you must configure your environment
appropriately.

Configure the wlevs.Admin Utility Environment

1. Configure JMX connectivity for the domain you want to administer. See JMX .

2. Set your CLASSPATH in one of the following ways:

• Implicitly set your CLASSPATH by using the -jar argument when you run the
utility.

Set the -jar argument to the /Oracle/Middleware/my_oep/oep/bin/
wlevsadmin.jar file.

When you use the -jar argument, you do not specify the wlevs.Admin utility
name at the command line. For example:

java -jar d:/Oracle/Middleware/my_oep/oep/bin/wlevsadmin.jar
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 UPLOAD -application helloworld -processor helloworldProcessor
 -sourceURL file:///d:/test/newrules2.xml

• Explicitly update your CLASSPATH by adding the following files to the
CLASSPATH environment variable:

/Oracle/Middleware/my_oep/oep/bin/wlevsadmin.jar

/Oracle/Middleware/my_oep/oep/bin/wlevs.jar
/Oracle/Middleware/my_oep/oep/modules/
com.bea.wlevs.deployment.server_12.1.2.0_0.jar
/Oracle/Middleware/my_oep/oep/modules/com.bea.wlevs.ede_12.1.2.0_0.jar
/Oracle/Middleware/my_oep/oep/modules/
com.bea.wlevs.management_12.1.2.0_0.jar
/Oracle/Middleware/my_oep/wlserver/modules/
com.bea.core.jndi.context_8.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/com.bea.core.jmx_8.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/com.bea.core.rmi_8.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/
com.bea.core.i18n_3.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/
com.bea.core.diagnostics.core_4.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/javax.xml.stream_1.1.1.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/
com.bea.core.bootbundle_13.0.0.0.jar

A.3 Running the wlevs.Admin Utility Remotely
You can run the wlevs.Admin utility on a computer that is different from the
computer on which Oracle Event Processing is installed and running.

Configure the wlevs.Admin Utility Environment

A-2 Administering Oracle Event Processing

Run the wlevs.Admin utility Remotely

1. Copy the following JAR files from the computer on which Oracle Event Processing
is installed to the computer on which you want to run wlevs.Admin; you can
copy the JAR files to the directory name of your choice:

/Oracle/Middleware/my_oep/oep/bin/wlevsadmin.jar
/Oracle/Middleware/my_oep/oep/bin/wlevs.jar
/Oracle/Middleware/my_oep/oep/modules/
com.bea.wlevs.deployment.server_12.1.2.0_0.jar
/Oracle/Middleware/my_oep/oep/modules/com.bea.wlevs.ede_12.1.2.0_0.jar
/Oracle/Middleware/my_oep/oep/modules/
com.bea.wlevs.management_12.1.2.0_0.jar
/Oracle/Middleware/my_oep/wlsever/modules/
com.bea.core.jndi.context_8.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/com.bea.core.jmx_8.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/com.bea.core.rmi_8.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/com.bea.core.i18n_3.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/
com.bea.core.diagnostics.core_4.0.0.0.jar
/Oracle/Middleware/my_oep/wlserver/modules/javax.xml.stream_1.1.1.0.jar

2. Set your CLASSPATH in one of the following ways:

• Implicitly set your CLASSPATH by using the -jar argument when you run the
utility. Set the argument to the NEW_DIRECTORY/wlevsadmin.jar file, where
NEW_DIRECTORY refers to the directory on the remote computer into which you
copied the required JAR files. When you use the -jar argument, you do not
specify the wlevs.Admin utility name at the command line.

• Explicitly update your CLASSPATH by adding all the files you copied to the
remote computer to your CLASSPATH environment variable:

3. Run the wlevs.Admin utility in SSL mode as described in Run wlevs.Admin
Utility in SSL Mode.

A.4 Run wlevs.Admin Utility in SSL Mode
To use SSL when using the wlevs.Admin command-line utility, you must first create
a trust key store. For more information, see SSL to Secure Network Traffic.

Run wlevs.Admin utility in SSL Mode

1. If not already running, start the Oracle Event Processing server.

See Start and Stop Servers.

2. Change to ssl directory.

By default the ssl directory is in Oracle/Middleware/my_oep/
user_projects/domains/<domainname>/<servername>.

3. Generate a trust key store by specifying the following command on one line:

java -classpath Oracle\Middleware\my_oep\oep\
common\lib\evspath.jar;Oracle\Middleware\my_oep\oep\utils\security\
wlevsgrabcert.jar com.bea.wlevs.security.util.GrabCert host:secureport
-alias=alias truststorepath

Run wlevs.Admin Utility in SSL Mode

wlevs.Admin Command-Line Reference A-3

host: The computer on which myServer2 is running.

secureport: The SSL network I/O port configured for myServer2. The default
value is 9003. For more information, see Configure SSL Manually.

alias: The alias for the certificate in the trust key store. Default value is the host
name.

truststorepath: The full path name of the generated trust key store file. The
default is evstrust.jks.

For example:

java -classpath C:\Oracle\Middleware\my_oep\oep\
common\lib\evspath.jar;C:\Oracle\Middleware\my_oep\utils\security\
wlevsgrabcert.jar com.bea.wlevs.security.util.GrabCert myServer2:9003 -
alias=myServer2 evstrust.jks

4. Use the following properties and specify the secure port in the URL as shown in
the following example.

-Djavax.net.ssl.trustStore: The name of the trust key store file you created
in the preceding step.

-Djavax.net.ssl.trustStorePassword: The password of the trust key store
file.

java -Djavax.net.ssl.trustStore=clitrust.jks
 -Djavax.net.ssl.trustStorePassword=secret
 -jar wlevsadmin.jar
 -url service:jmx:msarmis://localhost:9003/jndi/jmxconnector
 -username wlevs -password wlevs
 SHUTDOWN -scheduleAt 600

A.5 Syntax for Calling the wlevs.Admin Utility
The syntax for using the wlevs.Admin utility is as follows:

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 COMMAND-NAME command-arguments

The command names and arguments are not case sensitive.

The following sections provide detailed syntax information about the arguments you
can supply to the wlevs.Admin utility:

• Connection Arguments

• User Credentials Arguments

• Common Arguments

The following sections provide detailed syntax information about the supported
commands of the wlevs.Admin utility:

• HELP Command

• SHUTDOWN Command

• Commands to Manage Oracle CQL Rules

Syntax for Calling the wlevs.Admin Utility

A-4 Administering Oracle Event Processing

• Commands to Manage MBeans

• Commands for Controlling Event Record and Playback

• Commands for Monitoring Throughput and Latency.

A.5.1 Example Environment
In many of the examples in the following sections the environment has the following
setup:

• The Oracle Event Processing server instance listens to JMX requests on port 9002.

• The Oracle Event Processing server instance is installed on a host machine named
ariel and uses this host name for its listen address.

• The wlevs user name has system administrator privileges and uses wlevs for the
administrator password.

Also, all of the examples are shown on multiple lines. When you run the command,
enter all arguments and commands on a single line.

A.5.2 Exit Codes Returned by wlevs.Admin
All wlevs.Admin commands return an exit code of 0 when the command succeeds
and an exit code of 1 when the command fails.

To view the exit code from a Windows command prompt, enter echo%ERRORLEVEL%
after you run a wlevs.Admin command. To view the exit code in a bash shell, enter
echo $?.

wlevs.Admin calls System.exit(1) when an exception is raised while processing
a command, which causes Ant and other Java client JVMs to exit.

A.6 Connection Arguments
java wlevs.Admin
 [{-url URL} | -protocol protocol | {-listenAddress hostname -listenPort port}]
 [User Credentials Arguments]
 [Common Arguments]
 COMMAND-NAME command-arguments

When you invoke most wlevs.Admin commands, you must specify the arguments in
Table A-1 to connect to an Oracle Event Processing server instance.

Connection Arguments

wlevs.Admin Command-Line Reference A-5

Table A-1 Connection Arguments

Argument Definition

-url service:jmx:msarmi://
host:port/jndi/jmxconnector

Specifies the URL that establishes a JMX connection to the
Oracle Event Processing instance that you want to administer,
where:

• host refers to the name of the computer on which the
Oracle Event Processing instance is running

• port refers to the Oracle Event Processing server JNDI
port

If you use this argument, do not specify -listenAddress or
-listenPort.

Other than host, you specify the remainder of the URL as
written.

For example, if Oracle Event Processing is running on a
computer with host name ariel, and the JMX listening port is
9002, then the URL would be:

 -url service:jmx:msarmi://ariel:9002/jndi/jmxconnector

See JMX for details about configuring JMX, JNDI, and RMI for
Oracle Event Processing.

-listenAddress hostname
Specifies the name of computer on which the Oracle Event
Processing instances is running. This argument, together with
-listenPort, is used to build the URL that establishes a JMX
connection to the server you want to administer.

You use this argument, together with -listenPort, instead of
-url.

For example, if Oracle Event Processing is running on a
computer with host name ariel, then this argument would
be:

 -listenAddress ariel

-listenPort port
Specifies the port configured for Oracle Event Processing that
listens to JMX connections. This argument, together with -
listenAddress, is used to build the URL that establishes a
JMX connection to the server you want to administer.

You use this argument, together with -listenAddress,
instead of -url.

The JMX port is configured in the config.xml file of the
Oracle Event Processing domain you are administering. In
particular, the port is the <port> child element of the
<netio> element, as shown:

 <netio>
 <name>NetIO</name>
 <port>9002</port>
 </netio>

In the example, the port is 9002 and you specify as an
argument as follows:

 -listenPort 9002

See JMX for details about configuring JMX, JNDI, and RMI for
Oracle Event Processing.

Connection Arguments

A-6 Administering Oracle Event Processing

A.7 User Credentials Arguments
java wlevs.Admin
 [Connection Arguments]
 [-username username [-password password]]
 [Common Arguments]
 COMMAND-NAME command-arguments

When you invoke most wlevs.Admin commands, you must specify the arguments in
Table A-2 to provide the user credentials of an Oracle Event Processing user who has
permission to invoke the command. If security has not been enabled for your Oracle
Event Processing domain, then you do not have to provide user credentials.

Table A-2 User Credentials Arguments

Argument Definition

-username
username

The name of the user who is issuing the command. This user must have
appropriate permission to view or modify the target of the command.

-password
password

The password that is associated with the username.

Note:

The exit code for all commands is 1 when the wlevs.Admin utility cannot
connect to the server or when the Oracle Event Processing server instance
rejects the user name and password.

A.8 Common Arguments
This section lists the common arguments.

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [-verbose]
 COMMAND-NAME command-arguments

All wlevs.Admin commands support the argument in Table A-3 to get verbose
output.

Table A-3 Common Arguments

Argumen
t

Definition

-verbose Specifies that wlevs.Admin should output additional verbose information.

A.9 HELP Command
Provides syntax and usage information for all Oracle Event Processing commands or
for a single command if a command value is specified on the HELP command line.
You can issue this command from any computer on which Oracle Event Processing is
installed. You do not need to start a server instance to invoke this command, nor do
you need to supply user credentials, even when security is enabled for the server.

User Credentials Arguments

wlevs.Admin Command-Line Reference A-7

Syntax

java wlevs.Admin HELP [COMMAND]

The COMMAND argument can be:

• The keyword ALL, which returns usage information about all commands.

• One of the keywords MBEAN, RULES, or LIFECYCLE, which returns usage
information about the three different groups of commands.

• A command such as UPLOAD, which returns usage information about the particular
command.

Example

In the following example, information about using the UPLOAD command is requested:

java wlevs.Admin HELP UPLOAD

The command returns the following output:

Description:
Uploads rules to be configured in the processor.

Usage:
java wlevs.Admin
 [-url | -listenAddress <host-name> -listenPort <port>]
 -username <username> -password <password>
 UPLOAD -application <application name> -processor <processor name> -sourceURL "source url"

Where:
-application = Name of the application.
-processor = Name of the processor.
-sourceURL = source URL containing the rules in an XML format.

java wlevs.Admin -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs UPLOAD -application myapplication
 -processor processor -sourceURL file:/d:/test/rules.xml

A.10 SHUTDOWN Command
The SHUTDOWN command manages the life cycle of a server instance by gracefully
shutting down the specified Oracle Event Processing server instance. A graceful
shutdown gives Oracle Event Processing time to complete certain application
processing currently in progress.

The -url connection argument specifies the particular Oracle Event Processing server
instance that you want to shut down, based on the host and jmxport values. See
Connection Arguments for details.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 SHUTDOWN [-scheduleAt seconds]

SHUTDOWN Command

A-8 Administering Oracle Event Processing

Table A-4 SHUTDOWN Arguments

Argument Definition

-scheduleAt seconds
Specifies the number of seconds after which the Oracle Event Processing
instance shuts down.

If you do not specify this parameter, the server instance shuts down
immediately.

Example

The following example instructs the specified Oracle Event Processing instance to shut
down in ten minutes:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 SHUTDOWN -scheduleAt 600

After you issue the command, the server instance prints messages to its log file and to
its standard out. The messages indicate that the server state is changing and that the
shutdown sequence is starting.

A.11 Commands to Manage Oracle CQL Rules
This section lists the commands to manage Oracle CQL Rules.

Table A-5 is an overview of commands that manage the Oracle CQL rules for a
particular processor of an Oracle Event Processing application.

Table A-5 Overview of Commands for Managing Application Oracle CQL Rules

Command Description

GETRULE Returns the text of an existing Oracle CQL rule, query, or view of the
processor of an Oracle Event Processing application.

ADDRULE Adds a new Oracle CQL rule, query, or view to the processor of an Oracle
Event Processing application.

DELETERULE Deletes an existing Oracle CQL rule, query, or view from the processor of
an Oracle Event Processing application.

REPLACERULE Replaces an existing Oracle CQL rule, query, or view with new Oracle
CQL text.

STARTRULE Starts a previously stopped Oracle CQL rule or query.

STOPRULE Stops a previously started Oracle CQL rule or query.

UPLOAD Configures a set of Oracle CQL rules, queries, or views for a processor of
an Oracle Event Processing application by uploading the rules from a
component configuration XML file.

DOWNLOAD Downloads the set of Oracle CQL rules, queries, or views associated with
a processor of an Oracle Event Processing application to a component
configuration XML file.

A.11.1 GETRULE
Returns the full text of an Oracle CQL rule, query, or view from the specified Oracle
CQL processor of an Oracle Event Processing application.

Commands to Manage Oracle CQL Rules

wlevs.Admin Command-Line Reference A-9

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 GETRULE -application application -processor processor -rule rulename

Table A-6 GETRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-processor processor
Specifies the name of the particular Oracle CQL processor,
attached to the Oracle Event Processing application specified with
the -application argument, whose Oracle CQL rules you want
to manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-rule rulename
Specifies the name of the Oracle CQL rule, query, or view you
want to see.

See Query for Application and Processor Names for details on
querying for the rule, query, or view name if you do not know it.
You can also use the DOWNLOAD command to get the list of
rules for a particular processor.

Example

The following example shows how to get the full text of the Oracle CQL view called
myview from the Oracle CQL helloworldProcessor of the helloworld
application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 GETRULE -application helloworld -processor helloworldProcessor
 -rule myview

A.11.2 ADDRULE
This section explains the ADDRULE command.

Adds a new Oracle CQL rule, query, or view to the specified processor of an Oracle
Event Processing application. If a rule, query, or view with the same name (identified
with the rulename, queryname, or viewname parameter) already exists, then the
ADDRULE command replaces the existing rule, query, or view with the new one.

Commands to Manage Oracle CQL Rules

A-10 Administering Oracle Event Processing

Note:

An Oracle CQL query immediately begins to output events when its input
channels provides input events. If you plan to use a query selector on a
channel with an upstream Oracle CQL processor, then you might observe
unwanted query results on the downstream channel between the time you
add the query to the upstream Oracle CQL processor and the time you
configure the query selector on the downstream channel. See Using Visualizer
for Oracle Stream Explorer.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 ADDRULE -application application -processor processor
 -rule [rulename] rulestring |
 -query [queryname] querystring |
 -view [viewname] viewstring [-schema comma-separated-names]
 [-active true | false]

Table A-7 ADDRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using Visualizer
for Oracle Stream Explorer). In the left pane, navigate to
and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed.
Each node under the Applications node is named with
the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-processor processor
Specifies the name of the particular processor, attached to the
Oracle Event Processing application specified with the -
application argument, whose Oracle CQL rules you want
to manage.

See Query for Application and Processor Names for details
on getting the exact name if you do not know it.

-rule [rulename] rulestring
Specifies the Oracle CQL rule you want to add to the
specified processor of your application. An Oracle CQL rules
include:

• REGISTER|CREATE FUNCTION (aggregate and single-
row functions)

• REGISTER|CREATE WINDOW

The rulename parameter is not required; if you do not
specify it, Oracle Event Processing generates a name for you.

Enter the Oracle CQL rulestring using double quotes.

Commands to Manage Oracle CQL Rules

wlevs.Admin Command-Line Reference A-11

Argument Definition

-query [queryname] querystring
Specifies the Oracle CQL query you want to add to the
specified processor of your application.

The queryname parameter is not required; if you do not
specify it, Oracle Event Processing generates a name for you.

Enter the Oracle CQL querystring using double quotes.

-view [viewname] viewstring [-
schema comma-separated-
names]

Specifies the Oracle CQL view you want to add to the
specified processor of your application.

The viewname parameter is not required; if you do not
specify it, Oracle Event Processing generates a name for you.

Enter the Oracle CQL viewstring using double quotes.

The comma-separated-names parameter is not required; if
you do not specify it, Oracle Event Processing generates the
schema based on the select statement in the viewstring.

-active true | false
Specifies if the rule should be started and ready to process
events after being added.

Valid values for this argument are true (start rule after
adding) or false (do not start rule after adding); default
value is true. If set to false, use STARTRULE to start the
rule.

Example

The following example shows how to add the Oracle CQL query SELECT * FROM
Withdrawal [Rows 5], with name myquery, to the Oracle CQL processor
helloworldProcessor of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 ADDRULE -application helloworld -processor helloworldProcessor
 -query myquery "SELECT * FROM Withdrawal [Rows 5]"

A.11.3 DELETERULE
Deletes an existing Oracle CQL rule from the specified processor of an Oracle Event
Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 DELETERULE -application application -processor processor -rule rulename

Commands to Manage Oracle CQL Rules

A-12 Administering Oracle Event Processing

Table A-8 DELETERULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-processor processor
Specifies the name of the particular processor, attached to the
Oracle Event Processing application specified with the -
application argument, whose Oracle CQL rules, queries, and
views you want to manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-rule rulename
Specifies the name of the Oracle CQL rule, query, or view you
want to delete.

See Query for Application and Processor Names for details on
querying for the rule name if you do not know it. You can also use
the DOWNLOAD command to get the list of rules, queries, or
views for a particular Oracle CQL processor.

Example

The following example shows how to delete the Oracle CQL view called myview from
the Oracle CQL helloworldProcessor of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 DELETERULE -application helloworld -processor helloworldProcessor -rule myview

A.11.4 REPLACERULE
Replaces an existing Oracle CQL rule, query, or view with another rule, query, or
view. Oracle Event Processing first destroys the original rule, query, or view and then
inserts the new one in its place.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 REPLACERULE -application application -processor processor
 -rule rulename rulestring

Commands to Manage Oracle CQL Rules

wlevs.Admin Command-Line Reference A-13

Table A-9 REPLACERULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing
Using Visualizer for Oracle Stream Explorer). In the left pane,
navigate to and expand the Applications node of the Oracle
Event Processing instance to which the application is
deployed. Each node under the Applications node is named
with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-processor processor
Specifies the name of the particular Oracle CQL processor,
attached to the Oracle Event Processing application specified with
the -application argument, whose Oracle CQL rules you want
to manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-rule rulename rulestring
Specifies the name of the Oracle CQL rule, query, or view you
want to replace. Oracle Event Processing deletes the old rule,
query, or view and then inserts a new one, with the same name
but with the new rule text. In the case of a view, Oracle Event
Processing generates the schema based on the select statement in
the rulestring.

Enter the Oracle CQL rulestring using double quotes.

Example

The following example shows how to replace an Oracle CQL query called myquery
with the Oracle CQL text SELECT * FROM Withdrawal [Rows 10] in the Oracle
CQL helloworldProcessor of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 REPLACERULE -application helloworld -processor helloworldProcessor
 -rule myquery "SELECT * FROM Withdrawal [Rows 10]"

A.11.5 STARTRULE
Starts an existing Oracle CQL rule or query that was previously stopped in the
specified processor of an Oracle Event Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 STARTRULE -application application -processor processor -rule rulename

Commands to Manage Oracle CQL Rules

A-14 Administering Oracle Event Processing

Table A-10 STARTRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-processor processor
Specifies the name of the particular processor, attached to the
Oracle Event Processing application specified with the -
application argument, whose Oracle CQL rules, queries, and
views you want to manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-rule rulename
Specifies the name of the Oracle CQL rule or query you want to
start.

NOTE: You cannot stop and start a view. Views are always active.

See Query for Application and Processor Names for details on
querying for the rule name if you do not know it. You can also use
the DOWNLOAD command to get the list of rules, queries, or
views for a particular Oracle CQL processor.

Example

The following example shows how to start the Oracle CQL query called myquery
from the Oracle CQL helloworldProcessor of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 STARTRULE -application helloworld -processor helloworldProcessor -rule myquery

A.11.6 STOPRULE
Stops an existing Oracle CQL rule or query that was previously started in the specified
processor of an Oracle Event Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 STOPRULE -application application -processor processor -rule rulename

Commands to Manage Oracle CQL Rules

wlevs.Admin Command-Line Reference A-15

Table A-11 STOPRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules or queries you want to manage.

See Query for Application and Processor Names for details on
using wlevs.Admin to get the exact name of your application if
you do not currently know it.

You can also get the exact application name by looking at the
MANIFEST.MF file of the application; the application name is
specified by the Bundle-SymbolicName header.

-processor processor
Specifies the name of the particular processor, attached to the
Oracle Event Processing application specified with the -
application argument, whose Oracle CQL rules, queries, and
views you want to manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-rule rulename
Specifies the name of the Oracle CQL rule or query you want to
stop.

NOTE: You cannot stop and start a view. Views are always active.

See Query for Application and Processor Names for details on
querying for the rule name if you do not know it. You can also use
the DOWNLOAD command to get the list of rules, queries, or
views for a particular Oracle CQL processor.

Example

The following example shows how to stop the Oracle CQL query called myquery
from the Oracle CQL helloworldProcessor of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 STOPRULE -application helloworld -processor helloworldProcessor -rule myquery

A.11.7 UPLOAD
Replaces the configured Oracle CQL rules for a specified processor with the Oracle
CQL rules from an uploaded component configuration file.

The component configuration file that contains the list of Oracle CQL rules conforms
to the component configuration file schema (see Schema Reference for Oracle Stream
Explorer). This file contains one or more Oracle CQL rules that replace those currently
configured for the specified processor. An example of such a component configuration
file follows:

<?xml version="1.0" encoding="UTF-8" ?>
<config>
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule1">
 <![CDATA[SELECT * FROM HelloWorldEvent [Rows 2] >
 </query>
 </rules>
 </processor>
</config>

Commands to Manage Oracle CQL Rules

A-16 Administering Oracle Event Processing

In the preceding example, the component configuration file configures a single Oracle
CQL query, with name helloworldRule1, and its Oracle CQL query text is SELECT
* FROM HelloWorldEvent [Rows 2].

Caution:

When you use the UPLOAD command of the wlevs.Admin utility, use the -
processor argument to specify the name of the Oracle CQL processor to
which you want to add the Oracle CQL rules, as you do with the other Oracle
CQL commands. This means that the utility ignores any <name> elements in
the component configuration file to avoid any naming conflicts.

For details about and examples of creating the component configuration file,
Developing Applications for Event Processing with Oracle Stream Explorer.

You can obtain a copy of a processor's component configuration file using the
DOWNLOAD command as DOWNLOAD describes.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 UPLOAD -application application -processor processor -sourceURL sourcefileURL

Table A-12 UPLOAD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-processor processor
Specifies the name of the particular Oracle CQL processor,
attached to the Oracle Event Processing application specified with
the -application argument, whose Oracle CQL rules you want
to manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-sourceURL sourcefileURL
Specifies the URL of the component configuration file that contains
the Oracle CQL rules in the form:

file:///path-to-file

Commands to Manage Oracle CQL Rules

wlevs.Admin Command-Line Reference A-17

Example

The following example shows how upload the Oracle CQL rules from the c:
\processor\config\myrules.xml file to the Oracle CQL
helloworldProcessor of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 UPLOAD -application helloworld -processor helloworldProcessor
 -sourceURL file:///c:/processor/config/myrules.xml

A.11.8 DOWNLOAD
Downloads the set of Oracle CQL rules associated with the specified Oracle CQL
processor of an Oracle Event Processing application to an XML component
configuration file.

The XML file is of the same format as described in UPLOAD.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 DOWNLOAD -application application -processor processor
 -file destinationfile [-overwrite overwrite]

Table A-13 DOWNLOAD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-processor processor
Specifies the name of the particular processor, attached to the
Oracle Event Processing application specified with the -
application argument, whose Oracle CQL rules you want to
manage.

See Query for Application and Processor Names for details on
getting the exact name if you do not know it.

-file destinationfile
Specifies the name of the component configuration XML file to
which you want the wlevs.Admin utility to download the Oracle
CQL rules.

Be sure you specify the full pathname of the file.

Commands to Manage Oracle CQL Rules

A-18 Administering Oracle Event Processing

Argument Definition

-overwrite overwrite
Specifies whether the wlevs.Admin utility should overwrite an
existing file.

Valid values for this argument are true or false; default value is
false.

Example

The following example shows how download the set of Oracle CQL rules currently
attached to the Oracle CQL helloworldProcessor of the helloworld application
to the file c:\processor\config\myrules.xml; the utility overwrites any
existing file:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 DOWNLOAD -application helloworld -processor helloworldProcessor
 -file c:\processor\config\myrules.xml -overwrite true

A.12 Commands to Manage MBeans
This section lists the commands to manage MBeans.

The following sections describe wlevs.Admin commands for managing Oracle Event
Processing MBeans.

• Specifying MBean Types

• MBean Management Commands

See the Java API Reference for Oracle Stream Explorer for the full description of the Oracle
Event Processing MBeans.

A.12.1 Specifying MBean Types
To specify which MBean or MBeans you want to access, view, or modify, all of the
MBean management commands require either the -mbean argument or the -type
argument.

Use the -mbean argument to operate on a single instance of an MBean.

Use the -type argument to operate on all MBeans that are an instance of a type that
you specify. An MBean's type refers to the interface class of which the MBean is an
instance. All Oracle Event Processing MBeans are an instance of one of the interface
classes defined in the com.bea.wlevs.management.configuration,
com.bea.wlevs.management.runtime, com.bea.wlevs.deployment.mbean
and com.bea.wlevs.server.management.mbean packages. For a complete list of
all Oracle Event Processing MBean interface classes, see the Java API Reference for
Oracle Stream Explorer for the respective packages.

To determine the value that you provide for the -type argument, do the following:
Find the MBean's interface class and remove the MBean suffix from the class name. For
example, for an MBean that is an instance of the
com.bea.wlevs.management.configuration.CQLProcessorMBean, use
CQLProcessor.

A.12.2 MBean Management Commands
Table A-14 is an overview of the MBean management commands.

Commands to Manage MBeans

wlevs.Admin Command-Line Reference A-19

Table A-14 MBean Management Command Overview

Comman
d

Description

GET Displays properties of MBeans.

INVOKE Invokes management operations that an MBean exposes for its underlying
resource.

QUERY Searches for MBeans whose ObjectName matches a pattern that you specify.

SET Sets the specified property values for the named MBean instance.

A.12.3 GET
Displays MBean properties and JMX object names in the format described at.http://
docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

The output of the command follows:

{MBeanName object-name {property1 value} {property2 value}. . .}
. . .

Note that the properties and values are expressed as name-value pair where each pair
is returned within curly brackets. This format facilitates output parsing by a script.

If -pretty is specified, each property-value pair is displayed on a new line and curly
brackets are not used to separate the pairs:

MBeanName: object-name
property1: value
property2: value
.
.
.
MBeanName: object-name
property1: value
abbribute2: value

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 GET [-pretty] {-type mbeanType| -mbean objectName} [-property property1] [-property
property2]...

Table A-15 GET Arguments

Argument Definition

-type mbeanType
Returns information for all MBeans of the specified type. For more
information, see Specifying MBean Types.

-mbean objectName
Fully qualified object name of an MBean in the http://java.sun.com/
j2se/1.5.0/docs/api/javax/management/ObjectName.html format.

For example, if you want to look up an MBean for a processor stage, the
naming is as follows (in practice, the string should be on one line):

"com.bea.wlevs:Name=<name of the Stage>,Type=<type of Mbean>,
Application=<name of the application>"

Commands to Manage MBeans

A-20 Administering Oracle Event Processing

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

Argument Definition

-pretty
Places property-value pairs on separate lines.

-property property
The name of the MBean property (attribute) or properties to be listed.

If -property is not specified, all properties are displayed.

Example

The following example displays all properties of the CQLProcessorMBean that was
registered for the Processor Stage when the application called helloworld was
deployed in Oracle Event Processing.

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 GET -pretty
 -mbean com.bea.wlevs:Name=cqlprocessor,Type=CQLProcessor,Application=helloworld

The following example displays all instances of all CQLProcessorMBean MBeans.

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 GET -pretty -type CQLProcessor

A.12.4 INVOKE
Invokes a management operation for one or more MBeans. For Oracle Event
Processing MBeans, you usually use this command to invoke operations other than the
getAttribute and setAttribute that most Oracle Event Processing MBeans
provide.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 INVOKE {-type mbeanType | -mbean objectName} -method methodname [argument . . .]

Table A-16 INVOKE Arguments

Arguments Definition

-type mbeanType
Invokes the operation on all MBeans of a specific type. For more
information, see Specifying MBean Types.

-mbean objectName
Fully qualified object name of an MBean in the http://java.sun.com/
j2se/1.5.0/docs/api/javax/management/ObjectName.html format.

For example, if you want to invoke an MBean for an processor stage, the
naming is as follows

"com.bea.wlevs:Name=<name of the Stage>,Type=<type of Mbean>,
Application=<name of the application>"

-method methodname
Name of the method to be invoked.

Commands to Manage MBeans

wlevs.Admin Command-Line Reference A-21

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

Arguments Definition

argument
Arguments to be passed to the method call.

When the argument is a String array, the arguments must be passed in
the following format:

"String1;String2;. . . "

Example

The following example invokes the addRule method of MBean
com.bea.wlevs.management.configuration.CQLProcessorMBean:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 INVOKE -mbean com.bea.wlevs:Name=cqlprocessor,Type=CQLProcessor,Application=helloworld
 -method addRule "SELECT * FROM Withdrawal RETAIN ALL"

A.12.5 QUERY
Searches for Oracle Event Processing MBeans where the pattern matches the pattern
that you specify according to the ObjectName class conventions at: http://
docs.oracle.com/javase/1.5.0/docs/api/javax/management/ObjectName.html.

All MBeans that are created from an Oracle Event Processing MBean type are
registered in the MBean Server under a name that conforms to the ObjectName class
conventions. You must know the ObjectName of an MBean to use wlevs.Admin
commands to retrieve or modify specific MBean instances.

The output of the command follows:

{MBeanName object-name {property1 value} {property2 value}. . .}
. . .

The properties and values are expressed as name-value pairs, each of which is
returned within curly brackets. This format facilitates parsing of the output by a script.

If -pretty is specified, each property-value pair is displayed on a new line and curly
brackets are not used to separate the pairs:

MBeanName: object-name
property1: value
property2: value
.
.
.
MBeanName: object-name
property1: value
abbribute2: value

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 QUERY -pretty -pattern object-name-pattern

Commands to Manage MBeans

A-22 Administering Oracle Event Processing

http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/ObjectName.html

Table A-17 QUERY Arguments

Argument Definition

-pretty
Places property-value pairs on separate lines.

-pattern object-name-pattern
A partial http://java.sun.com/j2se/1.5.0/docs/api/javax/
management/ObjectName.html for which the QUERY
command searches. The value must conform to the following
pattern:

property-list

where property-list specifies one or more components
(property-value pairs) of a http://java.sun.com/j2se/1.5.0/
docs/api/javax/management/ObjectName.html.

You can specify these property-value pairs in any order.

Within a given naming property-value pair, there is no pattern
matching. Only complete property-value pairs are used in
pattern matching. However, you can use the * wildcard
character in the place of one or more property-value pairs.

For example, type=epl* is not valid, but
type=CQLProcessor,* is valid.

If you provide at least one property-value pair in the
property-list, you can locate the wildcard anywhere in the
given pattern, provided that the property-list is still a
comma-separated list.

Example

The following example searches for all
com.bea.wlevs.management.configuration.CQLProcessorMBean MBeans:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 QUERY -pattern *:Type=CQLProcessor,*

If the command succeeds, it returns the attributes of the MBeans found (lines broken
here for readability):

{MBeanName="com.bea.wlevs:Name=MonitorProcessor,Type=CQLProcessor,Application=com.bea.wlevs.data
services"{
 AllRules=defaultRule = select * from DSMonitorEvent retain 1 event where metric > 10000}{
 AllRulesInfo=defaultRule = {RULE_TYPE=RULE, STARTED=true, VALUE=select * from DSMonitorEvent
 retain 1 event where metric > 10000, ID=defaultRule}}{Databases=}{Name=MonitorProcessor}
 {NotificationInfo=[Ljavax.management.MBeanNotificationInfo;@20d319}
 {ObjectName=com.bea.wlevs:Name=MonitorProcessor,Type=CQLProcessor,
 Application=com.bea.wlevs.dataservices}{PlaybackConfiguration=}{PlayingBack=false}
 {RecordConfiguration=}{RecordPlayback=com.bea.wlevs:Name=MonitorProcessor,
 Type=RecordPlayback,Application=com.bea.wlevs.dataservices}{Recording=false}
 {Type=CQLProcessor}}

A.12.6 Query for Application and Processor Names
All the commands for managing the CQL rules of an Oracle Event Processing
application require you to know the name of the application, and the particular
processor to which you want to apply the rules. Typically you know these names, but
if you do not, you can use the QUERY command to get the information from the
MBean instances that represent applications and their attached processors.

Commands to Manage MBeans

wlevs.Admin Command-Line Reference A-23

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

In particular, use the following -pattern argument to get a list of all applications,
processors, and rules for a given Oracle Event Processing instance:

-pattern com.bea.wlevs:*,Type=CQLProcessor

For example:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 QUERY -pretty
 -pattern com.bea.wlevs:*,Type=CQLProcessor

A sample output of this command is shown below:

Command Output
--
MBeanName: "com.bea.wlevs:Name=helloworldProcessor,Type=CQLProcessor,Application=helloworld,"
 AllRules:
 helloworldRule = select * from HelloWorldEvent retain 1 event
--end of command output --------

In the sample output above:

• The name of the application is helloworld.

• The helloworld application has a processor called helloworldProcessor.

• The helloworldProcessor has a rule called helloworldRule.

A.12.7 SET
Sets the specified property (attribute) values for an MBean.

If the command is successful, it returns OK and saves the new values to the server
configuration.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 SET {-type mbeanType | -mbean objectName}
 -property property1 property1_value
 [-property property2 property2_value] . . .

Table A-18 SET Arguments

Argument Definition

-type mbeanType
Sets the properties for all MBeans of a specific type. For more
information, see Specifying MBean Types.

-mbean objectName
Fully qualified object name of an MBean in the http://java.sun.com/
j2se/1.5.0/docs/api/javax/management/ObjectName.html format:

"com.bea.wlevs:Name=<name of the stage>,Type=<MBean
type>,Application=<name of the deployed application>"

-property property
The name of the property to be set.

Commands to Manage MBeans

A-24 Administering Oracle Event Processing

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

Argument Definition

property _value
The value to be set.

• Some properties require you to specify the name of an Oracle Event
Processing MBean. In this case, specify the fully qualified object name
of an MBean in the http://java.sun.com/j2se/1.5.0/docs/api/javax/
management/ObjectName.html format. For example (in practice, the
string should be on one line):

"com.bea.wlevs:Name=<name of the stage>,Type=<type of MBean>,
Application=<name of the application>"

• When the property value is an MBean array, separate each MBean
object name by a semicolon and surround the entire property value
list with quotes. For example:

"com.bea.wlevs:Application=<name of the application>,Type=<type of
MBean>,Name=<name of the Stage>;Type=<type of MBean>,Name=<name of
the stage>"

• When the property value is a String array, separate each string by a
semicolon and surround the entire property value list with quotes:

 "String1;String2;. . . "

• When the property value is a String or String array, you can set the
value to null by using either of the following:

-property property-name ""
-property property-name

• If the property value contains spaces, surround the value with quotes:

"-Da=1 -Db=3"

Example

The following example shows how to set the MaxSize property of the channel named
helloworldOutstream of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 SET -mbean com.bea.wlevs:Name=helloworldOutstream,Type=Channel,Application=helloworld
 -property MaxSize 1024

A.13 Commands for Controlling Event Record and Playback
This section explains the commands for controlling event record and playback.

Table A-19 is an overview of commands for managing event record and playback for a
particular stage of an Oracle Event Processing application. Subsequent sections
describe command syntax and arguments, and provide an example for each
command.

Note:

Before you can use commands to control event record and playback on a
stage, you must configure the stage with the appropriate event record and
playback options. See:

• CONFIGURERECORD

• Developing Applications for Event Processing with Oracle Stream Explorer

• Schema Reference for Oracle Stream Explorer

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-25

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

Table A-19 Overview of Commands for Controlling Event Record and Playback

Command Description

STARTRECORD Starts the recording of events for a stage in an Oracle Event
Processing application.

STOPRECORD Stops the recording of events for a stage in an Oracle Event
Processing application.

CONFIGURERECOR
D

Configures the parameters for the event recording of a stage in an
Oracle Event Processing application.

SCHEDULERECORD Schedules the recording of events for a stage in an Oracle Event
Processing application.

LISTRECORD List the event recording configuration for a stage in an Oracle Event
Processing application.

STARTPLAYBACK Starts playing back events for a stage in an Oracle Event Processing
application.

STOPPLAYBACK Stops playing back events for a stage in an Oracle Event Processing
application.

CONFIGUREPLAYBA
CK

Configures the parameters for the event playback of a stage in an
Oracle Event Processing application.

SCHEDULEPLAYBA
CK

Schedules the playback of events for a stage in an Oracle Event
Processing application.

LISTPLAYBACK List the event playback configuration for a stage in an Oracle Event
Processing application.

A.13.1 STARTRECORD
Starts recording events for a particular stage of an Oracle Event Processing
application.

Note:

Before you can use commands for controlling event record and playback on a
stage, you must first configure the stage with the appropriate event record and
playback options. See:

• CONFIGURERECORD

• Developing Applications for Event Processing with Oracle Stream Explorer

• Schema Reference for Oracle Stream Explorer.

If you configured the stage to start recording at a later time, that configuration is
ignored and recording starts immediately.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]

Commands for Controlling Event Record and Playback

A-26 Administering Oracle Event Processing

 [Common Arguments]
 STARTRECORD -application application -stage stage

Table A-20 STARTRECORD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate to
and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-stage stage
Specifies the name of the particular stage, attached to the Oracle
Event Processing application specified with the -application
argument, whose event record and playback you want to manage.

Example

The following example shows how to start the recording of events on the
helloworldAdapter stage of the helloworld application deployed to the specified
Oracle Event Processing instance:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 STARTRECORD -application helloworld -stage helloworldAdapter

Note:

Before you can use commands for controlling event record and playback on a
stage, you must first configure the stage with the appropriate event record and
playback options. See:

• CONFIGURERECORD

• Developing Applications for Event Processing with Oracle Stream Explorer

• Schema Reference for Oracle Stream Explorer.

A.13.2 STOPRECORD
Stops the recording of events for a stage of an Oracle Event Processing application in
which the recording of events has been previously started.

Syntax

java wlevs.Admin
 [Connection Arguments]

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-27

 [User Credentials Arguments]
 [Common Arguments]
 STOPRECORD -application application -stage stage

Table A-21 STOPRECORD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-stage stage
Specifies the name of the particular stage, attached to the Oracle
Event Processing application specified with the -application
argument, whose event record and playback you want to manage.

Example

The following example shows how to stop the recording of events on the
helloworldAdapter stage of the helloworld application deployed to the specified
Oracle Event Processing instance; it is assumed that the recording of events was
previously started for the stage:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 STOPRECORD -application helloworld -stage helloworldAdapter

A.13.3 CONFIGURERECORD
Configures the parameters associated with the recording of events for a stage of an
Oracle Event Processing application. Use this command to configure a stage for the
first time for event recording or to change the data set name or provider name. For
more information, see Developing Applications for Event Processing with Oracle Stream
Explorerand Schema Reference for Oracle Stream Explorer.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 CONFIGURERECORD -application application -stage stage
 [-datasetName datasetname]
 [-storeProvider storeprovidername]
 [-eventTypes eventtypes]
 [-scheduleStartTime startime]
 [-scheduleEndTime endtime | -scheduleDuration duration]

Commands for Controlling Event Record and Playback

A-28 Administering Oracle Event Processing

Table A-22 CONFIGURERECORD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing
application whose event record and playback you want to
manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query
for Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using
Visualizer for Oracle Stream Explorer). In the left pane,
navigate to and expand the Applications node of the
Oracle Event Processing instance to which the
application is deployed. Each node under the
Applications node is named with the exact application
name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-stage stage
Specifies the name of the particular stage, attached to the
Oracle Event Processing application specified with the -
application argument, whose event record and
playback you want to manage.

-datasetName datasetname
Specifies the name of the dataset in which events are
recorded.

-storeProvider
storeprovidername

Specifies a valid data-source name defined in the
Oracle Event Processing server config.xml file.

To select the default BDB provider, leave this argument
empty or specify an argument value of default-
provider.

For more information, see Schema Reference for Oracle
Stream Explorer.

-eventTypes eventtypes
Specifies the comma-separated list of valid event type
names to be recorded. Event types must be defined in the
event type repository.

-scheduleStartTime starttime
Specifies the time when the recording should start.

Express the start time as an XMLSchema dateTime value
of the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should start on
October 20, 2013, at 11:22:07 am, use the following value:

10-20-2013:11:22:07

For complete details of the XMLSchema dateTime format,
see http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-29

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Argument Definition

-scheduleEndTime endtime
Specifies the actual time when the recording should end.

Express the end time as an XMLSchema dateTime value
of the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should end on
October 20, 2013, at 6:00pm, use the following value:

10-20-2013:18:00:00

For complete details of the XMLSchema dateTime format,
see http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

Specify null if you want the recording to run forever.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

-scheduleDuration duration
Specifies the duration of time after which event recording
for this stage ends. Specify null if you want the recording
to run forever.

The format is HH:mm:ss, such as 01:00:00.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

Example

The examples in this section show how to configure the recording of events of the
helloworldAdapter of the helloworld application deployed to the specified
Oracle Event Processing instance.

The following example specifies a start and end time for recording:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGURERECORD -application helloworld -stage helloworldAdapter
 -datasetName myds -storeProvider mysp
 -scheduleStartTime 10-20-2013:11:22:07 -scheduleEndTime 10-20-2013:18:00:00

The following example specifies a start time and a duration for recording:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGURERECORD -application helloworld -stage helloworldAdapter
 -datasetName myds -storeProvider mysp
 -scheduleStartTime 10-20-2013:11:22:07 -scheduleDuration 01:00:00

The following example specifies a start time and a duration of null, which means
recording runs forever:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGURERECORD -application helloworld -stage helloworldAdapter
 -datasetName myds -storeProvider mysp
 -scheduleStartTime 10-20-2013:11:22:07 -scheduleDuration null

Commands for Controlling Event Record and Playback

A-30 Administering Oracle Event Processing

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

A.13.4 SCHEDULERECORD
Configures the schedule parameters associated with the recording of events for a stage
of an Oracle Event Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 SCHEDULERECORD -application application -stage stage
 [-scheduleStartTime startime]
 [-scheduleEndTime endtime | -scheduleDuration duration]

Table A-23 SCHEDULERECORD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing
Using Visualizer for Oracle Stream Explorer). In the left pane,
navigate to and expand the Applications node of the
Oracle Event Processing instance to which the application
is deployed. Each node under the Applications node is
named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-stage stage
Specifies the name of the particular stage, attached to the
Oracle Event Processing application specified with the -
application argument, whose event record and playback
you want to manage.

-scheduleStartTime starttime
Specifies the time when the recording should start.

Express the start time as an XMLSchema dateTime value of
the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should start on October
20,

2013, at 11:22:07 am, use the following value:

10-20-2013:11:22:07

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-31

Argument Definition

-scheduleEndTime endtime
Specifies the actual time when the recording should end.

Express the end time as an XMLSchema dateTime value of
the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should end on October
20,

2013, at 6:00 pm, use the following value:

10-20-2013:18:00:00

For complete details of the XMLSchema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-
representation.

Specify null if you want the recording to run forever.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

-scheduleDuration duration
Specifies the duration of time after which event recording for
this stage ends. Specify null if you want the recording to run
forever.

The format is HH:mm:ss, such as 01:00:00.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

Example

The examples in this section show how to configure the scheduling of recording of
events of the helloworldAdapter of the helloworld application deployed to the
specified Oracle Event Processing instance.

The following example specifies a start and end time for recording:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 SCHEDULERECORD -application helloworld -stage helloworldAdapter
 -scheduleStartTime 10-20-2013:11:22:07 -scheduleEndndTime 10-20-2013:18:00:00

A.13.5 LISTRECORD
Lists the event recording configuration for any particular stage of an Oracle Event
Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 LISTRECORD -application application -stage stage

Commands for Controlling Event Record and Playback

A-32 Administering Oracle Event Processing

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Table A-24 LISTRECORD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-stage stage
Specifies the name of the particular stage, attached to the Oracle
Event Processing application specified with the -application
argument, whose event record and playback you want to manage.

Example

The following example shows how to list the event recording configuration on the
helloworldAdapter stage of the helloworld application deployed to the specified
Oracle Event Processing instance:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 LISTRECORD -application helloworld -stage helloworldAdapter

A.13.6 STARTPLAYBACK
Starts the playback of events of a particular stage of a Oracle Event Processing
application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 STARTPLAYBACK -application application -stage stage
 [-filterStartTime starttime]
 [-filterEndTime endtime | -filterDuration duration] [-speed speed] [-
repeat true | false]

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-33

Table A-25 STARTPLAYBACK Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-stage stage
Specifies the name of the particular stage, attached to the Oracle
Event Processing application specified with the -application
argument, whose event record and playback you want to manage.

-filterStartTime startime
Specifies that only events with record-time greater than or equal
to this value will be selected for playback.

Express the start time as an XMLSchema dateTime value of the
form:

yyyy-mm-ddThh:mm:ss

For example, to play back only events with record-time greater
than or equal to January 20, 2010, at 5:00am, use the following
value:

2010-01-20T05:00:00

For complete details of the XMLSchema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-
representation.

Specify null if you want to select all events for playback.

-filterEndTime endtime
Specifies only events with record-time less than or equal to this
value will be selected for playback.

Express the end time as an XMLSchema dateTime value of the
form:

yyyy-mm-ddThh:mm:ss

For example, to play back only events with record-time less than
or equal to January 20, 2010, at 6:00pm, use the following value:

2010-01-20T18:00:00

For complete details of the XMLSchema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-
representation.

You can specify either -filterEndTime or -filterDuration,
but not both.

Commands for Controlling Event Record and Playback

A-34 Administering Oracle Event Processing

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Argument Definition

-filterDuration duration
Specifies the filter applied to events in the event store. Only
events that were recorded during the filter time will be selected
for play back. Specify null if you want to select all events for
playback.

The format is HH:mm:ss, such as 01:00:00.

You can specify either -filterEndTime or -filterDuration,
but not both.

-speed speed
Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed. A
value of 2 means that events will be played back 2 times faster
than the original record speed. Similarly, a value of 0.5 means that
events will be played back 2 times slower than the original record
speed.

-repeat repeat
Specifies whether to playback events again after the playback of
the specified time interval is over.

Valid values are true or false. Default value is false. A value
of true means that the repeat of playback continues an infinite
number of times until it is deliberately stopped (see
STOPPLAYBACK). A value of false means that events will be
played back only once.

Example

The following example shows how to start the playback of events on the
helloworldAdapter stage of the helloworld application deployed to the specified
Oracle Event Processing instance:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 STARTPLAYBACK -application helloworld -stage helloworldAdapter

A.13.7 STOPPLAYBACK
Stops the playback of events for a stage of an Oracle Event Processing application in
which the playback of events has been previously started.

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-35

Syntax

Table A-26 STOPPLAYBACK Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-stage stage
Specifies the name of the particular stage, attached to the Oracle
Event Processing application specified with the -application
argument, whose event record and playback you want to manage.

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 STOPPLAYBACK -application application -stage stage

Example

The following example shows how to stop the playback of events on the
helloworldAdapter stage of the helloworld application deployed to the specified
Oracle Event Processing instance; it is assumed that the playback of events was
previously started for the stage:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 STOPPLAYBACK -application helloworld -stage helloworldAdapter

A.13.8 CONFIGUREPLAYBACK
Configures the parameters associated with the playback of events for a stage of an
Oracle Event Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 CONFIGUREPLAYBACK -application application -stage stage
 [-datasetName datasetname]
 [-storeProvider storeprovidername]
 [-eventTypes eventtypes]
 [-scheduleStartTime sstart]
 [-scheduleEndTime send | -scheduleDuration sduration]
 [-filterStartTime fstart] [-filterEndTime fend | -filterDuration fduration]

Commands for Controlling Event Record and Playback

A-36 Administering Oracle Event Processing

 [-speed speed]
 [-repeat true | false]

Table A-27 CONFIGUREPLAYBACK Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing
application whose event record and playback you want to
manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query
for Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using Visualizer
for Oracle Stream Explorer). In the left pane, navigate to
and expand the Applications node of the Oracle Event
Processing instance to which the application is
deployed. Each node under the Applications node is
named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-stage stage
Specifies the name of the particular stage, attached to the
Oracle Event Processing application specified with the -
application argument, whose event record and
playback you want to manage.

-datasetName datasetname
Specifies the name of the dataset in which events are
recorded.

-storeProvider
storeprovidername

Specifies a valid data-source name defined in the
Oracle Event Processing server config.xml file.

To select the default BDB provider, leave this argument
empty or specify an argument value of default-
provider.

For more information, see Schema Reference for Oracle
Stream Explorer.

-eventTypes eventtypes
Specifies the comma-separated list of valid event type
names for playing back. Event types must be defined in
the event type repository.

-scheduleStartTime sstart
Specifies the time when play back should start.

Express the start time as an XMLSchema dateTime value
of the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should start on
October 20,

2013, at 11:22:07 am, use the following value:

10-20-2013:11:22:07

For complete details of the XMLSchema dateTime format,
see http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-37

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Argument Definition

-scheduleEndTime send
Specifies the actual time when the play back should end.

Express the end time as an XMLSchema dateTime value
of the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that play back should end on
January 20, 2013, at 6:00pm, use the following value:

10-20-2013:18:00:00

For complete details of the XMLSchema dateTime format,
see http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

Specify null if you want the recording to run forever.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

-scheduleDuration sduration
Specifies the duration of time after which event playback
for this stage ends. Specify null if you want the event
playback to run forever.

The format is HH:mm:ss, such as 01:00:00.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

-filterStartTime fstart
Specifies that only events with record-time greater than or
equal to this value will be selected for playback.

Express the start time as an XMLSchema dateTime value
of the form:

yyyy-mm-ddThh:mm:ss

For example, to play back only events with record-time
greater than or equal to January 20, 2010, at 5:00am, use
the following value:

2010-01-20T05:00:00

For complete details of the XMLSchema dateTime format,
see http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

Specify null if you want to select all events for playback.

Commands for Controlling Event Record and Playback

A-38 Administering Oracle Event Processing

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Argument Definition

-filterEndTime fend
Specifies only events with record-time less than or equal to
this value will be selected for playback.

Express the end time as an XMLSchema dateTime value
of the form:

yyyy-mm-ddThh:mm:ss

For example, to play back only events with record-time
less than or equal to January 20, 2010, at 6:00pm, use the
following value:

2010-01-20T18:00:00

For complete details of the XMLSchema dateTime format,
see http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

You can specify either -filterEndTime or -
filterDuration, but not both.

-filterDuration fduration
Specifies the filter applied to events in the event store.
Only events that were recorded during the filter time will
be selected for play back. Specify null if you want to
select all events for playback.

The format is HH:mm:ss, such as 01:00:00.

You can specify either -filterEndTime or -
filterDuration, but not both.

-speed speed
Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed.
A value of 2 means that events will be played back 2 times
faster than the original record speed. Similarly, a value of
0.5 means that events will be played back 2 times slower
than the original record speed.

-repeat repeat
Specifies whether to playback events again after the
playback of the specified time interval is over.

Valid values are true or false. Default value is false.
A value of true means that the repeat of playback
continues an infinite number of times until it is
deliberately stopped (see STOPPLAYBACK). A value of
false means that events will be played back only once.

Example

The examples in this section show how to configure the playback of events of the
helloworldAdapter of the helloworld application deployed to the specified
Oracle Event Processing instance.

The following example specifies a start and end time for playback and that the speed
of playback should be twice the normal speed and that once the playback of events for
the time interval is over, the playback should start again:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGUREPLAYBACK -application helloworld -stage helloworldAdapter
 -scheduleStartTime 10-20-2013:11:22:07 -scheduleEndTime 10-20-2013:18:00:00
 -speed 2 -repeat true

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-39

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

The following example specifies a start and a duration for playback, that the speed of
playback is 2 times slower than normal, and that the playback of events should occur
only once:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGUREPLAYBACK -application helloworld -stage helloworldAdapter
 -scheduleStartTime 10:20:2013:11:22:07 -scheduleEndTime 10-20-2013:18:00:00
 -speed 0.5 -repeat false

The following example specifies a start and a duration of null, which means playback
will run forever at normal speed:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGUREPLAYBACK -application helloworld -stage helloworldAdapter
 -scheduleStartTime 10:20:2013:11:22:07 -scheduleDuration null

A.13.9 SCHEDULEPLAYBACK
Configures the schedule parameters associated with playing back of events for a stage
of an Oracle Event Processing application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 SCHEDULEPLAYBACK -application application -stage stage
 [-scheduleStartTime startime]
 [-scheduleEndTime endtime | -scheduleDuration duration]

Table A-28 SCHEDULEPLAYBACK Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using Visualizer for
Oracle Stream Explorer). In the left pane, navigate to and
expand the Applications node of the Oracle Event
Processing instance to which the application is deployed.
Each node under the Applications node is named with the
exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-stage stage
Specifies the name of the particular stage, attached to the
Oracle Event Processing application specified with the -
application argument, whose event record and playback
you want to manage.

Commands for Controlling Event Record and Playback

A-40 Administering Oracle Event Processing

Argument Definition

-scheduleStartTime starttime
Specifies the time when play back should start.

Express the start time as an XMLSchema dateTime value of
the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should start on October
20, 2013, at 11:22:07 am, use the following value:

10-20-2013:11:22:07

For complete details of the XMLSchema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

For complete details of the XMLSchema dateTime format, see
http://www.w3.org/TR/xmlschema-2/#dateTime-
lexical-representation.

-scheduleEndTime endtime
Specifies the actual time when the play back should end.

Express the start time as an XMLSchema dateTime value of
the form:

mm-dd-yyyy:hh:mm:ss

For example, to specify that recording should end on October
20, 2013, at 6:00 pm, use the following value:

10-20-2013:18:00:00

Specify null if you want the recording to run forever.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

-scheduleDuration duration
Specifies the duration of time after which event playback for
this stage ends. Specify null if you want the recording to run
forever.

The format is HH:mm:ss, such as 01:00:00.

You can specify either -scheduleEndTime or -
scheduleDuration, but not both.

Example

The examples in this section show how to configure the schedule of playback of events
of the helloworldAdapter of the helloworld application deployed to the
specified Oracle Event Processing instance.

The following example specifies a start and end time for event playback:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 SCHEDULEPLAYBACK -application helloworld -stage helloworldAdapter
 -scheduleStartTime 10-20-2013:11:22:07 -scheduleEndndTime 10-20-2013:18:00:00

A.13.10 LISTPLAYBACK
Lists the event playback configuration for any particular stage of an Oracle Event
Processing application.

Commands for Controlling Event Record and Playback

wlevs.Admin Command-Line Reference A-41

http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation
http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 LISTPLAYBACK -application application -stage stage

Table A-29 LISTPLAYBACK Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose event record and playback you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-stage stage
Specifies the name of the particular stage, attached to the Oracle
Event Processing application specified with the -application
argument, whose event record and playback you want to manage.

Example

The following example shows how to list the event playback configuration on the
helloworldAdapter stage of the helloworld application deployed to the specified
Oracle Event Processing instance:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 LISTPLAYBACK -application helloworld -stage helloworldAdapter

A.14 Commands for Monitoring Throughput and Latency
This section explains the commands for monitoring throughput and latency.

Table A-30 is an overview of commands for monitoring throughput and latency in an
Oracle Event Processing application. Subsequent sections describe command syntax
and arguments, and provide an example for each command.

Table A-30 Overview of Commands for Monitoring Throughput and Latency

Command Description

MONITORAVGLATENCY Monitors the average amount of time it takes an event to
pass through specified path of the EPN, or latency.

MONITORMAXLATENCY Monitors the maximum amount of time it takes an event to
pass through specified path of the EPN, or latency.

Commands for Monitoring Throughput and Latency

A-42 Administering Oracle Event Processing

Command Description

MONITORAVGLATENCYTHRESH
OLD

Monitors whether the average latency of events
flowing through a path of the EPN crosses a specified
threshold.

MONITORAVGTHROUGHPUT Monitors the number of events flowing through the
entry or exit points of a specified stage.

A.14.1 MONITORAVGLATENCY
Monitors the average amount of time, or latency, it takes an event to pass through a
specified path of the EPN of the specified application.

You specify the start and end stages of the path, and whether it should start or end at
the entry or exit points of each respective stage. If you specify the same stage for the
start and end of the path, you can monitor the latency of events flowing through a
single stage.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 MONITORAVGLATENCY -application application
 -startStage startStage -startStagePoint stagePoint
 -endStage endStage -endStagePoint stagePoint
 -avgInterval avgInterval -timeUnit timeUnit

Table A-31 MONITORAVGLATENCY Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing
application whose throughput and latency you want to
monitor.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query
for Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using
Visualizer for Oracle Stream Explorer). In the left pane,
navigate to and expand the Applications node of the
Oracle Event Processing instance to which the
application is deployed. Each node under the
Applications node is named with the exact application
name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-startStage startStage
Specifies the name of the stage that starts the path for
which you want to monitor latency. The stage is in the
application specified by the -application option.

-startStagePoint startStagePoint
Specifies the specific starting point for monitoring latency
of the specified start stage. You can start monitoring from
the entry or exit point of the start stage.

Valid values are entry and exit. Default value is entry.

Commands for Monitoring Throughput and Latency

wlevs.Admin Command-Line Reference A-43

Argument Definition

-endStage endStage
Specifies the name of the stage that ends the path for
which you want to monitor latency. The stage is in the
application specified by the -application option.

-endStagePoint endStagePoint
Specifies the specific ending point for monitoring latency
of the specified end stage. You can end monitoring from
the entry or exit point of the end stage.

Valid values are entry and exit. Default value is entry.

-avgInterval avgInterval
Specifies the average interval across which average latency
is calculated. Specify the units with the -timeUnit
option; default is milliseconds.

Default value is 100.

Example

The following example shows how to monitor the average latency of events flowing
through the cqlprocessor component, from entry point to exit point, of the
helloworld application. Note that because the same stage is specified for both the
start and end stages (cqlprocessor), the latency monitoring is happening for just
the events flowing through a single stage:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 MONITORAVGLATENCY -application helloworld -startStage cqlprocessor
 -startStagePoint entry -endStage cqlprocessor -endStagePoint exit
 -avgInterval 100 -timeUnit MILLISECONDS

A.14.2 MONITORAVGLATENCYTHRESHOLD
Specifies whether the average latency of events between the start- and end-points of a
path crosses a specified threshold.

You specify the start and end stages of the path, and whether it should start or end at
the entry or exit points of each respective stage. If you specify the same stage for the
start and end of the path, you can monitor the latency threshold of events flowing
through a single stage.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 MONITORAVGLATENCYTHRESHOLD -application application
 -startStage startStage -startStagePoint stagePoint
 -endStage endStage -endStagePoint stagePoint
 -avgInterval avgInterval -timeUnit timeUnit -threshold threshold

Commands for Monitoring Throughput and Latency

A-44 Administering Oracle Event Processing

Table A-32 MONITORAVGLATENCYTHRESHOLD Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing
application whose throughput and latency you want to
monitor.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query
for Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using
Visualizer for Oracle Stream Explorer). In the left pane,
navigate to and expand the Applications node of the
Oracle Event Processing instance to which the
application is deployed. Each node under the
Applications node is named with the exact application
name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-startStage startStage
Specifies the name of the stage that starts the path for
which you want to monitor the latency threshold. The
stage is in the application specified by the -application
option.

-startStagePoint startStagePoint
Specifies the specific starting point for monitoring the
latency threshold of the specified start stage. You can start
monitoring from the entry or exit point of the start stage.

Valid values are entry and exit. Default value is entry.

-endStage endStage
Specifies the name of the stage that ends the path for
which you want to monitor the latency threshold. The
stage is in the application specified by the -application
option.

-endStagePoint endStagePoint
Specifies the specific ending point for monitoring the
latency threshold of the specified end stage. You can end
monitoring from the entry or exit point of the end stage.

Valid values are entry and exit. Default value is entry.

-avgInterval avgInterval
Specifies the average interval across which average the
latency threshold is calculated.

Default value is 100. Specify the units with the -timeUnit
option; default is milliseconds.

-threshold threshold
Specifies the threshold value above which the metric event
will be outputted at the end of every average interval.

Default is 100. Specify the units with the -timeUnit
option; default is milliseconds.

Example

The following example shows how to monitor the average latency threshold of events
above 10 seconds average latency on the cqlprocessor stage, from entry point to
exit point, of the helloworld application.

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector

Commands for Monitoring Throughput and Latency

wlevs.Admin Command-Line Reference A-45

 -username wlevs -password wlevs
 MONITORAVGLATENCY -application helloworld -startStage cqlprocessor
 -startStagePoint entry -endStage cqlprocessor -endStagePoint exit
 -avgInterval 100 -timeUnit MILLISECONDS -threshold 100

A.14.3 MONITORMAXLATENCY
Monitors the maximum latency of events flowing through a specified path of the EPN
of the specified application.

You specify the start and end stages of the path, and whether it should start or end at
the entry or exit points of each respective stage. If you specify the same stage for the
start and end of the path, you can monitor the maximum latency of events flowing
through a single stage.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 MONITORMAXLATENCY -application application
 -startStage startStage -startStagePoint stagePoint
 -endStage endStage -endStagePoint stagePoint
 -maxInterval maxInterval -timeUnit timeUnit

Table A-33 MONITORMAXLATENCY Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing
application whose throughput and latency you want to
monitor.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query
for Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the
Oracle Event Processing Visualizer (see Using
Visualizer for Oracle Stream Explorer). In the left pane,
navigate to and expand the Applications node of the
Oracle Event Processing instance to which the
application is deployed. Each node under the
Applications node is named with the exact application
name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-
SymbolicName header.

-startStage startStage
Specifies the name of the stage that starts the path for
which you want to monitor the maximum latency. The
stage is in the application specified by the -application
option.

-startStagePoint startStagePoint
Specifies the specific starting point for monitoring the
maximum latency of the specified start stage. You can start
monitoring from the entry or exit point of the start stage.

Valid values are entry and exit. Default value is entry.

Commands for Monitoring Throughput and Latency

A-46 Administering Oracle Event Processing

Argument Definition

-endStage endStage
Specifies the name of the stage that ends the path for
which you want to monitor the maximum latency. The
stage is in the application specified by the -application
option.

-endStagePoint endStagePoint
Specifies the specific ending point for monitoring the
maximum latency of the specified end stage. You can end
monitoring from the entry or exit point of the end stage.

Valid values are entry and exit. Default value is entry.

-maxInterval maxInterval
Specifies the interval across which maximum latency is
calculate.

Default value is 100. Specify the units with the -timeUnit
option; default is milliseconds.

Example

The following example shows how to monitor the maximum latency of events flowing
through the cqlprocessor stage, from entry point to exit point, of the helloworld
application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 MONITORMAXLATENCY -application helloworld -startStage cqlprocessor
 -startStagePoint entry -endStage cqlprocessor -endStagePoint exit
 -maxInterval 100 -timeUnit MILLISECONDS

A.14.4 MONITORAVGTHROUGHPUT
Monitors the average number of events flowing through the entry or exit point of a
stage of the EPN of the specified application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 MONITORAVGTHROUGHPUT -application application
 -stage stage -StagePoint stagePoint
 -throughputInterval throughputInterval -avgInterval avgInterval
 -timeUnit timeUnit

Commands for Monitoring Throughput and Latency

wlevs.Admin Command-Line Reference A-47

Table A-34 MONITORAVGLATENCY Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing
application whose throughput and latency you want
to monitor.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see
Query for Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start
the Oracle Event Processing Visualizer (see
Using Visualizer for Oracle Stream Explorer). In the
left pane, navigate to and expand the
Applications node of the Oracle Event
Processing instance to which the application is
deployed. Each node under the Applications
node is named with the exact application name.

• Look at the MANIFEST.MF file of the application;
the application name is specified by the
Bundle-SymbolicName header.

-stage stage
Specifies the name of the stage for which you want
to monitor throughput of events. The stage is in the
application specified by the -application option.

-stagePoint stagePoint
Specifies whether you want to monitor throughput
at the entry- or exit- point of the specified stage.

Valid values are entry and exit. Default value is
entry.

-throughputInterval throughputInterval
Specifies the throughput interval across which
throughput is calculated.

Default value is 100. Specify the units with the -
timeUnit option; default is milliseconds.

-avgInterval avgInterval
Specifies the average interval across which average
throughput is calculated.

Default value is 100. Specify the units with the -
timeUnit option; default is milliseconds.

Example

The following example shows how to monitor the number of events flowing through
the entry point of the cqlprocessor stage of the helloworld application:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 MONITORMAXLATENCY -application helloworld
 -stage cqlprocessor -stagePoint entry
 -throughputInterval 100 -avgInterval 100 -timeUnit MILLISECONDS

A.15 Commands for Managing Configuration History
This section explains the commands for managing configuration history.

Table A-35 is an overview of commands that manage the configuration history of
Oracle Event Processing components. For more information, see Manage
Configuration History.

Commands for Managing Configuration History

A-48 Administering Oracle Event Processing

Subsequent sections describe command syntax and arguments, and provide an
example for each command.

Table A-35 Overview of Commands for Managing Configuration History

Command Description

CONFIGHISTORY Returns the list of configuration history management
commands.

DELETECONFIGCHANGEHIST
ORY

Removes change records for a specified time period.

LISTCHANGERECORDS Returns a list of the change records of an application.

LISTRESOURCEREVISIONS Returns a list of the configuration resource revisions of an
application.

UNDOCONFIGCHANGE Rolls back a change record specified by change record ID.

A.15.1 CONFIGHISTORY
This section explains the CONFIGHISTORY command.

Returns the list of configuration history management commands.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 LISTCHANGERECORDS
 LISTRESOURCEREVISIONS UNDOCONFIGCHANGE
 DELETECONFIGCHANGEHISTORY

Example

The following example shows how to list the configuration history management
commands:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 LISTCHANGERECORDS

A.15.2 DELETECONFIGCHANGEHISTORY
Returns the list of configuration history management commands.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 DELETECONFIGCHANGEHISTORY -application application -startTime starttime -endTime
endtime

Commands for Managing Configuration History

wlevs.Admin Command-Line Reference A-49

Table A-36 DELETECONFIGCHANGEHISTORY Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose Oracle CQL rules you want to manage.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-startTime starttime
Specifies the beginning of the time period to delete change records.

The format is MM-dd-yyyy:HH:mm:ss, such as
10-20-2007:11:22:07.

-endTime end-ime
Specifies the end of the time period to delete change records.

The format is MM-dd-yyyy:HH:mm:ss, such as
10-20-2007:11:22:07.

Example

The following example shows how to list the configuration history management
commands:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 CONFIGHISTORY

A.15.3 LISTCHANGERECORDS
Returns a list of the change records of an application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 LISTCHANGERECORDS -application application -startTime starttime -endTime endtime

Commands for Managing Configuration History

A-50 Administering Oracle Event Processing

Table A-37 GETRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose change records you want to browse.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-startTime starttime
Specifies the beginning of the time period to filter the display of
change records.

The format is MM-dd-yyyy:HH:mm:ss, such as
10-20-2007:11:22:07.

-endTime end-ime
Specifies the end of the time period to filter the display of change
records.

The format is MM-dd-yyyy:HH:mm:ss, such as
10-20-2007:11:22:07.

Example

The following example shows how to list all the change records created between
11:10:07 and 11:22:07 on 20 November 2007 for the application helloworld:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 LISTCHANGERECORDS -application helloworld -startTime 10-20-2007:11:10:07
 -endTime 10-20-2007:11:22:07

A.15.4 LISTRESOURCEREVISIONS
Returns a list of the configuration resource revisions of an application.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 LISTRESOURCEREVISIONS -application application -startTime starttime -endTime endtime

Commands for Managing Configuration History

wlevs.Admin Command-Line Reference A-51

Table A-38 GETRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose resource revisions you want to browse.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Oracle Event Processing Using
Visualizer for Oracle Stream Explorer). In the left pane, navigate
to and expand the Applications node of the Oracle Event
Processing instance to which the application is deployed. Each
node under the Applications node is named with the exact
application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-startTime starttime
Specifies the beginning of the time period to filter the list of
resource revisions.

The format is MM-dd-yyyy:HH:mm:ss, such as
10-20-2007:11:22:07.

-endTime end-ime
Specifies the end of the time period to filter the list of resource
revisions.

The format is MM-dd-yyyy:HH:mm:ss, such as
10-20-2007:11:22:07.

Example

The following example shows how to list all the resource revisions created between
11:10:07 and 11:22:07 on 20 November 2007 for the application helloworld:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 LISTRESOURCEREVISIONS -application helloworld -startTime 10-20-2007:11:10:07
 -endTime 10-20-2007:11:22:07

A.15.5 UNDOCONFIGCHANGE
Rolls back the changes defined by the change record specified by change record ID.

Syntax

java wlevs.Admin
 [Connection Arguments]
 [User Credentials Arguments]
 [Common Arguments]
 UNDOCONFIGCHANGE -application application -recordId changerecordid

Commands for Managing Configuration History

A-52 Administering Oracle Event Processing

Table A-39 GETRULE Arguments

Argument Definition

-application application
Specifies the name of the Oracle Event Processing application
whose change records you want to undo.

To get the exact name of your application, you can:

• Use wlevs.Admin to query for the name (see Query for
Application and Processor Names).

• Use the Oracle Event Processing Visualizer: Start the Oracle
Event Processing Visualizer (see Using Visualizer for Oracle
Stream Explorer). In the left pane, navigate to and expand the
Applications node of the Oracle Event Processing instance to
which the application is deployed. Each node under the
Applications node is named with the exact application name.

• Look at the MANIFEST.MF file of the application; the
application name is specified by the Bundle-SymbolicName
header.

-recordId changerecordid
Specifies the identifier of the change record to undo.

To get the change record identifier, you can use:

• LISTCHANGERECORDS
• LISTRESOURCEREVISIONS.

Example

The following example shows how to roll back all the resource revisions created
between 11:10:07 and 11:22:07 on 20 November 2007 for the application helloworld:

java wlevs.Admin
 -url service:jmx:msarmi://localhost:9002/jndi/jmxconnector
 -username wlevs -password wlevs
 UNDOCONFIGCHANGE -application helloworld -recordId tr.1267607521409.10110

Commands for Managing Configuration History

wlevs.Admin Command-Line Reference A-53

Commands for Managing Configuration History

A-54 Administering Oracle Event Processing

B
Deployer Command-Line Reference

This appendix provides a reference to the Oracle Event Processing Deployer utility,
which you can use to deploy Oracle Event Processing applications.

This appendix includes the following sections:

• Overview of Using the Deployer Utility

• Configure the Deployer Utility Environment

• Run the Deployer Utility Remotely

• Syntax to Invoke the Deployer Utility

• Deployer Utility Examples.

B.1 Overview of Using the Deployer Utility
The Deployer utility is a Java-based deployment utility that provides administrators
and developers command-line based operations for deploying Oracle Event
Processing applications. In the context of Oracle Event Processing deployment, an
application is defined as an OSGi bundle at http://www.osgi.org/ JAR file that
contains the following artifacts:

• The compiled Java class files that implement some of the components of the
application, such as the adapters, adapter factory, and POJO that contains the
business logic.

• One or more Oracle Event Processing configuration XML files that configure the
components of the application, such as the processor, adapter, or streams.

The configuration files must be located in the META-INF/wlevs directory of the
OSGi bundle JAR file.

• An EPN assembly file that describes all the components of the application and how
they are connected to each other. The EPN assembly file extends the standard
Spring context file.

The EPN assembly file must be located in the META-INF/spring directory of the
OSGi bundle JAR file.

• A MANIFEST.MF file that describes the contents of the JAR.

See Developing Applications for Event Processing with Oracle Stream Explorer for
information about creating this deployment bundle.

The Deployer utility uses HTTP to connect to Oracle Event Processing, which means
that you must configure Jetty for the server instance to which you are deploying your
application. See Administering Oracle Stream Explorer.

Deployer Command-Line Reference B-1

http://www.osgi.org/

Oracle Event Processing uses the deployments.xml file to internally maintain its list
of deployed application OSGi bundles. This file is located in the DOMAIN_DIR/
servername directory, where DOMAIN_DIR refers to the main domain directory
corresponding to the server instance to which you are deploying your application and
servername refers to the server instance itself.

Caution:

The XSD for the deployments.xml file is provided for your information
only. Oracle does not recommend updating the deployments.xml file
manually.

B.2 Configure the Deployer Utility Environment
Before you can use the Deployer utility, you must configure your environment
appropriately.

Configure the Deployer utility environment:

Perform the following steps to configure the deployer utility environment:

1. Install and configure the Oracle Event Processing software.

2. Update your CLASSPATH variable to include the wlevsdeploy.jar JAR file,
located in the /Oracle/Middleware/my_oep/oep/bin directory.

B.3 Run the Deployer Utility Remotely
Sometimes it is useful to run the Deployer utility on a computer different from the
computer on which Oracle Event Processing is installed and running.

Run the Deployer utility remotely:

1. Copy the following JAR files from the computer on which Oracle Event Processing
is installed to the computer on which you want to run the Deployer utility; you can
copy the JAR files to the directory name of your choice:

• /Oracle/Middleware/my_oep/oep/bin/wlevsdeploy.jar

2. Set your CLASSPATH in one of the following ways:

• Implicitly set your CLASSPATH by using the -jar argument when you run the
utility; set the argument to the NEW_DIRECTORY/wlevsdeploy.jar file,
where NEW_DIRECTORY refers to the directory on the remote computer into
which you copied the required JAR file. When you use the -jar argument, you
do not specify the Deployer utility name at the command line.

• Explicitly update your CLASSPATH by adding the JAR file you copied to the
remote computer to your CLASSPATH environment variable:

3. Invoke the Deployer utility as described in the next section.

B.4 Syntax to Invoke the Deployer Utility
The syntax for using the Deployer utility is as follows:

Configure the Deployer Utility Environment

B-2 Administering Oracle Event Processing

java -jar wlevsdeploy.jar
 [Connection Arguments]
 [User Credential Arguments]
 [Deployment Commands]

The following sections describe the various arguments and commands you can use
with the Deployer utility. See Deployer Utility Examples for specific examples of using
the utility.

B.4.1 Connection Arguments
Table B-1 lists the connection arguments you can specify with the Deployer utility.

Table B-1 Connection Arguments

Argumen
t

Description

-url url
Specifies the URL to the Deployer utility for the Oracle Event Processing instance
to which you want to deploy the OSGI bundle.

The URL takes the following form:

http://host:port/wlevsdeployer

where:

• host refers to the host name of the computer on which Oracle Event
Processing is running.

• port refers to the port number to which Oracle Event Processing listens. Its
value is 9002 by default. This port is specified in the config.xml file that
describes your Oracle Event Processing domain. By default it is located in the
Oracle/Middleware/my_oep/user_projects/domains/
<domainname>/ <servername>/config directory.

The port number is the value of the <Port> child element of the <Netio>
element:

<Netio>
 <Name>NetIO</Name>
 <Port>9002</Port>
</Netio>

If you configure the Oracle Event Processing server for SSL-only connections
(HTTPS-Only Connections), use the value of the <Port> child element of the
SSL <Netio> element:

<Netio>
 <name>sslNetIo</name>
 <port>9003</port>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
</Netio>

For example, if Oracle Event Processing is running on host ariel at port 9002,
then the URL would be:

http://ariel:9002/wlevsdeployer

B.4.2 User Credential Arguments
Table B-2 lists the user credential arguments you can specify with the Deployer utility.

Syntax to Invoke the Deployer Utility

Deployer Command-Line Reference B-3

Table B-2 User Credential Arguments

Argument Description

-user username
User name of the Oracle Event Processing administrator.

If you supply the -user option but you do not supply a corresponding -
password option, the Deployer utility prompts you for the password.

-password
password

Password of the Oracle Event Processing administrator.

Note: This argument is deprecated and may
be removed in a later release. Oracle
recommends that you do not use this
argument.

B.4.3 Deployment Commands
Table B-3 lists the deployment commands you can specify with the Deployer utility.

Table B-3 Deployment Commands

Command Description

-encrypt
Encrypts the user name and password and writes it to output file.

-encryptoutfile
encryptoutfile

Specifies that encryptoutfile should be used to write encrypted the
user and password.

-group groupname
Specifies that the deploy command (install, uninstall, update,
suspend, or resume) applies to a target group, or more specifically, to
the set of running servers within that group.

To specify the domain group, use the keyword all, such as:

-group all

To specify a custom group, simply specify the name of the group:

-group my_group

Note: You may only deploy to a group if the server is part of a
multiserver domain (that is, if clustering is enabled). You may not
deploy to a group if the server is part of a standalone-server domain
(that is, if clustering is disabled). For more information, see About
Multiserver Domains.

-help
Prints a message describe command syntax and arguments.

Syntax to Invoke the Deployer Utility

B-4 Administering Oracle Event Processing

Command Description

-install bundle
Installs the specified OSGi bundle to the specified Oracle Event
Processing instance.

The bundle parameter refers to a filename that is local to the
computer from which you execute the Deployer utility.

Be sure to specify the full pathname of the bundle if it is not located
relative to the directory from which you are running the Deployer
utility.

In particular, Oracle Event Processing:

• Copies the specified bundle to the domain directory.
• Searches the META-INF/wlevs directory in the bundle for the

component configuration files and extracts them to the domain
directory.

• Updates the internal deployment registry.
• Starts the application. The incoming adapters immediately start

receiving data.

-resume name
Resumes a previously suspended OSGI bundle on the specified
Oracle Event Processing instance; the configured adapters once again
start immediately receiving incoming data.

The name parameter refers to the symbolic name of the OSGi bundle
that you want to stop. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle's MANIFEST.MF file:

Bundle-SymbolicName: myApp

-status name
Returns status information about a currently installed OSGi bundle.

The name parameter refers to the symbolic name of the OSGi bundle
for which you want status information. The symbolic name is the
value of the Bundle-SymbolicName header in the bundle's
MANIFEST.MF file:

Bundle-SymbolicName: myApp

-suspend name
Suspends a currently running OSGI bundle which was previously
installed to the specified Oracle Event Processing instance.

The name parameter refers to the symbolic name of the OSGi bundle
that you want to start. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle's MANIFEST.MF file:

Bundle-SymbolicName: myApp

-uninstall name
Removes the existing bundle from the specified Oracle Event
Processing instance.

The name parameter refers to the symbolic name of the OSGi bundle
that you want to remove. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle's MANIFEST.MF file:

Bundle-SymbolicName: myApp

In particular, Oracle Event Processing:

• Removes the specified OSGi bundle from the domain directory.
• Removes the bundles from the internal deployment registry.

Syntax to Invoke the Deployer Utility

Deployer Command-Line Reference B-5

Command Description

-update bundle
Updates the existing OSGi bundle with new application code.

The bundle parameter refers to a filename that is local to the
computer from which you execute the Deployer utility.

Be sure to specify the full pathname of the bundle if it is not located
relative to the directory from which you are running the Deployer
utility.

In particular, Oracle Event Processing:

• Copies the updated bundles to the domain directory.
• Searches the META-INF/wlevs directory in the updated bundle

for the updated component configuration files and extracts them
to the domain directory.

• Updates the internal deployment registry with the updated
information.

-userconfigfile
userconfigfile

Specifies that userconfigfile (security-config.xml) should be used to
retrieve encrypted user name and password from the file.

-userkeyfile
userkeyfile

Specifies that userkeyfile (.msainternal.dat) should be used to get the
encryption key used to encrypt the password in the user config file.

B.5 Deployer Utility Examples
The following examples show how to use the Deployer utility. In all the examples,
Oracle Event Processing is running on host ariel, listening at port 9002, and the
user name/password of the server administrator is oepadmin/welcome1,
respectively. For clarity, the examples are shown on multiple lines; however, when
you run the command, enter all arguments and commands on a single line.

java -jar wlevsdeploy.jar
 -url http://ariel:9002/wlevsdeployer -user wlevs -password wlevs
 -install /application/bundles/com.my.exampleApp_1.0.0.0.jar

The preceding example shows how to install an OSGi bundle called
com.my.exampleApp_1.0.0.0.jar, located in the /application/bundles
directory.

The next command shows how to resume this application after it has been suspended:

java com.bea.wlevs.deployment.Deployer
 -url http://ariel:9002/wlevsdeployer -user wlevs -password wlevs
 -resume exampleApp

The next example shows how to uninstall the application, which removes all traces of
it from the domain directory:

java com.bea.wlevs.deployment.Deployer
 -url http://ariel:9002/wlevsdeployer -user wlevs -password wlevs
 -uninstall exampleApp

The following example shows how to install an application called
strategies_1.0.jar to the strategygroup; this example also shows how to use
the -jar command of the java utility:

Deployer Utility Examples

B-6 Administering Oracle Event Processing

java -jar wlevsdeploy.jar
 -url http://ariel:9002/wlevsdeployer -install strategies_1.0.jar
 -group strategygroup

Deployer Utility Examples

Deployer Command-Line Reference B-7

Deployer Utility Examples

B-8 Administering Oracle Event Processing

C
Security Utilities Command-Line Reference

This appendix provides a reference to the Oracle Event Processing security utilities,
including cssconfig, encryptMSAConfig, and GrabCert, which are all utilities
for generating security configuration files, encrypting cleartext passwords, and
generating a trust keystore.

This appendix includes the following sections:

• The cssconfig Command-Line Utility

• The encryptMSAConfig Command-Line Utility

• The GrabCert Command-Line Utility

• The passhash Command-Line Utility

• The policygen Command-Line Utility

• The encrypttool Command-Line Utility.

Except where otherwise noted, the commands are located in /Oracle/Middleware/
my_oep/oep/bin.

Note:

The GrabSert, passgen, and secgen command-line utilities are deprecated.
Configuration Wizard and Oracle Event Processing Visualizer perform the
passgen and secgen tasks for you.

C.1 The cssconfig Command-Line Utility
Use the cssconfig command-line utility to generate a security configuration file
(security.xml) that uses a password policy.

• cssconfig.cmd (Windows)

• cssconfig.sh (UNIX)

The Unix version of this utility starts with the #!/bin/ksh directive. On most Unix
systems, this forces the Korn Shell program to be used when using the utility. If the
ksh program is not present in the bin directory or if the shell language used cannot
properly execute the utility, run the utility as shown below:

$PATH_TO_KSH_BIN/ksh -c cssconfig.sh

where PATH_TO_KSH_BIN is the fully qualified path to the ksh program.

Security Utilities Command-Line Reference C-1

Syntax

cssconfig -p propertyfile [-c configfile] -i inputkeyfile [-d]

Table C-1 encryptMSAConfig Arguments

Option Description Default Value

propertyfile Required.

A file that contains security configuration properties
provided by the user to define the required configuration.
Configure SSL Manually.

configfile Optional.

The name of the generated file. This property is optional.

security.x
ml

inputkeyfile The fully qualified name of the input key file used to
generate the security configuration file. Set this option to
the security-key.dat file in the config directory.

-d Use the -d option to enable debugging.

C.2 The encryptMSAConfig Command-Line Utility
This tool is not available on Oracle WebLogic Server. Use the encryptMSAConfig
encryption command-line utility to encrypt cleartext passwords.You can use
encryptMSAConfig to encrypt the server config.xml and security.xml files,
and the application configuration credential.

• encryptMSAConfig.cmd (Windows)

• encryptMSAConfig.sh (UNIX)

Cleartext passwords are specified by the <password> element, in XML files.
Examples of XML files that can contain the <password> elements include:

• config.xml

• security-config.xml

• Component configuration files

Syntax

encryptMSAConfig directory XML_file aesinternal.dat_file

Table C-2 encryptMSAConfig Arguments

Option Description

directory The name of the directory that contains the XML file with
the cleartext <password /> element.

XML_file The name of the XML file.

The encryptMSAConfig Command-Line Utility

C-2 Administering Oracle Event Processing

Option Description

aesinternal.
dat_file

The location of the.aesinternal.dat key file
associated with your domain. The key file encrypts the
<password /> element in the XMLfile parameter. The
aesinternal.dat_file file is located in the /Oracle/
Middleware/my_oep/user_projects/domains/
SERVER directory

-noinput Use the -noinput option to instruct GrabCert to copy
all certificates from host.

Omit the -noinput option to instruct GrabCert to list
all available certificates from host and prompt you to
select one.

For example:

pwd C:\Oracle\Middleware\my_oep\user_projects\domains\oep_domain\defaultserver

C:\Oracle\Middleware\my_oep\oep\bin\encryptMSAConfig.cmd . config\config.xml
 .aesinternal.dat

After you run the command, the value of the password element in XML_file is
encrypted.

C.3 The GrabCert Command-Line Utility
Use the GrabCert command-line utility to generate a trust keystore that includes the
certificate from an existing trust keystore.

The GrabCert utility is located in the /Oracle/Middleware/my_oep/oep/
utils/security/wlevsgrabcert.jar file.

Syntax

java GrabCert host:secureport [-alias=alias] [-noinput] [truststorepath]

Table C-3 GrabCert Arguments

Option Description Default Value

host The host name of the Oracle Event Processing server from
which to copy the certificate.

secureport The SSL port on host.

For more information, see Configure SSL Manually.

9003

alias The alias for the certificate in the trust keystore. host

-noinput Use the -noinput option to instruct GrabCert to copy
all certificates from host.

Omit the -noinput option to instruct GrabCert to list
all available certificates from host and prompt you to
select one.

truststorepa
th

The full pathname of the generated trust keystore file on
host.

evstrust.j
ks

The GrabCert Command-Line Utility

Security Utilities Command-Line Reference C-3

Examples

For example:

java GrabCert ariel:9003 -alias=ariel evstrust.jks

For other examples, see Configure SSL in a Multiserver Domain for Visualizer.

C.4 The passhash Command-Line Utility
This tool is not available on Oracle WebLogic Server. Use the passhash command-
line utility to encrypt a password to use in the atnstore.txt file.

• passgen.cmd (Windows)

• passgen.sh (UNIX)

Note:

To get command-line help for this tool, use -help instead of -h.

Syntax

passhash [pasword]

The password parameter is a plain text string. The command output is a hashed
encrypted string using the MD5/SHA encryption algorithm.

./passhash.sh
Password ("quit" to end): 4444
{SHA-1}+wQ3QDREP82FCrpDYspXM8SAlaMCx0o=
Password ("quit" to end): quit

C.5 The policygen Command-Line Utility
Use the policygen command-line utility to convert an entitlement file to an XACML
LDIFT file or to an XACML file.

Syntax

policygen [-h]
policygen [-s] [-l] | -s] [-x] [entitlementInputFile] [xacmlOutputFile]

Table C-4 policygen Arguments

Option Description

-h
Print command help to the console.

-s
Generate a standard XACML policy inside an XACML LDIFT file or
in an XACML file.

When no -l or -s is specified, an XACML LDIFT file is generated.

When no -s option is specified, an XACML policy file is generated.

-l
Generate an XACML LDIFT file.

The passhash Command-Line Utility

C-4 Administering Oracle Event Processing

Option Description

-x
Generate an XACML policy file.

entitlementInputFile The name and location of the input entitlement XML file.

xacmlOutputFile The name and location of the output XACML file.

Examples

The following example generates an XACML policy file:

./policygen.sh -l entitlementinputfile.xml xacmloutputfile.xml

C.6 The encrypttool Command-Line Utility
Use the encrypttool command-line utility to encrypt and decrypt files. This
command uses an EncryptedStreamFactory object for encryption and decryption.
The encryption result is a binary encrypted file. All content in the input file is
encrypted using the AES/DES encryption algorithm.

Syntax

encrypttool [-h]
encrypttool [-encrypt] [-decrypt] [-password password] [-algorithm algorithm]
[inputfilename] [outputfilename]

Table C-5 encrypttool Arguments

Option Description

-encrypt
Encrypt the input file and save the encryption results to the
encrypted output file.

-decrypt
Decrypt the input file and save the decryption results to the
unencrypted output file.

-password
The password that is required to encrypt or decrypt a file.

If you do not provide the password, the system prompts you for it.

-algorithm
The encryption or decryption algorithm to use for the operation. The
legal values are AES and DES. DES is the default.

inputfilename The location and name of the input file to be encrypted or decrypted.

outputfilename The name and location of the output file in which to save the
encryption or decryption results. If you do not specify an output file,
the results are printed to the console.

Examples

The following example uses the mypassword password to encrypt the
textToEncrypt file with the AES encryption algorithm and saves the results to the
encryptedText file.

encrypttool -encrypt -password mypassword -algorithm AES textToEncrypt encryptedText

The encrypttool Command-Line Utility

Security Utilities Command-Line Reference C-5

The encrypttool Command-Line Utility

C-6 Administering Oracle Event Processing

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	What's New in This Guide
	Part I Overview
	1 Introduction to Server Administration
	1.1 Server-Provided Services
	1.2 Server Domains
	1.3 Server Life Cycle
	1.3.1 Server Startup Actions
	1.3.2 Server Shutdown Actions

	1.4 Server Configuration
	1.4.1 Server Configuration Files
	1.4.2 Edit the config.xml File
	1.4.3 Manage Configuration History
	1.4.4 Configure the Server bootclasspath

	1.5 Server Administration Tools
	1.6 Server Administration Tasks

	Part II Standalone-Server Domains
	2 Standalone-Server Domains
	2.1 Configuration Wizard
	2.2 Create a Standalone-Server Domain
	2.2.1 Create a Standalone-Server Domain in Graphical Mode
	2.2.2 Create a Standalone-Server Domain in Silent Mode
	2.2.2.1 Create an XML Properties File
	2.2.2.2 Use Silent Mode and Generate a Log File
	2.2.2.3 Return Exit Codes to the Command Window

	2.3 Update a Standalone-Server Domain
	2.3.1 Update a Standalone-Server Domain in Graphical Mode
	2.3.2 Update a Standalone-Server Domain in Silent Mode

	2.4 Start and Stop a Server in a Standalone-Server Domain
	2.4.1 Start a Standalone-Server with the startwlevs Script
	2.4.2 Stop a Standalone-Server with the stopwlevs Script

	3 Standalone-Server Domain Application Deployment
	3.1 Deploy with the Deployer Utility

	Part III Multiserver Domains
	4 About Multiserver Domains
	4.1 Multiserver Administration
	4.1.1 Oracle Coherence
	4.1.2 Oracle Event Processing Native Clustering

	4.2 Server Groups
	4.2.1 Singleton Server Deployment Group
	4.2.2 Domain Deployment Group
	4.2.3 Custom Deployment Groups

	4.3 Multiserver Notifications and Messaging
	4.4 Multiserver Domain Directory Structure
	4.5 Order of Cluster Element Child Elements
	4.6 High Availability and Multiserver Domains
	4.7 Scalability and Multiserver Domains

	5 Multiserver Domains with Oracle Coherence
	5.1 Create a Multiserver Domain
	5.2 Create a Multiserver Domain with Default Groups
	5.3 Create a Multiserver Domain with Custom Groups
	5.4 Configure the Oracle Coherence Cluster
	5.5 Update a Multiserver Domain
	5.6 Secure the Messages Sent Between Servers
	5.7 Use Multiserver Domain APIs to Manage Group Membership
	5.8 Start and Stop a Server in a Multiserver Domain

	6 Multiserver Domains with Native Clustering
	6.1 Create a Multiserver Domain
	6.2 Create a Multiserver Domain with Default Groups
	6.3 Create a Multiserver Domain with Custom Groups
	6.4 Update a Multiserver Domain
	6.5 Secure the Messages Sent Between Servers in a Multiserver Domain
	6.6 Use Multiserver Domain APIs to Manage Group Membership Changes
	6.7 Start and Stop a Server in a Multiserver Domain

	7 Multiserver Domain Application Deployment
	7.1 Target Server Groups
	7.2 Deploy to a Server Singleton Group
	7.3 Deploy to a Server Domain Group
	7.4 Deploy to a Server Custom Group
	7.5 Troubleshooting

	Part IV Configure Services
	8 Network I/O
	8.1 Network I/O Providers
	8.2 Configure Network I/O Server (netio)
	8.3 Configure Network I/O Client (netio-client)

	9 Security
	9.1 Users, Groups, and Roles
	9.2 Java SE Security for an Oracle Event Processing Server
	9.3 Security Provider
	9.4 Password Strength
	9.5 SSL to Secure Network Traffic
	9.5.1 Configure SSL Manually
	9.5.2 Create a Key Store Manually
	9.5.3 Configure SSL in a Multiserver Domain for Visualizer
	9.5.4 Configure SSL Between an SAML2 Service Provider and Identity Provider

	9.6 FIPS
	9.7 SSO with SAML2
	9.7.1 Configure SAML2 Service Provider Options
	9.7.2 Configure SAML2 Identity Provider Options
	9.7.3 Configure SAML2 Web Application Options

	9.8 HTTPS-Only Connections
	9.9 Security for Server Services
	9.9.1 Configure Jetty Security
	9.9.2 Configure JMX Security
	9.9.3 Configure JDBC Security
	9.9.4 Configure HTTP Publish-Subscribe Server Channel Security

	9.10 Cross-Domain Security for Visualizer
	9.11 Security Auditor
	9.12 Disable Security
	9.13 Security Utilities
	9.14 User Credentials for Command-Line Utilities
	9.15 Security in Oracle Event Processing Examples and Domains

	10 Jetty
	10.1 Jetty Features
	10.2 Thread Pools
	10.3 Work Manager Configuration
	10.4 Application Development and Deployment
	10.5 Configure a Jetty Server Instance
	10.5.1 Example Jetty Configuration
	10.5.2 Jetty Configuration Objects

	11 JMX
	11.1 MBean Usage
	11.2 Access the Oracle Event Processing JMX Server
	11.3 Types of MBeans
	11.3.1 Configuration MBeans
	11.3.2 Configuration MBean Naming
	11.3.3 Run Time MBeans
	11.3.4 Run Time MBean Naming
	11.3.5 Oracle Event Processing MBean Hierarchy

	11.4 Configure JMX
	11.4.1 Example JMX Configuration
	11.4.2 JMX Configuration Objects

	11.5 Manage with JMX
	11.5.1 Connect with APIs to a JMX Server from a Non-Oracle Event Processing Client
	11.5.2 Connect with APIs to a JMX Server From an Oracle Event Processing Client
	11.5.3 Configure an Oracle Event Processing Component with JMX APIs
	11.5.4 Monitor the Throughput and Latency of a Component with JMX APIs
	11.5.5 Connect to a Local or Remote JMX Server using JConsole with Security
	11.5.6 Connect to Local or Remote JMX Server Using JConsole with Security Disabled

	12 JDBC
	12.1 Database Access
	12.1.1 Oracle JDBC Driver
	12.1.2 Supported Databases

	12.2 Oracle Event Processing Data Sources
	12.2.1 Default Data Source Configuration
	12.2.2 Custom Data Source Configuration
	12.2.3 Get the Native JDBC Connection

	12.3 Configure Access to a Database with an Oracle JDBC Driver
	12.4 Configure Database Access with Microsoft SQL Server JDBC Driver
	12.5 Configure Access to a Different Database Driver or Driver Version
	12.5.1 Access a Database Driver with an Application Library Built With bundler.sh
	12.5.2 Access a Database Driver with bootclasspath

	13 HTTP Publish-Subscribe Server
	13.1 Default HTTP Pub-Sub Server
	13.2 HTTP Publish-Subscribe Adapters
	13.3 Server Architecture
	13.4 Create a New HTTP Publish-Subscribe Server
	13.5 Configure an Existing HTTP Publish-Subscribe Server

	14 Logging and Debugging
	14.1 Logging Configuration Scenarios
	14.2 Commons Apache Logging Framework
	14.2.1 Set the Log Factory
	14.2.2 Use Log Severity Levels
	14.2.3 Log Files
	14.2.4 Log Message Format
	14.2.4.1 Format of Output to a Log File
	14.2.4.2 Format of Output to Console, Standard Out, and Standard Error

	14.3 OSGi Framework Logger
	14.4 Log4j Logger
	14.4.1 Loggers
	14.4.2 Appenders
	14.4.3 Layouts

	14.5 Configure the Logging Service
	14.5.1 logging-service
	14.5.2 log-file
	14.5.3 log-stdout
	14.5.4 Configure Severity for an Individual Module

	14.6 Configure Log4j Logging
	14.6.1 Configure log4j Properties
	14.6.2 Configure Application Manifest
	14.6.3 Enable Log4j Logging
	14.6.4 Debug Log4j Logging

	14.7 Use the Apache Commons Logging API
	14.8 Configure Debugging Options
	14.8.1 Configure Debugging Options with System Properties
	14.8.2 Configure Debugging Options with a Configuration File

	Part V Command Reference
	A wlevs.Admin Command-Line Reference
	A.1 Overview of the wlevs.Admin Utility
	A.2 Configure the wlevs.Admin Utility Environment
	A.3 Running the wlevs.Admin Utility Remotely
	A.4 Run wlevs.Admin Utility in SSL Mode
	A.5 Syntax for Calling the wlevs.Admin Utility
	A.5.1 Example Environment
	A.5.2 Exit Codes Returned by wlevs.Admin

	A.6 Connection Arguments
	A.7 User Credentials Arguments
	A.8 Common Arguments
	A.9 HELP Command
	A.10 SHUTDOWN Command
	A.11 Commands to Manage Oracle CQL Rules
	A.11.1 GETRULE
	A.11.2 ADDRULE
	A.11.3 DELETERULE
	A.11.4 REPLACERULE
	A.11.5 STARTRULE
	A.11.6 STOPRULE
	A.11.7 UPLOAD
	A.11.8 DOWNLOAD

	A.12 Commands to Manage MBeans
	A.12.1 Specifying MBean Types
	A.12.2 MBean Management Commands
	A.12.3 GET
	A.12.4 INVOKE
	A.12.5 QUERY
	A.12.6 Query for Application and Processor Names
	A.12.7 SET

	A.13 Commands for Controlling Event Record and Playback
	A.13.1 STARTRECORD
	A.13.2 STOPRECORD
	A.13.3 CONFIGURERECORD
	A.13.4 SCHEDULERECORD
	A.13.5 LISTRECORD
	A.13.6 STARTPLAYBACK
	A.13.7 STOPPLAYBACK
	A.13.8 CONFIGUREPLAYBACK
	A.13.9 SCHEDULEPLAYBACK
	A.13.10 LISTPLAYBACK

	A.14 Commands for Monitoring Throughput and Latency
	A.14.1 MONITORAVGLATENCY
	A.14.2 MONITORAVGLATENCYTHRESHOLD
	A.14.3 MONITORMAXLATENCY
	A.14.4 MONITORAVGTHROUGHPUT

	A.15 Commands for Managing Configuration History
	A.15.1 CONFIGHISTORY
	A.15.2 DELETECONFIGCHANGEHISTORY
	A.15.3 LISTCHANGERECORDS
	A.15.4 LISTRESOURCEREVISIONS
	A.15.5 UNDOCONFIGCHANGE

	B Deployer Command-Line Reference
	B.1 Overview of Using the Deployer Utility
	B.2 Configure the Deployer Utility Environment
	B.3 Run the Deployer Utility Remotely
	B.4 Syntax to Invoke the Deployer Utility
	B.4.1 Connection Arguments
	B.4.2 User Credential Arguments
	B.4.3 Deployment Commands

	B.5 Deployer Utility Examples

	C Security Utilities Command-Line Reference
	C.1 The cssconfig Command-Line Utility
	C.2 The encryptMSAConfig Command-Line Utility
	C.3 The GrabCert Command-Line Utility
	C.4 The passhash Command-Line Utility
	C.5 The policygen Command-Line Utility
	C.6 The encrypttool Command-Line Utility

